SIAM J. COMPUT. (© 2004 Society for Industrial and Applied Mathematics
Vol. 34, No. 1, pp. 1-22

FAST UNIVERSALIZATION OF INVESTMENT STRATEGIES*
KARHAN AKCOGLU!, PETROS DRINEASY, AND MING-YANG KAOS$

Abstract. A wuniversalization of a parameterized investment strategy is an online algorithm
whose average daily performance approaches that of the strategy operating with the optimal param-
eters determined offline in hindsight. We present a general framework for universalizing investment
strategies and discuss conditions under which investment strategies are universalizable. We present
examples of common investment strategies that fit into our framework. The examples include both
trading strategies that decide positions in individual stocks, and portfolio strategies that allocate
wealth among multiple stocks. This work extends in a natural way Cover’s universal portfolio work.
We also discuss the runtime efficiency of universalization algorithms. While a straightforward im-
plementation of our algorithms runs in time exponential in the number of parameters, we show that
the efficient universal portfolio computation technique of Kalai and Vempala [Proceedings of the
41st Annual IEEE Symposium on Foundations of Computer Science, Redondo Beach, CA, 2000,
pp. 486—491] involving the sampling of log-concave functions can be generalized to other classes of
investment strategies, thus yielding provably good approximation algorithms in our framework.

Key words. universal portfolios, computational finance, portfolio optimization, investment
strategies, portfolio strategies, trading strategies, constantly rebalanced portfolios

AMS subject classifications. 91B28, 68Q32, 68W40

DOI. 10.1137/S0097539702405619

1. Introduction. An age-old question in finance deals with how to manage
money on the stock market to obtain an “acceptable” return on investment. An
investment strategy is an online algorithm that attempts to address this question
by applying a given set of rules to determine how to invest capital. Typically, an
investment strategy is parameterized by a vector w € R* = [J:2| R’ that dictates how
the strategy operates. The optimal parameters that maximize the strategy’s return
are unknown when the algorithm is run, and the parameters are usually chosen quite
arbitrarily. A universalization of an investment strategy is an online algorithm based
on the strategy whose average daily performance approaches that of the strategy
operating with the optimal parameters determined offline in hindsight.

Consider the constantly rebalanced portfolio (CRP) investment strategy univer-
salized by Cover [5] and the subject of several extensions and generalizations [3, 6, 11,
14, 16, 20]. The CRP strategy maintains a constant proportion of total wealth in each
stock, where the proportions are dictated by the parameters given to the strategy. In

*Received by the editors April 12, 2002; accepted for publication (in revised form) March 27, 2004;
published electronically October 1, 2004. A preliminary version of this work appeared in Lecture
Notes in Computer Science 2380: Proceedings of the 29th International Colloguium on Automata,
Languages, and Programming, M. Hennessy and P. Widmayer, eds., Springer-Verlag, New York,
2002, pp. 888-900.

http://www.siam.org/journals/sicomp/34-1/40561.html

TThe Goldman Sachs Group, New York, NY 10004 (karhan.akcoglu@aya.yale.edu). This work
was done while the author was a graduate student at Yale University and was supported in part by
NSF grant CCR-9988376.

fDepartment of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180 (drinep@cs.
rpi.edu). This work was done while the author was a graduate student at Yale University and was
supported in part by NSF grant CCR-9896165.

$Department of Computer Science, Northwestern University, Evanston, IL 60201 (kao@cs.
northwestern.edu). This author’s work was supported in part by NSF grant CCR-9988376.

1



2 KARHAN AKCOGLU, PETROS DRINEAS, AND MING-YANG KAO

a stock market with m stocks, the parameter space for the CRP strategy is

Wm:{we[O,l]m‘iwizl},

i=1

the set of vectors in R™ whose components are between 0 and 1 and add up to 1.
Given a portfolio vector w = (w1, ..., W) € Wi, w; tells us the proportion of wealth
to invest in stock ¢ for 1 < ¢ < m. At the beginning of each day, the holdings are
rebalanced; i.e., money is taken out of some stocks and put into others, so that the
desired proportions are maintained in each stock. As an example of the robustness of
the CRP strategy, consider the following market with two stocks [11, 16]. The price
of one stock remains constant, while the other stock doubles and halves in price on
alternate days. Investing in a single stock will at most double our money. With a
CRP (%, %) strategy, however, our wealth will increase exponentially, by a factor of
(3-1+1-2)x(5-14+35-3)=3x3 =32 every two days.

Cover developed an investment strategy that effectively distributes wealth uni-
formly over all portfolio vectors w € W, on the first day and executes the CRP
strategy with daily rebalancing according to each w on the (infinitesimally small)
proportion of wealth initially allocated to each w. Cover showed that the average
daily log-performance! of such a strategy approaches that of the CRP strategy oper-
ating with the optimal return-maximizing parameters chosen with hindsight.

This paper generalizes previous results and introduces a framework that allows
universalizations of other parameterized investment strategies. As we see in section 2,
investment strategies typically fall under two categories: trading strategies operate
on a single stock and dictate when to buy and short? the stock; portfolio strategies,
such as CRP, operate on the stock market as a whole and dictate how to allocate
wealth among multiple stocks. We present several examples of common trading and
portfolio strategies that can be universalized in our framework. We discuss our univer-
salization framework in section 3. The proofs of our results are very general, and, as
with previous universal portfolio results, we make no assumptions on the underlying
distribution of the stock prices; our results are applicable for all sequences of stock re-
turns and market conditions. The running times of universalization algorithms are, in
general, exponential in the number of parameters used by the underlying investment
strategy. Kalai and Vempala [14] presented an efficient implementation of the CRP
algorithm that runs in time polynomial in the number of parameters. In section 4, we
present general conditions on investment strategies under which the universalization
algorithm can be efficiently implemented. We also give some investment strategies
that satisfy these conditions. Section 5 concludes with directions for further research.

2. Types of investment strategies. Suppose we would like to distribute our
wealth among m stocks.? Investment strategies are general classes of rules that dictate
how to invest capital. At time ¢ > 0, a strategy .S takes as input an environment vector
&, and a parameter vector w, and returns an investment description Sy(w) specifying
how to allocate our capital at time ¢. The environment vector & contains historic

1The average daily log-performance is the average of the logarithms of the factors by which our
wealth changes on a daily basis. This notion is discussed further in section 3.1.

2A short position in a stock, discussed in section 2.1, allows us to earn a profit when the stock
declines in value.

3We use the term “stocks” in order to keep our terminology consistent with previous work, but
we actually mean a broader range of investment instruments, including both long and short positions
in stocks.



FAST UNIVERSALIZATION OF INVESTMENT STRATEGIES 3

market information, including stock price history, trading volumes, etc.; the parameter
vector w is independent of & and specifies exactly how the strategy S should operate;
the investment description Sy(w) = (S¢1(W), ..., Sum(W)) is a vector specifying the
proportion of wealth to put in each stock, where we put a fraction Si;(w) of our
holdings in stock i, for 1 < ¢ < m. For example, CRP is an investment strategy;
coupled with a portfolio vector w, it tells us to “rebalance our portfolio on a daily
basis according to w”; its investment description, CRP;(w) = w, is independent of
the market environment &;.

There are two general types of investment strategies that we focus upon in this
paper. Trading strategies tell us whether we should take a long (bet that the stock
price will rise) or a short (bet that the stock price will fall) position on a given stock.
Portfolio strategies tell us how to distribute our wealth among various stocks. We
should note here that these two classes do not exhaust all investment strategies; there
exist strategies that take both long and short positions in several stocks (as in [21]).
Trading strategies are denoted by T', and portfolio strategies are denoted by P. We
use S to denote either kind of strategy. For k > 2, let

k
(2.1) Wk:{w=(w1,...,wk)e[0,1}’“|Zwi=1}.
i=1

REMARK 1. Wy, is a (k—1)-dimensional simplex in R*. The investment strategies
that we describe below are parameterized by vectors in Wi = Wy x -+ - x Wy, (€ times)
for some k > 2 and £ > 1. We may write w € Wﬁ in the form w = (w1,...,wy),
where W, = (w,1,...,wy) for 1 <o < L.

2.1. Trading strategies. Suppose that our market contains a single stock. We
have m = 2 potential investments: either a long position or a short position in the
stock. To take a long position, we buy shares in hopes that the share price will rise.
We close a long position by selling the shares. The money we use to buy the shares
is our investment in the long position; the value of the investment is the money we
get when we close the position. If we let p; denote the stock price at the beginning of
day t, the value of our investment will change by a factor of x; = % from day t to
t+ 1.

To take a short position, we borrow shares from our broker and sell them on the
market in hopes that the share price will fall. We close a short position by buying the
shares back and returning them to our broker. As collateral for the borrowed shares,
our broker has a margin requirement: a fraction a of the value of the borrowed shares
must be deposited in a margin account. Should the price of the security rise sufficiently,
the collateral in our margin account will not be enough, and the broker will issue a
margin call, requiring us to deposit more collateral. The margin requirement is our
investment in the short position; the value of the investment is the money we get
when we close the position.

LEMMA 2.1. Let the margin requirement for a short position be o € (0,1]. Sup-
pose that a short position is opened on day t and that the price of the underlying stock
changes by a factor of xy = % < 1+ « during the day. Then the value of our
investment in the short position changes by a factor of zi =1+ 1;”” during the day.

Proof. Suppose that we have $v to deposit in the zero-interest margin account.
Using this as our investment in the short position, we can sell $v/a worth of shares.
Combining the proceeds of the stock sale with our margin account balance, we will
have a total of v + v/« dollars. At the end of the day, it will cost x;v/a dollars to




4 KARHAN AKCOGLU, PETROS DRINEAS, AND MING-YANG KAO

buy the shares back, and we will be left with v + = — z;2 dollars, which is positive
since x; < 1+ a. Thus, our investment of $v in the short position has changed by a
factor of 1+ %, as claimed. 0

Should the price of the underlying stock change by a factor greater than 1 + «,
we will lose more money than we initially put in. We will assume that the margin
requirement « is sufficiently large that the daily price change of the stock is always
less than 1 + «.

REMARK 2. This assumption can be eliminated by purchasing a call option on
the stock with some strike price p < (1 + a)p;. Should the stock price get too high,
the call allows us to purchase the stock back for $p. Though its price detracts from
the performance of our short trading strategy, the call protects us from potentially
unlimited losses due to rising stock price.

If a short position is held for several days, assume that it is rebalanced at the
beginning of each day: either part of the short is closed (if ; > 1) or additional
shares are shorted (if 2y < 1) so that the collateral in the margin account is exactly
an « fraction of the value of the shorted shares. This ensures that the value of a
short position changes by a factor zj = 1 + 1‘@“ each day. Treating short positions
in this way, they can simply be viewed as any other stock, so trading strategies are
effectively investment strategies that decide between two potential investments: a long
or a short position in a given stock. The investment description of a trading strategy
T is Ty = (Ty1, Ty2), where Ty and Ty are the fractions of wealth to put in a long and
short position, respectively.

REMARK 3. Let D = Ty — Tia/a be the net long position of the investment
description. In practice, if D > 0, investors should put a D fraction of their money
in the long position and a 1 — D fraction in cash; if D < 0, investors should invest
D in the short position and 1 — D in cash; if D = 0, investors should avoid the
stock completely and keep all their money in cash. From a practical standpoint, it is
desirable for the trading strategy to be decisive, i.e., |D| = 1, so that our allocation
of money to the stock is always fully invested in the stock (either as a long or a short
position). We show in section 3 that investment strategies that are continuous in
their parameter spaces are universalizable. Though decisive trading strategies T are
discontinuous, they can be approrimated by continuous strategies whose investment
descriptions converge almost everywhere to Ty as t — oo (see, for example, (2.3)
below).

We now describe some commonly used and researched trading strategies [4, 10,
18, 22] and show how they can be parameterized.

MA[k]: Moving average cross-over with k-day memory. In traditional applica-
tions [10] of this rule, we compare the current stock price with the moving average
over, say, the previous 200 days: if the price is above the moving average, we take a
long position; otherwise we take a short position. Some generalizations of this rule
have been made, where we compare a fast moving average (over, for example, the
past 5 to 20 days) with a slow moving average (over the past 50 to 200 days). We
generalize this rule further. Given day t > 0, let v = (v41,...,v) be the price-
history vector over the previous k days, where v;; is the stock price on day t — j.
Assume that the stock prices have been normalized such that 0 < v;; < 1. Let
(Wr,wg) € W (where W, is defined in (2.1)) be the weights used to compute the
fast moving and slow moving averages, so that these averages on day ¢ are given by
wr-v; and wg - vy, respectively. Since the prices have been normalized to the interval
(0,1], -1 < (wp —wg) - vy < 1, let g : [-1,1] — [0,1] be the long/short allocation
function. The idea is that g((wp — wg) - v¢) represents the proportion of wealth that




FAST UNIVERSALIZATION OF INVESTMENT STRATEGIES )

we invest in a long position. The full investment description for the MA = MA[k]
trading strategy is

MA(wWp,ws) = (9(Wr —Ws) - Vi), 1= g((Wr — Ws) - v¢)).

Note that the dimension of the parameter space for MA[k] is 2(k — 1) since each of wg
and wg are taken from (k — 1)-dimensional spaces. Possible functions for g include

0 if 0
(2.2) gs(x) = s .’ (step function)
1 otherwise,
0 ife< —%,
(2.3) gp@) = t@+1) if-1<az<i (linear step approximation)
1 if <z,
and the line
z+1

that intersects gs(z) at the extreme points 2 = £1 of its domain. Note that g ()
is parameterized by the day ¢ during which it is called and that it converges to gs(x)
on [—1,1] \ {0} as t increases.

REMARK 4. The long/short allocation function used in traditional applications of
this rule is the step function gs(-). As we see in section 3, in order for an investment
strategy to be universalizable, its allocation function must be continuous, necessitating
the continuous approximation gu(-). The linear approzimation g¢(-) can be used
with the results of section 4, to allow for efficient computation of the universalization
algorithm.

SRIk]: Support and resistance breakout with k-day memory. Discussed as early
as the work of Wyckoff [22] in 1910, this strategy uses the idea that the stock price
trades in a range bounded by support and resistance levels. Should the price fall
below the support level, the idea is that it will continue to fall, and a short position
should be taken in the stock. Similarly, should the price rise above the resistance
level, the idea is that it will continue to rise, and a long position should be taken in
the stock. If the stock price remains between the support and resistance levels, the
idea is that it will continue to trade in this range in an unpredictable pattern, and the
stock should be avoided. Support and resistance levels are defined quite arbitrarily in
practice, usually as the minimum and maximum prices over the past k days, where
k is usually taken to be 50, 150, or 200 [4]. To generalize this rule, given day t > 0,
let v, = (V415--.,0) and Vi = (Uy1,...,Tg) be the minimum and maximum price
histories, where v;; and 7;; are the minimum and maximum prices over the previous
j days, normalized so that they are in the range (0,1]. Let w € Wy, be the weights for
computing the support and resistance levels, so that these levels on day ¢ are given
by s = w - v, and r; = W - Vi, respectively.

LEMMA 2.2. The support level is bounded above by the resistance level: sy < 1y.

Proof. This follows from the fact that for all 1 < j < k, vy < Uiy 0

The long/short allocation function will be denoted by h : {(z,y) € [-1,1]? |z <
y} — [0,1]. Let pt be the current stock price (normalized to (0,1] along with v, and
v¢). The idea is that h(p; — r,pr — s¢) tells us the proportion of wealth that we



6 KARHAN AKCOGLU, PETROS DRINEAS, AND MING-YANG KAO

invest in a long position. The full investment description for the SR = SR[k] trading
strategy is

SRy(w) = (h(pt — 74, p — 8¢), 1 —h(pe — e, pr — St))

The value of h need only be defined on {(z,y) € [~1,1]? |z < y} since, by Lemma 2.2,
s¢ < ry. A possible function for h is

0 ife <y <0,

(2.5) hs(x,y) = a%_l ifx <0<y, (step function)

1 ify>x>0,

o

where the investment allocation %ﬁ-l long, 1 — lﬁl = 35 short is equivalent to

having no position in the stock, since the return from such an allocation is Oﬁl +(1+

1*1t)L

< o = 1 Other possibilities include a continuous function

(2.6) hey(z,y),

which approximates hgs(z,y) with maximum slope at most % (defined similarly to
g(t)(x)), or the plane

(z+1Da y+1

(2.7) hy(,y) = 2a+1)  2(a+1)

that intersects hs(z,y) at the extreme points (x,y) = (—1,—1), (—1,1), and (1,1) of
its domain.

2.2. Portfolio strategies. Portfolio strategies are investment strategies that
distribute wealth among m stocks. The investment description of a portfolio strategy
Pis P, = (Pu,...,Pyy,), where 0 < P,; <1land Y.;", P;; = 1. We put a fraction P;
of our wealth in stock ¢ at time ¢.

CRP: Constantly rebalanced portfolio [5]. The parameter space for the CRP
strategy is W = W,,. The investment description is CRP;(w) = w: at the beginning
of each day, we invest a w; proportion of our wealth in stock 1.

CRP-S: Constantly rebalanced portfolio with side information. Cover and Or-
dentlich [6] consider a generalization of CRP. Rather than rebalancing our hold-
ings according to a single portfolio vector w € W,, every day, we have k vectors
Wi,...,Wr € W, and a side information state y; € {1,...,k} that classifies each
day t into one of k possible categories; on day t we rebalance our holdings accord-
ing to w,,. By partitioning the time interval into k subsequences corresponding
to each of the k side information states and running k instances of the univer-
salization algorithm (one instance for each state), Cover and Ordentlich show that
the average daily return approaches that of the underlying strategy operating with
k optimal parameters, wi,...,wy; € W,,, where w} is used on days ¢ when the
side information state is y; = j. We generalize this further by allowing portions
of our wealth to be rebalanced according to several of the w; every day. Sup-
pose that the side information is encapsulated in some vector v € Rf for some Z.
This vector can contain information about specific stocks, such as historic perfor-
mance and company fundamentals, or macroeconomic indicators such as inflation
and unemployment. Let f = (fi,..., fx) : R® — [0,1]* be some function satisfying



FAST UNIVERSALIZATION OF INVESTMENT STRATEGIES 7

Z§:1 f;(v) =1 for all v € Rf. The parameter space is W¥ ; the investment descrip-

tion is CRP-S;(wy,...,wg) = Z?Zl fj(vi)w;, where v; is the indicator vector for
day t. Under such a scheme, we have the flexibility of splitting our wealth among
multiple sets of portfolios wy, ..., Wi on any given day, rather than being forced to
choose a single one. For example, assume that v is a k-dimensional vector, with each
v; corresponding to portfolio w;. Define f : RF — [0,1]* by f;(v¢) = ﬁ, so that
our allocation is biased towards portfolios corresponding to higher indicators while
still maintaining a position in the others.

TA[k]: k-way indicator aggregation. For each day t > 0, suppose that each stock @
has a set of k indicators vy; = (41, - . -, Uik ), where each vy;; € (0,1] and, for 1 < j <
k, v¢15, - - -, Vsm; have been normalized such that there is at least one i such that vy;; =
1. Examples of possible indicators include historic stock performance and trading
volumes, and company fundamentals. Our goal is to aggregate the indicators for each
stock to get a measure of the stock’s attractiveness and put a greater proportion of our
wealth in stocks that are more attractive. We will aggregate the indicators by taking
their weighted average, where the weights will be determined by the parameters. The

parameter space is W = W, and the investment description is

I, (w) = (W W)

) Y
Dot WV D1 W Vi
3. Universalization of investment strategies.

3.1. Universalization defined. In a typical stock market, wealth grows geo-
metrically. On day t > 0, let x; be the return vector for day t, the vector of factors
by which stock prices change on day ¢. The return vector corresponding to a trading
strategy on a single stock is (z¢,1 + 1;'“ ), where x; is the factor by which the price
of the stock changes and 1 + l_aﬂ is the factor by which our investment in a short
position changes, as described in Lemma 2.1; the return vector corresponding to a
portfolio strategy is (21, ..., Tem), Where xy; is the factor by which the price of stock
i changes, where 1 < ¢ < m. Henceforth, we do not make a distinction between
return vectors corresponding to trading and portfolio strategies; we assume that x;
is appropriately defined to correspond to the investment strategy in question. For an
investment strategy S with parameter vector w, the return of S(w) during the tth
day—the factor by which our wealth changes on the ¢th day when invested according
to S(w)—is Sy(w) - x¢ = Yiv; Sti(w) - ;. (Recall that Sy(w) is the investment
description of S(w) for day t, which is a vector specifying the proportion of wealth to
put in each stock.) Given time n > 0, let R,,(S(w)) = ";01 St(w) - x¢ be the cumu-
lative return of S(w) up to time n; we may write R, (w) in place of R, (S(w)) if S
is obvious from context. We analyze the performance of S in terms of the normalized
log-return L,,(w) = L,,(S(w)) = +log R, (W) of the wealth achieved.

For investment strategy S, let w) = argmaxyer~ Rn(S(W)) be the parameters
that maximize the return of S up to day n.* An investment strategy U universalizes
(or is universal for) S if®

4As mentioned above, w} can be computed only with hindsight.
5Unlike previously discussed investment strategies, the behavior of U is fully defined without an
additional parameter vector w.



8 KARHAN AKCOGLU, PETROS DRINEAS, AND MING-YANG KAO

for all environment vectors &,. That is, U is universal for S if the average daily
log-return of U approaches the optimal average daily log-return of S as the length n
of the time horizon grows, regardless of stock price sequences.

3.2. General techniques for universalization. Given an investment strat-
egy S, let W be the parameter space for S and let p be the uniform measure over
W. Our universalization algorithm for S, U(S), is a generalization of Cover’s original
result [5]; we note that a similar algorithm appeared in [20] under the name “Aggre-
gating Algorithm.” The investment description U;(.S) for the universalization of S on
day t > 0 is a weighted average of S;(w) over w € W, with greater weight given to
parameters w that have performed better in the past (i.e., R¢(w) is larger). Formally,
the investment description is

Jir St () RAW)dps(w) [y Su(w)RA(S(w))dp(w)
Joo Re(w)du(w) Jor Re(S(w))dpu(w)

where we take Rg(w) = 1 for all w € W.5 Equivalently, the above integral might
be interpreted as “splitting our money” equally among all the different strategies and
“letting it sit.” In the following lemma, we will prove that this strategy has the same
expected gain as picking one strategy at random.

REMARK 5. The definition of universalization can be expanded to include mea-
sures other than u, but we consider only p in our results.

LEMMA 3.1 (see [3, 6]). The cumulative n-day return of U(S) is

(3.1) U(5) =

D=&mWWWFMMW»

which is the p-weighted average of the cumulative returns of the investment strategies
{S(w)|w e W}.

Proof. The return of U(S) on day t is Uy (S) - x4, where x, is the return vector for
day t. The cumulative n-day return of U(.S) is

= ﬁut(s H fw P Ra(w)du(w) Xy

fw Rt dp(w)

fW St Xt)Rt fW Rt+1 )d,u(w)
- - R

The result follows from the fact that this product telescopes. ]

Rather than directly universalizing a given investment strategy S, we instead
focus on a modified version of S that puts a nonzero fraction of wealth into each of
the m stocks. Define the investment strategy S by

St(W) = (1 — 2(t+1)2> St(W) + m

for t > 0 and some fixed 0 < ¢ < 1. Rather than universalizing S, we instead
universalize S. Lemma 3.2 tells us that we do not lose much by doing this.

LEMMA 3.2. Foralln >0, (1) R,(U(S)) > (1—e)R,U(S)) and (2) L,U(S)) =
En(U(S))—@. (3) If U(S) is a universalization of S, then U(S) is a universalization
of S as well.

6Cover’s algorithm is a special case of this, replacing S¢(w) with w.



FAST UNIVERSALIZATION OF INVESTMENT STRATEGIES 9

Proof. Statements (2) and (3) follow directly from (1). Statement (1) follows from
the fact that for all w € W, Ry, (S(w)) = TT}=g Si(w)-x¢ > [0 (1= 555q32) Se (W) -
)

—( Zt 0 2(t+1 ) n(S(w)) > (1_5)Rn(s(w))- O

REMARK 6. Henceforth, we assume that suitable modifications have been made
to S to ensure that Sy;(w) > m forall1<i<m andt>0.
THEOREM 3.3. Given an investment strategy S, let W = Wﬁ (for some k > 2

and £ > 1) be its parameter space. For 1 <i<m, 1<.:</¥, and 1 <j <k, assume
that there is a constant ¢ such that ‘%(W)‘ <c(t+1) for all w € W. Then U(S) is
g
a universalization of S.
To prove Theorem 3.3, we first prove some preliminary results; the proof follows
the same general strategy as in [5, 6].
LEMMA 3.4. For nonnegative vector a and strictly positive vectors b and x,

a; < a-x < a;
min — < —— < max —
% bi b-x % bi
Proof. Assume that the components of a and b are strictly positive. Otherwise,
the lemma holds trivially. Let i,,,x = arg max; bl and iy, = argmin; b—l, so that

a; b;

=

Tmin

a; a; a; b;
S Py < and
b; b;

imax Aimax Dia

a; ;. .
2> Zhmin
b; — b

imin Qimin

Then

a’imin(ximin + Zi;ﬁimin aiai :L.Z) a-*X a/imax (ximax + Zi#imdx /,ai xi)
Dirin (Tignin + Dictinin bibi i) bex b (i, + D it b:bi x;)

Therefore,

< a’imax . I:l

Tmax

Our next two results are related to the (k—1)-dimensional volumes of some subsets
of R¥.

LEMMA 3.5. The (k — 1)-dimensional volume of the simplex Wy, = {w €
[0, 1] | Zle w; = 1}, defined in (2.1), is (kf‘/gl),

Proof. By induction on k, it can be shown that the k-dimensional volume of the
solid Wi (s) = {w| Zle w; < s} is Z—II Written in terms of the length r of the line
segment passing between the origin and (£,...,%) € ]Rk the volume is k,rkkﬂ since
s = rV/k. Upon differentiation with respect to r, =) ,rk 15 = (=i 1) VEksF1 we
arrive at the (k — 1)-dimensional volume of the simplex Wy(s) = {w | Zi:l w; = S}.
Setting s = 1 yields the desired result. 0

LEMMA 3.6. The (k — 1)-dimensional volume of a (k — 1)-dimensional ball of

kl
71'2

(O (=1t F@;):(e_;) (e-3) - (D) s

Proof. This result is proven in Folland [8, Corollary 2.56]. 0

radius p embedded in Wy, is where



10 KARHAN AKCOGLU, PETROS DRINEAS, AND MING-YANG KAO

Proof of Theorem 3.3. From Lemma 3.1, the return of U(S) is the average of
the cumulative returns of the investment strategies {S(w)|w € W}. Let w* =
arg maxwew Ry, (S(w)) be the parameters that maximize the return of S. We show
that there is a set B of nonzero volume around w* such that for w € B the return
R, (w) is close to the optimal return R, (w*). We then show that the contribution
of B to the average return is sufficiently large to ensure universalizability. We begin
by bounding the magnitude of the gradient vector VR, (w). From Remark 6 and our
assumption in the statement of the theorem, for all w, ¢, i, ¢, and j,

aij

Sti (W)

‘asm(w)
<dm(t+1)3,

where ¢ = % Using this fact and Lemma 3.4, the partial derivative of the return
function R, (w) = R,(S(w)) = ?;01 r¢(S(w)) with respect to parameter w,; is

1 ‘[‘)(St(w) -x¢)

Ow, ;

0S¢ (w
n— 121 1‘ tz( ) - Ty

w,]

IR (W)
‘ 8wk7‘ - St(w) Z Zz 1Stz ) Ttq

and
(3.2) VR (W)| < R (w)mnVEL.

We would like to take our set B to be some d-dimensional ball around w*; unfor-
tunately, if w* is on (or close to) an edge of W, the reasoning introduced at the
beginning of this proof is not valid. We instead perturb w* to a point w that is at
least

_
P cmntk2/

away from all edges, where 0 < v < 1 is a constant, and such that R, (W) is close
to Rn(w*). To illustrate the perturbation, let w* = (wj,...,w}), where w; =
(w)i,...,w}) and wy, =1 — Zf 11w for 1 < ¢ < ¢. We perturb each w; in the
same way. Let WY = w*. For 1 < j < k, given W/~ define W/ as follows. Let

Jmax be the index of the maximum coordinate of w/=1. If 0 < wjj < p, define

wf = w 'y p,l " Jmax : ~f]:nlax — p and leave all other coordinates unchanged.
Othervvlse, let Wj0 = v~v§-o_1. The final perturbation is w = (Wq,...,Wy), where

w, = WF. By construction, w € W, W is at least p away from the edges of W and
|wy; — 0,5 < kp for all ¢ and j. We bound R"((W )) by the multivariate mean value
theorem and the Cauchy—Schwarz inequality:

n(W") + R (W) — Rn(W7)

w*) — |[VR, (W) - (w —w")]| (for some w’ between w and w™)
W) = [VRa(W)| - [W — W*| > Ru(W*) — ¢ R (W )mn*VELl - kpVkl
w*) — Ry (W)mn VEL - kpVkl > Ry, (w*) (1 — 7).



FAST UNIVERSALIZATION OF INVESTMENT STRATEGIES 11

For 0 <:</let C, = {w, € R¥||w, —w,| < p}. From the construction of w,
B, = C,NWy is a (k—1)-dimensional ball of radius p. Let W = arg maxwep, Rn(W),

and let w* = (W{,...,W}) be the profit-maximizing parameters in B = By X - -- x By.
For w € B,
Rin(W) = Rp(W*) + Ru(w) — Ry (W)
> Rp(W*) — [VR,(W)| - |[W* — w] (for some w’ between w* and w)
> Rn(W*) — Ry (WHmn* VL - 20V > Ry (W) (1 — )
> R (wW*)(1 = 27)
By Lemma 3.1,
RoU(S) = [ Ru(S)du(w) > [ Rowhautw) > (1=29)Ro(w) | dustw
Jpdw
>(1-2 *
B k-1 ‘
=(1—-29)R.(w . from Lemmas 3.5 and 3.6
(1 - 2R ><F(,€21+1) =)« )

= Rn(W*)A(’Y, m, ka E)n*ZUCZ’
where A is some constant depending on v, m, k, and ¢. Therefore,
logn  o(n)

+ 4kt = ,
n n

log A k£
(3.3) Lo(w*) = L, U(S)) < -2 (”;17”’ Y
as claimed. O

REMARK 7. The techniques used in the proof of Theorem 3.3 can be generalized to

other investment strategies with bounded parameter spaces W that are not necessarily
of the form W,f.

3.3. Increasing the number of parameters with time. The reader may
notice from the proof of Theorem 3.3 that an investment strategy S may be uni-
versalizable even if the dimensions of its parameter space W grow with time. In
fact, even if the dimension of the parameter space (the coefficient of 1(’% in (3.3))
is O(m), where ¢(n) is a monotone increasing function, the strategy is still
universalizable. This introduces an interesting possibility for investment strategies
whose parameter spaces grow with time as more information becomes available. As a
simple example, consider dynamic universalization, which allows us to track a higher-
return benchmark than basic universalization. Partition the time interval Z = [0, n)
into ¢ = O(m) subintervals 7y,...,Zy, and let w}j be the parameters that
optimize the return during 7Z;. In Z;, we run the universalization algorithm given by
(3.1) over the basic parameter space W of S. In Zy, we run the algorithm over W x W;
to compute the investment description for a day t € Zy using (3.1), we compute the
return R; (w1, wa) as the product of the returns we would have earned in Z; using wy
and what we would have earned up to day t in Z5 using wo. We proceed similarly in
intervals 73 through Z,,. This will allow us to track the strategy that uses the optimal
parameters w}j corresponding to each Z;. Such a strategy is useful in environments
where optimal investment styles (and the optimal investment strategy parameters
that go with them) change with time. Finally, we note that similar ideas appear in
the area of “tracking the best expert” in the theory of prediction with expert advice;
we refer the reader to [12, 19] for more details.



12 KARHAN AKCOGLU, PETROS DRINEAS, AND MING-YANG KAO

3.4. Applications to trading strategies. By proving an upper bound on
| aT”(W) | for our trading strategies T', we show that they are universalizable.

COROLLARY 3.7. The moving average cross-over trading strategy, MA[K], is
universalizable for the long/short allocation functions g (x) and ge(x) defined in
(2.3) and (2.4), respectively.

Proof. The parameters for MA[k] are of the form wp = (wp1,...,wpE-1),1 —
wpyp — = Wpk—1)) and Wg = (Ws1, ..., Wsk-1),1 —Ws1 — +++ — Wg(k_1)). Using
the long/short allocation function g(;)(z) defined in (2.3), the partial derivative of the
investment description with respect to a parameter wp; (or similarly wg;) is

t

8MA“(WF,W5) ) < 2. ('Ut' _ Utk) <
—= J

8ij

l\J\N

_ Og(Wwrp —wg) - v
8ij

[\

where 1 < j < k and ¢ € {1,2}. Similarly, we can show that using the long/short

allocation function g¢(x) defined in (2.4), |M| <i 1

COROLLARY 3.8. The support and resistance breakout tmding strategy, SR[k], is
universalizable for the long/short allocation functions hey(x,y) and hy(x,y) defined
n (2.6) and (2.7), respectively.

Proof. We arrive at the result by differentiating the long/short allocation functions
he)(z,y) and hy,(z,y) with respect to an arbitrary parameter w; and showing that
the partial derivative is O(¢), as in the proof of Corollary 3.7. |

3.5. Applications to portfolio strategies.

COROLLARY 3.9. The constantly rebalanced portfolio, CRP, and CRP with side
information, CRP-S, portfolio strategies are universalizable.

Proof. The partial derivatives of CRPy; and CRP-S;; with respect to an arbitrary
parameter w; are at most 1. 0

COROLLARY 3.10. The k-way indicator aggregation portfolio strategy, IA[k], is
universalizable.

Proof. First, we show that >, w - vy > 1 for all t. Since Z =1 w; = 1, there
exists jo such that wj, > . Then Y;"; w- vy 2 ST Wiy Vetje = T Dopeq Vit = 1
since the {vi¢j, }; <4<, have been normalized such that there is at least one {y such
that v, = 1.

Now, let S = IA[k]. By Theorem 3.3, we need only show that %(Jw) = O(t) for

1<j<k-—1. Fort>0and1l<i<mrecall that Sy;(w) = # Then, for
1<j<k-1,since w = (wy,...,wg-1,1 — (w1 + -+ +wg_1)),
8Sti(w) Vtij — Utik W Vi -
dw, - S wevie (D) w e vie)? ; o
1 m
= ZZLW'VM " (Zzn:lW'VtK)Q < b+ mi,
as we wanted to show. 0

4. Fast computation of universal investment strategies.

4.1. Approximation by sampling. The running time of the universalization
algorithm depends on the time needed to compute the integral in (3.1). A straightfor-
ward evaluation takes time exponential in the number of parameters. Following Kalai



FAST UNIVERSALIZATION OF INVESTMENT STRATEGIES 13

and Vempala [14], we propose to approximate this integral by sampling the param-
eters according to a biased distribution, giving greater weight to better performing
parameters. Define the measure (; on W by

_ Ri(S(w)
S Re(S(W))dpu(w)
LEMMA 4.1 (see [14]). The investment description U,(S) for universalization is

the average of S¢(w) with respect to the (; measure.
Proof. The average of Sy(w) with respect to (; is

d¢e(w) du(w).

Evyeqin.co) (St(w)) = /W S (w)dCy(w)

gy RilS(w)
*/WS* )T RS (w) ) dpa(w)

dp(w) = Uy(S5),

where the final equality follows from (3.1). ad

We now briefly outline our approach, which follows the lines of [2, 14]. The main
technical complication is that sampling efficiently with respect to (; is not, in general,
an easy problem. As a result, we will need some (rather generic) assumption on the
investment strategies from which we can sample efficiently.

o Investment strategies with log-concavity properties. In section 4.3, we use
straightforward manipulations to prove that any investment strategy .S which
is linear in the vector of parameters w (such strategies include MA[k], SR[k],
CRP, and CRP-S) has a cumulative return function R;(S(w)) that is log-
concave. Our efficient sampling techniques are applicable only on such strate-
gies.

e Approzimating (; by ;. In section 4.2, we show that for strategies whose
cumulative return function is log-concave, it is possible to efficiently sample
from a distribution ¢; that is “close” to ;. This “distribution approximation”
incurs some small, bounded error (see Lemma 4.2).

o Approzimating the integral for ( via sampling. With such sampling abilities,
it is easy to approximate the average of S;(w) with respect to (;: simply pick
N; (as defined in Lemma 4.3) sample parameter vectors w with respect to (;
and compute their average. The error incurred by this approximation of the
average can be bounded in a straightforward manner using Chernoff bounds.

e Sampling with respect to (;. The critical issue (addressed in section 4.2) is
how to pick vectors w € W with respect to ;. In order to tackle this problem,
we “discretize” it by placing a grid on W, and then we perform a Metropolis
random walk. The convergence properties of this random walk are discussed
in Theorems 4.12 and 4.13.

In section 4.2, we show that for certain strategies we can efficiently sample from
a distribution ¢; that is “close” to (;; i.e., given v, > 0, we generate samples from (;
such that

(4.1) /W G (W) — Co(w)] dia(w) < 7.

2 .
47%557“)4’ where ¢ is the

Assume for now that we can sample from (;, with v; =
constant appearing in Remark 6. Let 2;(S) = [, S¢(w)d(;(w) be the corresponding



14 KARHAN AKCOGLU, PETROS DRINEAS, AND MING-YANG KAO

approximation to U(S). Lemma 4.2 tells us that we do not lose much by sampling
from ;.

LEMMA 4.2. For alln >0, (1) R,U(S)) > (1 — )R, (U(S)) and (2) if U(S) is
a universalization of S, then U(S) is a universalization of S as well.

Proof. Statement (2) follows directly from (1). To see (1), we need only show
that the fraction of wealth that we put into each stock i on day ¢ under () is within
a 1 — 5555z factor of the corresponding amount under U(S); ie., Upi(S) = (1 —

m)um(S) for0<t<n and 1<i<m. ForweW, let v(w) = |(;(w) — ((w)],

so that [, ve(w)dw =, < m We have

U, (S /sm )Gy (w)dp(w /sm (G (W) — (W) dpe(w)

= Ui (S) — /WSM(W)%(W)dM(W) > Uy (S) — v (since Sy(w) < 1)

. £ 2
(Slnce Um(S) > le S(W) Z m and Yt S 4,m((§+1)4) s

as we wanted to show. ]

By sampling from (;, we use a generalization of the Chernoff bound to get an ap-
proximation U (S) to U(S) such that with high probability U;(S) > (1— PICEsyH 2 Ui (S)
for 0 <t <nand 1l < i< m. Using an argument similar to that in the proof of
Lemma 4.2, we see that if /(S) is a universalization of S, then such a /() is a univer-
salization of S as well. Choose w1,...,wy, € W at random according to distribution
i, and let Z:lm-(S) = N% Zf\[:tl Sti(w;). Lemma 4.3 discusses the number of samples N;
required to get a sufﬁéiently good approximation to U;(.S).

LEMMA 4.3. Given 0 < § < 1, use Ny > sz(;j'l)g log Qm(?'l)z samples to
compute Z:{t(S), where ¢ is the constant appearing in Remark 6. With probability
1-6, Uy (S) > (1 - my/lﬂ(S) forall 1<i<m andt>D0.

Proof. Hoeffding [13] proves a general version of the Chernoff bound. For random
variables 0 < X; < 1 with E(X;) = p and X = Zfil X, the bound states that
PI'(X S (1 _ a)‘u) S 6721\/'042/1,2' In our case, we would like dti Z (1 - W)Htl
As t~his must hold forl1 <i< m and ¢t > 0 with total probability 1 — 8§, we require
PrUy; < (1 (t+1) 2 )Uy) < m for each ¢ and ¢t. From our assumption stated
in Remark 6, u = Uy; > 5———+3, and the desired probability bound is achieved with

2’m(t+1 )20
8
Nt > 8m? (EZJrl) IOg 2m(1§5+1)

samples. 0

4.2. Efficient sampling. We now discuss how to sample from W = W,f =
Wi X -+ X Wy, according to distribution (¢(-) & R:(-) = R¢(S(+)). W is a convex set
of diameter d = v/2¢. We focus on a discretization of the sampling problem. Choose
an orthogonal coordinate system on each W, and partition it into hypercubes of side
length 6;, where ; is a constant chosen below. Let ) be the set of centers of cubes
that intersect W, and choose the partition such that the coordinates of w € 2 are
multiples of ;. For w € €, let C'(w) be the cube with center w. We show how to



FAST UNIVERSALIZATION OF INVESTMENT STRATEGIES 15

choose w € ) with probability “close to”

Ri(w)
ZWGQ Rt (W) .

In particular, we sample from a distribution 7; that satisfies

Wt(W) =

2

(4.2) E%WW%%wWS%=MW;D¢

Note that this is a discretization of (4.1). We will also have that for each w € Q,

(4.3) <2

We would like to choose 8, sufficiently small that R, is “nearly constant” over C(w);
i.e., there is a small constant v > 0 such that

(4.4) (1+v) " Ri(w) < Re(W') < (14+v)Ry(w)

for all w' € C(w). Such a é; can be chosen for investment strategies S that have
bounded derivative, as we see in Lemma 4.4.
LEMMA 4.4. Suppose that investment strategy S satisfies the condition for umni-

versalizability given in Theorem 3.3; i.e., %‘ < c(t+1). Giwenv > 0, let

6y = 0t(v) = 572, where ¢ is defined in the proof of Theorem 3.3. For w,w’ € W
such that |w;; — w;J| < &) forall1 <i</land1<j<k (1+v) 'Ryw) <
Re(w') < (14 v)Re(w).

Proof. Note that |w —w’| < §;v/kf. Let w* be the parameters that maximize the
return on the line between w and w’. By the multivariate mean value theorem and
the bound for |[VR,| given in (3.2),

Rt(W*) = Rt(W) =+ Rt(W*) — Rt(W)

< Ri(w) + |[VRe(wy,)| - |w —w?*| (for some w,, between w* and w)

< Re(W) 4 ¢ Re(Won)mn* VEL - 6,V EC < Ry(w) + Rt(w*)z

3
= Ri(w) = Re(w )(1—§>>Rt( )(1_5>

3
so that R;(w’) < (14 v)R¢(w). By similar reasoning,
Ri(w') = Re(w") + Re(w') = Re(w")
> Ri(W*) = [VRy(Wi)| - [W' — w™| (for some w,,, between w* and w’)
> Ry(w) (1= 5) 2 Re(w) (1 %) = Re(w) (1 )7,

completing the proof. 0

We use a Metropolis algorithm [15] to sample from 7;. We generate a random
walk on ) according to a Markov chain whose stationary distribution is 7. Begin by
selecting a point wq € Q according to either 7,_; or 7y_;” Remark 8 explains how
to do this.

"Ideally, we would like to begin with a point selected according to #;_1, but, as discussed in
Remark 8, this is not always possible.



16 KARHAN AKCOGLU, PETROS DRINEAS, AND MING-YANG KAO

REMARK 8. We can select a point according to ms—1 by “saving” our sam-
ples that were generated at time t — 1. By Lemma 4.3, we would have generated
Nyq > 877;2:&8 logy samples at time t — 1, which is not enough to generate the
Ny > 8m2(;+1)8 log 27"(%“)2 samples necessary at time t. Instead, we can “save”
samples that were generated at times t — 1 and t — 2. For sufficiently large t, Ny <
Ni—1 + Ni—o and our initial point wo would be picked according to either w_1 or
Ti—o. As we see in the proof of Lemma 4.10, this distinction is not important.

If w, is the position of our random walk at time 7 > 0, we pick its position at
time 7 + 1 as follows. Note that w, has 2(k — 1)¢ neighbors, two along each axis in
the Cartesian product of ¢ (k — 1)-dimensional spaces. Let w be a neighbor of w,

selected uniformly at random. If w € €, set

Re(w)
R¢ (WT) )7

w  with probability p = min(1,
Woi =
i w, with probability 1 — p.

Ifw¢Q let wyp1 = w,. It is well known that the stationary distribution of this
random walk is m;. We must determine how many steps of the walk are necessary
before the distribution has gotten sufficiently close to stationary. Let p, be the dis-
tribution attained after 7 steps of the random walk. That is, p,(w) is the probability
of being at w after 7 steps.

REMARK 9. A distinction should be made between t and 7. We use t to refer
to the time step in our universalization algorithm. We use T to refer to “sub-” time
steps used in the Markov chain to sample from m,. When t is clear from context, we
may drop it from the subscripts in our notation.

Applegate and Kannan [2] show that if the desired distribution 7 is proportional
to a log-concave function F (i.e., log F' is concave), then the Markov chain is rapidly
mizing and reaches its steady state in polynomial time. Frieze and Kannan [9] give an
improved upper bound on the mixing time using logarithmic Sobolev inequalities [7].

THEOREM 4.5 (Theorem 1 of [9]). Assume the diameter d of W satisfies d >
6:VEl and that the target distribution m is proportional to a log-concave function.
There is an absolute constant k > 0 such that

1 Mnr.kld?

T k62

(4.5) 2 (Z jr(w) pf<w>|> < e ik log

weQ

where T, = minweq (W), M = maxweq ﬁ)((:vv)) log 1:;’(%), po(+) is the initial distribu-

tion on Q, me = Y cq. T(W), and Q. = {w € Q|Vol(C(w) NW) < Vol(C(w))}.
(The “e” in the subscripts of w. and . stands for “edge.”)

In the random walk described above, if w, is on an edge of €2, so that it has many
neighbors outside 2, the walk may get “stuck” at w, for a long time, as seen in the
“me” term of Theorem 4.5. We must ensure that the random walk has a low probability
of reaching such edge points. We do this by applying a “damping function” to R,
which becomes exponentially small near the edges of W. For 1 <</, 1< j <k,
and w = (wy,...,wp) = (w11, .., Wik), .-, (W1, ..., weg)) € W let

(4.6) fij(w) = el minCotuws0),

where ¢ > 0 and I > 2 are constants that we choose below, and let

¢k
Fy(w) = Re(w) [TT1 fis(w).

i=1j=1



FAST UNIVERSALIZATION OF INVESTMENT STRATEGIES 17
LEMMA 4.6. F} is log-concave if and only if R, is log-concave.’
Proof. This follows from the fact that log-concave functions are closed under mul-
tiplication and the fact that log f;;(w) = I'min(—oc + w;;, 0), which is concave. 0
Choose o = 16:(%), where &(-) is defined in Lemma 4.4 and -, is defined in
(4.2). Let ¢z o< F; be the probability measure proportional to F;. We need to show
that, for our purposes, sampling from (r is not much different than sampling from (;.
By Lemma 4.2, we can do this by showing that fw |& (W) — Cp(W)|dw < 4, which we
do in Lemma 4.7.
REMARK 10. Before continuing, we show how W can be scaled, which will be

useful in future proofs. Take p = (%,..., 1) € Wy; given x € (—1,1), let

wl) = (14 x)(w —p)+p,
and let
W = (wh) |w e W}
P k

be a scaled version of Wy about p, where the scaling factor is 1+ x. To extend this
scaling to W = W{, given w = (w1,...,wy) € W, let w) = (w§’<), ... 7wéX)) and

wx) — {W(x) |w e W}

A fact we use is that for 1 <i<{,1<j <k, and w= (wy,...,wyp) € W,

<Ixl-

1 1
|wl(]><) 7wij| = ‘(1+X) <’Ujij — k‘) + E — Wij

LEMMA 4.7. [ [¢(w) — Cp(w)]|dw < ;.

Proof. Let W = W(=k9) be the “scaled-in” version of W, as defined in Remark 10.
By Lemma 4.4, since |w;; — wj;| < ko = 6;(%) for all i and j, Ry(w') > @Rt(w)
and

1
(4.7 Ri(w)dw > 5 /Rt(w)dw.
W 1+ 5 Jw

Let Wey, = {w € W|Fy(w) = Ry(w)} be the subset of W where Fi(-) and Ry(-)
are equal; W' C W, since, by construction of w', wj; > o for all i and j. Let
Wy ={w € W|{r(w) > (;(w)} be the subset of W where (r(-) is at least ;(-) and
let W_ =W — W, . We bound

/W (G (w) — Go(w)|dw = /W (Crlo) — i+ /W (Co(w) — Cr(w))dw

by bounding i, (¢: — ¢r), which also gives a bound for fw+ (Cp — (), since

JRCE (1/W <F> - (1/W @) - [ G-

8We characterize investment strategies for which R is log-concave in Theorem 4.14.



18 KARHAN AKCOGLU, PETROS DRINEAS, AND MING-YANG KAO

Since Fy, < Ry, [y Fr < [y Re and Cp(w) = fjf;v(}”) > 7;};2;”3 = G(w) for w € W,

thus W ¢ W, C Wy and W_ ¢ W — W’'. We have

fW W Rt(w)dw f / Rt(W)dW
w) — deg/ w)dw = — =1- ¥
R B L e e T o Rulw)
1 ik
<1-— <t
=1 1+ = 27
where the second-to-last inequality follows from (4.7). This completes the proof. O

Henceforth, we are concerned with sampling from W with probability proportional
to F;(-). We use the Metropolis algorithm described above, replacing R;(-) with Fy(-);
we must refine our grid spacing é; so that (4.4) is satisfied by Fi; let 8§, be the new
grid spacing.

LEMMA 4.8. Suppose that the conditions of Lemma 4.4 are satisfied. Given
v >0, let 6,(v) = 6; = sy = 0:(§), where T' appears in (4.6). For w,w' € W
such that |wi; — wi;| < 6;(v) for all 1 <i < € and 1 < j <k, (1+v) 'Fi(w) <
F(w) <(1+v)Fi(w).

Proof. By Lemma 4.4, Ry(w) and R;(w’) differ by at most a factor of 14 £.
For each i and j, fi;(w) and f;;(w’) differ by at most a factor of ') and hence
I, H’;zl fij(w) and TT'_, H?Zl fi;(w') differ by at most a factor of eFT% () —
esmi . Hence, for T' > 2 and sufficiently large ¢, Fi(w) and Fy(w') differ by at most
a factor of 1 4 v. |

We are now ready to use Theorem 4.5 to select 7 so that the resulting distribution
pr satisfies (4.2) (Theorem 4.12) and (4.3) (Theorem 4.13), with p, in place of 7; and
F; in place of R;. We begin with some preliminary lemmas.

LEMMA 4.9. There is a constant 8 > 0 such that log 7% < KlTo + kllog (Sﬁ, +
@, where € is defined in Remark 6. ’ '
Proof. Take (8 such that the number of points in €2 is at most (5%)(’“_1)'@. For
w1, Wy € , the ratio of single-day returns on day ¢’ using w; and wy is

tlog

Sy (wi) - Xy €
St/ (Wg) “ Xy 2m(t’ + 1)27

by Remark 6 and Lemma 3.4. The ratio of the cumulative returns up to day t is

Ri(wr) ( € )t’

>
Ri(wa) — \2mit?

Re(w)
Zwesz Re(w)

effect of the f;;, m > e*k“"(%)(k*”l (ﬁ)t and log% < kfl'o + kZlog% +
tlog # 0

LEMMA 4.10. M < 4(2mt0%)? 15q 2mi+1)?
- I 1>
Proof. As stated in Remark 8, the initial distribution is either pyg = 7;_1 or T;_s.

It turns out that the worst case happens when pg = 7;_o. For all w € , ii:zgxg <2

by (4.3) and the following:

and thus

Y

(%)UC*U[ (727;2)1‘/. Factoring in the maximum dampening




FAST UNIVERSALIZATION OF INVESTMENT STRATEGIES 19

ma(W)  Fio(w)  Ywea Fr(W)
(W) Yweq Fioa(w) Fy(w)
Fi_o(w)  F(w') o Fy(w)
< F ?W) st (by Lemma 3.4, where w’ = arg max Ft_g(w)>

_ Ria(w)  Ry(w)
Rt (W) Rt_g(wl)

(W) - x)(Sem (W) - xi-1) _ (2m(t+ 1)\
= W) x) B (W) X S( : ) 7

where the final inequality follows from the discussion in the proof of Lemma 4.9. This
Tt = ey e O

LEMMA 4.11. 7w, < (14 v)*(1 + L)e 7, where v appears in the definition of &,
in Lemma 4.8, v appears in (4.2), and T' and o appear in (4.6).

Proof. Extend our §;-hypercube partition of W to the hyperplane containing W,
and let ¥ be the set of centers of the hypercubes in this extended partition. For
K C R¥ let Wk be the set of grid points w € W such that C(w) N K # (), so that
Q) = Uw. By Lemma 4.8, for K C W,

(since the {fi;(-)}:,; remain constant with time)

proves the result since

(4.8)
1iy > Ft(w)Vol(C(w)ﬂK)g/KFt(w)dwg (1+v) > Fy(w)Vol(C(w)NK).

Using the notation of Lemma 4.7, let W = W(=%%) be a “scaled-in” version of W; we
showed in Lemma 4.7 that for w € W', Fy(w) = R,(w), and that

1
(4.9) Fi(w)dw = Ri(w)dw > o7 / Ri(w)dw.
W W L+5 Jw

Let W” = W () be a “scaled-out” version of W, and extend the domains of F}(-) and
R:(-) to W” by defining Fy(w") = F(W"”) and Ry(w") = Ry(Ww") for w’ € W' — W,
where w” is the point where the line between w" and p’ = (p,...,p) € W intersects
the boundary of W. By Lemma 4.8 and the construction of the extension of Ry,
Ri(w") < (1+v)Ri(w) and

(4.10) Ri(w)dw < (1 + l/)/ Re(w)dw.
W w

By construction of W, C(w) C W” for w € Q.; from the definition of F; and the

choice of &,, Fy(w) < (14 v)e T°R(w) for w € Q.. Using these facts,

ZWEQS Fi(w) 5§k_1)g ' (14 v)et ZweQe Ri(w)

ZWEQ Ft(w) B 6§k71)£ ZWEQ Ft (W)

e Zweq,wﬂ Vol(C(w) NW" R (w)

Y wewy, Vol(C(w) NW) Fy(w)
e (1+v) fw,, Ri(w)dw
< (14v)eTe Jogr Re(w)dw
fw, Fi(w)dw

(by (4.9) and (4.10)). O

Te —

<(l+v)e

(since Vol(C(w)) = 6t(k_1)[)

<(A+v)e (by (4.8))

<(1+v)! (1 + %) el



20 KARHAN AKCOGLU, PETROS DRINEAS, AND MING-YANG KAO

REMARK 11. We simplify notation below by using O*(-) notation, which ignores
logarithmic and constant terms. For our purposes, f(-) = O*(g(:)) if there exists a
constant C' > 0 such that f(-) = O(g(-)1log® (kfmt/c)). The values derived above in

this notation are vy, = C’)*(m;) 5t O*(mt’flkg) o= O*(ﬁ) 6t = O* (risame)s
log ; =O*(kTo +t), M = O* (2 52 ), and T, = O*(e717).

THEOREM 4.12. Letting I' = O*(1) = O*(m%sk%) the random walk reaches a

distribution T that satisfies (4.2) after T = O*(& ﬁi ;424) steps.
Proof. We show how to bound the right-hand side of (4.5), where the grid spacing
Mmektd?

6 has been replaced by 6;. The second term, , can be made exponentially

k&2
small in T by choosing I' = O*( 1). The value of 7 stated in the theorem is large

w62

enough to make the first term, e~ Red? log =, exponentially small in 7. O
THEOREM 4.13. Suppose that the dzstmbutzon Dr, Obtained after Ty steps satisfies

Z |7T pTo )l §’7t~

we
After T > 7'(,—log‘i—0—10g,% log 7% = O*(1o(kl+1)) steps, the resulting distribution p.s
o 7
satisfies
(W
maxpo( )—1<1,
weQ m(w) -

which implies (4.3).

Proof. Let d(1) = 1 3" co |7(W) — p(w)| and d(7) = maxweo pf((w)) — 1 so that

d(10) < £ Aldous and Fill [1, (5) and (6)] prove that if 7 > § log -, then d(r) <
where 7, = min,cq m(w) is as defined in the statement of Theorem 4 5and X is the

second-largest eigenvalue of the steady-state transition matrix P of 7.

T0—log i—log 1 log i—&-log i
To prove the bound on 7, we show that A > — =1

We do this by appealing to a result from Sinclair [17, Proposmon 1(1)], which states
that

log;—*—&—log% o

0= 1— A

Solving for A yields the bound for 7§. The O*(-) bound comes from the fact that
T'oc = O*(1) and that log % and log T% are low-order terms relative to the 7y obtained
in Theorem 4.12. 0

4.3. Application to investment strategies. The efficient sampling techniques
of this section are applicable to investment strategies S whose return functions R, (S(+))
are log-concave. Theorem 4.14 and Corollary 4.15 characterize such functions.

THEOREM 4.14. Given investment strategy S, suppose that S is linear on w,
or, more formally, that for all parameters w; and wj, #ffwj = 0. Then Ry(w) =
R:(S(w)) is log-concave.

9Strictly speaking, this result pertains to Amax, the second-largest absolute value of the eigenval-
ues of P, but as Sinclair discusses [17, p. 355], the smallest eigenvalue is unimportant, as P can be
modified so that all eigenvalues are positive without affecting mixing times beyond a constant factor.



FAST UNIVERSALIZATION OF INVESTMENT STRATEGIES 21

Proof. Let ry(w) = Si(w) - x4, so that R, (w) = ?:_01 r¢(w). Since log-concave
functions are closed under multiplication, we need only show that r,(w) is log-concave.

The gradient vector of logr;(w) has ith element alog;‘_(w) = (1w) 831}8‘7), and the

matrix of second derivatives has (7, j)th element

1 Ory(w) Ory(w) n 1 0%ry(w) 1 Ory(w) Ory(w)
ri(w)? ow;, Ow; ri(w) Qw; 0w, o (w)?2 Owy ow; '
since g::égj =", 8;5:75(7:) - ¢, = 0 by assumption. The matrix of second deriva-
tives is negative semidefinite, implying that logr:(w) is a concave function. 0

COROLLARY 4.15. Unidversalizations of the following investment strategies can be
computed using the sampling techniques of this section:
1. the trading strategies MA[k] and SR[k| with long/short allocation functions
ge(z) and hy(x,y), respectively, and
2. the portfolio strategies CRP and CRP-S.
Proof. The result follows from a straightforward differentiation of the investment
descriptions of these strategies. |

5. Further research. We have introduced in this paper a general framework
for universalizing parameterized investment strategies. It would be interesting to
relax the condition of Theorem 3.3 and generalize the theorem. Likewise, it would be
interesting to see whether the proof of Theorem 3.3 can be optimized so that existing
universal portfolio proofs for CRP [3, 5, 6] are a special case of Theorem 3.3. These
proofs not only prove that £, (U(CRP)) converges to £, (CRP(w,)), but also prove
a bound on the rate of convergence,

Rn(CRP(W)) < (n +m—1

R, (U(CRP)) ) < ()

m—1

It would also be interesting to study other trading and portfolio strategies that fit
into our universalization framework and to see how our universalization algorithms
perform in empirical tests.

Acknowledgments. We would like to thank two anonymous reviewers for their
comments, which significantly improved the presentation of our work.

REFERENCES

[1] D. ALpous AND J. A. FiLL, Advanced L? techniques for bounding mizing times, in Reversible
Markov Chains and Random Walks on Graphs, unpublished monograph, 1999; available
online at stat-www.berkeley.edu/users/aldous/book.html.

[2] D. APPLEGATE AND R. KANNAN, Sampling and integration of near log-concave functions, in
Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, New Orleans,
LA, 1991, pp. 156-163.

[3] A. BLum AND A. Karal, Universal portfolios with and without transaction costs, Machine
Learning, 35 (1999), pp. 193-205.

[4] W. BROCK, J. LAKONISHOK, AND B. LEBARON, Simple technical trading rules and the stochastic
properties of stock returns, J. Finance, 47 (1992), pp. 1731-1764.

[5] T. M. COVER, Universal portfolios, Math. Finance, 1 (1991), pp. 1-29.

[6] T. M. CovER AND E. ORDENTLICH, Universal portfolios with side information, IEEE Trans.
Inform. Theory, 42 (1996), pp. 348-363.

[7] P. D1ACONIS AND L. SALOFF-COSTE, Logorathmic Sobolev inequalities for finite Markov chains,
Ann. Appl. Probab., 6 (1996), pp. 695-750.

[8] G. B. FOLLAND, Real Analysis: Modern Techniques and Their Applications, John Wiley &
Sons, New York, 1984.



KARHAN AKCOGLU, PETROS DRINEAS, AND MING-YANG KAO

A. FrRIEZE AND R. KANNAN, Log-Sobolev inequalities and sampling from log-concave distribu-
tions, Ann. Appl. Probab., 9 (1999), pp. 14-26.

H. M. GARTLEY, Profits in the Stock Market, Lambert Gann Publishing Company, Pomeroy,
WA, 1935.

D. P. HELMBOLD, R. E. SCHAPIRE, Y. SINGER, AND M. K. WARMUTH, On-line portfolio selec-
tion using multiplicative updates, Math. Finance, 8 (1998), pp. 325-347.

M. HERBSTER AND M. K. WARMUTH, Tracking the best expert, Machine Learning, 32 (1998),
pp. 151-178.

W. HOEFFDING, Probability inequalities for sums of bounded random variables, J. Amer. Statist.
Assoc., 58 (1963), pp. 13-30.

A. KALAI AND S. VEMPALA, Efficient algorithms for universal portfolios, J. Mach. Learn. Res.,
3 (2002), pp. 423-440.
N. METROPOLIS, A. W. ROSENBLUTH, M. N. ROSENBLUTH, A. H. TELLER, AND E. TELLER,
Equation of state calculation by fast computing machines, J. Chem. Phys., 21 (1953),
pp. 1087-1092.
. ORDENTLICH AND T. M. COVER, Online portfolio selection, in Proceedings of the 9th Annual
Conference on Computational Learning Theory, Desanzano sul Garda, Italy, 1996, ACM,
New York, pp. 310-313.
A. SINCLAIR, Improved bounds for mizing rates of Markov chains and multicommodity flow,
Combin. Probab. Comput., 1 (1992), pp. 351-370.

R. SULLIVAN, A. TIMMERMANN, AND H. WHITE, Data-snooping, technical trading rules and the
bootstrap, J. Finance, 54 (1999), pp. 1647-1692.

V. Vovk, Derandomizing stochastic prediction strategies, Machine Learning, 35 (1999),
pp. 247-282.

V. Vovk, Competitive on-line statistics, Internat. Statist. Rev., 69 (2001), pp. 213-248.

V. G. Vovk AND C. J. H. C. WATKINS, Universal portfolio selection, in Proceedings of the

R

=

11th Conference on Computational Learning Theory, Madison, WI, 1998, pp. 12-23.
. WYCKOFF, Studies in Tape Reading, Fraser Publishing Company, Burlington, VT, 1910.



SIAM J. COMPUT. (© 2004 Society for Industrial and Applied Mathematics
Vol. 34, No. 1, pp. 23-40

LABELING SCHEMES FOR FLOW AND CONNECTIVITY*
MICHAL KATZ', NIR A. KATZ!, AMOS KORMAN#, AND DAVID PELEG#

Abstract. This paper studies labeling schemes for flow and connectivity functions. A flow
labeling scheme using O(logn -log @ + log? n)-bit labels is presented for general n-vertex graphs with
maximum (integral) capacity @. This is shown to be asymptotically optimal. For edge-connectivity,
this yields a tight bound of @(10g2 n) bits. A k-vertex connectivity labeling scheme is then given for
general n-vertex graphs using at most 3logn bits for k = 2, 5logn bits for k = 3, and 2¥ logn bits
for k > 3. Finally, a lower bound of Q(klogn) is established for k-vertex connectivity on n-vertex
graphs, where k is polylogarithmic in n.

Key words. labeling schemes, graphs, distributed data structures, flow, vertex-connectivity,
edge-connectivity

AMS subject classifications. 05C85, 68R10, 05C40, 05C78

DOI. 10.1137/S0097539703433912

1. Introduction.

1.1. Problem and motivation. Network representations play an extensive role
in the areas of distributed computing and communication networks. Their goal is to
cheaply store useful information about the network and make it readily and con-
veniently accessible. This is particularly significant when the network is large and
geographically dispersed and information about its structure must be accessed from
various local points in it.

The current paper deals with a network representation method based on assigning
informative labels to the vertices of the network. In most traditional network repre-
sentations, the names or identifiers given to the vertices contain no useful information,
and they serve only as pointers to entries in the data structure, which forms a global
representation of the network. In contrast, the labeling schemes studied here use more
informative and localized labels for the network vertices. The idea is to associate with
each vertex a label selected in a such way that will allow us to infer information about
any two vertices directly from their labels, without using any additional information
sources. Hence, in essence this method bases the entire representation on the set of
labels alone.

Obviously, labels of unrestricted size can be used to encode any desired infor-
mation including, in particular, the entire graph structure. Our focus is thus on
informative labeling schemes using relatively short labels (say, of length polylogarith-
mic in n). Labeling schemes of this type were developed in the past for different graph
families and for a variety information types, including vertex adjacency [5, 4, 14, 6],
distance [17, 11, 10, 8, 13, 9, 1], tree ancestry [3, 12, 2], and various other tree func-
tions, such as center, least common ancestor, separation level, and Steiner weight of
a given subset of vertices [18].

*Received by the editors April 27, 2003; accepted for publication (in revised form) March 23,
2004; published electronically October 1, 2004. The work of the fourth author was supported in part
by grants from the Israel Science Foundation and the Israel Ministry of Science and Art.

http://www.siam.org/journals/sicomp/34-1/43391.html

fDepartment of Mathematics, Bar Ilan University, Ramat Gan, 52900, Israel (nir_michal@
hotmail.com).

¥Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science,
Rehovot, 76100 Israel (amos.korman@weizmann.ac.il, david.peleg@weizmann.ac.il).

23



24 M. KATZ, N. A. KATZ, A. KORMAN, AND D. PELEG

The current paper studies informative labeling schemes for flow and connectiv-
ity problems. Flow and connectivity information is useful in the decision making
process required for various reservation-based routing and connection establishment
mechanisms in communication networks, in which it is desirable to have accurate
information about the potential capacity of available routes between any two given
endpoints. This flow and connectivity information is particularly useful when it rep-
resents online the current availability of route capacity in a dynamically changing
setting. The methods presented in the current paper are limited to a static graph
with fixed topology and edge capacities. Hence, our results constitute only a prelim-
inary step toward handling the full problem in the dynamic setting. Initial studies of
the dynamic setting are presented in [16, 15].

1.2. Labeling schemes. Let us first formalize the notion of informative labeling
schemes. A wvertex-labeling of the graph G is a function L assigning a label L(u) to
each vertex u of G. A labeling scheme is composed of two major components. The
first is a marker algorithm M which, given a graph G, selects a label assignment
L = M(G) for G. The second component is a decoder algorithm D which, given a set
of labels L = {Ly, ..., Ly}, returns a value D(L). The time complexity of the decoder
is required to be polynomial in its input size.

Let f be a function defined on sets of vertices in a graph. Given a family G
of weighted graphs, an f labeling scheme for G is a marker-decoder pair (M, Dy)
with the following property. Consider any graph G € G, and let L = M(G) be
the vertex-labeling assigned by the marker My to G. Then for any set of vertices
W = {vi,..., vt} in G, the value returned by the decoder Dy on the set of labels

L(W) = {L(v) | v € W} satisfies Df(L(W)) = f(W).

It is important to note that the decoder Dy, responsible for the f-computation,
is independent of G as well as of the number of vertices in it. Thus Dy can be viewed
as a method for computing f-values in a “distributed” fashion, given any set of labels
and the knowledge that the graph belongs to some specific family G. In particular,
it must be possible to define Dy as a constant size algorithm. In contrast, the labels
contain some information that can be precomputed by considering the whole graph
structure.

For a labeling L for the graph G = (V, E), let |L(u)| denote the number of bits in
the (binary) string L(u). Given a graph G and a marker algorithm M, which assigns
the labeling L to G, denote Li(G) = maxyecy |L(u)]. For a finite graph family G,
set Lam(G) = max{Lm(G) | G € G}. Finally, given a function f and a graph family
g, let

L(f,G) = min{Lm(G)|ID, (M,D) is an f labeling scheme for G}.

1.3. Flow and connectivity. In the current paper we focus on flow and con-
nectivity labeling schemes. Let G = (V, E,w) be a weighted undirected graph where,
for every edge e € F, the weight w(e) is integral and represents the capacity of the
edge. For two vertices u,v € V, the mazimum flow possible between them (in either
direction), denoted flow(u,v), can be defined in this context as follows. Denote by
G’ the multigraph obtained by replacing each edge e in G with w(e) parallel edges of
capacity 1. A set of paths P in G’ is edge-disjoint if each edge ¢ € E appears in no
more than one path p € P. Let P, , be the collection of all sets P of edge-disjoint
paths in G’ between v and v. Then flow(u,v) = maxpep, ,{|P|}. See Figure 1.

As a special case of the flow function, the edge-connectivity e-conn(u,w) of two
vertices v and w in a graph can be given an alternative definition as the maximum



LABELING SCHEMES FOR FLOW AND CONNECTIVITY 25

8 |~

8 ~ N

8 O\ ~|Ww

8 NN~

8 QN N N~
8 L b N N ~ |\

QA LA W N~

F1G. 1. A capacitated graph G and the (symmetric) flow between its vertices.

flow between the two vertices, assuming each edge is assigned one capacity unit.

A set of paths P connecting the vertices u and w in G is vertex-disjoint if each
vertex, except u and w, appears in at most one path p € P. The vertex-connectivity
v-conn(u, w) of two vertices u and w in an unweighted graph equals the cardinality of
the largest set P of vertex-disjoint paths connecting them. By Menger’s theorem (cf.
[7]), for nonadjacent v and w, v-conn(u, w) equals the minimum number of vertices in
G\ {u,w} whose removal from G disconnects u from w. (When a vertex is removed,
all its incident edges are removed as well.)

1.4. Our results. In this paper we present a number of results concerning label-
ing schemes for maximum flow, edge-connectivity, and vertex-connectivity. In section
2 we present a flow labeling scheme for general graphs, with label size O(logn -log® +
log? n) over n-vertex graphs with maximum (integral) capacity &. The scheme relies
on the fact that the relation “x and y admit a flow of k or more” is an equivalence
relation. In section 3 we establish the optimality of our flow labeling scheme by
proving a tight lower bound of Q(logn - logw + log? n) on the required label size for
flow labeling schemes on the class of n-vertex trees with maximum capacity @. For
edge-connectivity, this yields a tight bound of ©(log® n).

In comparison, vertex-connectivity seems to require a more involved labeling
scheme whose label size depends on the connectivity parameter k. In section 4 we
present a k-vertex-connectivity labeling scheme for general n-vertex graphs. The label
sizes we achieve are logn for k = 1, 3logn for k = 2, 5logn for k = 3, and 2¥logn
for k > 3. In section 5 we present a lower bound of Q(klogn) for the required label
size for k-vertex connectivity on general n-vertex graphs, where k is polylogarithmic
in n.

2. Flow labeling schemes for general graphs. In this section we consider the
family G(n,®) of undirected capacitated connected n-vertex graphs with maximum
(integral) capacity @ and present a flow labeling scheme for this family with label size
O(logn - log & 4 log?n). Given a graph G = (V, E,w) in this family and an integer
1 <k <@, let us define the following relation:

(2.1) Re = {(w,y) |z,y €V, flou(n,y) > k}.

We use the following easy-to-prove fact.

LEMMA 2.1. The relation Ry is an equivalence relation.

For every k > 1, the relation R}, induces a collection of equivalence classes on V,
Cr ={CL,...,C"} such that C; NCY =0 and |J,; Cj = V. Note that for k < k’, the
relation Ry is a refinement of Ry; namely, for every class C}, there is a class C’,Z such
that C}, C CJ.



26 M. KATZ, N. A. KATZ, A. KORMAN, AND D. PELEG

Given G, let us construct a tree T corresponding to its equivalence relations. The
kth level of Tz corresponds to the relation Ry, i.e., it has my nodes, marked by the
classes C,%, ..., C"* . In particular, the root of T¢; is marked by the unique equivalence
class of Ry, which is V. The tree is truncated at a node once the equivalence class
associated with it is a singleton. For every vertex v € G, denote by t(v) the leaf in T
associated with the singleton set {v}. Figure 2 describes the tree T corresponding
to the flow equivalence classes for the graph G of Figure 1.

Level

Fic. 2. The tree T corresponding to the graph G of Figure 1.

For two nodes z,y in a tree T rooted at r, define the separation level of x and vy,
denoted SepLevel,(z,y), as the depth of z = lca(z,y), the least common ancestor
of z and y. In other words, SepLevel (x,y) = disty(z,r), the distance of z from
the root. As an immediate consequence of the construction, we have the following
connection.

LEMMA 2.2. For every two vertices v,w € V,

flowg (v, w) = SepLevel,(t(v), t(w)) + 1.

It is proven in [18] that for the class 7 (n) of n-node unweighted trees, there
exists a SepLevel labeling scheme with O(log? n)-bit labels. (This is also shown to
be optimal, in the sense that any such scheme must label some node of some n-node
unweighted tree with an Q(log? n)-bit label.)

Observe that if the maximum capacity of any edge in the n-vertex graph G is w,
then the depth of the tree Tz cannot exceed nw levels; and it may have at most n
nodes per level; hence the total number of nodes in Tg is O(n?@). We immediately
have that £(flow, G(n,)) = O(log?(n&)).

A more careful design of the tree Tz can improve the bound on the label size. This
is achieved by canceling all nodes of degree 2 in the tree T and adding appropriate
edge weights. Specifically, a subpath (vg, v1,...,v) in T such that k& > 2, vy and vy
have degree 3 or higher, and vy, ..., v;_1 have degree 2 (with vy, ..., v all marked by
the same set C) is compacted into a single edge (vg, vg) with weight k, eliminating the
nodes vy, ...,v,_1 and leaving the sets, marking the remaining nodes unchanged. Let
T¢ denote the resulting compacted tree. Figure 3 describes the tree Ta corresponding
to the tree T of Figure 2.



LABELING SCHEMES FOR FLOW AND CONNECTIVITY 27

Fic. 3. The compacted tree TG corresponding to the tree T of Figure 2.

The notion of separation level can be extended to weighted rooted trees in a
natural way by defining SepLevel (x,y) as the weighted depth of z = lca(x, y), i.e.,
its weighted distance from the root. The upper (and lower) bound presented in [18]
regarding SepLevel labeling schemes for unweighted trees can also be extended in a
straightforward manner to weighted trees, yielding SepLevel labeling schemes for the
class 7 (n,®) of weighted n-node trees with maximum weight @ using O(lognlog® +
log? n)-bit labels. We give a short overview of this extension.

LEMMA 2.3. L(SepLevel, 7T (n,w)) < L(distance, T (n,®)) + log(n).

Proof. Given a distance labeling scheme (M g;st, Daist) for the weighted distance
function in 7 (n, ), define a SepLevel labeling scheme (M, D) for 7 (n,w) as follows.
Given atree T € T (n, o), let L be the labeling assigned by Dy;s: for T. The SepLevel-
marker M augments each label L(v) into a label L' (v) with an additional log(no)-bit
field containing v’s weighted depth, d(v).

For two vertices = and y, denote by d(z,y) the weighted distance between x and
y. Consider two vertices v, w with z = lca(v, w). Let I, = d(z,v), l, = d(z,w). Given
the labels L'(v) = (L(v),d(v)) and L'(w) = (L(w),d(w)), the fields L(v) and L(w)
allow the SepLevel-decoder D to deduce the weighted distance d(v,w) = I, + ly,
and the two additional fields provide it with d(v) = [, + d(2) and d(w) = I, + d(z).
Combined, these three equations allow D to deduce d(z). Thus (M, D) is a SepLevel
labeling scheme, and the labels it uses are larger by log(n®) than those used by
<Mdist7 Ddist> . 0

Based on the upper bounds of [17, 10] for distance labeling schemes for trees, we
get the following.

LEMMA 2.4. L(SepLevel, T (n,)) = O(lognlogd + log? n).

It is also easy to verify that for two nodes z,y in G, the separation level of the
leaves t(z) and t(y) associated with = and y in the tree T is still related to the flow
between the two vertices, as characterized in Lemma 2.2.

Finally, note that as T has exactly n leaves, and every nonleaf node in it has
at least two children, the total number of nodes in T¢ is 7 < 2n — 1. Moreover, the
maximum edge weight in T is @ < & - n.

Combining the above observations, we have the following.

THEOREM 2.5. L(flow,G(n,&)) = O(logn - log & + log® n).

As proved in the next section, this bound is asymptotically optimal.

The above theorem immediately yields the following upper bound for edge-
connectivity (which is also shown to be tight in the next section). Let G(n) denote
the class of n-vertex unweighted graphs.



28 M. KATZ, N. A. KATZ, A. KORMAN, AND D. PELEG

COROLLARY 2.6. L(e-conn, G(n)) = O(log®n).
Remark. We note that a similar algorithm applies to any graph function g whose
induced relations RY, defined as in (2.1), are equivalence relations.

3. A lower bound for flow labeling schemes on trees. In this section we
establish a lower bound of Q(logn - log& + logZ n) on the label size for flow on the
class 7 (n,®) of n-vertex trees with maximum edge capacity @ (which is assumed to
be integral). The proof idea is based on a modification of the lower bound proof of [10]
for distance labeling schemes. Let us first define two more functions on tree vertex
pairs, named MaxF and MinE. For two vertices u, v in a tree T, let Path(u,v) denote
the unique path from w to v in T. Then MaxE(u,v) (respectively, MinE (u, v)) is the
maximum (resp., minimum) weight of an edge on Path(u,v).

Observe that, on a tree, the maximum flow between two vertices v and v equals
simply the minimum capacity of an edge on Path(u,v), i.e., flow(u,v) = MinE(u, v).
Hence

(3.1) L(flow, 7T (n,w)) = L(MinE, T (n,)).

A MaxFE labeling scheme (M, D) can be transformed into a MinE' labeling scheme
(and vice versa) as follows. Given a weighted tree T, let @ denote the maximum weight
of an edge in T, and let T be the weighted tree obtained by replacing the weight w(e)
of every edge e with weight w’(e) = © —w(e). The MinE marker M’ will transform T'
into 77 and then apply M. The MinFE decoder D’ will invoke D and then apply the
inverse transformation on the resulting weight. As this scheme requires us to encode
w in the labels, we have that

(3.2) L(MinE, T (n,o)) > L(MaxE, T (n,w)) — log®.

Combining the two relationships (3.1) and (3.2), it follows that, to prove our lower
bound on the label sizes required by flow labeling schemes on trees, it suffices to prove
it instead for the maximum edge function MaxF.

We focus on a special subclass of binary weighted trees referred to hereafter as
(h, p)-trees for integer h,p > 1. Each tree of this class is a full binary tree with h
levels. Number the levels starting from the bottom of the tree, i.e., with the level of
the leaves numbered 0. Each edge e is associated with a weight w(e) according to its
level. The two edges that connect a vertex at level ¢ + 1 to its two children at level 4
are assigned the same weight, taken from the set @Q;(u) defined as follows. For i > 0,
let Z;(p) = i-p and

Qi(p) = {Zi(p) +710<j<p—1}

Ezample. Figure 4 shows a (3, u)-tree. The weights assigned satisfy o, € Qo)
for 1 <i<4,x1;,€Qi(p) for 1 <i<2 and 291 € Qa(p).

Note that an (h,u)-tree T is completely defined by the triple T = (Ty,T1,x),
where x is the weight associated with the two edges of the top level of the tree, and
To and T} are the two (h — 1, u)-trees attached to the endpoints of those two edges.
Let C(h,p) be the class of (h, p)-trees and let C(h, u, ) be the subclass of C(h, u)
consisting of (h, u)-trees with topmost weight x. Hence C(h, u) = Ug;é C(h,pu,x). By
the definition of these binary trees we have the following.

OBSERVATION 3.1. For every two leaves a,a’ of a tree T € C(h, u,x),

(1) ifa,a’ €T; (forie {0,1}), then MaxEr(a,a’) = MaxEr, (a,a’).



LABELING SCHEMES FOR FLOW AND CONNECTIVITY 29

Zo,1 Zo,4

ap az asz a4 a5 ae ar ag

Fic. 4. A (3, p)-tree.

(2) ifa € To and o’ € Ty, then MaxEr(a,a’) = z.

This implies the following lemma.

LEMMA 3.2. Consider two (h,u)-trees T = (To, Ty, ) and T' = (1,17, 2"). For
any leaves ag € Ty, a1 € Ty, af, € T, and a} € T},

MaxFEr(ag,a1) = MaxFE7 (ap,a)) < z=1'.

We assume that labels are nonnegative integers in N. Define an (h, u)-legal Max FE
labeling scheme as a scheme (M, D) on all binary (h,u)-trees that correctly pro-
vides MaxFE/(a;,a;) between any two leaves a;,a;. Namely, D is a decoder function
D : N? — N, and M is a marker algorithm assigning a label L(a,T) to each leaf
a of any binary (h,pu)-tree T, such that for every two leaves a and o/ with labels
A= L(a,T) and N = L(a/,T), D computes the maximum weight of an edge between
a and o', i.e., D(A\, \) = MaxE(a, d’).

For an (h, u)-legal MaxE labeling scheme (M, D), let W (M, h, i) denote the set
of all labels assigned by M to nodes in trees of C(h, i), and let g(h, 1) denote the
minimum cardinality |W (M, h, )| over all flow labeling schemes on C(h, u).

Hereafter, we fix (M, D) to be some MaxF labeling scheme attaining g(h, p), i.e.,
such that |[W (M, h, u)| = g(h, ).

Let W(x) denote the set of all possible pairs of labels assigned by M to some
leaves a; € Ty and a; € T4, respectively, for some tree T' = (Ty, T1,z) € C(h, p, ).
Let W = Ug;é W (z). As W C W(M, h, ) x W (M, h, 1), we have the following.

LEMMA 3.3. [W| < g(h, p)?.

CLAIM 3.4. For every 0 <z # x' < u, the sets W(z) and W (z') are disjoint.

Proof. Consider two different weights 0 < z # 2’ < u, and assume by way of
contradiction that there exists a pair (A1, A2) € W(z) N W (z'). Then there exist two
(h—1, p)-trees T, Ty such that T' = (Ty, Ty, x) uses the label \; for some leaf a;, € Ty
and the label Ay for some leaf aj, € T1, and there exist two (h — 1, u)-trees T3, T}
such that T" = (T{,T7,z') uses the label A; for some leaf aj, € Tjj and the label Ao
for some leaf a;, € T]. Therefore, by the definition of D,

z = MaxE(aj,,aj,) = DA, 2) = MaxFE(aj,,aj,) = 2/,

implying z = 2/, a contradiction. 1]

The following is our main lemma.

LEMMA 3.5. For every x € Qpn(u), |W(x)| > g(h — 1, u?).

Proof. In any (h — 1, u?)-tree, and for every edge that connects a vertex on level
i+ 1 to its child on level 0 < i < h — 1, a weight w; € Q;(u?), w; =i - u®+ j, for
0 < j < p? —1, can be represented by the pair of weights

; mod p? j
o = wimody — jmody  and gy — {wmouJ _ M
I I



30 M. KATZ, N. A. KATZ, A. KORMAN, AND D. PELEG

such that yg,y1 € [0, — 1] and w; = yo + py1 + Zi(u?).

Consequently, one can associate with any (h—1, u?)-tree T' a pair of (h—1, u)-trees
To and T as follows. For any edge e of T” with weight w; = yo +u-y1 + Zi(u?), let the
corresponding weight of e in Ty (respectively, T1) be w;, = Z;(u) + yo (respectively,
wi, = Zi(u) +y1). These two trees define also an (h,u)-tree T = (Tp,T1,x) in
C(h, p,z).

Every leaf a; of T" is now associated with two homologous leaves of T', namely,
the leaf ag = a; (occurring in the left part of T, i.e., Tp) and the leaf a} = Qjqon-1
(occurring in T7). For every two leaves a;,a; of T" we now have

MaxEr (a;, ar) = MaXETO(a?, a?) mod p
MaxEr (a},al
- (MaxEr, (a!al) mod 1) + 122 {MJ
]

= MaxET(a a?) mod p
MaxEr(al, a}
(MaxET(a ,a;) mod p) + p?- {T( . t)J .
7
We use this observation to derive a labeling scheme for all (h — 1, u?)-trees using at
most |[W (z)| labels. Given an (h—1, u?)-tree T', consider the pair of (h—1, u)-trees Tp,
T defined above, and use the marker algorithm M to label the tree T' = (T, 71, z).
Now use the resulting labeling L to define a labeling function L’ for the nodes of T’ as
follows. A leaf a; € T” receives as its label the pair (L'(a;, T") = {L(a9,T), L(a},T)).

Note that this pair belongs to W (x).
The MaxE decoder D’ for (h — 1, u?)-trees, is now obtained by setting

D(L (a5, T'), L'(a, T') = D' ((L(a. T), Lla}, 7)), ( L(af, 7). L(a}, T)) )
= D(L(a%,T), L(a?,T)) mod p
+ p ,T), L(a}, T)) mod p
> {A(ﬁ(a},T)aL(a%,T))J
pe :

s (M, D) is a MaxF labeling scheme for (h, u)-trees, we have
D(L(a3,T),L(a},T)) = MaxEr(al,ay)
and
D(L(a},T),L(a},T)) = MaxEr(al,a;);
therefore

D'(L'(a;,T"), L' (a;, T")) = MaxEr(a},af) mod p

MaxEr(aj,af)
@

+ H.MaxET(a},atl) mod p + p?- \‘

= MaxFE7 (a;,at).



LABELING SCHEMES FOR FLOW AND CONNECTIVITY 31

So we have obtained a labeling scheme (M’,D’) labeling any (h — 1, u?)-tree with
labels taken from W (z). It follows that |[W (z)| > g(h — 1, u?). d

Combining Claim 3.4 and Lemmas 3.3 and 3.5, we deduce the following.

COROLLARY 3.6. g(h, ) > /i - /g(h —1,pu2).

Subsequently, we have the following.

LEMMA 3.7. g(h, ) > p"/2.

This allows us to conclude with the lower bound. Let B7 (n,) denote the family
of n-vertex balanced binary trees with height A = log(n + 1) and weights from the
range [0, ], where © = h-p— 1.

THEOREM 3.8.

LMaxFE, BT (n,w)) > % -log(n+1)log(w +1) — % -log(n + 1) loglog(n + 1).

Proof. By Lemma 3.7, for the class C(h, y1) we have £(&,C(h, 1)) > % -log pu. This
yields the theorem, as
1 1 v+ 1
£ BT(1,6) 2 L@ C(h ) = ghlogn — glogln+1)-log (£
1 1
=5 log(n + 1) log(w + 1) — 5 log(n + 1)loglog(n +1) .

Hence assuming @ + 1 > log(n + 1), there is a lower bound of Q(lognlogw) for the
label size of MaxFE labeling schemes on trees. Finally, by the relationships (3.1) and
(3.2) mentioned above between MinE and flow on trees, we get the following.

COROLLARY 3.9. For @ >log(n+1) — 1, L(flow,7 (n,®)) = Q(lognlogw).

Each tree T of B7 (n,w) can be modified into an unweighted multigraph G of
n nodes and O(n®) edges by replacing each edge e of weight w(e) with w(e) parallel
edges connecting the same endpoints. This multigraph can in turn be transformed
into a simple (unweighted) graph of O(nw) vertices by adding a new vertex p, , in
the middle of every edge (u,v), splitting it into a path of length 2 consisting of the
two successive edges (u,py.») and (py.,,v). Starting with B7 (y/n,&) and looking
at the class of unweighted O(n)-vertex graphs obtained by setting & = \/n, we get
the following tight lower bound on the required label size of schemes for flow and
edge-connectivity.

THEOREM 3.10.

(1) L(flow,G(n)) = O(lognlog + log®n).

(2) L(e-conn,G(n)) = O(log”n).

4. Vertex-connectivity labeling schemes for general graphs. In this sec-
tion we turn to k-vertex-connectivity and present a labeling scheme for general n-
vertex graphs. The label sizes we achieve are logn for k =1, 3logn for k = 2, 5logn
for k = 3, and 2¥logn for k > 3.

4.1. Preliminaries. We start with some preliminary definitions. In an undi-
rected graph G, two vertices are called k-connected if there exist at least k vertex-
disjoint paths between them. A set S C V separates u from v in G = (V, E) if v and
v are not connected in the vertex-induced subgraph G \ S.

THEOREM 4.1 (Menger (cf. [7])). In an undirected graph G, two nonadjacent
vertices u and v are k-connected iff no set S C G\{u,v} of k—1 vertices can separate
u from v in G.



32 M. KATZ, N. A. KATZ, A. KORMAN, AND D. PELEG

The k-connectivity graph of G = (V, E) is Cy(G) = (V, E'), where (u,v) € E' iff
u and v are k-connected in G. A graph G is closed under k-connectivity if it has the
property that, if u and v are k-connected in G, then they are neighbors in G. Let
C(k) be the family of all graphs G which are closed under k-connectivity.

OBSERVATION 4.2.

(1) If G € C(k), then each connected component of G belongs to C(k).

(2) If G = HUF, where H,F € C(k) are vertez-disjoint subgraphs of G, then

G e C(k).

LEMMA 4.3. Let G' = (V,E'), where E' = E U {(u,v)} for some pair of k-
connected vertices u and v. Then G and G’ have the same k-connectivity graph, i.e.,
Cr(G) = Cx(G).

Proof. Use induction on k. For k = 1 the lemma is obvious. Assume the lemma
is true for k — 1. It suffices to show that if two vertices w,w’ are not k-connected in
G, then they are not k-connected in G'. Suppose that w,w’ are not k-connected in
G. If w, w' are neighbors in G, then let G- = G\ {u,v}. In G~, w and w’ are not
(k — 1)-connected and, since u and v are (k — 1) connected in G~, by the induction
hypothesis, w and w’ are not (k — 1)-connected in G’ \ {u,v}. This implies that they
are not k-connected in G’ as desired. If w,w’ are not neighbors in G, then by Menger’s
theorem there exists a set of vertices S = {1, x2,...,Tr_1} that separates w from w’
in G. We claim that S separates w from w’ also in G’. The proof breaks down into
the following cases.

Case 1. One or more of the z;’s is w or v. Then G\ S =G\ S.

Case 2. None of the z;’s is u or v. If u and v belong to the same connectivity
component of G\ S, then the connectivity components of G’ \ S will be the same as
the connectivity components of G \ S, implying that S separates w from w’ also in
G’, which is what we wanted to prove. If u and v belong to different connectivity
components of G \ S, then S separates v from v in G or, in other words, v and v are
not k-connected in G, contradicting our assumption. 0

COROLLARY 4.4. For every graph G, if u and v are k-connected in Cx(Q), then
they are neighbors in Cy(G), i.e., Cr(G) € C(k).

Proof. Transform a given graph G into G+ = G U Cy(G) by adding the edges
of Ci(G) to G one by one. By induction on the steps of this process using the
previous lemma, we get C(GT) = Ci(G). Therefore if u and v were k-connected in
Ci(G), then they are k-connected in G* and are therefore neighbors in Cy(G*) =
Cr(Q). O

For a connectivity component C of Ci(G), a leftmost breadth-first search (BFS)
tree for C, denoted T'(C, k), is a BF'S tree spanning C, constructed in the following
way. Take a vertex r from C to be the root of T(C, k). Let level(r) = 1. Assume
we constructed ¢ levels of T'(C, k) and haven’t used all vertices of C. Construct the
(i + 1)st level of T(C, k) as follows. Repeatedly take a vertex v of level ¢ and connect
it to all the vertices adjacent to it in Ck(G) that haven’t been included so far in the
tree construction. For each such new vertex w let level(w) =i + 1, and let v be w’s
parent in T(C, k).

When the context is clear we use the notation 7" instead of T'(C, k).

For T = T(C,k), we make the following definitions. Let W; denote the set of
vertices of level ¢ in T, and let H;, = H;(C,k) = (W, E;) be the subgraph of C
induced by W;. For vertices v and v, denote u’s parent in T' by p(u), and let lca(u, v)
be the highest level common ancestor of both u and v in T. Let W/, denote the
set of vertices of W, 1 that are neighbors of at least k vertices of W; in C(G). Let



LABELING SCHEMES FOR FLOW AND CONNECTIVITY 33

F; = Fi(C, k) be the subgraph of C induced by W; U W/, ,.

LEMMA 4.5.

(1) ForT=T(C,k), H; € C(k—1).

(2) ForT=T(C,k), F; e C(k—1).

Proof. To prove (1), we show that every two vertices u,v € W; that are (k — 1)-
connected in H; are neighbors in Cj(G) and therefore in H;, implying H; € C(k — 1).
Assume, for contradiction, that u and v are not neighbors in Ci(G). By Corollary
4.4 they are also not k-connected in Ci(G); i.e., there exists a set S = {x1,..., 251}
that separates them in C(G). Let S" = SN W;. Since S’ separates u from v in H;
and since u and v are (k — 1)-connected in H;, we get that |S’| = k — 1, and hence
S’ =S, so all the vertices in S must be of level 7. This implies, however, that S does
not separate u from v even in 7', which is a subgraph of Cy(G), contradicting our
assumption.

Turning to (2), let u and v be (k — 1)-connected in F;. As before, it suffices to
show that they are neighbors in Cx(G). Assume for contradiction that u and v are
not neighbors in Cy(G). Therefore they are also not k-connected in Cx(G); i.e., there
exists a set S = {x1,...,25_1} that separates them in C(G). Since S’ = SN F;
separates u from v in F; and since w and v are (k — 1)-connected in F; we get, as
before, that all the vertices of S must belong to F;. We claim that S cannot separate
either u or v from the root r, and therefore we get that u and v are connected in
Cr(G) \ S, contradicting our assumption. If u (or v) is of level 4, then the claim is
clear since u is connected to r in Ci(G) \ S via the edges of T'. If u (or v) is of level
i+ 1, then u has at least k neighbors in C(G) of level i. Therefore, u has at least one
neighbor w of level ¢ in C,(G) \ S. Since all vertices of S are in F;, w is connected to
r in Cx(G)\ S via the edges of T. d

4.2. Overview of the scheme. We rely on the basic observation that labeling
k-connectivity for some graph G is equivalent to labeling adjacencies for Ck(G). By
Corollary 4.4, C(G) € C(k). Therefore, instead of presenting a k-connectivity label-
ing scheme for general graphs, we present an adjacency labeling scheme for the graphs
of C(k).

The general idea used for labeling adjacencies for some G € C(k), especially for
k > 3, is to decompose G into at most three “simpler” graphs. One of these graphs is
a k-orientable graph K, and the other two, called Geyer, and Goqaq, belong to C(k—1).
The labeling algorithm for G € C(k) recursively labels subgraphs of G that belong to
C(t) for t < k. When we are concerned with labeling some n-vertex graph G € C(k)
for £ > 1, the first step in the labeling is to assign each vertex w in G a distinct
identity ¢d(u) from 1 to n. This identity will always appear as the last logn bits of
the label L(G,u). Thus, when labeling the subgraphs of G in the recursion we may
assume that the ¢d’s for the vertices are given.

For graphs G = (V, E) and G; = (V;, E;), i > 1, we say that G can be decomposed
into the G;’s if |J, Vi =V, U, E; = E, and the E;’s are pairwise disjoint.

LEMMA 4.6. Let G, Gy, and G be families of graphs such that each G € G can be
decomposed into G1 € Gy and Go € Go. If G1 and Go have adjacency labeling schemes
of sizes l1 and ls, respectively, then G has adjacency labeling scheme of size l1 + 5.

Proof. The general idea in the proof is to use concatenation of the labels of the
decomposed graphs. Let (M;, D;) be adjacency labeling schemes for G; (i = 1,2). Let
us construct an adjacency labeling scheme (M, D) for G as follows.

The marker algorithm M for G. For a given graph G € G, decompose G into
G; € G; (i=1,2). Let L, = M;(G;) for i = 1,2. We construct L = M(G) as follows.



34 M. KATZ, N. A. KATZ, A. KORMAN, AND D. PELEG

For a vertex u in G, let L(u) = (L;(u), L2(w)), where the first I; bits of the label L(u)
consist of L (u) and the next Iy bits give La(u). Altogether we use I3 + I bits.

The decoder algorithm D for G. Let G,G1, and G2 be as before. Given the
two labels L(u) = (Li(u), La(u)) and L(v) = (L1(v), L2(v)) let D(L(u), L(v)) =
Dl (Ll (u), Ll(U)) V DQ(LQ (’U,), L2 (U))

Since G was decomposed into G1, G2, the vertices u and v are neighbors in G iff
they are neighbors in either G; or Ga; hence the decoding algorithm is correct. ]

COROLLARY 4.7. Let G,G1,...,Gn be families of graph such that each G € G
can be decomposed into G1,...,Gy, where G; € G; fori =1 to m. If the G;’s have
adjacency labeling schemes of size I;, then G has an adjacency labeling scheme of size
>l

A graph G is called k-orientable if there exists an orientation of the edges such
that the out-degree of each vertex is bounded above by k. The class of k-orientable
graphs is denoted J, (k).

OBSERVATION 4.8. If G = HU F, where H,F € J,.(k) are vertez-disjoint
subgraphs of G, then G € Ty (k).

LEMMA 4.9. Let J,(k) be the family of n-vertex graphs in Jor(k). Assuming id’s
are given, L(adjacency, J,(k)) < klogn.

Proof. Suppose G € J,,(k). Then G is a k-orientable graph with n vertices. Hence
there exists an orientation to the edges of G such that the out-degree of each vertex
is bounded above by k. In this orientation, for each u there exist at most k outgoing
edges, say (u,v1), (u,v2),..., (u,v), for t < k.

The marker algorithm M for T, (k). Label u by L(u) = (id(v1),id(vs), ..., id(v¢)),
i.e., use the first logn bits to write id(vy), the second logn bits to write id(vs), etc.
Hence, for every u’s, the size of L(u) is at most klogn bits.

The decoder algorithm D for J,(k). Given L(u) and L(v) check whether u’s id
appears in L(v), by inspecting each block of logn bits in L(v) separately. Analogously,
check if v’s id appears in L(u).

As u and v are neighbors in G iff one of the two cases applies, the decoding
algorithm is correct. ]

To illustrate the approach, we preface the treatment of the general case with a
discussion of the cases k = 1, 2, 3, for which slightly better schemes are available. The
simple case of k = 1 is handled in section 4.2.1. For k = 2 we show in section 4.2.2
that a connected graph G € C(2) can be decomposed into a tree and disjoint graphs
in C(1). Graphs in C(1) are collections of cliques. It follows that each G € C(2) can be
decomposed into a forest (which is a 1-orientable graph) and a graph made of disjoint
cliques. For k = 3 we show in section 4.2.3 that a connected graph G € C(3) can be
decomposed into a graph in C(2) and a 2-orientable graph.

4.2.1. A 1-connectivity labeling scheme. Let us give a labeling scheme for
1-connectivity for G,,, the family of all n-vertex graphs.

The marker algorithm M for G,. Fix G = (V,E) € G,. To each connected
component C' of G assign a distinct identity id(C') from the range {1,...,n}. For
a vertex u € V, let C, be the connected component of G to which u belongs. The
marker algorithm sets L(u) = id(CY,).

The decoder D for G,,. Let D(L(u), L(v)) =1 iff L(u) = L(v).

Clearly u and v are 1-connected in G iff they are in the same connected component;
hence the decoder’s response is correct. The size of the label is bounded above by
log n.

THEOREM 4.10. £(1 — v-conn, G,,) < logn.



LABELING SCHEMES FOR FLOW AND CONNECTIVITY 35

4.2.2. A 2-connectivity labeling scheme. As explained earlier, labeling 2-
connectivity for a family of graphs G is equivalent to labeling adjacencies for the family
{C2(G) | G € G} C C(2). In this section we present an efficient adjacency labeling
scheme for C(2).

Consider a graph G € C(2) and let C1,...,C,, be its connected components. By
Observation 4.2(1), C; € C(2) for every i. Fix ¢ and let T' = T'(C}, 2).

Cram 4.11. The only neighbor of u in G which has a strictly lower level than u
in T is p(u).

Proof. Suppose, for contradiction, that there exist neighbors v and w such that
level(w) > level(v) but v is not p(w) in T. In this case, w and z = lca(v,w) are
2-connected in T'U {(v,w)}, which is a subgraph of G. Since G € C(2), v must be a
neighbor of w. Since level(w) < level(u) — 1 we get a contradiction to the way T was
constructed. a

CramMm 4.12. G € C(2) can be decomposed into a forest F' and a graph H of
disjoint cliques.

Proof. Fix a connected component C; of G and let T = T(C;,2). Since, by
Lemma 4.5(1), each H} subgraph of C; induced by level j of T is in C(1), it follows
that sz is a collection of disjoint cliques. Hence G can be decomposed into a forest
F and a graph H of disjoint cliques, composed of the collection of all the H]Z from all
i’s and j’s. 0

Let C,,(2) be the family of n-vertex graphs in C(2). Let us now give an adjacency
labeling scheme for the graphs of C,,(2).

The marker algorithm M for C,(2). Decompose G into F' and H as in Claim
4.12. Fix a vertex u of G. Let p(u) be u’s parent in F'. To each clique C' in H give a
distinct identity from the range {1,...,n}, id(C). Let C(u) be the clique in H that
contains u.

The marker algorithm for G assigns L(u) = (id(c(u)),id(p(u)), id(u)). As before,
we use the first logn bits for id(c(u)), the second logn bits for id(p(u)), etc. The
label size is bounded above by 3logn.

The decoder D for C,(2). Given L(u) and L(v) we compare id(p(u)) with id(v)
and id(p(v)) with id(u) to check whether one is the parent of the other in the forest
F. We also check if id(C(u)) = id(C(v)) to see whether u and v are neighbors in H.
We do this by looking at the corresponding bits in the label; for example, id(p(u))
is written in the second block of logn bits of L(u). Let D(L(u), L(v)) = 1 iff either
id(C(u)) = id(C(v), id(p()) = id(v), or id(p(v)) = id(u).

Clearly, u and v are neighbors in G iff they are neighbors in F or in H; hence the
decoder’s response is correct. We get the following.

THEOREM 4.13. Let G,, be the family of n-vertex graphs. Then L£L(2—v-conn, G,,) <
3logn bits.

4.2.3. A 3-connectivity labeling scheme. Again, labeling 3-connectivity for
a family G is equivalent to labeling adjacencies for the family {C3(G) | G € G} C C(3).
In this section we show how to label adjacencies for C(3).

Consider a graph G € C(3), and let C4,...,Cy, be its connected components. By
observation 4.2(1), C; € C(3) for all i. Fix ¢ and let T = T(C}, 3).

LEMMA 4.14. FEach vertex u has at most one neighbor of G which has a strictly
lower level than u in T apart from p(u).

Proof. Assume, for contradiction, that there exists a vertex u with two neighbors
in G, v and w, both with a strictly lower level than v and both different from p(u).
In this case, u must be 3-connected in G to either lca(u,v), lca(u,w), or lea(v,w),



36 M. KATZ, N. A. KATZ, A. KORMAN, AND D. PELEG

whichever has the highest level number. However, the levels of lca(u,v), lca(u,w),
lca(v,w) are all smaller than level(u) — 1, and since G € C(3), u is adjacent to one of
them, contradicting the way T was constructed. (See Figure 5.) ]

Fic. 5. An illustration of the contradiction in the proof of Lemma 4.14.

LEMMA 4.15. Fach G € C(3) can be decomposed into a graph H € C(2) and a
2-orientable graph.

Proof. First, it suffices to show the lemma for connected graphs C' € C(3), since by
Observations 4.2(2) and 4.8, C(2) and J,,(2) are closed under vertex-disjoint unions.
Consider a connected graph C € C(3) and let T'= T'(C,3). By Lemma 4.5(1), each
subgraph H; of C' induced by the vertices of level jin T is in C(2). All the subgraphs
Hj are vertex-disjoint; hence by letting H be the union of all the H;, we get H € C(2).
Let U be the graph C after deleting the edges of H. By Lemma 4.14, each vertex u
of U has at most two neighbors of a strictly lower level (one of which is u’s parent in
T). Hence directing the edges of U from higher level vertices to lower level vertices,
each u has out-degree at most 2; i.e., U is 2-orientable. O

By Lemmas 4.6 and 4.9 and from Theorem 4.13 we get the following theorem.

THEOREM 4.16. Let G,, be the family of n-vertex graphs. Then L(3—v-conn, G,) <
5logn bits.

4.3. A k-connectivity labeling scheme. Finally, labeling k-connectivity for a
family G is equivalent to labeling adjacencies for the family {Cy(G) | G € G} C C(k).
In this section we show how to label adjacencies for C(k).

Consider a graph G € C(k), and let C4, ..., C,, be its connected components. By
observation 4.2(1), C; € C(k) for all 4. Fix ¢ and let T = T(C;, k).

LEMMA 4.17. Each G € C(k) can be decomposed into two graphs in C(k—1) and
a (k — 1)-orientable graph.

Proof. Again, it suffices to prove the lemma for connected graphs C € C(k)
since, by Observations 4.2(2) and 4.8, both C(k — 1) and J,.(k) are closed under
vertex-disjoint unions. Consider a connected graph C' € C(k) and let T' = T(C, k).

All the Fy’s for odd i’s are vertex-disjoint, and F; € C(k — 1) for all #’s by Lemma
4.5(2). Therefore, by letting Goqq be the union of all the F;’s for odd i’s, we get
Godqq € C(k —1). By the same reasoning, by letting Geyern, be the union of all the F;’s
for even i’s, we get Geyen € C(k — 1).

Let K be the graph C' after omitting the edges of Gyqq and Geyer, (or equivalently,
omitting all edges of all the F;’s). The proof is completed once we show that K is
(k—1)-orientable. Since all edges (u, v) of C such that level(u) = level(v) = i for some



LABELING SCHEMES FOR FLOW AND CONNECTIVITY 37

i are in F; for the appropriate 4, if (u,v) is an edge of K, then level(u) # level(v).
By the way T was constructed, we can see that the difference between the levels is 1.
Let us direct the edges of K from higher level vertices to lower level vertices.
Assume, for contradiction, that for some u and some 4, level(u) =i+ 1 and the out-
degree of u in K is at least k. Then u must have at least k£ neighbors of level ¢ in C,
in which case all edges (u,v) for v such that level(v) = ¢ appear in F; and therefore
not in K. Thus, the out-degree of » in K is 0, contradicting our assumption. 0

Before stating and proving the next theorem, let us remark that we can get a
weaker upper bound of 3¥logn label size for £(adjacency,C,(k)) in the following
way. Use induction on k. For &k = 1,2,3 our remark holds. For k > 3 fix k£ and
assume that the remark holds for £k — 1. The remark for k follows from Lemmas 4.9
and 4.17 and Corollary 4.7.

To prove the next theorem, we show that instead of concatenating u’s labels in
the three decomposed graphs (Godd, Geven, K), it suffices to give w its label in only
two of the three decomposed graphs. This yields the desired 2% logn bits bound on
L(adjacency, C,(k)).

THEOREM 4.18. Let C,(k) be the family of n-vertex graphs in C(k). Then

L(adjacency,C,(k)) < 2Flogn.

Proof. Use induction on k. For k = 1, 2, or 3 the theorem holds as seen in
Theorems 4.10, 4.13, and 4.16. For k > 3, fix k and assume that the theorem holds
for k — 1. Consider a graph G € C,(k). For a vertex u in G, let C be its connected
component in G, let T = T(C, k), and let ¢ = level(u). Let us now give a labeling
scheme for adjacency on G € C(k).

The marker algorithm M, for C(k). For t <k, G € C,(t), and u, a vertex of G,
denote the adjacency labeling on G by Li(G) and u’s label by L:(G,u). Let G € C,, (k)
and let u be a vertex in G. We define State(u) according to the following three cases.

Case 1. u participates in both Gogq and Gepen. Let State(u) = Dual. Note that
in this case the out-degree of u in K is 0. The marker algorithm assigns to u the
label Ly (G,u) = (Li—1(Godd,v), Li—1(Geven, 1)), where the first 28~1logn bits are
reserved for Ly,_1(Goqq, u) and the last 2571 logn bits are reserved for Li_1(Geyen, ).

Case 2. u doesn’t participate in G,qq4; i.e., u participates only in Geyepn and in K.
Let State(u) = Even. Let Ly (G, u) = (0¥1°8™ 10, L(u, K),00...000, L_1(Gepen,)),
where the two bits in the second field, 10, indicate that State(u) = Even. The
next klogn bits are reserved for L(u,K) and the last 28~1logn bits are reserved
for Li—1(Geven, ).

Case 3. u doesn’t participate in Geyen; i-€., u participates only in Gygqq and in K.
Let State(u) = Odd. Let Li(G,u) = (0*1°8" 11, L(u, K),00...00, Lx_1(Godga,u)),
where the two bits in the second field, 11, indicate that State(u) = Odd, the next
klogn bits are reserved for L(u, K), and the last 2°~!logn bits are reserved for
Ly _1(Godd,u).

The size of the label Ly (G, u) is, by induction, at most 2¥ logn since, by Lemma
4.9, the size of L(v,K) is at most klogn and both sizes of Lg_1(Gogq,u) and
Li—1(Gepen,u) are at most 28! logn.

By the definition of K, it is clear that the out-degree of some u in K is higher
than 0 iff State(u) = Even or Odd.

The decoder Dy, for C(k). For t < k denote the decoder for C(t) by D;. Denote
the decoder for Jo.(k) (from Lemma 4.9) by D,,. Given Li(G,u) and Li(G,v) we
will first want to know the states of u and v. Take for example Ly (G, u). For k > 3,



38 M. KATZ, N. A. KATZ, A. KORMAN, AND D. PELEG

the first klogn bits are 0 iff State(u) # Dual. So by looking at the first klogn+2 bits
of Ly(G,u) and Ly (G, v) we know the states of u and v. Consider the following cases.

Case a. State(u) = State(v) = Dual: Then Dy, for G uses Di_1 on Geyen and
Gogq as follows:

Dk (Lk(Gv U), Lk(Gv ’U))
= (Dk;fl(kal(Godtb U), Lk:—l(Godda U)))
V(,Dkfl (kal (Gevena ’LL), kal (GSUETH U)))

Case b. State(u) = State(v) = Even. Then Dy, for G uses Dy_1 on Geyen, and D,
for K as follows:

Dy (Li(G, u), Ly (G, v))
= Dor(L(u, K), L(v, K)) V Dg—1(Lg-1(Geven, ), Li—1(Geven, v))-

Case c. State(u) = State(v) = Odd. Then Dy, for G uses Di_1 on Go4q and D,,
for K as follows:

Dk(Lk(G, u), Lk(G, U))
= Dor(L(u, K), L(v, K)) V D1 (Li—1(Godga, u), Lx—1(Godd; v))-

Case d. State(u) = Dual, State(v) = Even. Then let Dy (Ly(G,u), Lp(G,v)) =1
iff D1 (Lk—1(Gevens ), Lik—1(Geven,v)) = 1 or id(u) appears in L(v, K).

Case e. State(u) = Dual, State(v) = Odd. Then let Dy (Lx(G,u), Li(G,v)) = 1 iff
Di—1(Li-1(Godds ), Lik—1(Godd,v)) = 1 or id(u) appears in L(v, K).

Case f. State(u) = Even, State(v) = Odd. Then

Di(Li(G,u), Li(G,v)) = Dor(L(u, K), L(v, K)).

To prove correctness, use induction on k. If u and v are neighbors of level i, then
the edge (u,v) appears in F; and therefore both u and v participate in either Go4q or
Geven depending on the parity of 7. Thus, by comparing the appropriate labels, say
Li—1(Godd,w) and Li_1(Goga,v), we can deduce that w and v are indeed neighbors
by the induction hypothesis.

If w and v are neighbors, u is of level ¢, and v is of level ¢ + 1, then the edge (u,v)
either appears in F; and State(v) = Dual or appears in K and State(v) = Even or Odd.
Thus, if (v,u) is in F; then, if ¢ is even, both vertices participate in Geyepn and, if 7 is
odd, then both vertices participate in G,qq. By comparing the appropriate labels of
uw and v (either their L(k — 1, Geyen) label or their L(k — 1, Goaq) label) and by using
the induction hypothesis we are able to deduce that v and v are indeed neighbors.

If State(v) = Even or Odd, then the edge (v,u) is in K, so by looking at L(v, K)
in Ly (G, v) and detecting id(u) appearing there, we conclude that u and v are indeed
neighbors.

It is clear that if uw and v are not neighbors in G, then they are not neighbors in
either one of the decomposed subgraphs, and therefore, by the induction hypothesis
we can never deduce that they are neighbors by our procedure. a

We get the following corollary.

COROLLARY 4.19. Let G,, be the family of n-vertex graphs. Then L(k—v-conn, G,,)
< 2k logn.



LABELING SCHEMES FOR FLOW AND CONNECTIVITY 39

5. A lower bound for vertex-connectivity on general graphs. In this
section we establish a lower bound of Q(klogn) on the required label size for k-
vertex-connectivity on the class of n-vertex graphs, where k is polylogarithmic in n.
Fix a constant integer ¢ > 1, assume that k < log®n, and for m = m let G,,, be
the class of all m-vertex graphs (V, E) with fixed id’s {v1,...,v,,} and degree at most
k — 1. Transform a given graph G € G, into a graph T(G) = H with n vertices in

the following way. Replace each edge e; ; = (v, v;) in G with k vertices w; ; through

wf] and connect all the wé)j’s to both v; and v;. Since GG has at most 5 edges, H

has at most n vertices. If necessary, add arbitrary isolated vertices to H so that it
has precisely n vertices.

OBSERVATION 5.1. Two vertices vs, v are adjacent in G iff u and v are k-vertez-
connected in T(G) = H.

Assume we have a labeling scheme (M, D) for k-vertex connectivity on n-vertex
graphs.

OBSERVATION 5.2. Consider two distinct graphs G1,G2 € G, and let L; =
M(T(G;)) fori=1,2. Then there exists a vertex v; in V such that L1(vj) # La(vj),

i.e., {Ll(vl), ceey Ll(’Um)} 7é {LQ(’Ul), e ,LQ(Um)}.

Since the number of graphs in G,, is (%)Q(km), which is m©2*™) for k polyloga-
rithmic in n, we get the following corollary.

COROLLARY 5.3. There exists a graph G € G(k) such that {L(v1),...,L(vm)}
consists of at least logm®*™) = Q(kmlogm) bits, where L = M(G).

We get the following theorem.

THEOREM 5.4. L(k—v-conn, G,) = Q(klogm) = Q(klogn) for k polylogarithmic
nmn.

REFERENCES

[1] S. AvLsTruUP, P. BILLE, AND T. RAUHE, Labeling schemes for small distances in trees, in Pro-
ceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New
York, SIAM, Philadelphia, 2003, pp. 689-698.

[2] S. ArsTrUP, C. GAVOILLE, H. KAPLAN, AND T. RAUHE, Identifying Nearest Common Ances-
tors in a Distributed Environment, Tech. report IT-C Series 2001-6, The IT University of
Copenhagen, Denmark, August 2001.

[3] S. ABrtEBOUL, H. KAPLAN, AND T. MILO, Compact labeling schemes for ancestor queries, in
Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM,
New York, STAM, Philadelphia, 2001, pp. 547-556.

[4] M. A. BREUER AND J. FOLKMAN, An unexpected result on coding the vertices of a graph, J.
Math. Anal. Appl., 20 (1967), pp. 583-600.

[5] M. A. BREUER, Coding the vertezes of a graph, IEEE Trans. Inform. Theory, IT-12 (1966), pp.
148-153.

[6] M. CHROBAK AND D. EPPSTEIN, Planar orientations with low out-degree and compaction of
adjacency matrices, Theoret. Comput. Sci., 86 (1991), pp. 243-266.

[7] S. EVEN, Graph Algorithms, Computer Science Press, Woodland Hills, CA, 1979.

[8] C. GavoiLLE, M. KaTz, N. A. KaTz, C. PAUL, AND D. PELEG, Approzimate distance labeling
schemes, in Proceedings of the 9th Annual European Symposium on Algorithms, Lecture
Notes in Comput. Sci. 2161, F. Meyer auf der Heide, ed., Springer-Verlag, Berlin, 2001,
pp. 476-488.

[9] C. GAvOILLE AND C. PAUL, Distance labeling scheme and split decomposition, Discrete Math.,
273 (2003), pp. 115-130.

[10] C. GAvoOILLE, D. PELEG, S. PERENNES, AND R. RAZ, Distance labeling in graphs, in Proceedings
of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York,
STAM, Philadelphia, 2001, pp. 210-219.

[11] M. KaTz, N. A. KArz, AND D. PELEG, Distance labeling schemes for well-separated graph
classes, in Proceedings of the 17th Symposium on Theoretical Aspects of Computer Science,
Lecture Notes in Comput. Sci. 1770, Springer-Verlag, Berlin, 2000, pp. 516-528.



40

(12]

(13]

[14]

[15]

[16]

(17]

M. KATZ, N. A. KATZ, A. KORMAN, AND D. PELEG

H. KApLAN AND T. MILO, Parent and Ancestor Queries Using a Compact Index, manuscript,
2001.

H. KAPLAN AND T. MiLO, Short and simple labels for small distances and other functions,
in Proceedings of the Workshop on Algorithms and Data Structures, Lecture Notes in
Comput. Sci. 2125, 2001, pp. 246-257.

S. KANNAN, M. NAOR, AND S. RUDICH, Implicit representation of graphs, in Proceedings of the
20th ACM Symposium on Theory of Computing, ACM, New York, 1988, pp. 334-343.

A. KORMAN AND D. PELEG, Labeling schemes for weighted dynamic trees, in Proceedings of the
30th International Colloquim on Automata, Languages and Programming, Lecture Notes
in Comput. Sci. 2719, Springer-Verlag, Eindhoven, The Netherlands, 2003, pp. 369-383.

A. KorMAN, D. PELEG, AND Y. RODEH, Labeling schemes for dynamic tree networks, Theory
Comput. Syst., 37 (2004), pp. 49-75.

D. PELEG, Proximity-preserving labeling schemes and their applications, in Proceedings of the
25th International Workshop on Graph-Theoretic Concepts in Computer Science, Lecture
Notes in Comput. Sci. 1665, Springer-Verlag, Berlin, 1999, pp. 30-41.

D. PELEG, Informative labeling schemes for graphs, in Proceedings of the 25th Symposium
on Mathematical Foundations of Computer Science, Lecture Notes in Comput. Sci. 1893,
Springer-Verlag, Berlin, New York, 2000, pp. 579-588.



SIAM J. COMPUT. (© 2004 Society for Industrial and Applied Mathematics
Vol. 34, No. 1, pp. 41-66

A CHARACTERIZATION OF UNIVERSAL STABILITY IN THE
ADVERSARIAL QUEUING MODEL*

CARME ALVAREZ!, MARIA BLESAT, AND MARIA SERNA'

Abstract. We study universal stability of directed and undirected graphs in the adversarial
queuing model for static packet routing. In this setting, packets are injected in some edge and
have to traverse a predefined path before leaving the system. Restrictions on the allowed packet
trajectory provide a way to analyze stability under different packet trajectories. We consider five
packet trajectories, two for directed graphs and three for undirected graphs, and provide polynomial
time algorithms for testing universal stability when considering each of them. In each case we obtain
a different characterization of the universal stability property in terms of a set of forbidden subgraphs.
Thus we show that variations of the allowed packet trajectory lead to nonequivalent characterizations.

Using those characterizations we are also able to provide polynomial time algorithms for testing
stability under the NTG-LIS (Nearest To Go-Longest In System) protocol.

Key words. interconnection networks, adversarial queueing theory, greedy scheduling protocols,
network stability, graph algorithms

AMS subject classifications. 68Q25, 68R10, 90B1, 90B22

DOI. 10.1137/S0097539703435522

1. Introduction. One of the main goals in the study of the behavior of packet-
switched communication networks is to determine the conditions of stability, i.e.,
the fact that the number of packets in the system remains bounded as the system
dynamically evolves in time. Stability is studied considering that a communication
system is formed by three main components: the network, the scheduling protocol,
and the traffic pattern. Networks are modeled with (directed or undirected) graphs
in which nodes represent the hosts and edges represent the links between these hosts.
The protocol is used to schedule a packet when more than one packet wants to cross
the same edge at the same time step. Packets waiting to traverse an edge are kept
in a queue at the tail of the edge. The protocol determines the order in which the
waiting packets cross the edge. The traffic pattern controls where and how packets
join the system and defines their trajectory.

Adversarial models. The problem of deciding stability has been investigated under
various models of packet routing [8, 9, 7, 12, 3]. Some models make probabilistic
assumptions on the traffic pattern, while others replace more traditional stochastic
arrival assumptions by worst-case inputs in the traffic pattern to perform a worst-case
analysis. These latter models are closer to the traditional analysis of algorithms and to
real network configurations. The adversarial queuing theory proposed by Borodin et
al. [6], which is a robust model of queuing theory in network traffic, can be considered
as the pioneering work in studying stability via worst-case analysis.

*Received by the editors September 29, 2003; accepted for publication (in revised form) April
9, 2004; published electronically October 1, 2004. This work was partially supported by the FET
Programme of the EU under contracts IST-1999-14186 (ALCOM-FT) and IST-2001-33116 (FLAGS),
and by the Spanish CICYT projects TIC-2001-4917-E and TIC-2002-04498-C05-03 (TRACER). The
second author was also supported by the Catalan Research Council of the Generalitat de Catalunya
under grant 2001FI-00659. Part of this work was presented in Universal stability of undirected graphs
in the adversarial queueing model, Proceedings of the 14th ACM Symposium on Parallel Algorithms
and Architectures (SPAA’02), Winnipeg, MB Canada, 2002.
http://www.siam.org/journals/sicomp/34-1/43552.html
fDepartamento de Llenguatges i Sistemes Informatics, Universitat Politecnica Catalunya, Campus
Nord, E-08034 Barcelona, Spain (alvarez@lsi.upc.es, mjblesa@lsi.upc.es, mjserna@lsi.upc.es).

41



42 CARME ALVAREZ, MARIA BLESA, AND MARIA SERNA

Adversarial models consider the time evolution of a packet-routing network as a
game between an adversary and a protocol. The adversary may inject a set of packets
at some nodes at each time step. In this work, we consider static packet routing; in
this setting, the adversary also specifies for each packet the complete path that the
packet must traverse.

Adversarial models have been shown to be good theoretical frameworks for traffic
patterns in modern communication networks. These models can reflect the behavior
of connection-oriented networks with transient connections (such as ATM networks)
as well as connectionless networks (such as the Internet). Different factors are used
in those adversarial models to describe the adversary and quantify its power. Three
of these factors refer to the injection rate (i.e., the frequency at which the adversary
introduces packets into the network), the burstiness (i.e., the maximum number of
packets that can be injected in an edge in one step), and the initial configuration (i.e.,
the initial quantity of packets distributed over the network at time zero). Restrictions
on the quantity of packets injected are introduced in order to avoid adversaries that
could trivially collapse the system. In general, during each interval of time (that can
be defined in different ways), the number of packets injected during that time interval
requiring any edge in their trajectory cannot exceed a certain bound proportional to
the length of the time interval. Two main adversarial models have been considered
in the last years, both of them assuming an empty initial configuration:

The windowed adversarial (queuing) model by Borodin et al. [6]. An adver-
sary in this model is restricted by two parameters (w,r), where w > 1 is the
window size and 0 < r < 1 is the injection rate. The adversary is allowed to
inject sequences of packets under the restriction that, at any w consecutive
time steps, the total number of packets requiring any concrete edge e is at
most [rw].

The leaky-bucket adversarial model by Andrews et al. [4]. An adversary in
this model is also restricted by two parameters (b,r), where b > 0 is the
burstiness and 0 < r < 1 is the injection rate. The adversary is allowed to
inject sequences of packets under the load condition that, of the packets that
the adversary injects in any interval T, at most [r|T|] + b may have paths
that contain the same particular edge.

In a recent work Rosén compares the relative power of the windowed and the leaky-
bucket adversarial models [18]. For injection rates r < 1, adversaries in one model can
be simulated by adversaries in the other model injecting the same sequence of packets.
Thus, the results for one model also hold for the other model. However, when r < 1
a leaky-bucket adversary is more powerful than a windowed adversary, since there
are some sequences of packets that can be produced by the former when r = 1, but
cannot be produced by the latter.

In this work we will study universal stability of directed and undirected graphs
when 7 < 1 under the leaky-bucket adversarial model, as it is done in [4]. In general,
stability results are shown for any network with an empty initial configuration, while
instability results are shown starting from a network with a given nonempty initial
configuration (see [6] or [4]). The results in [4] show that any instability result for a
network with a given initial configuration can be translated into an instability result
with empty initial configuration for a different network. These results can be used to
show the nonuniversal stability of a given protocol but not to characterize universal
stability of networks. However, we will show that network stability is independent of
whether the initial configuration is empty or not.

Greedy protocols are those that forward a packet across an edge e whenever there



A CHARACTERIZATION OF UNIVERSAL STABILITY 43

is at least one packet stored in the queue of e waiting to traverse the edge. Some
natural greedy protocols are FIFO (First In First Out), in which highest priority is
given to the packet that has arrived first in the queue; L1s (Longest In System), in
which every queue gives priority to the packet that has been in the system the longest
and; and NTG (Nearest To Go), in which highest priority is assigned to the packet that
still has to cross the smallest number of edges. Other protocols are FTG (Furthest To
Go), NTs (Nearest To Source), SIS (Shortest In System), LIFO (Last In First Out),
and FFS (Farthest From Source).

In this paper, as customary in the literature about stability, we consider only
greedy protocols. All the instability results in this paper will be shown under the
NTG-LIS protocol, which works as the NTG protocol and solves ties using LIS.

The packet trajectory refers to the form of the paths that packets are allowed to
follow over the network. For directed graphs, two different types of paths have been
considered in the literature. Borodin et al. [6] and Andrews et al. [4] assumed that
when a packet is injected, its assigned path does not contain any edge more than once
(see page 45 of [4]); however, a different definition of packet trajectory was considered
by Goel in [14]. Although a detailed definition is not given in [14], only paths that do
not contain any vertex more than once are allowed (see, for example, the comment
just before Lemma 2.4 on page 221 of [14]). Hence, the paths considered by Goel
(referred to in the following as simple paths) are a restrictive version of the paths
considered by Andrews et al. (referred to in the following as paths).

In the case of undirected graphs, Andrews et al. assume that packets can use
only paths that do not cross the same edge twice. This means that a packet cannot
traverse the same edge in both directions (see page 57 of [4]). We refer to these paths
as undirected paths. Together with this type of path, we will also consider paths and
simple paths defined over the directed version of the undirected graph.

Gamarnik [13] considers undirected graphs and uses a different model for the
allowed packet traffic: each edge is undirected and can carry only a single packet in
one step. This contrasts with the Andrews et al. model in which the edges can be
seen as bidirected, and each edge can carry a packet in each direction at each step.

Known results. A network is said to be universally stable when the systems com-
posed by that concrete network are stable regardless of the selected protocol and traffic
pattern. A protocol is said to be universally stable when all the systems that use it
are stable. The existence of networks and scheduling protocols that are (respectively,
are not) universally stable was initially shown in [6] and [4].

Until the work of Rosén [18], it was not clear if both the windowed and the leaky-
bucket models were equivalent. Since it was shown that they are for injection rates
r < 1, results for one model also hold for the other model when the injection ratio
accomplishes this condition. Keeping this equivalence in mind, let us summarize some
of the most important results obtained in the respective models.

In the windowed adversarial model, universal stability of networks with tree,
mesh, and directed acyclic topologies was shown to hold in [6]. On ring topologies,
protocols LIS and FIFO were shown to be nonstable with injection rate r = 1, whereas
FTG was shown to be stable. Concerning only protocols, it was also shown in [6] that,
for every r > 0, there exists a queuing network for which NTG is nonstable at rate r.
Every greedy protocol is shown in [16] to be stable if the injection rate is not more
than 1/(d + 1), where d denotes the diameter of the network.? Much effort has been

IThe diameter of a graph is the length of the longest path in it that does not pass twice over the
same edge.



44 CARME ALVAREZ, MARIA BLESA, AND MARIA SERNA

dedicated to the FIFO protocol, for which the best known lower bound for instability
was improved in [16] down to 0.5.

In the leaky-bucket adversarial model with r < 1, stability of networks describing
a ring topology was shown to hold under any greedy protocol (see [4]). In the same
work, some commonly used simple greedy protocols (namely, FTG, NTS, SIS, and LIS)
were shown to be universally stable, while some others (namely, FIFO, LIFO, NTG, and
FFS) were shown not to be universally stable. Considering that the system might have
initial configuration, stability and instability properties of FIFO have been recently
studied in this model. A network-dependent constant is provided in [10] such that
FIFO is stable against any adversary with a smaller injection rate. A lower bound of
0.749 for the instability of FIFO was given in [15], where the stability of networks with
heterogeneous protocols also was addressed. Moreover, in [19] it was shown that FIFO
is stable when the injection rate is smaller than 1/(d — 1). In this model, FIFO has
been shown to be unstable at arbitrarily low injection rates [5].

With regard to the universal stability of networks one of the first questions that
arose was whether it would be possible to detect stability from the knowledge of the
topological structure of the network and the scheduling protocols. For undirected
graphs, Andrews et al. show in [4] that, for a particular type of packet trajectory (the
one we call undirected path), cycles and trees are universally stable. Furthermore, they
also show that the family of undirected-path universally stable graphs is minor-closed
and that there exists a finite set of basic undirected graphs such that a graph is stable
if and only if it does not contain as a minor any of the graphs in that set. These
results guarantee decidability in polynomial time; however, a constructive proof is
not presented.

Our results. In this paper we consider the computational complexity of deciding
universal stability of directed and undirected graphs. We consider different restrictions
on the type of path that the packets can follow, i.e., the packet trajectory. We would
like to highlight the importance of specifying the type of path since, for each category,
the characterization of universal stability is different. For each considered case we
obtain a characterization in terms of forbidden subgraphs and provide an explicit
polynomial time algorithm for deciding the property of stability. Concerning directed
graphs, and under the assumption that packets follow simple paths, we obtain a
characterization of universal stability that disproves the characterization in [14] under
the same assumption (which was presented in terms of the forbidden minors given in
Figure 1). Further comments concerning this fact will be given after presenting our
characterization.

An interesting question concerning stability is that of deciding the stability of a
concrete network under a fixed protocol. Using the fact that all the instability results
obtained in this paper apply to networks under the NTG-LIS protocol, we can show
that the problem of deciding whether a network is stable under the NTG-LIS protocol
can also be solved in polynomial time.

Organization. Section 2 sets out the definitions of all models considered in this
work and some preliminary results. In section 3, universal stability of some partic-
ular directed and undirected graphs is shown. Section 4 contains the basic results
on instability of directed and undirected graphs. Finally, section 5 details the char-
acterizations for universal stability in terms of forbidden subgraphs, and section 6
provides alternative characterizations in terms of graph properties together with the
algorithms that check them. Finally, section 7 shows the polynomial time decidability
of checking for stability under the NTG-LIS protocol. For sake of readability several
technical proofs have been delayed to the appendix.



A CHARACTERIZATION OF UNIVERSAL STABILITY 45

@ €21 €22 B B
f2 f v * fz
€2 fn

F1G. 1. Forbidden minors proposed in [14] for simple-path universal stability of digraphs.

2. Preliminaries. All the graphs in this paper may have multiple edges but no
loops. Multiple edges share the same pair of different endpoints, while the endpoints
of a loop are the same vertex. We will use the term digraph to refer to a directed
graph and simply graph for an undirected graph. For a digraph we will use the term
arc instead of edge. Given a graph G, G¢ denotes the digraph formed from the same
vertex set as G but replacing every edge {u,v} in G with the two arcs (u,v) and
(v, u).

Two edges are incident if they share at least one vertex. A walk is an alternating
sequence of vertices and edges (respectively, arcs) in the form

V0, €1,V15--. ,Un—1,€En,Un,

where for each 4, 1 < i < n, e; = {v;_1,v;} (respectively, e; = (v;—1,v;)) and each v;
is a vertex. A path is a walk in which all the edges (respectively, arcs) are different.
A simple path is a walk in which all the vertices, and thus necessarily all the edges
(respectively, arcs) are different. A walk is closed if vg = v,. A closed walk is an
n-cycle provided its n vertices are distinct.

In this work we adopt, without loss of generality, the leaky-bucket definition of
adversary which is defined by two parameters (r,b), where b > 0 and 0 < r < 1. An
(r,b)-adversary (or just an adversary) is allowed to inject sequences of packets under
the load condition that, of the packets that the adversary injects in any interval T,
at most [r|T|] 4+ b packets may have trajectories that contain any particular edge.
Rosén [18] showed that adversaries in the windowed and in the leaky-bucket models
(starting with an empty configuration) have the same power provided that r < 1.
The equivalence requires only a change in the parameters of the adversary, not in the
sequence of packet trajectories; therefore it provides a valid equivalence for all our
subclasses of adversaries.

When in addition to an (r,b)-adversary A, we are given an initial configuration
C, we can define a new (r,b’)-adversary A’ as follows:

Let b’ = b+ |C]; then A" injects all the packets in C' at time step
1, and at any other time step ¢ > 1, the same set of packets that A4
would inject at time ¢ — 1.

Here the initial configuration means the set of packets that are in the system
initially. Both systems, with empty or nonempty initial configuration, behave alike;
hence we can work equivalently with empty or not empty initial configuration. Since
only the parameters of the adversary have to be changed, this remark is also valid
for any system with some restrictions on the packet trajectory. Notice that this is a
stronger result than the analogous result given in [4] since here the graph does not
need to be changed (if the graph topology is changed, then results on stability of
networks cannot be translated from one model to the other).

Throughout the paper we will use the leaky-bucket adversarial model with empty



46 CARME ALVAREZ, MARIA BLESA, AND MARIA SERNA

TABLE 1
Summary of concepts.

Directed Graphs

Packet trajectory Characteristics of the route Stability term
path walk with nonrepeated edges stability
simple path walk with nonrepeated vertices simple-path stability

Undirected Graphs

Packet trajectory Characteristics of the route Stability term
path path in G9 stability
undirected path path in G undirected-path stability
simple path simple path in G¢ simple-path stability

initial configuration and r < 1. However, for the sake of simplicity, we will use non-
empty initial configurations when describing adversaries causing network instability.
In the following, we establish the definitions of stability in the adversarial queuing
model used in this work. The different definitions are summarized in Table 1.

DEFINITION 1. Given a network G, a protocol P, and an adversary A, we say
that the system (G, P, A) is stable if the number of packets in the system is always
bounded.

2.1. Networks as digraphs. When the network is represented by a digraph
G, we consider two classes of packet trajectories, thus giving rise to two adversary
classes: an adversary can use as packet trajectory any path in G, while a simple-path
adversary can use as packet trajectory only simple paths in G. Accordingly we set
the two definitions of stability under a protocol.

DEFINITION 2. Given a digraph G and a protocol P, we say that

- G is stable under protocol P (the pair (G, P) is stable) if for any adversary
A, the system (G, P, A) is stable.

— G is simple-path stable under protocol P (the pair (G, P) is simple-path sta-
ble) if for any simple-path adversary A, the system (G, P, A) is stable.

Similarly, we define universal stability of digraphs in the following form.

DEFINITION 3. A digraph G is universally stable if, for any protocol P, the pair
(G, P) is stable. A digraph G is simple-path universally stable if, for any protocol P,
the pair (G, P) is simple-path stable.

Observe that any universally stable digraph is also simple-path universally stable,
but the opposite, as we will see, is not true.

The property of simple-path universal stability was shown in [14] to be maintained
when acyclically joining simple-path universally stable digraphs. A closer inspection of
the proof reveals its validity for the two proposed models for directed graphs proposed
in this work.

LEMMA 1. If digraphs G1 and Go are (simple-path) universally stable, then so is
any graph G formed by joining them with edges that go only from G1 to Gs.

As a consequence of the previous result we have the following theorem.

THEOREM 1. A digraph G is (simple-path) universally stable if and only if all its
strongly connected components are (simple-path) universally stable.

2.2. Networks as graphs. When representing networks by undirected graphs,
we consider three different packet trajectory restrictions: given a graph G, an adver-
sary can use as packet trajectory any path in G¢; an undirected-path adversary can



A CHARACTERIZATION OF UNIVERSAL STABILITY 47

use as packet trajectory any path in G; and a simple-path adversary can use as packet
trajectory only simple paths in G¢.

Observe that, in the first case, an edge can be used twice by the same packet pro-
vided it is traversed in opposite directions, but both directions have different queues
and thus this model is different from Gamarnik’s proposal [13]. In the second model
the same edge can be traversed only once. This corresponds with the model used by
Andrews et al.in [4]. The third model does not allow a packet to pass twice through
the same vertex. Notice that, in this latter model, a multiedge can be traversed
only once and only in one direction. Observe that the condition simple-path in G
is equivalent to simple-path in G?, so the fourth possible model has already been
considered.

As before, we set the definitions of stability under a protocol.

DEFINITION 4. Given a graph G and a protocol P, we say that

- G is stable under protocol P (the pair (G, P) is stable) if for any adversary
A, the system (G, P, A) is stable.

- G is undirected-path stable under protocol P (the pair (G, P) is undirected-
path stable) if for any undirected-path adversary A, the system (G, P, A) is
stable.

- G is simple-path stable under protocol P (the pair (G, P) is simple-path sta-
ble) if for any simple-path adversary A, the system (G, P, A) is stable.

It is straightforward to show that if a pair (G, P) is stable, then (G, P) is also
undirected-path stable, and if (G, P) is undirected-path stable, then (G, P) is simple-
path stable. As we will see later, these inclusions are strict. Now we can write the
corresponding definitions of universal stability.

DEFINITION 5. A graph G is universally stable if for any protocol P the pair
(G, P) is stable. A graph G is undirected-path universally stable if for any protocol
P the pair (G, P) is undirected-path stable. A graph G is simple-path universally
stable if for any protocol P the pair (G, P) is simple-path stable.

The universal stability of graphs under the undirected-path model (as defined
above) was addressed in [4] where it is proved to be closed under minors and therefore
decidable in polynomial time; however, no constructive algorithm is known. For the
other models this question was unresolved. We show a constructive way of deciding
the universal stability property also for the other models.

We can also state an equivalent result to that in Theorem 1 for the three forms
of universal stability for undirected graphs presented here. Note that in the case of
undirected graphs, each pair of connected components are independent, i.e., there is
no edge connecting them.

THEOREM 2. A graph G is (simple-path | undirected-path) universally stable if
and only if all its connected components are (simple-path | undirected-path) universally
stable.

Finally, let us remark that in any of the five packet trajectory models considered in
this paper (i.e., two for digraphs and three for graphs), the instability of a sub(di)graph
implies the instability of the whole (di)graph.

3. Some universally stable graphs and digraphs. In the following, we use
standard graph terminology to denote the following graphs and digraphs: directed
and undirected trees, the cycle on k vertices (k > 2), the directed cycle on k vertices
(k > 2), and directed acyclic graphs. For graphs and digraphs with multiple edges we
define

— a unicyclic graph as those graphs that contain only one cycle (see Figure 2(b.3));



48 CARME ALVAREZ, MARIA BLESA, AND MARIA SERNA

a multi-tree as an undirected tree with multiple edges (see Figure 2(c.1));

— a decorated cycle as being obtained from a k-cycle with £ > 3, and some
multitrees (see Figure 2(c.2)), after identifying one vertex from each tree
with a vertex from the cycle;

— an oriented multitree as the directed version of an undirected tree in which
each edge is substituted by two arcs (one in each direction), and which can
also contain multiple arcs (see Figure 2(c.3)). Note that all the simple directed
cycles have two vertices;

— a decorated directed cycle as the directed version of a k-cycle with k > 3, and
some oriented multitrees, after identifying one vertex from each “tree” with
a vertex from the cycle (see Figure 2(c.4)). Note that the obtained graph is
strongly connected.

In this section we prove the universal stability of some graphs and digraphs accord-
ing to the different packet trajectories considered. Previous results from [6] and [4] are
rewritten as Lemmas 2 and 3 according to the terminology introduced in this work.

LeEMMA 2. All acyclic digraphs and the directed cycle on any number of vertices
are universally stable.

As we have commented before, universal stability of digraphs implies simple-path
universal stability; therefore, acyclic digraphs and directed cycles are also simple-path
universally stable. Concerning graphs, we know that the following lemmas hold.

LemMA 3. All trees and cycles on any number of vertices are undirected-path
universally stable.

Now we give another family of undirected-path universally stable graphs, thus
extending the previous result.

LEMMA 4. All unicyclic graphs are undirected-path universally stable.

Proof. Observe that, if G is a unicyclic graph, removing the edges in the cycle
results in a forest. We root each tree in this forest at the vertex that is common with
the cycle; this gives an orientation upwards or downwards to every arc in G¢.

We classify the packets into three flow types. Flow type « is formed by those
packets injected in an upward arc. Flow type (8 is formed by packets injected in a
cycle arc; in fact, we will consider this flow split into two flows, depending on whether
the initial arc follows one of the two cycle orientations. Finally, flow type - is formed
by the packets injected in a downward arc.

Observe that packets starting in a downward arc can follow only downward arcs;
otherwise they will use twice an edge in (G. Similarly, packets starting in the cycle
cannot change the initial cycle orientation. Therefore they either die in the cycle or
leave the cycle using a downward arc. This provides a directed acyclic interaction of
the three flow types. Upward edges can carry only packets from « flow. As directed
acyclic graphs are undirected-path stable, the corresponding queues will have bounded
maximum size. The edges in the cycle can be considered as two directed cycles, as
no flow can be passed from one to the other. These cycle edges can get packets
from « flow and § flow. In this situation we have a stable network (upward edges)
entering in another stable network (one of the directed cycles) and, by Lemma 1, the
corresponding queues will have bounded maximum size. For the downward arcs we
have the same situation, a flow coming from a stable network entering in another
stable network. Thus the result follows. O

All the families of graphs which are undirected-path universally stable are also
simple-path universally stable. However, we can enlarge the set of simple-path uni-
versally stable graphs by allowing multiple edges.



A CHARACTERIZATION OF UNIVERSAL STABILITY 49

LEMMA 5. A multitree is simple-path universally stable.

Proof. Observe that a packet can use only once, and only in one direction, one
of the multiple edges connecting the same pair of vertices. The argument is similar
to the one in Lemma 4: we root the tree in order to assign an upward/downward
direction to the edges in G¢. The simple-path requirement prevents packets starting
in a downward arc from using an upward arc (even in the case where the arcs in G¢
come from different edges in ), because in this case, a vertex would be visited twice.
Thus, we can conclude the simple-path universal stability of a multitree. 0

LEMMA 6. A decorated cycle is simple-path universally stable.

Proof. The result follows from Lemmas 4 and 5 using the same arguments as in
Lemma 5. 0

LEMMA 7. A oriented multitree and a decorated directed cycle are simple-path
universally stable.

Proof. The result follows from Lemmas 5 and 7 using the arguments similar to
those in Lemmas 4 and 5. O

Figure 2 summarizes and classifies the families of graphs and digraphs that are
universally stable according to the different packet trajectories considered.

4. Some graphs and digraphs that are not universally stable. Once the
families of universally stable graphs and digraphs are identified for each of the cases
considered, we focus on detecting which are the simplest graphs and digraphs that are
not stable. By iteratively applying subdivision operations to those simplest graphs
and digraphs we will “extend” them and we will define families of graphs. Each family
will characterize one of the cases of universal stability introduced in this work. We
consider the following subdivision operations on graphs and digraphs:

— The subdivision of an edge {u,v} in a graph G consists of the addition of
a new vertex w and the replacement of {u,v} by the two edges {u,w} and
{w, v}.

— The subdivision of an arc (u,v) in a digraph G consists of the addition of a
new vertex w and the replacement of (u,v) by the two arcs (u, w) and (w, v).

— The subdivision of a 2-cycle (u,v), (v,u) in a digraph G consists of the addi-
tion of a new vertex w and the replacement of (u,v), (v,u) by the arcs (u, w),
(w,u), (v,w), and (w,v).

Given a graph G, € (G) denotes the family of graphs formed by G and all the
graphs obtained from G by successive edge subdivisions. Given a digraph G, £ (G)
denotes the family of digraphs formed by G and all the digraphs obtained from G by
successive arc or 2-cycle subdivisions. Observe that, for a graph G, £ (G)d cé& (Gd),

but it might be the case that £ (G)d *& (Gd); see Figure 3 for an example.

In this section we will prove instability results of networks under the NTG-LIS
protocol. To simplify the notation, a path is specified by the sequence of its edges.
First we show that some simple graphs are not stable and second we apply subdivision
operations to these graphs and also show their instability. Observe that, as we are
using the NTG protocol, if the length of the path that a packet has to traverse is in-
creased, then its priority at a given edge can be changed. Therefore, edges composing
a packet path cannot be replaced indistinctly with paths. However, for the particular
graphs and adversaries we will deal with, the adversary can be adapted to provide
an instability proof. The names used to denote the graphs correspond to the ones
depicted in Figures 4 and 5.

THEOREM 3. All the digraphs in € (U1)UE (Us) are not stable under the NTG-LIS
protocol.



50 CARME ALVAREZ, MARIA BLESA, AND MARIA SERNA

< O

(a.1) A directed acyclic graph (a.2) A directed cycle

(a) Universally stable digraphs

O S Y

(b.1) A cycle (b.2) A tree (b.3) Two unicyclic graphs

(b) Undirected-path universally stable graphs

Esde 2 B

(c.1) A multi-tree (c.2) A decorated cycle (c.3) An oriented multi-tree  (c.4) A decorated
directed cycle

(c) Simple-path universally stable graphs and digraphs

F1G. 2. Ezamples of representatives of the families of universally stable graphs and digraphs in
different cases considered in this work.

— 5

(a) A graph G (b) The graph G¢ (c) A graph in £ (G)
(d) A graph in £(G)? and £ ((ei) (e) A graph in £ (G*) but not in £ G)*

FIG. 3. An ezample illustrating the differences between £ (G)? and € (G9).

Proof. We sketch here the main lines and refer the reader to Appendix A where
some of the most technical auxiliary results are proved. We start by showing that
the pair (U1, NTG-LIS) is not stable; to do so we provide an adversary and an initial
configuration. The adversary works in rounds, and at the end of the presented rounds
the network has a configuration with the same type of packets as in the initial con-



A CHARACTERIZATION OF UNIVERSAL STABILITY
ez f2 f
f

U1 U2

(a) not universally stable digraphs

e
e €2 e
f2 h
€21 fa;
S1

S2 S3

(b) not simple-path universally stable digraphs

F1G. 4. Some not universally stable digraphs.

=

H1 H2

(a) not universally stable graphs

e > R s S

F
F, F, s

(b) not undirected-path universally stable graphs

VY PAA

(c) not simple-path universally stable graphs

Fic. 5. Some not universally stable graphs.

o1



52 CARME ALVAREZ, MARIA BLESA, AND MARIA SERNA

figuration but with an increased number of them. By repeatedly playing the set of
rounds the system shows instability.

Initial configuration. At the beginning there are s packets that want to traverse
edge f; half of them are of the form (e; f), and half of them are of the form (es f).
The adversary A will play injections in four rounds.

Round 1. For s steps, the adversary injects rs packets of the form (f e2). These
injections get mixed with the initial packets at edge f and are blocked there because
the queuing protocol is NTG.

Round 2. For the next rs steps, the adversary injects a set of r2s packets of the
form (f e;) and r?s packets of the form (es). Injections (f e;) are blocked by the
packets (f es) from the first round because they are at the same distance to their
destination and the secondary protocol that we apply is L1s. The 72s injections of the
form (e3) are also blocked.

Round 3. For the next 725 steps, the adversary injects r3s packets of the form (ez)
and 73s of the form (e; f). The simple injections on ey will be blocked by the packets
at es from the previous round. The (e; f) injections get mixed with the packets of
the form (f e1) from the previous round at edge f, where the injections get blocked
because their distance to destination is longer.

Round 4. For the next 73s steps, the adversary injects r*s packets of the form
(ea f) and rs packets of the form (e;). The simple injections at e; block the packets
(e1 f) from the previous round because their distance to destination is shorter. The
(es f) injections are blocked by the (e2) packets from the previous round.

At the end there are 2r%s packets queued at e; and e, that want to traverse edge
f, r*s are of the form (e; f), and rs are of the form (es f). If cycles are allowed, the
adversary A described above makes the network U; nonstable when 2r%s > s, i.e., at
injection rate r > 0.84089.

The second step is to prove instability for the pair (Usg, NTG-LIS), as is done in
Lemma 9 of Appendix A. Once the two base digraphs are shown not to be stable, we
have to show instability for any extension of them. Observe that only the extensions
obtained by arc subdivision have to be considered since the extensions obtained by
2-cycle subdivision already contain Uy as a subgraph. Therefore, we have only to
consider the two extensions depicted in Figures 6(a) and 6(b) whose corresponding
instability results are given in Lemmas 10 and 11 (see Appendix A). O

We remark that, for digraphs, simple-path stability and stability are not equiv-
alent. The pair (U;,NTG-LIS) is not stable although U; is simple-path universally
stable. The last result is easy to obtain as the set of simple-paths in U; is the set
{(e1), (e2),(f)}, and any adversary using this set of disjoint packet trajectories is
equivalent to an adversary playing on a digraph with three isolated arcs. The latter
digraph is acyclic and therefore universally stable. Similar reasoning can be applied
to Us. These considerations lead to digraphs Sy, S2, Ss, and Sy (see Figure 4(b)) as
the smallest digraphs which are not simple-path universally stable.

THEOREM 4. All the digraphs in € (S1)UE (S2)UE (S3)UE (S4) are not simple-
path stable under the NTG-LIS protocol.

Proof. The proof follows the same lines as for Theorem 3. We first prove that S,
Sa, S3, and Sy are not simple-path stable (Lemmas 12, 13, 14, and 15). The restriction
on considering simple-path trajectories justifies the need for having cycles of length
at least 3 in a simple-path nonstable digraph. Extensions by 2-cycle subdivision
are applicable only to S4. Therefore, to finish the proof we show that the digraphs
corresponding to the extensions depicted in Figures 7(a), 7(b), 7(c), and 7(d) are not



A CHARACTERIZATION OF UNIVERSAL STABILITY 53

simple-path stable (Lemmas 16, 17, 18, 19, and 11). See Appendix B for details. ]

THEOREM 5. All the graphs in € (H1)UE (Hz) are not stable under the NTG-LIS
protocol.

Proof. First observe that H¢ contains U; as a subgraph and that HY is Us.
Furthermore, any graph in £ (H;) U £ (H2) can be oriented to contain, as a sub-
graph, a graph in £ (U1)UE& (Usz); therefore its instability under NTG-LIS follows from
Theorem 3. ]

Observe that the graph H; is undirected-path universally stable; again the set
of possible undirected-path packet trajectories is formed by nonoverlapping paths
with length 1. Therefore, undirected-path stability and stability are nonequivalent
properties. Similar reasoning can be applied to Hs.

To characterize undirected-path stability we need to consider some larger graphs.
Furthermore, instead of considering a fully directed version of the graph, we will need
to fix an orientation to all the edges, with the exception of those that are graph
separators, as those edges may have to be crossed in both directions.

THEOREM 6. All the graphs in €(F1)UE (Fa) U & (F'3) are not undirected-path
stable under the NTG-LIS protocol.

Proof. Let us prove first that the graphs F'; and F'5 are NTG-LIS undirected-path
nonstable. Giving an adequate orientation to the edges in F'; and F'9, we get the
digraphs U; and Us and as each arc corresponds to a different edge, the instability
follows. Maintaining these orientations, any graph in G € £ (F1) U &€ (F3) can be
identified with a digraph in £ (U7) U € (Uz) and therefore G is not undirected-path
stable under NTG-LIS.

For the graph F's we can fix an orientation for the edges forming the 2-cycles but
we have to keep both directions, where possible, for the middle edge. Although no
packet can use both, different packets may traverse the edge in different directions.
Starting with the proof of NTG-LIS instability for the graph Us and working in a
similar way as in Lemmas 15 and 19 it follows that F'3 and any graph in £ (F3) are
not undirected-path stable under NTG-LIS. O

The graph F'; is simple-path universally stable but not undirected-path stable;
therefore simple-path stability differs from undirected-path stability. Cycles of length
3 or longer are needed to obtain simple-path nonstable graphs, thus obtaining K,
K5, and K3 as the smallest graphs which are not simple-path stable.

THEOREM 7. All the graphs in € (K1)UE (K2)UE (K3) are not simple-path stable
under NTG-LIS.

Proof. Observe that we can give an orientation to the edges in K; and K5 to
obtain the digraphs S; and S3 that are not simple-path stable under NTG-LIS. For
the graph K3 we can orient the two cycles and maintain the two opposite arcs for
the middle edge, obtaining the graph S4. Theorem 4 gives the simple-path instability
under NTG-LIS for any graph in £ (K1) U & (K2) UE (K3). O

5. Characterizing universal stability. In this section we provide character-
izations for the universal stability property of digraphs and graphs for each of the
five proposed adversarial models. As before, the graph nomenclature corresponds to
Figures 4 and 5.

We first show the characterization of the simple-path universal stability property
since, in our opinion, the properties defining the simple-path stability for graphs are
easier to understand once the corresponding properties for simple-path stability of
digraphs are given.



54 CARME ALVAREZ, MARIA BLESA, AND MARIA SERNA

THEOREM 8. A digraph is universally stable if and only if it does not contain as
subgraphs any of the digraphs in £ (U1) UE (Us).

Proof. The “only if” part follows from Theorem 3 and the fact that the instability
of a subgraph implies the instability of the whole graph. If G does not contain as a
subgraph a digraph in £ (U1) U &£ (Us), then all its strongly connected components
must consist of a simple cycle. Therefore, according to Lemma 2 and Theorem 1 we
have that G is universally stable. 0

Using the arguments in the previous proof, Theorem 8 gives the following prop-
erty.

COROLLARY 1. A strongly connected digraph G with n vertices is universally
stable if and only if G is the directed cycle on n vertices.

For the case of universal stability of graphs, the basic set of forbidden subgraphs
is given in Figure 5(a).

THEOREM 9. A graph is universally stable if and only if it does not contain as
subgraphs any of the graphs in € (H1)UE (Ha).

Proof. The “only if” part follows from Theorem 5. If a graph G does not contain
as a subgraph any of the graphs in £ (H1)UE& (H3), then G has no incident edges, so
it is universally stable. a

For the case of universal stability the corresponding graph property is the follow-
ing corollary.

COROLLARY 2. A graph G is universally stable if and only if all the vertices in
G have degree at most 1.

For the case of undirected-path universal stability of graphs, the basic set of
forbidden subgraphs is given in Figure 5(b).

THEOREM 10. A graph G is undirected-path universally stable if and only if G
does not contain as a subgraph any of the graphs in € (F1) UE (Fa)UE (F3).

Proof. The “only if” part follows from Theorem 6. Assume now that G does not
contain as a subgraph any of the graphs in £ (F1) U E(F2) U €& (F3). In this case
G does not contain any edge with multiplicity 3, and all the connected components
of G contain at most one cycle. Therefore, all the connected components of G are
undirected-path universally stable by Lemma 3. a

For the case of undirected-path universal stability of graphs, the corresponding
property is the following corollary.

COROLLARY 3. A connected graph G is undirected-path universally stable if and
only G is a subgraph of a unicyclic graph.

For the case of simple-path universal stability of graphs, the basic set of forbidden
subgraphs is given in Figure 5(c).

THEOREM 11. A graph G is simple-path universally stable if and only if G does
not contain as a subgraph any of the graphs in € (K1) UE (K3) UE (K3).

Proof. The “only if” part follows from Theorem 7. When G does not contain as
subgraphs any of the graphs in £ (K1) U & (K2) U & (K3), all the connected compo-
nents of G can have at most one cycle with more than two vertices, so they must be
subgraphs of a decorated cycle graph. Therefore, using Lemma 6, G is simple-path
universally stable. |

COROLLARY 4. A connected graph G is simple-path universally stable if and only
if G is a subgraph of a decorated cycle graph.

The case of simple-path universal stability is needed to complete the character-
ization for digraphs. In this case the basic set of forbidden subgraphs is given in
Figure 4(b).



A CHARACTERIZATION OF UNIVERSAL STABILITY 55

THEOREM 12. A digraph G is simple-path universally stable if and only if G does
not contain as a subgraph any of the graphs in € (S1) UE (S2) U E (S3) UE (S4).

Proof. As before, the “only if” part follows from Theorem 4. When G excludes the
family of forbidden subgraphs, each strongly connected component of G must contain
at most one directed cycle with more than two vertices. Therefore all the strongly
connected components are subgraphs of a decorated directed cycle graph. Therefore,
by Lemma 7, all the strongly connected components are simple-path universally stable,
and by Theorem 1, G is simple-path universally stable. ]

COROLLARY 5. A strongly connected digraph G is simple-path universally stable
if and only if G is a subgraph of a decorated directed cycle graph.

We have shown that the graph S; in Figure 4(b) is not simple-path stable under
the NTG-LIS protocol. The only graph transformation proposed by Goel in [14] consists
of replacing arcs by disjoint directed paths (see Corollaries 2.5 and 2.7 in [14]). Hence,
our graph S7 is a minor of the first minor proposed there. We also show that the
digraph Sy is not simple-path stable; however, S, does not contain as minor any of
the forbidden minors in the characterization in [14], and therefore must be universally
stable according to Goel’s result. However, we have shown this is not the case. These
facts disprove the characterization proposed by Goel in [14] and they establish the
set {S1,52,53,54} (see Figure 4(b)) as the set of forbidden subgraphs characterizing
the property of simple-path stability for digraphs.

6. Deciding universal stability. In this section we show that the five cases
of universal stability presented in this work can be decided in polynomial time. For
undirected graphs we could use the polynomial time algorithm for checking subgraph
homeomorphism of the corresponding forbidden subgraphs given in [17]; however, our
algorithms are much simpler. Notice that for directed graphs checking subdigraph
homeomorphism to a fixed digraph is NP-complete. In particular this is the case for
the digraphs S1, S2, and S3 (see [11]). However, the combination of several digraphs
and the properties outlined in Corollaries 1, 2, 3, 4, and 5 are, as we will see, easier
to test.

THEOREM 13. The universal stability of a given graph or digraph can be decided
in polynomial time.

Proof. According to Corollary 2, to decide universal stability for graphs we only
have to check if the graph has two incident edges. To check universal stability for
digraphs, following Corollary 1, we have to compute the strongly connected compo-
nents of the graph and then check whether all of them are just one directed cycle.
Both tests can be performed in polynomial time. |

For the remaining adversarial models we first need to characterize the graphs that
are subgraphs of a unicyclic graph.

LEMMA 8. A connected graph G with m edges and without multiple edges is a
subgraph of a unicyclic graph if and only if any spanning tree of G has m or m — 1
edges.

According to the previous lemma, Algorithm 1 checks whether a connected graph
G, without multiple edges, is a subgraph of a unicyclic graph, in polynomial time. The
algorithms to decide universal stability combine this checking with some additional
testing for the multiedges.

THEOREM 14. The undirected-path universal stability of a given graph can be
decided in polynomial time.

Proof. Algorithm 2 checks the undirected-path universal stability of a given con-
nected graph G according to Corollary 3. Its total execution time is polynomial. Then,



56 CARME ALVAREZ, MARIA BLESA, AND MARIA SERNA

Algorithm 1 : Subgraph of a unicyclic graph
INPUT: A connected graph G
Compute a spanning tree of G
if there are more than one edge left then
return no
else
return yes

end if

Algorithm 2 : Graph undirected-path stability
INPUT: A connected graph G
if some edge has multiplicity 3 then
return no
else
compute the connected components of G
if a connected component has two edges with multiplicity 2 then
return no
end if
|| Now all the connected components have at most one edge with multiplicity 2
if there is a connected component of G that is not a subgraph of a unicyclic
graph then
return no
else
return yes
end if
end if

by combining this algorithm with the computation of the connected components of
the given graph, we obtain a polynomial time algorithm. 0

THEOREM 15. The simple-path universal stability of a given graph can be decided
in polynomial time.

Proof. Algorithm 3 checks the simple-path universal stability of a given connected
graph G according to Corollary 4. The total execution time is polynomial. Thus,
combining this algorithm with the computation of the connected components of the
given graph, we can check the property in polynomial time. ]

THEOREM 16. The simple-path universal stability of a given digraph can be de-
cided in polynomial time.

Proof. Algorithm 4 checks the simple-path universal stability of a given strongly
connected digraph G according to Corollary 5. The total execution time is polyno-
mial. By combining this algorithm with the computation of the strongly connected
components of the given digraph, we obtain a polynomial time algorithm. ]

All the algorithms presented in this section run in polynomial time. Note that the
most expensive operations are the computation of the strongly connected components
of a digraph, the computation of the connected components of a graph, and the
computation of a spanning tree of a connected graph.

7. Stability under NTG-LIS. An interesting question concerning stability is
that of deciding the stability of a concrete network under a fixed protocol. Since all
the instability results in this work hold for the NTG-LIS protocol, we can conclude that



A CHARACTERIZATION OF UNIVERSAL STABILITY 57

Algorithm 3 : Graph simple-path stability
INPUT: A connected graph G
Let G’ be the graph obtained from G by setting all edge multiplicities to one
Compute the connected components of G’
if there is a connected component H of G’ s.t. H is not a subgraph of a unicyclic
graph or H is a unicyclic graph having k > 3 vertices in the cycle and with some
cycle edge having multiplicity bigger than 1 in G then
return no
else

return yes
end if

Algorithm 4 : Digraph simple-path stability
INPUT: A strongly connected digraph G
if G does not have a directed k-cycle with k£ > 3 then

return yes
else
compute a directed cycle C' = (vg,e1,v1,... ,Vk—1€k, V) in G (k > 3)
if any of the cycle arcs has multiplicity bigger than one then
return no
end if

Let €} be the arc opposite to e;, 1 <i <k
if all the arcs e are present in G and some of them have multiplicity bigger than
one then
return no
end if
Let G’ be the digraph obtained by setting the multiplicity of all arcs in G to one
and by removing the arcs in C' and all the opposite arcs ¢} (if any).
if there are 2-cycle vertices connected by a directed path in G’ then
return no
else
Compute the strongly connected components of G’
if a strongly connected component of G’ contains a directed k-cycle with k > 3
then
return no
else
return yes
end if
end if
end if

testing universal stability is equivalent to testing stability under NTG-LI1S. Moreover,
deciding whether a network is stable under the NTG-LIS protocol can also be solved
in polynomial time. The equivalences hold for all the cases of universal stability
considered in this work, as we state in the following theorem.
THEOREM 17. The following equivalences hold:
— A digraph G is stable under NTG-LIS if and only if G is universally stable.
— A digraph G is simple-path stable under NTG-LIS if and only if G is simple-



58 CARME ALVAREZ, MARIA BLESA, AND MARIA SERNA

n ——
/’/ €1
£m
.~ _:—___: g
d
(a) A digraph in (b) A digraph in £ (U2)

£ (Uy)

F1G. 6. Family of digraphs formed by extensions of U1 and Us.

path universally stable.

— A graph G is stable under NTG-LIS if and only if G is universally stable.

— A graph G is undirected-path stable under NTG-L1S if and only if the graph G
1s undirected-path universally stable.

— A graph G is simple-path stable under NTG-LIS if and only if G is simple-path
universally stable.

A similar result was obtained in [1] for the universal stability of digraphs under
the FFs protocol, for which the same characterization (i.e., in terms of the family of
graphs generated from U; and Us; see Figure 4(a)) is obtained. The technique can be
easily extended to show the equivalence of stability under FFs and universal stability
in all the models of adversary considered in this work. To the best of our knowledge
the complexity of deciding stability under other nonuniversally stable protocols is still
open, in particular for FIFO and LIFO. Even though much effort has been devoted to
the study of the FIFO protocol, it is still not known whether deciding stability under
FIFO is polynomial time decidable. The bottleneck, with regard to the characterization
of universal stability, is whether the pair (Uy, FIFO) is stable, as the pair (Usg, FIFO)
was shown to be not stable in [2].

Appendix A. Proof of Theorem 3. All the instability proofs are based on
induction. A set of rounds compose a step of the induction reasoning. The goal is to
demonstrate that the number of packets in the system can increase from one step to
the next (and, by applying the inductive hypothesis, they can increase indefinitely).
The configuration of the system at the end of every step must be the same as the
configuration at the beginning of each inductive step (in terms of the type of packets
and their location), but with an increased number of packets. In these appendices we
reproduce only the inductive step.

LEMMA 9. The pair (Us,NTG-LIS) is not stable.

Proof. At the beginning there are s packets that must traverse edge fo. Half of
them are of the form (e; f2), and half are of the form (es f1 f2). Then the adversary
will play injections in four rounds.

Round 1. For s steps, the adversary injects rs packets of the form (f2 e1). These
injections get mixed with the initial packets at edge fo and are blocked there because
the queuing protocol is NTG.

Round 2. For the next rs steps, the adversary injects a set of r2s packets of the
form (fy e; es) that are blocked by the remaining packets at fo from the previous
round because the protocol is NTG.

Round 3. For the next r2s steps, the adversary injects r3s packets of the form



A CHARACTERIZATION OF UNIVERSAL STABILITY 59

(e2) and r3s of the form (e; f2). A total number of r3s packets of the from (e3) will
remain at e;. Injections of the form (e; f2) will meet packets from the previous round
at edge e; and, because the secondary protocol is LIS, they all will be blocked at this
edge.

Round 4. For the next s steps, the adversary injects r4s packets of the form (ey
f1 f2) and 7*s packets of the form (e;). The simple injections at e; block the packets
(e1 f2) from the previous round because their distance to destination is shorter. The
(e2 f1 f2) injections are blocked by the (e2) packets from the previous round.

At the end of the fourth round there are r*s packets of the form (es fi f2)
and 7ts packets of the form (e; fo). If cycles are allowed, the adversary described
above makes the network Us nonstable when 2r%s > s, i.e., at injection rate r >
0.840809. d

LEMMA 10. Any graph in £(U;) is not stable for NTG-LIS.

Proof. Let G be the graph in £ (U1) described in Figure 6(a). This graph is
obtained from &7 by replacing the edges by paths. Let us denote by p,, pm, and pg
the path replacing the edges. Let us assume that n > m — 1. The adversary operates
in four rounds. Initially, there are s packets wanting to traverse py and they are
distributed in the following way: x packets of the form (p,, e; pq) and y packets of
the form (p, pa)-

Round 1. For s steps, the adversary injects rs packets of the form (pg pr,). These
injections are blocked by the initial packets because the queuing protocol is NTG, but
rm of them are lost. We consider a big enough s to guarantee that a continuous flow
arrives to the first edge of py after the arrival of the first packet.

Round 2. For the next rs — rm steps, the adversary injects a set of r2s — r2m
packets of the form (pgq p,, €1) and r2s—r?m packets of the form (p,,). These injections
are blocked by the remaining packets from the previous round because the queuing
protocol is NTG (or because of the LIS protocol if n = m — 1). Note that rd injections
of the form (p,,) will be lost.

Round 3. For the next r?s — r?m steps, the adversary injects r3s — r>m packets
of the form (p,,) that will all be blocked by packets from the previous round. The
adversary also injects 73s — r3m packets of the form (p,, e; pg) that will collapse with
packets from the previous round. These injections will be blocked there because their
distance to destination is longer at that point, but rd of them will be lost. At the end
of this round there are r3s — r3m — r2d packets of the form (p,,) and r3s — r3m — rd
packets of the form (p,, €1 pg).

Round 4. For the next r3s — r3m — r2d steps, the adversary injects rts — r*m —
r3d packets of the form (p, e1) and rs — r*m — r3d packets of the form (p,, pa)-
The injections on p,, will keep some packets of the previous round blocked, and the
injections on p,, will be blocked by the remaining packets from the previous round.

At the end of the fourth round, there are r*s —r*m+1r3d —r2d packets of the form
(pn €1 pa) and 7%s — rim — r3d packets of the form (p,, pg). The adversary described
above uses packets describing cycles and makes the graph G described above nonstable
when 2rts — 2rim — r2d > s. Note that C' = 2r*m + r2d > 2m + d and, for a big
enough s, an injection rate r can be found such that 2r*s — C' > s holds. O

LEMMA 11. Any graph in € (Us) is not stable for NTG-LIS.

Proof. Let G be a graph in € (Us) described in Figure 6(b). This graph is formed
from Sy by extending its cycles with paths. We call pi and p; the additional edges in
the two sides, noting that k, [, or both may be zero. The adversary operates in four

rounds. Initially, there are 5 packets of the form (e; f2) and 5 packets of the form

(e2 o1 f1 f2)- ’



60 CARME ALVAREZ, MARIA BLESA, AND MARIA SERNA

Round 1. For s steps, the adversary injects rs packets of the form (f2 pr e1).
These injections are blocked by the initial packets because the queuing protocol is
NTG. Note that rl of such new packets are lost.

Round 2. For the next rs—rl steps, the adversary injects a set of 72s —r2[ packets
of the form (fa pr e1 e2). These injections are blocked by the remaining packets from
the previous round because the queuing protocol is NTG.

Round 3. For the next r?s — r?[ steps, the adversary injects r3s — r31 packets of
the form (e3) and 73s — 73] of the form (e; fo). These injections will be blocked by
packets from the previous round when collapsing at edges e; and eq, respectively, but
rk of them will be lost.

Round 4. For the next r3s — r3] — rk steps, the adversary injects rts — r4l — r2k
packets of the form (e1) that will block packets from the previous round at e; because
they are closer to their destination. The adversary also injects r*s — %l — r2k packets
of the form (es p; f1 f2) that will be blocked by the (e2) remaining packets from the
previous round.

At the end of the fourth round, there are r*s —r*l — 12k packets of the form (e p;
f1 f2) and r*s — r*l — 2k packets of the form (e; f>). The adversary described above
uses packets describing cycles and makes the graph G described above nonstable when
2(rts — r*l — r?k) > s. Note that C' = 2(l + k) > 2(r*l + r?k), and, for a big enough
s, an injection rate r can be found such that 2r*s — C' > s holds. 0

Appendix B. Proof of Theorem 4.

LEMMA 12. The pair (S1,NTG-LIS) is not simple-path stable.

Proof. The adversary operates in five rounds. Initially, there are § packets of the
form (e1 f1) and § of the form (ex f1).

Round 1. For s steps, the adversary injects rs packets of the form (f; f2). These
injections get mixed with the initial packets at edge f; and are blocked there because
the protocol is NTG.

Round 2. For the next rs steps, the adversary injects a set of r2s packets of the
form (f2 es) that are blocked at fo by the packets from the first round because, at
that point, they are at longer distance to their destination.

Round 3. For the next r2s steps, the adversary injects r3s packets of the form
(e2) and 73s of the form (fy e1). All these injections are blocked by the remaining
packets from the previous round because the secondary protocol is LIS.

Round 4. For the next r3s steps, the adversary injects rs packets of the form
(e1) and rts packets of the form (ez f1). A total number of r4s simple packets will
remain at e;. The injections of the form (es f1) are blocked at ey by packets from the
previous round because distance to their destination is longer.

Round 5. For the next r*s steps, the adversary injects r°s packets of the form
(e1 f1) and r°s packets of the form (es). The simple packets queued at e; from the
previous round will block the injections introduced at this edge. The simple injections
at ey will block the packets of the form (ey f1) from the previous round.

At the end of the fifth round, there are 7°s packets of the form (ey fi) and r°s
packets of the form (e f1). The adversary described above uses only packets describ-
ing simple paths and makes network U; nonstable when 2r°s > s, i.e., at injection
rate r > 0.87055. a

LEMMA 13. The pair (S2,NTG-LIS) is not simple-path stable.

Proof. The adversary operates in four rounds in this case. Initially, there are 3
packets of the form (e12 f) and 5 of the form (e22 f).



A CHARACTERIZATION OF UNIVERSAL STABILITY 61

Round 1. For s steps, the adversary injects rs packets of the form (f es1). These
injections get mixed with the initial packets and are blocked in edge f because the
protocol is NTG.

Round 2. For the next rs steps, the adversary injects a set of r2s packets of the
form (f e11) and 72s packets of the form (es; e22). The injections made on f are
blocked by old packets because in this situation the secondary protocol LIS is applied.
When the (f e21) packets from the previous round reach edge es1, they block the
injections made on es;. So at this round all the injections introduced are blocked.

Round 3. For the next r2s steps, the adversary injects r3s packets of the form
(ea2 f) and r3s of the form (e;; e12). The injections on esy are blocked by packets
of the form (es; es2) from the previous round. The injections introduced on ej; are
blocked by packets from the previous round at e;; because their destination is farther.

Round 4. For the next r3s steps, the adversary injects rs packets of the form
(e12 f) and r*s packets of the form (ez2). Injections on e;5 are blocked by old packets,
and injections on eyy block old packets of the form (egs f).

At the end of the fourth round, there are 2r%s packets queued at e and eq
that want to traverse edge f; rts are of the form (e;2 f) and rs are of the form
(ea2 f). The adversary described above uses only simple paths and makes network
S5 nonstable when 2r%s > s, i.e., at injection rate r > 0.84089. ]

LEMMA 14. The pair (S3,NTG-LIS) is not simple-path stable.

Proof. The adversary operates in four rounds. Initially, there are § packets of the
form (61 fgl) and % of the form (622 f1 f21).

Round 1. For s steps, the adversary injects rs packets of the form (fo1 fa2). These
injections get mixed with the initial packets and get blocked in edge f21; because the
protocol is NTG.

Round 2. For the next rs steps, the adversary injects a set of r2s packets of the
form (fo2 €1 e21) that are blocked at foo by the packets from the first round because,
at that point, they are at longer distance to their destination.

Round 3. For the next r2s steps, the adversary injects r3s packets of the form
(€21 €22) and r3s of the form (e; fo1). The injections introduced at e; reach the
packets from the previous round at this edge, but they are blocked there because the
secondary protocol is LI1S. Old packets block the injections introduced at their last
edge eo.

Round 4. For the next r3s steps, the adversary injects r*s packets of the form
(€22 f1 f21) and r*s packets of the form (e;). The simple injections on e; will block
the packets queued at this edge from the previous round. Injections of the form (eas
f1 fo1) are blocked at ess by packets from the previous round because distance to
their destination is longer.

At the end of the fourth round, there are 7*s packets of the form (ess fi fo1)
queued at esq, and rs of the form (e1 fo1) queued at e;. The adversary described
above uses only simple paths and makes network S3 nonstable when 2rts > s, i.e., at
rate r > (0.84089. ]

LEMMA 15. The pair (S4,NTG-LIS) is not simple-path stable.

Proof. The adversary operates in four rounds. Initially, there are 5 packets of the
form (e; f21) and 5 of the form (ea2 f1 g2 fo1)-

Round 1. For s steps, the adversary injects rs packets of the form (fa1 fa2). These
injections get mixed with the initial packets and are blocked in edge f2; because the
protocol is NTG.

Round 2. For the next rs steps, the adversary injects a set of r2s packets of the



62 CARME ALVAREZ, MARIA BLESA, AND MARIA SERNA

n
:’—'r_n— ‘: en
d—2 €21
(a) A digraph in £ (S1) (b) A digraph in £ (S2) (c) A graph in £ (S3)

fi

€1

g21 922

g1 912

€2

f2

(d) A digraph in £ (S4)

Fic. 7. Family of digraphs formed by extensions of S1, S2, Ss, and S4.

form (fa2 €1 g1) that are blocked at fao by the packets from the first round because,
at that point, they are at longer distance to their destination.

Round 3. For the next r2s steps, the adversary injects r3s packets of the form
(g1 €21 €22) and r3s of the form (e; fo1). The injections introduced at e; reach the
packets from the previous round at this edge, but they are blocked there because the
secondary protocol is LS. When the old packets arrive at their last edge g;, they
block the injections introduced at that edge. So, at this round, all the injections are
blocked.

Round 4. For the next 73s steps, the adversary injects r*s packets of the form
(€22 f1 g2 f21) and r*s packets of the form (e;). The simple injections on e; will block
the packets queued at this edge from the previous round. Injections of the form (ess
f1 g2 fo1) are blocked at ez by packets from the previous round because distance to
their destination is longer.

At the end of the fourth round, there are r*s packets of the form (ezs f1 go fo1)
queued at eg, and r*s packets of the form (e; f21) queued at e;. The adversary
described above uses only packets defining simple paths and makes the S; network
nonstable when 2rts > s, i.e., at injection rate r > 0.84089. 0

LEMMA 16. Any graph in € (S1) is not stable for NTG-LIS.

Proof. Let G be the graph in £ (S7) described in Figure 7(a). There are two
vertices a and b with two paths p,, and p,, from a to b and a path py from b to a,
with d > 2. We assume that n > m. We call e and f the first and last edges in pg,
respectively. By including a whole path (e.g., pg) in the description of the form of a
packet, we mean that the path to be followed by the packet must include all of this
path. The adversary operates in five rounds. Initially, there are § packets of the form
(pn €) and 3 of the form (p,, e).

Round 1. For s steps, the adversary injects rs packets of the form (pg). These
injections get mixed with the initial packets at edge e. Except for the first rm injec-
tions, the rest are blocked there because the queuing protocol is NTG (m is the time
in which a first packet arrives to e). We consider s big enough to guarantee that a



A CHARACTERIZATION OF UNIVERSAL STABILITY 63

continuous flow arrives to edge e after the arrival of the first packet.

Round 2. For the next rs — rm steps, the adversary injects a set of 725 — r’m
packets of the form (f p.,). These packets will be blocked at f by the packets from
the first round because they will be at longer distance to their destination, but notice
that rd of them will not be blocked (d is the time needed for the first packet in e to
reach f).

Round 3. For the next r2s —r2m — rd steps, the adversary injects 73s —r3m —r2d
packets of the form (p,,) and r3s — r3m — r2d packets of the form (f p,). The first
injections are blocked because secondary protocol is LiS. The later injections are
blocked because n > m (or also because of the LIS protocol if n = m).

Round 4. For the next r3s —r3m —r2d steps, the adversary injects r*s —r4m —r3d
packets of the form (p,,), which are blocked due to the LIs effect. Also rs—rtm—r3d
packets of the form (p,, e) are injected, which are blocked at the first edge of p,, by

packets from the previous round because distance to their destination is longer.
4 5

4

Round 5. For the next r*s—r*m —r3d steps, the adversary injects 7°s —r°m—r4d
packets of the form (p,, e), all of which will be blocked by the packets of the form (p,,)
from the previous round. The adversary also introduces r°s — r>m — r*d injections
of the form (p,,), which will block the packets of the form (p,, e) queued since the
previous round.

At the end of the fifth round, there are °s — r®m — r*d packets of the form
(pn €) and r°s —r®m —r*d packets of the form (p,, €). The adversary described above
uses only packets describing simple paths and makes the graph G described above
nonstable when 2(r%s — r®m — r4d) > s. Note that C = 2(m +d) > 2(r®m+rid) is a
constant quantity and then, for a big enough s, an injection rate r can be found such
that 2r®s — C' > s holds. O

LEMMA 17. Any graph in € (S2) is not simple-path path stable for NTG-LIS.

Proof. Let G be a digraph in € (S2) described in Figure 7(b). This graph is formed
from S5 by extending its cycles with paths of length m, n, and d, with m,n,d > 0. We
denote by p,., pn, and pg the additional path in the respective side. The adversary
operates in four rounds. Initially, there are « packets of the form (e pg f) and 8
packets of the form (eqs pg f), where a + 5 = s.

Round 1. For s steps, the adversary injects rs packets of the form (pg f es1).
These injections are blocked at the first edge of pg f because the queuing protocol is
NTG.

Round 2. For the next rs steps, the adversary injects a set of r?s packets of
the form (f ei1 pm) and also r?s packets of the form (es; p, e22). Both types of
injections will collapse with the remaining packets from the previous round but their
destination is always farther; thus they are blocked. Note, however, that rd of each
type of packets are lost.?

Round 3. For the next r?s — rd steps, the adversary injects r3s — r2d packets of
the form (e11 pm €12), which are blocked by the remaining packets from the previous
round because the protocol is NTG. The adversary also injects 73s —r2d packets of the
form (p,, €22 pa f), which block 73s — r2d of the remaining packets from the previous
round because of the same reason.

Round 4. For the next r3s — r2d steps, the adversary injects r*s — r3d packets of
the form (e12 pg f) and also r*s — r3d packets of the form (ess). The injections on
e1o are blocked by packets from the previous round, but rm of them are lost. The

2More exactly, 7(d+ 1) of the type (e21 pn e22) are lost, but we round to rd to clarify the proof.



64 CARME ALVAREZ, MARIA BLESA, AND MARIA SERNA

simple injections on ey block packets queued at the previous round, but rn of them
are lost.

At the end of the fourth round, there are r*s — r3d — rm packets of the form (e;o
pa f) queued at ejo and r*s — r3d — rn packets of the form (eso pg f) queued at ego.
The adversary described above uses only packets defining simple paths and makes the
digraph described in Figure 7(b) nonstable when 2(r*s — 73d) — rm — rn > s. Note
that C' = 2d +m +n > 2r3d + rm + rn and, for a big enough s, an injection rate r
can be found such that 2r* — C' > s holds. 0

LEMMA 18. Any digraph G in € (S3) is not simple-path stable for NTG-LIS.

Proof. Let G be a digraph in € (S3) described in Figure 7(c). This graph is formed
from S3 by extending its cycles with paths of length [ and &, I,k > 1. We denote by
pr and p; the additional path in the respective side. The adversary operates in four

rounds. Initially, there are § packets of the form (e; f2) and 5 packets of the form

2
(o1 f1 f2).

Round 1. For s steps, the adversary injects rs packets of the form (f2 p). These
injections are blocked by the initial packets because the queuing protocol is NTG. Note
that rl of such new packets are lost.

Round 2. For the next rs—rl steps, the adversary injects a set of 72s —r2[ packets
of the form (pr e; es). These injections are blocked by the remaining packets from
the previous round because the queuing protocol is NTG.

Round 3. For the next r?s — r2] steps, the adversary injects r3s — 73 packets of
the form (ey p;) and r3s — 731 of the form (e; f2). These injections will be blocked
by packets from the previous round when collapsing at edges es and ey, respectively,
but rk of them will be lost.

Round 4. For the next r3s — 73] — rk steps, the adversary injects r*s — r*l — r2k
packets of the form (e1) that will block packets from the previous round at e; because
they are closer to their destination. The adversary also injects r*s — %l — r2k packets
of the form (p; f1 f2) that will be blocked by the remaining (es p;) packets from the
previous round.

At the end of the fourth round, there are r*s — r*l — r2k packets of the form (p
f1 f2) and r*s — r*l — 72k packets of the form (e; f2). The adversary described above
uses packets following simple paths and makes the graph G € £ (S3) nonstable when
2(rts — rtl — r?k) > s. Note that C' = 2(I + k) > 2(r*l + r2k) and, for a big enough
s, an injection rate r can be found such that 2r*s — C' > s holds. ]

LEMMA 19. Any digraph G in € (S4) is not simple-path path stable for NTG-LIS.

Proof. Let G be a digraph in £ (S4). Notice that if one of the arcs in the 2-cycle is
subdivided, G contains as a subgraph a graph in £ (S3) that by Lemma 18 is NTG-LIS
nonstable. Therefore we will consider the case described in Figure 7(d). This graph
is formed from S, by extending its 3-cycles with paths of length [ and &, [,k > 1, and
its 2-cycle by m, m > 1, 2-cycle successive subdivisions. Let us denote by p; and pg
the paths of length [ and k, by p}, the path (g11 g12 - .. gim), and by p2, the path (g21
g22 ... gam). The adversary operates in four rounds. Initially, there are 5 packets of
the form (e; f2) and § of the form (p; f1 p2, f2).

Round 1. For s steps, the adversary injects rs packets of the form (f2 pr). These
injections get mixed with the initial packets at edge fo and are blocked there because
the queuing protocol is NTG. Note that r(m + 1) of such new packets are lost.

Round 2. For the next rs — r(m + [) steps, the adversary injects a set of 725 —
r2(m + 1) packets of the form (pj e; gim) that are blocked at the first edge of p; by
the packets from the first round because, at that point, they are at longer distance to



A CHARACTERIZATION OF UNIVERSAL STABILITY 65

their destination.

Round 3. For the next r%s —r?(m +1) steps, the adversary injects 73s — 73 (m +1)
packets of the form (pl, ez p;) and r3s —r3(m +1) of the form (e; f2). The injections
introduced at e; reach the packets from the previous round at this edge, but they are
blocked there because the secondary protocol is L1S. When the old packets arrive at
their last edge gix, they block the injections introduced.

Round 4. For the next r3s —r3(m +1) steps, the adversary injects r*s — r4(m +1)
packets of the form (p; f1 p?, f2) and r*s — r*(m + k) packets of the form (e;). The
simple injections on e; will block the packets queued at this edge from the previous
round. The other injections are blocked at the first edge of p; by packets from the
previous round because distance to their destination is longer, but note that rm of
them are lost.

At the end of the fourth round, there are r*s — r#(m + [) packets of the form
(e1 f2) queued at e; and rs — r*(m + ) — rm packets of the form (p; f1 p2, fa)
queued at the first edge of p;. The adversary described above uses only packets
following simple paths and makes the digraph G described in Figure 7(d) nonstable
when 2(r*s — r4(m 4 1)) — rm > s. Note that C' = 2(m + 1) > 2r*(m + 1) — rm and,
for a big enough s, an injection rate r can be found such that 2r* — C' > s holds. O

Acknowledgments. We thank two anonymous referees for their useful com-
ments that improved the readability of the paper.

REFERENCES

[1] C. ALvAREZ, M. BLESA, J. Diaz, A. FERNANDEZ, AND M. SERNA, The complezity of deciding
stability under FFS in the adversarial model, Inform. Process. Lett., 90 (2004), pp. 261—
266.

[2] C. ALvaREz, M. BLESA, J. Diaz, A. FERNANDEZ, AND M. SERNA, Adversarial models for
priority-based networks, in Proceedings of the 28th International Symposium on Mathe-
matical Foundations of Computer Science (MFCS’03), Bratislava, Slovakia, Lecture Notes
in Comput. Sci. 2747, B. Rovan and P. Vojtas, eds. Springer-Verlag, Heidelberg, 2003,
pp. 142-151.

[3] M. ANDREWS, Instability of FIFO in session-oriented networks, J. Algorithms, 50 (2004),
pp. 232-245.

[4] M. ANDREWS, B. AWERBUCH, A. FERNANDEZ, J. KLEINBERG, T. LEIGHTON, AND Z. LivU,
Universal-stability results for greedy contention-resolution protocols, J. ACM, 48 (2001),
pp- 39-69.

[5] R. BHATTACHARJEE AND A. GOEL, Instability of FIFO at arbitrarily low rates in the adversarial
queueing model, in Proceedings of the 44th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’03), Cambridge, MA, IEEE Computer Society, Los Alamitos,
CA, 2003, pp. 160-167.

[6] A.BoRODIN, J. KLEINBERG, P. RAGHAVAN, M. SUDAN, AND D. WILLIAMSON, Adversarial queue-
ing theory, J. ACM, 48 (2001), pp. 13-38.

[7] M. BRAMSON, Instability of FIFO queueing networks, Ann. Appl. Probab., 4 (1994), pp. 414—
431.

[8] R. Cruz, A calculus for network delay. Part I: Network elements in isolation, IEEE Trans.
Inform. Theory, 37 (1991), pp. 114-131.

[9] R. CrUZ, A calculus for network delay. Part II: Network analysis, IEEE Trans. Inform. Theory,
37 (1991), pp. 132-141.

[10] J. Dfaz, D. KOUKOPOULOS, S. NIKOLETSEAS, M. SERNA, P. SPIRAKIS, AND D. THILIKOS, Sta-
bility and non-stability of the FIFO protocol, in Proceedings of the 13th annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA’01), Crete Island, Greece,
2001, pp. 48-52.

[11] S. FORTUNE, J. HOPCROFT, AND J. WYLLIE, The directed subgraph homeomorphism problem,
Theoret. Comput. Sci., 10 (1980), pp. 111-121.



[16]
(17]

(18]

o}

v

N.

A

CARME ALVAREZ, MARIA BLESA, AND MARIA SERNA

. GAMARNIK, Stability of adversarial queues via fluid models, in Proceedings of the 39th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’98), Palo Alto,
CA, 1998, pp. 60-70.

. GAMARNIK, Stability of adaptive and mnonadaptive packet routing policies in adversarial
queueing networks, STAM J. Comput., 32 (2003), pp. 371-385.

. GOEL, Stability of networks and protocols in the adversarial queueing model for packet
routing, Networks, 37 (2001), pp. 219-224.

. KOoukorPouLOS, M. MAVRONICOLAS, S. NIKOLETSEAS, AND P. SPIRAKIS, On the stability of
compositions of universally stable, greedy contention-resolution protocols, in Proceedings of
the 16th International Symposium on Distributed Computing (DISC’02), Toulouse, France,
Lecture Notes in Comput. Sci. 2508, D. Malkhi, ed., Springer, Berlin, 2002, pp. 88-102.

. LOTKER, B. PATT-SHAMIR, AND A. ROSEN, New stability results for adversarial quewing,

SIAM J. Comput., 33 (2004), pp. 286-303.
ROBERTSON AND P. SEYMOUR, Graph minors. XIII. The disjoint paths problem, J. Combin.
Theory Ser. B, 63 (1995), pp. 65-110.
. ROSEN, A note on models for non-probabilistic analysis of packet switching networks, Inform.
Process. Lett., 84 (2002), pp. 237-240.

[19] Z.-L. ZHANG, Z. DUAN, AND Y. Hou, Fundamental trade-offs in aggregate packet scheduling, in

IEEE 9th International Conference on Network Protocols (ICNP’01), Riverside, CA, IEEE
Computer Society, Washington, DC, 2001, pp. 129-137.



SIAM J. COMPUT. (© 2004 Society for Industrial and Applied Mathematics
Vol. 34, No. 1, pp. 67-88

PSEUDORANDOM GENERATORS IN
PROPOSITIONAL PROOF COMPLEXITY*

MICHAEL ALEKHNOVICH', ELI BEN-SASSON, ALEXANDER A. RAZBOROVS, AND
AVI WIGDERSONY

Abstract. We call a pseudorandom generator Gy, : {0,1}" — {0,1}"™ hard for a propositional
proof system P if P cannot efficiently prove the (properly encoded) statement G (x1,...,xn) # b for
any string b € {0,1}™. We consider a variety of “combinatorial” pseudorandom generators inspired
by the Nisan—Wigderson generator on the one hand, and by the construction of Tseitin tautologies
on the other. We prove that under certain circumstances these generators are hard for such proof
systems as resolution, polynomial calculus, and polynomial calculus with resolution (PCR).

Key words. generator, propositional proof complexity, resolution, polynomial calculus
AMS subject classifications. 03F20, 03D15

DOI. 10.1137/S0097539701389944

1. Introduction. The notion of a pseudorandom generator, originally intro-
duced by Yao [Yao82], has become by now one of the most important concepts in
theoretical computer science, penetrating virtually all its subareas. In its simplest
form it says the following: a mapping G,, : {0,1}" — {0,1}" is (computationally) se-
cure with respect to (w.r.t.) some circuit class C if no “small” circuit C(yi,...,ym) € C
can distinguish between the two probabilistic distributions G,,(x) and y in the sense
that |P[C(G,(x)) = 1] — P[C(y) = 1] is small (x is picked at random from {0,1}",
and y is picked at random from {0,1}™).

Propositional proof complexity is an area of study that has seen rapid development
over the last decade. It plays as important a role in the theory of feasible proofs as the
role of the complexity of Boolean circuits plays in the theory of efficient computations.
Although the original motivations for this study were in many cases different (and
originated from proof-theoretical questions about first-order theories), it turns out
after all that the complexity of propositional proofs revolves around the following
basic question: What can be proved (in the ordinary mathematical sense!) by a prover
whose computational abilities are limited to small circuits from some circuit class C
(see, e.g., [BP98])? Thus, propositional proof complexity is in a sense complementary
to (nonuniform) computational complexity; moreover, there exist extremely rich and
productive relations between the two areas (see [Raz96, BP98]).

Given the importance of pseudorandom generators for computational complexity,
it is natural to wonder which mappings G,, : {0,1}" — {0,1}™ should be considered

*Received by the editors May 31, 2001; accepted for publication (in revised form) April 28, 2003;

published electronically October 8, 2004.
http://www.siam.org/journals/sicomp/34-1/38994.html

TMoscow State University, Moscow, Russia (mike@mccme.ru). The work of this author was
supported by INTAS grant 96-753 and by the Russian Basic Research Foundation.

fInstitute of Computer Science, Hebrew University, Jerusalem, Israel (elli@cs.huji.ac.il).

§Steklov Mathematical Institute, Moscow, Russia (razborov@genesis.mi.ras.ru). The work of this
author was supported by INTAS grant 96-753 and by the Russian Basic Research Foundation; part
of this work was done while the author was visiting Princeton University and DIMACS.

9nstitute for Advanced Study, Princeton, NJ, and Institute of Computer Science, Hebrew Uni-
versity, Jerusalem (avi@math.ias.edu). The work of this author was supported by grant 69/96 of the
Israel Science Foundation, founded by the Israel Academy for Sciences and Humanities. Support for
this research was also provided by The Alfred P. Sloan Foundation.

67



68 ALEKHNOVICH, BEN-SASSON, RAZBOROV, AND WIGDERSON

hard from the perspective of proof complexity. In this paper we propose the following
paradigm: a generator G,, : {0,1}"™ — {0,1}™ is hard for some propositional proof
system P if and only if for any string b € {0,1}™ there is no efficient P-proof of the
(properly encoded) statement G(z1,...,z,) # b (21,...,z, are treated as proposi-
tional variables). A similar suggestion is independently made in the recent paper by
Krajicek [Kra01].

This definition is very natural: it simply says (to the extent allowed by our frame-
work) that P cannot efficiently prove even the most basic thing about the behavior
of G,, namely, that it is not an onto mapping. In fact, one a priori reasonable
concern might be precisely whether this exceedingly natural requirement is not too
strong, namely, whether nontrivial generators (say, with m > n + 1) can exist at all.
This concern is best addressed by exhibiting how several known results fit into our
framework; these examples also explain some of our motivations for introducing this
concept.

Ezample 1 (Tseitin tautologies). Let G = (V, E) be a connected undirected

graph. Consider the (Fo-linear) mapping T : {0,1}F — {0,1}V given by Tg(Z), def

BesvTe, where T € {0,1}F is a {0, 1}-valued function on edges. Then b € {0,1}V is
not in im(7g) if and only if ®,cvb, = 1, and if we properly encode this statement
in propositional logic, we arrive exactly at the tautologies introduced by Tseitin in
his seminal paper [Tse68]. These tautologies turned out to be extremely useful in
propositional proof complexity, and the many strong lower bounds proved for them
[Tse68, Urq87, BW99, Gri98, BGIP01, Gri01l, ABRWO02] never depend on the partic-
ular choice of b € {0,1}V. This means that all of them can be viewed as showing that
the generators T are hard for the corresponding proof system, as long as the graph
G itself has good expansion properties.

Tseitin generators T : {0,1}¥ — {0,1}V make little sense from the computa-
tional point of view since the size of the seed |E| is larger than the size of the output
|[V|. Our remaining examples are more satisfactory in this respect.

Ezample 2 (natural proofs). Let G, : {0, 1}"k — {0,1}2" be any pseudorandom
function generator that stretches n* random bits to a Boolean function in n variables
viewed as a string of length 2" in its truth-table representation. Assume that G, is
hard w.r.t. 29" _sized circuits. Razborov and Rudich [RR97] proved that there is
no “natural” (in the strict sense also defined in that paper) proof of superpolynomial
lower bounds for any complexity class C' that can efficiently compute G,,. Their
argument shows in fact that any natural circuit lower bound techniques fail to prove
that a given function f,, does not belong to the image of GG,,. Stating it equivalently,
for any function f,, there is no natural proof of the fact that f,, ¢ im(G,,). Although
in this result we are primarily interested in the case when f, is the restriction of SAT
(or any other NP-complete predicate) onto strings of length n, the argument, as in
Example 1, absolutely does not depend on the particular choice of f,.

One might argue that natural proofs do not correspond to a propositional proof
system at all, and that their definition rather explicitly includes the transition “the
proof works for a single f,, = it works for many f,,,” which provides the link to the
ordinary (randomized) definition of a pseudorandom generator. The last two examples
illustrate that this drawback sometimes can be circumvented.

Ezample 3 (hardness in presence of feasible interpolation). Let G, : {0,1}" —
{0,1}™ be an arbitrary pseudorandom generator that is hard w.r.t. polynomial size
(in m + n) circuits, and let n < m/2. Following Razborov [Raz95b], let us take
bitwise XOR of two independent copies of this generator G, : {0,1}?" — {0,1}™;



PSEUDORANDOM GENERATORS IN PROOF COMPLEXITY 69

Gl (21, T, @), .. 20) def Gn(x1,...,20) ® Gp(al,...,2!). Then GJ, is hard for
any propositional proof system P which has the property of feasible interpolation (for
a definition, see, e.g., [Kra97] or [BP98]).

Indeed, assume for the sake of contradiction that GJ, is easy for a proof system
that possesses feasible interpolation. This means that in this system there exists a
polynomial size proof of b ¢ im(G",) for some string b € {0,1}™. Let r be picked uni-
formly and at random from {0, 1}™, and consider the propositional formula encoding
the statement r € im(G,) Vr € im(G,, ®b). The fact b € im(G,,) implies that this is
a tautology and thus, by feasible interpolation, there exists a polynomial size circuit
C' that given r correctly tells us whether r ¢ im(G,) or r ¢ im(G,, ® b). One of
these answers occurs with probability at least 1/2; thus, C' can be used to break the
generator G.

The study of such a keystone concept in computational complexity as pseudoran-
dom generators, but in the new framework of proof complexity, should be interesting
in its own right. As suggested by the examples above, we also keep one quite prag-
matic goal in mind: we believe that pseudorandomness is methodologically the right
way to think of lower bounds in the proof-theoretic setting for really strong proof
systems. Whenever we have a generator G, : {0,1}" — {0,1}"! which is hard for
a propositional proof system P, we have lower bounds for P. Suppose we manage
to increase significantly the number of output bits and construct a polynomial time
computable function generator G,, : {0, 1}"k — {0,1}?" that is hard for P. Then,
similarly to [RR97, Raz95b], we can conclude that the tautologies —~Clircuit,(fy,), ex-
pressing the fact that the function f,, cannot be computed by a circuit of size ¢, do not
have efficient P-proofs.! Our final example shows that, modulo a concrete complex-
ity assumption (namely, that randomness helps in interactive proofs), the tautologies
—Circuit,(f,) are hard for every proof system.

Ezxample 4. Assume that there is some proof system P, which efficiently proves
—Clircuit,(f,) for some Boolean function f,. This proof constitutes an NP-certificate
of hardness of f,,. Using the derandomization machinery of the NW-generator [NW94,
BFNWO93, IW97, IKWO01], it follows that for, say, t = 2¢™ (with arbitrary € > 0), such
a certificate implies that MA = NP (and in particular BPP C NP).2

Put differently, let G, be the mapping that takes (the encoding of) a circuit of
size t to the truth-table of the function computed by it [Raz95a, Appendix C]. Then,
assuming MA # NP, we conclude that for an appropriate choice of ¢, there are no
efficient proofs of f,, € im(G,,) for any sequence of functions f,. In other words, the
generator G,, is hard for any propositional proof system whatsoever!

It should be stressed, however, that some of the authors believe the conclusion far
more than the assumption. Nevertheless, the connection illuminates another relation-
ship between computational and proof complexity, and the importance of generators
in both.

In this paper we begin by looking at a class of generators inspired by the Nisan—

INote that for f, an NP-complete function and t superpolynomial in n, the tautologies
—Clircuit(fn) express the statement NP ¢ P/poly. The general idea of this reduction to the
hardness of generators is similar to the reduction in Example 2: the propositional system cannot
prove efficiently that any given f,, does not belong to the image of G. However, for every particular
system the details of implementation are a little bit different, and one has to be extra careful for
weak proof systems.

2Follows from BPP C MA of Goldreich and Zuckerman [GZ97]. This weaker conclusion
BPP C NP of the existence of efficient proofs for =Circuit:(fn) was also independently observed
by Impagliazzo.



70 ALEKHNOVICH, BEN-SASSON, RAZBOROV, AND WIGDERSON

Wigderson generator [NW94] on the one hand, and by Example 1 on the other. Let

A be an (m x n) 0-1 matrix, let gi(x1,...,2n),...,gm(21,...,2z,) be Boolean func-

tions such that g; essentially depends only on the variables X;(A) def {zjla;; =1},

and let Gy, : {0,1}™ — {0,1}™ be given by G, (z1,...,Zx) def (g1(z1, o yn), -,
gm(Z1,...,2y)). Nisan and Wigderson [NW94] proved that if A satisfies certain com-
binatorial conditions (namely, if it is a (k, s)-design for suitable choice of parameters),
and the functions g; are computationally hard, then G,, is a good pseudorandom
generator in the computational sense. In this paper we study which combinatorial
properties of the matrix A and which hardness assumptions imposed on g; guaran-
tee that the resulting generator G,, is hard for such proof systems as resolution or
polynomial calculus.

The framework of proof complexity, however, adds also the third specific dimen-
sion that determines hardness properties of G,,. Namely, in our examples the base
functions g; are at least supposed to be hard for the circuit class underlying the
propositional proof system P. Thus, P cannot even express the base functions, and
we should encode them using certain extension variables. Using these extension vari-
ables, our tautologies can be written as 3-CNFs and thus can be expressed in any
proof system. The choice of encoding makes an important part of the framework.
We propose three different encodings: functional, circuit, and linear encodings, all
natural from both computational and proof complexity viewpoints.

Our results are strong lower bounds for each of these encodings (and appropriate
choices of base functions and combinatorial properties of the matrix A) in such stan-
dard proof systems as resolution, polynomial calculus, and PCR (which combines the
power of both). Naturally, the results get weaker as the encoding strength increases.

We strongly believe that this set of tautologies can serve as hard examples for
much stronger systems, and specifically that the hardness of the base functions in
the generators should be a key ingredient in the proof. This factor is evident in
our modest results above, and if extended to stronger systems, it may be viewed as a
generalization of the feasible interpolation results, reducing in a sense proof complexity
to computational complexity.

The paper is organized as follows. In section 2 we give necessary definitions
and describe precisely combinatorial properties of the matrix A, hardness conditions
imposed on the base functions g;, and types of their encodings needed for our purposes.

Section 3 contains our hardness results for resolution width and polynomial cal-
culus degree that hold for the most general functional encoding similar in spirit to the
functional calculus from [ABRWO02]. These can be considered as far-reaching general-
izations of lower bounds for Tseitin tautologies from [BW99, BGIP01]. We also state
here size lower bounds directly implied by our results via the known width/size and
degree/size relations.

Section 4 contains a stronger lower bound for the weaker linear encoding. In
section 5 we consider the question of maximizing the number of output bits m = m(n)
in the generators constructed in the previous sections. For that purpose we show that
with high probability a random matrix A has very good expansion properties. The
paper is concluded in sections 6 and 7 with a brief account of some recent developments
and several remaining open questions.

2. Preliminaries. Let x be a Boolean variable, i.e., a variable that ranges over
the set {0,1}. A literal of x is either z (denoted sometimes as z') or Z (denoted
sometimes as 2°). A clause is a disjunction of literals.



PSEUDORANDOM GENERATORS IN PROOF COMPLEXITY 71

For any Boolean function f : {0,1}" — {0,1}, Vars(f) will denote the set of
its essential variables. An assignment to f is a mapping « : Vars(f) — {0,1}. A
restriction of f is a mapping p : Vars(f) — {0,1,x}. We denote by |p| the number

of assigned variables, |p| % [p=1({0,1})].

The restriction of f by p, denoted f|,, is the Boolean function obtained from f
by setting the value of each = € p~1({0,1}) to p(z) and leaving each z € p~!(x) as a
variable.

We say that an assignment a satisfies f if f(a) = 1. For Boolean functions
fis--os fx, g we say that fi1,..., fx semantically imply g (denoted f1,..., fx E g) if
every assignment to V def Vars(fi) U---UVars(fx) UVars(g) satisfying f1,..., fx
satisfies g as well (i.e., for all @ € {0,1}V (f1(a) = -+ = fr(a) =1 = g(a) = 1)).

For n a nonnegative integer, let [n] def {1,2,...,n}.

Let A be an (m x n) 0-1 matrix,

def .
(1) Ji(A) = {j € [n]]ay; =1},
and let X;(A) def {z;]j € Ji(A)} and g1(x1,...,20n), ..., gm(x1,...,2,) be Boolean
functions such that Vars(g;) C X;(A). We will be interested in systems of Boolean
equations,

g1(x1,...,zn) =1,
(2)

gm (1, .. wn) = 1.

We want to state combinatorial properties of the matrix A and hardness conditions
of the base functions g; such that if we properly encode the system (2) as a CNF
7(A, §), then this CNF does not possess efficient refutations in a propositional proof
system P. This sentence has four ingredients, and the necessary definitions for each
of them are provided fairly independently.

2.1. Combinatorial properties of the matrix A. All hardness results proved
in this paper will be based on the following combinatorial property generalizing the
“edge-expansion” property for ordinary graphs. It is similar to the expansion defined
in [BW99].

DEFINITION 2.1. For a set of rows I C [m] in the matriz A, we define its bound-
ary 0a(I) as the set of all j € [n] (called boundary elements) such that {a;;|i€ I}
contains exactly one 1. We say that A is an (r, s, c)-expander if |J;(A)| < s for all
i € [m] and for all I C [m|(|I| <7 = 10a(I)| > c-|I]).

Let us relate (r, s, ¢)-expanders to several other combinatorial properties already
known from the literature.

Ezample 5. For an ordinary graph G = (V, E), its edge-expansion coefficient
¢g(G) is defined by

def . G(U,V - U)
= mmn —,
[Ul<|vi/2 |U|

CE(G)

where e(U, W) is the number of edges between U and W (see, e.g., [Alo98] and the
references therein). Let Ag be the incidence matrix of a graph G with m vertices

and n edges (i.e., aye 211 if and only if v € ), and let d be the maximal degree of a
vertex in G. Then Ag is an (m/2,d, c)-expander if and only if cg(G) > c.



72 ALEKHNOVICH, BEN-SASSON, RAZBOROV, AND WIGDERSON

Ezample 6. Let us turn to the combinatorial property originally used in [N91,
NW94]. A matrix A is called (k, s)-design if |J;(A)| = s for all i € [m] and

(3) |, (A) N T, (A)| < K

for all 1 < i1 < i < m. We have the following.
Fact 1. FEvery (k, s)-design is also an (r, s, s—kr)-ezpander for any parameterr.
Proof. Let I C [m] and |I| < r. Then, due to the property (3), every J;(A) with
i € I has at most k- (r — 1) elements which are not in 94(I). Hence it contains at
least s — k - (r — 1) elements which are in d4(I). 0

2.2. Hardness conditions on the base functions. As explained in the in-
troduction, we are interested in the methods which, given a mapping G, : {0,1}" —
{0,1}™, allow us to show that the fact b € im(G,,) is hard to prove for any b € {0,1}™.
This means that we want our lower bounds on the refutation complexity to work uni-
formly not only for system (2) but also for all 2™ shifted systems,

gl(xla"';xn) = b17

gm<x1,---;xn) = bm7

b € {0,1}™. We will enforce this simply by requiring that the conditions placed on
the base functions g1, ..., g, be symmetric; i.e., they are satisfied by some f if and
only if they are satisfied by (—f).

DEFINITION 2.2. A Boolean function f is £-robust if every restriction p such that
flp = const satisfies [p| > £.

Clearly, this property is symmetric. The most important example of robust func-
tions are the PARITY functions z1 & --- ® x,, ® b, b € {0,1}, which are n-robust.
Our strongest hardness results for the polynomial calculus work only for this specific
function.

In fact, f-robust functions are already very familiar from the computational com-
plexity literature. [FSS84, Ajt83, Yao85, Has86] proved computational lower bounds
for ¢-robust functions (when ¢ is close to n = |Vars(f)|) w.r.t. bounded-depth cir-
cuits. (1 — @)n-robust functions (where 6 is meant to be a small positive constant)
were recently used in [BST98] for obtaining strong lower bounds for branching pro-
grams (property “P(#)”). In this paper we will use ¢-robust functions for constructing
generators that are hard for propositional proof systems. It is easy to see that most
functions on n-bits are (say) 0.9n-robust.

2.3. Encodings. Having constructed system (2), we still should decide how to
represent it in propositional logic. This step is nontrivial since we are deliberately
interested in the case when the propositional system P cannot directly speak of the
functions g1,...,gm. We consider three major possibilities: functional, circuit, and
linear encodings; all of them lead to CNFs that in fact without loss of generality
(w.l.o.g.) can be further restricted to 3-CNF's (see the proof of Corollary 3.5 below).

2.3.1. Functional encoding. This is the strongest possible encoding which is
also universal in the sense that it obviously simulates any other conceivable encoding
(in fact, it is a “localized” variant of the functional calculus system considered in
[ABRWO02]).

DEFINITION 2.3. Let A be an (m X n
tion f with the property 3i € [m](Vars(f )

) 0-1 matriz. For every Boolean func-
X;(A)), we introduce a new extension



PSEUDORANDOM GENERATORS IN PROOF COMPLEXITY 73

variable yy. Let Vars(A) be the set of all these variables. For the sake of conve-
nience, single variables sometimes will be denoted as x; instead of y,,. For a clause

C =y5 V- Vys» in the variables Vars(A), denote by ||C|| the Boolean function in

the variables 1, ...,z giwen by ||C|| def fit VeV fow,

Given Boolean functions § = (g1, ..., gm) such that Vars(g;) C X;(A), we denote
by 7(A, g) the CNF in the variables Vars(A) that consists of all the clauses C' =
Y5 Vo Vs for which there exists i € [m] such that

(4) Vars(fi)U---UVars(fw) € Xi(A)

and

(5) gi = 11C]]-

FacT 2. 7(A, §) is satisfiable if and only if system (2) is consistent.

Proof. If (ay, . ..,ay) is a solution to (2), then the assignment which assigns every
yr to f(ar,...,a,) is satisfying for 7(A, ). For the other direction, let b= (brlyy €
Vars(A)) be a satisfying assignment for 7(4, g). Let a; Lef be,; then, using those
axioms yz \VAERERY, y;w from 7(A, g) for which f{* V---V fS& = 1, we can show by
induction on the circuit size of f that by = f(as,...,a,) for every y; € Vars(A4). In
particular, g;(a1,...,a,) = by, =1 (since 7(A, §) contains the axiom yg,). Thus, the

vector (aq,...,a,) is a solution to the system (2). d

2.3.2. Circuit encoding. This encoding is much more economical in terms of
the number of variables than functional encoding. Also, it looks more natural and
conforms better to the underlying idea of the extended Frege proof system. The
tautologies under this encoding will be polynomial size as long as all g;’s have polyno-
mial size circuits, and thus are potentially hard for Frege (assuming P /poly contains
functions computationally hard for NC? /poly).

DEFINITION 2.4. Let A be an (m x n) 0-1 matriz, and let C4,...,C,, be single-
output Boolean circuits over an arbitrary fived finite basis, C; being a circuit in the
variables X;(A). For every i € [m] and every gate v of the circuit C;, we introduce
a special extension variable vy, and we identify extension variables corresponding to
input gates labeled by the same variable x;. Let Varss(A) be the set of all these
extension variables.

By (A, 6) we denote the CNF that consists of the following clauses:

Loyd V- Vi v y;““““‘d) whenever v := w(vy,...,vq) 1S an instruction of
one of the circuits Cy,...,Cp, and € € {0,1}¢ is an arbitrary vector;
2. y,, when v; is the output gate of C; for all i € [m)].
For a circuit C in the variables x1,...,2,, let ||C]| be the Boolean function (in
the same variables z1,...,x,) it computes.
FacT 3. 7(A,C) is satisfiable if and only if the system ||Cy]| = - = ||Cpl] = 1

18 consistent.

Proof. The proof is similar to that of Fact 2. ]

Fact 4. There exists a substitution o of variables from Varss(A) by variables
from Vars(A) such that o(1(A,C)) is a subset of the set of clauses T7(A,||C||). In

=

particular, every refutation of T(A, C) in every “reasonable” propositional proof system

can be transformed (by applying o) into a refutation of T(A, ||é|\) in the same system,
which is simpler w.r.t. any “reasonable” complexity measure.

Proof. Let o(ys,) def Y|jv||» Where ||v]| is the function computed by the gate v. O



74 ALEKHNOVICH, BEN-SASSON, RAZBOROV, AND WIGDERSON

2.3.3. Linear encoding. This encoding makes sense only when the functions g;
are Fo-linear forms (for historical reasons, this special case of NW-generators is often
referred to as Nisan generators). In some cases it is more economical than functional
encoding in terms of the number of variables. Also, it is much better structured, and
we will take advantage of this in section 4.

DEFINITION 2.5. Let A be an (m x n) 0-1 matriz. For every J C [n] such that
Ji € [m](J C Ji(A)), we introduce a new extension variable y; (with the intended
meaning yg ~ ®jesr;). Let Varsg(A) be the set of all these variables.

Given a Boolean vector b € {0,1}™, we denote by 7¢(A,b) the CNF in the vari-
ables Varsg(A) that consists of the following clauses:

1. yjll \VERRRY, yf]j whenever there exists i € [m] such that Jy U---U Jg C J;(A),
the symmetric difference Jy I\ --- A\ Jq is empty, and €, D --- P ég = 1;
2. yzi(A) for alli € [m].
Let us denote by ¥;(A,b;) the Boolean function B¢ 5, (4)2; © b;.
FACT 5. 75(A4,b) is satisfiable if and only if the system X1(A,b1) = Xo(A, be) =
- =3 (A,by) =1 of linear equations over Fo is consistent.

Proof. The proof follows from the observation that the conjunction of clauses

yjll VoV yf]‘; for all & ® --- ® €4 = 1 is semantically equivalent to the formula

@?:1 Y, = 0. O
FACT 6. There exists a substitution o of variables from Varsg(A) by variables

Jrom Vars(A) such that o(1e(A,b)) is a subset of the set of clauses T(A, % (A, b)) Lef

T(A, El(A, bl), ZQ(A, bQ), ey Em(A, bm))
Proof. o(yy) def 7y o |

It might be instructive to look at the place occupied in our framework by original
Tseitin tautologies (cf. Examples 1 and 5). Let Ag be the incidence matrix of an undi-
rected graph G. Then our framework provides three different ways? to talk of Tseitin
tautologies for graphs G of arbitrary degree. All these possibilities are reasonable in
the sense that although the resulting CNF 7 may have a huge size, it always possesses
a sub-CNF of polynomial size that is still unsatisfiable. The fourth (unreasonable!)
encoding is primitive: we allow no extension variables at all and simply represent the
functions X;(A, b;) themselves as CNFs of exponential size. For graphs of bounded
degree (which is the only case researchers were interested in prior to this paper), the
subtle differences between the four encodings disappear, and the whole rich spectrum
of various possibilities collapses into ordinary Tseitin tautologies.

In fact, the unreasonable primitive encoding can in principle be considered in the
framework of our paper as well. Namely, as we will see in section 5, good (r, s, ¢)-
expanders exist even for large constants s (say, s = 10). And for constant values of s,
results proved in any of our reasonable encodings can be translated to the primitive
encoding with only constant time increase in the size of the tautology. The primitive
encoding, however, is very counterintuitive to the main idea that the base functions
g; should be hard for the circuit class underlying our propositional theory, and to the
hope of using these tautologies for stronger proof systems. For this reason we do not
discuss in this paper either the primitive encoding itself or the trade-off between the
tautology size and the bounds appearing in this encoding when s — oo.

3For circuit encoding we must additionally fix some natural circuits computing the functions
3i(A, by).



PSEUDORANDOM GENERATORS IN PROOF COMPLEXITY 75

2.4. Propositional proof systems.

2.4.1. Resolution. Resolution is the simplest and probably the most widely
studied proof system. It operates with clauses and has one rule of inference called the
resolution rule:

AVzx Bvz
AV B

A resolution refutation of a CNF formula 7 is a resolution proof of the empty clause
from the clauses appearing in 7.

The size of a resolution proof is the number of different clauses within it. The
width w(C) of a clause C is the number of literals in C. The width w(7T) of a set of
clauses T (in particular, the width of a resolution proof) is the maximal width of a
clause appearing in this set.

The story of propositional proof complexity began some 35 years ago when, in
the seminal paper [Tse68], Tseitin proved superpolynomial lower bounds on the size
of any resolution refutation of (what was afterwards called) Tseitin tautologies under
one extra regularity assumption on the structure of refutation. Haken [Hak85] was
the first to remove this restriction and prove exponential lower bounds for general
resolution (for the pigeonhole principle). Urquhart [Urq87] proved exponential lower
bounds on the size of general resolution refutations for Tseitin tautologies.

Ben-Sasson and Wigderson [BW99], strengthening a result from [CEI96] (cf. sec-
tion 2.4.2 below), proved the following width-size relation.

PROPOSITION 2.6. Let 7 be an unsatisfiable CNF in n variables that has a res-
olution refutation of size S. Then T has a resolution refutation of width at most
w(r) + O(ynTog 3).

[BW99] also established a linear lower bound on the width of resolution refutation
for Tseitin tautologies. In combination with Proposition 2.6, this gave an alternate
(and much simpler) proof of the size lower bound from [Urq87].

2.4.2. Polynomial calculus and PCR. Polynomial calculus, introduced by
Clegg, Edmonds, and Impagliazzo in [CEI96], is a proof system that models common
algebraic reasoning. Despite its algebraic nature, polynomial calculus (PC) turned
out extremely useful for studying “pure” propositional proof systems.

PC operates with polynomials P € F[zq,...,z,] for some fixed field F'; a poly-
nomial P is interpreted as, and often identified with, the polynomial equation P = 0.
PC has polynomials 27 — z; (i € [n]) as default azioms and has two inference rules:

&l P2 e F (scalar addition)
— «, scalar addition
OéPl + ﬁPQ

and

—F (variable multiplication).
A PC refutation of a set of polynomials I" is a PC proof of 1 from I'. The degree
of a PC proof is the maximal degree of a polynomial appearing within it. The size of
a PC proof is the total number of monomials within the proof.
First nontrivial lower bounds on the degree of PC refutations were proved by
Razborov [Raz98] (for the pigeonhole principle). Grigoriev [Gri98] proved linear lower
bounds on the degree of Nullstellensatz refutations (which is a subsystem of PC)



76 ALEKHNOVICH, BEN-SASSON, RAZBOROV, AND WIGDERSON

for Tseitin tautologies. Finally, Buss et al. [BGIP01] extended the latter bound to
arbitrary PC proofs. Following [BGIP01] and the research whose outcome is presented
in this paper, Ben-Sasson and Impagliazzo [BI99] further simplified this argument and
derived linear degree lower bounds for random CNFs.

[CEI96] proved that small size resolution proofs can be simulated by low degree
PC proofs (Proposition 2.6 is a later improvement of this result). [IPS99] observed
that the same simulation works also for small size polynomial calculus proofs.

Motivated in part by this similarity, [ABRWO02] proposed considering the following
natural system PCR extending both PC and resolution. PCR operates with polynomi-
als P € Flzy,...,%n, %1, -, Zn], where Ty, . .., T, are treated as new formal variables.
PCR has all default axioms and inference rules of PC (including, of course, those that
involve new variables Z;), plus additional default axioms x; + Z; = 1 (i € [n]). The
size and degree of a PCR proof are defined in the same way as for PC. It should be
noted that there is not much sense in giving a separate definition for the degree of
PCR proofs since the linear transformation z; — 1 — z; takes a PCR, proof to (essen-
tially) a PC proof while preserving degree. This system, however, becomes extremely
convenient when it is the number of clauses which matters (see [ABRW02]).

PCR is an extension of PC by definition. Also, PCR extends resolution via the
following translation. For a clause C, let C;. [(C_)] be the set of positive (respectively,
negative) literals appearing within it. Then a CNF formula 7 gets translated into the

set of polynomials T'; defined by I'; %' {(Ilzec_ 2 Iliec, ©)IC € 7} Clearly, 7 is
satisfiable if and only if I'; has a common root in F' satisfying all default axioms

2 a2 o o
(6) P =@y T =T v+ T = 1.

Moreover, it is easy to see that every width w size S resolution refutation of 7 can
be transformed into degree (w + 1) size O(nS) PCR refutations of the associated
set of polynomials I'; (cf. [BG99, section 5]). For ease of notation, we will omit the
translation and define a PCR refutation of a CNF 1 as a PCR refutation of I';. A
PC refutation of T is a PC refutation of the set of polynomials

(7) IV [M=J[-2]|cer

zeC_  zeCy

obtained from I'; by the linear transformation z; — 1 — x;.

In fact all our lower bounds for PC hold also for PCR, so we will usually use the
translation to PCR and prove PCR lower bounds which imply the hardness for PC.

[ABRWO02] observed that the two simulations from [CEI96, IPS99] can be merged
into one, as follows.

PROPOSITION 2.7. Let T" be a system of polynomials in the variables x1,. .., Ty,

Z1,-..,Tpn that have no common roots in F satisfying all default azioms (6), and let
e

) o max {deg(P)| P € T'}. Then every size S PCR refutation of I can be trans-
formed into another PCR refutation of T that has degree at most d(I')+O(y/nlogS).

3. Lower bounds on width and degree in the functional encoding. In
this section we establish strong lower bounds on the resolution width and PC degree
in the most general functional encoding, and we derive from them some size lower
bounds. Our results in this section can be viewed as a far-reaching generalization of
the corresponding lower bounds for Tseitin tautologies from [BW99, BGIP01].



PSEUDORANDOM GENERATORS IN PROOF COMPLEXITY 77

But first a word about important and less important parameters. The parameters
s, ¢, of the defining tautologies will feature in most of the calculations. (Recall that
s is the number of 1’s in each row of the matrix A, which is also the number of
arguments to each function g;; ¢ is the expansion factor of the matrix A; and ¢ will
lower bound the robustness of the g;’s.) We will show in section 5 that almost all
matrices satisfy ¢ > 0.9s. Similarly, most functions satisfy ¢ > 0.9s. Assuming this,
Theorems 3.1 and 3.7 provide Q(r) lower bounds on the width of resolution and degree
of PC, respectively. (Recall that r is the key parameter defining what size sets expand
and can be taken to be essentially n/s; see section 5 for details.) Our corollaries for
the size lower bounds implied by the width and degree lower bounds will be stated
(for simplicity) only for this situation.

THEOREM 3.1. Let A be an (r, s, c)-expander of size (mxn), and let g1, ..., gm be
C-robust functions with Vars(g;) C X;(A), where c4+£ > s+ 1. Then every resolution
refutation of T(A, g) must have width > w.

Proof. The proof follows the ideology developed in [BW99]. We define a measure
1 with subadditive growth on the clauses, and we show that the measure of the empty
clause is large (u(0) > 7); hence there must be a clause with medium size measure
(r/2 < u(C) <r). We show that such a clause must have large width.

Fix an (r, s, c¢)-expander A of size (m x n) and ¢-robust functions g1, ..., g, with
Vars(g;) € X;(A), where c+ ¢ > s+ 1.

DEFINITION 3.2. For C a clause in the variables Vars(A), define u(C) to be the
minimal size of I C [m] such that the following pair of conditions hold:

(8) Vys € C Jiel (Vars(f) C X;(A));
9) {g:lie I} EC.
Cram 3.3.
. r(c+l—s
1. For a clause C with r/2 < u(C) < r, w(C) > %.
2. u(0) > r.

Proof. Part 1. Let I be a set of minimal size satisfying Definition 3.2. Since
[I| < r, we get |0a(I)] > ¢+ |I|. Let us partition I into Iy, any minimal subset
satisfying (8), and I; = I'\ Iy. Notice that by the minimality of I, removing any row
from I; will ruin property (9).

We claim that for any i1 € I, J;, (A) has small intersection with 94(I). Namely,

(10) |Ji, (A) NOA(I)] < s — L.

Indeed, as we note above, {g;|i € I'\ {i1}} ¥ ||C||. Let a be any assignment
such that g;(a) =1 (i € I\ {i1}) but ||C||(«r) = 0. Let p be the restriction given by

et [ a(z;) if j & 0a(I) N Ji, (A),
plx;) = { *xif j € gA(I)% Ji, (4).

Then, since p is totally defined on Vars(g;) for i # i1, and also on Vars(||C||) (by
(8) and 41 & Iy), we have g;i|, = 1 (¢ # 1) and C|, = 0. Hence, using (9), we
conclude that g;, |, = 0. Since g;, is f-robust and |J;, (4)| < s, this implies the desired
inequality (10).



78 ALEKHNOVICH, BEN-SASSON, RAZBOROV, AND WIGDERSON

Now we may sum up:
- |1 <10a(1)]
< s [lo[+ (s = O[N]
= (s = Ol + - |Io]
<(s=O||+¢-w(C),

(11)

which implies w(C') > W. Recalling that |I| > r/2, we get our bound. Part 1
is proven.

Part 2. Suppose the contrary, that is, 4(0) < r. Then we can repeat the first
part of the above argument (since that part did not use the condition |[I| > r/2) and
still get (11). But now Iy = ), and hence (11) alone implies a contradiction with the
expansion property. This proves part 2. 1]

CLAM 3.4. Any resolution refutation of 7(A,J) must include a clause C with
r/2 < p(C) <r.

Proof. p is subadditive; i.e., if C' was derived from Cy, Cy by a single resolution
step, then p(C) < u(Co) + u(Ch). Additionally, for any axiom C, u(C) = 1. The
statement now follows from Claim 3.3(2). ad

Theorem 3.1 is immediately implied by Claims 3.4 and 3.3(1). a

In order to see which size lower bounds are implied by Theorem 3.1 via Proposition
2.6, we consider only the typical (and most important) case c+£¢—s = Q(s), for which
our width lower bound is Q(r).

COROLLARY 3.5. Let € > 0 be an arbitrary fized constant, let A be an (r,s,€s)-
expander of size (mxn), and let g, ..., gm be (1—€/2)s-robust functions. Then every
resolution refutation of T(A,§) must have size eXp(Q(#;ZS))/QS.

Proof. Fix a resolution refutation of 7(A, §) that has size S. It is easy to see that
every axiom in 7(A, §) contains a subclause of width < 2¢ which is also an axiom of
T(A4, §). Moreover, this latter clause can be easily inferred in O(2°) steps from those
axioms in 7(A4, §) that have width < 3. This allows us to replace the original refuta-
tion by a refutation that may have a slightly bigger size O(S - 2°) but uses only those
axioms from 7(A, §) that have width < 3. In this new refutation we infer all clauses of
7(A, §) that were used in the original refutation from width 3 clauses and then apply
the original refutation itself. Hence, by Proposition 2.6, 7(A, §) also has a resolution
refutation of width O(y/|Vars(A)|-log(S - 2%)) < O(y/m - 22° -log(S - 2%)). Compar-
ing this with the lower bound of Q(r) that comes from Theorem 3.1, we finish the
proof of Corollary 3.5. 0

We can obtain much better size lower bounds (i.e., get rid of the disappointing
term 22" in the denominator) for the circuit encoding. We further confine ourselves

to the optimal case when the circuits Cy, ..., Cy, have size O(s).
COROLLARY 3.6. Let € > 0 be an arbitrary fized constant, let A be an (r, s, €s)-
expander of size (m x n), and let C1,...,Cy, be single-output Boolean circuits over

arbitrary fixed finite basis such that C; is a circuit of size O(s) in the variables X;(A),
and all functions ||C;|| are (1 — €/2)s-robust. Then every resolution refutation of

(A, C) must have size exp(Q(%)).

Proof. By Fact 4 and Theorem 3.1, every resolution refutation of 7(A, é) must
have width Q(r). Since |[Varsz(A)| < O(ms), the required bound immediately follows
from Proposition 2.6. O

Our second major result in this section generalizes the bound from [BGIPO1].

Unfortunately, it also inherits all the limitations of their technique: essentially the



PSEUDORANDOM GENERATORS IN PROOF COMPLEXITY 79

only base functions g1, . .., g, we can handle are Fo-linear forms, and for char(F) = 2
our approach fails completely (cf. [Gri98]). On the positive side, note that although
we do require the linearity of the base functions, the bound itself still holds for the
most general functional framework.

THEOREM 3.7. Let A be an (r, s, ¢)-expander of size (m xn), and let by, ..., by, €
{0,1}. Then every PCR refutation of T(A,i(A,b)) over an arbitrary field F with
char(F') # 2 must have degree > 15.

Proof. As the first step toward proving Theorem 3.7, we show one simple reduction
to a lower bound problem about PC refutations in the original variables x1, ..., T,.
This step is very general and does not depend on the linearity of the base functions
Gi-

DEFINITION 3.8. For a Boolean function f(x1,...,xy), Pr(z1,...,2,) is the
(unique) multilinear polynomial such that

_J 0if fla) =1,
Pf(o‘)_{ Lif f(a)=0

for all o € {0,1}™.

LEMMA 3.9. For any (m x n) 0-1 matrix A and any functions g1, ..., gm with
Vars(g;) C X;(A), every degree d PCR refutation of (A, ) can be transformed into
a PC refutation of the system

(12) P,=---=P,

91 gm = 0

(in the original variables x1,...,x,) that has degree < s -d.

Proof of Lemma 3.9. Let us consider some PCR refutation 7 of 7(A, §). Substitute
in 7 the polynomial Pye(z1,...,z,) for every variable y§5. Since deg(Pye) < s for any
f(x1,...,x,) such that Vars(f) C X,;(A) for some i € [m], the degrees of all lines
resulting from this substitution are at most s - d. Moreover, any axiom from 7(4, §),
as well as default axioms, gets transformed into a polynomial P such that for some
i € [m] P contains only variables from X;(A) and is a semantical corollary of Py,
on {0,1}%:(4). Hence, it can be inferred from P, in degree < s using only variables
from X;(A). Appending these auxiliary inferences to the beginning of the transformed
refutation m, we obtain the required PC refutation of the system (12). Lemma 3.9 is
proved. a

Thus, in order to complete the proof of Theorem 3.7, we should establish the ¢
lower bound on the degree of any PC refutation 7 of the system (12) for g; = ¥;(A4, b;).

The proof is based on the connection between PC degree and Gaussian width
found in [BI99]. With this connection in hand, we may quote here, word for word,
Theorem 3.3 from [BI99], plugging in our current parameters.

THEOREM 3.10. For A an (r, s, c)-expander, {g;} linear equations mod 2, and F
a field of characteristic # 2, any PCR refutation of Py, = --- = P, =0 has degree
> e,

4T heorem 3.7 follows. ]

COROLLARY 3.11. Let € > 0 be an arbitrary fized constant, let A be an (r, s, €s)-
expander of size (m x n), and let by,... b, € {0,1}. Then every PCR refuta-
tion of 7(A,%(A,b)) over an arbitrary field F with char(F) # 2 must have size
exp(55a)) /2

Proof. The proof is identical to that of Corollary 3.5, using Proposition 2.7. O

COROLLARY 3.12. Let € > 0 be an arbitrary fized constant, let A be an (r,s,€s)-

expander of size (m X n), let by,..., by € {0,1}, and let C1,...,Cy be single-output



80 ALEKHNOVICH, BEN-SASSON, RAZBOROV, AND WIGDERSON

Boolean circuits over an arbitrary fized finite basis such that C; is a circuit of size
O(s) in the variables X;(A) that computes the function ¥;(A,b;). Then every PCR
refutation of 7(A,C) over an arbitrary field F with char(F) # 2 must have size
exp(2(755))-

Proof. The proof is identical to that of Corollary 3.6, using Proposition 2.7. 0

4. Size lower bounds for linear encoding. In this section we show better
lower bounds (although our requirement on the expansion rate is somewhat stronger)
on the size of PCR refutation for the more structured linear encoding than those
provided by Corollaries 3.11 and 3.12. We will apply the random restriction method
for killing large clauses rather than directly referring to the general degree/size relation
from Proposition 2.7. In this sense our approach is similar in spirit to that of [BP96].

THEOREM 4.1. Let A be an (r, s, %s)—expander of size (mxn), and let by, ..., by, €

-,

{0,1}. Then every PCR refutation of 7¢(A, b) over an arbitrary field F with char(F) #
2 must have size exp(Q(T2 ).

m
Proof. As the first step toward proving Theorem 4.1, we show how to get rid of
the variables y; for large (= of size > s/2) sets J. For technical reasons, we also
switch during this step from the linear encoding to the functional one.
DEFINITION 4.2. For an (m X n)-matriz A, the set of variables Varsg(A) C

Vars(A) consists of those yr € Vars(A) for which f has the form EBJ-GJ xj. Also let

Varse(A) % {y@ ) € Varss(4)17] < 5/2}.

jeg

Ta(A,b) (respectively, 7o (A,b)) is the set of those azioms in T(A,%(A, b)) that
contain variables only from Varsg(A) (respectively, from VET/S@(A)).

It is worth noting that 74, (A, b) possesses the following clean algebraic description:
if g; = Xi(a,b;), and fi,..., f, are Fao-linear forms, then (5) holds if either the system
of linear equations f; = €1,..., fu, = &, is inconsistent or the vector space spanned
by these equations contains g;.

LEMMA 4.3. Suppose that A is an (2, s, %s)-ewpander, Then every PCR refutation
of T¢(A,b) can be transformed into a PCR refutation of 7g(A,b) that has the same
size.

Proof of Lemma 4.3. For every two distinct rows i1 and io we have |04 ({i1,i2})| >
35, which implies |J;, (4) N J;, (A)| < s/2. Hence, for every J C [n] with |J| > s/2
there can exist at most one row i € [m] such that J C J;(A). Therefore, the mapping

| Yeaieny IS 572
YJ y@{zjljequ(A)\J}@bi if |J| > s/2 and J C J;(A)

is well-defined. Tt is easy to see that it takes every axiom from 74(A,bd) to an axiom
from 7 (A, b), which proves Lemma 4.3. |

Now, for a monomial m = yi: ...y in the variables 1757:9@(14), we define its
A-degree deg 4(m) as the minimal cardinality of a set of rows I with the property
Vars(fi)U---UVars(fa) € U;c; Xi(A). The A-degree of a polynomial is the maximal
A-degree of a monomial within it, and similarly the A-degree of a PCR proof is
the maximal A-degree of a polynomial within it. The following lemma rephrases
Theorem 3.7 for deg 4.



PSEUDORANDOM GENERATORS IN PROOF COMPLEXITY 81

LEMMA 4.4. Let A be an (r,s,c)-expander of size (m X n), and let by, ..., by, €
{0,1}. Then every PCR refutation of T(A,E(A,b)) over an arbitrary field F with
char(F') # 2 must have A-degree > 75.

Proof of Lemma 4.4. The only difference from Theorem 3.7 is that we consider
here A-degree instead of an ordinary one. It is easy to see by inspection that this
change does not affect the reduction in Lemma 3.9, and the same proof applies here
as well. ]

Lemmas 4.3 and 4.4 determine the strategy of the rest of the proof (cf. [BP96]).
We want to hit the prospective refutation of 74 (A, b) by a random restriction p in such
a way that p preserves the structure of 7(A, $(A, b)) and, if the size of the original
refutation is small, with a high probability also kills all monomials in the variables
%@(A) that have high A-degree.

DEFINITION 4.5. For a set of rows I, let us denote by My the set of all restrictions
p such that p=1({0,1}) = U,c; Xi(A) and p satisfies all equations ;(A,b;) = 1 for
allte .

Note that if [I| < r, then, since A is an (r,s, %s)—expander, the linear forms
D{zjlz; € Xi(A)} = 5;(A,b;)) @ b; (i € I) are linearly independent (because each
of its subsets has a form that contains a boundary variable) and thus M is a nonempty
linear subspace.

Let A|; be the result of removing from the matrix A all rows ¢ € I and all columns

J € Uier Ji(A). Any restriction p € My can be naturally extended to the variables

from Vars(A) by letting p(yy) Lef Yy|,- p takes variables from Vars(A) to variables

from Vars(A|r). Moreover, those y; for which 3i € I (Vars(f) C X;(A)) are set to
a constant. Finally, p always takes axioms from 7(A, §) to axioms from 7(A|r,d],).
The only remaining problem is that A|; may not inherit good expansion properties:
it is easy to get an example showing that it may even contain an empty row! We
circumvent this difficulty by further removing all rows that have large intersection
with (J;c; Ji(A) and show in the following lemma that this can always be done in an
efficient manner.

LEMMA 4.6. Let A be an (r, s, c)-expander. Then every set of rows I with |I| <
/2 can be extended to a larger set of rows I D I such that |I| <2 |I| and Alj is an
(r,8,3c — 2s)-expander.

Proof of Lemma 4.6. Let us recursively add to I new rows (one row ig at a time)
with the property |J;,(A4) N (U;cp Ji(A))| > 2(s —c), where I' is the current value of
I. We claim that this process will terminate (i.e., no new row can be added) in less
than |I| steps.

Suppose the contrary, and let I be the set of cardinality 2 - |I| reached after |I]
steps. Then every row ig € I\ I contains less than |J;, (4) — 2(s —¢)| < (2¢ — s)
boundary elements from 94 (I). Hence, [04(I)] < s - |I| + (2¢ — s) - |I| = 2¢ - |I], a
contradiction.

We choose as our I the result of termination of this process. Let Iy be a set of
rows in Al; (e, I NI = @) of cardinality at most 7. Then 9a1;({o) = 0a(lo) \
Ui Ji(A). Since for every i € In, |Jiy(A) N (U7 Ji(A))] < 2(s — ¢), we have the
bound |01, (Io)] > 0a(To)| — 2(5 — ) - [To] > ¢+ |Tol — 2(5 — o] = (3¢ — 2s) - |To].
Lemma 4.6 is proved. 0

Now we are ready to finish the proof of Theorem 4.1. Fix a PCR refutation =
of 7 (A,b). Assume w.l.o.g. that 18 divides r, and pick at random a set of rows
I of cardinality r/3 (we are using boldface to stress that it is a random variable).



82 ALEKHNOVICH, BEN-SASSON, RAZBOROV, AND WIGDERSON

Choose arbitrarily I D I according to Lemma 4.6, i.e., such that |I] < Z and Alf
is an (r, s, s/4)-expander. Pick p € M} at random, and apply this restriction to our
PCR refutation 7. This will produce a PCR refutation p(7) of 74 (A|j, p(Z(A,b))).
By Lemma 4.4 (with ¢ = s/4), p(7) must contain a nonzero monomial p(m) of A|j-
degree > r/18. Thus, 7 contains a monomial m that has A-degree > r/18 and is
not killed by p. In order to finish the proof, we only have to estimate from above the
probability P[p(m) # 0] for every individual monomial m with deg,(m) > r/18.

Fix any such m = y% ...y%, and recall that fi,..., fq are Fo-linear forms
of weight < s/2. W.l.o.g. assume that fi,..., f; form a linear basis of the space
Span(fi,..., fa). Then U!_, Vars(f,) = Uﬁzl Vars(f,) and, therefore, deg,(y5, ...
y}) = deg,(m) > r/18. Hence, w.l.o.g. we can assume from the very beginning that
fi,-.., fa are linearly independent.

Let us now introduce one variation of the notion of A-degree. Namely, for m =
Yy, let deg’; (m) be the minimal cardinality of a set of rows I such that these
rows “cover” m in the stronger sense for all v € [d]3i € I(Vars(f,) C X;(A)). Clearly,
deg ,(m) < deg’y(m) (and < deg(m)). Also, deg’y is “continuous” in the sense that for
every monomial m, and for every variable y5, deg’y (m) < degf‘l(m'y}) < deg’y(m)+1.
Therefore, we can gradually remove variables from the monomial m, one variable at
a time, until we find in it a submonomial m’ such that deg’,(m’) is ezactly equal
to r/18. For ease of notation, assume w.l.o.g. that deg’y(m) = r/18 for the original
monomial m.

Fix now any set of rows Iy with |Ip| = /18 and such that

(13) Vo € [d] Ji € Iy (Vars(f,) C Xi(A)).

We estimate the probability P[p(m) # 0] as follows:

7,.2
< _ = 11.
Plo(m) #01 < P|lfon 1] < |+ max Plom) 0/ =1]
110112 15

Since |Io| = r/18 and |I| = r/3, we can estimate the first term by Chernoff inequality
as

r2

100m

(14) P {|IO NnI|< } <exp (—Q(r*/m)) .

For estimating the second term, fix any individual I such that |I| = r/3 and
2

[ToNI| > 155> and let IDIbea corresponding set of rows satisfying the conclusion

of Lemma 4.6. We want to estimate P[pf(m) #* 0], where p; is picked at random
from M; (thus, p; is a random variable that results from p after revealing I=1.

Let I) = IoN 1, I} = {i1,...,i¢}; £ > r2/100m. Since I is minimal with the
property (13), for every v € [(] we can choose f € {f1,..., fa} such that Vars(f) C
X, (A) but Vars(f) € X;(A) for any other i € Iy. Hence, we can assume w.l.o.g.
that Vars(f,) C X;, (A) forv=1,..., L.

Now, let Vg def Span(fi,..., f¢) be the Fa-linear space generated by the linear

functions fi,...,fs, and let V <ef Span({@jeJi(A) zli € f}) P[pf(m) #O} <
Plp;(y5 - yy,) # 0], and the latter probability is less than or equal to 2~ (Vo:von?)

(here (Vo : Von V) def dim(Vp) — dim(Vy N V) is the standard codimension of linear



PSEUDORANDOM GENERATORS IN PROOF COMPLEXITY 83

spaces). To see this, note that p; gives {0, 1}-values to all variables of fi,..., fi.
Let k= (Vo : Vo N V) We can choose k linear forms fi,, fiy,---, fix € {f1,---, fe}
such that the family f;,,..., fi, is linearly independent modulo V. Then the values
p;i(fi.),...,pi(fi,) are independent, and each equal 0 with probability 1/2. Thus,
the probability that no yy, is killed is less than or equal to 27k,

~ Clearly, 2_(V0:V0mz) = gdim(VonV)—¢, Hence, we only have to upper bound dim (VN
V). Let us denote by I the set of all rows i € I which appear with coefficient a; # 0
in at least one sum of the form

(15) @O&i . @ Zj
iel j€Ji(A)

e

that happens to belong to Vo, and let V+ &' Span ({B;e s, a) it € It}). Then
VoNV CVonV+ by our choice of I, and dim(Vo N V) < dim(V+) < |It].

In order to bound from above |I*|, we apply the expansion property to Iy U I+
(its cardinality does not exceed r/18+42r/3 < r). We get |94 (I UIT)] > 3s. LUt
Note that rows from 1T\ I}, may not contain elements from 84 (I}UI1) at all; otherwise,
the corresponding variable would not cancel out in the sum (15), and this would
prevent the latter from being in Vj (note that for any form f € Vh, Vars(f) C
Uiel(’) Xi(A))~

The key observation is that every row i, from It n Iy may also contain only
a relatively small number of boundary elements, namely, at most (s/2). Indeed,
[Vars(f,)| < s/2 (see Definition 4.2). Therefore, if J;, would have contained > s/2
boundary elements, then at least one boundary variable z; € X;, (A4) would not
belong to Vars(f,), and would once more prevent the sum (15) from lying in Vj
(since j belongs to the boundary, z; may not occur in other forms appearing in this
sum).

Summing up the above remarks, we have the upper bound |94 (I;UIT)| < s-|I}\
I*|+ 5 - |Ij N I*|. Comparing it with the lower bound given by expansion, we get

3 R . R .
Ss e [IGU T < 104G I < s 1\ T+ 5 - 1 N 1),

3 R R . N
s (I + I\ IF]) < s 1\ EF|+ 5 - 1 n 17,
and
3 1 . s .
13|I+| S 3% TG\ 17| + 3 [N IT],

which implies || < 21| = %.

Therefore, dim(Vo N V) < % and P[p;(m) #0] < 2743 < exp (—Q (r?/m)).
Together with (14) this implies P[p(m) # 0] < exp (—Q (r?/m)). Hence, 7 must
contain at least exp (Q (r?/m)) monomials (of A-degree > r/18) since otherwise we
could find a restriction p that kills all of them, contrary to Lemma 4.4. The proof of

Theorem 4.1 is complete. 0



84 ALEKHNOVICH, BEN-SASSON, RAZBOROV, AND WIGDERSON

5. Existence of strong expanders and hard generators. All our hardness
results in the previous two sections are based upon the notion of an (r, s, ¢)-expander.
As we noted in the introduction, one of our eventual goals is to be able to stretch n
seed bits to as many output bits m as possible so that the resulting generator is hard
for as strong propositional proof systems P as possible. In this section we will see
what I/O ratio we can achieve with the results from the two previous sections.

All explicit constructions of (r, s, ¢)-expanders that we know of are based upon
Examples 5 and 6 from section 2.1. Unfortunately, the resulting expanders turn out to
be virtually useless for our purposes since they cannot even break the barrier m = n.
Let us turn instead to a simple probabilistic argument. We note that in the context
of proof complexity, there is not much advantage in having explicit constructions of
hard tautologies over existence proofs.

THEOREM 5.1. For any parameters s,n there exists an (Q(n/s) .00/ g %s)-
expander of size (n? x n).

2

Proof. Let us construct a random (n? x n) matrix A as follows. For every

i € [n?], let J;i(A) dof {Ji1, -, Jis}, where all j;,, (i € [n?],v € [s]) are picked from

[n] independently and at random (in fact, we would also obtain the same result by
letting J;(A) be uniformly and independently distributed over all s-subsets of [n], but
with our choice of J;(A) calculations become simpler). We wish to show that

P[A is not an (r, s, 3s/4)-expander| < 1

for some r > Q(n/s) -n~°1/%). Let p; be the probability that any given £ rows of the
matrix A violate the expansion property. Then, clearly,

(16) P[A is not an (r, s,3s/4)-expander| < anzm.
=1

Fix an arbitrary I of cardinality £ < r. Since every column j € (J;c; Ji(A)\9a(I)
belongs to at least two sets J;(A), we have the bound |U;c; Ji(A)| < |8a(1)] +
1 (Xier 1Ji(A)] = 0a(I)]) < 3(st + |0a(l)]). Hence 9a(I) < 3s¢ implies also
Uier Ji(A)’ < Zst, and py can be estimated by the union bound as

pe < (g’;) - (;f) < (O(st/n))*"/® < (O(sr/n))*/%.

Substituting this bound into (16), we obtain

T sl/8
(17) P[A is not an (r, s, 3s/4)-expander| < n2t. (O (%)) .
(=1

The sum in the right-hand side is the geometric progression with the base n? -

(O(sr/n))¥®). Hence, if 7 = (en/s) - n=1/*¢ for a sufficiently small € > 0, the right-
hand side of (17) is less than (1/2), which completes the proof of Theorem 5.1. d
COROLLARY 5.2. There exists a family of (m x n) matrices A"™™ such that for
every b= (b, ...,by) € {0,1}™, any PCR refutation of (A S(A™™) b)) over
an arbitrary field with char( ) # 2 must have size exp(%)
Proof. Since for m > n? the bound becomes trivial, we can assume that m < n?
Apply Theorem 5.1 with s = 3 1 1og, log, n, and cross out in the resulting matrix all



PSEUDORANDOM GENERATORS IN PROOF COMPLEXITY 85

rows but (arbitrarily chosen) m. This will result in an (r, s, 3s)-expander A™™) of

1=0(1/loglogn) " Now we only have to apply Corollary 3.11

size (m x n), where r > n
and notice that 22° = 2v1ogn < p1/loglogn O

Corollary 5.2 shows that in the functional encoding we can stretch n random
bits to n2~0(1/loglogn) bitg 5o that this generator will be hard for (polynomial size)
PCR proofs over an arbitrary field F with char(F) # 2. In particular, it is hard for
resolution.

COROLLARY 5.3. There exists a family of (m x n) matrices A™™ such that
| Ji (A(m’"))| < logyn for all i € [m], and for every b = (b1,...,bm) € {0,1}™ we
have the following bounds:

1. Let C4,...,C,, be single-output Boolean circuits over an arbitrary fized fi-
nite basis, where C; is a circuit of size O(logn) in the variables X;(A™™)
that computes the function X;(AU™™ b;). Then every PCR refutation of
(A" C) over an arbitrary field with char(F) # 2 must have size

2
eXP(Q(m))-
2. Every PCR refutation of T (A™ ™ b) over an arbitrary field with char(F) #

2 must have size eXp(Q(#;nP)).

Proof. The proof is the same as that of Corollary 5.2, only this time we let
s = logsn. Namely, Theorem 5.1 provides us with an (r,s, %s)—expander for r >
Q(n/logn). The proof now follows by Corollary 3.6 and Theorem 4.1. d

Corollary 5.3 allows us to construct generators that stretch m bits to m =
o(n?/(logn)*) bits in the circuit encoding, and to m = o(n?/(logn)?) bits in lin-
ear encoding, which are hard for polynomial size PCR proofs in odd characteristic.

6. Recent developments. Since the preliminary version of this paper (see Re-
port TRO0-23 of the Electronic Colloquium on Computational Complexity, and the
Proceedings of the 41st IEEE Symposium on Foundations of Computer Science) was
disseminated, many open problems presented there have been solved, and many other
related developments have occurred.

Alekhnovich and Razborov [AR01] extended our lower bounds for the PC degree
(Theorems 3.10 and 3.7) to a large natural class of base functions ¢1,...,¢gm. This
class is defined by the requirement that the ideal spanned by every individual g; does
not contain any nonzero multilinear polynomials of low degree.

The principles studied in this paper expressing that Nisan—Wigderson generators
are not onto bear a striking similarity to the pigeonhole principle PHP/™ (with the
same meaning of the parameters m,n). At the time this paper was written, one of
the most interesting open problems, both for NW-generators and for PH P, was to
break through the quadratic barrier m > n? for (at least) the resolution size. This
has been solved in both contexts.

The pigeonhole principle PH P!™ was the first to yield. Raz [RanRaz02] proved ex-
ponential lower bounds on the size of its resolution refutations when m > n. Razborov
[Raz02a] gave a simpler proof of a somewhat better bound that also holds for the more
general functional onto version of this principle.

The quadratic barrier for pseudorandom generators did not stand for much longer.
Razborov [Raz02b] constructed Nisan generators (that is, when the base functions g;
are Fy-linear forms) that allow m > n0egn) gutput bits and are exponentially hard
not only for resolution but also for its extensions Res(elogn) (operating with (elogn)-
DNF instead of clauses) and PCR when char(F) # 2.



86 ALEKHNOVICH, BEN-SASSON, RAZBOROV, AND WIGDERSON

Another question asked in the earlier version of our paper was whether any struc-
tural theory of pseudorandom generators is possible within the framework of proof
complexity. In particular, we asked whether it is possible to formulate and prove any
reasonable statement that would say, possibly in a restricted way, that the compo-
sition of hard generators is hard (for a given propositional proof system). This was
satisfactorily answered by Krajicek [Kra02], who showed that this is indeed the case,
provided hardness is replaced by a stronger notion of s-iterability (inspired by the
so-called counterexample interpretation).

It was also conjectured in the earlier version that such a composition result might
provide an alternate approach to the quadratic barrier problem (but for more com-
plicated generators). This has indeed turned out to be the case. Krajicek [Kra02]
proved (independently of [Raz02b]) that our generator from section 4 can be iterated
with itself once, which immediately allowed him to get as many as m = n3~¢ output
bits. The Nisan generator from [Raz02b] turned out to be particularly suitable for
Krajicek’s notion of s-iterability, and it can be composed with itself exponentially
many times while preserving hardness. In this way [Raz02b] constructed a function
generator with m = 2" outputs which is hard for Res(elogn) and for PCR with
char(F') # 2. Along the lines described in the discussion after Example 3, this imme-
diately implied that neither of these systems possess efficient proofs of NP ¢ P /poly
(the same conclusion for resolution had already followed from [RanRaz02, Raz02al).

Finally, [CRVW02] took an important step toward constructing explicit expanders
(called there and in [Raz02b] “lossless”) with very good expansion properties (even if
not sufficient yet for many of our purposes).

7. Open problems. As indicated in the previous section, the most intriguing
open problems asked by us in earlier versions have been solved. Some of them, how-
ever, remain open.

Can we reduce the devastating 22" factor in our size lower bounds for the func-
tional framework (Corollaries 3.5 and 3.11)? One way to approach this would be to
look for generalizations of the basic Proposition 2.6 that would take into account the
structure of the variables y; (which can be originally divided into m large groups).

Find explicit constructions of (r, s, ¢)-expanders with parameters that would be
sufficient for (at least some of) the applications in the current paper and in [Raz02b]
(as we remarked above, one step in this direction was made in [CRVWO02]).

The bound from [ARO1] on the PC degree mentioned in the previous section is
not entirely satisfactory since for this bound we need rather good expanders with the
expansion ratio ¢ > 3s/4. Can we improve it in such a way that it will work under
less restrictive conditions, such as similar bounds in Theorems 3.1, 3.7, and 3.107

More open problems representing the next generation of tasks faced by this theory
can be found in [Raz02b].

Acknowledgment. We are grateful to both anonymous referees for many useful
remarks.

REFERENCES

[ABRWO02] M. ALEKHNOVICH, E. BEN-SASSON, A. A. RAZBOROV, AND A. WIGDERSON, Space com-
plexity in propositional calculus, SIAM J. Comput., 31 (2002), pp. 1184-1211.

[Ajt83] M. AJTAI, E%-formulae on finite structures, Ann. Pure Appl. Logic, 24 (1983), pp. 1-48.

[ARO1] M. ALEKHNOVICH AND A. RAZBOROV, Lower bounds for polynomial calculus: Non-
binomsal case, Proc. Steklov Inst. Math., 242 (2003), pp. 18-35.



[Alo98]

[BENW93]

[BPY6]

[BP9S)

[BST98)

[BI199]

[BW99]

[BG9Y]

[BGIPO1]

[CEI96]

[CRVWO02]

[FSS84)

[Griog]

[Gri01]
(GZ97]
[Hak85)]
[Has86]

[TKWO1]

[IPS99]

[TW97]

[Kra97]

[Kra01]
[Kra02]

[N91]

[NW94]

PSEUDORANDOM GENERATORS IN PROOF COMPLEXITY 87

N. ALON, Spectral techniques in graph algorithms, in LATIN’98: Theoretical Informat-
ics (Campinas, 1998), Lecture Notes in Comput. Sci. 1380, C. L. Lucchesi and
A. V. Moura, eds., Springer-Verlag, Berlin, 1998, pp. 206-215.

L. BaBai, L. ForrNOow, N. NisaN, AND A. WIGDERSON, BPP has subexponential
time simulations unless EXPTIME has publishable proofs, Complexity, 3 (1993),
pp. 307-318.

P. BEAME AND T. Prrassi, Simplified and improved resolution lower bounds, in Pro-
ceedings of the 37th IEEE Symposium on Foundations of Computer Science, 1996,
pPp. 274-282.

P. BEAME AND T. P1TASsI, Propositional proof complexity: Past, Present, and Future,
Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, 65 (1998), pp. 66-89.

P. BEAME, M. SAKS, AND J. S. THATHACHAR, Time-space tradeoffs for branching pro-
grams, in Proceedings of the 39th IEEE Symposium on Foundations of Computer
Science, 1998, pp. 254-263.

E. BEN-SASSON AND R. IMPAGLIAZZO, Random CNF'’s are hard for the polynomial
calculus, in Proceedings of the 40th IEEE Symposium on Foundations of Computer
Science, 1999, pp. 415-421.

E. BEN-SASSON AND A. WIGDERSON, Short proofs are narrow—resolution made sim-
ple, in Proceedings of the 31st ACM Symposium on Theory of Computing, 1999,
pp. 517-526.

M. BONET AND N. GALESI, A study of proof search algorithms for resolution and poly-
nomial calculus, in Proceedings of the 40th IEEE Symposium on Foundations of
Computer Science, 1999, pp. 422-432.

S. Buss, D. GRIGORIEV, R. IMPAGLIAZZO, AND T. PITASSI, Linear gaps between degrees
for the polynomial calculus modulo distinct primes, J. Comput. System Sci., 62
(2001), pp. 267-289.

M. CLEGG, J. EDMONDS, AND R. IMPAGLIAZZO, Using the Groebner basis algorithm
to find proofs of unsatisfiability, in Proceedings of the 28th ACM Symposium on
Theory of Computing, 1996, pp. 174-183.

M. CAPALBO, O. REINGOLD, S. VADHAN, AND A. WIGDERSON, Randomness conductors
and constant-degree expansion beyond the degree/2 barrier, in Proceedings of the
34th ACM Symposium on the Theory of Computing, 2002, pp. 659-668.

M. FursT, J. B. SAXE, AND M. SIPSER, Parity, circuits and the polynomial time
hierarchy, Math. Systems Theory, 17 (1984), pp. 13-27.

D. GRIGORIEV, Tseitin’s tautologies and lower bounds for Nullstellensatz proofs, in
Proceedings of the 39th IEEE Symposium on Foundations of Computer Science,
1998, pp. 648-652.

D. GRIGORIEV, Linear lower bounds on degrees of Postivestellensatz calculus proofs for
the parity, Theoret. Comput. Sci., 259 (2001), pp. 613-622.

O. GOLDREICH AND D. ZUCKERMAN, Another Proof that BPPCPH (and More), Techni-
cal Report TR97-045, Electronic Colloquium on Computational Complexity, 1997.

A. HAKEN, The intractability or resolution, Theoret. Comput. Sci., 39 (1985), pp. 297
308.

J. HASTAD, Computational Limitations on Small Depth Circuits, Ph.D. thesis, MIT,
Cambridge, MA, 1986.

R. IMPAGLIAZZO, V. KABANETS, AND A. WIGDERSON, In search for an easy witness:
Ezxponential time vs. probabilistic polynomial time, in Proceedings of the 16th An-
nual IEEE Conference on Computational Complexity, 2001, pp. 2—12.

R. IMPAGLIAZZO, P. PUDLAK, AND J. SGALL, Lower bounds for the polynomial calculus
and the Groebner basis algorithm, Comput. Complexity, 8 (1999), pp. 127-144.

R. IMPAGLIAZZO AND A. WIGDERSON, P = BPP if E requires exponential circuits:
Derandomizing the XOR Lemma, in Proceedings of the 29th Annual ACM Sym-
posium on Theory of Computing, 1997, pp. 220-229.

J. KRAJICEK, Interpolation theorems, lower bounds for proof systems, and independence
results for bounded arithmetic, J. Symbolic Logic, 62 (1997), pp. 457-486.

J. KRAJICEK, On the weak pigeonhole principle, Fund. Math., 170 (2001), pp. 123-140.

J. KRAJICEK, Dual weak pigeonhole principle, pseudo-surjective functions, and prov-
ability of circuit lower bounds, J. Symbolic Logic, 69 (2004), pp. 265-286.

N. NISAN, Pseudo-random bits for constant-depth circuits, Combinatorica, 11 (1991),
pp. 63-70.

N. NisaN AND A. WIGDERSON, Hardness vs. randomness, J. Comput. System Sci., 49
(1994), pp. 149-167.



88

[RanRaz02]

[Raz95a]

[Raz95b]

[Raz96]

[Raz98]
[Raz02a]

[Raz02b]

[RR97]
[Tse68]
[Urq87]
[Yao82]

[Yao85]

ALEKHNOVICH, BEN-SASSON, RAZBOROV, AND WIGDERSON

R.

> >

RAz, Resolution lower bounds for the weak pigeonhole principle, in Proceedings of
the 34th ACM Symposium on the Theory of Computing, 2002, pp. 553-562.

. RAZBOROV, Bounded arithmetic and lower bounds in Boolean complezity, in Feasible

Mathematics II, P. Clote and J. Remmel, eds., Progr. Comput. Sci. Appl. Logic
13, Birkh&user Boston, Boston, 1995, pp. 344-386.

. RAazBOROV, Unprovability of lower bounds on the circuit size in certain fragments

of bounded arithmetic, Izv. Ross. Akad. Nauk Ser. Mat., 59 (1995), pp. 201-224.

. RAZBOROV, Lower bounds for propositional proofs and independence results in

bounded arithmetic, in Proceedings of the 23rd International Colloquium on Au-
tomata, Languages, and Programming, F. Meyer auf der Heide and B. Monien,
eds., Lecture Notes in Comput. Sci. 1099, Springer-Verlag, New York, Berlin, 1996,
pp. 48-62.

. RAZBOROV, Lower bounds for the polynomial calculus, Comput. Complexity, 7

(1998), pp. 291-324.

. RAzBOROV, Resolution lower bounds for perfect matching principles, in Proceedings

of the 17th IEEE Conference on Computational Complexity, 2002, pp. 29-38.

. RazBoroOvV, Pseudorandom Generators Hard for k-DNF Resolution and Polynomial

Calculus Resolution, manuscript; available online from http://www.genesis.mi.ras.
ru/ razborov, 2002.

. RAzZBOROV AND S. RUDICH, Natural proofs, J. Comput. System Sci., 55 (1997),

pp. 24-35.

. C. TSEITIN, On the complexity of derivations in propositional calculus, in Studies in

Mathematics and Mathematical Logic, Part II, A. O. Slissenko, ed., Consultants
Bureau, New York, London, 1968, pp. 115-125.

. URQUHART, Hard examples for resolution, J. ACM, 34 (1987), pp. 209-219.
. YAO, Theory and applications of trapdoor functions, in Proceedings of the 23rd

IEEE Symposium on Foundations of Computer Science, 1982, pp. 92—99.

. YAO, Separating the polynomial-time hierarchy by oracles, in Proceedings of the

26th Symposium on Foundations of Computer Science, 1985, pp. 1-10.



SIAM J. COMPUT. (© 2004 Society for Industrial and Applied Mathematics
Vol. 34, No. 1, pp. 89-108

ALGORITHMS FOR RH MAPPING:
NEW IDEAS AND IMPROVED ANALYSIS*

LARS IVANSSONT AND JENS LAGERGRENT

Abstract. Radiation hybrid (RH) mapping is a technique for constructing a physical map
describing the locations of n markers on a chromosome of an organism. In [J. Comput. Biol., 4
(1997), pp. 517-533], Ben-Dor and Chor presented new algorithms for the RH problem and gave the
first performance guarantees for such algorithms. We improve the lower bounds on the number of
experiments in a way that is sufficient for two of these algorithms to give a correct ordering of the
markers with high probability. Not only are the new bounds tighter, but our analysis also captures to
a much higher extent how the bounds depend on the actual arrangement of the markers. Furthermore,
we modify the two algorithms to utilize RH mapping data produced with several radiation intensities.
We show that the new algorithms are almost insensitive to the problem of using the correct intensity.

Key words. RH mapping, algorithms, performance bounds, multiple intensities
AMS subject classifications. 68Q25, 68W40

DOI. 10.1137/S0097539701388355

1. Introduction. Physical mapping is an important problem in large-scale se-
quencing of DNA as well as for locating genes. In RH (radiation hybrid) mapping, a
physical map describing the locations of n markers on a chromosome of an organism is
constructed. The markers can be genes or arbitrary DNA sequences, and the resulting
information consists of the relative order of these markers and the distance between
them on the chromosome. The RH mapping procedure can be divided into an experi-
mental and an algorithmic part. In the experimental part a series of RH experiments
is made, which yields pairwise distances between markers. In the algorithmic part an
algorithm generates a map of the markers, given these distances. Here, we study the
latter algorithmic part, called the RH problem.

There exist several algorithms for the RH problem. Most algorithms are heuris-
tics [4, 10, 13], but for a few algorithms theoretical results exist as well. In [2], for
instance, Ben-Dor and Chor presented three algorithms for the RH problem, together
with bounds on the number of experiments that is sufficient for the algorithms to
give the correct order of the markers in the map. In [7], an approximation algorithm
for the MATRIX-TO-LINE problem was used to generate a map from pairwise dis-
tances. Arrangements produced with this algorithm were shown to converge to the
true arrangements.

The three algorithms in [2] are called P-Order, K-Order, and MST-Order. The
traveling salesman problem (TSP)-based algorithm MST-Order was developed into
the program RHO [3], which has been even further developed using the combinatorial
optimization package CONCORDE [1]. TSP/CONCORDE has been compared to
other RH mapping software [8], and has been practically used to create RH maps for
the canine genome [6] as well as the feline genome [12]. In this paper we improve the
analysis of the other two algorithms: P-Order and K-Order, inspired by Prim’s and
Kruskal’s algorithms (see [5]), respectively. We obtain better lower bounds on the

*Received by the editors April 24, 2001; accepted for publication (in revised form) May 4, 2004;
published electronically October 8, 2004.
http://www.siam.org/journals/sicomp/34-1/38835.html
fStockholm Bioinformatics Center, Department of Numerical Analysis and Computer Science,
KTH, Stockholm, Sweden (ivan@nada.kth.se, jensl@nada.kth.se).

89



90 LARS IVANSSON AND JENS LAGERGREN

number of experiments sufficient to obtain the correct order of the markers with high
probability. Furthermore, our bounds capture the impact that the true arrangement
of the markers has on the performance of the two algorithms. In fact, it is possible
to construct instances for which the gap between our bound and the previous known
bounds are arbitrarily large. Our analysis also allows us to gain insight into the
question of for which arrangements the algorithms are likely to perform well and for
which arrangements they are more likely to fail. The improved analysis suggests that
the K-Order algorithm is the better of the two algorithms in most cases.

The new analysis of the P-Order and K-Order algorithms suggests that the use of
several intensities for the radiation in the RH experiments could improve the perfor-
mance bounds for the two algorithms. We propose modified versions of the P-Order
and K-Order algorithms, which allow for the use of RH data produced with several
intensities. We show that, given O(logn) series of experiments, using a range of inten-
sities, the dependency on the choice of intensity can be removed from the performance
bounds, under the assumption that the markers are uniformly distributed along the
chromosome. Although multiple intensity algorithms have been proposed before [11],
this is, to our knowledge, the first performance bound for such an algorithm.

2. The probabilistic model. A marker is a gene or an arbitrary DNA sequence
the presence of which can be detected in any DNA fragment via a laboratory test.
To obtain information about the order of and distance between a pair of markers
on a fragment of DNA, an RH experiment is performed. In an RH experiment the
chromosome is exposed to gamma radiation, which shatters it into fragments. Some
of the fragments are incorporated into (retained in) a hamster cell, which is grown
to yield a hybrid cell line. Cells from this cell line are then tested for the presence
of each DNA marker. The outcome of one experiment is represented by a vector in
{0,1}", where 1 in the ith position corresponds to the presence of the ith marker; the
outcome from m experiments is in the natural way represented by an m X n-matrix
consisting of 0’s and 1’s.

The probabilistic model as well as the notation used in this paper are the same as,
for instance, those used in [2] and [7]. We let A be the intensity of the gamma radiation
used in the RH experiment. We let p be the retention probability, i.e., the probability
that a fragment is incorporated into the hamster cell. To simplify the calculations in
section 4, we assume that this probability is independent of the radiation intensity. In
practice, the retention probability goes down when the intensity goes up. In testing
for the presence of a marker, we allow for errors. We let a be the probability of a false
positive answer, and (8 be the probability of a false negative answer. Furthermore, we
assume that the retention of the different fragments, as well as the tests for presence,
are independent events.

In [7] it was shown that, under this model, the separation probability for two
markers a and b is

(2.1) ap = 2pq(1 — e )(1 (o + B))* + g(a, B,p),

where ¢ = 1 — p, {4 is the distance between a and b, and

(2.2) 9(e, B,p) = 2p(a = B)(a+ 5 —1) +2a(l - a).

The separation probabilities can be estimated from a series of RH experiments. With



ALGORITHMS FOR RH MAPPING 91

Si(a,b) as the random variable defined by

(2.3) Si(a,b) = 1 ifa anc-l b are separated in experiment i,
0 otherwise,
fori=1,...,m, we get an estimate ¢, through
(24) b=+ 3 Si(a.b)
. 900‘,b—7n.71 i\a,0).

We note that this estimate is unbiased since E[pqb] = @qp- From (2.1), an expression
can be obtained for the distance between two markers as a function of the separation
probability. Using the estimates @, in this expression, we obtain estimates d(a, b)
of the physical distances between any two markers a and b, i.e.,

S Pap — 9(, B, )
(2.5) ﬂmw——AmC—@m@@+gw>'

However, we are not as interested in the estimated distance between two markers a
and b as in whether the estimated distance between them is greater than the estimated
distance between two other markers ¢ and d. Since the separation probability is
an increasing function of the distance, this is equivalent to the question of whether
Pa,p > Pec,a- More precisely, we are interested in the probability that this inequality
holds, given that d(a,b) > d(c,d). In this context it is natural to define a distance
comparator.

DEFINITION 2.1. A function C(a,b;c,d) from quadruples of markers to the set
of integers {—1,0,1} is a distance comparator if, for all choices of markers a, b, ¢,
and d,

1. C(a,b;¢c,d) = C(b,a;c,d),
2. C(a,b;c,d) = C(a,b;d, c),
3. C(a,b;c,d) 4+ C(c,d;a,b) = 0.

We should think of a distance comparator as any procedure that compares pairs
of distances between markers. If the procedure decides that the distance between
two markers a and b is greater than the distance between two other markers ¢ and d,
then C(a,b;c,d) = 1; if it decides that the distance between a and b is less than the
distance between ¢ and d, then C(a, b;c,d) = —1; and if it decides that the distances
are equal, then C(a,b;c,d) = 0.

The specific distance comparator induced by the distance estimate (Z(a, b) above
will be denoted C.

DEFINITION 2.2. Let d(x,y) be the distance estimate defined by (2.5). Define

1 ifd(a,b) > d(c,d),
(2.6) Cla,b;e,d) =40 ifd(a,b) = d(c,d),
-1 ifd(a,b) < d(c,d).

This means that C is the distance comparator used to compare distances in the
P-Order and K-Order algorithms. Using Definition 2.2, we can rewrite the probability

for which we want to find a lower bound as the probability that C(a, b; ¢, d) = 1, given
that d(a,b) > d(c, d).



92 LARS IVANSSON AND JENS LAGERGREN

As was pointed out above, the question of whether CA(a, b;c,d) = 1, given that
d(a,b) > d(c,d), is equivalent to the question of whether ¢q > (cq, given that
d(a,b) > d(c,d). This question bears close resemblance to the question of whether
the estimated separation probabilities are what Ben-Dor and Chor call consistent or
not [2]. The difference is that to show consistency, the inequality has to be true only
for the case when ¢ and d are consecutive in the true order and are located between
a and b. It turns out, however, that the calculations in [2] can be carried through in
this more general case as well.

LEMMA 2.3. Let a,b, ¢, and d be four markers such that d(a,b) > d(c,d). Then
(2.7) Pr [5((1,1); c,d) # 1] < 6_2mp2q2(1_(a+/8))4flab*(udvlcd()\)2,
where fo, 0,(A) = (1 — e~ M1)e Mz,

Proof. Let X;, ¢ = 1,...,m, be the random variables defined by X; = 1 if a,b
but not ¢, d are separated in experiment i; X; = —1 if ¢,d but not a, b are separated
in experiment ¢; and X; = 0 otherwise. We observe that if we let

m

(2.8) Y=Y X,

~

then ¢ p — @ed = Y/m. Hence Y > 0 if and only if C(a,b;¢,d) = 1. From (2.1) it
follows that

Pap = ea = 2pq(1 = (a+ )7 (1 — e Alarled)) =M
=2pq(1 — (a+ ﬂ))2f€ab*3cd7£cd (A),

which means that the expectation E[Y] can be written

(2.9)

E[Y] =m(¢ap — pe.d)
= 2mpq(1 - (O‘ + 6))2f€ab—€cd74cd (A)
Our aim is to bound the probability that ¥ < 0, given that E[Y] > 0, ie., the

probability that Y deviates from E[Y] toward zero by more than E[Y]. Since the
variables X; are independent, Hoeffding’s inequality [9] immediately yields that

(2.10)

2.11 Pr[EY] =Y > B[Y]] < 2P/
(2.11) — e—2mpzq2(1—((X+5))4fzabfzcd,zcd()\)2_ ]

The function fo, ¢, (A) can be given the following interpretation. If I and I, are
two intervals of length ¢; and /5, respectively, then

Pr[(at least one break occurs in I;) A (no breaks occur in 12)]

(212) _ (1 _ e_Azl)e_Ab - fh,@z (A)

This function will be explored in more detail later, but for now the following intuitively
obvious properties will be sufficient to carry through our derivations.

LEMMA 2.4. Let A > 0. If £ > {1 > 0, then fgng(A) > ffub(/\)' Ift > 05 >0,
then fll,l()‘) < fll,b (A) If gl > 62 > 0; then fZl,ZQ (A) > f22,41 (>‘)

Proof. Assume that A > 0. If £ > ¢; > 0, then

(213) fl,b ()‘) = (1 - e_)\e)e_)\@ 2 (1 - e_kél)e_/\ez = ffl,fz ()‘)



ALGORITHMS FOR RH MAPPING 93
It £ > ¢y > 0, then
(2.14) fro oW = (1 —e )M < (1 —eM)e™ 2 = f, 4, (A).
If ¢4 > ¢ > 0, then
(2.15) ooV =1 —eM)e™™2 > (1 —eM2)e™ M = £, (N). 0

3. An improved analysis of known algorithms. In [2], Ben-Dor and Chor
proposed two simple algorithms for the calculation of the marker order: the P-Order
and K-Order algorithms. In the P-Order algorithm a chain of markers is built in a
stepwise fashion. Initially, a chain is constructed by connecting the two markers with
the shortest estimated distance. Then, in each step of the algorithm, the marker with
the shortest estimated distance to any of the two ends of the chain is connected to
that end of the chain. In the K-Order algorithm, a collection of chains is maintained.
Initially there are n chains of length 1. Then, in each step of the algorithm, the two
endmarkers with the shortest estimated distance between them are connected.

It was shown in [2] that if 6pax and 6min are the longest and shortest, respectively,
distances between any pair of consecutive markers on the chromosome, then given

n? 1
(3.1) m > log <€> 2p%¢* (1 = (@ + B)* fomin b6max (A)?

experiments, the estimated distances are consistent with probability 1 — ¢, i.e., that
ci(a, d) > cz(b, ¢) for all markers a, b, ¢, and d, appearing in this order on the genome,
such that b and ¢ are consecutive and d(a,d) > d(b,c). Furthermore, they showed
that if the estimated distances are consistent, both the P-Order and the K-Order
algorithms yield a correct order of the markers. We prove new tighter bounds for
both the P-Order and the K-Order algorithms. These new bounds improve the above
bound, by taking into account the actual arrangement of the markers.

3.1. Analyzing the P-Order algorithm. In the P-Order algorithm one marker
at a time is added to the chain that is being built. In order to show correctness of
the P-Order algorithm we thus need to assert that, with high probability, a marker
adjacent to an endmarker of the chain is added to that marker in each step, i.e.,
that the estimated distance between the endmarker and the marker adjacent to that
marker is smaller than the estimated distance between the endmarker and any other
marker. The following definition will be useful for this purpose.

DEFINITION 3.1. A distance comparator C satisfies the P-0rder condition with
parameter v if, for any markers a, b, ¢, and d appearing in this order on the chro-
mosome such that b and ¢ are consecutive and d(a,d) > d(b,c), the probability that
Cla,d;b,c) =1 is at least 1 — .

Note the difference between the concept of consistency and the P-Order condition.
For a distance estimate to be consistent it is required that d(b,¢) < d(a,d) for all
markers a, b, ¢, and d appearing in this order on the chromosome such that b and ¢
are consecutive and d(a,d) > d(b,c). It turns out to be sufficient that the P-Order
condition hold for n? such quadruples of markers simultaneously, namely, the pairs of
distances actually compared in the algorithm.

THEOREM 3.2. If a distance comparator C satisfying the P-Order condition with
parameter v is used in the P-Order algorithm, then the P-Order algorithm will give
the correct order of the markers with probability greater than 1 — yn?.



94 LARS IVANSSON AND JENS LAGERGREN

Fic. 3.1. The kth step of the P-Order algorithm.

Proof. Let a be an arbitrarily chosen marker, and let b be the marker immediately
to the right of a. From the P-Order condition it follows that C(a,b;a,c) = —1 with
probability at least 1 —~ for any marker ¢ to the right of b. Since there are at most
n — 2 markers to the right of b, this means that, with probability at least 1 —~y(n—2),
C(a,b;a,c) = —1 for all markers c to the right of b. Let A; be the event that the first
two markers connected in the P-Order algorithm are adjacent, and let L(¢) be the
event that the ith marker is the leftmost marker of the two markers chosen. Then

Pe[A;] = i Pr[A; | L(3)] - Pr[L()]

>3 (15— 2)) - Pr[L(0)]
=1—-7(n-2).

Hence, the first two markers connected in the P-Order algorithm are adjacent with
probability > 1 —y(n — 2).

Now, assume that the P-Order algorithm has correctly constructed a chain con-
sisting of k markers (k > 2). Let a be the left endpoint of the chain, and let b be the
right endpoint of the chain. Finally, let ¢ be the marker immediately to the right of
b; see Figure 3.1. From the P-Order condition it follows that C(b,¢;b,d) = —1 with
probability > 1 — v for any marker d to the right of ¢. Furthermore, it follows that
C(b,c;a,d) = —1 with probability > 1 — ~ for any marker d to the right of b. The
same derivations can obviously be carried through for the markers to the left of a.

In the kth step of the algorithm (k > 2) there are n — k nonconnected markers.
Let Ax be the event that a marker adjacent to one of the endmarkers of the chain is
connected to that endmarker in step k. Let L be the event that the new marker is
added to the left endmarker of the chain, and let R be the event that the new marker
is added to the right endmarker of the chain. Then

PI‘[Ak | Al,... ,Ak,ﬂ = PI‘[Ak | L,Al,... ,Akfl] PI‘[L ‘ Al,... ,Akfl]
-l—PI'[Ak | R,A4,... ,Ak,ﬂ PI"[R | Al,... ,Akfl]

(3.3) >(1—2y(n—k))-Pr[L|Ay,..., Ap_1]
+ (1 — 2’7(71— ki)) PI'[R | A17~-~ 7Ak—1]
=1-2v(n—k).

We thus conclude that if only adjacent markers have been connected in the first k£ —1
steps of the P-Order algorithm, then the marker being connected to an endmarker in
the kth step is adjacent to that marker with probability > 1 — 2v(n — k).

If we sum up all steps of the algorithm, including the first step, we get an upper



ALGORITHMS FOR RH MAPPING 95

bound on the error probability e:

n n—1
(3.4) e<~vy(n—2)+ 227(71 —k) < Z 2vj = yn(n — 1) < yn?.
k=2 j=1

We have thus shown that with probability greater than 1—~n? the P-Order algorithm
gives the correct order of the markers. a

Now, we will show how to find an expression for the parameter in the P-Order
condition such that the distance comparator C satisfies the P-Order condition. This
expression will obviously be heavily dependent on how the markers are arranged on
the chromosome, as well as on the radiation intensity used in the experiment.

DEFINITION 3.3. Define the function fy(X) as
(35) fp()‘) = 11/<n7;i£n{fzi—1,i,zi,i+l ()‘)a fei,i+1yei71,i()\)}'

LEMMA 3.4. Given m experiments, the distance comparator 5, defined in Defini-
tion 2.2, satisfies the P-0rder condition with parameter

(3.6) e 2mp*a* (1= (a+6) fr(N)*

Proof. Let a, b, ¢, and d be four markers appearing in this order on the chromo-
some; assume that b and ¢ are consecutive and that d(a,d) > d(b, ¢). Without loss of
generality we assume that d # c¢. Let e be the marker immediately to the right of c.
Note that e may be identical to the marker d. Now, it follows from Lemmas 2.3 and
2.4 that

~

Pr[Cla, d;b,c) # 1] < =20 0 (1= (@40) Frog=tyetn (V)
(3.7) — o 2mP* (1= (a+8) fece 0, (V)?

< e 2mP* P (1= (0t ) fo(N)?

where the last inequality follows from the fact that the markers b, ¢, e are consecutive,
together with Definition 3.3. Hence, for any four markers a, b, ¢, and d appearing in
this order on the chromosome such that b and ¢ are consecutive and d(a, d) > d(b, ¢),

(3.8) Pr[C(a,d;b,c) = 1] > 1 — ¢ 2" A=t/ KN

If we use Lemma 3.4 in combination with Theorem 3.2, we get the following
theorem, which gives an upper bound on the number of experiments that is sufficient
for the P-Order algorithm to give the correct order of the markers.

THEOREM 3.5. Given

n2 1
(3.9) m > In (6> 2p2¢2(1 — (a + B))4 fo(N)2

experiments, the P-Order algorithm gives the correct order of the markers with prob-

ability greater than 1 — €.
Proof. From Lemma 3.4 it follows that with

2

n 1
(3.10) m = () 2p%¢2(1 — (a + 0))*f(N)?

experiments, C satisfies the P-Order condition with parameter < ¢/n%. By Theo-
rem 3.2, this implies that the P-Order algorithm will give the correct order of the
markers with probability greater than 1 — e. |




96 LARS IVANSSON AND JENS LAGERGREN

Liy1 Ri
—_—— —_——~
—————0—0 0000 — 90— 00000 ——— 0 —
Lint i i1 R,
— —_—
L R
Oit1 0;

F1c. 3.2. Notation used in the analysis of the K-Order algorithm.

3.2. Analyzing the K-Order algorithm. In the K-Order algorithm the two
markers with the shortest estimated distance are joined in each step. This suggests
that sequences of tightly packed markers surrounded by long distances probably will
be connected to each other before any of the markers are connected to surrounding
markers that are far away. This will greatly facilitate the objective of correctly order-
ing the tightly packed markers, since in this case we just have to order the distances
between the surrounding markers and the ends of the chain, instead of the distances
between the surrounding markers and the individual markers in the cluster. In or-
der to analyze the algorithm rigorously we will use the following notation (for an
illustration, see Figure 3.2).

DEFINITION 3.6.

(3.11) L; = max ({k k<ilp_1p> 5‘21} U {1}) ,

(3.12) R; = min <{k k>0 g > g;l} U {n}) ,

(3.13) Li={j:Li<j<i—1}, Ri={j:i+1<j<R;},
(314) m; = max({ﬂj_m : j S Lz} U {éj,j—‘rl j € Rl}),

i—2 R;—1
L R
(3.15) of =ligi+ Y Ly, off =lis1ipat+ D L
j=Li+1 j=it2

The idea is thus to make sure that before we connect the markers 7 and i + 1, all
short edges to the left of ¢ and to the right of ¢ + 1 are connected. To capture this
idea we define what we call the K-Order conditions, which have two parameters.

DEFINITION 3.7. A distance comparator C satisfies the K-Order conditions with
parameters v and ( if

1. for any markers a, b, ¢, and d appearing in this order on the chromosome
such that b and ¢ are consecutive, d(a,d) > d(b,c), and d ¢ Ry or a ¢ L., the
probability that C(a,d;b,c) =1 is at least 1 —~y;

2. for each a € [2,n] and b € L, the probability that C(a — 1,a;b —1,b) =1 is
at least 1 — (;

3. for each a € [1,n—1] and b € R, the probability that C(a,a+ 1;b,b+1) =1
is at least 1 — (.

It turns out that if a distance comparator satisfies these K-Order conditions, then
it is possible to show that the K-0Order algorithm using this distance comparator will
find the true order of the markers with high probability.

THEOREM 3.8. If a distance comparator C satisfying the K-Order condition with
parameters v and ( is used in the K-Order algorithm, then the K-Order algorithm will



ALGORITHMS FOR RH MAPPING 97

o e

a ) c d
FiG. 3.3. A step in the K-Order algorithm.

give the correct order of the markers with probability greater than 1 — 2yn? — (n2.

Proof. We say that a distance comparator C is L-closed if, for all a € [2,n] and
be L., we have C(a — 1,a;b — 1,b) = 1; analogously, we say that C is R-closed if, for
alla € [1,n—1] and b € R,, we have C(a,a+ 1;b,b+ 1) = 1. This means that if C is
L-closed and if the K-Order algorithm has only connected adjacent markers, then all
markers in £, will be connected before the markers a — 1 and a are connected to each
other. Analogously, if C is R-closed and if the K-Order algorithm has only connected
adjacent markers, then all markers in R, will be connected before the markers a and
a + 1 are connected to each other.

To prove the theorem, we will therefore show that if the distance comparator C,
used in the K-Order algorithm, satisfies the K-Order conditions with parameters ~
and (, then

1. C is L-closed and R-closed, with probability at least 1 — (n?;
2. if C is L-closed and R-closed, then only adjacent markers will be connected
by the K-Order algorithm with probability at least 1 — 2yn?2.

From the K-Order conditions it follows that for any marker a and any marker
be Ly, Cla—1,a;b—1,b) = 1 with probability at least 1 — (. There are at most (%)
pairs of markers altogether, so with probability at least 1—(n?/2, C(a—1,a;b—1,b) = 1
for all markers a and all markers b € L,. Hence, C is L-closed with probability at least
1 —¢n?/2. Analogously, from the K-Order conditions it follows that for any marker a
and any marker b € Ry, C(a,a+1;b,b+1) = 1 with probability at least 1 — . Hence,
with probability at least 1 — (n?/2, C(a,a + 1;b,b+ 1) = 1 for all markers a and all
markers b € R,. Thus, C is R-closed with probability at least 1 — (n?/2 as well. To
sum up, this means that C is L-closed and R-closed with probability at least 1 — (n?.

Now, assume that the K-Order algorithm has connected only adjacent markers
in its first £ — 1 steps and that C is L-closed and R-closed. Let ¢; be the leftmost
chain that is connected in the kth step. Let a and ¢ be the left and right endpoints,
respectively, of the chain ¢, (note that in the singleton case c is identical to a). Let d
be the marker immediately to the right of ¢, and let e be any free marker to the right
of d; see Figure 3.3. Notice that, since C is R-closed, no free marker to the right of
d belongs to R.. From the K-Order condition it thus follows that C(c,d;¢c,e) = —1
with probability > 1 — . For the same reason, in the case where a and c are distinct,
the K-Order condition implies that C(c, d;a,e) = —1 with probability > 1 — . Since
C is L-closed, a does not belong to L4, which means that if ¢ and ¢ are distinct,
C(e,d;a,d) = —1 with probability > 1 — v as well.

Let e, be the number of endmarkers in the kth step. In the case where a and ¢ are
distinct, the number of endmarkers not belonging to ¢, is e — 2, and the probability
that an adjacent marker is connected to ¢, is > 1 — 2y(ex, — 2), given that ¢, is the
leftmost chain in the connection. In the case where a and ¢ are identical, the number of
endmarkers not belonging to ¢y is ex — 1, so the probability that an adjacent marker is
connected to ¢g is > 1—(er — 1), given that ¢, is the leftmost chain in the connection.
Since 1 —2y(er, —2) <1 —y(ep — 1) for e > 3, we thus conclude that the probability
that an adjacent marker is connected to ¢, is > 1 — 2y(ex, — 2), given that ¢, is the



98 LARS IVANSSON AND JENS LAGERGREN

leftmost chain in the connection.

Let Ay be the event that two adjacent markers are connected in the kth step, and
let L(7) be the event that the ith chain from the left is chosen as the leftmost chain
in the connection. Then

PI'[Ak |A1, . ,Akfl]

n—k+1
= > Pr[Ax|L(i),Ar,... , Apa] -Pr[L(i) | Ay, .. Ago]
(3.16) =t .
> (1—2y(ex—2)) Y Pr[L(i)| A, ..., A1
=1—2v(er — 2).

We know that the number of endpoints in step k is at most twice the number of
chains in step k, i.e., at most 2(n — k + 1). If we sum up the error probabilities for
the k — 1 steps of the algorithm, we get an upper bound on the error probability e for
the K-Order algorithm, given that C is £-closed and R-closed:

n—1 n—1
(3.17) €< Z 2y(ex, — 2) < Z 4y(n — k) = 2yn(n — 1) < 2yn?.
k=1 k=1

Let A be the event that the K-Order algorithm gives a correct order of the markers.
What we have shown is that

(3.18) Pr[C is L-closed A C is R-closed] > 1 — (n?
and that
(3.19) Pr[A | C is L-closed A C is R-closed| > 1 — 2vyn?.

Hence the probability that K-Order gives the correct order of the markers is

Pr[A] > Pr[A A (C is L-closed A C is R-closed)]
(3.20) > (1 —2yn?)(1 — ¢n?)
>1—2yn? — (n?. 1]

The number of experiments required to make the distance comparator C satisfy
the K-Order conditions is naturally dependent on how the markers are arranged on
the particular chromosome. Using the distances defined in Definition 3.6, we find
expressions for the parameters v and  such that the distance comparator C satis-
fies the K-Order conditions.

DEFINITION 3.9. Define the functions fiy(X) and fic(N) as

20 fo ) =min{ v (fos, OV, i o O}

2<i<n— 1<i<n—
(3'22) ka()‘) = 1<Iiréi7111—1 {féi,i+1_mi,m'i ()‘)}7
Lis1UR;#0D

and let fk()‘) = min{fk'y(A% ka()‘)}



ALGORITHMS FOR RH MAPPING 99

LEMMA 3.10. Given m experiments, the distance comparator 5, defined in Defi-
nition 2.2, satisfies the K-Order condition with parameters

(3.23) v = e—2mp2q2(1—(a+5))4fka,(>\)2 and ¢ = e—QmP242(1—(a+5))4fk<(>\)2.

Proof. Lemma 2.3 states that for any four markers a, b, ¢, and d such that

d(a,d) > d(b,c)
(3.24) Pr[é\(a, d;b,c) # 1] < e~ 2P 1=+ 8) fr gty V)

Let a, b, ¢, and d be four markers appearing in this order on the chromosome, and
assume that b and ¢ are consecutive, that d(a,d) > d(b, c), and that d ¢ R;. If we let
e = Ry, it follows from Lemma 2.4 and Definition 3.6 that

-~

Pr[Cla, d;b,c) # 1] < e 20" 0= (@t fepgtetre V)
(3.25) < 2P @* (1= (a+8)) " foy 20,0, (V)

—2mp®¢®*(1—(a+8)* for ,, (A)?
=e b tbe .

In a similar way we can show that if a ¢ L., then

-~

(3.26) Pr[Cla, d;b,c) £ 1] < e 2™ T A g 4, V)

Hence, from Definition 3.9 it follows that, for any four markers a, b, ¢, and d appearing
in this order on the chromosome such that b and ¢ are consecutive, d(a,d) > d(b, ¢),
and either d ¢ Ry, or a ¢ L.,

~

(3.27) Pr[C(a,d;b,c) =1] > 1— e~ 2mp?a* (1= (a+B))* firy (V)? |

Let a € [2,n] be an arbitrary marker, and assume that b € £,. From Lemma 2.4,
Definition 3.6, and Definition 3.9 it follows that

Pr[g(a —1l,a;b—1 b) # 1] < 6_2mp2q2(1_(a+5))4f2a—1‘a’lb—l,b’fb—l,b()\)z
(3.28) < 6*27”1’2‘12(1*(0“rﬁ))4fea,La—ma,l,ma,l(>\)2

< e—2mp*q* (1=(a+8))" fic(V)?
In the same way it is possible to show that for any a € [1,n — 1] and b in R,

Pr[Cla,a+ 13b,b+ 1) # 1] < ¢~ 20" (=@t e i1 —mama )7

3.29
(3.29) < e 2P’ (1-(a+8) iV g

If we use Lemma 3.10 in combination with Theorem 3.8, we get the following
theorem, which gives an upper bound on the number of experiments that is sufficient
for the K-Order algorithm to give the correct order of the markers.

THEOREM 3.11. Given

4n? 1
(3.30) m > In <6> 2p2¢%(1 — (a + 3))* f(N)?

experiments, the K-Order algorithm gives the correct order of the markers with prob-
ability greater than 1 — €.




100 LARS IVANSSON AND JENS LAGERGREN

Proof. From Lemma 3.10 it follows that with

4n? 1
(3.31) m 2 In (6) 2p2¢2(1 — (a + B))* fr(N)?

experiments, C satisfies the K-Order condition with parameters v < €/4n? and ¢ <
¢/4n?. By Theorem 3.8, this implies that the K-Order algorithm will give the correct
order of the markers with probability greater than 1 — e. ]

4. New multiple intensity algorithms. It is clear from the bounds in Theo-
rems 3.5 and 3.11 that the number of experiments needed for the P-Order and K-Order
algorithms to compute the correct marker order is heavily dependent on the radiation
intensity used, or more precisely, on the relation between intensity and the distances
compared given by the function fy, s, (A). Here we present the Modified-P-Order
and Modified-K-Order algorithms which are able to use RH data from several series
of experiments, performed with different intensities of the radiation. We show that
if the output from O(log(n)) series of experiments with suitably chosen intensities
is used, the dependency on the intensity of the radiation can be removed from the
performance bounds if we assume that the markers are uniformly distributed.

In each step of both the K-Order and P-Order algorithms, we look for the mini-
mum distance in a set of given distances (between pairs of markers ¢;). This is done
through a sequence of pairwise comparisons between separation probabilities. In the
Modified-P-Order and Modified-K-Order algorithms, each such comparison is made
with the estimates calculated from the series of experiments giving the greatest differ-
ence in the estimated separation probabilities for the two pairs of markers. We thus
get the following distance comparator.

DEFINITION 4.1. Let A = (Ay,...,\:) be the intensities used in the t experiment
series, and let ciA (z,y) be the distance estimate obtained by applying the distance
estimate defined by (2.5) to the data from series i. For any four markers a, b, ¢, and
d, let X\ be the intensity mazimizing the difference in separation probability between a,
b and ¢, d among the t intensities \;. Define

1 if cf;\(a, b) > d
(4.1) Ceala,bye,d)=¢0  if af;\(a,b) = cZ;(c, d),
—1 ifds(a,b) <d

The use of this distance comparator is motivated by Lemma 2.3 and (2.1). Lem-
ma 2.3 states that if a, b, ¢, and d are four markers such that d(a,b) > d(c, d), then
Pr [d(a,b) < d(e, d)] < e=OUta—teatca®™?) . This means that we get the best bound
for the error probability when using the intensity A that maximizes fo,, —¢.,.0., ().
Unfortunately, this value is unknown, since the distances between the markers are
unknown. However, (2.9) implies that the difference in separation probability between
a, b and ¢, d is proportional to fs,,—¢.,.0.,(A); we would thus expect the optimal
intensity to be the one maximizing this difference.

To analyze the modified algorithms, we will start by showing an upper bound on
the probability of misjudging a pair of distances when using the distance comparator
C¢.x. This bound will be similar to the bound in Lemma 2.3.

Assume that two series of RH experiments have been made, each consisting of m
experiments. In the first series the intensity A\; was used, and in the second series the
intensity A was used. For i = 1,... ,m and j = 1,2 we define X] =1 if a,b but not



ALGORITHMS FOR RH MAPPING 101

¢, d are separated in the ith experiment of series j; Xij = —1 if ¢,d but not a,b are
separated in the ith experiment of series j; and X;] = 0 otherwise. Furthermore, for
7 =1,2, we let

(4.2) Y, =Y X/
=1

Equation (2.10), states that in this case

(4.3) BlY;] = 2mpq(1 — (o + B))* ey —teatea(Ng)-

Assume that d(a,b) > d(c,d), and that Y3 > 0, i.e., that the series of experiments
using intensity A; has given the correct ordering of the distances. We will bound the
probability that, in the algorithm, the results from the second series of experiments
will mislead us into drawing the incorrect conclusion about the two distances d(a,b)
and d(c,d). This will happen when Y3 < —Y7, i.e., when Y7 + Y5 < 0. Let

m m
(4.4) Z=Y X'+ X}=Yi+Y,
1=1 =1

Since d(a, b) > d(c,d), it is clear that
(4.5) E[Z] = E[Vi] + E[Y3] > 0.
Using the Hoeffding inequality and (4.3), we see that

E(Z)-7 _ E[Z]
2m ~ 2m
< e 2BI2P/8m _ —2AEMI+E[V2])?/8m

Pr[Z < 0] =Pr[E[Z] — Z > E[Z]] =Pr
(4.6)

— e—mPQCIZ(l—(@+5))4(flub—tzcd,lud A+ Fe g bg (A2))? ]

This inequality will be used to prove the following lemma.
LEMMA 4.2. Let a,b,c and d be four markers such that d(a,b) > d(c,d). Then

(4.7) Pr[Cae(a, b e,d) # 1] < te™ P 0 A= (@) ey —reqnea A
where \* is the intensity mazimizing fo,,—e.,.0.,(A) among the t intensities A1,... , A\
mn A.

Proof. Let B be the event that the decision based on the series of experiments
using intensity A* is incorrect, and let By be the event that the series of experiments
using intensity \* is correct but some other series is chosen and the decision based on
that series is incorrect. From Lemma 2.3 follows that

(4.8) Pr[B,] < e 2mPa (1= +0) fegy —tegrtea V)
and from (4.6) follows that

(4.9) PT[BQ] < Z 67mp2q2(17(a+6))4(f£ab7£cdvecd(A*)+f£ab*£cdvecd,()‘i))2'



102 LARS IVANSSON AND JENS LAGERGREN

This means that

Pr[Cx.(a,b;c,d) # 1] < Pr[B;] + Pr[Bi]

< 6—27"';02(12(1—(04+5))4flab7/zcd,zcd (A*)?

(4.10) -+ Z e_mPqu(l_(a+ﬁ))4(fzah*4cdlcd(/\*)""féab*fedlcd(/\i))z
AiEA
< te*mpzqz)(1*(a+5))4feab—ecd,ecd(A*)Z_ 0

To eliminate the dependency on the intensity A from the bound in Lemma 4.2
we need to investigate the function fg, ¢,(A\) in more detail. Differentiation of the
function fg, ¢, (A\) with respect to A yields that

(4.11) dfél(’iié;(/\) — (gl +£2)e—>\(51+52) _ £2€—A€27
2
(4.12) %}’\Z;(A) = _(el + €2)26—>\(21+52) + E%e—)\b.
We observe that
Q 1 1+ 4o
4.1 =1
(4.13) A==

is the only stationary point for fo, »,(A) when ¢1,¢ > 0, and that this stationary
point is in fact a maximum since

~ %)
d?fe, 0,(N) Ly o
4.14 2 = il | ——
(4.14) 2 12(€1+€2) <0

for ¢1,¢5 > 0. Furthermore, we see that the corresponding optimal value is

Lo
. 4 b "
415 A= |
( ) f@l,ég( ) <£1+€2> (51 +€2>

If an intensity \is sufficiently close to the optimal intensity 5\, the value of fy, 0, (5\)

should not be too far from the optimal value fo, ¢, (A). The following lemma states
that for A € [A\/2,2A] a lower bound on f, 4, (X) can be given that is independent of
the intensity.

LEMMA 4.3. Let \ be the unique optimum for fores(N), d.e.,

¢ 1 i+t
4.1 =—1
(4.16) A 7 n 0
Then, for any \ € [5\/2, 25\],
~ 1 2
4.1 > — .
( 7) f@hfz (A) = 9¢2 gl +£2

Proof. Since fg, ¢,(A) has a single stationary point which is a local maximum, we
know that for any A such that A € [A\/2,2)],

(418) ffl,fz (5‘) > min {f&,fz <;\> 7fl1,42 (25‘)} :



ALGORITHMS FOR RH MAPPING 103

From the definition of fg, ¢, () it follows that for any k& > 0

(4.19) for oo (kX) = (1 + 2) <1 — (1 - é €2>k> .

Since we know that (1 + 1/2)7% > e=* for > 0, this means that

o 6o\"

If we insert k = 1/2 and k = 2 into this equation and use the inequality

(4.21) min{l — (1 — 2)%,1 — (1 — 2)"/2} zg

for 0 < x < 1, we thus get that

1 4

(422) fel ‘62( ) — 262 el +£2

Lemma 4.3 implies that by using a range of intensities, the choice of intensities is
eliminated completely from the bound in Lemma 4.2.

LEMMA 4.4. Let a, b, ¢, and d be four markers such that d(a,b) > d(c,d). Let
A=(A1,...,\), where \; = 4\;_q, for 2 <i <t. Let \ be the intensity mazximizing
fton—tontoy(N), and assume that Ay < X\ < A;. Then,

—mp?q?(1-(a+5))* (‘abrted)’
(4.23) Pr[Cx(a,bjc,d) # 1] < te 2%ty /o

Proof. By assumption, the intensities used in the ¢ series will satisfy ;41 = 4\,
fori =1,...,t — 1. Since the optimal intensity A satisfies \; < A < A, this means
that there is some intensity A € {\;} such that A/2 < A < 2). Let A* be the intensity
maximizing fe,, —¢.,.0.,(A) among the ¢ intensities A1,... , A;. Then, from Lemma 4.3
it follows that

3 éab - écd
(4'24) feab—fcmfcd (/\*) 2 ffab—ecd,fud(/\) 2 W
€“Lab

If we use this inequality in Lemma 4.2, we get that

Pr[Cxi(a, b ¢, d) # 1] < te™ "¢ A0 ewy—teqitca W
4.25
(4.25) —mptet (-0 (miet)

< te

To be able to use Lemma 4.4 in the same way as we used Lemma 2.3 in the
proof of the original P-Order and K-Order algorithms, we need to make sure that the
optimal intensity \ satisfies A\; < A < ¢, for all parameters ¢; and ¢5 of the function
foy 6,(A) considered in the analyses. The following lemma shows that the constraint
on the optimal intensity can be transformed into a constraint on the two parameters
¢ and £5.

LEMMA 4.5. Let £1 and £y be two distances such that 0 < Ly < €1,0y < lax,
and let X be the optimal value of fo, ¢,(N). Then A € [In2/max, I 2/min].



104 LARS IVANSSON AND JENS LAGERGREN

Proof. Above, we observed that fy, 4,()\) is maximized by A = In((¢1 +£2)/£2) /(1.
Differentiation yields that

dx 1 1 0
(4.26) dty e%(r+@wl n( +&>>’
d\ 1
42 AR
(4.27) T YN

It follows immediately from (4.27) that s decreasing when ¢ is increasing. To see
that A is also decreasing when ¢; is increasing, we observe that

d 1 1 1
4.2 2 _m - —
(4.28) dx (1+1/:c n( +x)) (1+2)2 1+=x <0,

for x > 0, and that

Hence, if 0 < lpin < ¢1,02 < lpax, we are guaranteed that In2/lp., < A<
1n2/€min. 0

If we look carefully at the analyses of the P-Order and K-Order algorithms, we
observe that the parameters ¢; and ¢ of the function fy, ¢, () always are less than or
equal to the longest distance between any pair of markers, and greater than or equal to
the shortest distance between any pair of markers. The longest distance between any
pair of markers can obviously be bounded by the length of the genome. Furthermore,
if we assume that the markers are uniformly distributed along the genome, we can
derive a probabilistic lower bound on the shortest distance between any two markers.

LEMMA 4.6. Let L be the length of a genome containing n uniformly distributed
markers. Then the distance between any two markers is at least L/(2n*%%), with
probability 1 —n=9.

Proof. Divide the genome into 2n%*° disjoint intervals, each of length L/(2n2+9).
Define the (Z) random variables X;; in the following way:

1 if ¢ and j are in the same or neighboring subintervals,

0 otherwise.

(4.30) X = {

Since the markers are assumed to be uniformly distributed, we know that

3
Let
(4.32) Y => X
i<j

It is clear that Y > 1 if and only if some pair of markers are in the same or neighboring
subintervals. From the Markov inequality it follows that

n 3 1
Hence, the distance between any two markers will be at least L/(2n%%%), with prob-
ability 1 —n=%. O



ALGORITHMS FOR RH MAPPING 105

4.1. Analyzing the Modified-P-Order algorithm. The similarity between
the bound in Lemmas 2.3 and 4.4 makes it possible to carry through derivations
similar to those in section 3. The role of the intensity-dependent function f,(\) will
be played by the function f; defined below.

DEFINITION 4.7. Define the parameter f; as

(4.34) f = min {6&'1,@' liig1 }

A b
1<i<n | £i—1 441 Lic1,i41

LEMMA 4.8. Assume that n markers are uniformly distributed along a chromo-
some of length L. Assume thatt = [(146/2)log(n)+3/2] series of experiments have
been made, each consisting of m experiments using intensities X = (A1, ..., \), where
\i =471 In2/L. Then, with probability greater than 1 —n~%, the distance comparator
Cx+ satisfies the P-Order condition with parameter

(4.35) te—mp2q2(1—(a+ﬂ))4(§2)2'

Proof. From Lemmas 4.5 and 4.6 follows that, with probability greater than
1—n~?%, the optimal intensities ;\, for all choices of /1 and 5 such that £, < f1,05 <
L, will satisfy \e [A1, A¢], where £1,;, is the shortest distance between any two markers
and t is chosen as above.

Let a, b, ¢, and d be four markers, appearing in this order on the genome, such
that b and ¢ are consecutive and d(a,d) > d(b,c). Without loss of generality, we
assume that d # c. Let e be the marker immediately to the right of ¢. Note that e
may be identical to the marker d. Then, under the condition above, it follows from
Lemma 4.4 that
—mp?q? (1 (a+8))* (et e )

202054

Pr[CA7t(a, d; b, c) # 1} <te
(4.36) < te—mp2q2(17(a+ﬁ))4(%eﬁbe)2

< et a 1=t (35)
where the last inequality follows from the fact that the markers b, ¢, e are consecutive,
together with Definition 4.7. ]

THEOREM 4.9. Assume that n markers are uniformly distributed along a chromo-
some of length L. Assume thatt = [(146/2)log(n)+3/2] series of experiments have

been made using intensities X = (A1, ..., \t), where \; = 4~ 1In2/L, each consisting
of
tnz) 4et
4.37 m>In| —
37 20 (%) s AT

experiments. Then the Modified-P-Order algorithm, i.e., the P-Order algorithm
using the distance comparator Cx ., gives the correct order of the m markers with
probability greater than 1 — e —n=°.

Proof. From Lemma 4.8 it follows that, given

n2 4et
(4.38) m > In (e> P21 — (a+ )4 (fz)°




106 LARS IVANSSON AND JENS LAGERGREN

experiments, the distance comparator Cy ; satisfies the P-Order condition with param-
eter < ¢/n? with probability greater than 1 —n"° By Theorem 3.2, this implies that
the P-Order algorithm using this distance comparator will compute the correct order
of the markers with probability greater than 1 — e. Hence, the Modified-P-Order
algorithm will compute the correct order of the markers with probability greater than
1—e—n=°. ]

4.2. Analyzing the Modified-K-Order algorithm. The equivalents of the
functions fiy(A), fuc(A), and fix(A) in section 3 will in the modified case be denoted

fiys fucs and fy, respectively.
DEFINITION 4.10. Define the parameters f;‘,y and flfc as

ok, ol
(4.39)  ff =ming min {——t by b0 L
2<i<n—1 | ol ) 4 Liip1 J T1<isn—2 | of + 4

. ) liig1 —my
(4.40) fkc B ISIirgzl—l { li i1 ’
Lit1UR;#0 '

and let ff = min{ fiy, fuc}-
LEMMA 4.11. Assume that n markers are uniformly distributed along a chromo-

some of length L. Assume that t = [(1 + 6/2)1og(n) + 3/2] series of experiments
have been made, each consisting of m experiments, using intensities A = (Ay,... , \¢),
where \; = 47"YIn2/L. Then, with probability greater than 1 — n=°, the distance
comparator Cx; satisfies the K-Order conditions with parameters

441) = te 0@t (53) g = gm0 (55)”

Proof. From Lemmas 4.5 and 4.6 it follows that, with probability greater than
1-—- n*‘s, the optimal intensities ;\, for all choices of /1 and /5 such that £, < f1,05 <
L, will satisfy e [A1, A¢], where £p;, is the shortest distance between any two markers
and t is chosen as above.

Let a, b, ¢, and d be four markers appearing in this order on the genome; assume
that b and c are consecutive; assume that d(a,d) > d(b, ¢); and assume that d ¢ R,. If
we let e = Ry, it follows from Definition 3.6 and Lemma 4.4 that, under the condition
above,

0, —0 2
—mpq(1—(a+8))* (‘g 2e )

Pr [Ckyt(a,d; b,c) # 1] <te

(4.42) o jomrtat (=(at8)* (Gerite)”

P (1= (at+0)* (o2 )
= te 2e2 (ot +4pe) )

In a similar way we can show that if a ¢ L., then

—mp2g? (1~ (a4 B)* (o )

(4.43) Pr([Cx.(a,d;b,c) # 1] < te 202 (ol ttye) /|

Hence, from Definition 4.10 it follows that, for any four markers a, b, ¢, and d appear-
ing in this order on the genome such that b and ¢ are consecutive, d(a,d) > d(b,c),
and either d ¢ Ry, or a ¢ L.,

2
(1.44) Pr[Cas(ardib,c) = 1] > 1 — te o0 s (53)



ALGORITHMS FOR RH MAPPING 107

Let a € [2,n] be an arbitrary marker, and assume that b € £,. From the def-
inition of L, it follows that €41, — fp—1 > fp—1. Hence, from Definition 3.6,
Definition 4.10, and Lemma 4.4 it follows, under the condition above, that

lo_1.a—Ly_ 2
—mp2q2(1—(a+ﬁ))4( azeléja,i al,b)

Pr[CA7t(a —1,a;0—1,b) # 1] <te

L, —mg \2
—mpg (1—(atp))* (Sebe )

(4.45) < te

< tefmp2q2(17(a+5))4 ( ;ig )2 .

In the same way it is possible to show that for any a € [1,n — 1] and b in R,

N2
(4.46) PrCxi(a,a+1;0,b+1) # 1] < oo (-(e+) (£5)

THEOREM 4.12. Assume that n markers are uniformly distributed along a chro-
mosome of length L. Assume that t = [(1 + 6/2)log(n) + 3/2] series of experiments

have been made using intensities X = (A1,...,\), where \; = 41 In2/L, each con-
sisting of
4tn? ) 4e*
4.47 m > In "
(447 (*5) mrr—e s arwr

experiments. Then the Modified-K-Order algorithm, i.e., the K-Order algorithm
using the distance comparator Cx ., gives the correct order of the n markers with
probability greater than 1 — e —n=°.

Proof. From Lemma 4.11 it follows that, if the number of experiments m satis-
fies (4.47), then the distance comparator Cx ; satisfies the K-Order conditions with
parameters v < €/4n? and ¢ < ¢/4n? with probability greater than 1 —n=%. By The-
orem 3.8, this implies that the K-Order algorithm using this distance comparator will
compute the correct order of the markers with probability greater than 1 —e. Hence,
the Modified-K-Order algorithm will compute the correct order of the markers with
probability greater than 1 —e — n™°. a

5. Discussion. In [2], Ben-Dor and Chor presented the P-Order and K-Order
algorithms for the RH problem. As support for the algorithms, they also proved
an upper bound on the number of RH experiments sufficient for both algorithms to
compute the correct marker order with high probability.

We have improved the analysis of the P-Order and K-Order algorithms. By
taking into account what decisions the two algorithms actually need to make, we
derive tighter bounds than those in [2]. The major improvement is the replacement of
F6mins6max (A) With fo(A) and fi (M), respectively. It is easy to see from their definitions
that fs, . 6me(A) < fp(A) < fu(A). In fact, for any constant ¢ > 0 it is possible to
construct marker arrangements such that fi(A)/fp(A) > cand fo(X)/ o 6mae (A) > €.
The new analysis thus suggests that the K-Order algorithm is to be preferred to
the P-Order algorithm, a suggestion which is confirmed by experimental results not
shown here. The introduction of distance comparators has allowed us to formulate
very general results. The bounds in Theorems 3.2 and 3.8 apply to any P-Order- and
K-Order-like strategy for ordering points on the line, such that the probability for
errors in the distance comparisons can be bounded.

The new analysis of the P-Order and K-Order algorithms shows that the inten-
sity of the radiation used in the RH experiments is less suitable for some distance



108 LARS IVANSSON AND JENS LAGERGREN

comparisons than for others. This suggests that the use of RH data produced with
several different intensities would improve the stability of the algorithms with respect
to the choice of intensity. The Modified-P-Order and Modified-K-Order algorithms
are modified versions of the original P-Order and K-Order algorithms, designed to be
able to use multiple intensity data. We show that using RH data from O(logn) series
of experiments, produced with suitable intensities, the dependency on the choice of
intensity can be removed from the performance bounds, under the assumption that
the markers are uniformly distributed.

Although the analysis of the modified algorithms assumes that a specified range
of intensities is used, the algorithms can be used on any experimental data involving
different intensities. Experimental studies on synthetic data (omitted here) suggest
that the Modified-K-Order algorithm works especially well in practice. The use of
only three different intensities makes the algorithm more stable against the effects of
the choice of intensity. However, the most important conclusion that can be drawn
from these results is that the use of multiple intensity data does have a positive effect
on the performance of P-Order- and K-Order-like RH algorithms.

6. Acknowledgment. We would like to thank Johan Hastad for useful ideas
and fruitful discussions.

REFERENCES

[1] R. AGARWALA, D. L. APPLEGATE, D. MAGLOTT, G. D. SCHULER, AND A. A. SCHAFFER, A fast
and scalable radiation hybrid map construction and integration strategy, Genome Res., 10
(2000), pp. 350-364.
[2] A. BEN-DOR AND B. CHOR, On constructing radiation hybrid maps, J. Comput. Biol., 4 (1997),
pp. 517-533.
[3] A. BEN-DOR, B. CHOR, AND D. PELLEG, RHO— Radiation hybrid ordering, Genome Res., 10
(2000), pp. 365-378.
[4] D. T. Bisnor AND G. P. CROCKFORD, Comparison of radiation hybrid mapping and linkage
mapping, Cytogeret. Cell Genet., 59 (1992), pp. 93-95.
[5] T. H. CorMEN, C. E. LEISERQSON, AND R. L. RIVEST, Introduction to Algorithms, MIT Press,
Cambridge, MA, McGraw-Hill, New York, 1989.
[6] R. GuyoN, T. D. LorenNTzEN, C. HITTE, L. KiM, E. CaDIEU, H. G. PARKER, P. QUIGNON,
J. K. Lowg, C. RENIER, B. GELFENBEYN, F. VicNAUX, H. B. DEFRANCE, S. GLOUX, G. G.
MAHAIRAS, C. ANDRE, F. GALIBERT, AND E. A. OSTRANDER, A 1-Mb resolution radiation
hybrid map of the canine genome, Proc. Natl. Acad. Sci. USA, 100 (2003), pp. 5296-5301.
. HASTAD, L. IVANSSON, AND J. LAGERGREN, Fitting points on the real line and its application
to RH mapping, Lecture Notes in Comput. Sci. 1461, Springer-Verlag, New York, 1998,
pp. 465—476.
[8] C.HiTTE, T. D. LORENTZEN, R. GUYON, L. Kim, E. CADIEU, H. G. PARKER, P. QuIiGNON, J. K.
Loweg, B. GELFENBEYN, C. ANDRE, E. A. OSTRANDER, AND F. GALIBERT, Comparison of
MultiMap and TSP/CONCORDE for constructing radiation hybrid maps, J. Heredity, 94
(2003), pp. 9-13.
[9] W. HOEFFDING, Probability inequalities for sums of bounded random variables, J. Amer. Statist.
Assoc., 58 (1963), pp. 13-30.
[10] K. LANGE, M. BOEHNKE, D. R. Cox, AND K. L. LUNETTA, Statistical methods for polyploid
radiation hybrid mapping, Genome Res., 5 (1995), pp. 136-150.

[11] K. L. LUNETTA, M. BOEHNKE, K. LANGE, AND D. R. Cox, Selected locus and multiple panel
models for radiation hybrid mapping, Am. J. Hum. Genet., 59 (1996), pp. 717-725.

(12] M. MENOTTI-RAYMOND, V. A. DavID, R. AGARWALA, A. A. SCHAFFER, R. STEPHENS, S. J.
O’BRIEN, AND W. J. MURPHY, Radiation hybrid mapping of 304 novel microsatellites in
the domestic cat genome, Cytogenet. Genome Res., 102 (2003), pp. 272-276.

[13] D. StoniM, L. KRUGLYAK, L. STEIN, AND E. LANDER, Building human genome maps with
radiation hybrids, in Proceedings of the First International Conference on Computational
Molecular Biology, 1997, ACM Press, New York, pp. 277-286.

-

[7]



SIAM J. COMPUT. (© 2004 Society for Industrial and Applied Mathematics
Vol. 34, No. 1, pp. 109-117

PERFECTNESS IS AN ELUSIVE GRAPH PROPERTY*
STEFAN HOUGARDY! AND ANNEGRET WAGLER#

Abstract. A graph property is called elusive (or evasive) if every algorithm for testing this
property has to read in the worst case (g) entries of the adjacency matrix of the given graph.
Several graph properties have been shown to be elusive, e.g., planarity or k-colorability. A famous
conjecture of Karp says that every nontrivial monotone graph property is elusive. We prove that a
nonmonotone but hereditary graph property is elusive: perfectness.

Key words. perfect graph, elusiveness, evasiveness, graph property testing
AMS subject classifications. 68Q17, 68Q25

DOI. 10.1137/S0097539703426799

1. Introduction. Given a graph property, consider the following two-player
game to define elusiveness. Player A wants to know whether an unknown simple
graph on a given node set has the graph property in question by asking Player B one
pair of nodes at a time whether this pair of nodes is an edge. At each stage Player
A makes full use of the information of edges and nonedges he has up to that point
in order to decide whether the graph has the property or not. Player A wants to
minimize the number of his questions; Player B wants to force him to ask as many
questions as possible. The number of questions needed for the decision if both players
play optimally from their point of view is the recognition complexity of the studied
graph property. The property is said to be elusive (or also evasive) if there is a strat-
egy enabling Player B to force Player A to test every pair of nodes, respectively, to
ask all possible (g) questions before coming to a decision. (More precisely, such a
strategy has to exist for all nontrivial cases, i.e., for all n such that there are graphs
on n nodes with and without the studied property.)

Several graph properties are known to be elusive, e.g., having a clique of a certain
size or a coloring with a certain number of color classes (Bollobas [3]) or being planar
(Best, van Emde Boas, and Lenstra [2]); see [4, 14, 18] for more examples. On the
other hand, it is well known that there exist nontrivial graph properties that need
only O(n) questions; see [2, 4].

Aanderaa and Rosenberg conjectured [2] that there exist some > 0 such that the
complexity of every nontrivial monotone graph property (i.e., a property preserved
under deleting edges) is at least yn?. This conjecture has been proved by Rivest
and Vuillemin [12] for v = {5. The value of v has been improved over the years.
Currently the largest value of 7 for which the conjecture of Aanderaa and Rosenberg
is known to be true is % — o(1). This result was established by Kahn, Saks, and
Sturtevant [9]. A sharpened version of the Aanderaa—Rosenberg conjecture is due to
Karp [13]. He conjectures that every nontrivial monotone graph property is elusive;
i.e., he conjectures that v =  — o(1) holds.

*Received by the editors April 29, 2003; accepted for publication (in revised form) March 24,
2004; published electronically October 8, 2004.

http://www.siam.org/journals/sicomp/34-1/42679.html

THumboldt-Universitit zu Berlin, Institut fiir Informatik, Unter den Linden 6, D-10099 Berlin,
Germany (hougardy@informatik.hu-berlin.de).

fKonrad-Zuse-Zentrum fiir Informationstechnik Berlin (ZIB), Takustr. 7, D-14195 Berlin, Ger-
many (wagler@zib.de).

109



110 STEFAN HOUGARDY AND ANNEGRET WAGLER

Karp’s conjecture has been verified for several graph properties, some of which
have already been mentioned above. The most general result in this area is due to
Kahn, Saks, and Sturtevant [9], who proved Karp’s conjecture for all n that are prime
powers.

Karp’s conjecture is a very challenging open problem. But even more challenging
is the problem of getting a complete characterization of all graph properties that are
elusive. Currently we still seem to be far away from even formulating a reasonable
conjecture. Recent progress in this direction has been made by Chakrabarti, Khot,
and Shi [6], who proved that any minor closed graph property (which need not be
monotone) is elusive. The subject of the present paper is to prove elusiveness for some
other nonmonotone graph property.

THEOREM 1.1. Perfectness is an elusive graph property.

Perfectness is a property which is not monotone but hereditary (preserved under
deleting nodes) and concerned with the relation of maximum cliques and optimal
colorings. Perfect graphs behave nicely from an algorithmic point of view [8] and have
interesting relationships to surprisingly many other fields of scientific enquiry [11].

Berge [1] proposed calling a graph G perfect if, for each of its (node-)induced
subgraphs G’ C G, the chromatic number equals the clique number (i.e., if we need
as many stable sets to cover all nodes of G’ as a maximum clique of G’ has nodes).
This means that identifying one induced imperfect subgraph would enable Player A
to make the final decision: the graph in question is not perfect. For that, so-called
minimally imperfect graphs are of particular interest. These are imperfect graphs,
and all of their proper induced subgraphs are perfect. As was proved recently by
Chudnovsky et al. [7], the only minimally imperfect graphs are chordless odd cycles
of length > 5, termed odd holes, and their complements, called odd antiholes. This
result was conjectured by Berge in 1960 and is called the strong perfect graph theorem.
In our proof for Theorem 1.1 we do not need to rely on this deep result, nor would it
help to simplify our proofs.

Player B has to answer in such a way that no minimally imperfect induced sub-
graph appears until Player A asks the last question but that the last answer can create
a minimally imperfect induced subgraph.

The odd hole of length five is the smallest imperfect graph. Hence, the cases with
n < 4 nodes are trivial: Player A knows without asking any question that the studied
graph is perfect. In order to show that perfectness is an elusive graph property we
have to treat the nontrivial cases n > 5.

The idea for providing a strategy to Player B is as follows. Find perfect graphs
such that you cannot reach another perfect graph by deleting or adding one edge. We
call an edge e of a perfect graph G critical if G — e is imperfect. Analogously, we
call an edge e not contained in a perfect graph G anticritical if G + e is imperfect. A
perfect graph G is critical if G has only critical edges. The complement of a critically
perfect graph is again perfect (due to Lovész [10]) and has the property that adding
an edge not contained in the graph so far yields an imperfect graph. We call the
complements of critically perfect graphs anticritically perfect. We look for bicritically
perfect graphs, which are both critically and anticritically perfect: the deletion and
addition of an arbitrary edge yields an imperfect graph.

If there exists a bicritically perfect graph G,,, then Player B has only to answer
all but the last question “ij € E?” of Player A as in G,,. That is, Player B has only
to apply the following strategy for graphs on n nodes.

STRATEGY 1. Let G, be a bicritically perfect graph on n nodes.



PERFECTNESS IS AN ELUSIVE GRAPH PROPERTY 111

For questions 1 to (72’) — 1: Answer “ij € E?” with YES if ij € E(G,), NO
otherwise.

Then no induced imperfect subgraph appears during the first (g) — 1 questions,
and the answer to the last question yields the following decision:

YES if ij € E(G,); then the graph is perfect.
.. . NO ifij € E(G,); then the graph is imperfect.
43 ‘?77 b
Answer “ij € E7" with YES ifij € E(G,); then the graph is imperfect.
NO ifij ¢ E(G,); then the graph is perfect.

In order to prove Theorem 1.1, our task is as follows.

PROBLEM 1. Find, for as many n as possible, a bicritically perfect graph G, on
n nodes.

A first step towards solving Problem 1 was a computer search enumerating which
perfect graphs on up to 10 nodes are critically perfect.

THEOREM 1.2. No critically perfect graphs with fewer than 9 nodes exist. On 9,
10, and 11 nodes there are precisely 3, 10, and 52 critically perfect graphs.

Fic. 1.1. The three smallest critically perfect graphs.

Clearly, Theorem 1.2 remains true if “critically perfect” is replaced by “anticri-
tically perfect.” Figure 1.1 shows the three critically perfect graphs on nine nodes.
The first graph, Gy, is self-complementary and, therefore, also anticritical. That is,
it is our first example of a bicritically perfect graph. The other two graphs are not
anticritical, but only their complements are. Each of the critically perfect graphs
with ten nodes is not anticritical (see the next section). This means particularly that
there are no bicritically perfect graphs G,, with n < 8 and n = 10. In section 2, we
present a technique of constructing examples of bicritically perfect graphs based on
the characterization of critically and anticritically perfect line graphs. In section 3, we
apply the knowledge from the previous section to construct bicritically perfect graphs
G, if n > 12. Section 4 provides a slightly different strategy for the cases n = 10, 11.

The cases 5 < n < 8 are treated as follows. The odd hole C5 is the only imperfect
graph on five nodes (note: the Cj is self-complementary, and hence so is the odd
antihole on five nodes). Consequently, one cannot reach another imperfect graph
from the C5 by deleting or adding one edge. Thus, the Cj is bicritically imperfect and
Strategy 1 does also work for n = 5 when choosing G,, = Cys. For 6 < n < 8 there is
no bicritically imperfect graph with n nodes. In order to treat these cases we do not
provide an explicit strategy, but we show in section 5 that there erists a strategy: we
prove elusiveness for 6 < n < 8 with the help of a result of Rivest and Vuillemin [12]
by using a parity argument and doing some computer searches.

In summary, we show the existence of a strategy in all nontrivial cases n > 5
which proves Theorem 1.1: perfectness is an elusive graph property.



112 STEFAN HOUGARDY AND ANNEGRET WAGLER

2. Bicritically perfect line graphs. This section provides a construction for
bicritically perfect line graphs established in [17]. We obtain the line graph L(F) of a
graph F' by taking the edges of F' as nodes of L(F') and joining two nodes of L(F') by
an edge iff the corresponding edges of F' are incident. It is well known [15] that the
line graph L(F) of a graph F is perfect iff F is line-perfect, i.e., iff F' does not contain
any odd cycle of length at least 5 as a (not necessarily induced) subgraph.

(a) (b) (c) (d)

Fic. 2.1. Definition of H-pairs and A-pairs.

In order to obtain critical and anticritical edges in L(F"), we define two structures
in F.

We say that two incident edges = and y form an H-pair in F' if there is an edge
ez,y different from = and y incident to the common node of x and y and if there is an
even cycle C, , containing x and y but only one endnode of e, , (see Figure 2.1(a)).
L(C,,y) is an even hole, and the node in L(F') corresponding to e, has precisely two
neighbors on L(Cy ), namely, x and y (see Figure 2.1(b)).

Two nonincident edges x and y are called an A-pair if they are the endedges of
an odd path P, with length at least five (see Figure 2.1(c)). L(P,,,) is an even,
chordless path of length at least four with endnodes = and y (see Figure 2.1(d)).

It is straightforward that deleting and adding the edge zy in L(C, , Ue, ) and
L(P;,), respectively, yields an odd hole. Consequently, if L(F') is intended to be
critically (anticritically) perfect, it is sufficient to obtain that every pair of incident
(nonincident) edges in F' forms an H-pair (A-pair). We define a graph with at least
two incident (nonincident) edges to be an H-graph (A-graph) if each pair of incident
(nonincident) edges forms an H-pair (A-pair).

Obviously, the line graph L(F) of any bipartite H-graph (A-graph) is critically
(anticritically) perfect. A line graph L(F') is bicritically perfect iff the graph F is a
bipartite A- and H-graph [16]. The three smallest critically perfect graphs are the
complements of the line graphs of the three bipartite A-graphs presented in Figure 2.2.
A; is also an H-graph, and hence L(A1) is bicritical (it is in fact self-complementary).
Furthermore, A; is the only bipartite H-graph with 3 nodes in each color class. If
there are 4 nodes in one color class, then an H-graph has at least 12 edges since it
has minimum degree 3 by definition. Hence, the second smallest H-graph admits 12
edges and there cannot be any bicritically perfect line graph on 10 or 11 nodes. By
complete enumeration we proved that bicritically perfect graphs on 10 or 11 nodes do
not exist at all.

The following sufficient condition for a bipartite graph F' to be an H-graph and
an A-graph is established in [17].

LEMMA 2.1 (see [17]). Every simple, 3-connected, bipartite graph is an H-graph
as well as an A-graph.

Proof. Let F = (AU B, E) be a simple, 3-connected, bipartite graph. First,
consider two arbitrary incident edges aby,aby of F' with a € A and by,bs € B. We



PERFECTNESS IS AN ELUSIVE GRAPH PROPERTY 113

A A, A,

F1a. 2.2. The three smallest bipartite A-graphs.

show that ab; and abs form an H-pair in F. Since F' is 3-connected, there is a third
node bs # by, by adjacent to a and F — {a, b} is still connected. In particular, b; and
by are linked by a path P in F' — {a,bs}. Hence, we obtain Cyp, op, = P U {baa, ab;}
and egp, qb, = abs; i.e., aby and abs form an H-pair in F.

Now, consider two nonincident edges a1b; and agby of F with a; € A, b; € B.
We show that a1b; and asbs form an A-pair in F. Since F' is 3-connected, there are
internally disjoint, odd (a1, be)-paths Py, ..., P, with k > 3. At most two paths among
Py, ..., P, can contain ay or by. Without loss of generality, let Ps, ..., Py be ag,bi-
free. If there is a path P; with 3 < i < k of length > 3, then by P;as is the studied
path Py b, .a0,0,- Otherwise, the only ag,bi-free (a1, bs)-path is the edge a1b2. We
obtain k = 3 and let by € Py, as € P>. By the 3-connectivity of F' again, there must
be an aq, bo-free (ag, b1)-path @ of odd length > 3, and we get Py, 05,0, = b2Qas.
Otherwise, if the edge agby were the only ay, bo-free (ag,by)-path, {a1,as2} would be
a cutset of size two, separating the nodes of P; between b; and by from the nodes of
P, between a; and as—a contradiction, as F' is 3-connected. a0

Remark 2.2. Note that duplicating edges preserves the property of being an A-
graph (since no new pair of nonincident edges occurs), while it does not preserve the
property of being an H-graph (since parallel edges are incident but never form an
H-pair).

3. Construction of the graphs G,, for n > 12. In order to treat Prob-
lem 1, this section is intended to present a bicritically perfect graph G,, for each
n > 12. Lemma 2.1 ensures that L(F') is bicritically perfect whenever F' is a simple,
3-connected, bipartite graph. Hence we will construct simple, 3-connected, bipar-
tite graphs F,, with n > 12 edges to obtain the studied bicritically perfect graphs
G, = L(F,) on n > 12 nodes. Consider the graphs Fs;, = (AUB, E1 UFE,) with k > 3
and

A ={1,3,...,2k—1},
B ={2,4,...,2k},
Ey={ii+1:1<i<2k},
Ey={ii+3:i¢c A},

where all indices are taken modulo 2k. The three smallest examples of graphs Fsj for
k € {3,4,5} are shown in Figure 3.1 (note A; = Fy). F3j, is an even cycle (AU B, E)
on its 2k nodes with k chords Ey outgoing from a node in A with odd index and
ending in a node in B with even index. Thus, the graphs Fj3; are bipartite and simple
by construction. We have to show that they are 3-connected.

LEMMA 3.1. The graphs F3i are 3-connected for k > 3.



114 STEFAN HOUGARDY AND ANNEGRET WAGLER

F9 F12 FlS

Fic. 3.1. The graphs F3) with k = 3,4,5.

Proof. We have to show that the graph obtained from Fj; by removing two
arbitrary nodes ¢ and j is still connected. Let ¢ < j. Recall that F3, = (AUB, E1UE>)
has a Hamilton cycle C = (AU B, E;) and additional chords ii + 3 € Ep with i € A
odd, i+3 € B even. If i and j are neighbors on C (i.e., j = i+ 1), then the remaining
nodesi+2=j+1,...,2k,1,...,i—1 of F3; are connected by a path with edges in F1.
Otherwise, removing ¢ and j divides the cycle C into two paths, Py =i+1,...,5—1
and P, = j+1,...,2k,1,...,i — 1. It is easy to see that there is always an edge
e € E5 which connects P; and Ps: If ¢ is odd, then 7 + 1 is even and i — 2i + 1 € Fs.
We have e = i — 2i + 1 as the studied edge connecting P; and P; if ¢ — 2 is a node of
Py orelse V(P;) = {i — 1} and j =i — 2 holds. But then ¢ — 4 is a node of P; (since
k > 3) and we obtain e = ¢ —4¢ — 1 (all indices are taken modulo 2k). Analogously, if
i is even, then i — 1i +2 € E5. We have e =i — 1i + 2 if i + 2 is a node of P; or else
V(P1)={i+1} and j =i+ 2. But then i + 4 is a node of P, (by k& > 3 again) and
we get e = i+ 17+ 4. Hence, the graph obtained from Fj; by removing two arbitrary
nodes is still connected. O

Thus, we can choose G, as the line graph of F,, whenever n = 3k, k > 3, by
Lemma 2.1. To close the gaps with n = 3k + 1,3k 4 2 for k > 4 we use the following
immediate consequence of Lemma 2.1.

LEMMA 3.2. If F = (AU B,E) is a simple, 3-connected, bipartite graph and
ab & E with a € A,b € B, then F + ab is a simple bipartite A- and H-graph.

Thus, we obtain the studied bipartite A- and H-graphs F,, for n = 3k + 1 and
n = 3k + 2 if k > 4 by adding one and two edges, respectively, to F3; such that the
resulting graph is simple and bipartite. This is possible for each Fsj with k£ > 4 (but
not for the complete bipartite graph Fy). We obtain, therefore, the studied bicritically
perfect graphs G,, = L(F,) for n > 12 and can apply Strategy 1 for all cases with
n > 12 nodes.

4. Construction of the graphs G,, for n = 10, 11. As mentioned in section 2
there are no bicritically perfect graphs on 10 or 11 nodes. Therefore we construct
bipartite A-graphs with 10 and 11 edges which are as close to H-graphs as possible.

Duplicating an arbitrary edge of Fy = A; yields the graph F}¢ shown in Figure 4.1.
Fyp is an A-graph but not an H-graph by Remark 2.2. However, L(F}g) has only one
noncritical edge, namely, the edge connecting the nodes that correspond to the parallel
edges of F1g. Next, the bipartite graph Fp; in Figure 4.1 can be obtained by adding
two edges to the A-graph As from Figure 2.2. It is easy to check that Fj; is an
A-graph and that the two edges incident to the only node of degree two in Fj; form
the only non-H-pair. L(F}1) is anticritically perfect and all edges but one are critical,
too.

Let us call a graph G almost bicritically perfect if G is anticritically perfect and all



PERFECTNESS IS AN ELUSIVE GRAPH PROPERTY 115

F]O Fll

Fi1c. 4.1. The graphs Fio and Fyi.

edges but one are critical. Then we slightly modify Strategy 1 for almost bicritically
perfect graphs as follows.

STRATEGY 2. Let G,, be an almost bicritically perfect graph on n nodes and let
uwv be its only noncritical edge. For question 1: Answer “ij € E?” with YES; number
the nodes of G, s.t. i = u, j = v. For questions 2 to (g) —1: Answer “ij € E?”7 with
YES if ij € E(G,), NO otherwise.

Then no imperfect subgraph appears during the first (g) — 1 questions, and the
answer to the last question yields the decision again. Since L(Fyo) and L(Fip) are
almost bicritically perfect graphs by construction, we choose G1o = L(Fyg) and G1; =
L(Fy1) and apply Strategy 2.

5. The remaining cases 6 < n < 8. To prove that perfectness is an elusive
graph property for 6 < n < 8 we use a parity argument due to Rivest and Vuillemin.
In [12] they proved the following: If a property P is not elusive for graphs on n nodes,
then the number G(P,n,even) of labeled graphs on n nodes with property P having
an even number of edges equals the number G(P, n, odd) of labeled graphs on n nodes
with property P that have an odd number of edges. In particular, G(P,n,even) #
G (P,n,odd) implies that P is elusive for graphs on n nodes. In Table 5.1 we show
the numbers G(P,n,even) and G(P,n,odd) for perfect graphs on 6 < n < 8 nodes,
which we calculated with the help of a computer program. For the calculation we
used a very simple brute force approach: We generated all graphs on up to 8 nodes.
Such a graph is perfect iff it does not contain a C5, a C7, or a complement of a C; as
an induced subgraph. Now one simply has to count how many of these graphs have
an even, respectively, odd number of edges. As one can see from Table 5.1, for n = 8
perfectness is an elusive graph property, as the values in columns 3 and 4 differ.

TABLE 5.1
The number of perfect graphs with an even, respectively, odd number of edges.

n  # perfect graphs G(P,n,even) G(P,n,odd)
6 30824 15412 15412
7 1741616 870808 870808
8 174494128 87264704 87229424

For n = 6 and n = 7 we apply an extension of the previously used argument.
If perfectness is not elusive for graphs on n nodes, then it is also not elusive for the
graphs containing one fixed edge, say ij. Therefore the number of labeled perfect
graphs on n nodes which contain the edge ij and have an even number of edges must
equal the number of these graphs with an odd number of edges. The last two columns
in Table 5.2 show these numbers for n = 6 and n = 7. Note that they add up to
half the number of labeled perfect graphs, as the complement of a perfect graph is



116 STEFAN HOUGARDY AND ANNEGRET WAGLER

TABLE 5.2
The number of perfect graphs with a fized edge and an even, respectively, odd number of edges.

n  # perfect graphs G(P,n,even),ij € E  G(P,n,odd), ij € E
6 30824 7712 7700
7 1741616 435284 435524

again perfect [10]. As the numbers in columns 3 and 4 are different in both cases, this
finishes the proof that perfectness is elusive for n = 6,7, 8.

6. Summary. In order to figure out whether perfectness is an elusive graph
property, we used the following as our main idea: Find, for as many numbers n of
nodes as possible, a bicritically perfect graph G, (Problem 1). Since one cannot
reach another perfect graph from G,, by deleting or adding one edge, there is a simple
strategy for Player B in that case: Answer all but the last question as in the bicritically
perfect graph G,, (Strategy 1). We constructed bicritically perfect graphs G, with
n =9 and n > 12 (section 3) and almost bicritically perfect graphs Gi9 and Gig
(section 4) where a slightly different strategy has to be used (Strategy 2). Moreover,
the C is bicritically imperfect and Strategy 1 does also work for n = 5 with choosing
G, = (5. Consequently, our main idea works for n = 5 and for all cases with n > 9
nodes. We used a parity argument from [12] in order to show the desired result for
the remaining cases with 6 < n < 8 nodes (section 5).

In summary, we showed the existence of a strategy for Player B in all nontriv-
ial cases n > 5, which finally proves Theorem 1.1: Perfectness is an elusive graph

property.

Acknowledgment. The authors are grateful to Giinter M. Ziegler for drawing
their attention to the result of Rivest and Vuillemin [12].

REFERENCES

[1] C. BERGE, Farbung von Graphen, deren simtliche bzw. deren ungerade Kreise starr sind,
Math.-Natur. Reihe, 10 (1961), pp. 114-115.

[2] M. R. BEsT, P. vAN EMDE BoAs, AND H. W. LENSTRA, A Sharpened Version of the Aanderaa-
Rosenberg Congecture, Technical Report ZW 30/74, Mathematisch Centrum Amsterdam,
Afd. Zuivere Wisk., 1974.

[3] B. BoLLoBAs, Complete subgraphs are elusive, J. Combinatorial Theory Ser. B, 21 (1976),
pp. 1-T7.

[4] B. BoLLOBAS, Extremal Graph Theory, Academic Press, London, New York, 1978.

[5] E. Boros, V. GURVICH, AND S. HOUGARDY, Recursive generation of partitionable graphs, J.
Graph Theory, 41 (2002), pp. 259-285.

[6] A. CHAKRABARTI, S. KHOT, AND Y. SHI, Evasiveness of subgraph containment and related
properties, STAM J. Comput., 31 (2002), pp. 866-875.

[7] M. CHUDNOVSKY, N. ROBERTSON, P. D. SEYMOUR, AND R. THOMAS, The Strong Perfect Graph
Theorem, manuscript, 2003.

[8] M. GROTSCHEL, L. LovAsz, AND A. SCHRIJVER, Geometric Algorithms and Combinatorial
Optimization, Springer-Verlag, Berlin, 1988.

[9] J. KAHN, M. SAKS, AND D. STURTEVANT, A topological approach to evasiveness, Combinatorica,
4 (1984), pp. 297-306.

[10] L. LovAsz, Normal hypergraphs and the perfect graph conjecture, Discrete Math., 2 (1972)
pp. 253-267.

[11] B. REED AND J. RAMIREZ-ALFONSIN, EDS., Perfect Graphs, Wiley, Chichester, UK, 2001.

[12] R. L. RIVEST AND J. VUILLEMIN, On recognizing graph properties from adjacency matrices,
Theoret. Comput. Sci., 3 (1976/77) pp. 371-384.

[13] A. L. ROSENBERG, On the time required to recognize properties of graphs: A problem, SIGACT
News, 5 (1973), pp. 15-16.



PERFECTNESS IS AN ELUSIVE GRAPH PROPERTY 117

E. TRIESCH, Some results on elusive graph properties, STAM J. Comput., 23 (1994), pp. 247—
254.

L. E. TROTTER JR., Line perfect graphs, Math. Programming, 12 (1977), pp. 255-259.

A. WAGLER, On critically perfect graphs, J. Graph Theory, 32 (1999), pp. 394—404.

A. WAGLER, Critical Edges in Perfect Graphs, Ph.D. thesis, TU Berlin, 2000.

A. C.-C. YA0, Monotone bipartite graph properties are evasive, STAM J. Comput., 17 (1988),
pp. 517-520.



SIAM J. COMPUT. © 2004 Society for Industrial and Applied Mathematics
Vol. 34, No. 1, pp. 118-169

ALMOST PERFECT LATTICES,
THE COVERING RADIUS PROBLEM,
AND APPLICATIONS TO AJTAI’'S CONNECTION FACTOR*

DANIELE MICCIANCIOf

Abstract. Lattices have received considerable attention as a potential source of computational
hardness to be used in cryptography, after a breakthrough result of Ajtai [in Proceedings of the 28th
Annual ACM Symposium on Theory of Computing, Philadelphia, PA, 1996, pp. 99-108] connecting
the average-case and worst-case complexity of various lattice problems. The purpose of this paper
is twofold. On the expository side, we present a rigorous self-contained proof of results along the
lines of Ajtai’s seminal work. At the same time, we explore to what extent Ajtai’s original results
can be quantitatively improved. As a by-product, we define a random class of lattices such that
computing short nonzero vectors in the class with nonnegligible probability is at least as hard as
approximating the length of the shortest nonzero vector in any n-dimensional lattice within worst-
case approximation factors y(n) = n3w(y/lognloglogn). This improves previously known best
connection factor y(n) = n*t€ [J.-Y. Cai and A. P. Nerurkar, in Proceedings of the 38th Annual
IEEE Symposium on Foundations of Computer Science, Miami Beach, FL, 1997, pp. 468-477]. We
also show how our reduction implies the existence of collision resistant cryptographic hash functions
based on the worst-case inapproximability of the shortest vector problem within the same factors
v(n) = ndw(yv/lognloglogn).

In the process we distill various new lattice problems that might be of independent interest,
related to the covering radius, the bounded distance decoding problem, approximate counting of
lattice points inside convex bodies, and the efficient construction of lattices with good geometric and
algorithmic decoding properties. We also show how further investigation of these new lattice problems
might lead to even stronger connections between the average-case and worst-case complexity of the
shortest vector problem, possibly leading to connection factors as low as y(n) = n'-5w(logn).

Key words. point lattices, shortest vector problem, average-case complexity, covering radius,
cryptography, hash functions, almost perfect lattices, closest vector problem with preprocessing

AMS subject classifications. 52C07, 52C17, 68Q17, 68W25, 68R99, 94B75, 11P21

DOI. 10.1137/S0097539703433511

1. Introduction. It has long been realized that the relevant notion of hardness
in cryptography is average-case hardness: if the key of a cryptographic function is
chosen at random, then no probabilistic polynomial time algorithm can break the
scheme with nonnegligible probability. In the past few years, computational problems
on point lattices have attracted considerable interest for their potential cryptographic
applications because of the following remarkable discovery of Ajtai [2]: a certain
natural computational problem (namely, finding small nonzero solutions to a suitably
chosen random system of homogeneous linear equations) is at least as hard on the
average as the worst-case instance of various lattice problems, e.g., approximating
the length of the shortest nonzero vector in a lattice within a worst-case factor y(n)

*Received by the editors August 15, 2003; accepted for publication (in revised form) March 28,
2004; published electronically October 28, 2004. Preliminary versions of this paper appeared in
the proceedings of STOC 2002 and CCC 2002 with the title Improved cryptographic hash functions
with worst-case/average-case connection [35], and in Chapter 8 of the book Complezity of Lattice
Problems: A Cryptographic Perspective [36]. This research was supported in part by NSF Career
Award CCR-0093029 and a Sloan Research Fellowship. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author and do not necessarily reflect
the views of the National Science Foundation.

http://www.siam.org/journals/sicomp/34-1/43351.html

fComputer Science and Engineering Department, University of California at San Diego, 9500
Gilman Dr., Mail code 0114, La Jolla, CA, 92093 (daniele@cs.ucsd.edu).

118



ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 119

polynomial in the dimension n of the lattice. This immediately gives provably secure
cryptographic functions based on the conjectured worst-case intractability of lattice
problems.! Moreover, since the set of integer solutions of a linear system forms a
lattice, the result in [2] can also be regarded as a connection between the complexity
of finding short nonzero vectors in suitably chosen random lattices on the average,?
and the complexity of approximating the length of the shortest nonzero vector (as
well as solving various other lattice problems) in any lattice in the worst case.

We remark that building cryptographic functions that are as hard to break as the
worst-case instance of the underlying mathematical problem is especially important
in the case of lattices because lattice approximation algorithms (like the Lenstra—
Lenstra—Lovdsz (LLL) algorithm [27]) are believed to perform much better on the
average than their worst-case theoretical upper bounds. Moreover, since lattice prob-
lems get easier and easier as the approximation factor v(n) increases, determining
the smallest worst-case inapproximability factor v(n) that implies the average-case
hardness of solving Ajtai’s random equations is both a theoretically interesting and
a practically important problem, and it has been the subject of subsequent work by
Cai and Nerurkar [11] and Micciancio [35] in a preliminary version of this paper.

Our contribution. The purpose of this paper is twofold. First, we give a full,
self-contained proof of Ajtai’s original result [2] and a detailed account of all relevant
techniques introduced in subsequent improvements by Cai and Nerurkar [11]. Previous
papers [2, 11] appeared only in the form of extended abstracts or technical reports
that left to the reader the burden of reconstructing the details of many technical steps.
In this paper we develop a number of elementary, still useful, general techniques that
allow us both to cover all the steps in great detail, and at the same time also offer a
cleaner high level picture of the proof. Second, we explore to what extent the worst-
case inapproximability factors v(n) for lattice problems (shown to imply the average-
case hardness of solving random linear equations in [2, 11]) can be further reduced.
In the process, we introduce and start investigating various new lattice problems that
might be of independent interest and that are discussed in more detail in the following
subsections. These technical contributions are summarized as follows. On the average-
case complexity side, we introduce a kind of lattice (that we call almost perfect in
analogy with perfect codes), and use lattices of this kind to define a new random
class of linear equations such that finding small solutions on the average is potentially
harder than in the random class proposed by Ajtai. On the worst-case complexity
side, we consider various new lattice problems, like approximating the covering radius
of a lattice. Using these new problems, we are able to improve the connection factor
for the shortest vector problem (SVP) established in [2, 11]. Specifically, we show
that finding small solutions to our random equations (with nonnegligible probability)
is at least as hard as the worst-case instance of

(i) approximating the length of the shortest nonzero vector in any n-dimensional

n particular, Ajtai [2] showed that if no algorithm can efficiently approximate the length of the
shortest nonzero vector in any n-dimensional lattice within (worst-case) polynomial approximation
factors y(n) = nO@) then one-way functions exist. Subsequently, Goldreich, Goldwasser, and Halevi
[18] observed that under essentially the same assumptions as Ajtai’s, one can prove the existence of
collision resistant hash functions, a particularly useful kind of one-way function family with many
applications in cryptography.

2For clarity, in the rest of the paper we always refer to this average-case problem as “finding
small solutions to random equations,” while lattices are used only to describe worst-case problems.
However, we remark that the two formulations are equivalent, and all results discussed in this paper
can be regarded as connections between the average-case and worst-case complexity of (different)
lattice problems.



120 DANIELE MICCIANCIO

lattice within a factor y(n) = 7(n) - n?5w(logn), where 7(n) € [1,/n] is a parameter
that depends on the almost perfect lattices used in the construction and w(logn) is
an arbitrary superlogarithmic function.

Even for 7(n) = /n this improves the connection factor v(n) = ni*¢ of [11] by
more than a factor n. (See section 1.3 for details about the results of [11].) We remark
that function 7(n) is a parameter that depends on the construction of the random
equations, and it equals \/n in Ajtai’s construction as studied in [2, 11]. In this paper
we give a better construction showing that smaller values of 7(n) are possible. The
improvement we present is quantitatively modest (namely, 7(n) = y/nloglogn/logn)
but qualitatively interesting, as it shows that Ajtai’s class of random equations is not
necessarily optimal, and there is room to hope that more substantial improvements
are possible.

We also relate the average-case complexity of computing small solutions to our
random equations to other lattice problems, like the worst-case instances of the fol-
lowing;:

(ii) computing maximal sets of linearly independent vectors that are within a
factor y(n) = 7(n) - n? - w(logn) from the shortest,?

(iii) approximating within a factor v(n) = 7(n) - n? - w(logn) the covering ra-
dius of any n-dimensional lattice, i.e., the maximum possible distance p(£(B)) =
maxg dist(t, £(B)) where t ranges over the entire space spanned by B,

(iv) finding, given an n-dimensional lattice basis B and a target point t, a lattice
point whose distance from the target t is at most y(n) = 7(n) -n? - w(logn) times the
covering radius of the lattice.

Even for 7(n) = y/n, the first relation improves previously known best connection
factor n37¢ of [11] by more than y/n. (See section 1.3 for details about the results
of [11].) The other two relations are the first results explicitly connecting the com-
plexity of finding small solutions to random equations to the covering radius problem
(CRP). Although neither problem has been previously considered in computational
complexity, they are both natural computational problems on lattices that might be
of independent interest. The last problem is a “guaranteed distance” variant of the
well-studied closest vector problem (CVP), where the error, instead of being mea-
sured with respect to the distance of the given target, is measured with respect to the
worst-case distance over all possible target vectors.

All our results are obtained as corollaries to a main theorem that shows that
finding small solutions to our random equations is at least as hard as the worst-case
instance of finding maximal sets of linearly independent vectors of length at most
v(n) = 7(n)y/n - w(logn) times a new lattice invariant that we call the generalized
uniform radius. Notice how this factor is extremely small: depending on the value of
7(n), v(n) can be as small as y/n-w(logn). This suggests that further investigation of
almost perfect lattices and the connection between the uniform radius and other lat-
tice invariants might lead to even stronger connections between the average-case and
worst-case complexity of computing short lattice vectors. In particular, we conjecture
that there exist random classes of linear equations such that finding small solutions
on the average is at least as hard as approximating the length of the shortest nonzero
vector in any n-dimensional lattice within a factor v(n) = n'® - w(logn) in the worst
case.

3Here, and throughout the rest of the paper, the length of a finite set of (linearly independent)
vectors is defined as the maximum length of the vectors in the set.



ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 121

In the following subsections we give a more detailed description of the new lattice
problems introduced in this paper and then review previous work in related areas.

1.1. New lattice problems. A lattice is the set of intersection points of a
regular, but not necessarily orthogonal, n-dimensional grid. Mathematically, it can
be described as the set of all integer linear combinations z1by + -+ 4+ x,b,, (with
Z1,...,Z, € Z) of a sequence of linearly independent vectors by, ..., b, in Euclidean
space R™. The simplest example is the integer lattice Z™, i.e., the set of all n-
dimensional vectors with integer coordinates. Two fundamental constants associated
to any lattice are the packing radius and the covering radius: the packing radius is
the largest radius such that (open) spheres centered at distinct lattice points do not
intersect, and the covering radius is the smallest radius such that (closed) spheres
centered at all lattice points cover the entire space. Equivalently, the packing radius
can be defined as the largest r such that any (open) sphere of radius r (not necessarily
centered around a lattice point) contains at most one lattice point. Similarly, the
covering radius can be defined as the smallest r such that any (closed) sphere of
radius r contains at least one lattice point. In this paper we introduce a new quantity,
the uniform radius, defined as the smallest r such that all spheres of radius r contain
approzimately the same number of lattice points. (See section 3 for a formal definition.)
For technical reasons, we also introduce a variant of the uniform radius, the generalized
uniform radius, which considers not only spheres but also arbitrary convex bodies.

Of all these quantities, only the packing radius has received considerable atten-
tion from a computational complexity point of view. It is easy to see that for any
lattice, the packing radius equals half the length of the shortest nonzero lattice vec-
tor, so (approximately) computing the packing radius is computationally equivalent
to computing the (approximate, within the same approximation factor) length of the
shortest nonzero lattice vector. (See section 2.3 for a discussion of the computational
complexity of this problem.)

Determining the covering radius of a lattice is a classic problem in the geometry
of numbers, but so far it has received very little attention from a computational com-
plexity point of view. We suggest that the covering radius is, by itself, an interesting
problem to be studied as a potential source of computational hardness. We conjecture
that computing the covering radius is NP-hard. We remark that even for the exact
version of the problem, no NP-hardness result is currently known. However, the exact
solution to the CRP is not even known to be computable in nondeterministic polyno-
mial time (NP), and the analogous problem for linear codes is known to be complete
for the second level of the polynomial hierarchy [30], a class of problems presumably
much harder than NP-complete ones.

The problem of estimating the (generalized) uniform radius has been implicitly
considered before in connection with vector quantization® [29] and volume estimation
problems [25] but only for the special case of the integer lattice Z™ and specific convex
bodies (spheres or polyhedra). In this paper we generalize this natural geometric
problem to arbitrary lattices and convex bodies and show that the generalized uniform
radius is always within a factor O(n) from the covering radius.

1.2. Almost perfect lattices. The packing radius and covering radius have
been extensively studied in coding theory. Codes are sets of strings (called codewords)
of some fixed length n over a finite alphabet X, with the (Hamming) distance between

4Vector quantization is the problem of mapping arbitrary real vectors to a discrete set of points
(e.g., the points of a lattice) in such a way that each vector is mapped to a nearby point.



122 DANIELE MICCIANCIO

strings measured as the number of positions in which the two strings differ. Similarly
to lattices, the packing radius and covering radius of a code are defined as the largest
and smallest radii such that the Hamming spheres centered at codewords are disjoint
or cover the entire space 3", respectively. A code is called perfect if the packing radius
equals the covering radius. In other words, the code is perfect if it is possible to par-
tition the entire space 3™ with equal (Hamming) spheres centered at the codewords.
Interestingly, perfect codes are rare but do exist (see [21, section 5]). However, the
same is not true for lattices: it is not possible to partition the Euclidean space R™ with
equal spheres of radius bounded away from 0. However, one can attempt to partition
the space with almost spherical bodies. Any lattice naturally defines a partition of
space into regions, the Voronoi cells, obtained by mapping each point in space to the
closest lattice point (with ties broken in some standard way). It is easy to see that
each Voronoi cell contains an open sphere of radius equal to the packing radius and
is completely contained in a closed sphere of radius equal to the covering radius. The
covering radius is always at least as large as the packing radius, and the smaller the
gap between the two radii, the closer the Voronoi cells are to perfect spheres. We
say that a lattice is 7-perfect if the covering radius is at most 7 times the packing
radius. We are interested in lattices that are 7-perfect for 7 > 1 as small as possible.
Notice that the integer lattice Z™ is 7(n)-perfect for 7(n) = /n, so—is trying to
minimize 7(n)—we may assume without loss of generality that 7(n) € [1,/n]. We
say that a sequence of lattices is almost perfect if it is 7(n)-perfect for some function
7(n) = o(y/n) asymptotically smaller than /n. Ideally, we would like to find almost
perfect lattices with 7(n) = O(1) equal to a constant independent of the dimension.

Another fundamental problem in coding theory is the maximum likelihood de-
coding: given a target point, find the codeword closest to the target. The analogous
problem on lattices, called the CVP, is as follows: given a lattice and a target vector,
find the lattice point closest to it. Differently from lattices, in coding theory most
work has focused on finding efficient decoding algorithms for specific codes, whereas
in the CVP the lattice is usually considered part of the input. In this paper, we
consider the lattice decoding problem for specific lattices. We say that a lattice is
easily decodable if there is an efficient algorithm that, on input a target point, outputs
the lattice point closest to the target. (Formally, we need to consider a sequence of
lattices in higher and higher dimensions. See section 4 for details.) For example, the
integer lattice Z" is easily decodable: given a target point y € Q™, the closest lattice
point is easily found by rounding each coordinate of y to the closest integer.

The random classes of equations defined in this paper are based on easily de-
codable 7(n)-perfect lattices, and the smaller 7(n) is, the harder it is to find small
solutions to the random equations. So, it is natural to ask, What is the smallest
value of 7(n) for which we can efficiently build easily decodable T(n)-perfect lattices?
It is known [40, 10] that very good almost perfect lattices exist, achieving constant
7(n) = O(1). Unfortunately, the proofs in [40, 10] do not give an efficient procedure
to build and decode these lattices. Various examples of easily decodable lattices are
given in [12], but none of them is almost perfect; i.e., they achieve only 7(n) = ©(y/n).
It is natural to ask if almost perfect easily decodable lattices exist at all. In this paper
we initiate the study of almost perfect lattices from a computational point of view,
and we give the first efficient construction of easily decodable almost perfect lattices

with 7(n) = O(y/nloglogn/logn).

Our almost perfect lattices allow us to slightly improve (by a multiplicative factor
O(y/logn/loglogn)) the worst-case/average-case connection factor y(n) for all lattice



ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 123

problems considered in this paper. Although not substantial, this improvement in the
connection factor is qualitatively important because it shows that there are random
classes of linear equations for which finding small solutions is potentially harder than
for the random class originally considered by Ajtai. Moreover, it suggests that it
might be possible to find even better easily decodable almost perfect lattices that
allow us to further reduce the connection factors for all lattice problems considered
in this paper by almost y/n.

1.3. Related work. This work directly builds upon techniques of Ajtai [2], Cai
and Nerurkar [11] and Goldreich, Goldwasser, and Halevi [18], and it is the final
version of [35]. In [2] Ajtai showed® that if one can efficiently find small solutions to
random linear equations on the average with nonnegligible probability 6(n) = 1/ nPM,
then one can efficiently approximate the length of the shortest nonzero vector in any n-
dimensional lattice within a (worst-case) polynomial factor v(n) = n°(") /§(n), where
the smaller the success probability §(n), the larger the approximation factor ~y(n).°
Moreover, even for large values of §(n) (say, 6(n) = 1/2), the factor y(n) given by
[2] is rather large.” Following Ajtai’s seminal work, Cai and Nerurkar [11] showed
that finding small solutions to Ajtai’s random linear equations (with nonnegligible
probability §(n) = 1/n°(M) is at least as hard as computing maximal sets of linearly
independent vectors that are within a worst-case factor n3*¢ from the shortest® (for
any fixed € > 0, independently of the success probability §(n)). It immediately fol-
lows (using standard relations between lattice problems [26, 7]) that Ajtai’s random
problem is at least as hard to solve on the average as approximating the length of the
shortest nonzero vector in any n-dimensional lattice within a factor v(n) = n**¢ in
the worst case.”

The question of determining under what conditions the number of lattice points
inside a convex body Q is roughly proportional to the volume has been extensively
studied, but mostly for the case of the integer lattice Z™. For example Mazo and
Odlyzko [29] study the problem when Q is a sphere of radius r, in connection with

5To be precise, [2] proves only the result for §(n) = 1/2 and remarks that the proof can be
generalized to any nonnegligible 6(n) = 1/n°1),

6Tt should be remarked that, as observed in [2], setting §(n) = 1/2 already gives weak one-
way functions, which can be transformed (using standard techniques; see [16]) into strong one-way
functions based on the worst-case hardness of approximating the shortest vector problem (SVP)
within a fixed polynomial factor y(n) = n©@) . However, in order to argue that no efficient algorithm
can solve Ajtai’s original problem with nonnegligible probability, [2] seems to require that no efficient
algorithm can approximate the worst-case lattice problems within any polynomial factors.

"No specific value of y(n) is given in [2], but [11] estimates that a factor y(n) = n® can be derived
from the proof.

8Cai and Nerurkar [11] prove only the result for the shortest basis problem, but it is easy to modify
their proof to yield a result for the shortest independent vector problem (SIVP). (See footnote 9 for
more information.)

9 To be precise, Cai and Nerurkar [11] claim only a v(n) = n®T¢ connection factor, which is
proved in three steps: (1) first they use small solutions (say, of size O(n)) of random linear equations
to find linearly independent lattice vectors within an n3T€ factor from the shortest basis in the
lattice; (2) then, they use these linearly independent vectors to get an n3-5t¢ approximation to the
shortest basis problem; and (3) finally, they connect the shortest basis problem to the SVP, losing an
additional n!-? factor. We observe that the linear equations of [11] have solutions as small as n9-3+¢
which, if used in the proof, result in linearly independent lattice vectors within an n?-3t€ factor from
the shortest lattice basis. Then, we observe that the same technique used in [11] to transform these
vectors into an n3t€-approximate solution to the shortest basis problem can also be used to show
that the original vectors are an n3+¢-approximate solution to the SIVP. This allows us to use known
results [26, 7] to solve the SVP by losing only an additional factor n (instead of n!-?), leading to an
n4te_approximate solution to the SVP.



124 DANIELE MICCIANCIO

universal quantization and low density subset-sum problems. (See [29] and references
therein for a description of these problems.) In particular, they show that for r =
O(y/n) the number of integer lattice points in the sphere can deviate from the expected
value by factors exponential in n, but they claim that if r = n'/2¢ (for any € > 0),
then the number of integer lattice points in the sphere is always asymptotic to the
volume, no matter where the center is located. A different class of convex bodies
is considered by Kannan and Vempala in [25], but, as usual, only for the special
case of the integer lattice Z™. In [25] Q is an n-dimensional convex polytope with m
facets, and the result is that the number of integer lattice points in Q is approximately
proportional to the volume provided that Q contains a sphere of radius Q(n-y/logm).1°
A result for arbitrary convex bodies is proved by Dyer, Frieze, and Kannan [14], who
show that the number of integer lattice points in Q is approximately proportional to
the volume of Q, provided Q contains a sphere of radius Q(n'®). In section 3 we
generalize the result of [14] to arbitrary lattices and show that the number of lattice
points in Q is approximately proportional to the volume provided that Q contains
a sphere of radius Q(n) times bigger than the covering radius of the lattice (see
Theorem 3.6).

The CRP has been extensively studied from a mathematical point of view, lead-
ing, for example, to the transference theorems of Banaszczyk [7], but it has received
little or no attention from a computational perspective. Two relevant results about the
CRP are McLoughlin’s proof [30] that the analogous problem on linear codes is hard
for the second level of the polynomial hierarchy and Kannan’s algorithm [24] showing
that a variant of the CRP for lattices (where the norm defined by an input parallelo-
tope is used, instead of the usual Euclidean norm) can be solved in polynomial time
for any fixed dimension. Partly motivated by our work [35], some initial progress to-
ward understanding the computational complexity of (approximately) computing the
covering radius of lattices and linear codes has been recently made by Guruswami,
Micciancio, and Regev [20]. The reader is referred to that paper and section 2.3 for
further information about the computational complexity of the CRP.

The problem of decoding specific lattices has been considered in coding theory,
for example, in connection with vector quantization. In [12] Conway and Sloane give
polynomial time decoding algorithms for the root lattices A,, D, and their duals
Ar Dy, as well as various other low-dimensional lattices.!’ From a computational
complexity point of view, the problem has been considered under the name closest
vector problem with preprocessing. Adapting similar results of Bruck and Naor [9]
and Lobstein [28] for coding and subset-sum problems, Micciancio [31] showed that
there are sequences of lattices such that solving the CVP is NP-hard. These results
have been improved by Feige and Micciancio [15] and then Regev [38] to show that
(unless P = NP) there are lattices and codes that cannot be efficiently decoded even
approximately for any constant approximation factor smaller than v/3. Notice that
the goal of [31, 15, 38] is opposite ours: while [31, 15, 38] give explicit constructions of
lattices that cannot be easily decoded, in this paper we search for explicit constructions
of easily decodable lattices.

Almost perfect lattices have been extensively studied from a mathematical point of

10As a side remark, the motivation to study this problem in [25] is somehow opposite ours, as
they count the number of lattice points in a polytope to estimate its volume. Here, we try to get a
bound on the number of lattice points for convex bodies Q of known volume.

11 Asymptotically, only results for infinite families of lattices are interesting because the CVP is
known to be solvable in polynomial time in any fixed dimension [23].



ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 125

view. In particular, Rogers [40] proved that there exist 7(n)-perfect lattices for 7(n) <
3 and any dimension n, and Butler [10] improved the result to 7(n) = 2+ o(1). Our
exponential time construction of almost perfect lattices in Theorem 4.4 is essentially
an algorithmic variant of Rogers’s proof.

In this paper we consider the worst-case complexity of computing short vectors
(as well as solving other computational lattice approximation problems) in any lat-
tice. In a recent breakthrough paper [39], Regev has given encryption schemes and
collision resistant hash functions that are as hard to break as computing shortest
nonzero vectors in lattices with special structure. The results proved in [39] achieve
approximation factors O(n!-®) which are smaller than any other known reduction,
but only for lattices where the shortest vector is unique is some technical sense. This
special structure is common in the construction of lattice-based public key encryp-
tion schemes [4] but does not seem necessary to build one-way or collision resistant
hash functions. In section 8 we explain how the techniques presented in this paper
might lead to one-way and collision resistant hash functions that are as hard to break
as solving the SVP (or other lattice problems) in any lattice, within approximation
factors similar to those established in [39] for the special class of lattices possessing
unique shortest vectors.

Another relevant paper establishing results similar to ours, but for a special class
of lattices, is [34], where the goal is to obtain hard-on-average problems with very
compact representation, rather than improving the connection factor. In [34] Mic-
ciancio shows that if approximating the SVP (or various other lattice problems) is
hard in the worst case over a class of lattices with a special cyclic property, then one
can define random linear equations with only w(logn) variables that are hard to solve
on the average. This yields random equations (and cryptographic one-way functions)
with a much smaller representation size than those considered in this paper, possibly
leading to practical and provably secure lattice-based cryptographic functions.

1.4. Outline. The rest of the paper is organized as follows. In section 2 we
introduce basic definitions and notation used throughout the paper and give back-
ground about lattice problems and computational complexity. In section 3 we define
the (generalized) uniform radius and relate it to other lattice quantities. In section 4
we initiate the algorithmic study of almost perfect lattices and present the first poly-
nomial time construction of easily decodable almost perfect lattices. These lattices
are used in section 5 to define a new random class of equations that generalizes Ajtai’s.
In section 6 we prove the main technical result of the paper: finding small solutions to
the random linear equations of section 5 is at least as hard as finding short (relative
to the generalized uniform radius) linearly independent lattice vectors in the worst
case. In section 7 we relate this problem to other well-known lattice problems, like
approximating the length of the shortest vector in a lattice. Section 8 concludes with
a brief summary of our main results and some open problems whose solution would
allow us to further improve the connection factors established in this paper.

2. Preliminaries. In this section, we introduce the notation that will be used in
the rest of the paper, and then we briefly recall basic notions about lattices, statistical
distance, and iterative reductions. For more background material about lattices the
reader is referred to the book [36].

2.1. Notation. For any finite set S, the size of S is denoted #S. For any real z,
|z] denotes the largest integer not greater than x, and |z| = |x+1/2] is the rounding
of x to the closest integer. For any string s, the length of s is denoted |s|. For any



126 DANIELE MICCIANCIO

positive real € > 0, we write [1 & €] to denote the interval [1 — €, 1 + €]. Arithmetic
operations on intervals are defined in the obvious way by extending the standard
arithmetic operations pointwise; e.g., x - [1 & €] denotes the interval [x — ex, z + ex].
Notice that a € b-[1 £ €] if and only if the relative additive error |a — b|/|b| is at most
e. For any two positive reals a,b > 0, we write ¢ 2 b if a > (1/2) -b and a < b if
a < (3/2)-b. We say that a is approximately equal to b (written a = b) if both a <b
and a 2 b, i.e., a € b-[1 £ 1/2]. Notice that a ~ b is not a symmetric relation; i.e.,
a ~ b does not imply b =~ a. For any a,b,¢ > 0, if a =~ ¢ and b = ¢, then a and b are
within a factor 3 one from the other, i.e.,

(2.1) Va,b,c. (axc) A (b~ c)= (a/3 <b< 3a).

In the paper we use the standard asymptotic notation for functions. For any two
positive real functions f, g, we write f = O(g) or g = Q(f) if there exists a constant
¢ > 0 such that f(z) < ¢- g(x) for all sufficiently large x. We write f = O(g) if
f=0(g) and f = Q(g). We write f = o(g) or g = w(f) if f(x) < ¢ g(zx) for all
¢ > 0 and all sufficiently large . We also use notation O(f), (resp., Q(f), o(f),w(f))
to denote the class of all functions g such that g = O(f) (resp., g = Q(f), etc.), or an
arbitrary, but fixed, function from that class. For example, we write O(1) to denote
an arbitrary constant or n°(!) to denote an arbitrary polynomially bounded function
of n. A function f is negligible if f(n) = n=<() i.e., if f(n) is asymptotically smaller
than any inverse polynomial in n.

Let R, Q, and Z be the sets of the reals, the rationals, and the integers, respec-
tively. The m-dimensional Euclidean space is denoted R". We use bold lowercase
letters (e.g., x) to denote vectors and bold uppercase letters (e.g., M) to denote
matrices. The n-dimensional identity matrix, i.e., the n x n diagonal matrix with
1’s on the diagonal, is denoted I,, or simply I when the dimension is clear from the
context. The columns of a matrix M are usually denoted by the corresponding low-
ercase letters, e.g., my,...,m,. As an exception, the standard unit vectors, i.e., the
columns of the identity matrix I,, are denoted eq,...,e,. If @ C R™ is an arbi-
trary region of space and x € R” is a vector, @ + x = {y + x:y € Q} denotes a
copy of Q shifted by x. The ¢; norm of a vector x € R" is ||x|| = /> 27, and
the associated distance is dist(x,y) = [[x — y||. For a matrix M = [my, ..., m,],
we define ||M|| = max; ||m;||, where m; are the columns of M. For vector v € R"
and set @ C R"™, let dist(v, Q) = infweg ||v — w|| be the distance between v and
Q. For vector v € R™ and real r, let B(v,r) = {w € R" : dist(v,w) < r} be the
open ball of radius 7 centered in v and B(v,r) = {w € R" : dist(v,w) < r} its
topological closure. When the center v = 0 is the origin, we simply write B(r) and
B(r). We often use matrix notation to denote sets of vectors. For example, matrix
S € R™*™ represents the set of m-dimensional vectors {si,...,s,}, where s1,...,s,
are the columns of S. The linear space spanned by a set of vectors S is denoted
span(S) = {3, ; - s;: for all i.z; € R}. For any set of linearly independent vectors S,
we define the centered half-open parallelepiped P(S) = {Sx: —1/2 <x; < 1/2}.

2.2. Lattices. An m-dimensional lattice is the set of all integer combinations
{37 zb;ix; € Z} of n linearly independent vectors by,...,b, in R™ (m > n).
The set of vectors by,...,b, is called a basis for the lattice, and the integer n =
dim(span(B)) is called the rank of the lattice. If the rank n equals the dimension m,
then the lattice is called full rank or full dimensional. Lattices are infinite Abelian
groups with respect to the vector addition operation and can be equivalently defined
as discrete additive subgroups of R™. A basis can be compactly represented by the



ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 127

matrix B = [by|...|b,] € R™*" having the basis vectors as columns. The lattice
generated by B is denoted £(B). Notice that £(B) = {Bx:x € Z"}, where Bx is
the usual matrix-vector multiplication. We use the notation £(B) to denote the set

{Bx:x € Z"} even when vectors B are not linearly independent. The dual of a lattice
L(B) is the set

L(B)* ={x €span(L(B)):Vy € L(B).(x,y) € Z}

of all vectors in the linear span of £(B) that have integer scalar product with all
lattice vectors. The dual of a lattice is a lattice, and a possible basis for the dual of
L(B) is given by B* = B(BTB)~!, where B” is the transpose of B. (Notice that if
B is a basis, it has full column rank and the square matrix BYB is invertible.)

The minimum distance of a lattice £(B) (denoted A;(£(B))) is the minimum
distance between any two (distinct) lattice points and equals the length of the shortest
nonzero lattice vector:

A (£(B)) = min{dist(x,y) : x #y € £L(B)} = min{||x|| : x € £(B) \ {0}}.

This definition can be generalized to define the ith successive minimum as the smallest
A; such that B()\;) contains ¢ linearly independent lattice points:

Ai(£(B)) = min{r: dim(span(£(B) N B(r))) > i}.

Another important constant associated to a lattice is the covering radius. The covering
radius p(L(B)) of a lattice is the maximum distance dist(x, £(B)) when x ranges over
the linear span of B:

p(L(B)) = max_{dist(x,L(B))}.
x€Espan(B)

A sublattice of £(B) is a lattice £(S) such that £(S) C £(B). L(S) is a full rank
sublattice of £(B) if it has the same rank as £(B). The determinant of a (rank
n) lattice det(£(B)) is the (n-dimensional) volume of the fundamental parallelepiped
P(B), and it does not depend on the choice of the basis B. If £(B) is full dimensional,
then det(£(B)) equals the absolute value of the determinant of the n x n basis matrix
|det(B)|. Hadamard’s bound gives a simple way to bound the determinant of a
lattice as det(£(B)) < [],||b;||. Hadamard’s bound can be much larger than the
actual value of the determinant, and it equals the determinant if and only if the basis
B is orthogonal. Minkowski’s first theorem (see [36, pp. 11-14]) implies that any
rank n lattice £(B) contains a nonzero vector of length at most

(2.2) M(L(B)) < Videt(L(B))/",

The Voronoi cells of a lattice, defined below, play an important role in our proofs.
For uniformity, and by analogy with the definition of the half-open parallelepiped, we
first define the half-open Voronoi cells. However, we remark that in the rest of the
paper we need only the more standard notions of open and closed Voronoi cells.

DEFINITION 2.1. Let < be the total order on R™ where x =<y if and only if
Ix|| < ll¥ll or Ix|| = |ly]l and x precedes y lexicographically; i.e., x; < y; for the first
coordinate i such that x; # y;. For any lattice L(B) and lattice point x € L(B), the
(half-open) Voronoi cell of x is the set

V(x,L(B)) = {z € span(L(B)):Vy € L(B).(z—x) < (z —y)}.



128 DANIELE MICCIANCIO

The closed (resp., open) Voronoi cell V(x,L(B)) (resp., V°(x,L(B))) is defined as
the topological closure (resp., interior) of V(x, L(B)).
For simplicity, the Voronoi cell of the origin x = 0 is denoted V(L(B)). Notice that
the Voronoi cell of the integer lattice equals the half-open unit cube: V(Z") = P(I,,).
We need some simple properties about Voronoi cells, as listed below. All properties
are easily verified and their proof is left to the reader.
PROPOSITION 2.2. For any lattice L(B), the Voronoi cells of L(B) satisfy the
following properties:
(i) The half-open Voronoi cells form a partition of span(L(B)); i.e., for any
y € span(L(B)) there exists a unique lattice point x € L(B) such thaty € V(x, L(B)).
(ii) All Voronoi cells V(x, L(B)) (for x € L(B)) are shifted copies V(x,L(B)) =
V(L(B)) + x of the fundamental cell associated to the origin.
(iil) Each cell V(x,L(B)) contains the open sphere B(x, \1(L(B))/2), and it is
contained in the closed sphere B(x, p(L(B))).
(iv) The volume of a Voronoi cell equals vol(V(x, £L(B))) = det(L(B)).
(v) The open Voronoi cell V°(x,L(B)) is the set of all points in span(L(B))
which are strictly closer to x than to any other lattice point.
(vi) The closed Voronoi cell V(x, L(B)) is the set of all points in span(L(B))
which are at least as close to x as to any other lattice point.
(vii) The cells V°(x, L(B)) and V(x, L(B)) are convex and symmetric about their
center X.

2.3. Computational problems on lattices. When discussing computational
issues related to lattices, it is customary to assume that the lattices are represented
by a basis matrix B and that B has integer entries. Other representations are pos-
sible; e.g., a sublattice of Z™ can be defined as the set of integer solutions to a
system of homogeneous modular linear equations. These alternative representations
are computationally equivalent to giving a basis, i.e., for example, given a system of
homogeneous modular linear equations one can compute in polynomial time a basis
for the corresponding lattice.

In this paper we consider the following problems on lattices. All problems are
defined in their approximation version, where the approximation factor v(n) can be
a function of the rank n of the lattice. The exact version of the problems corresponds
to approximation factor v(n) = 1.

DEFINITION 2.3. The shortest vector problem (SVP), given a lattice basis B,
asks for a nonzero lattice vector v € L(B) of length at most v(n) - A1 (L(B)), where
n is the rank of B and vy(n) > 1 is the approximation factor. The problem can be
defined also in a length estimation version, where given a basis B, one has only to
find a value Ay such that A\ (L(B)) < A1 < y(n) - A\{(L(B)). The promise problem'?
naturally associated to the length estimation version of SVP (denoted GAPSVP., ) is
as follows: given (B,d), where B is a lattice basis and d is a (rational) number, decide
i M(L(B)) < d or M (L(B)) > A(n) - d.

The promise problem is easily shown to be equivalent to the length estimation
version of SVP. (See, for example, [36, pp. 20-21].) However, the promise and length

12Promise problems are a natural generalization of decision problems where one is asked whether
a given input satisfies one of two mutually exclusive properties (e.g., tell if a given input lattice
contains a short nonzero vector, or it does not). However, differently from decision problems, the
two properties are not necessarily exhaustive. The problem is, under the promise that the given
input satisfies one of the two conditions, tell which of the two properties is satisfied. If the input
satisfies neither property, then any answer is acceptable.



ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 129

estimation problems are not known to be equivalent to the search (vector finding) ver-
sion of SVP for v(n) > 1; i.e., given an oracle to (approximately) compute the length
of the shortest nonzero vector in any lattice, it is not clear how to find short lattice
vectors.!3 The SVP is NP-hard (under randomized reductions), even in its promise
version, for any constant approximation factor v(n) < v/2 [3, 33]. The promise version
of the problem is clearly solvable in NP. For v(n) = Q(y/n/logn), the problem is in
coAM [17], and for y(n) = Q(y/n) it is also in coNP [1]. (See [26, 7] for earlier results
with approximation factor y(n) = Q(n).) Finally, when ~(n) = e(nloglogn/logn) the
problem can be solved in random polynomial time [5], and deterministic polynomial
time solutions are known only for (n) = ¢2(n(oglogn)®/logn) [47],

DEFINITION 2.4. The shortest independent vectors problem (SIVP), given a
lattice basis B of rank n, asks for a set of n linearly independent lattice vectors S C
L(B) such that ||S|| < v(n) - A\ (L(B)). The problem can be defined also in a length
estimation wversion, where given a basis B, one has only to find a value An such that
M (L(B)) < Ay < ~(n) - A\ (L(B)). The promise problem naturally associated to the
length estimation version of SIVP (denoted GAPSIVP. ) is as follows: given (B,d),
where B is a lattice basis and d is a (rational) number, decide if \,(L(B)) < d or
An(L£(B)) >~(n) - d.

SIVP is NP-hard (as usual, already in its promise version) for any constant
approximation factor [8]. The (promise version of) SIVP is clearly in NP. For
~v(n) = Q(y/n/logn) the problem is in coAM [20, 17], and for v(n) = Q(y/n) it is also
in coNP [20, 1]. On the algorithmic side, it is possible to reduce approximating STVP
within a factor \/n-y(n) to approximating SVP within a factor v(n), where both STVP
and SVP are considered in their search version. (See, for example, [36, Chapter 7].)
For the promise version of the problems, the transference theorems of [26, 7] imme-
diately give a reduction from GAPSIVP,,..(,) to (the complement of) GAPSVP .
These reductions from SIVP to SVP immediately give deterministic polynomial time
algorithms for approximating SIVP within factors y(n) = e©(n(og logn)*/logn) 4nd
probabilistic polynomial time algorithms for y(n) = ¢©(n(leglogn)/logn)

DEFINITION 2.5. The covering radius problem (CRP), given a lattice basis B,
asks for a value p such that p(L(B)) < p < y(n) - p(L(B)). The promise problem
naturally assoctated to CRP, (denoted GAPCRP, ) is as follows: given (B, d) where
B is a lattice basis and d is a (rational) number, decide if p(L(B)) < d or p(L(B)) >
v(n) - d.

Currently, no NP-hardness result is known for CRP. However, we do not even
know how to solve the problem (in its exact version, i.e., for y(n) = 1) in non-
deterministic polynomial time (NP), and the analogous problem for linear codes is
known to be hard for the second level of the polynomial hierarchy [30]. So, we can
reasonably conjecture that the same is true for the CRP on lattices.

Congecture. The CRP for lattices (GAPCRP;) is IT-hard.

Recently, [20] has shown that GAPCRP, is in AM for v = 2, in coAM for
~v(n) = Q(y/n/log(n)), and in NP N coNP for v(n) = Q(y/n). The problem can
also be approximated within v = 1 4 € (for any constant ¢ > 0) in random ex-
ponential time [20], y(n) = eCn(oglogn)/logn) i yandom polynomial time, and
y(n) = eOn(loglog n)*/1ogn) in deterministic polynomial time.

13 A reduction for the exact case (y = 1) is given in [22]. This is the only direct reduction known
to date. Technically, a (trivial) reduction between the two problems also exists for approximation
factors « for which approximating A; is NP-hard or finding short vectors is solvable in polynomial
time. No reduction is known for any other intermediate approximation factor.



130 DANIELE MICCIANCIO

DEFINITION 2.6. The closest vector problem (CVP), given a lattice basis B
and target vector t, asks for a lattice point v € L(B) such that dist(t,v) < ~(n) -
dist(t, £(B)). The problem can be defined also in a distance estimation version, where
given a basis B and target t, one has only to find a value d such that dist(t, £L(B)) <
d < ~(n) - dist(t, £(B)). The promise problem naturally associated to CVP (denoted
GAPCVP, ) is as follows: given (B, t,d), where B is a lattice basis, t is a target vector,
and d is a (rational) number, decide if dist(t, £L(B)) < d or dist(t, L(B)) > v(n) - d.

The CVP is known to be at least as hard as the SVP [19] for any approximation
factor y(n). Moreover, it is NP-hard for quasi-polynomial approximation factors
v(n) = nt/OUcglogn) [13] For y(n) = Q(y/n/logn) the problem is in coAM [17],
and for v(n) = Q(y/n) it is also in coNP [1]. (See [26, 7, 38] for earlier results with
approximation factor y(n) = Q(n).) Finally, the problem can be approximated in
deterministic polynomial time within y(n) = e2(n(loglogn)*/logn) 141 99].

In the CVP, the target point t can be arbitrarily far from the lattice. In coding
theory, Vardy [42] has considered a variant of the CVP where the distance of the
target from the code is guaranteed to be less than the packing radius of the code.
This problem (called the bounded distance decoding problem (BDD)) is interesting
because decoding within the packing radius, if solvable, has a unique solution. (For
this reason, the packing radius is sometimes also called the “unique decoding” radius.)
For lattices, the analogous problem would be the following: given a lattice B and a
point t within distance d < A (£(B))/2 from £(B), find the (unique) lattice point
within distance d from t. In general we can consider a similar problem for values
of d different from A\;(£(B))/2, although when d > A\;(£(B))/2 the solution is not
necessarily unique. We consider the case when d = p(L£(B)) equals the covering
radius of the lattice. This case is interesting because there is always a lattice point
within distance p(£(B)) from the target. Below we formally define an approximation
version of this problem. Since for any lattice £(B) and target t, there is always a
lattice point within distance p(£(B)) from t, we do not define distance estimation or
promise versions of this problem.

DEFINITION 2.7. The guaranteed distance decoding problem (GDD,), given a
lattice B and a target point t € span(B), asks for a lattice point x € L(B) such that
dist(t,x) < v(n)p(L(B)), where n is the rank of the lattice.

The following relations are known among the parameters of a lattice £(B).

PRropPOSITION 2.8. For any rank n lattice B,

(2.3) M(L(B)) < An(£L(B)) < 2p(L(B)) < VnAn(L(B)).

Moreover, if L(B)* is the dual lattice of L(B), then

(24) 1< M (L(B))2p(L(B)) < n
and
(2.5) 1< M (L(B)A(L(B)) < n.

Proof. See [36, Theorem 7.9] for (2.3) and [7] for (2.4) and (2.5). 0O

2.4. Lattices and groups. Let £(L) be a lattice. Any sublattice £L(M) C L(L)
defines a natural equivalence relation on L£(L) as follows: two lattice points x,y €
L(L) are equivalent (written x =p y) if and only if x —y € £(M). The reader
can easily check that =pp is an equivalence relation; i.e., it is reflexive (x =pm x),



ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 131

symmetric (x =pq y © ¥y =M X), and transitive (x =M y Ay =M Z = X =M 2).
The =pm-equivalence class of x € L(L) (denoted [x]n) is the set of all y € £L(L) such
that x =p y. The quotient £(L)/L(M) = {[x]m:x € L(L)} is the set of all =pp-
equivalence classes of £(L). The equivalence relation =y is a congruence with respect
to the addition operation; i.e., if x =p X’ and y =pm ¥/, then (x+y) =m (X' +y').
It follows that for any two equivalence classes [x]m and [y|m, the sum [x]pm + [y]m =
[x + y]m is well defined; i.e., it does not depend on the choice of representatives x,
y, and the quotient £(L)/L(M) is an additive group with the sum operation just
described. Notice that if £(L) is regarded as an Abelian group, then sublattice £(M)
is a subgroup of £(L) and (L(L)/L£(M), +) is just the standard quotient group.

Group L(L)/L(M) is finite if and only if £(M) is a full rank sublattice of £L(L),
in which case the cardinality of the group is

~det(£L(M))

#(L(L)/L(M)) = Aet(L(L))

Elements of this group can be represented using several standard techniques, e.g.,
selecting a unique representative from each equivalence class. It is easy to see that
for every equivalence class [x]|nr there exists a unique element x’ € £(L) NP(M) such
that x =pm x’. So, a possible set of (unique) representatives is given by the set

L(L) NP(M)

of all lattice points that belong to the half-open parallelepiped P(M). Given an
arbitrary lattice point x € £(B), the corresponding representative can be efficiently
computed as follows: write x as Mz, let 2} = |z;] for all # = 1,...,n, and set
x' =M(z - 7).

The representation of group elements using vectors in P(M) N £L(L), although
polynomial, is not very efficient. In particular, the number of bits necessary to store a
single group element can be much larger than log, #G. Other more efficient ways to
represent group elements are possible—for example, using the Hermite normal form or
the Smith normal form. These representations allow us to store group elements using
only log |G| bits and perform the group operations in linear time. The techniques
described in this paper are largely independent from the way group elements are
represented, so we do not elaborate on this any further, and we refer the reader to
[32, 36] for more details.

Later in this paper we need to sample elements from group G = L(L)/L(M)
uniformly at random. This can be easily done using an elementary group theoretic
technique described in the following proposition.

PROPOSITION 2.9. Let G be a finite Abelian group and g1,...,g, a generating
set for G. Then, if di,...,d, are chosen uniformly at random in {1,...,#G}, then
the group element

n
g=">_dgi
i=1

is distributed uniformly at random over G.

Proof. Since elements g¢i,...,g, generate the entire group, we know that for
any group element a € G there exists an integer vector d, = [dg.1,...,dqn] such
that Yi" | dai9; = a. Let K be the set of all integer vectors d = [di,...,d,] such
that > d;g; = 0 (in G). Notice that for any a € G and d € Z", Y. dig; = a if



132 DANIELE MICCIANCIO

and only if d € K 4+ d,. Therefore, if dy,...,d, are chosen uniformly at random
in {1,...,#G}, then the probability that ) . d;g; = a equals exactly the size of
(K +d,) N{L,...,#G}™ divided by (#G)™. Since K is periodic modulo #G (i.e.,
it is invariant under translations by vectors in #G - Z"), all sets (K +d,) N {1,...,
#G}" have the same size, and the probability that ) . d;g; = a is the same for all
a€d. |

Of particular interest in this paper are quotient groups G = L(L)/L(M), where
M defines an almost orthogonal sublattice of L(L). The following lemma gives a
possible way to build almost orthogonal sublattices for any input lattice £(L).

LEMMA 2.10. Let £L(B) be a lattice of rank n, o be a positive real, and D
be a decoding procedure that on input a vector y € span(B) returns a lattice point
D(y) € L(B) such that dist(D(y),y) < . For any a > 2/n - o, one can efficiently
find (with n calls to D) a basis of a full rank sublattice S C L(B) such that for all
x € R”

[1Sx| = o - [[x].

Proof. Let s; = D(« - t;), where tq,...,t, are an orthonormal basis of span(B);
e.g., if £(B) is a full rank lattice, set t; = ;. Clearly s; € L(B) foralli=1,...,n.
Let x € R™ be an arbitrary vector. We want to prove that ||Sx|| =~ a - ||x||. We know
that s; = a - t; + r;, where ||r;|| = || D(a - t;) — a - t;|| < 0. Therefore,

1Sx[| = [[(e- T + R)x[| = |- Tx + Rx.

By the triangle inequality, and using || Tx|| = ||x| (which follows from the fact that
T is an orthonormal set of vectors), we get

a- x| — [[Rx] < [|Sx|| < a- [Jx[| + [[Rx]].

So, we need to prove that [|Rx| < §[x||. By the triangle inequality and Cauchy—
Schwarz,

n n
«
IRx|| <D el - il <o || < Vo - |Ix]| < 5 Il

i=1 i=1

This proves that |[|Sx|| = « - ||x||. The linear independence of vectors S immediately
follows because if S were linearly dependent, then one could find a nonzero vector x
such that Sx = 0, contradicting ||Sx|| ~ « - [|x]| > 0. O
So far, we have shown how to use lattices and sublattices to define finite Abelian
groups. It is also possible to use finite Abelian groups to define lattices.
ProrosITION 2.11. Let G be a finite Abelian group, and let g1,...,g9, be a
sequence of elements of G. Then, the set

Agr,- o gn) = {x € Z”:Zaz,»gi = 0}

i=1

is a lattice, and its determinant satisfies det(A(g1,...,gn)) < #G, with equality if
and only if g1,...,9n generate the entire group G.

Proof. A(g1,...,9gn) is a lattice because it is an additive subgroup of Z™. Let G’
be the subgroup generated by ¢i, ..., g,. Notice that the quotient Z™/A(g1, ..., gn) is
isomorphic to G’, with isomorphism given by ¢([x]) = >, z;g;. It follows that the size
of G' is det(A(g1,...,9n))/ det(Z™) = det(A(g1,-..,9n)), and det(A(g1,...,9n)) =
40 <#G. O



ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 133

2.5. Statistical distance. The statistical distance is a measure of how two
probability distributions are far apart from each other, and it is a convenient tool in
the analysis of randomized algorithms and reductions. In this subsection we define
the statistical distance and state some simple facts that will be used in the analysis
of the algorithms in this paper. All the properties of the statistical distance stated
in this subsection are easily verified. For more details the reader is referred to [36,
Chapter 8].

DEFINITION 2.12. Let X and Y be two discrete random variables over a (count-
able) set A. The statistical distance between X and Y is the quantity

A(X,Y) = % D IPr{X =a} - Pr{Y = a}|.
a€A

We say that two random variables X, Y are identically distributed (written X =
Y) if and only if Pr{X = a} = Pr{Y = a} for every a € A. The reader can easily
check that the statistical distance satisfies the usual properties of distance functions,
ie, A(X,Y) > 0 (with equality if and only if X =Y), A(X,Y) = A(Y, X), and
AX,2) <AX,)Y)+A(Y, 2).

The following proposition shows that applying a (possibly randomized) function
to two distributions does not increase the statistical distance.

PROPOSITION 2.13. Let X, Y be two random variables over a common set A. For

any (possibly randomized) function f with domain A, the statistical distance between
f(X) and f(Y) is at most

(2.6) A(f(X), f(Y)) < AX,Y).

Another useful property of the statistical distance is the following.
PropoSITION 2.14. Let Xq,..., Xy and Y1,..., Y be two lists of totally inde-
pendent random variables. Then

k
(2.7) A((X1, . Xe), (Y1, V) € ) A(XG ).
i=1

The next proposition and corollary show how to use the statistical distance to
estimate expectations and probabilities.

PROPOSITION 2.15. If X andY are random variables over set A and f: A — |a, b
is a real valued function, then

(2.8) | Exp[f(X)] = Exp[f(Y)]] < b —a] - A(X,Y).

As a corollary, we immediately obtain the following.
COROLLARY 2.16. If X andY are random variables over set A and p: A — {0, 1}
is a predicate, then

(2.9) | Prlp(X) = 1] = Prp(Y) = 1]| < A(X,Y).

The following proposition gives a standard amplification technique that allows us
to generate almost uniform samples from a group by adding a relatively small number
of independent samples that are not too far from uniform.



134 DANIELE MICCIANCIO

PROPOSITION 2.17. Let (G,4) be a finite group, and let Ay, ..., Ax be k inde-
pendent (but possibly not identically distributed) random variables over G such that
Pr{A4;, = g} = 1/#G for alli=1,...,k and any g € G. Then, for any g € G,

Pr zk:fl— EL- 1ii
oS B TchN R

In particular, the statistical distance between the sum A = Zle A; and the uniform
distribution U over G is at most

k
A (Z A, U) < 2,%
i=1

The next proposition gives a way to estimate how much a given distribution is
affected by conditioning.

PROPOSITION 2.18. For any random wvariable X over set A, and event Y, the
statistical distance between distribution X and the conditional distribution of X given
Y is exactly half the expected relative additive error of Y given X; i.e.,

Pr{Y|X =a}

A (X)) - . B HPT{“X} _ 1” <L hax B (7]

) Pr{Y} = 2 aea

2.6. Iterative algorithms and reductions. Many lattice algorithms work by
first computing a relatively poor solution to the problem in question, and then itera-
tively improving it until a solution meeting some desired condition is found. Examples
of such iterative algorithms are the LLL basis reduction algorithm [27] and the Ajtai
worst- to average-case reduction and variants [2, 11, 35, 34]. Many other fundamental
algorithms can also be described as an iterative process; e.g., Euclid’s algorithm starts
from two input numbers a,b and iteratively computes smaller and smaller numbers
until the greatest common divisor of a and b is found.

The high level structure of many iterative algorithms is the same, and it can be
formulated abstractly without any reference to the specific problem in question. Al-
though the method is now standard and has been repeatedly used to solve many lattice
problems, it has never been explicitly formulated. In order to avoid unnecessary repe-
titions and highlight both the similarities and differences among all these algorithms,
below we give an abstract formulation of this iterative method and present a general
proof that the method implies standard polynomial time algorithms and reductions.

Computational problems can be abstractly defined by giving a binary relation
consisting of all problem-solution pairs.

DEFINITION 2.19. The language associated to a binary relation R is the set Ly
of all strings x such that (x,w) € R for some w. The problem defined by relation R is
as follows: given a string x € Ly, find a w such that (x,w) € R. For any (z,w) € R,
we say that w is a solution to problem x.

Since no polynomial time algorithm (or reduction) can possibly output a solution
w of size superpolynomial in |z|, it is usually assumed that there exists a polynomial
p such that |w| < p(]z|) for all (z,w) € R. This is the case for all problems considered
in this paper. However, we remark that in general relation R is not required to be
polynomial time computable. For example, in the v approximate SVP, membership
in the associated relation R = {(B,v):v € L(B) \ {0} A |v|| < v- A (L(B))} is
probably not polynomial time computable for v < /2 (unless NP = RP [33]). If



ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 135

membership in R is polynomial time computable (and there exists a polynomial p
such that |w| < p(|z]) for all (z,w) € R), then R is an NP-relation.

A deterministic algorithm F solves problem R if for any x € Lg the output
w = F(x) satisfies (r,w) € R. If F is a randomized algorithm, then we say that F
solves R in the worst case with probability p (possibly a function of the input length);
if for any « € Lpg the probability (over the internal randomness of F alone) that
(x, F(z)) € R is at least p(|x|). Algorithm F solves R on the average if (x, F(z)) € R
with probability at least p(|x|), when the probability is computed over the internal
randomness of F and the random selection of the input x according to some specified
distribution over all strings in Lp of length |z|.

For all worst-case problems considered in this paper, given two tentative solutions
wp, wy for a problem x, it is possible to efficiently select the “best” of the two; i.e.,
there is a polynomial time algorithm that selects a w; such that if (z,wg) € R or
(x,w1) € R, then (z,w;) € R. Tt follows that any algorithm that solves the prob-
lem with nonnegligible probability p(|z|) > |z|~?™) can be easily transformed into an
algorithm that solves the problem with probability exponentially close to 1, by repeat-
edly executing the basic algorithm a polynomial (e.g., |z| / p(|z|)) number of times
and selecting the best solution. So, we describe any such algorithm as solving the
problem with high probability, without explicitly stating the exact value of the success
probability. Notice, however, that this applies only to (randomized) algorithms that
solve a problem in the worst case. The success probability amplification technique
we just described may not work when applied to an algorithm that solves a problem
with nonnegligible probability, but only on the average, when the input is chosen at
random.

Before we give the general definition of iterative reduction (or algorithm), we
illustrate it with a familiar example. Consider Euclid’s algorithm. The input is a pair
of numbers z = (a,b), and we want to find the greatest common divisor w = ged(a, b).
The algorithm works iteratively, maintaining at each iteration a pair s = (sg, s1) such
that sp > s1 and ged(sg, s1) = w. At every iteration, if s # 0, the state is updated
from (sp, $1) to (s1,80 mod s1). Polynomial time termination is guaranteed because
at every iteration the function f(sg,s1) = so - s1 + 1 decreases at least by a factor 2.
When s; = 0 no more progress is possible, and the algorithm terminates with output
so- In the case of lattice problems, the input is usually a lattice basis x = B, and the
algorithm maintains a set of linearly independent vectors s = S C £(B), or a basis for
the input lattice £(S) = £(B). Typically, the goal is to find a set of short vectors S.
This set is found by initially setting S to the input basis and then iteratively applying
an algorithm that on input B and S outputs a better set S’. This general idea is
formalized in the following definition. (See Figure 1 for a pictorial representation
of the intended use of iterative reductions and the proof of Theorem 2.21 below for
further explanations.)

T s’ flz,s") < no

S(@,s) f(@,5)/2

O(z, s)

yes

I(x)

Fic. 1. Iterative reduction.



136 DANIELE MICCIANCIO

DEFINITION 2.20. An iterative reduction from problem P to a target problem P’
is a tuple (R, f,I,0,8), where the following hold:

(i) R is a relation (defining the set R, = {s: (x,s) € R} of valid internal states)
such that |s| < p(|z|) for some polynomial p and all (z,s) € R.

(ii) f: R — Q7T (the progress function) is a polynomial time computable func-
tion mapping pairs (x,s) € R to positive rational numbers f(z,s) € Q7.

(i) I (the initialization function) is a polynomial time computable function map-
ping each problem instance x € Ly to an initial state I(x) satisfying (z,I(x)) € R.

(iv) O (the output function) is a polynomial time computable function mapping
valid pairs (z,s) € R to tentative solutions O(x,s), possibly satisfying (z,0(x,s)) €
P.

(v) SO (the iterative step) is a polynomial time oracle algorithm such that for
any oracle F solving problem P', and for all (x,s) € R, the output s' = S7 (x,s)
satisfies

(a) (z,¢') € R; and

(b) if P(x,0(x,s)) is false, then f(xz,s') < f(z,s)/2.

The following theorem shows that iterative reductions easily imply the existence
of standard Cook reductions. We remark that the notion of iterative reduction for-
mulated in Definition 2.20 and used in Theorem 2.21 below considers both P and P’
as worst-case problems. The definition can be easily extended to the case where P’
is an average-case problem; however, this is not needed in this paper. In section 6 we
will show that the iterative reduction implicit in Ajtai’s worst-case to average-case
connection and variants can be easily factored into an iterative reduction between two
worst-case problems and a worst- to average-case reduction that involves no iteration.

THEOREM 2.21. If there is an iterative reduction from problem P to problem P’,
then there is a polynomial time (Cook) reduction from P to P’.

Proof. Let (R, f,I,0,8) be an iterative reduction from P to P’. We define a
standard polynomial time reduction between the two problems. The reduction works
as follows (see Figure 1):

1. On input z, compute s = I(z).

2. Compute 87 (z,s) = s’ and check if f(z,s") < f(z,s)/2.

3. If the check succeeds, replace s with s’ and repeat the previous step.
4. If the check fails, then terminate and output w = O(x, s).

It is immediate to verify that the algorithm satisfies the invariant (x,s) € R
at all iterations. Moreover, the termination condition f(z,s’) > f(x,s)/2 implies
P(z,0(z, s)), and therefore the final output is a correct solution. We need to prove
that the running time is polynomial in |z|. Notice that since (z, s) € R, |s| is bounded
by a fixed polynomial in |z| in all iterations, and all steps can be performed in poly-
nomial time. We need to bound the number of iterations. Let p be a polynomial such
that |s| < p(|z|) for all (z,s) € R, and let ¢ be a polynomial bounding the running
time of f. It follows that the initial value of f(z,s) is at most 2¢(=I+P(zD) and that
f(z,s) is always at least 2-9(I214P(2])) " Since at every iteration f(z,s) decreases by
a factor 2, the maximum number of iterations is at most 2¢(|z| + p(|z|)), which is
polynomial in |x|. O

3. Covering radius and uniform radius. Let £(B) be an n-dimensional lat-
tice, and let Q be a convex body in R™. It can be shown that if we consider a randomly



ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 137

shifted copy of the body Q +x (where x is chosen uniformly at random'* ), then the
expected number of lattice points in Q 4+ x equals exactly

Exp L) 0 (Q )] = ol D
In particular, if Q is a sphere of radius r, then
Exp [#(0(B) 1 Bx. 1) = 19 2

This corresponds to the intuition that the determinant det(£(B)) is the inverse of the
density of lattice points in space. Notice that the actual number of lattice points in
a specific @ may deviate arbitrarily from the expectation, even for the special case of
spherical Q. Consider, for example, a lattice generated by two orthogonal vectors e;
and Des, where D is a large constant. Notice that the determinant of the lattice is
D, so on the average we would expect to find vol(Q)/D lattice points inside Q. Now,
let Q = B(x,v/D) be the open disc of radius v/D. The area of Q is vol(Q) = 7D, so
on the average we would expect to find = lattice points in Q. However, if x = 0, the
number of lattice points in Q is 2[v/D] — 1. Even worse, if x = (ID/2)es, then Q does
not, contain any lattice point at all.

We define the uniform radius of a lattice as the smallest value r = ((£(B)) such
that any sphere B(x, r) contains a number of lattice points close to the expected value.

DEFINITION 3.1. For any n-dimensional lattice L(B), the uniform radius ((£(B))
is the smallest positive real v such that

_ vol(B(r))
for any x € span(L(B)).

The following proposition shows that the uniform radius ¢(£(B)) is at least as
large as the covering radius p(£(B)). Later we will also show that the uniform radius
is never much bigger than that.

PROPOSITION 3.2. For any lattice L(B), p(L(B)) < ((L(B)).

Proof. The proof is immediate because for r < p(L£(B)) any sphere of radius r
centered in a deep hole (i.e., a point in space at distance p(L£(B)) from the lattice)
does not contain any lattice point. 0

The uniform radius can be used to estimate the number of lattice points contained
in a sphere. Later in this paper, we need to estimate the number of lattice points
inside arbitrary convex bodies. So, we generalize the definition of the uniform radius
to arbitrary convex bodies.

DEFINITION 3.3. For any n-dimensional lattice £L(B), the generalized uniform
radius é(C(B)) is the smallest positive real v such that for any convexr body Q con-
taining a sphere B(x,r) C Q of radius r, the number of lattice points inside the body
satisfies

vol(Q)
#(LB)NQ)~ —————.

(£(B) ) det(£(B))

MIntuitively, we would like to choose x uniformly at random from R, but this is not possible
because R™ has infinite measure. This problem is easily solved observing that it is enough to choose
x uniformly at random from the fundamental region P(B) of the lattice, because the lattice repeats
identically when translated by Bx for x € Z".



138 DANIELE MICCIANCIO

Clearly, the generalized uniform radius is at least as large as the uniform radius:
for any lattice £(B), ((£(B)) < {(£(B)). In particular, {(£(B)) is always larger than
the covering radius p(£(B)). We bound the (generalized) uniform radius from above
and show that for any lattice £(B), the (generalized) uniform radius is not much
larger than the covering radius. Specifically, we show that ((£(B)) = O(n) - p(L(B)).
A similar result was proved by Dyer, Frieze, and Kannan in [14] for the special case of
L(B) = Z". We observe that the proof of [14] is a general volume argument and does
not use any special property of lattice Z". So, it can be easily adapted to arbitrary
lattices. Below we recall two simple geometric lemmas proved in [14] and then use
them to prove the bound on ¢(£(B)).

LEMMA 3.4 (see [14, Proposition 1]). Suppose Q is a convex body in R™ containing
the unit ball B(1), and let € > 0 be any positive real. Then all points within distance
e from Q belong to (1 +¢€)Q.

LEMMA 3.5 (see [14, Proposition 2]). Suppose Q is a convex body in R™ containing
the unit ball B(1), and let 0 < e < 1. Then, all points within distance ¢ from (1 —¢)Q
belong to Q.

We can now prove the bound on the uniform radius in terms of the covering
radius.

THEOREM 3.6. For any n-dimensional lattice L(B),

C(L(B)) < 3np(L(B)).

Proof. Let L(B) be a full rank lattice in R™ with covering radius p(£(B)), and
let @ be a convex body containing a sphere of radius r = 3np(L(B)). We want to

prove that #(L(B) N Q) & 1%, Let L(B') = L(B)/r and Q' = Q/r be scaled
versions of £(B) and Q, and consider the set of points

S—LB)NQ = ‘C(B)%Q.

Clearly, #S5 = #(L(B") N Q') = #(L£(B) N Q). We want to prove that

vol(Q)  wol(Q)

#O Qe (L(B) ~ det(L(B))’

Consider the union of all Voronoi cells V(x, £L(B')) with centers x € S. Notice that all
points y € V(x, L(B’)) are within distance p(L(B’)) = p(£L(B))/r from x. Moreover,
Q’ contains a sphere of radius 1. Therefore, by Lemma 3.4, for all x € S € Q' and
y € V(x, £(B')), we have y € Q'-(1+p(L(B))/r), i.e., V(x, L(B')) C (1+p(L(B))/r):
Q. (Scaling, this time, was performed using as origin the center of the unit sphere
contained in Q’.) Since Voronoi cells are disjoint and have the same volume, we have

2 oxes Vol (V(x, £(B')))
vol(V(£(B")))
vol (Uyges V(x, £(B)))
VOl (V(L(B)
_ vol(Q' - (1+ p(£(B)) /1))
B det(£(B"))
PL(B)\" vol(Q)
- <1+ r ) det L(B')"

#5 =




ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 139

Finally, using the assumption r > 3np(L(B)), we get

(14 2EBDY (1, LY’

<
-1
This proves the upper bound #5S < vol(Q’)/ det L(B’).

We now turn to the lower bound. Let S’ be the set of all lattice points x € £L(B’)
such that the Voronoi cell V(x, £(B')) intersects (1 — p(L(B))/r)Q’. Notice that if
V(x, L(B')) intersects (1 —p(L(B))/r)Q’, then x must be within distance p(L(B’)) =
p(L(B))/r from (1 — p(L(B))/r) - Q. So, by Lemma 3.5, x € Q'. This proves that
S' C S, and #S > #5’. Since Voronoi cells cover R™, (1 — p(£(B))/r)Q’ is fully
contained in the union |J V(x,L(B')), and

> xes Vol(V(x, L(B')))
vol(V(L(B"))
vol(Uyeg V(x, L(

_3
=%

xes!

#5' =

Using the assumption r > 3np(L£(B)), we immediately get

(122 (LY

This proves the lower bound #S 2 vol(Q’)/det(£(B’)) and completes the proof of
the theorem. a

Using inequality p(£(B)) < /- An(L(B))/2 from (2.3), we can bound ((£(B))
in terms of A, (L(B)):

(3.1) U(L(B)) < on*Aa(L(B)).

Similarly, using the transference theorem (2.4), we can bound ¢(£(B)) in terms of the
length of the shortest nonzero vector in the dual lattice:

p 3, 1
(3.2) eB) < jnt s
These bounds can be used to relate the average-case complexity of finding small
solutions to random equations to the worst-case complexity of approximating SIVP
or GAPSVP.

It would be interesting to improve bounds (3.1) and (3.2). In particular, is it true
that ((L(B)) = O(n) - \,(£L(B)) for any n-dimensional lattice £(B)? Is it true that
C(L(B)) = O(n)/M\(L(B)*)? Proving these improved bounds would immediately
result in a reduction of the connection factor for SIVP by a factor O(y/n) and for
GAPSVP by a factor O(n).



140 DANIELE MICCIANCIO

4. Easily decodable almost perfect lattices. We are interested in lattices
that have both good algorithmic and geometric properties. Algorithmically, we would
like lattices where the CVP can be efficiently solved. Notice that, despite the NP-
hardness of CVP, the CVP may be efficiently solvable for specific lattices. For exam-
ple, in the integer lattice Z", a lattice vector x € Z" closest to a given target t € Q"
can be easily found rounding each coordinate of t to the closest integer z; = |¢;].
Since for any fixed dimension the CVP can be solved in polynomial time, in order
to properly formulate this problem one needs to consider not a single lattice but an
infinite sequence of lattices in increasing dimension. For simplicity, in the definition
below we focus on full rank lattices, although this restriction is not necessary.

DEFINITION 4.1. Let {Ly, },,>1 be a sequence of full rank lattices L(L,,) C R™. We
say that the sequence {L,},>1 is easily decodable if there exists a polynomial time
algorithm CVPy, such that for any n > 1 and t € Q", CVPL(t) outputs a lattice
vector in L(L,) closest to t.

The simplest example of an easily decodable sequence of lattices is given by the
integer lattices Z™ defined by matrices L, = I,,. Other easily decodable lattices
considered in [12] are the root lattices A,, and D,, and their duals D} and A}.'°

From a geometric point of view, we would like the Voronoi cells of the lattice to be
as spherical as possible. Remember that the Voronoi cell V(£(L)) contains a sphere
B(A1(L(L))/2) with radius equal to the packing radius and is completely contained
in a sphere B(p(L£(L))) with radius equal to the covering radius. So, the closer the
covering radius is to the packing radius, the better the Voronoi cells are approximated
by spheres. This motivates the following definition.

DEFINITION 4.2. For any T > 1, a lattice L(L) is T-perfect if

AEL)

P(LL)) <7 ( :

For any function 7(n), a sequence of (full rank) lattices {Ly,}n>1 (where n is the
dimension of L(Ly,) ) is 7(n)-perfect if L(Ly,) is 7(n)-perfect for anyn > 1. A sequence
of (full rank) lattices {Ly,}n>1 is almost perfect if it is T(n)-perfect for some 7(n) =
o(vn).

We are interested in sequences of lattices such that 7(n) is as small as possible.
Moreover, we would like the lattices to be easily decodable. The integer lattice Z™,
as well as all other sequences A,, A, D, D} of easily decodable lattices considered
in [12], are 7(n)-perfect for 7(n) = O(y/n), so they are not almost perfect. It is
natural to ask if nontrivial easily decodable almost perfect lattices (i.e., 7(n)-perfect
lattices with 7(n) = o(y/n)) exist, or if the almost perfectness and easy decodability
requirements are incompatible.

In this section we start the algorithmic study of almost perfect lattices and give
the first efficient construction of nontrivial easily decodable almost perfect lattices.
Our lattices are 7(n)-perfect for 7(n) = y/nloglogn/logn = o(y/n). Although this is
not a substantial improvement over 7(n) = ©(y/n) from a quantitative point of view,
it is qualitatively interesting because it shows that nontrivial easily decodable almost
perfect lattices exist.

We first present a construction of 3-perfect lattices such that the construction
and the decoding algorithm run in exponential time n®™. Then we show how to

15Conway and Sloane [12] also describe other efficient decoding algorithms for specific lattices,
but 2™, An, A, Dy, D}, are the only infinite sequences of lattices considered for which the problem
of efficient decoding admits an interesting asymptotic formulation.



ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 141

use small-dimensional lattices obtained using this construction to efficiently construct
O(y/nloglogn/logn)-perfect lattices such that the CVP can be solved in polynomial
time. The construction is based on the following simple lemma.

LEMMA 4.3. For any lattice L(B), there exists a lattice vector v € L(B) such
that dist(v/3,L(B)) > (2/3)p(L(B)). In particular, if p(L(B)) > 3 - M\ (L(B))/2,
then dist(v/3,L(B)) > A1 (L(B)).

Proof. Let h be a deep hole, i.e., a point in span(£(B)) at distance p(£(B)) from
L(B). Consider the point 3h, and let v € £L(B) be a lattice point closest to 3h. By
definition of the covering radius, it must be ||v — 3h|| < p(£(B)). Therefore, dividing
by 3, we get |[v/3 —h| < p(£(B))/3, and by the triangle inequality

dist(v/3, £(B)) > dist(h, £(B)) — dist(v/3, h)
> p(L(B)) ~ 1 p(L(B))

p(L(B)). O

Wl o

We use the lemma to give an algorithmic construction of 7-perfect lattices with
7 < 3. The following theorem is essentially an algorithmic variant of the proof of
existence given in [40]. Both the procedure to build the lattice and the one to decode
it run in time n®™) . It should be noted that for any n-dimensional lattice, in principle
the CVP can always be solved in time n°( [23]. However, the algorithm of [23] for
general lattices is rather complex. In the theorem below we show how to build a lattice
L(B) together with some (polynomial size) auxiliary information V that allows us to
solve the CVP in lattice £(B), still in time n®(™ as in [23], but with a much simpler
algorithm.

THEOREM 4.4. There is an algorithm running in time n that on input n out-
puts an n-dimensional 3-perfect lattice L,,. Moreover, the sequence of lattices {Ly, }n>1
is decodable in time n°"™); i.e., there is an algorithm CVPy, running in time n°™
that on input a vector t € Q™ outputs a lattice vector CVPy(t) € L(L,,) closest to t.

Proof. The algorithm starts from an arbitrary n-dimensional easily decodable
lattice £(By), e.g., the integer lattice £(Bg) = Z" generated by the identity matrix
By = I. Notice that the closest vector in Z™ to a target t can be easily found by
rounding each coordinate of t to the closest integer. Below we assume that By = 1
and, in particular, det(£(By)) = 1 and A1(£(Bg)) = 1, but the construction works
for any easily decodable lattice.

Starting from By, we iteratively build a sequence of lattice bases B; and auxiliary
vectors v; fori = 1,...,m for some m = O(nlogn) to be determined. The final output
are basis B = B,,, and set of vectors V = [vy,...,vy,]. For each k = 1,..., m, vector
v and basis By are computed as follows:

1. For any vector s € {—1,0,+1}", let t = (1/3)Bi_1s and compute the dis-
tance of t from the lattice £L(By_1). (We will show below how this can be done in
time nOM) . 3%))

2. If for all s € {-1,0,+1}", dist(t,L(Br—_1)) < 1, then set m = k — 1, and
terminate with output B=Bj_; and V = [vy,...,vg_1].

3. Otherwise (if dist(t, L(Bg—_1)) > 1 for some s), proceed as follows. Notice
that since dist(t, £L(Bg—_1)) > 0, it must be s # 0.

4. Let i € {1,...,n} such that s; # 0.

5. Set vi, = t.

6. Set By to the matrix obtained by replacing the ith vector in By_; with vy.

O(n)



142 DANIELE MICCIANCIO

The algorithm uses a procedure to find closest vectors in lattice £(By). We
will show that the maximum number of iterations performed by the algorithm is
m < (n/2)logsn = O(nlogn), and that for any k, the CVP in £(By) can be solved
in time n©() . 3% Tt follows that the total running time of the algorithm is

O(m - nOW . 3my — O

and that the CVP in £(B) can also be solved in time n©(™).
The correctness of the algorithm is based on the fact that for any k,
(i) vector 3vy belongs to the lattice L(By_1),
(ii) By is a basis for the lattice generated by [By_1|vi],
(iii) the shortest vector in £(By) has length 1.
The first property immediately follows by construction. For the second property, it is
clear that £(By) is a subset of L([Br_1|vg]). In order to prove L(Bg) = L([Br—1|vk])
we need only to show that the ith vector of By_1 (namely, B;_1e;) belongs to £(By).
Notice that 3v, = Bj_1s = Zj s;Br_1€j. So, s; - Br_1€; = 3vj, — Zj# s;Br_1e; =
3B.e; — Zj# s;Bye; belongs to L(By). Since s; = %1, also By_1e; = £(s;-Br_1€;)
belongs to L£L(Bg). Now, let us get to the third property. Consider any nonzero
vector in L£(Bg). Since £(By) = L([Bk—1|vk]), any such a vector can be written
as Bx_1x + vk - y. Moreover, since 3vy € L(Bg_1), we can assume without loss of
generality that y € {—1,0,+1}. So, the length of B;_1x+Vvy-y is at least the minimum
of )\1(£(Bk_1)) (lf Yy = 0) or dist(ivk,E(Bk_l)) (lf Yy = il). But Al(ﬁ(Bk_l)) >1
by induction, and dist(+vg, L(Br_1)) = dist(vg, L(Bg—1)) > 1 by construction. It
follows that A\ (L£(By)) > 1.

It is also easy to see that for any k, the determinant of lattice £(By) equals
det(L£(By)) = 37%det(L(By)) = 37% because each By, can be obtained from Bj_;
by first performing some elementary integer column operations, and then dividing a
column by 3. We can now prove that the algorithm performs at most m = O(nlogn)
iterations. Since A\;(£(Bx)) = 1 and det(L(By)) = 37%, by Minkowski’s first theorem
(2.2),

1= M (L(By)) < Vndet(L(By))/™ = /n3~ /™),
It follows that
k < (1/2)nlogzn = O(nlogn)

is an upper bound on the maximum number of iterations. (It can also be shown
by a volume argument that m = ©(nlogn) iterations are required in order to reach
termination.)

Next we prove that upon termination p(L(L,)) < 3 - A1(L(Ly))/2. We show
that if p(L(L,,)) > (3/2) - A (£L(Ly)), then the algorithm certainly performs one more
iteration. By Lemma 4.3, if p(L(L,)) > (3/2)A1(£(Ly,)), then there exists a vector
v =Bj_1x € L(Bj_1) such that

dist(v/3, L(Bj_1)) > M (L(Br_1)) > 1.

Let s € {—1,0,+1}" be such that s = x (mod 3), i.e., (s —x)/3 € Z". We claim
that the distance of t = (1/3)Bj_1s from the lattice £L(By_1) is at least 1. Notice
that

t=(1/3)Bi_18s = Bx_1x/3+ By_1(s — x)/3 € v/3 + L(By_1).



ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 143

It follows that dist(t, £L(Bg—1)) = dist(v/3, L(Br_1)) > 1, and therefore the algorithm
does not terminate at iteration k.

We conclude the proof of the theorem by giving a simple algorithm to solve the
CVP in L(By) in time n®® . 3% < n©(™) Notice that any lattice point in £(By)
can be written as Box + [vy,...,Vi]y, where x € Z" and y € {—1,0,+1}*. So, in
order to find the lattice point closest to some target t, we can consider all vectors of
the form t — [vq,...,vg]y and compute their distance from £(Bg). Let y be such
that dist(t — [v1,...,vi]y, £(Bg)) is minimized, and let Box be the lattice vector
closest to t — [vy,...,vg]y. The lattice vector in L(By) closest to t is Box +
[Vi,...,Vi]y. d

The theorem gives an algorithmic construction of almost perfect lattices and an
algorithm to solve the CVP; however, the running time is huge. The next theorem
shows how to use these lattices for small values of n to get a construction that runs
in polynomial time.

THEOREM 4.5. There exists a family of T(n)-perfect easily decodable lattices with
7(n) = O(y/nloglogn/logn).

Proof. In order to keep the construction polynomial in n, we use Theorem 4.4
to build a 3-perfect lattice M in dimension m = logn/loglogn. Notice that such a
lattice can be constructed in time

20(m10g m) _ QO(lognlog(log n/loglogn)/loglogn) _ 7,LO(I)

polynomial in n. Moreover, the CVP in this lattice can also be solved in polynomial
time 20(m logm) _ nO(l)'

Now set L£(Ly,) to the direct sum of (n/m) copies of £L(M), i.e., the lattice gener-
ated by the block diagonal matrix with n/m blocks, all equal to M. The lattice vector
in L(L,,) closest to a target t is easily found by breaking t into n/m blocks, each with
m coordinates in it, and finding the £(IM) vector closest to each block. Moreover,
the length of the shortest nonzero vector in £(Ly,) is A1 (£(M)) because vectors from
different copies of M are orthogonal. Finally, the covering radius of £L(L,,) is /n/m
times p(L£(M)). So, L(L,,) is 7(n)-perfect for

n/mp(L

(M) -
NTaD) s < 3Vn/m=0(/nloglogn/logn). D

5. A generalized class of random equations. In this section we define a class
of random equations that generalizes Ajtai’s one. Ajtai’s problem can be described as
finding a small (e.g., with respect to the bound proved in Theorem 5.5 below) nonzero
integer solution to a homogeneous linear equation in m(n) variables with coefficients
chosen uniformly at random from the group G, = Zg(n) of n-dimensional vectors

7(n) =

modulo ¢(n), for appropriately chosen functions ¢(n) and m(n). Here we consider
equations with coefficients in a group G,, possibly different from Zg(n). In general, we
define the following problem.

DEFINITION 5.1. Let {G,} be a sequence of finite Abelian groups, and let m(n)
and (n) be two arbitrary (polynomial time computable) functions. For any m(n)-
dimensional vector g = [g1,. .. ,gm(n)]T € GT(n), define the set of solutions to the
associated homogeneous linear equation

(5.1) AMg)=zeZ™™M: )" 2.9, =0

i=1



144 DANIELE MICCIANCIO

The homogeneous small integer solution problem HSISq . 5 (in the o norm) is as

follows: given a (random) homogeneous linear equation g € Gzl(n), find a nonzero
solution z € A(g) \ {0} of l2 norm at most ||z|| < B(n).

Of course, the problem is interesting only when a solution of length at most 3(n)
exists. Below we define a family of groups (that includes Ajtai’s groups as a special
case) and give conditions under which a solution of length at most 8(n) is guaranteed
to exist.

Our groups are parametrized by an easily decodable family of lattices {£(Ly)}n>0
and a function a(n), and each group G,, = G(L(L,,),a(n)) is defined as the quotient
of £(L,,) modulo an appropriately chosen full dimensional sublattice £L(M,,) C L(Ly,,).

DEFINITION 5.2. For any easily decodable family of lattices {L(Ly)}n>o0 (with
decoding algorithm CVPL,) and function a(n) satisfying a(n) > 2v/np(L(Ly)), define
the sequence of quotient groups

(5:2) Gn = G(L(Ln),a(n)) = L(Ln)/L(M,),

where for any n > 0, L(M,,) is the full rank sublattice of L(L,,) obtained by applying
Lemma 2.10 with value a(n) and decoding procedure CVPy,.

From Lemma 2.10 we immediately obtain the following corollary.

COROLLARY 5.3. For any family of lattices {L(Ly,)}n>0 and function a(n) sat-
isfying the conditions in Definition 5.2, the groups G(L(Ly,),a(n)) = L(L,)/L(M,,)
can be computed in time polynomial in n and the matrix M, satisfies

Vx € R™||M,x| =~ a(n) - [|x]|.

Proof. Matrix M, is polynomial time computable because lattice £L(L,,) is easily
decodable, so the decoding procedure CVPy, runs in polynomial time. In order to
bound [|M,,x||, simply observe that £(L,), a(n) and CVPy, satisfy the conditions of
Lemma 2.10 because «a(n) > 2vy/np(L(L,)) > 2y/ndist(x,CVPL(x)) for all
x € R™. O

Notice that if £(L,,) = Z™ is the integer lattice and «(n) = ¢(n), then Defini-
tion 5.2 gives matrix My, = ¢(n) - I and Ajtai’s group G(L(Ly),a(n)) = Zg,,, as a
special case. We will see that this choice of group G, is not the best possible for our
analysis, and setting £(L,,) to an almost perfect lattice leads to better results. In the
rest of this section, we prove that for any g € Gﬂ(") and all sufficiently large m(n),
the set A(g) always contains small nonzero solutions. The main result of this paper
(proved in section 6) is that although these small solutions are guaranteed to exist,
they are computationally hard to find when g is chosen uniformly at random.

We know from Proposition 2.11 that A(g) is a lattice with determinant at most
det(A(g)) < #G,,. We show that A(g) always contains small solutions by bounding
the size of group G,, and then applying Minkowski’s first theorem.

LEMMA 5.4. For any n, the group G,, = G(L(Ly,), a(n)) defined in Definition 5.2
has size at most

304(71)\/75))".

#Gn < (2/\1 (L(L,)

Proof. The size of the group is #G,, = det(L(M,,))/ det(L(Ly,)). We bound the
two determinants separately. By Corollary 5.3, the columns of M, have length at
most

[Mpeil| < (3/2)a(n) - [le:]| = 3a(n)/2.



ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 145

Therefore, by Hadamard’s inequality
det(£L(My)) < (3a(n)/2)".

We bound the determinant of £(L,,) using Minkowski’s inequality (2.2) A1 (£L(Ly,)) <
Vndet(L(Ly))'™. Solving for det(L£(L,,)), we get that the determinant of £(L,) is
at least (A1(L(Ly))/4/n)™. Combining the two bounds, we get that group G, has
cardinality

_ det(£(M,) _ ( 3a(m)yn \"
(5.3) #Cn = Jt(L(T)) <2A1<£<Ln>>) -

A bound on the size of the smallest nonzero solution to equation g easily follows
from Proposition 2.11 and Minkowski’s first theorem (2.2).

THEOREM 5.5. For any equation g € Ga'™ in m(n) = Q(nlogn) variables with
coefficients in a group Gy, of size #G, < n°™ (e.g., G, = G(L(Ly),a(n)) for some
a(n) =n°W X (L(L,))), there exists a nonzero solution z € A(g) of length at most
2] = O(v/m(n)).

6. The worst- to average-case reduction. In this section we prove the main
technical result of the paper. Namely, we show that finding short solutions to ran-
dom linear equations as defined in section 5 (on the average and with nonnegligible
probability) is at least as hard as finding linearly independent vectors of length not
much bigger than the generalized uniform radius in any lattice (in the worst case and
with high probability). Formally, we prove the hardness of the HSIS of Definition 5.1
over groups G(L(L,), a(n)), by reduction from the following variant of SIVP, where
the quality of a solution ||S||, instead of being measured with respect to the size
of the smallest possible solution A, (£(B)), is measured with respect to some other
parameter of interest ¢p(L(B)).

DEFINITION 6.1. Let ¢ be an arbitrary function mapping lattices to positive
reals. The generalized independent vectors problem GIVPf , given a lattice basis B
of rank n, asks for a set of n linearly independent lattice vectors S C L(B) such that
S|l < ~(n) - 6(L(B)).

Notice that SIVP, is a special case of GIVPf7 where ¢ = A,,. Here we are

interested in GIVPE/, i.e., the problem of finding a maximal independent set of lattice
vectors which are not much longer than the generalized uniform radius.

The reduction is performed in two steps. First we reduce GIVPf to an interme-
diate problem. Next, we reduce this intermediate problem to the problem of solving
random instances of HSISg ,, 3. We remark that the intermediate problem is a worst-
case one; i.e., the first part of the reduction is a standard worst-case to worst-case
Cook reduction. Only the second part of the reduction, from the intermediate prob-
lem to the problem of solving random equations, is a worst- to average-case reduction.
The advantage of introducing the intermediate problem is that the first part of the
reduction (which involves solving many instances of the target problem) is a standard
reduction where all problems are solved in the worst case. Once the GIVP problem
has been reduced to the intermediate problem, the worst-case to average-case reduc-
tion can be expressed in a conceptually simpler setting where a single (worst-case)
instance of the intermediate problem is reduced to a single (random) instance of the
average-case problem.

The rest of this section is organized as follows. In section 6.1 we reduce GIVP to
the intermediate problem and give sufficient conditions for the solutions of the latter.



146

DANIELE MICCIANCIO

TABLE 1

Symbols used in the reduction from GIVPE; to HSISG m,3-

Symbol Explanation Reference

Ly, easily decodable 7(n)-perfect lattice Theorem 6.5
M, almost orthogonal sublattice of £(Ly,) Equation (6.2)
B GIVP input lattice

C almost orthogonal sublattice of £(B) Equation (6.3)
S full rank sublattice of £(B)

Gn Abelian group (£(Ly) modulo £(My,)) Definition 5.1
P Linear function mapping M,, to C Equation (6.4)
(Wi, j,vij) | vectors in £L(Ly,) x £(B) output by the sampling algorithm | Lemma 6.6
a;,; group element (w; ; mod My,) € Gy

a; sum of a; j for j =1,...,k(n)

k(n) Number of samples used to generate each a; Equation (6.7)
a homogeneous linear equation over Gy, (input to F)

A(a) set of solutions to equation a Definition 5.1
z solution to equation a output by F

n rank of L, M,,,B,C and S

m(n) number of variables in a

a(n) scaling factor used in the definition of M, Equation (6.1)
B(n) length of the solution z returned by F Theorem 6.5
~v(n) GIVP approximation factor Theorem 6.5
7(n) upper bound on 2p(L(B))/A1(L(B))

Vi offset vector v; ; — 1(w; ;)

s output of A Equation (6.5)

In section 6.2 we present the worst- to average-case reduction from the intermediate
problem to HSIS (Theorem 6.5). The reduction is based on a sampling procedure
(Lemma 6.6) that is described and analyzed in section 6.3. Three technical lemmas
(Lemmas 6.8, 6.9, and 6.10) used in the proof of Theorem 6.5 are proved in section 6.4
after establishing some important properties of the sampling procedure. For reference,
the notation and symbols used in the reduction are listed in Table 1.

6.1. The intermediate problem. In this subsection, we define the interme-
diate problem, reduce GIVP to it, and present sufficient conditions for its solution.
The intermediate problem is essentially an incremental version of GIVP, where given
a set of linearly independent vectors S, one has to find a single slightly shorter lattice
vector.

DEFINITION 6.2. The incremental generalized independent vectors problem
(INCGIVPf), gwen a rank n lattice basis B, a set of n linearly independent vectors
S C L(B) satisfying ||S| > v(n) - ¢(L(B)), and an (n — 1)-dimensional hyperplane
H C span(B), asks for a lattice vector s € L(B) \ H such that ||s|| < ||S||/2.

The following theorem shows that GIVPﬁ is easily reducible to INCGIVPﬁ.

THEOREM 6.3. For any functions ¢ and =, there is a polynomial time (Cook)
reduction from GIVPfYS to INCGIVP?.

Proof. We give an iterative reduction (see section 2.6) from GIVPf to INCGIVPf.
By Theorem 2.21, this immediately implies a standard Cook reduction between the
two problems. Let A(B,S,H) be an algorithm solving INCGIVPf in the worst case.
The iterative reduction (R, f, I, 0, S) is defined as follows. Relation R is the set of all
(B, S) where B is the GIVP input lattice, and S C £(B) is a maximal set of linearly
independent lattice vectors such that ||S|| < ||BJ|. (This condition is introduced to
make sure that the size of S is polynomial in the input size.) Initially, S is set
to the input basis I(B) = B. Upon termination, the iterative reduction outputs



ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 147

the current set O(B,S) = S. Progress at each iteration is measured by the function
f(B,S) =TI, ||s;||*>. Notice that function f is polynomial time computable. In order
to complete the iterative reduction we give a polynomial time oracle algorithm S*4
(the iterative step) that on input a rank n lattice basis B and n linearly independent
lattice vectors S C L£(B) such that y(n)-#(L(B)) < ||S|| < ||B||, finds a set of linearly
independent lattice vectors S’ such that ||S’|| < ||B|| and f(S") < f(S)/2.

Algorithm S4(B,S) works as follows. Let i be the index of a longest vector
in S, ie., [|s;]| = ||S||, and let H = span(sy,...,S;—1,Si+1,...,Sp) be the (n — 1)-
dimensional hyperplane spanned by the other vectors. The iterative step S computes
s = A(B, S, H) and checks that vector s satisfies s € L(B)\H and [|s|| < ||S||/2. If so,
then S replaces s; with s and outputs S’ = [s1,...,8;,-1,8,Si4+1,--.,Sp]. Otherwise, S
simply outputs the input set S’ = S. Notice that in both cases, the output S’ satisfies
the relation (B,S’) € R; i.e., 8" C L(B) is a set of n linearly independent lattice
vectors and ||S’|| < ||S|| < ||BJ|. Moreover, if ||S|| > v(n) - ¢(L(B)), then A(B,S,H)
successfully returns a vector s € £(B) \ H satisfying ||s|| < ||S]|/2, and

sl _ /(B.S)
ISIE =4

s
Isil|>

> _

= f(B,S) O

f(Bv S/) = f(Bv S)

The following lemma establishes sufficient conditions for reducing INCGIVP (in
the worst case) to HSIS (on the average).

LEMMA 6.4. Let .A(')(B, S, H) be a probabilistic polynomial time oracle algorithm
that on input a rank n lattice basis B, a full rank subset S C L(B), and an (n —1)-
dimensional hyperplane H C span(B), makes a single oracle call a € G?(n) and
(provided the query is answered with a valid solution z € A(a)) outputs a lattice vector
s € L(B). Assume that for any input (B,S,H) such that ||S|| > v(n) - #(L(B)), the
vectors a, z,s produced by A(')(B, S, H) satisfy the following properties:

(i) the statistical distance between the query a and a uniformly distributed u €

G:’f(") 1s negligible, i.e.,
A(a,u) = n~vW,

(ii) for anya € G andz e A(a)\ {0}, the conditional probability that s ¢ 'H
is at least

Pr{is¢ H|a=a4a,z=12}=Q(1),

(iii) for any a € G and 2 € A(a), the conditional expectation of ||s|| is at

most
Exp[ls| |a=4az=2] =0 (W) '

Then, for any randomized procedure F that solves HSISq 3 on the average with
nonnegligible probability 6(n), AF (B,S,H) solves INCGIVPf in the worst case with
high probability*® Q(6(n)).

Proof. Let F be a randomized procedure that solves HSIS¢ ,, 3 with nonnegligible
probability §(n). We want to prove that, for any valid input, A”(B,S,H) solves

16Remember that, since A solves INCGIVP in the worst case, and given a vector s it is easy to
check if s is a correct solution to an INCGIVP instance, the success probability of A can be efficiently
boosted from any nonnegligible fraction to exponentially close to one.



148 DANIELE MICCIANCIO

INCGIVPf with probability 2(6(n)). Namely, we want to prove that for any rank n
lattice basis B, full rank subset S C £(B) such that ||S|| > v(n)-¢(L(B)), and (n—1)-
dimensional hyperplane H C span(B), procedure A” (B, S, H) outputs a lattice vector
s € L(B) \ H of length ||s|| < ||S]|/2 with nonnegligible probability Q(8(n)).

Assume without loss of generality that F(a) always returns a (possibly zero)
solution F(a) € A(a) of length ||F(a)]] < F(n). The assumption on F is that
Pr{F(u) # 0} = §(n) when u € G is chosen uniformly at random. Since F(a)
always returns a valid solution z € A(a), the output vector s is guaranteed to belong
to the lattice £(B). We need to bound the probability that s also satisfies s ¢ H
and ||s|| < ||S||/2. Consider an execution of A”(B,S,H) = s, and let F(a) = z be
the oracle call made by A. Conditioning on the value of a and z, and restricting our
attention to the nonzero solutions z # 0, we get

Pr{s ¢ HA[ls|| <[S]/2}
:ZPr{a:é/\z:i}-Pr{s ¢HA|s||<|S]/2]a=aAnz
> Z Prla=aAnz=12}
&,2:240

-(Pr{s¢ H|a=anz=2z}—Pr{|s| > ||S||/2|a=arnz=12}),

z}

where the summations range over all 4 € G™ and z € [F(a)] C A(A)NB(B(n)). By
assumption on A, for any 4 € G2 and 2 € A(a) such that 0 < ||z]| < 8(n), the two
conditional probabilities in the last expression satisfy

Pr{s¢ H|a=aAnz=12}=Q(1),

and, using Markov’s inequality,

Pr{[|s| > [IS[/2|a=aArz =12} <

2l -S| _
SO(nsnﬁ(n)) =ol).

Adding up for all possible values of a and z # 0, we get

~—

Pris¢ HAls| <[S]/2} > 3 Prfa=anz=2}- (1) - o(1)
4,2:2740

= Q(Pr{z # 0}).

Notice that z = F(a) and Pr{F(u) # 0} = é6(n) when u € G s uniformly
distributed. By assumption, the statistical distance A(a,u) between a and u is neg-
ligible. Therefore, by Corollary 2.16,

Pr{z # 0} = Pr{F(a) # 0}
> Pr{F(u) £ 0} — Ala,u)
> 6(n) —n—vW,

So, for all nonnegligible 6(n), Pr{s ¢ H A ||s| < ||S]|/2} > Q(6(n) — n=vM) =
Q(6(n)). 0



ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 149

6.2. The main reduction. In this subsection we show that for appropriate
choice of groups G,,, and parameters 3(n), m(n),y(n), there is a reduction from solv-
ing INCGIVPE in the worst case to solving HSIS¢ ., g on the average.

THEOREM 6.5. Let 7(n) > 1 such that there exists an easily decodable fam-
ily of T(n)-perfect lattices. Then, for any B(n) > 1, m(n) = n°M and v(n) =
B(n)T(n) - \/w(logn), there is a sequence of efficiently computable Abelian groups G,
of size #G.,, < (n*2y(n)/8)"™ such that solving INCGIVPg in the worst case with high
probability reduces to solving HSISq .3 on the average with nonnegligible probability.

Proof. Let {L(L,,)} be a family of easily decodable 7(n)-perfect lattices. For any

B(n) > 1 and m(n) = nPW | let ~v(n) = B(n)1(n) - /w(logn) and

(6.1 oty = DAL )

Notice that from the definition of a(n) and v(n), and the assumption that £(L,) is
7(n)-perfect, we get

nAi (L£(Ln))B6(n)7(n)/w(logn)
12

a(n) =

n - w(logn)

> (ﬂ(”) - ) 2/p(L(Ly))
> 2¢/np(L(Ln)).

So, a(n) satisfies the condition in Definition 5.2, and we can define a full rank subset
M, C L(L,,) and quotient group G, = G(L(L,),a(n)) = L(Ly,)/L(M,,) such that
Corollary 5.3 and Lemma 5.4 hold true; i.e.,

(6.2) vx € R™.|IM,x|| = a(n) - ||x||
and group G,, has size at most

) - ()

#Cn < <2A1(£(Ln)) 5

We define a probabilistic polynomial time oracle algorithm A() satisfying the
conditions in Lemma 6.4 with ¢ = CA It follows from Lemma 6.4 that A() is a
probabilistic polynomial time worst-case to average-case reduction from INCGIVP?Y to
HSISG m, - The intuition behind procedure A®) is the following. (See Figure 2.) Map
L(M,,) to a sublattice L(C) = ¢(L(M,,)) C L(B) using a linear function ¢ with small
distortion, i.e., a function that approximately preserves distance ratios. One possible
way to achieve this is to map the almost orthogonal set M, to an almost orthogonal
subset C = )(M,,) C £(B) and extend % to span(M,,) by linearity. Now, consider the
Voronoi cells V(w, L(L,,)) of the 7(n)-perfect lattice £L(L,,). Function ¢ maps each
cell to a corresponding region (V(w, L(L,,))) centered around +(w). Partition the
points of £(B) into subsets, according to these regions. Pick m(n) points v; € L(B)
at random, and map each of them to the center ¥(w;) of the corresponding region.
Notice that each region ¢ (V(w, L(L,,))) is associated to a group element [w]p, € G,.
So, the points v; define m(n) group elements a; = [w;]m, € G,,. Use F to find a
small nonzero solution z = F(a) to the equation a = [ai,...,amx)]. The output of
A% (B,S,H) is vector s = Y, z;(v; —)(w;)). Notice that s € L(B) because Y z;v; is



150 DANIELE MICCIANCIO

o C C £(B) c1

Fic. 2. Sampling lattice points.

an integer combination of lattice vectors, and Y, z;w; € L(M,,) C ¢~ 1(L(B)). (See
Lemma 6.7 for details.) Before moving to the actual proof, we informally explain why
vectors a, z, s are expected to satisfy the three conditions in Lemma 6.4. (1) Vector a
is distributed almost uniformly at random because coefficients a; = [w;]m,, are chosen
independently, and each region ¥(V(w, £L(L,))) contains roughly the same number of
lattice points from £(B). (2) Vector s does not belong to any fixed hyperplane H
with high probability because each v; —(w;) is somehow randomly distributed within
Y(V(L(Ly))). (3) Finally, s is short because it is a small combination of short vectors
v; — 1(w;), each one lying within the region ¢(V(£(L,))). This is an oversimplified
description of the reduction. For example, Lemma 6.4 requires distribution a to be
extremely close to uniform. In order to ensure the almost uniform distribution of
a, we will need to slightly modify the above procedure by sampling many points
(W 5, vi ;) and adding up the corresponding a; ; = [w; j]m,, to obtain group elements

a; = )_; a;,j whose distribution is extremely close to uniform.

We now give a detailed description of procedure A’ (B,S,H). Notice that the
procedure outlined above does not use the input hyperplane H, and condition s ¢ H
holds with high probability for any fixed hyperplane H. Therefore, below we simply
write A% (B, S) instead of A” (B, S, H) to emphasize the fact that A does not use the
input hyperplane H.

Procedure A()(B,S) works as follows. First, notice that using Babai’s nearest
plane algorithm [6], matrix S allows us to approximate any vector x € span(B) with a
lattice point y € £(S) C £(B) within distance o = (y/n/2)||S|| from x.!” Therefore,
using Lemma 2.10, we can find an almost orthogonal sublattice £(C) C £(B) such
that

(6.3) vx € R™.||Cx|| ~ n||S| - ||x].

Let ¥(x) = CM,, 'x be the linear transformation that maps m; to c¢; for all i =
1,...,n. Combining (6.2) and (6.3), and using (2.1), we get

(6.4 o ® 2 (2B < ol <3 (221) -l

a(n) a(n)

17This is not a particularly critical part of the reduction, and using poorer rounding procedures
(e.g., rounding off the coordinates of x with respect to basis S to the closest integers as done in [2])
results in substantially the same connection factors as using Babai’s nearest plane algorithm [6].




ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 151

i.e., the linear function 1 is close to an orthogonal transformation that scales all
distances by a factor n||S||/a(n).

Notice that £(M,,) is a common sublattice of both £(L,,) and ~!(£(B)). The
following lemma shows how to use function @ together with decoding algorithm
CVPy, to simultaneously sample from groups G,, = L(L,,)/L(M,,) and L(B)/L(C) =
G L(B))/L(M,).

LEMMA 6.6. There is a sampling algorithm that on input two rank n lattices Ly,
and B, a full rank sublattice M,, C L(L,,), and a nonsingular linear transformation
¥ such that C = ¢(M,,) C L(B), outputs two vectors w € L(L,,) and v € L(B) such
that the following hold:

1. The group element [V]c is uniformly distributed over L(B)/L(C).

2. Y=Y(v) e V(w,L(L,)), or, equivalently, v —(w) € w(V(L(Ly)))-

3. The distribution of v—1(w) is symmetric about the origin, and, in particular,
Explv — ()] = 0.

4. w e P(M,,).

Moreover, if lattice L, is easily decodable, then the sampling procedure runs in poly-
nomial time.

The actual properties of the sampling algorithm are not important at this point,
and the proof of Lemma 6.6 is deferred to section 6.3. All that matters for now
is that the sampling algorithm generates pairs of vectors (w,v) € L(L,) x £(B).
Below we describe how to use any such sampling procedure to compute a lattice
vector s € L(B). After defining the full rank sublattice C C £(S) and linear function
¥(M,,) = C satisfying (6.4), algorithm A% (B, S) proceeds as follows:

1. Run the sampling procedure of Lemma 6.6 m(n) - k(n) times (where k(n) =
w(logn) is a superlogarithmic function to be specified) to generate vectors w; ; €
L(L,) and v;; € L(B) fori=1,...,m(n) and j =1,...,k(n).

2. Let a;; = [w;jlm, € Gn be the group elements corresponding to lattice
points w; ; and, for every i =1,...,m(n), define group element a; = Zf(:”l) a; ;.

3. Use oracle F to compute a nonzero solution z = F(a) € A(a) \ {0} to the
equation a = [ay, ..., Gy (n)]-

4. For any i, j, let y; ; = v, ; — ¥(w; ;), and output

m(n)  k(n)
(6.5) s = Z 2 Z Vi
i=1  j=1
Notice that randomness is used twice in the routine: first in step 1 and then in
step 3. In step 1, randomness is used to run the sampling procedure m(n)-k(n) times
and generate a random equation a to be passed as input to F. In step 3 randomness
is used to run the probabilistic procedure F on input a to compute a solution z. Since
F is only guaranteed to work on the average, it is important that both the input a
and the internal randomness of F are chosen (almost) uniformly and independently at
random. We remark that, although the value of z depends on both the randomness
used by the sampling procedure and that used directly by F, the two procedures
use independent sources of randomness. So, for example, given the value of a, the
conditional distribution of z is independent from the conditional distribution of the
samples (w; ;,v; ;). We will use this fact in the probabilistic analysis of the success
probability of the reduction.
In the following lemma we prove that algorithm A% is correct, i.e., the output

vector s belongs to lattice £(B), provided query a is answered with a valid solution
z € A(a).



152 DANIELE MICCIANCIO

LEMMA 6.7. Let s be the output vector defined in (6.5). If z € A(a), then
s € L(B).
Proof. Define the vector

m(n)  k(n)

w = E zzg Wi .

Using the definition of y; ; and the linearity of 1, we get

5= E Zi E Yij = E :Zz Vij — Ww E :zlvm — (w).
0,3

The first term 3, . z;v; ; clearly belongs to £(B) because it is an integer linear com-
bination of lattice vectors v, ; € L(B). We need to prove that the second term ¢ (w)
also belongs to £(B). We show that w € £(M,,). Since ¢ maps £(M,,) to L(C), it
follows that ¥(w) € £(C) C L(B).

Remember that z = F(a) € A(a), i.e., Y, z;a; =0 (in G,). Since all w; ; belong
to L(Ly), w is also a lattice point of L(L,) and [w]n, € G,. The group element
corresponding to lattice vector w is

Z iglM Zzzza”fzzzaZfO

Since Gy, is the quotient of £(L,,) modulo £(M,,), this proves that w € L(M,,). d
The following three lemmas show that, provided a(n) is in a prescribed range,
procedure A satisfies the conditions in Lemma 6.4. The lemmas are proved in section
6.4, after establishing some useful properties of the sampling procedure in section 6.3.
The first lemma shows that the equation a passed as input to oracle F is almost
uniformly distributed.

LEMMA 6.8. If n||S||A1(£(Ly,)) > 6a(n)(£L(B)) and (6.4) holds true, then the
statistical distance between vector a (passed as input to F during the execution of
A7 (B,S)) and a uniformly distributed u € G ™ s at most A(a,u) < m(n)/2Fm+
In particular, for any polynomially bounded m(n) = n°®Y) and superlogarithmic func-
tion k(n) = w(logn), the statistical distance A(a,u) = n=“") is negligible.

The other two lemmas show that the output vector s of procedure A” is suffi-
ciently random and usually short, even after conditioning on the input and output
values of oracle F.

LEMMA 6.9. Assume n||S||A(£(Ly,)) > 12a(n)C(L(B)) and (6.4) holds true.
Then, for any a4 € Gp™ | 2 € A(a) \ {0}, and (n — 1)-dimensional hyperplane H C
span(B),

W

[ Mg

Pr{s¢ H|a=a,z=12}=Q(1).

LEMMA 6. 10 If n||S|| A (L(L )) ( )C(L(B)), (6.4) holds true and function
a(n) satisfies a(n) = w(n/k(n)B(n ), then for any a € G’ ) and 2 € A(a),

Explls| | a=a,2=2) = <| - ”)Si) 14 ROk,



ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 153

_ o

In particular, for any polynomially bounded m(n) ) and superlogarithmic func-

tion k(n) = w(logn),
Expls|| |a=4&,z=2] =0 (HZg(n”)S”) .

We complete the proof of the theorem by showing that if k(n) is appropriately
chosen, then the hypotheses of Lemmas 6.8, 6.9, and 6.10 are satisfied. Notice that
from the definition of a(n) = nA1(L(Ly))y(n)/12 and the assumption that ||S|| >
v(n)¢(£(B)), we immediately get

(6.6) 12a(n)¢(L(B)) = nA1 (£(Ln))y(n)C(L(B)) < nAi(L(Ly))[S]-

So, the first condition in Lemmas 6.8, 6.9, and 6.10 is satisfied. We already observed
that (6.4) follows from (6.2) and (6.3). In order to satisfy the third hypothesis of
Lemma 6.10, we set

(6.7) k(o) = 20 VIoBm gy,

B(n)-7(n)

Solving (6.7) for v(n) = k(n)B(n)7(n)/+/logn and substituting this value in the defi-
nition of a(n), we get

oy = ML) K (o)
N 12 logn

2 w(ny/k(n)B(n)p(L(Ln))),

where we have used the perfectness condition p(L(L,)) < 7(n)A1(£(L,))/2 and the
fact that k(n)/ylogn = \/k(n)/logn\/k(n) = w(y/k(n)). This proves that for any
polynomially bounded function m(n) = n°M), and k(n) as defined in (6.7), the hy-
potheses of Lemmas 6.8, 6.9, and Lemma 6.10 are satisfied, and algorithm A satisfies
the conditions in Lemma 6.4. Therefore, for any (possibly probabilistic) oracle F solv-

ing HSISg m, 3 on the average with nonnegligible probability, A7 solves INCGIVP,C;
in the worst case with high probability. |

6.3. The sampling procedure. In this subsection we give a simple sampling
procedure that satisfies the conditions in Lemma 6.6. Then, we establish some addi-
tional properties of the output of the sampling procedure that will be useful in section
6.4. The sampling procedure is illustrated in Figure 2.

Proof of Lemma 6.6. We first show how to achieve the first two properties in the
lemma. Choose integers

dy,....dy € {1,...,det(£(C))/ det(L(B))}

uniformly at random and let v/’ =", d;b; € L(B). By Proposition 2.9, [v"']¢ is dis-
tributed uniformly at random, in £(B)/L£(C). Then, compute w” = CVPy,(yp~1(v")).
Clearly, 1»~1(v"") belongs to the Voronoi cell V(w”, £(L,,)). So, the pair (v, w”) sat-
isfies the first two properties.

Now, choose b € {0,1} uniformly at random and set v/ = (—1)’v" and w' =
(—1)®w”. Clearly, for any v/’ and w”, the distribution of v/ — ¢(w') = (=1)*(v" —
P(w')) is symmetric about the origin. So, (v/,w’) satisfies the third property. We



154 DANIELE MICCIANCIO

need to check that the first two properties are preserved. Since [v”]¢ is uniformly
distributed, [-v”]c = —[v”]c is also uniform. It follows that [v']c is uniformly
distributed because v’ is a convex combination of distributions v" and —v”. Finally,
since closed Voronoi cells of a lattice are symmetric,

V= (W) = (1) (v = p(w")) € (-1)"V(L(Ln)) = V(L(Ly)).

This proves that (v/,w’) satisfies the first three properties in the lemma.

In order to also achieve the fourth property, set w = (w' mod M,,) and v =
(v —¢(w' —w)). Property w € P(M,,) immediately follows by the definition of
w. We show that the first three properties are preserved. By the definition of v, we
have v/ — v = ¢(w' — w) and v — ¢(w) = v/ — ¢p(w’). So, the second and third
properties are satisfied because they depend only on v — ¢)(w). In order to prove
the first property, notice that w' — w = w’ — (w' mod M,,) € £(M,,). Therefore,
v —v € Y(L(M,)) = L(C), and [vlc = [v]c, proving that [v]c is distributed
identically to [v']c. O

The sampling procedure produces vectors v € £(B) such that [v]c is distributed
uniformly at random over the group L£(B)/L(C). However, vector v (before the
reduction modulo C) is not necessarily uniformly distributed over any set of lattice
vectors. (This is due to lattice points v € £(B) such that ¢»~!(v) lies on the boundary
of Voronoi cells V(w, £(L,)).) In the next lemma, we give simple upper and lower
bounds on the probability of outputting any specific vector v € L(B).

LEMMA 6.11. Let (w,v) be generated according to a sampling procedure of
Lemma 6.6. Then, for any v € L(B), Pr{v = v} < det(L(B))/det(L(C)). More-
over, if Y ~1(V) belongs to the interior of a Voronoi cell V°(Ww,L(L,)) for some
w € L(L,) NP(M,,), then Pr{v = v} = det(L(B))/ det(L(C)).

Proof. The upper bound is easy: for any v € £(B),

Pr{v = ¥} < Pr{[V]c = [¥lc} = det(£(B))/ det(£(C))

because [v]c¢ is uniformly distributed over a quotient group £(B)/L(C) whose size
equals det(L£(C))/ det(L(B)).

Now assume ¢~ 1(v) € V°(W, L(L,)) for some w € L(L,) N P(M,). We claim
that if [v]c = [V]c, then v = ¥, and therefore

Pr{v =¥} > Pr{[v]c = [V]c} = det(L(B))/ det(L(C)).
Let [v]lc = [V]c, i.e., v—v € L(C). It follows that vector
y=9"(v) =y (V) =7 (v =)

belongs to lattice ¢~ *(L£(C)) = £(M,,). Since £(M,,) is a sublattice of £(L,), and

w € L(L,), W +y is also a lattice point in £(L,). Consider the open Voronoi cells

Ve(w, L(Ly,)) and V°(w +y, L(L,)). Using the definition of y and the hypothesis
(V) € VoW, L(Ly)), we get

PTHV) =T V) +y € VW, L(Ln) +y = V(W +y, L(Ln));

i.e., ¥~ 1(v) is closer to W +y than to any other lattice point in £(Ly,,). But we know
from Lemma 6.6 that /~!(v) belongs to the Voronoi cell V(w, L(L,)); i.e., = (v)
is at least as close to w € L(L,) as to any other lattice point. Therefore, it must be



ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 155

w =w +y. We also know that both w and W belong to P(M,,), and y € L(M,,).
So, w = W + y is possible only if y = 0, which implies v = V. 0

Lemma 6.11 can be used to establish two important properties of the sampling
algorithm of Lemma 6.6. The distribution [v]c produced by the sampling algorithm
is uniform. However, [w]pr,, is not in general uniformly distributed over G,,. The first
property is that, provided ||S|| is large enough, the distribution of [w]y, is relatively
close to uniform.

LEMMA 6.12. Let (w,v) be generated according to the sampling procedure of

Lemma 6.6. If n||S||A1(L(Ly,)) > 6a(n)((L(B)) and (6.4) holds true, then for any
group element g € G,

1
#Gn'

Pr{[wlm, =g} ~

Proof. Fix group element g, and let W be the unique lattice point in £(L,) N
P(M,,) such that [W]m, = g¢. Since w € P(M,,), [w]m, = ¢ if and only if w = w.
We estimate the probability that w = w.

Notice that if v € ¥(V°(w, L(L,))), then w = w. Therefore,

Pr{w =w} > Z Pr{v =v}.

vey(Ve(w,L(L,)))NL(B)
By Lemma 6.11, for any v € ¢ (V°(w, L(Ly))) N £(B),
Pr{v = v} = det(L(B))/ det(L(C)).

So,

~# (VO (W, L(Ln))) N L(B)).

Similarly, if w = w, then v € ¥(V (W, L(L,,))). Therefore,

Pr{w =w} < Z Pr{v=v}
VeEY(V(W,L(Ly)))NL(B)

det(£(B)) .
< m “F#V (W, L(Ly,))) N L(B)).

In order to complete the proof, we need to estimate the number of lattice points
from £(B) that belong to ¢ (V°(W, £(L,))) and ¥(V(Ww, £L(L,))). Since V°(W, L(Ly))
contains an open sphere of radius A\ (L(Ly))/2, using (6.4) we get that the set
Y(V (W, L(Ly,))) (and therefore, also 1)(V(W, £(L,)))) contains a sphere of radius

nfSI A (£(Ln))
3a(n) 2

> {(L(B)).

Therefore, by definition of the generalized uniform radius ¢(£(B)), the number of
lattice points in 1(V°(Ww, £L(L,))) (and (Y (W, L(L,)))) is approximately equal to
vol(¥(V° (W, L(Ly)))) _ vol((V(W, L(Ln)))) _ vol(p(V(W, L(Ly))))
det(L(B)) N det(L(B)) B det(L(B)) '




156 DANIELE MICCIANCIO

Combining this estimate with the upper and lower bounds on the probability that
w =W, we get

vol(p(V(w, L(Ln))))

_ )
Pr{{wlm, =g} ~ ) det(£(B))

The second property implies that, provided ||S|| is large enough, the distribution
of v — ¢(w), as generated by the sampling procedure, is not concentrated over any
fixed (n — 1)-dimensional hyperplane. In fact, we prove a stronger property and show
that v — ¢)(w) belongs to any of the two half-spaces defined by the hyperplane with
high probability. This is true even for the conditional distribution of v — ¢ (w) given
w.

LEMMA 6.13. Let (w,v) be generated according to the sampling procedure of
Lemma 6.6. If n||S| A (L(Lyn)) > 12a(n)C(L(B)) and (6.4) holds true, then for any
h € span(B) \ {0} and g € G5,

T 1
Pr{h* - (v—9¢(w))>0]| [w]m, =g} > t

Proof. Fix group element g, and let w be the unique lattice point in £(L,) N
P(M,,) such that [W]|p, = g. Since Lemma 6.6 guarantees w € P(M,,), condition
[W]m, = ¢ is equivalent to w = W. Let Q = {x € V°(W, L(L,)):hT - ¢(x — W) > 0}
be one of the two (open) halves of the Voronoi cell V°(W, L(L,,)) defined by the
hyperplane h” - 1(x) = hT - )(W). (See Figure 3.) First we estimate the probability

V(w,Ly)

F1c. 3. The conditional distribution of sampled lattice points.



ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 157

that v € ¢(Q). Since Q is contained in the open Voronoi cell V°(w, L(L,)), by
Lemma 6.11,

Privew@)= Y Prlv=vh= Rl #W(Q N LE)).

veY(Q)NL(B)

Notice that Q contains an open sphere of radius A1 (£(L,))/4. (See Figure 3.) There-
fore, by (6.4), ¥(Q) contains a sphere of radius

nlIS| - Ar(£(Ln))

iy = )

By definition of ((£(B)), the number of lattice points in 1(Q) satisfies

ol($(Q) 1ol £(La)
#WQNLEB)~ T rB) ~ 2 det(Z(B))

and

Notice that if v € 1(Q), then w = w and h” - (v — 4(W)) > 0. Therefore,

1

Pr{[wlm, =g A BT - (v —9(W)) > 0} > Pr{v € (Q)} >

We can now compute the conditional probability,

_ Pr{h”- (v —¢(w)) > 0 A [w]m, = g}
Pr{[w]m, = g}
1

= LG, P W, =g}

Using Lemma 6.12, Pr{[w|m, = g} < 1/#G,, ie., #G, - Pr{[w|m, = g} < 3/2.
Substituting in the previous inequality we get

Pr{h” - (v —¢(w)) > 0 | [Wlm, = g}

Pr{h” - (v —(w) > 0| Wi, =g} 2 . O

1
G

6.4. Proofs of the lemmas. In this subsection we prove Lemmas 6.8, 6.9, and
6.10 used in the analysis the algorithm A% (B, S) in section 6.2. The intuition behind
Lemma 6.8 is that since group elements a; ; are independent and not too far from
uniformly distributed, their sums a; = ) j @ij are extremely close to uniform.

Proof of Lemma 6.8. First consider the distribution of a single group element
a;; = [W;j]lm, as output by the sampling procedure. Since n[[S||A;(L(Ly)) >



158 DANIELE MICCIANCIO

6a(n)C(L(B)) and (6.4) holds true by assumption, Lemma 6.12 tells us that for any
group element g € G,

1
#Gn'

So, the probability distribution of each a;; is not too far from uniform. Adding

Pr{a;; =g} =

up a relatively small number of a; ; we get a group element a; = Zf(:nl) a;; which
is almost uniformly distributed. In particular, by Proposition 2.17, the statistical
distance between a; and a uniformly distributed u; € G is at most

1

Since the random variables a; are independent, by Proposition 2.14 the statistical

]T Zl(n)

distance between vector a = [aq,. .. yUmny]” and a uniformly distributed u € G

is at most

m(n) m(n) nO(l) (D)

=1

The intuition behind Lemma 6.9 is that since each y; ; = v; j — 1(w; ;) has the
property described in Lemma 6.13, then also s (which is a nonzero linear combination
of the y; ;’s) has a similar property.

Proof of Lemma 6.9. Fix a € Gpi'™, 3 € A(a) \ {0}, and (n — 1)-dimensional
hyperplane H C span(B). Since z # 0, there exists a coordinate ¢ such that 2, # 0.
Assume without loss of generality that 2 # 0.

The output of A7 (B,S) is a random variable that depends on the randomness
of oracle F and the randomness used during the execution of the sampling procedure
in the computation of (w; ;,v;;) for i = 1,...,m(n) and j = 1,...,k(n). Fix the
randomness of F and sampling procedure, except for (i,7) = (1,1). Finally, for
this remaining run of the sampling procedure, fix the value of w; ; and consider the
conditional distribution of v; ;. Notice that this uniquely determines

(i) the values of v; ; for all (z,7) # (1,1),
(ii) the values of w; ; for all 4, j,
(iii) the value of a =3", [w; jlm,e;, and
(iv) the value of z = F(a).
We prove a stronger statement than the one in the lemma. Namely, we show that the
conditional probability

PI‘{S ¢ H | a = é, z = Z,V(z,])wm = VAVZ'J',V(i,j) # (]., ]-)'Vi,j = 0i7j}

is at least 1/6. Notice that this probability depends only on the conditional distribu-
tion of vy1, because all other vectors are fixed by conditioning. Averaging over all
cases such that a = & and z = 2z, we get that Pr{s ¢ H |a=4a,z =2} > 1/6.

For any fixed values w; ;, V; ;, and &, define the vector

y= Y.z (Vij—v(Wij).
(4,5)#(1,1)

Notice that, given z = z, w; ; = W, ; for all 4, j, and v, ; =V, ; for all (4, 5) # (1,1),

S= 2 (Vig — ¥(Wiy)) =¥+ 2 (Via = 9(Wi)).



ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 159

We want to bound the conditional probability that s € H or, equivalently,

R H-y
Vi1 —¢(W1,1) € —
21

=M.

Let h € span(B) be a vector orthogonal to H’ such that h? - x < 0 for any x € H'.
(Notice that since h is orthogonal to H’, the function x +— h7 - x is constant over
H'.) Since h” - x > 0 implies x ¢ H' for all vectors x, the conditional probability
that vi1 — (W1 1) ¢ H' is at least as big as the conditional probability that hT -
(vi1—(Wi1)) > 0. Since n||S|[A1(£(Ly)) > 12a(n)(L(B)) and (6.4) holds true by
assumption, Lemma 6.13 tells us that the latter probability is at least 1/6. 0

The intuition behind Lemma 6.10 is that vector s is short because it is a linear
combination (with small coefficients 2;) of short vectors y; ; lying within ¥ (V(£(Ly,))).
A bound on the length of ||s|| can be easily computed using the triangle inequality.
This would lead to a result similar to the one in Theorem 6.5, but with a larger (by
approximately y/m(n) - k(n)) value of v(n). Here we use cancellations between the
yi,j vectors to prove a better bound.

Proof of Lemma 6.10. First, we prove an upper bound on the length of y; ; =
v, ; —¢(w; ;) for all (w; ;,v; ;) in the range of the sampling algorithm of Lemma 6.6.
We know from Lemma 6.6 that ¢~ (v; ;) € V(w; ;, £(L,)), and therefore |[¢p =1 (v; ;)—
wi il < p(L(Ly)). Using (6.4) we immediately get that y; ; = (¥~ (vi;) — Wi ;)
has length at most

(6.10) lyijll < 3n|S| 'P(ﬁ(Ln)).

Substituting a(n) = w(ny/k(n)B(n n))) into (6.10), we get

38| s
6.11 il = =
(610 el < S Rmam) = (Fﬁ )

By the triangle inequality and Cauchy—Schwarz, it immediately follows that

(n) k(n)

Isll = Z ‘Zl|z||yw|| < /m(n)k(n) - (”%’W

We want to prove a better (probabilistic) bound by computing the conditional expec-
tation of ||s||?. Using the definition of s (6.5), we get

Explls|? | a = &, = 2 = Bxp <zzzzyl,,,zz,zyz >

i'=1

fZZlZZ ZEXP Yig,Yij ’>‘a*az }
<Z|ZZZZ|Z‘EXP Yii Yi,j >| :é‘

1,3/

||
N>

N>

We bound each term Exp([(y; j,yi /) | a = &,z = 2] separately. Notice that, given a =
a, vector z = F(a) = F(&) depends only on the randomness of oracle F. Therefore,
given a = &, z is independent from y; ; and y;/ ;/, and

(6.12) Exp[(yij,yirjr) | a = a,z = 2] = Exp[(y: ;,yi ;) | a=a].



160 DANIELE MICCIANCIO

We will bound the value of (6.12) and show that

2 . . . . .
© (ﬁ‘(l')sz‘lc(n)) it (i,7) = (7', 3"),
(6.13) Exp[(yi,yi) |a=4a] =

s|? .
0 (% . Qk%n)) otherwise.

Using (6.13) in the expression for Exp[||s||? | a = &,z = 2], we get

A . ) Zi| - |24 S|?
Bollsl* a—az—a< (Y2 Y EEd) o (S 5E )

i,j (4,0)#(,37)
o k(n)? - (Vm(n)||z])? S|
< (k(n) -|2]]* + () (m” J ) 0<ﬂ(7|1|)2|k(n)>

It follows from the concavity of the square root function that

Explls] | a = 4,2 = 3] = Exp[v/[s]% | a = 4,2 = 3]
< VEp[FP [a=8z=4]

ISI-l2Y . m)km)

( B(n) ) b |

In order to complete the proof of the lemma, we need to prove bound (6.13). The
case (i,7) = (¢, ') immediately follows from (6.11):

3

IN

. S||?
Expllyi,;»¥i,) | a = a] < max[lys |2 = o <5(M<n)) ,

where the maximum is over all y; ; in the support of the sampling algorithm. Now
assume ¢ = ¢’, but j # j/, and let us bound Exp[(y; ;,y: ;) | a = a]. Notice that ay,
is independent from y; ; and y; j for all h # ¢. Therefore,

Exp[(yi,j,yij) | a=a] = Exp[(yi;,yij) | @i = Q.

We want to bound the conditional expectation of (y; ;,y; /) given a; = &;. Notice
that vectors y; ; and y; ;- are statistically independent (because they come from dif-

ferent runs of the sampling procedure) and symmetrically distributed (by Lemma 6.6).
Therefore,

(6.14) Exp[(yi,j, ¥i,)] = (Explyi;], Exply:,»]) = (0,0) = 0.
Using (6.14), we immediately get
(6.15) |Exp[(yij»¥iy7) | @i = @il = | Exp[(yi,j, ¥ij) | @i = @] — Exp[(yij, yi)]|-

Notice that, by (6.11), for any y; ; and y; j in the range of the sampling procedure,

— ol o [ ISIP
i yas ) < yasll - Iyagll = o (ﬁ(n)k(n)> '



ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 161

Therefore, by Proposition 2.15, the difference (6.15) is at most

B k() R

where (yi ;,¥i; | @i = @;) is the conditional distribution of (y; ;,y: ;) given a;. In
the following lemma, we bound A((yi ;, ¥ | @i = @), (¥ij,¥ij))-

LEMMA 6.14. The statistical distance between (y; j,yi 7 | @i = a;) and (yij;,¥i,;7)
is at most

N 5
A((yig»Yig | @i = ai), (¥, ¥ig)) < 22 — 1)

Proof. Notice that (y; ;,yi ;) = (Vij — ¥(Wi;), Vi j — ¥ (w; ) is a randomized
function of (w; j, w; j-), where v; ; and v, ;- are computed according to the conditional
distribution of the sampling algorithm (given w = w; ; or w = w; j+). Therefore, by
Proposition 2.13,

A((yi g, Vi | ai = ai), (¥, ¥igr)) < A((Wij, Wi | ai = i), (Wi 5, Wi jr)).

By Proposition 2.18, the distance between (w; j, w; j | a; = a;) and (w; j, w; j/) is at
most

< 1 ax Pr{a;=a; | w;; =W, w; jy = W'} _1
2 %,w Pr{a; = a;}
1 Pr{} ¢ @in = @i — [Wlm, — [W]m, }

= 5 max k(n) N -1
2 ww Pr{> >, ain = a;}

By Proposition 2.17, the probability at the denominator equals (1/#G,)(1 + ¢€) for
some |e| < 275" Similarly, the probability at the numerator equals (1/#G,,)(1+¢')
for some || < 27 (*(™M)=2) Tt follows that

1/#Gn)(1 +€)

X 1[(
Al(wig, wig | ai = i), (Wi, wijr)) < 5 ’ 1/#G,)(1+e) 1‘

B 1 € —¢€
201+

1e'| + el
21— |

5
|

= 9(2km) 1)

Using Lemma 6.14, we get that

. IS 5 ISi* . _1
Exp[(yi;,yi;) [a=a] <2-0 (5(n)2k(n)> o2k —1) ¢ (ﬁ(n)zk(n) ' 2k<n>) ’

proving (6.13) for the case when i = ¢’ and j # j.

The case when ¢ # ¢’ is similar. Consider the conditional distribution of y; ;, i’ j
given a = a. Notice that aj is independent from y;; and y; j for all h ¢ {i,4'}.
Therefore,

Exp[(yij,yij) | a=a] = Exp[{yi,Yij) | @i = @i, a0 = a;].



162 DANIELE MICCIANCIO

Moreover, y; ; and a; are independent from y; ;» and a; because they come from
different runs of the sampling algorithm. Therefore,

Exp[(yi,j, ¥ir,j1) | @i = Giyair = air] = Exp[((yi,; | @i = @), (yor g0 | air = air))]
= (Exply;,; | @i = @], Explyi ;- | air = ai]),
where, as usual, (y; ; | a; = a;) (resp., (¥ j+ | air = @) is the conditional distribution
of y;; given a; (resp., yi ;- given ay). Let y = Explyy ;- | ay = ar]. We know
from (6.11) that |y| = o(||S||/(B(n)y/k(n))). Since y; ; is symmetrically distributed,
<EXp[Yi,j],y> = <07y> = 07 and

Exp[(yij,yirj) | ai = @i, air = ay] = (Explyi; | ai = ai],y)
= (Explyi; | ai = ai],y) — (Explyi;l. y)
= Exp[((yi, | ai = @), y)] — Exp[(yi;, ¥)]-
Notice that, by (6.11), for all y; ; in the range of the sampling algorithm
Ells )
Vi Y < 1yl - Iy 0( :

Therefore, by Proposition 2.15, the difference between Exp[((y;; | a; = @;),y)] and
Exp[(yij,¥)] is at most

[ Is]?
2 <6(n)2k(n)

Since (for any j’) vector y;; is a function of (y;;,y: /), by Proposition 2.13 and
Lemma 6.14,

) “A((yiyg | ai = ai), (yij))-

N R )
A((yiy | ai = ai), (i) < Al(yiy, yigr | ai = @), (¥ig, ¥ijr)) < 2@ 1)

So, also in this case we have

. [l 5
Exp[(yij,yirj) [a=8a] <20 (ﬂ(n)%(n)) ' 2(2k(m) — 1)

(LY o
Bnh(n) 2500 )

7. Applications. In the previous section we proved (Theorems 6.3 and 6.5)
that the problem of finding n linearly independent lattice vectors of length not much
bigger than the generalized uniform radius (in the worst case) reduces to the problem
of finding small integer solutions to random linear equations on the average. In this
section we show how this result can be reformulated as a connection between the
average-case and worst-case complexity of various lattice approximation problems.
As usual, we refer to the average-case problem as the problem of finding a nonzero
integer solution to a random linear equation, but we stress that this is equivalent to
finding (approximately) shortest vectors in a random lattice.

We also show that our results imply the existence of provably secure crypto-
graphic (collision resistant) hash functions based on the worst-case hardness of lattice
approximation problems.




ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 163

COROLLARY 7.1. Let 7(n) = n°W be a function such that there exists a fam-
ily of T(n)-perfect easily decodable lattices. For every polynomially bounded function
w(m) = mPW and m(n) = Q(nlogn), there exists a sequence of groups {Gy,} of size
#G,, = n°™ such that the following is true. If there is a probabilistic polynomial
time algorithm F that on input a uniformly chosen random equation g € G;n(n), out-
puts with nonnegligible probability a nonzero solution F(g) € A(g) of length within a
factor u(m(n)) from the shortest (or, more generally, within a factor u(m(n)) from
Minkowski’s bound (2.2)), then there is a probabilistic polynomial time algorithm that
on input any rank n lattice basis B solves, in the worst case and with high proba-
bility, any of the following problems, where w(1) is an arbitrary superconstant and
polynomially bounded function of n:

1. [SIVP] Find a set S C L(B) of n linearly independent vectors such that

S| < w(1) - u(m(n)) - n'* - 7(n) - \/m(n) - logn - A (L(B)).
2. [GAPSVP] Compute an approximation A1 such that
A1 (£(B))

A < M (L(B)).
1) () 2 (n) () Togm 1 = MEB)

3. [GAPCRP] Compute an approzimation p such that
p(L(B)) < p < w(1) - p(m(n)) -n*-7(n) - /m(n) -logn - p(L(B)).

4. [GDD] Given also a target vector t € span(B), find a lattice vector v € L(B)
such that

Iv =t <w(1) - u(m(n)) -n'® - 7(n) - /m(n) logn - p(L(B)).

Proof. Let B(n) = /w(1) - m(n)-u(m(n)), y(n) = B(n)r(n)\/w(1) - logn and G,
be as defined in Theorem 6.5. Notice that y(n) < w(1)-y/m(n) - logn-7(n)-puim(n)) =
nPM and #G,, < (n*°y(n)/8)" = n®). Therefore, by Theorem 5.5, any equation
g € G7™ has a nonzero solution of length at most O(y/m(n)). Let F(:) be a
probabilistic polynomial time algorithm to find nonzero solutions of length within a
factor p(m(n)) from the shortest (with nonnegligible probability). We know that,
when successful, F(-) finds solutions of length at most

[F (@ < p(m(n))O(v/m(n)) < B(n).

So, algorithm F(-) solves HSISg ,,, g on the average with nonnegligible probability.
Combining F with the reductions from Theorems 6.5 and 6.3, we get a polynomial
time algorithm S(-) that solves GIVP% (in the worst case and with high probability)
for approximation factor

v(n) =pn) - 7(n) - Vw(l) - -logn = w(l) - /m(n) -logn - u(m(n)) - 7(n).

We show how to use this algorithm to solve all the worst-case problems in the con-
clusion of the corollary.
1. [SIVP] Just run S = §(B) and output S. By (3.1),

:)—‘

o
2
2
>
=
5
z

ISI < 7(n) - C(L(B))

IN

w(1) - 7(n) - p(m(n)) - v/m(n) -Tog 1 - Au(L(B)).

N w N w



164 DANIELE MICCIANCIO

2. [GAPSVP] On input basis B, run S = S(B*), where B* is the basis of the
dual lattice, and output 1/[|S||. By (2.5),

IS = A (£(B)") = NZE))

Also, by (3.2),

A
|
3
[V}
=
S
~
kg
iy
=

ISI| < y(n) - {(£(B)")
= 2w(1) 0 - 7n) - plm(n)) - /) Togm/ M (£(B
3. [GAPCRP] This time, we run S = §(B) and output /n|S||/2. By (2.3),

VnllS[/2 = (Vn/2)An(L(B)) = p(L(B)).
Moreover, by Theorem 3.6,

3 3
VallS[l/2 < 5n'?y(n)-p(L(B)) = Sw(1)-n'?-(n)-p(m(n))-v/m(n) - logn-p(L(B)).
4. [GDD] In order to find a lattice point close to target t, we first run S = S(B)
and then execute Babai’s nearest plane algorithm [6] using sublattice S and target t.
The result is a point within distance y/n||S||/2 from the target. As in the proof for
the CRP, this bound satisfies

VAlISI/2 < Sw(1)-nt® - 7n) - plm(n)) - /(o) Togn - p(L(B)). D

Notice that in the proof of Corollary 7.1, the definition of group G,, implicitly
depends on the function m(n). This is because in Theorem 6.5 the definition of group
G, depends on the value of «(n), which in turn depends (via y(n)) on the value
of f(n). Moreover, the definition of S(n) in the proof of Corollary 7.1 depends on
u(m(n)). So, unless pu(-) is a constant function, group G,, can be selected only after
the value of m(n) has been chosen. The following corollary immediately follows from
Corollary 7.1 by setting m(n) = ©(nlogn) and u(m) = 1 and observing that the
definition of group G,, does not depend on m(n) when u(m) is constant.

COROLLARY 7.2. Let 7(n) = n®W be a function such that there exists a family
of T(n)-perfect easily decodable lattices. For every superlogarithmic function w(logn),
there exists a sequence of groups {Gy,} of size #G,, = n°") such that for any m(n) =
O(nlogn), the following is true. If there is a probabilistic polynomial time algorithm
F(-) that on input a uniformly chosen random equation g E GZL n), outputs with non-
negligible probability a shortest nonzero solution .7-'( g) (or, more generally, a
solution satisfying Minkowski’s bound (2.2) || F(g)|l < \/ )-det(A(g))/™™)), then
there is a probabilistic polynomial time algorithm that on mput any mnk n lattice basis
B solves, in the worst case and with high probability, any of the following problems:

1. [SIVP] Find a maximal set of linearly independent vectors of length within
n?-7(n) - w(logn) from the shortest.

2. [GAPSVP] Approzimate \1(L(B)) within a factor n*® - 7(n) - w(logn).

3. [GAPCRP] Approzimate p(L(B)) within a factor n? - 7(n) - w(logn).

4. [GDD] Given also a target vector t € span(B), find a lattice vector v € L(B)
within distance n® - 7(n) - w(logn) - p(L(B)) from t.



ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 165

We now turn to the construction of collision resistant hash functions. Following
[18], for any g € G define function hg: {0,137 — G,, by

hg(x) = Z 9iT;-
i=1

Notice that function hg maps m(n) bits to log, #G bits. If m(n) > log, #G, then
the function compresses the input x, and collisions hg(x) = hg(y) (for x # y) are
guaranteed to exist by the pigeon hole principle. We prove that, if the key g is chosen
at random, then these collisions are computationally hard to find.

COROLLARY 7.3. Let 7(n) = n°®M) be a function such that there exists a family
of T(n)-perfect easily decodable lattices. For every superlogarithmic function w(logn),
there exists a sequence of groups {Gn} of size #G, = n°™ such that the following
is true. Assume no probabilistic polynomial time algorithm can solve problems SIVP,
GAPSVP, GAPCRP, or GDD (in the worst case and with high probability) within
the factors specified in Corollary 7.2. Then for any ¢ > 1 and m(n) = max{c -
log, #G,, O(nlogn)}, there exists no probabilistic polynomial time algorithm that on
input a random key g € Gnm(") outputs with nonnegligible probability an hg-collision,
i.e., two binary vectors x #y such that hg(x) = hg(y).

Proof. Notice that m(n) > ¢ - logy, #G,, so function hg is a hash function with
compression ratio c. Assume, for contradiction, that F(g) = (x,y) is a collision finder
algorithm with nonnegligible success probability, and notice that if F is successful,
then x —y € A(g) \ {0} is a nonzero solution to equation g of length at most

[x =yl < v/m(n).

Since A(g) is a sublattice of Z™, det(A(g)) > det(Z™) = 1, and solution x —y € A(g)
satisfies Minkowski’s bound (2.2)

Ix =yl < v/m(n) < v/m(n) det(A(g))"/™™.

In order to apply Corollary 7.2 and get a contradiction, we need only to show that
m(n) = O(nlogn). The lower bound m(n) = Q(nlogn) immediately follows from the
definition of m(n) > O(nlogn). The upper bound m(n) = O(nlogn) follows from the
fact that #G,, = n®™. This proves that m(n) = ©(nlogn), and by Corollary 7.2
there exist probabilistic polynomial time algorithms to approximately solve SIVP,
GAPSVP, GAPCRP, and GDD in the worst case and with high probability. |

We conclude the section with two remarks about the choice of the groups G,, in
the previous corollaries.

Remark. It can be shown that the groups G,, defined in the proofs of Corollar-
ies 7.1, 7.2, and 7.3 have size #G,, = n®™). In particular, in Corollary 7.3, we could
have simply defined m(n) = clogy #G,,, instead of max{clog, #G,,O(nlogn)}, be-
cause clogy #G,, = O(n -logn).

Remark. Corollaries 7.1, 7.2, and 7.3 are pretty flexible in terms of the choice
of group G,,. The only property required for the proof to go through is that G,, is
a group of size n®(™ that can be represented as the quotient of an easily decodable
7(n)-perfect lattice £L(L,) modulo a sublattice £(M,,) such that (6.2) holds true.

8. Conclusion and open problems. We related the computational complex-
ity of finding (approximately) shortest nonzero integer solutions to random linear



166 DANIELE MICCIANCIO

equations with coefficients in a suitably chosen group (on the average and with non-
negligible probability) to the worst-case complexity of approximating various lattice
problems. Since the set of integer solutions to a homogeneous linear equation forms
a lattice, the result can be interpreted as a connection between the average-case and
worst-case complexity of various lattice problems. The connection immediately also
gives provably secure cryptographic hash functions that are as hard to break on the av-
erage as the worst-case complexity of approximating various lattice problems within
polynomial factors. The worst-case approximation factors achieved depend on the
class of easily decodable lattices used in the definition of the class of equations (or
cryptographic hash functions). In particular, if 7(n)-perfect easily decodable lattices
are used, then finding shortest solutions to random equations (or finding collisions to
hash functions) is at least as hard as approximating the length of the shortest vector
in any lattice, in the worst case, within a factor v(n) = n?57(n)w(logn). Even for
7(n) = y/n (which corresponds, as a special case, to Ajtai’s random class of equa-
tions), this improves the previously known best connection factor of [11] by more
than O(n). We also showed that finding shortest solutions to random equations is
at least as hard as approximating within a factor n?7(n)w(logn) any of the following
problems:
(i) [SIVP] computing a maximal set of shortest linearly independent vectors,

(ii) [GAPCRP] computing the covering radius, and

(iii) [GDD] computing a lattice vector within distance maxy dist(x, £(B)) from
a given target,
improving [11] in the case of STIVP by more than O(y/n), and connecting the average
case complexity of solving random equations to two new computational problems on
lattices that might be of independent interest.

We also gave polynomial time constructions of easily decodable 7(n)-perfect lat-
tices with 7(n) = o(y/n). These constructions allow us to achieve approximation fac-
tors n?5w(y/log nloglogn) (for SIVP, GAPCRP, and GDD) and n®w(y/log nloglogn)
(for SVP). While this improvement over 7(n) = 4/n is not substantial, it suggests that
further investigation of almost perfect lattices might allow us to find easily decodable
7(n)-perfect lattices with much smaller 7(n), e.g., 7(n) = n° or even 7(n) = O(1).
This would immediately reduce the approximation factor for all the above problems
by about /n.

Another possible source of improvement are better bounds relating the fundamen-
tal constants associated to a lattice. Our main theorem (Theorem 6.5) shows that
finding short solutions on the average is at least as hard as finding vectors that are
not much longer than a new lattice quantity called the generalized uniform radius.
All other results are obtained by first relating the generalized uniform radius to the
covering radius (Theorem 3.6), and then bounding the covering radius in terms of
other lattice constants using standard transference theorems and other well-known
bounds (Proposition 2.8). In particular, (3.1) and (3.2) show that the generalized
uniform radius ¢(£(B)) is at most O(n'%) times A\, (£(B)) or at most O(n?) times
1/A(L£(B)*). It would be interesting to improve (3.1) and (3.2) to show, for example,
that

(8.1) C(L(B)) < O(n)An(L(B))
and

(8.2) C(L(B)) < O(n)/M(L(B)").



ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 167

Whether these bounds hold true is a natural geometric question, and proving them
would be of independent interest. Moreover, it would allow us to reduce the approxi-
mation factors for SIVP and SVP by O(y/n) and O(n), respectively. Together with
the construction of better almost perfect easily decodable lattices, this would immedi-
ately improve the approximation factors for both SVP and SIVP to just n'-5w(logn).
Connections with such small approximation factors are currently known only for re-
strictions of the (worst-case) SVP to lattices with special structure where the shortest
vector is unique in some technical sense [39].

Notice that by (2.5), bound (8.2) would also imply (8.1). Also, (8.2), if correct,
would be asymptotically optimal because Conway and Thompson (s ee [37]) showed
that there exist self-dual lattices such that p(L£(B)) - A (L£(B)*) > O(n), and by
Proposition 3.2 p(£(B)) < ¢(£(B)) < {(£(B)). We conjecture that (8.2) holds true
and that there exist classes of random equations such that finding shortest nonzero
solutions on the average (with nonnegligible probability) is at least as hard as ap-
proximating the length of the shortest nonzero vector (or finding a maximal set of
shortest linearly independent vectors) in any n-dimensional lattice within a factor

Sw(logn).

Acknowledgments. The author would like to thank Ravi Kannan and Alex
Vardy for interesting discussions and pointers to relevant references, Oded Regev and
an anonymous reviewer for their many and valuable comments that helped to simplify
and improve the presentation, and Oded Goldreich for his invaluable feedback about
the paper.

REFERENCES

[1] D. AuAarRoNOV AND O. REGEV, Lattice problems in NP intersect coNP, in 45th Annual IEEE
Symposium on Foundations of Computer Science, Rome, Italy, 2004, to appear.

[2] M. AJTaAl, Generating hard instances of lattice problems (extended abstract), in Proceedings of
the 28th Annual ACM Symposium on Theory of Computing, Philadelphia, PA, 1996, pp.
99-108.

[3] M. AutAl, The shortest vector problem in la is NP-hard for randomized reductions (extended
abstract), in Proceedings of the 30th Annual ACM Symposium on Theory of Computing,
Dallas, TX, 1998, pp. 10-19.

[4] M. Aytal AND C. DWORK, A public-key cryptosystem with worst-case/average-case equivalence,
in Proceedings of the 29th Annual ACM Symposium on Theory of Computing, El Paso,
TX, 1997, pp. 284-293.

[5] M. Ajtal, R. KUMAR, AND D. SIVAKUMAR, A sieve algorithm for the shortest lattice vector
problem, in Proceedings of the 33rd Annual ACM Symposium on Theory of Computing,
Heraklion, Crete, Greece, 2001, pp. 266—275.

[6] L. BaBAL, On Lovasz’ lattice reduction and the mearest lattice point problem, Combinatorica,
6 (1986), pp. 1-13.

[7] W. BaNAszczYK, New bounds in some transference theorems in the geometry of numbers,
Math. Ann., 296 (1993), pp. 625-635.

[8] J. BLOMER AND J.-P. SEIFERT, On the complexity of computing short linearly independent
vectors and short bases in a lattice, in Proceedings of the 31st Annual ACM Symposium
on Theory of Computing, Atlanta, GA, 1999, pp. 711-720.

[9] J. BRuCK AND M. NAOR, The hardness of decoding linear codes with preprocessing, IEEE Trans.
Inform. Theory, 36 (1990), pp. 381-385.

[10] G. J. BUTLER, Simultaneous packing and covering in Euclidean space, Proc. London Math.
Soc., 25 (1972), pp. 721-735.

[11] J.-Y. Ca1 AND A. P. NERURKAR, An improved worst-case to average-case connection for lattice
problems (extended abstract), in Proceedings of the 38th Annual IEEE Symposium on
Foundations of Computer Science, Miami Beach, FL, 1997, pp. 468-477.

[12] J. H. CoNnwAY AND N. J. A. SLOANE, Sphere Packings, Lattices and Groups, 3rd ed., Springer-
Verlag, New York, 1998.



I.

DANIELE MICCIANCIO

DiNur, G. KINDLER, R. RAZ, AND S. SAFRA, Approzimating CVP to within almost-
polynomial factors is NP-hard, Combinatorica, 23 (2003), pp. 205-243.

M. DYER, A. FRrRIEZE, AND R. KANNAN, A random polynomial-time algorithm for approximating

U.

O
0.
O

V.

I.

o © =W

<

o=

)

the volume of convex bodies, J. ACM, 38 (1991), pp. 1-17.

FEIGE AND D. MiccIANCIO, The inapprozimability of lattice and coding problems with pre-
processing, J. Comput. System Sci., 69 (2004), pp. 45-67.

. GOLDREICH, Foundation of Cryptography—Basic Tools, Cambridge University Press, Cam-

bridge, UK, 2001.

GOLDREICH AND S. GOLDWASSER, On the limits of nonapproximability of lattice problems,

J. Comput. System Sci., 60 (2000), pp. 540-563.

. GOLDREICH, S. GOLDWASSER, AND S. HALEVI, Collision-free hashing from lattice prob-
lems, Tech. report TR96-056, Electronic Colloquium on Computational Complexity, 1996,
http://www.eccc.uni-trier.de/eccc/.

. GOLDREICH, D. MICCIANCIO, S. SAFRA, AND J.-P. SEIFERT, Approximating shortest lattice
vectors is not harder than approzimating closest lattice vectors, Inform. Process. Lett., 71
(1999), pp. 55-61.

GURUSWAMI, D. MiccIANCIO, AND O. REGEV, The complezity of the covering radius problem
on lattices and codes, in Proceedings of the 19th Annual IEEE Conference on Computa-
tional Complexity, Amherst, MA, 2004, pp. 161-173.

HONKALA AND A. TIETAVAINEN, Codes and number theory, Handbook of Coding Theory,
Vol. 2, Elsevier, New York, 1998, pp. 1141-1194.

. KANNAN, Algorithmic geometry of numbers, in Annual Reviews of Computer Science Vol.
2, Annual Review Inc., Palo Alto, CA, 1987, pp. 231-267.

. KANNAN, Minkowski’s convex body theorem and integer programming, Math. Oper. Res., 12
(1987), pp. 415-440.

. KANNAN, Lattice translates of a polytope and the Frobenius problem, Combinatorica, 12
(1992), pp. 161-177.

. KANNAN AND S. VEMPALA, Sampling lattice points, in Proceedings of the 29th Annual ACM

Symposium on Theory of Computing, El Paso, TX, 1997, pp. 696—700.

. C. LAGARIAS, H. W. LENSTRA, JR., AND C.-P. SCHNORR, Korkine-Zolotarev bases and

successive minima of a lattice and its reciprocal lattice, Combinatorica, 10 (1990), pp.
333-348.

. K. LENSTRA, H. W. LENSTRA, JR., AND L. LoVAsz, Factoring polynomials with rational
coefficients, Math. Ann., 261 (1982), pp. 513-534.

. LOBSTEIN, The hardness of solving subset sum with preprocessing, IEEE Trans. Inform.
Theory, 36 (1990), pp. 943-946.

. E. MAzo AND A. M. ODLYZKO, Lattice points in high dimensional spheres, Monatsh. Math.,

110 (1990), pp. 47-61.

. MCLOUGHLIN, The complexity of computing the covering radius of a code, IEEE Trans.
Inform. Theory, 30 (1984), pp. 800-804.

. MicciaNciO, The hardness of the closest vector problem with preprocessing, IEEE Trans.
Inform. Theory, 47 (2001), pp. 1212-1215.

. MIcCIANCIO, Improving lattice based cryptosystems using the Hermite normal form, in
Cryptography and Lattices Conference, Lecture Notes in Comput. Sci. 2146, J. Silverman,
ed., Springer-Verlag, Berlin, 2001, pp. 126-145.

. MICCIANCIO, The shortest vector in a lattice is hard to approximate to within some constant,
SIAM J. Comput., 30 (2001), pp. 2008-2035.

. Micciancio, Generalized compact knapsaks, cyclic lattices, and efficient one-way functions
from worst-case complexity assumptions, in Proceedings of the 43rd Annual Symposium
on Foundations of Computer Science, Vancouver, BC, Canada, 2002, pp. 356—365.

. MicciaNcio, Improved cryptographic hash functions with worst-case/average-case connec-
tion, in Proceedings of the 34th Annual ACM Symposium on Theory of Computing,
Montréal, Québec, Canada, 2002, pp. 609-618.

. MiccIANCIO AND S. GOLDWASSER, Complezity of Lattice Problems: A Cryptographic Per-
spective, Kluwer Internat. Ser. Engrg. Comput. Sci. 671, Kluwer Academic Publishers,
Boston, 2002.

MILNOR AND D. HUSEMOLLER, Symmetric Bilinear Forms, Springer-Verlag, New York, 1973.

. REGEV, Improved inapprozimability of lattice and coding problems with preprocessing, in
Proceedings of the 18th Annual IEEE Conference on Computational Complexity, Arhus,
Denmark, 2003, pp. 315 —322.

. REGEV, New lattice based cryptographic constructions, in Proceedings of the 35th Annual
ACM Symposium on Theory of Computing, San Diego, CA, 2003, pp. 407-426.



ALMOST PERFECT LATTICES AND AJTAT’S CONNECTION 169

[40] C. A. ROGERS, A note on coverings and packings, J. London Math. Soc., 25 (1950), pp. 327—
331.

[41] C.-P. SCHNORR, A hierarchy of polynomial time lattice basis reduction algorithms, Theoret.
Comput. Sci., 53 (1987), pp. 201-224.

[42] A. VARDY, Algorithmic complexity in coding theory and the minimum distance problem, in
Proceedings of the 29th Annual ACM Symposium on Theory of Computing, El Paso, TX,
1997, pp. 92-109.



SIAM J. COMPUT. (© 2004 Society for Industrial and Applied Mathematics
Vol. 34, No. 1, pp. 170-194

SMALL SPANS IN SCALED DIMENSION*
JOHN M. HITCHCOCKT

Abstract. Juedes and Lutz [SIAM J. Comput., 24 (1995), pp. 279-295] proved a small span
theorem for polynomial-time many-one reductions in exponential time. This result says that for
language A decidable in exponential time, either the class of languages reducible to A (the lower
span) or the class of problems to which A can be reduced (the upper span) is small in the sense of
resource-bounded measure and, in particular, that the degree of A is small. Small span theorems
have been proved for increasingly stronger polynomial-time reductions, and a small span theorem for
polynomial-time Turing reductions would imply BPP # EXP. In contrast to the progress in resource-
bounded measure, Ambos-Spies et al. [Proceedings of the 16th IEEE Conference on Computational
Complezity, Philadelphia, PA, IEEE Computer Society, Los Alamitos, CA, 2001, pp. 210-217]
showed that there is no small span theorem for the resource-bounded dimension of Lutz [STAM J.
Comput., 32 (2003), pp. 1236-1259], even for polynomial-time many-one reductions.

Resource-bounded scaled dimension, recently introduced by Hitchcock, Lutz, and Mayordomo [J.
Comput. System Sci., 69 (2004), pp. 97-122], provides rescalings of resource-bounded dimension. We
use scaled dimension to further understand the contrast between measure and dimension regarding
polynomial-time spans and degrees. We strengthen prior results by showing that the small span
theorem holds for polynomial-time many-one reductions in the —3rd-order scaled dimension, but
fails to hold in the —2nd-order scaled dimension. Our results also hold in exponential space.

As an application, we show that determining the —2nd- or —Ist-order scaled dimension in
ESPACE of the many-one complete languages for E would yield a proof of P = BPP or P # PSPACE.
On the other hand, it is shown unconditionally that the complete languages for E have —3rd-order
scaled dimension 0 in ESPACE and —2nd- and —1st-order scaled dimension 1 in E.

Key words. resource-bounded dimension, small span theorems, polynomial-time degrees
AMS subject classification. 68Q15

DOI. 10.1137/S0097539703426416

1. Introduction. Resource-bounded measure [16] defines the relative size of
classes of decision problems and has been used very successfully to study polynomial-
time reductions within exponential-time complexity classes. Measure-theoretic ar-
guments were the first to show that for all @ < 1, every <P, . .-hard language for
exponential time is exponentially dense [19]. The first plausible hypothesis on NP
to separate the <P and S% reducibilities within NP came from resource-bounded
measure [20].

The degrees and spans of languages under polynomial-time reductions have also
been studied by several researchers using resource-bounded measure. For a reducibil-
ity <P and any A C {0,1}*, the <P-lower span of A is the class P.(A) of all lan-
guages that are <P-reducible to A, the <P-upper span of A is the class P 1(A)
of all languages to which A is <P-reducible, and the <P-degree of A is the class
degP(A) = P.(A) NP, 1(A). Juedes and Lutz [12] proved the following small span
theorem for <P -reductions in both E and in EXP. Here the notation u(C | D) denotes
the measure of C within D, where D is a suitable complexity class. If u(C | D) = 0,
then intuitively C N D is a negligible subset of D.

*Received by the editors April 23, 2003; accepted for publication (in revised form) April 17, 2004;
published electronically October 28, 2004. This research was supported in part by National Science
Foundation grant 9988483.

http://www.siam.org/journals/sicomp/34-1/42641.html

fDepartment of Computer Science, University of Wyoming, Laramie, WY 82071-3315 (jhitchco@

cs.uwyo.edu).

170



SMALL SPANS IN SCALED DIMENSION 171

THEOREM 1.1 (Juedes and Lutz [12]). Let D € {E,EXP}. For every A € D,
p(Pm(4) [ D) =0
or
u(P1(A) | D) = 0.

In particular, u(deg (4) | D) = 0.

That is, at least one of the upper or lower spans of A is small within D. Using a
result of Bennett and Gill [4], Juedes and Lutz [12] noted that strengthening Theorem
1.1 from <P -reductions to g%—reductions would achieve the separation BPP £ EXP.
Pursuing this program, small span theorems for reductions of progressively increasing
strength between <P and <7, have been obtained by Lindner [14], Ambos-Spies, Neis,
and Terwijn [3], and Buhrman and van Melkebeek [6].

Resource-bounded dimension was introduced by Lutz [18] as an effectivization
of Hausdorff dimension [9] to investigate the fractal structure of complexity classes.
Just like resource-bounded measure, resource-bounded dimension is defined within
suitable complexity classes D. For any complexity class C, the dimension of C within
D is a real number in [0, 1] and is denoted by dim(C | D). If dim(C | D) < 1, then
u1(C | D) = 0, but the converse may fail. This means that resource-bounded dimension
is capable of quantitatively distinguishing among the measure 0 sets. With regard to
the measure 0 sets in Theorem 1.1, Ambos-Spies, Merkle, Reimann, and Stephan [2]
proved the following.

THEOREM 1.2 (Ambos-Spies et al. [2]). For every A € E,

dim(degt (A) | E) = dim(P,(A) | E).

In particular, as dim(E | E) = 1, the <P -complete degree for E has dimension
1 within E. This implies that replacing “p” by “dim” in Theorem 1.1 makes the
statement for E no longer true. In other words, there is no analogue of the small span
theorem for dimension in E. Dimension in E cannot distinguish between lower spans
and degrees.

To overcome limitations of resource-bounded dimension for investigating com-
plexity classes within ESPACE, Hitchcock, Lutz, and Mayordomo [11] introduced for
each integer i € Z an ith-order scaled dimension dim'” (- | D). For any class C and
i € Z, dimY(C | D) € [0,1], and if it is less than 1, then u(C | D) = 0. The quan-
tity dim™(C | D) is nondecreasing in i, and there is at most one i € Z for which
0 < dim”(C | D) < 1. The Oth-order dimension, dim'®)(- | D), is precisely the stan-
dard unscaled dimension, and the other orders can be more useful than it for certain
complexity classes. To illustrate this, we mention some examples from circuit-size
complexity. For a function s : N — N, let SIZE(s(n)) consist of all languages decid-
able by nonuniform Boolean circuit families of size at most s(n). Lutz [18] showed
that

(1.1) dim (SIZE (f:) ’ ESPACE) =a

for all & € (0,1). Circuit size bounds of the form 2°" and 2" are typically of more
interest in complexity theory, but (1.1) implies that SIZE(2°") and SIZE(2"") have



172 JOHN M. HITCHCOCK

dimension 0 in ESPACE for all o € (0,1). For these size bounds, the scaled dimensions
are useful; in [11] it is shown that

dim™ (SIZE(2°™) | ESPACE) = o
and
dim® (SIZE(2"") | ESPACE) = «

for any o € (0,1).

This paper uses scaled dimension to investigate polynomial-time spans and de-
grees and further understand the contrast between Theorems 1.1 and 1.2. We show
that the same dichotomy also occurs between the —3rd- and —2nd-orders of scaled
dimension. The main contribution of this paper is a strengthening of Theorem 1.1
to give a small span theorem for scaled dimension. (The following is a corollary of a
stronger result proved in Theorem 6.3.)

THEOREM 1.3. Let D € {E,EXP,ESPACE, EXPSPACE}. For every A € D,

dim® (P (A) | D) =0
or
dimP(P;1(A) | D) = 0.
In particular, dim~% (degP, (A) | D) = 0.
In contrast, Theorem 1.2 is extended to scaled dimension at orders 7 with |i| < 2.

THEOREM 1.4. Let D € {E, EXP, ESPACE, EXPSPACE}. For every A € D and
—2<i<?2,

dim@ (degP, (4) | D) = dim @ (P, (A) | D).

This implies that Theorem 1.3 cannot be improved to —2nd-order scaled dimen-
sion.

As an application of these results, we consider the scaled dimension of CP (E),
the class of polynomial-time many-one complete sets for E, within ESPACE. Let
i€ {—2,—1}. We extend a theorem of Lutz [15] to show that

dim®(CP (E) | ESPACE) > 0 = P = BPP.
On the other hand, we show that
dim™ (C? (E) | ESPACE) < 1 = P # PSPACE.

Therefore, determining the —1st- or —2nd-order scaled dimension of C?, (E) in ESPACE
would derandomize BPP or separate P from PSPACE. In contrast, we also show that

dim~(CP (E) | ESPACE) = 0
and
dim?(C? (E) | E) = dim "V (CR(E) |E) = 1

hold without any hypothesis.



SMALL SPANS IN SCALED DIMENSION 173

This paper is organized as follows. Section 2 contains the basic preliminaries, and
section 3 reviews resource-bounded scaled dimension. We develop some new tools for
computing scaled dimension in section 4. The scaled dimensions of some auxiliary
classes involving polynomial reductions are calculated in section 5. Our small span
theorem for scaled dimension is proved in section 6. Section 7 shows that lower spans
and degrees have the same dimension in orders ¢ with —2 < ¢ < 2. Extensions of
the results to <}_ -reductions are discussed in section 8. The results on the scaled
dimension of the complete sets for E are presented in section 9. Section 10 concludes
with a brief summary.

2. Preliminaries. The set of all finite binary strings is {0,1}*. The empty
string is denoted by A. We use the standard enumeration of binary strings sg = A, s1 =
0,80 = 1,83 =00,.... The length of a string « € {0,1}* is denoted by |z|. We use the
notation {0,1}=" = {x € {0,1}* | |z| < n} and {0,1}>" = {z € {0,1}* | |z| > n}.

All languages (decision problems) in this paper are encoded as subsets of {0, 1}*.
For a language A C {0,1}*, we define A<, = {z € Allz| < n}. We routinely
identify A with its infinite binary characteristic sequence according to the standard
enumeration of binary strings. We write A | n for the n-bit prefix of the characteristic
sequence of A, and A[n] for the nth-bit of its characteristic sequence.

Let <P be a polynomial-time reducibility. For any A C {0,1}*, let

P,(A) = {B C{0,1}" | B <P 4)
be the <P-lower span of A,

Po1(A)={B C{0,1}" | A<} B}

be the <P-upper span of A, and
degp(4) = Pr(A)NPH(A)

be the <P-degree of A. For any complexity class D, the class of <P-hard languages
for D is

HR(D) ={AC{0,1}" | D C P, (A)},
and the class of <P-complete languages for D is
CP(D) = DNHE(D).

Let resource € {time,space} and let ¢(n) be a resource bound. Let [ € N. A
function f : N! x {0,1}* — [0,00) N Q is t(n)-resource exactly computable if there is
a Turing machine that computes f(ki,...,k;, w) using at most ¢(k; +--- + k; + |w|)
resource for all (kq,...,k,w) € N x {0,1}*. Let g : N x {0,1}* — [0,00) be a
real-valued function. An approzimation of g is a function g : N1 x {0, 1}* — [0, o0)
such that

lg(z) = g(r,z)| <277

for all z € N! x {0,1}* and r € N. We say that g is ¢(n)-resource computable if there
is an exactly ¢(n)-resource computable approximation ¢ of g. A family of functions
(fi : Nt x {0,1}* — [0,00) | i € N) is uniformly t(n)-resource (evactly) computable if
the function f(i,x) = f;(x) is t(n)-resource (exactly) computable.



174 JOHN M. HITCHCOCK

A function f is p-computable (respectively, pspace-computable) if it is O(n*)-
time (respectively, O(n*)-space) computable for some k € N, and f is p,-computable
(respectively, p,space-computable) if it is O(2(1°% ”)k)-time (respectively, O(2(1°8 ”)k)—
space) computable for some & € N. Throughout this paper, unless otherwise specified,
A denotes any of the resource bounds p, p,, pspace, or p,space. The concept of an
exactly A-computable function is defined analogously.

3. Scaled dimension. Hitchcock, Lutz, and Mayordomo [11] introduced resource-
bounded scaled dimension. This section briefly reviews the essentials of this theory.

The principle concept is a scale, which is a function g : H X [0,00) — R, where
H = (a,00) for some a € RU{—00}. A scale must satisfy certain properties that are
given in [11] and will not be discussed here.

The canonical example of a scale is the function go : R x [0,00) — R defined by
go(m, s) = sm. This scale is used in the standard (unscaled) dimension. Other scales
of interest are obtained from gg by rescaling and reflection operations.

Definition. Let g : H x [0,00) — R be a scale.

1. The first rescaling of g is the scale g# : H# x [0,00) — R defined by

H# = {2™ |m ¢ H},
g# (m7 S) — 2g(logm,s).
2. The reflection of g is the scale gf* : H x [0,00) — R defined by

m+g(m,0) —g(m,1—s) if0<s<1,
gR(m,s):{ g( ) g( )

g(m, s) if s> 1.

A family of scales, one for each integer, is defined as follows.

Definition.
1. For each ¢ € N, define a; by the recurrence ag = —00, a;41 = 2.
2. For each i € Z, define the ith scale g; : (a);, 00) x [0,00) — R by the following
recursion:

(a) go(m,s) = sm.
(b) For 7 > 07 gi+1 = gf;
(c) Fori <0, g; = g%,.
For clarity, we compute the first few scales. For all s € [0,1], if m > a};, then
gi(m, s) is defined by

g3(m,s) =2 ,

ga(m, s) = 2(10gm)57

g1(m,s) =m?,

go(m, s) = sm,
g_1(m,8) =m+1—m!~*
g—o(m,s) =m+2 glogm)'~*
g_3(m,s) =m+4— gaostos

Scaled dimension is defined using functions called scaled gales. The more familiar
concepts of gales [18] and martingales [16] are special cases in the following definition.
Definition. Let i € Z and let s € [0, 00).



SMALL SPANS IN SCALED DIMENSION 175

1. An ith-order scaled s-gale (briefly, an s()-gale) is a function d : {0,1}>%il —
[0, 00) such that for all w € {0, 1}* with |w| > aj;,
d(w) = 2729wl [d(w0) + d(w1)],
where Ag; : (aj;,00) x [0,00) — R is defined by
Agi(m,s) =g;(m+1,s) — gi(m, s).
2. An s-gale is an s(9)-gale, that is, a function d : {0,1}* — [0, 00) satisfying
d(w) = 27*[d(w0) + d(w)
for all w € {0,1}*.
3. A martingale is a 1-gale, that is, a function d : {0,1}* — [0, 00) satisfying

d(w0) 4 d(w1)

d(w) = 5

for all w € {0,1}*.
Success sets are a crucial concept for resource-bounded measure and also for scaled
dimension.
Definition. Let d : {0,1}”% — [0, 00), where a € Z.
1. We say that d succeeds on a language A C {0,1}* if

limsup d(A | n) = oo.

n—oo

2. The success set of d is
S°d] = {A C{0,1}" | d succeeds on A}.

Resource-bounded measure is defined using success sets of martingales. Here A
denotes any of the resource bounds {p, p,, pspace, p,space}, and R(A) is the following
exponential-time or exponential-space complexity class:

R(p) = E = DTIME(2°M),
R(p,) = EXP = DTIME(2"°"),
R(pspace) = ESPACE = DSPACE(2°"),
R(p,space) = EXPSPACE = DSPACE(2""").

Definition. Let C be a class of languages.
1. We say that C has A-measure 0 and write pua(C) = 0 if there is a A-
computable martingale d such that C C S*°[d].
2. We say that C has measure 0 in R(A) and write u(C | R(A)) = 0 if pa(CN
R(A)) =0.
The measure conservation theorem of Lutz [16] asserts that pa (R(A)) # 0, justi-
fying the definition of measure in R(A) above.
Success sets of scaled gales are used to define scaled dimension.
Definition. Let C be a class of languages and i € Z.
1. The ith-order scaled A-dimension of C is

dimX) (C) = inf {s

there exists a A-computable
s(W-gale d for which C C S*°[d]



176 JOHN M. HITCHCOCK
2. The ith-order scaled dimension of C within R(A) is

dim®(C | R(A)) = dim (€ N R(A)).

The Oth-order dimension dim(AO) (+) is precisely the dimension dima (-) of Lutz [18],
and the other orders are interpreted as rescalings of this concept.

The following lemma relates resource-bounded scaled dimension to resource-bounded
measure.

LEMMA 3.1 ([11]). For any class C of languages and i € Z,
dim{ () < 1= pa(C) =0
and

dim®(C | R(A)) < 1= u(C | R(A)) = 0.

The following is another key property of scaled dimension.
THEOREM 3.2 (see [11]). Let C be a class of languages and i € Z. IfdimX—H)(C) <
1, then dimg) (C)=0.
This theorem tells us that for every class C, the sequence of dimensions dimx) ()
for ¢ € Z satisfies exactly one of the following three conditions:
(i) dimx) (C)=0for all i € Z.
(i) dim{’(C) =1 for all i € Z.
(ifi) There exist i* € Z such that dim%(C) = 0 for all i < i* and dim'(C) = 1
for all ¢ > ¢*.

4. Measures, log-loss, and scaled dimension. This section provides some
tools involving measures and the log-loss concept that are useful for working with
the scaled dimensions. It was shown in [10] that log-loss unpredictability is equivalent
to dimension. Here we characterize scaled dimension using the log-loss of measures.
A similar approach to classical fractal dimension using measures has been used by
Cutler [7] (see also [8]).

Definition. A measure is a function p : {0,1}* — [0, 00) satisfying

pw) = p(w0) + p(wl)

for all w € {0,1}*.
Measures have the following fundamental relationship with scaled gales. This
extends Schnorr’s “likelihood ratio” characterization of martingales [23].
OBSERVATION 4.1. Let i € Z and s € [0, 00).
1. Ifp:{0,1}* — [0, 00) is a measure, then the functiond, : {0,1}~i — [0, c0)
defined by

dy(w) = 29i(|w|75)p(w)
for all w € {0,1}> is an s -gale.
2. If d : {0,1}>%il — [0,00) is an sD-gale, then the function pg : {0,1}* —
[0,00) defined by

palw) = 274" )d(w)



SMALL SPANS IN SCALED DIMENSION 177
for all w € {0,1}>%l and

pa(w)= Y pa(wo)

lv|=aj;)+1—|w]|

for all w € {0,1}=% is a measure.
The following lemma relates the scaled dimension of a class to limits involving
scales and logarithms of measures.
LEMMA 4.2. Let C be a class of languages and let i € Z.

1. If s> dimX) (C), then there is a A-computable measure p such that

limsup [g;(n, s) +log p(A | n)] = oo

for all A€C.
2. If s < dimX) (C), then for any A-computable measure p there is an A, € C
such that

Jim [gi(n, 5) +log p(A, [ n)] = —oc.

Proof. Let r be rational with s > r > dimX) (C) and let d be a A-computable
r(M_gale succeeding on C. Then the measure pg from Observation 4.1 is also A-
computable. Let A € C. There are infinitely many n € N such that d(A [ n) > 1
since A € S*°[d]. For such n,

> gi(n’ S) - gi(nvr)'

Part 1 follows because r < s.

For part 2, let p be a A-computable measure. Let ¢t be rational with s < t <
dimx) (C) and obtain the t()-gale d, from Observation 4.1. Then C Z S*[d,] because
d, is A-computable; thus there are an A, € C and a constant ¢ such that d(A [ n) < ¢
for all n > aj;. Then

9i(n, s) +log p(A [ n) = gi(n,s) — gi(n,t) +logd,(A [ n)
< gi(n,s) — gi(n,t) +loge,

and therefore the claim follows because s < t. O

Lemma 4.2 asserts that if the ith-order scaled dimension of a class C is less than
s, then there is a measure p such that for every A € C, there are prefixes w C A where
the log-loss quantity

—log p(w)

is arbitrarily less than g;(|w|, s).

It is often convenient to replace computable measures by exactly computable
measures. The following lemma is proved in the same way as the exact computation
lemma for martingales [13].

LEMMA 4.3. Let p be a measure that is computable in t(n) time (respectively,
space), where t(n) > n is nondecreasing. Then there is a measure p that is exactly
computable in n - t(2n + 2) time (respectively, space) such that p(w) > p(w) for all
w € {0,1}*.



178 JOHN M. HITCHCOCK

The measures that are exactly computable within a fixed time or space bound
are uniformly exactly computable with slightly more time or space.

LEMMA 4.4. For any nondecreasing time constructible function t(n) > n the
family of exactly t(n)-time computable measures is uniformly exactly computable in
O(n?t(n)logt(n)) time. The family of exactly t(n)-space computable measures is uni-
formly exactly computable in O(t(n)) space.

Proof. There is a uniform enumeration (M; | ¢ € N) of all #(n)-time clocked
Turing machines such that for all i € N, M;(w) can be computed in i - t(|w|) log t(|w])
time for all w € {0,1}*. Define p; : {0,1}* — [0,00) inductively by p;(A) = M;(\)
and

ooy Miw0) i Miw0) < piu),
pilw0) {p,;(w) otherwise,

pi(wl) = pi(w) — pi(w0)

for all w € {0,1}*. Then each p; is a measure. Also, if v is a measure that is exactly
computed by M; in t(n) time, then p;(w) = v(w) for all w. We can compute p;(w)
by using |w| computations of M; on strings of length at most |w|; thus the function
p:Nx{0,1}* — [0,0) defined by p(i,w) = p;(w) is computable in O(n?t(n)logt(n))
time. The argument for space is similar. 1]

Uniformly exactly computable families of measures can be combined into a single
measure in an efficient manner.

LEMMA 4.5. Let (pi | k € N) be a uniformly exactly A-computable family of
measures. There is a A-computable measure p* such that for any k, there is a constant
ci, such that

log p™ (w) = log px(w) — ¢k

for all w € {0,1}*.
Proof. Define

e pr(w)
p*(w) _k:O 26 pr(A)

Then p is a measure by linearity. Also, p* is A-computable by the approximation
function p* : N x {0,1}* — [0, 00) defined by

. _ pr(w)

p (T,w) - —~ 2kpk()\)
o) 5w = S e
p(w) = 5" (r,w)| 2 o
Pr(N)
Wt 2PN

=2"



SMALL SPANS IN SCALED DIMENSION 179

Let k € N. For any w € {0,1}*,

pr(w)
2k pe(A)
= log pr(w) — k — pr(N),

log p™(w) = log

and thus the lemma holds with ¢ = k + pi(\) O
We now combine the preceding lemmas to obtain a tool that will be useful in
calculating scaled dimensions.
THEOREM 4.6. Let C be a class of languages, i € Z, and k € N.
1. If for each A € C there is a measure pa computable in O(n*) time such that

(4.1) (3ea € Z)(3%°n)gi(n, s) + logpa(A [ n) > ca,

then dimg)(C) <s.

2. If for each A € C there is a measure pa computable in 0(2(1°g")k) time such
that (4.1) holds, then dimgz) (C) <s.

3. If for each A € C there is a measure pa computable in O(n*) space such that
(4.1) holds, then dimgs)pacc((f) <s.

4. If for each A € C there is a measure pa computable in O(20°8 ")k) space such
that (4.1) holds, then diml(fzspace (C) <s.

Proof. From Lemmas 4.3, 4.4, and 4.5 we obtain an exactly A-computable mea-
sure p such that log p(w) > log pa(w) — by for all w € {0,1}* where by is a constant
that depends on A but not on w.

Let t > s. For any A € C,

gi(n,t) +logp(A [ n) > gi(n,t) — gi(n,s) +ca —ba
for infinitely many n. Therefore

limsup g;(n,t) +log p(A [ n) = oo

since t > s. It follows from the contrapositive of Lemma 4.2(2) that dima(C) <
t. 1]

5. Scaled non-bi-immunity and compressibility. In this section we intro-
duce some classes involving scales, non-bi-immunity, and compressibility by polynomial-
time reductions and calculate their scaled dimensions.

A Turing machine M is consistent with a language A C {0,1}* if for all x €

{0,137,
M (z) halts < M (z) = A(z).
Let ¢ be a time bound. The fast set of M with respect to t is
Fly = {2 €{0,1}* | timey(z) < t(|z])}.

Recall that A is not DTIME(t)-bi-immune if there is a machine M consistent with A
such that F?, is infinite.

Definition. For any time bound ¢, let X (¢) be the class of all languages that are
not DTIME(¢)-bi-immune.



180 JOHN M. HITCHCOCK

Let A C {0,1}* and f:{0,1}* — {0,1}*. We say that f is a many-one reduction
of A if there is some B C {0,1}* such that xt € A <= f(z) € B. The collision set
of fis

Cp = {s:(37 <) f(si) = f(s5)}-

Recall that A is compressible by SETIME(t)—reductions if there exists an f € DTIMEF(¢)
that is a many-one reduction of A and has C} infinite [12].

Definition. For any time bound ¢, let C'(¢) be the class of all languages that are

compressible by SBTIME(t)-reductions.

The following theorem asserts that almost every language in E is DTIME(2")-

bi-immune [21] and incompressible by <DIMEE™) peductions [12].

THEOREM 5.1 (Mayordomo [21], Juedes and Lutz [12]). For all ¢ € N,

pp(X(27)) = pp(C(2")) = 0

and

b, (X(27)) =y, (C(27)) =0

The next two definitions introduce scaled versions of X (t) and C(¢).
Definition. For any i € Z, a € [0, 1], and time bound ¢, let

(03

X@@{AQWJF

(IM)M is consistent with A and
(F°n)#((1, Fiy I n) >n—gi(n,a) [°

That is, Xéi)(t) consists of the languages that are not DTIME(¢)-bi-immune in a
particular strong way: for infinitely many n, all but g;(n, ) of the first n strings can
be decided in less than ¢ time by a consistent Turing machine.

Definition. For any i € Z, « € [0, 1], and time bound ¢, let

(3f € DTIMEF(¢)) f is a many-one reduction of A }

O((j) (t) = {A € {0,1}" and (3°n)#(1,Cf [ n) > n— gi(n,a)

In other words, C’éi) (t) is the class of languages compressible by SgTIME(t)—

reductions where for infinitely many n, all but g;(n,a) of the first n strings have
downward collisions under some reduction.

For a < 1, Xéi)(2") C X(2") and Cgf)(Q”) C C(2"), and thus Theorem 5.1
implies that X" (2™) and Cc(f)(Q") have measure 0. We now refine this by calculating
their scaled dimensions.

THEOREM 5.2. For alli €7, c>1, and a € [0, 1],

dim{? (X (2°m)) = dim{?) (C (2°)) = a

P

and

dim{) (X (2")) = dim{) (€Y (2)) = .



SMALL SPANS IN SCALED DIMENSION 181

Proof. We focus on the p-dimension portion of the theorem; the argument for
p,-dimension is identical. Let a € (0,1) and let s, > 0 be arbitrary rationals with
s < a < t. It suffices to show that

s < dim{ (X (27)) < dim{?(CP(2°)) < .

The inequality dimg)(Xc(f)(T")) < dimg)(C((Xi)(Qc")) holds because of the inclusion
Xéi)(an) C Céi)(an).

For the lower bound, let p be any p-computable measure; assume without loss
of generality that p(A\) < 1. We define a language A inductively by lengths. Let
s < 8" < ¢ < «a with ¢ rational. The first [g;(2",s")] bits of A_,, are set by
diagonalization to minimize p. The remaining 2™ — [g;(2",s’)] bits are identically 0.
More formally, if z is the characteristic string of A<,,_1, we choose v € {0,1} [9:(2".57]
so that p(zv) is minimized, and we let A_,, have characteristic string 02" e @"s0],
Then A is in X{7(2¢"). Let w C A, and let n be such that 2" — 1 < lw| < 27+ — 1.
Then

n—1

log p(w) < [ Y —gi(?,¢) | —min{lw| - (2" —1),6:(2",5")},
§=0

which is at most —g;(|w|, s”) if |w] is sufficiently large by Lemma 5.3 below. Then
log p(w) + gi(Jwl, s) < —gi(lw], s") + gi(w], 5),
and thus

lim logp(A | n)+gi(n,s) = —c0

n—oo
since s” > s. Since p is an arbitrary p-computable measure, the contrapositive of
Lemma 4.2(1) implies that dimg) (Xg)(QC")) > s.

Now we prove the upper bound. Let A € C&i) (2¢™) by a function f € DTIMEF(2").
Define a measure p inductively by p(A\) = 1 and for all w € {0,1}*,b € {0,1},
L. if f(s;) # f(spw)) for all i < |w|, then

plw).
2 )
2. otherwise, let i = min{i < |w| | f(s;) = f(s}«)} and define

fotw) b=l
plud) = {0 i b £ wli].

p(wb) =

Then for all w C A,

log p(w) = —#(0,Cy | |wl)
=#(1,Cy I |w]) — wl.
Whenever #(1,C; | n) > n — g;(n, a), we have

Z gz(n7t) _gi(n7a)‘



182 JOHN M. HITCHCOCK

This happens infinitely often; thus

limsup g¢;(n,t) + logp(A | n) = oo
because t > a. Also, p is computable in O(|w| - 2¢1°81*l) = O(|w|**!) time. Such a

p can be defined for each A € C'((;')(Qm)7 and thus diml())(Cai)(T")) < t follows by
Theorem 4.6. 0

LEMMA 5.3. Leti € Z, 0 <r <1’ < 1. Then for all sufficiently large n and k
with 2" —1 < k < 2nHl — 1,

n—1

3" gi(27,r') + minfk — (2" — 1), g,(2", 1)} = gilk, 7).
j=0

Proof. If i = 0, then the left-hand side is
(2" — 1) + min{k — (2" — 1),7'2"} > 'k = go(k,r") > go(k, 7).
If = 1, then the left-hand side is
n—1
> 2 £ min{k — (2" —1),2"} > 20077 S 2HUT S BT = gy (1)
Jj=0

when n is large enough. The argument for ¢ > 1 is similar.
If = —1, then the left-hand side is

n—1
2" — 132107 4 pminfk — (2" - 1),2" — 2"~ 4 13}
j=0
>k — (n+1)2"0-"")
>k —2n07) 41
= g—l(ka 7’)
if n is sufficiently large. The argument for ¢ < —1 is similar. ]

6. Small span theorem. In this section we establish our small span theorem
for scaled dimension. We begin with a simple, but important, lemma about the scales.

LEMMA 6.1. For allk > 1 and s,t € (0,1), g3(2"", s) = 0(g2(2", 1))

Proof. We have

2(10g10g2nk)S _ 22(’6102”/)5

k
g3(2" ,s) =2
and
92(2n7t) — 2(log2n)t _ 2nt, _ 22t logn.

The lemma holds since (klogn)® = o(tlogn). |

Juedes and Lutz [12] proved that the upper spans of incompressible languages
are small. Specifically, for any language A € EXP that is incompressible by <P -
reductions, they showed that u, (P,'(4)) = 0, and if additionally A € E, then



SMALL SPANS IN SCALED DIMENSION 183

pp(Pnt(A)) = 0. The following theorem is a scaled dimension analogue of this. For
any ¢ € Z, let

C (poly) = | ¥ (n° + o).
ceN
THEOREM 6.2. Let o € (0,1).
1. Let A € {p, pspace}. For any B € R(A) — c )(poly) dimxs) (PLL(B)) = 0.
2. Let A € {p,,p,space}. For any B € R(A) — C{? (poly), dim\ ¥ (P51 (B)) =
0.
Proof. We first give the proof for A = p. Let B € E — Cél)(poly) and let M be
a Turing machine that decides B in O(2°") time. Assume B <P C via f where f is
computable in n* time almost everywhere. Then for all sufficiently large n,

(6.1) £({0,135™) C {0,135
and
(6.2) |F{0,1}57)] = 12" — 1,0) > 61(2", @),

with the latter holding because B ¢ C’((,})(poly).
Let r € N such that + < o. Define d : N — N by d(n) = [n/r]|. For each n € N
we define a measure p, : {0,1}* — [0,1] by
pn(A) =27"
and for all w € {0,1}* and b € {0, 1},
L If jw| < 24 or [(Vi < 2"+ — 1) f(s;) # f(S|w))], then
Pn W
puub) = 220
) =

2. Otherwise, let ¢ = min { i < 2" — 1] f(s;

_ Jpn(w) if b= Bli,
pu(wb) = {0 it b+ Bil.

f(sjw))} and define

If |w| < 2% then p,(w) is computable in O(jw|) time. If |w| > 2% we can
compute p,(w) by using 2"*! — 1 = O(jw|*/¥™) = O(Jw|") computations of M and
f on strings with length at most n = O(log |w|). Therefore p,(w) is computable in
O(|w|"(2¢'8 vl 4 (log |w])*)) = O(Jw|"*°) time for all w € {0,1}*.

Let w, =C'| 27"+1 _ 1 be the characteristic string of C<,,». Then letting

min) = | {5 < fwal [(%i < 2741 = 1)f(s1) # f(s;)
we have
palu) > (N2> 7m0 = g2,
By (6.1) and (6.2), we have

m(n) < gnf+l _q 91(2", )



184 JOHN M. HITCHCOCK

if n is sufficiently large. In this case,
(6.3) log pn(wn) > ¢1(2", o) — 9d(n) _ 2nk+1 —n

The function p : {0,1}* — [0, 00) defined by
p(w) = pn(w)
n=0

for all w is a measure by linearity. Notice that p(w) can be approximated to a precision
of 271 in O(|w|"*¢l) time by adding the first [ + 1 terms of the sum.
Using (6.3), for all sufficiently large n, we have

9-s([wnl, 5) +log p(wy) = 2" 1 + 4 — g5(2"" F1 — 1,1 — 5) + log py (w)
> g1(2", ) — g3 (27T — 1,1 — 5) — 24—,

By Lemma 6.1, 93(2”k+1 — 1,1 —5) = 0(g1(2", ). Also, 24" = 2l7/7] is little-0 of
g91(2™, ) = 29" because o > 1/r. Using these facts, it follows that

limsup g_3(n,s) + log p,(C | n) = co.

n— o0

Appealing to Theorem 4.6, we establish diméf?’)(P;ll(B)) < s. As s > 0 is arbitrary,
the A = p part of the theorem holds. The argument is identical for A = pspace.
The proof for A € {p,,p,space} is very similar, so we sketch only the differences
for A =p,. Let B € EXP — C&Q)(Z”) and let M be a Turing machine that decides
B in O(2"") time. Assume B <P C via f. The measures p, and p are defined in
the same way, except we use a different function d(n). For this, we let r > 1/«
and define d(n) = |[n¢], where ¢ = 1/r. Then, if |w| > 24" as before we can
compute p,(w) by using 2! — 1 computations of M and f on strings with length
at most n = O(log |w]|). Since 2" = 2(l°8 ") = 0208 1vD") we can compute p,(w)
in O(20eglwD” . glegwh)?y — 0(2(10g|w\)'“”(“))

log pn (wy) > g2 (27, ) — 247 — 27" +1 _ n. The proof is completed in the same way
using the fact that 24" = o(g5(2", a)) because € < a. 0
We are now ready to prove our main theorem.
THEOREM 6.3.
1. Let A € {p,pspace}. For every A € R(A),

time. Instead of (6.3), we arrive at

dim™ (P (A) | R(A)) =0
or
dim ™ (PLL(A) | R(A)) = dim) ¥ (P (4)) = 0.
2. Let A € {p,,p,space}. For every A € R(A),
dim® (P, (4) | R(A)) =0
or

dim? (P21(A) | R(A)) = dim P (P51 (A4)) = 0.



SMALL SPANS IN SCALED DIMENSION 185

Proof. Let A € {p, pspace} and let A € R(A). As in the proof of the small span
theorem in [12], we consider two cases.
(I) Suppose that

Pm(A) N R(A) - m C&l) (2

a€e(0,1)

Then dim(Al)(Pm(A) R(A)) < d g)(C’&l)(Q")) < a by Theorem 5.2 for all

€ (0,1), and thus dim™ (P, (4 )|R( ) = dim\) (P (A) N R(A)) = 0.
(I1) Otherw1se there is an a € (0, 1) such that

Pu(A) N R(A) Z CP(2m).

Let B € Pm(A)ﬁR(A)—Cc(,})@"). Then by Theorem 6.2, dimXS)(Pgl (B)) =0.
Since P;1(A) € P51 (B), we have dim|{® (P51(A4)) = 0.
Part 2 is proved in the same way. 0
Theorem 6.3 implies that there is a small span theorem for —3rd-order scaled
dimension, but it is stronger than the following.
COROLLARY 6.4. For every A € R(A),

dim ) (P (4) | R(A)) =0
dim =¥ (P 1(A) | R(A)) = dim} ® (P,1(4)) = 0.

Proof. This follows immediately from Theorem 6.3 using Theorem 3.2. O
The small span theorem of Juedes and Lutz [12] is also a corollary.
COROLLARY 6.5 (Juedes and Lutz [12]). Let A € {p,p,}. For every A € R(A),

p(Pm(A) [ R(A)) =0
u(PLH(A) [ R(A)) = ua (PRl (4)) = 0.

Proof. This follows immediately from Theorem 6.3 and Lemma 3.1. 0

We also have the following regarding the scaled dimensions of the hard languages
for EXP and NP.

COROLLARY 6.6.

1. dim{~ (B, (EXP)) = dim{? (HE, (EXP)) =
2. If dim™ (NP | E) > 0, then dim<—3>( HP (NP)) =0
3. If dim® (NP | EXP) > 0, then dim{* (1B, (NP)) = 0.

Proof. Let H € CP(E). Then also H € CP(EXP), so P Y(H) = HP (EXP).
Since dim(Py,(H) | E) = dim,(E) = 1, Theorem 6.3 tells us that dim,(HE (EXP)) =
dim,(P,1(H)) = 0.

Parts 2 and 3 follow from Theorem 6.3 using any NP-complete language A. |

Juedes and Lutz [12] concluded from their small span theorem that every <P -
degree has measure 0 in E and in EXP. From Theorem 6.3 we similarly derive a
stronger version of this fact: every <P -degree actually has —3rd-order dimension 0.



186 JOHN M. HITCHCOCK
COROLLARY 6.7. For every A C {0,1}*,
dim =) (degP, (A) | R(A)) = 0.

Proof. 1If degP (A) is disjoint from R(A), then dim'™®(degP, (4) | R(A)) =
dimé‘s)(ﬁ)) = 0, so assume that there is some B € degf (A) N R(A). Because
deg? (A) = degP (B) = P, (B) N P1(B), we have

dim™* (degh, (4) | R(A)) < dim™ (Pu(B) | R(A))
and
dim™ (degP, (4) | R(A)) < dim™* (PL1(B) | R(A)).

By Corollary 6.4, we have either dim ™ (P, (B) | R(A)) = 0 or dim (P
R(A)) = 0. Therefore dim™® (degP, (A) | R(A)) =0. O

The <P -complete languages for any complexity class have —3rd-order dimension
0 in every R(A).

COROLLARY 6.8. For any class D of languages, dim ™ (C2(D) | R(A)) =

Proof. If C2 (D) = (), this is trivial. Assume C2 (D) # () and let A € C2 (D). hen
CP (D) C degP (A), so this follows from Corollary 6.7. 0

7. Lower spans versus degrees in orders —2 through 2. We now present
some results that stand in contrast to the small span theorem of the previous section.
We begin by extending the work of Ambos-Spies et al. [2] to show that lower spans
and degrees have the same scaled dimension in orders ¢ with || < 2.

THEOREM 7.1. For any A € R(A) and —2 <1i <2,

dim® (degh, (4) | R(A)) = dim" (P (4) | R(A))
and

dim® (degP, (4)) = dim{ (P, (A)).

Proof. We write the proof for dimension in R(p) = E; the rest of the theorem is
proved in the same manner. The proof is based on [2].

Let A € E be decidable in O(2°") time. By monotonicity, dim® (deg? (4) | E) <
dim® (P, (A) | E). For the other inequality, let t > s > dim”(deg® (A) | E). By
Lemmas 4.2 and 4.3, for some [ € N there is an exactly n!-time computable measure
p satisfying
(7.1) lim sup g;(m, ) + log p(C' | m) = 0o
for all C' € deg? (A) NE.

Letting £ > 1 be a natural number to be specified later, we define a padding
function f:{0,1}* — {0,1}* by

f(z) = olal"~lely
for all . Let R = f({0,1}*) be the range of f.



SMALL SPANS IN SCALED DIMENSION 187

Let B € Py, (A). We define another language B’ as
B = (B—R)U f(A).

Then B’ € deg! (A). Intuitively, B’ is a language that is very similar to B but has A
encoded sparsely in it. Define a function 7 : {0,1}* — {0, 1}* inductively by 7(\) =1
and

T(w)b lf S|w‘ ¢ R,

T(wb> = T(w)l if S|w| € RN B,

T(w)0 if s, € R— B’

for all w € {0,1}* and b € {0,1}. Notice that
7(BIn)=B"|n

for all n.
Define a measure v by y(A\) = 1 and

y(w) if s, € R
lw| € R,

Y(wb) = 9 »(r(w .
{;<r((13>l3)7( ) i sp) # R

for all w € {0,1}* and b € {0,1}. Intuitively, v is designed to have performance on B
that is similar to p’s performance on B’. This is done by mimicking the conditional
probabilities of p for strings that are not in R. Note that v(w) can be exactly computed
in O(|w| - (Jw|' + 2¢1°81vl) = O(|jw|™2x(LA+1) time.

Let n € N and let 2D "+1 <4y < 27"+1 _ 1 Then

[ i)
logy(BIm)= > log B TioT) 1_1)
1<i<m
= Z log o [1—1 —|— Z ]og,
1<i<m 1<i<m
si¢R s;€ER
B )
= > log——— B’ p— — {1 <i<m|s; € R}
1<i<m
si¢R
) . nk’+1
> ) log ————— B’ o) —-{1<i<2 —1|s; € R}
1<i<m
=logp(B' | 22"

=logp(B' | m) — 2”*1 +1.

Now assume that g;(m,s) + logp(B’ | m) > 1. Then we have g;(m,t) + logv(B |
m) > 1if

(7.2) 2" 4 gi(m, s) < gi(m,t).
To establish
(7.3) limsup g;(m,t) +logy(B | m) > 1,

n—oo



188 JOHN M. HITCHCOCK

it now suffices to show we can choose k so that (7.2) holds for all sufficiently large m.
For each —2 <¢ < 2, we now give an appropriate choice of k that yields this.

e i =2 Let k> 1/t. Then go(m,t) > go(20n=D" 1) = 2(n=D" o on+1 —
0(g2(m,t)) because kt > 1. Also, ga(m, s) = o(g2(m, 1)) since s < t, so (7.2)
holds when m is sufficiently large.

ei =1 Let k = 2. Then gi(m,t) > g1(2("~ D* ¢ t) = 2tn=1* go ontl —
o(g1(m,t)). Also, g1(m,s) = o(g1(m,t)), s (7.2) holds for sufficiently large
m.

e i =0 Let k =2 Then go(m,t) > go(2=D* t) = 120=1* g0 2n+1 —
o(go(m,t)). Also, go(m,s) = o(go(m,1t)), so (7.2) holds for sufficiently large
m.

e i=—1: We have g_1(m,t) =m+1—g1(m,1 —t), so (7.2) is true if 2"+! +
g1(m,1—1) < g1(m,1—s). Taking k = 2, this follows from the argument for
1 =1 abovesince 1 —s >1—t.

e i = —2: Just as in the i = —1 case, (7.2) is true if 2" 4 go(m,1 — t) <
g2(m,1 — s). Taking k > 1/(1 — s), this follows from the argument for i = 2
above since 1 —s > 1 —t.

For each B € P,,(A), we have given a O(n™**(:¢))-time computable measure ~
such that (7.3) holds. By Theorem 4.6, dim™ (P, (A) | E) < t. Ast > dim™ (degP, (A) |
E) is arbitrary, this establishes dun(l)( m(4) | E) < dlm(’)(degm( )| E). O

Theorem 7.1 for (unscaled) dimension was proved in [2] for A = p.

COROLLARY 7.2 (Ambos-Spies et al. [2]). For any A € E,

dim(deg® (A) | E) = dim(Pn(A) | E)
and
dimp (deg?, (4)) = dimy (P (A)).

Theorem 7.1 implies that Theorem 6.3 cannot be improved in one respect. For
any 4,j € Z, let SSTYi, j] be the following statement.

SSTYi, j]: For every A € E,dim™ (P, (A) | E) = 0 or dim¥ (P;1(A) | E) = 0.
Let H € C?(E). Then
dim @ (P, (H) | E) = dim(E | E) = 1
for all i and dim'~? (deg?,(H) | E) = 1 by Theorem 7.1, which in turn implies
dimP(P;Y(H) | E) = 1.

Therefore, SST|i, j] is false if j > —2. Theorem 6.3 says that SST[1, —3] is true; now
we know that the —3 in it cannot be improved to —2.
We have the following corollary regarding the classes of complete sets for E, EXP,
and NP.
COROLLARY 7.3. Let —2 < z < 2.
1. dim™(CP (E) | E) = dim® (CP,(EXP) | EXP) = 1.
2. dim™”(NP | E) = dim® (cp (NP) | E).
3. dim™(NP | EXP) = dim (CP,(NP) | EXP).



SMALL SPANS IN SCALED DIMENSION 189

Proof. Let H € CP(E). Then CP(E) = degl (H) N E, so dim”(CP(E) | E) =
dim® (deg?, (H) | E) = dim™(P,,(H) | E) = dim{’(E) = 1 by Theorem 7.1. The
other statements follow similarly. 1]

We can now observe a difference between the —3rd- and —2nd-order scaled di-

mensions regarding complete degrees. Corollaries 6.8 and 7.3 together with Theorem
3.2 tell us that for D € {E, EXP},

) 0 ifi< =3
dim@(cp () [D)=4 =T
1 ifi>-2

and

. 0 if1 <=3
dim™(CB(NP) | D) =4 LT
dim"(NP | D) ifi> —2.
In section 9 we will discuss the scaled dimension of CP (E) within ESPACE. The
following extension of Theorem 7.1 will be useful.
THEOREM 7.4. For all —2 < i < 2,

dim (CP (E) | ESPACE) = dim™ (E | ESPACE).

Proof. We use the construction from the proof of Theorem 7.1. Let ¢ > s >
dim® (CP (E) | ESPACE) and take an exactly n!-space computable measure p satisfy-
ing (7.1) for all C' € CP (E). Fix an A € CP (E). For any B € E, the set B’ constructed
from A and B is in CP,(E). The arguments then show dim (E | ESPACE) < t. 0

8. <}_.i-lower spans versus <P -lower spans. Theorem 7.1 is also true for
most other polynomial-time reducibilities. (This fact was mentioned in [2] for Corol-
lary 7.2 when it was proved.) To replace <P by <P in the theorem, we need only to
have B’ € degP(A) for the set B’ that was constructed in the proof from B € P,.(A).
In particular, Theorem 7.1 is true for the <}_,, reducibility. In this section we show
that this holds because of another reason: the scaled dimensions of <7_, -lower spans
and <P -lower spans are always the same.

The following proposition was used to show that a set is weakly <P -complete for
exponential time if and only if it is <}'_, -complete.

PROPOSITION 8.1 (Ambos-Spies et al. [1]). Let A <V_, B. Then there is a
language C € P such that

A=(ANC)U(A°NC°) <P, B.

The idea of the following lemma also comes from [1].

LEMMA 8.2. Leti € Z. Let C,C be classes of languages such that for any
A € C, there is some C € R(A) such that A = (ANC)U (AN C°) € C. Then
dim% (¢) < aim{ (6).

Proof. We prove this for A = p. The other cases are proved by identical argu-
ments.

Let s > dimg) ((f) be rational and obtain p computable in O(n") time from Lemma
4.2 such that

(8.1) limsup g;(n, s) +log p(A | n) = co

n—oo



190 JOHN M. HITCHCOCK

for all A € C. A )
Let A € C and let C € DTIME(n*) such that A = (ANC)U(A°NC*) € C. Define
a function 7 : {0,1}* — {0,1}* by

L Jwly] if s; € C,
T(w)[]]_{l—w[j] its; ¢ C

Therefore

limsup g;(n, s) +logp'(A | n) = cc

n—oo

because of (8.1). As p’ is computable in time O(|w| - (log [w])* + |w|"), it follows by
Theorem 4.6 that dimg)(C) <s. ad

We now show that the scaled dimension of a <P -lower span is always equal to
the scaled dimension of the <[, -lower span.

THEOREM 8.3. Let B C {0,1}* and let i € Z. Then

dim (P (B)) = dimY (P14 (B))
and
dim® (P (B) | R(A)) = dim™ (P1_(B) | R(A)).

Proof. By Proposition 8.1, for each A € P1_¢(B) there is a language C' € P such
that A = (ANC) U (A°NC°) € Pn(B). Let C be the set of all such A as A ranges
over P1_¢(B). Then by Lemma 8.2,

dim@ (Py_(B)) < dim?(C).
AsC C Pw(B) C Pi_(B), we also have
dim® (€) < dim? (P (B)) < dim® (P1_4(B)),

so the first equality holds. The proof for dimension in R(A) is analogous. O
We can now give a stronger version of Theorem 7.1.
COROLLARY 8.4. For any A € R(A) and -2 < i < 2,

dim® (P (4) [ R(A)) = dim®(degh,(4) | R(A))
dim® (Py_(4) | R(A)) = dim"(deg}_,(4) | R(A)),

and similarly when dim™ (- | R(A)) is replaced by dimg)(-).



SMALL SPANS IN SCALED DIMENSION 191

Proof. From Theorems 7.1 and 8.3 we have
dim®@ (degh, (4) | R(A)) = dim” (P (4) | R(A)) = dim" (P14 (4) | R(A)).
By monotonicity, we have
dim® (degl, (4) | R(A)) < dim ™ (deg}_, (4) | R(A)) < dim® (P1_.(4) | R(A)),
so the corollary follows. The proof for dimx)(-) is analogous. ]
Theorem 8.3 also yields a strengthening of Theorem 6.3: the Py, (A) in it can be
replaced by P1_t(A). In fact, it is also possible to replace the P,!(A) in Theorem

6.3 by P7 ', (A) by extending Theorems 5.2 and 6.2 to deal with <}, -reductions.
We omit the details.

9. The scaled dimension of CP (E) in ESPACE. Lutz [17] proved a small
span theorem for nonuniform Turing reductions in ESPACE. This implies that CP, (E)
has measure 0 in ESPACE. In Corollary 6.8 we saw that CP (E) actually has —3rd-
order scaled dimension 0 in ESPACE. In this section we show that determining the
—2nd- or —Ist-order scaled dimension of CP (E) in ESPACE would yield a proof of
P = BPP or P # PSPACE.

The P = BPP hypothesis was related to the measure of E in ESPACE by Lutz
[15].

THEOREM 9.1 (Lutz [15]). If u(E | ESPACE) # 0, then P = BPP.

We will extend this result to scaled dimension. We now recall the tools Lutz used
to prove it.

Nisan and Wigderson [22] showed that BPP can be derandomized if there is
a decision problem in E that requires exponential-size circuits to be approximately
solved. The hardness of a decision problem at a given length is the minimum size of a
circuit that can approximately solve it. The details of the definition of this hardness
are not needed in this paper; we need only to recall existing results regarding classes
of languages with exponential hardness.

Definition. Let H, be the class of all languages that have hardness at least 2%"
almost everywhere in the sense of [22].

The aforementioned derandomization of BPP can be stated as follows.

THEOREM 9.2 (see Nisan and Wigderson [22]). IfEN H, # 0 for some a > 0,
then P = BPP.

We will also need space-bounded Kolmogorov complexity.

Definition. Given a machine M, a space bound s : N — N, a language L C {0, 1}*,
and a natural number n, the s-space-bounded Kolmogorov complexity of L_, with
respect to M is

KS3/(L=y,) = min {|7r|’M(7r,n) =xL_, in <s(2") Space}7

i.e., the length of the shortest program m such that M, on input (7,n), outputs the
characteristic string of L—,, and halts without using more than s(2™) workspace.

Well-known simulation techniques show that there exists a machine U which is
optimal in the sense that for each machine M there is a constant ¢ such that for all
s, L, and n we have

KS§t(Loy) < KS5/(Loy) +c.

As usual, we fix such a universal machine and omit it from the notation.



192 JOHN M. HITCHCOCK

Definition. For each space bound s : N — N and function f : N — N define the
complexity class

KSio. (f) ={L € {0, 1}" | (3Fn)KS*(L=n) < f(n)}.

Lutz showed that H, has measure 1 in ESPACE (i.e., that HS has measure 0 in
ESPACE) if a < 1/3 by showing that languages not in H, have low space-bounded
Kolmogorov complexity.

LEMMA 9.3 (Lutz [15]). There exist a polynomial q¢ and a constant ¢ such that
forall0<a< pg<1,

HE CKSY (27 — c2t=2n 4 ofin),

The class on the right-hand side in Lemma 9.3 has measure 0 in ESPACE [16].
The scaled dimensions of similar space-bounded Kolmogorov complexity classes were
studied in [11].

THEOREM 9.4 (see Hitchcock, Lutz, and Mayordomo [11]). For any i < —1,
polynomial q(n) = Q(n?), and « € [0, 1],

dim (KS?_ (g:(2", «)) | ESPACE) = a.

Lemma 9.3 and Theorem 9.4 provide an easy upper bound on the —I1st-order
scaled dimension of H¢ in ESPACE.
COROLLARY 9.5. If0 < a < 1/3, then

dim "V (HS | ESPACE) < 20
Proof. Let € > 0 and § € (a,1 — 2a). Then for all sufficiently large n,

on 02(1_20‘)” + 25” <41 2(1—2a—e)n
=g-1(2",2a +¢),

so Lemma 9.3 implies HS C KS?_ (g_1(2", 2a+¢)). Therefore dim ™" (HS | ESPACE) <
2a + € by Theorem 9.4. O

We can now state a stronger version of Theorem 9.1. The hypothesis has been
weakened, but the conclusion remains the same.

THEOREM 9.6. If dim~Y(E | ESPACE) > 0, then P = BPP.

Proof. Assume the hypothesis and let s = min{1/2,dim""(E | ESPACE)}.
Then by Corollary 9.5, E & HSC/27 ie, ENH, /o # (). Therefore P = BPP by Theorem
9.2. d

We now relate the scaled dimension of CP (E) to the P < PSPACE and P = BPP
problems.

THEOREM 9.7. Fori e {-2,—1},

dim™ (CP (E) | ESPACE) < 1 = P # PSPACE
and

dim®(C? (E) | ESPACE) > 0 = P = BPP.



SMALL SPANS IN SCALED DIMENSION 193

Proof. From Theorem 7.4 we know that dim™ (CP(E) | ESPACE) = dim”(E |
ESPACE). Also, dim”(E | ESPACE) < 1 implies E # ESPACE, which implies
P # PSPACE [5]. This proves the first implication. The second one follows from
Theorem 9.6 since dim(CP (E) | ESPACE) > 0 implies dim""(E | ESPACE)
> 0. o

In other words, establishing any nontrivial upper or lower bound on dim~" (CP (E) |
ESPACE) or dim'~?(CP,(E) | ESPACE) would derandomize BPP or separate P from
PSPACE. This is in contrast to the unconditional facts from Corollaries 6.7 and 7.3
that

dim™*(C? (E) | E) = 0
and
dim~?(C? (E) | E) = dim"V(CR(E) | E) = 1.

10. Conclusion. Our main results, Theorems 6.3 and 7.1, use resource-bounded
scaled dimension to strengthen from both ends the contrasting theorems of Juedes
and Lutz [12] and Ambos-Spies et al. [2] regarding spans under polynomial-time re-
ductions.

1. The small span theorem for <P -reductions [12] was strengthened from mea-
sure to —3rd-order scaled dimension. (In fact, Theorem 6.3 is even stronger
than this.)

2. The result that lower spans and degrees have the same dimension [2] was
extended to all orders —2 < i < 2 of scaled dimension. This implies that
there is no small span theorem in —2nd-order scaled dimension.

These results suggest that the contrast between the —2nd- and —3rd-orders of
resource-bounded scaled dimension will be useful for studying complexity classes in-
volving polynomial-time reductions. For example, regarding the many-one complete
degree of NP, Corollaries 6.7 and 7.3 say that

dim =3 (C2.(NP) | E) = 0
and
dim~?(C? (NP) | E) = dim"? (NP | E).

Scaled dimension therefore provides two different types of dimension for studying NP.
The NP-complete degree provides all the dimension of NP in order —2, but in order
—3 the NP-complete degree unconditionally has dimension 0.

Acknowledgments. I thank Jack Lutz for suggesting this line of research and
Xiaoyang Gu for comments on a draft. I also thank the anonymous referees for very
helpful comments and corrections.

REFERENCES

[1] K. AMBOS-SPIES, E. MAYORDOMO, AND X. ZHENG, A comparison of weak completeness notions,
in Proceedings of the 11th IEEE Conference on Computational Complexity, Philadelphia,
PA, IEEE Computer Society, Los Alamitos, CA, 1996, pp. 171-178.

[2] K. AmBOs-SpiEs, W. MERKLE, J. REIMANN, AND F. STEPHAN, Hausdorff dimension in expo-
nential time, in Proceedings of the 16th IEEE Conference on Computational Complexity,
Chicago, IL, IEEE Computer Society, Los Alamitos, CA, 2001, pp. 210-217.



JOHN M. HITCHCOCK

K. AmBoOs-SpiEs, H.-C. NE1s, AND S. A. TERWLIN, Genericity and measure for erponential
time, Theoret. Comput. Sci., 168 (1996), pp. 3—-19.

C. H. BENNETT AND J. GILL, Relative to a random oracle A, PA # NP4 # co-NPA with
probability 1, STAM J. Comput., 10 (1981), pp. 96-113.

R. V. Book, Comparing complexity classes, J. Comput. System Sci., 9 (1974), pp. 213-229.

] H. BUHRMAN AND D. VAN MELKEBEEK, Hard sets are hard to find, J. Comput. System Sci., 59

(1999), pp. 327-345.

C. D. CUTLER, Strong and weak duality principles for fractal dimension in Euclidean space,
Math. Proc. Cambridge Philos. Soc., 118 (1995), pp. 393-410.

K. FALCONER, Techniques in Fractal Geometry, John Wiley and Sons, Chichester, UK, 1997.

F. HAUSDORFF, Dimension und dufSeres Mafl, Math. Ann., 79 (1919), pp. 157-179.

J. M. HiTCHCOCK, Fractal dimension and logarithmic loss unpredictability, Theoret. Comput.
Sci., 304 (2003), pp. 431-441.

J. M. HitcHcock, J. H. LuTz, AND E. MAYORDOMO, Scaled dimension and nonuniform com-

plexity, J. Comput. System Sci., 69 (2004), pp. 97-122.
. W. JUEDES AND J. H. Lutz, The complexity and distribution of hard problems, SIAM J.
Comput., 24 (1995), pp. 279-295.

D. W. JUEDES AND J. H. Lurz, Weak completeness in E and E2, Theoret. Comput. Sci., 143
(1995), pp. 149-158.

W. LINDNER, On the Polynomial Time Bounded Measure of One-Truth-Table Degrees and
P-Selectivity, Diplomarbeit, Technische Universitat Berlin, Berlin, Germany, 1993.

J. H. LuTtz, An upward measure separation theorem, Theoret. Comput. Sci., 81 (1991), pp. 127—
135.

J. H. LuTz, Almost everywhere high nonuniform complezity, J. Comput. System Sci., 44 (1992),
pp- 220-258.

J. H. Lutz, A small span theorem for P/Poly-Turing reductions, in Proceedings of the 10th
Annual Structure in Complexity Theory Conference, Minneapolis, MN, IEEE Computer
Society, Los Alamitos, CA, 1995, pp. 324-330.

J. H. LuTz, Dimension in complexity classes, STAM J. Comput., 32 (2003), pp. 1236-1259.

J. H. Lutz AND E. MAYORDOMO, Measure, stochasticity, and the density of hard languages,
SIAM J. Comput., 23 (1994), pp. 762-779.

J. H. Lutz AND E. MAYORDOMO, Cook versus Karp-Levin: Separating completeness notions if
NP is not small, Theoret. Comput. Sci., 164 (1996), pp. 141-163.

E. MAYORDOMO, Almost every set in exponential time is P-bi-immune, Theoret. Comput. Sci.,
136 (1994), pp. 487-506.

N. NISAN AND A. WIGDERSON, Hardness vs. randomness, J. Comput. System Sci., 49 (1994),
pp. 149-167.

C. P. SCHNORR, A survey of the theory of random sequences, in Basic Problems in Methodology
and Linguistics, Univ. Western Ontario Ser. Philos. Sci. 11, R. E. Butts and J. Hintikka,
eds., Reidel, Dordrecht, The Netherlands, 1977, pp. 193-211.

o)



SIAM J. COMPUT. (© 2004 Society for Industrial and Applied Mathematics
Vol. 34, No. 1, pp. 195-226

RANDOM WALKS ON TRUNCATED CUBES
AND SAMPLING 0-1 KNAPSACK SOLUTIONS*

BEN MORRIST AND ALISTAIR SINCLAIR?

Abstract. We solve an open problem concerning the mixing time of symmetric random walk
on the n-dimensional cube truncated by a hyperplane, showing that it is polynomial in n. As
a consequence, we obtain a fully polynomial randomized approximation scheme for counting the
feasible solutions of a 0-1 knapsack problem. The results extend to the case of any fixed number of
hyperplanes. The key ingredient in our analysis is a combinatorial construction we call a “balanced
almost uniform permutation,” which is of independent interest.

Key words. random walks, Markov chains, hypercubes, random sampling, knapsack problem,
random permutations, balanced permutations

AMS subject classifications. 68Q25, 68W25, 68R05, 60J10

DOI. 10.1137/S0097539702411915

1. Introduction. For a positive real vector a = (a;)_; and real number b, let
2 denote the set of 0-1 vectors x = (z;)}; for which

n
a-x= E a;r; <b.
i=1

Geometrically, we can view {2 as the set of vertices of the n-dimensional cube {0,1}"
which lie on one side of the hyperplane a - x = b. Combinatorially, {2 is the set of
feasible solutions to the 0-1 knapsack problem defined by a and b: if we think of
the a; as the weights of a set of n items and b as the capacity (weight limit) of a
knapsack, then there is a 1-1 correspondence between vectors x € {2 and subsets of
items X whose aggregated weight does not exceed the knapsack capacity, given by
X = {i:x; = 1}. We shall write a(X) for the weight of X, i.e., a(X) = >,y a;.

This paper is concerned with the natural nearest neighbor random walk on the
“truncated cube” Gy, (i.e., the subgraph of the cube induced by §2), in which the
probability of moving to any neighbor is % In the knapsack terminology, this walk is
described by the following transition rule from any state X € (2:

1. with probability % do nothing; else

2. pick an item ¢ € {1,...,n} uniformly at random (u.a.r.);
3. ifi € X, move to X — {i}; if i ¢ X and a(X U{i}) < b, move to X U {i}; else
do nothing.

(We have added a uniform holding probability of % at every state to avoid technical
issues involving periodicity.)

*Received by the editors July 22, 2002; accepted for publication (in revised form) October 20,
2003; published electronically October 28, 2004. A preliminary version of this paper appeared in
Proceedings of the 40th IEEE Symposium on Foundations of Computer Science, 1999, pp. 230—240.

http://www.siam.org/journals/sicomp/34-1/41191.html

tDepartment of Mathematics, Indiana University, Rawles Hall, Bloomington, IN 47405 (benjmorr
@indiana.edu). This work was done while the author was in the Department of Statistics, University
of California at Berkeley, and was supported by an NSF graduate fellowship and by NSF grant
ECS-9873086.

fComputer Science Division, Soda Hall, University of California at Berkeley, Berkeley, CA 94720-
1776 (sinclair@cs.berkeley.edu). The research of this author was supported in part by NSF grants
CCR-9505448 and CCR-9820951.

195



196 BEN MORRIS AND ALISTAIR SINCLAIR

It is easy to check that this walk converges to the uniform distribution over (2 for
any choice of a and b. Our main concern in this paper is with the number of steps
required until the distribution is close to uniform, starting from an arbitrary initial
state. We refer to this as the mizing time of the walk (see section 2 for a precise
definition).

The question of determining good bounds on the mixing time of this random walk
has been posed as an open problem in several places (e.g., [5, 12, 14, 17]) and is of
interest for two main reasons. First, despite the development over the past decade of
several powerful tools for analyzing the mixing time of combinatorial Markov chains,
which have led to a string of surprising results in the field (see, e.g., [12, 9, 14, 17]
for surveys), this natural and deceptively simple example remains a challenge to all
existing techniques. In particular, the mixing time is not known to be bounded by
any polynomial function of n. There is strong geometric intuition that it should
be: random walk on the entire cube {0,1}™ has a mixing time of only O(nlogn),
and truncation by a hyperplane presumably cannot create “bottlenecks” that would
severely slow down convergence. Nonetheless, the best known bound on the mixing
time remains exp(O(y/n(logn)®/2)) [5], which beats the trivial bound of exp(O(n))
but is still exponential.

The second reason for the interest in this random walk is its connection to ap-
proximate counting. Because the walk converges to the uniform distribution over {2,
it provides an algorithm for sampling (almost) uniformly at random from £2: just sim-
ulate the walk for sufficiently many steps, starting from an arbitrary vertex of Gy,
and output the final vertex. (This is often known as the “Markov chain Monte Carlo”
paradigm.) The running time of the algorithm will be essentially the mixing time
of the walk. Now by a well-known relationship based on self-reducibility, for most
natural combinatorial structures (including 0-1 knapsack solutions) the problems of
approximate counting and of sampling from an (almost) uniform distribution are
polynomial time reducible to one another [13, 12]. Therefore, a proof that the above
random walk has mixing time polynomial in n would immediately imply the existence
of a polynomial time approximation algorithm (actually a full polynomial random-
ized approximation scheme, or fpras [12]) for computing |£2|, the number of feasible
knapsack solutions. This problem is #P-complete in exact form, so an fpras is essen-
tially the best we can hope for. Again, following a string of approximate counting
algorithms for #P-complete problems in recent years (many of them based on the
Markov chain Monte Carlo technique), this problem remains one of the canonical
unresolved examples.

In this paper we prove that the above random walk is indeed rapidly mixing, with
a mixing time of O(n%2+¢) steps for any ¢ > 0. This immediately implies the existence
of the first fpras for counting 0-1 knapsack solutions.! Along the way we develop some
new machinery for bounding the mixing time of Markov chains which we believe will
be useful for tackling other examples of a similar flavor, and possibly beyond.

We also present a nontrivial extension of these results to the case of multiple
hyperplanes (more precisely, multiple constraints of the form a;-x < b; for nonnegative
vectors a;).? Here we are also able to prove a mixing time of O(n¢) (where ¢ is a

Very recently, and after the appearance of the conference version of this paper [16], Martin
Dyer gave an algorithm for random sampling and approximate counting of knapsack solutions with
running time only O(n?®) [4]. However, Dyer’s algorithm is based on dynamic programming and
gives no insight into the mixing time of the random walk.



RANDOM WALKS ON TRUNCATED CUBES 197

constant) for any fixed number of hyperplanes. The exponent ¢ depends on the
number d of hyperplanes, but this is inevitable as it is not hard to prove a lower
bound of %9 on the mixing time. Moreover, it is possible to encode NP-hard
problems if the number of hyperplanes is permitted to depend on n, so we would not
expect any polynomial time sampling algorithm for this case.

To prove rapid mixing we use a technique based on multicommodity flow (see [18]):
if we can route unit flow between each pair of vertices X,Y in Gy, simultaneously in
such a way that no edge carries too much flow, then the random walk is rapidly
mixing. This technique is well known, but most previous applications (e.g., [10, 11])
have made use of “degenerate” flows in which all X — Y flow is routed along a
single canonical path (though see [2, 18] for exceptions). Our analysis seems to rely
essentially on spreading out the flow along multiple paths.

The key ingredient in our analysis is the specification of these paths, which we
achieve via an auxiliary combinatorial construction that we believe is of independent
interest and will find further applications elsewhere.? Note that a shortest path be-
tween a pair of vertices X,Y of G, can be viewed as a permutation of the symmetric
difference X @Y, the set of items that must be added to or removed from the knap-
sack in passing from X to Y. A natural approach to defining a good flow is to use a
random permutation, so that the flow is spread evenly among all shortest paths and
no edge is overloaded. However, a fundamental problem with this approach is that a
random permutation will tend to violate the knapsack constraint, as too many items
will have been added at some intermediate point. Slightly less obviously, a symmetric
problem arises because a random permutation will tend to remove too many items
at some intermediate point, causing congestion among edges of the hypercube near
the origin. To avoid these problems, we want our permutations to remain “balanced”
in the sense that items are added and removed at approximately the correct rates
throughout the path; but we also want them to be “sufficiently random” to ensure a
well-spread flow. More specifically, it turns out that we require the distribution of the
initial segment {7 (1),...,7(k)}, viewed as an unordered set, to be “almost uniform.”
We call permutations with these properties balanced almost uniform permutations. A
main contribution of this paper is to show the existence of such permutations.

The remainder of the paper is structured as follows. We begin with some necessary
background on flows and rapid mixing in section 2. Then in section 3 we define the
notion of balanced almost uniform permutations and show how to construct them; this
section is independent of the random walk analysis and should be of wider interest.
We go on to use these balanced permutations to define a good flow for the knapsack
random walk in section 4. The extension to multiple constraints is handled in section 5;
this involves extending our construction of balanced almost uniform permutations in
a nontrivial way from scalar weights to vectors in arbitrary dimension, which is again
of independent interest. We conclude with the proofs of some technical lemmas in
section 6.

2. The mixing time and multicommodity flow. As indicated earlier, we will
view elements of {2 either as 0-1 vectors x = (z;)"_; or, more commonly, as subsets
X C{1,...,n}, under the equivalence X = {i: 2; = 1}. Recall that a(X) = >,y a;

2We mention in passing that all our results extend from the 0-1 case to more general cubes of the
form [0, ..., L]™. This extension is purely technical and does not require any substantial new ideas,
so we omit the details.

3Indeed, these ideas have already been used by Cryan et al. in the analysis of Markov chain
Monte Carlo algorithms for contingency tables [1].



198 BEN MORRIS AND ALISTAIR SINCLAIR

is the weight of X so that 2 = {X : a(X) < b}. Without loss of generality, we will
assume that a; < b for all 3.

We consider the symmetric random walk defined in the introduction on the por-
tion G of the hypercube {0,1}". This walk is connected (all states communicate
via the zero vector) and aperiodic (because of the holding probabilities), and since
the transition probabilities are symmetric, the distribution at time ¢ converges to the
uniform distribution over §2 as t — oo, regardless of the initial state. Our goal is to
bound the rate of convergence as measured by the mizing time, defined as

Tinix :rr)l(axmin {t:|P.—-U| <1},
0

where X is the initial state, P, is the distribution of the walk at time ¢, I/ is the
uniform distribution over 2, and || - || denotes variation distance.* Thus Tyix is the
number of steps required, starting from any initial state, to get the variation distance
from the uniform distribution down to i. By standard facts about geometric conver-
gence, O(Tix loge~1) steps suffice to reduce the variation distance to any desired e.

Fairly standard techniques (see [18]) allow us to estimate T,ix by setting up a
suitable multicommodity flow on the underlying graph Gy,. Our task is to route one
unit of flow from X to Y for each ordered pair of vertices X,Y € {2 simultaneously.
For any such flow f and any oriented edge e in Gy, let f(e) denote the total flow
along e; i.e., f(e) is the sum over all ordered pairs X,Y of the X — Y flow carried
by e. Define the congestion C(f) = |—!12|maxe f(e), ie., the maximum flow along
any edge normalized by |2, and the length L(f) to be the length of a longest flow-
carrying path. The following theorem® is a special case of results in [18], which in
turn generalize those in [3].

THEOREM 2.1. For any flow f on Ggq, the miving time is bounded by Tyix <
an(n+ 1)C(FL(S).

We will bound 7y by constructing a flow f with congestion C(f) = O(n?/2*¢) for
any e > 0, and length £(f) = O(n). By Theorem 2.1 this implies i = O(n/2F).

Remark. We note that our bound on the mixing time is only slightly larger
than the upper bound of O(n3) which one obtains by applying Theorem 2.1 to the
hypercube itself (without the hyperplane constraint); see, e.g., [19]. This is in turn
somewhat off from the true mixing time of O(nlogn). On the other hand, it is fairly
easy to obtain a lower bound of Q(n?/logn) for the mixing time of the truncated
cube; consider, for example, an instance in which logn items have weight 1, the other
n — logn items have weight n, and the knapsack capacity is b = n.

As explained in the introduction, our flow will be based on the idea of a balanced
almost uniform permutation. We devote the next section to this topic and then return
to the knapsack random walk in section 4.

3. Balanced almost uniform permutations. We begin by defining the no-
tions of “balanced” and “almost uniform” permutations. We will write S,;, to denote
the set of all permutations of {1,...,m}.

DEFINITION 3.1. Let {w;}", be a set of real (not necessarily positive) weights,
with M = max;<,, |w;| and W =3 w;, and let A > 1 be a nonnegative number. A

4For probability distributions u,v on §2, the variation distance is defined as ||y — v| =
1S eq (@) — v(@)] = maxsco |u(S) — v(S).

5This theorem applies to symmetric random walk on any connected subgraph of the hypercube
{0,1}™ in which transitions are made to each neighbor with probability i



RANDOM WALKS ON TRUNCATED CUBES 199

permutation ™ € S, is A-balanced if, for all k with 1 < k < m,

k
(3.1) min{W,0} — AM < Z Wr(;) < max{W,0} + AM.

i=1

Thus a balanced permutation is one whose partial sums do not fluctuate widely.
In particular, if ), w; = 0, then condition (3.1) becomes \Zle W) < AM.

DEFINITION 3.2. Let w be a random permutation in Sp,, and let A € R. We call
7w a A-uniform permutation if

(3.2) Pr[n{l,...,k} =U] < Ax (™)}

for every k with 1 < k < m and every U C {1,...,m} of cardinality k. (Here
m{l,...,k} denotes the initial segment {m(1),...,7(k)}.)

Note that, if 7 were a uniform random permutation, the probability in (3.2)
would be exactly (T,?)_1 for every U. In a A-uniform permutation the probabilities
are permitted to vary with U, but only by an amount specified by the parameter A.
In our applications, A will be a fixed polynomial function of m; in this case we call 7
an almost uniform permutation. The perhaps surprising result of this section is that,
for any set of weights {w;}, it is possible to construct an almost uniform permutation
that is guaranteed to be balanced.

3.1. The bounded ratio case. In this section, we prove that there are bal-
anced almost uniform permutations when the ratios of the weights are bounded by
a constant. In section 3.2 we will show how to dispense with any restrictions on the
weights.

LEMMA 3.3. Let {w;}", be an arbitrary set of weights with 1 < |w;| < B for a
constant B € [1,2]. Then there exists a 1-balanced permutation = on {w;} which is
p(m)-uniform, where p(m) = CmOB=D*+1/2 for o universal constant C.

Proof. Let M = max; |w;| and W = >, w;. Assume first that W = 0; we
will show how to discharge this assumption later. Let Iy = {i : w; > 0}, I, =
{i + w; <0}, my = ||, and me = |I2|. Define the means pu; = milziell w; and
Lo = —mi? ier, Wi Note that mqpu; = mousg since W = 0.

Consider an arbitrary permutation v € S,,. This induces permutations vy, vs on
I, I, respectively.® We call v a-good if, for every ki with 1 < k; < mq,

k1

Z Wy, (3) — k1

i=1

(3.3)

S a(M - 1)\/?7

where kf = min{k;, m; — k1 }, with an analogous definition for v5. We call v a-good
if both 17 and v are a-good. Thus in a good permutation, the partial sums of both
positive and negative weights are reasonably close to their expected values.

Now suppose v is chosen u.a.r. from S,,. A routine application of Hoeffding’s
bound to the partial sums (see Lemma 6.1 later) yields

(3.4) Pr[v is not a-good] < 2m exp(—2a?).

If we set @ = v/Inm, this probability is at most % < % for m > 4.

SFormally, we view v as a bijection from {1,...,m1} to I1, and similarly for vo. Throughout
we shall adopt this convention where appropriate, without comment.



200 BEN MORRIS AND ALISTAIR SINCLAIR

Consider now a modified sample space in which v is selected u.a.r. among all
vInm-good permutations. We shall write Pryyis for probabilities in the original uni-
form space to distinguish them from those in this modified space. By the above
calculation, for any event £ C S,,, we have

(3.5) Pr[€] < 2 Proni[€].

We are now in a position to construct our balanced almost uniform permutation.
Let v be chosen u.a.r. from all v/In m-good permutations, and let v, v, be the induced
permutations on I, I5. To get a balanced permutation 7, we interleave vy and vy as
follows. We take the first element from vy, i.e., set 7(1) = v4(1). Thereafter, for each
k > 1 in turn we set (k) to be the next element in vy if Zi:ll wr) > 0, and the
next element in vy otherwise. Since ), w; = 0, this process is well defined and yields
a permutation 7 € S,,. Moreover, since |w;| < M for all ¢, it is clear that 7 satisfies
the balance condition (3.1) with A = 1.

We now need to verify the uniformity condition (3.2) for A = p(m). Let U C
{1,...,m} be any subset of items with |U| = k and Pr[r{1,...,k} = U] > 0, and
define

Ui=UnNI, Us=UnNIs, k1=|U1|, k2=|U2|.
Then we have

PI‘[’]T{L...,]{?} = U} S Pr[l/l{l,...,kl} = U1 and VQ{L...,]CQ} = UQ]
S 2Prunif[”1{1, ceey kl} = U1 and 1/2{1, . ,kg} = U2]
2
(i) (i)
where the second inequality follows from (3.5).

Now some routine calculations involving Stirling’s formula (see Lemma 6.2 later)
allow us to relate () (72’;) to ("112) = ("W). Specifically, (3.6) becomes

(3.6) -

k1 k1+k2
Am!/? P4+ 1
3.7 Pr|m{l,... .k} =U] < — exp{ 2 (4.)}7
(3.7) [7{ }=U] @) S0 G T
where v = %, l = %, and A > 0 is a universal constant. The quantity [

measures the deviation of the numbers k1, ko of positive and negative elements in U
from the “expected” values ymy,ymeo, respectively. But since 7 is balanced, v is
good, and the element sizes do not vary too much, |I| cannot in fact be very large. To
formalize this intuition, note first that

ma

3.8 I = (koo — k ,
(3.8) (ko 1#1)M1m

since 2 = £ Now by the goodness condition (3.3) on v1, v, we have
ma

’<Z wl/1 (2) + Zwuz z)> kl,ul k2,u2)
< 2(M — )\/m,

wa (i) — (k1pn — ko)

=1



RANDOM WALKS ON TRUNCATED CUBES 201

where k* = min{k, m—k}. Since 7 is 1-balanced we also know that |Zf:1 Wi < M,
and therefore

|k1,u1 — k2M2| S Q(M, 1)\/k* lnm+M

Together with (3.8) and our assumption that M < B, this implies the following bound
on [[:

lI| < (Q(B —)Vk Inm + B) e

pam’
Plugging in this value for |I|, we see that the exponent in (3.7) is bounded above,
when |I| is sufficiently large, by

2 2
5(B— 1%k lnm—2_ ™ m

wim? k(m — k) myms
k*m 1

k(m — k) papiz

(3.9) <10(B - 1)*Inm,

=5(B—1)*Inm

since k(m — k) > kzm and p1, o > 1. Note also that if |I] is bounded, then so is the

exponent in (3.7), since
1 ( 1 1 > m?2 m m3
—_ | —+— ) = < <18,
YL =) \mi  ma k(m — k) mima = (m/2)(m/3)(m/3)

where we have used the fact that mq,mo > % which follows because B < 2 and
W =0.
Thus (3.7) becomes

(3.10) Pr(r{l,...,k} = U] < C(7) 'm10(B-D*+1/2

for a universal constant C, which verifies the uniformity condition (3.2) with A =
p(m) = Omlo(B-1)*+1/2

This concludes the proof of the theorem for the case W = >~ w; = 0. We can
extend the argument to general values of W using a simple trick. We will assume
W > 0; the case W < 0 is entirely symmetrical. We begin by padding the sequence of
weights with d = [W/M] values w41, . - ., Wmtq each of which (except possibly the
last) is —M, so that z:':{d w; = 0. Note that d < m. By the above argument for the
W = 0 case, we can construct a 1-balanced almost uniform permutation 7’ on this
padded sequence (though see the remark immediately following this proof). Let 7 be
the induced permutation on the weights {w;}}_;. We claim that 7 is also 1-balanced
and almost uniform.

To see that 7 is 1-balanced, note that

k k'

> weiy =D weay = —M  and
i=1 i=1
k/

k
wa(i) < Zwﬂ/(i) +W<M+W
i=1 i=1

for some k' > k, using the balance property of 7.



202 BEN MORRIS AND ALISTAIR SINCLAIR

To see that 7 is almost uniform, let us call the indices {1,...,m} true and the
remainder fake. Let U be an arbitrary subset of true indices of cardinality k. We
need to show that

-1

(3.11) Pr[m{l,....k} =U] < (%) “p(m).

Since 7 is induced by 7', this probability is bounded above by "4 Pr[€s], where for
S CA{l,...,m+d}, Es is the event that 7'{1,...,|S|} = S and the sum is over all
S of the form UUU’, where all elements of U’ are fake. Now by the almost uniformity
of 7/, this sum is at most

(3.12) p(m+d) Y Pri[Es],
S

where Prunir denotes probability under the uniform distribution on permutations in
Smtd. But the sum in (3.12) is just the expectation, under the uniform distribution,
of the random variable X = 3" X5, where X is the indicator random variable of &s.
Thus X counts the number of events £g that occur. We claim that

-1 d
3.13 E(X)= (" 14 ——-).
(313) 0= (1 )
This will complete the verification of condition (3.11), for replacing the sum in (3.12)
by E(X) gives

Prfr{l,....k} = U] < (7,3)1<1+ mcil>p(m+d)

< (7:)_120(2171)10(3_1)2“/2,

where the second inequality holds because d < m. Thus, if we incorporate into C' an
extra factor 2102=D*+3/2 e see that 7 is A-balanced for A = p(m) = Cm!0(B=1*+1/2,
as required.

To see the claim in (3.13), let & be the event that n{1,...,k} = U. Clearly

Prunie[€] = (7,?)717 and X = 0 unless £ occurs, so we have
my—1
(3.14) E(X)= (7))  EX|E).

Conditioning now on &, let r be the position in 7’ of the last element of U, so that
UCx'{l,...,r} and 7'(r) € U. Also, let s be the position of the next true element;
ie., 7'(s) is true and 7'(t) is fake for r < ¢t < s. (If no such element exists, let
s = m+d+1.) Then & holds for precisely those sets S = #'{1,...,t}, where
r < t < s. The number of such sets is just the number of fake elements that fall
between the true element at position r and the next true element (at position s),
plus one. The expectation of this quantity under the uniform distribution is plainly
1+ mi_H. Plugging this into (3.14), we get the value claimed in (3.13), which concludes
the proof that 7 is almost uniform. ]

Remark. We should point out that the padded sequence we introduced in the
second part of the above proof might contain one weight whose absolute value is
less than one. Thus it is not, in a strict sense, a special case of the earlier W = 0
case, where we assumed that all the weights had absolute values in the range [1, B].
However, as the reader may easily verify, the analysis leading up to (3.10) still holds
(with minor modifications) even when there is a single small weight.



RANDOM WALKS ON TRUNCATED CUBES 203

3.2. The general case. In this section we extend our construction of balanced
almost uniform permutations to handle arbitrary weights. The chief obstacle here
is that it is no longer true (as in the bounded ratio case) that each item of positive
weight can be balanced by a bounded number of items of negative weight. To overcome
this difficulty, we will need to group items into “intervals” so that each interval has
approximately the same (positive or negative) weight. We can then reduce to the
bounded ratio case.

The following theorem is a generalization of Lemma 3.3; it says that we can
construct a balanced almost uniform permutation for an arbitrary set of weights.
Moreover, we can bound the uniformity parameter A by a polynomial whose degree is
arbitrarily close to 1/2 at the cost of a modest increase in the balance parameter A.
This is almost the best that one can hope for; we encourage the reader to check by a
simple counting argument that, if we have m/2 weights of +1 and m/2 of —1, then
for any constants A, C, and p < 1/2, there can be no A-balanced C'mP-uniform
permutation if m is sufficiently large.

In order to achieve the tightest possible bound in our random walk analysis in
the next subsection, we shall actually prove a slightly stronger uniformity property
which can be obtained with no additional effort. Call 7 strongly A-uniform if

(315)  Pr[r{l,... k}=Uanda(k+1) =1 <Ax (% )

for every k with 1 < k < m, every U C {1,...,m} of cardinality k, and every
[ ¢ U. Note that the expression on the right-hand side of (3.15) is just A times the
probability of the given event if 7 were chosen uniformly at random. Plainly (3.15) is
a strengthening of (3.2) in Definition 3.2.

THEOREM 