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Abstract. A universalization of a parameterized investment strategy is an online algorithm
whose average daily performance approaches that of the strategy operating with the optimal param-
eters determined offline in hindsight. We present a general framework for universalizing investment
strategies and discuss conditions under which investment strategies are universalizable. We present
examples of common investment strategies that fit into our framework. The examples include both
trading strategies that decide positions in individual stocks, and portfolio strategies that allocate
wealth among multiple stocks. This work extends in a natural way Cover’s universal portfolio work.
We also discuss the runtime efficiency of universalization algorithms. While a straightforward im-
plementation of our algorithms runs in time exponential in the number of parameters, we show that
the efficient universal portfolio computation technique of Kalai and Vempala [Proceedings of the
41st Annual IEEE Symposium on Foundations of Computer Science, Redondo Beach, CA, 2000,
pp. 486–491] involving the sampling of log-concave functions can be generalized to other classes of
investment strategies, thus yielding provably good approximation algorithms in our framework.
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1. Introduction. An age-old question in finance deals with how to manage
money on the stock market to obtain an “acceptable” return on investment. An
investment strategy is an online algorithm that attempts to address this question
by applying a given set of rules to determine how to invest capital. Typically, an
investment strategy is parameterized by a vector w ∈ R

∗ =
⋃∞

i=1 R
i that dictates how

the strategy operates. The optimal parameters that maximize the strategy’s return
are unknown when the algorithm is run, and the parameters are usually chosen quite
arbitrarily. A universalization of an investment strategy is an online algorithm based
on the strategy whose average daily performance approaches that of the strategy
operating with the optimal parameters determined offline in hindsight.

Consider the constantly rebalanced portfolio (CRP) investment strategy univer-
salized by Cover [5] and the subject of several extensions and generalizations [3, 6, 11,
14, 16, 20]. The CRP strategy maintains a constant proportion of total wealth in each
stock, where the proportions are dictated by the parameters given to the strategy. In
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a stock market with m stocks, the parameter space for the CRP strategy is

Wm =

{
w ∈ [0, 1]m

∣∣ m∑
i=1

wi = 1

}
,

the set of vectors in R
m whose components are between 0 and 1 and add up to 1.

Given a portfolio vector w = (w1, . . . , wm) ∈ Wm, wi tells us the proportion of wealth
to invest in stock i for 1 ≤ i ≤ m. At the beginning of each day, the holdings are
rebalanced ; i.e., money is taken out of some stocks and put into others, so that the
desired proportions are maintained in each stock. As an example of the robustness of
the CRP strategy, consider the following market with two stocks [11, 16]. The price
of one stock remains constant, while the other stock doubles and halves in price on
alternate days. Investing in a single stock will at most double our money. With a
CRP ( 1

2 ,
1
2 ) strategy, however, our wealth will increase exponentially, by a factor of

( 1
2 · 1 + 1

2 · 2) × ( 1
2 · 1 + 1

2 · 1
2 ) = 3

2 × 3
4 = 9

8 every two days.
Cover developed an investment strategy that effectively distributes wealth uni-

formly over all portfolio vectors w ∈ Wm on the first day and executes the CRP
strategy with daily rebalancing according to each w on the (infinitesimally small)
proportion of wealth initially allocated to each w. Cover showed that the average
daily log-performance1 of such a strategy approaches that of the CRP strategy oper-
ating with the optimal return-maximizing parameters chosen with hindsight.

This paper generalizes previous results and introduces a framework that allows
universalizations of other parameterized investment strategies. As we see in section 2,
investment strategies typically fall under two categories: trading strategies operate
on a single stock and dictate when to buy and short2 the stock; portfolio strategies,
such as CRP, operate on the stock market as a whole and dictate how to allocate
wealth among multiple stocks. We present several examples of common trading and
portfolio strategies that can be universalized in our framework. We discuss our univer-
salization framework in section 3. The proofs of our results are very general, and, as
with previous universal portfolio results, we make no assumptions on the underlying
distribution of the stock prices; our results are applicable for all sequences of stock re-
turns and market conditions. The running times of universalization algorithms are, in
general, exponential in the number of parameters used by the underlying investment
strategy. Kalai and Vempala [14] presented an efficient implementation of the CRP
algorithm that runs in time polynomial in the number of parameters. In section 4, we
present general conditions on investment strategies under which the universalization
algorithm can be efficiently implemented. We also give some investment strategies
that satisfy these conditions. Section 5 concludes with directions for further research.

2. Types of investment strategies. Suppose we would like to distribute our
wealth among m stocks.3 Investment strategies are general classes of rules that dictate
how to invest capital. At time t > 0, a strategy S takes as input an environment vector
Et and a parameter vector w, and returns an investment description St(w) specifying
how to allocate our capital at time t. The environment vector Et contains historic

1The average daily log-performance is the average of the logarithms of the factors by which our
wealth changes on a daily basis. This notion is discussed further in section 3.1.

2A short position in a stock, discussed in section 2.1, allows us to earn a profit when the stock
declines in value.

3We use the term “stocks” in order to keep our terminology consistent with previous work, but
we actually mean a broader range of investment instruments, including both long and short positions
in stocks.
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market information, including stock price history, trading volumes, etc.; the parameter
vector w is independent of Et and specifies exactly how the strategy S should operate;
the investment description St(w) = (St1(w), . . . , Stm(w)) is a vector specifying the
proportion of wealth to put in each stock, where we put a fraction Sti(w) of our
holdings in stock i, for 1 ≤ i ≤ m. For example, CRP is an investment strategy;
coupled with a portfolio vector w, it tells us to “rebalance our portfolio on a daily
basis according to w”; its investment description, CRPt(w) = w, is independent of
the market environment Et.

There are two general types of investment strategies that we focus upon in this
paper. Trading strategies tell us whether we should take a long (bet that the stock
price will rise) or a short (bet that the stock price will fall) position on a given stock.
Portfolio strategies tell us how to distribute our wealth among various stocks. We
should note here that these two classes do not exhaust all investment strategies; there
exist strategies that take both long and short positions in several stocks (as in [21]).
Trading strategies are denoted by T , and portfolio strategies are denoted by P . We
use S to denote either kind of strategy. For k ≥ 2, let

Wk =

{
w = (w1, . . . , wk) ∈ [0, 1]k

∣∣ k∑
i=1

wi = 1

}
.(2.1)

Remark 1. Wk is a (k−1)-dimensional simplex in R
k. The investment strategies

that we describe below are parameterized by vectors in W�
k = Wk ×· · ·×Wk (� times)

for some k ≥ 2 and � ≥ 1. We may write w ∈ W�
k in the form w = (w1, . . . ,w�),

where wι = (wι1, . . . , wιk) for 1 ≤ ι ≤ �.

2.1. Trading strategies. Suppose that our market contains a single stock. We
have m = 2 potential investments: either a long position or a short position in the
stock. To take a long position, we buy shares in hopes that the share price will rise.
We close a long position by selling the shares. The money we use to buy the shares
is our investment in the long position; the value of the investment is the money we
get when we close the position. If we let pt denote the stock price at the beginning of
day t, the value of our investment will change by a factor of xt = pt+1

pt
from day t to

t + 1.
To take a short position, we borrow shares from our broker and sell them on the

market in hopes that the share price will fall. We close a short position by buying the
shares back and returning them to our broker. As collateral for the borrowed shares,
our broker has a margin requirement : a fraction α of the value of the borrowed shares
must be deposited in a margin account. Should the price of the security rise sufficiently,
the collateral in our margin account will not be enough, and the broker will issue a
margin call, requiring us to deposit more collateral. The margin requirement is our
investment in the short position; the value of the investment is the money we get
when we close the position.

Lemma 2.1. Let the margin requirement for a short position be α ∈ (0, 1]. Sup-
pose that a short position is opened on day t and that the price of the underlying stock
changes by a factor of xt = pt+1

pt
< 1 + α during the day. Then the value of our

investment in the short position changes by a factor of x′
t = 1 + 1−xt

α during the day.
Proof. Suppose that we have $v to deposit in the zero-interest margin account.

Using this as our investment in the short position, we can sell $v/α worth of shares.
Combining the proceeds of the stock sale with our margin account balance, we will
have a total of v + v/α dollars. At the end of the day, it will cost xtv/α dollars to
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buy the shares back, and we will be left with v + v
α − xt

v
α dollars, which is positive

since xt < 1 + α. Thus, our investment of $v in the short position has changed by a
factor of 1 + 1−xt

α , as claimed.
Should the price of the underlying stock change by a factor greater than 1 + α,

we will lose more money than we initially put in. We will assume that the margin
requirement α is sufficiently large that the daily price change of the stock is always
less than 1 + α.

Remark 2. This assumption can be eliminated by purchasing a call option on
the stock with some strike price p < (1 + α)pt. Should the stock price get too high,
the call allows us to purchase the stock back for $p. Though its price detracts from
the performance of our short trading strategy, the call protects us from potentially
unlimited losses due to rising stock price.

If a short position is held for several days, assume that it is rebalanced at the
beginning of each day: either part of the short is closed (if xt > 1) or additional
shares are shorted (if xt < 1) so that the collateral in the margin account is exactly
an α fraction of the value of the shorted shares. This ensures that the value of a
short position changes by a factor x′

t = 1 + 1−xt

α each day. Treating short positions
in this way, they can simply be viewed as any other stock, so trading strategies are
effectively investment strategies that decide between two potential investments: a long
or a short position in a given stock. The investment description of a trading strategy
T is Tt = (Tt1, Tt2), where Tt1 and Tt2 are the fractions of wealth to put in a long and
short position, respectively.

Remark 3. Let D = Tt1 − Tt2/α be the net long position of the investment
description. In practice, if D > 0, investors should put a D fraction of their money
in the long position and a 1 − D fraction in cash; if D < 0, investors should invest
D in the short position and 1 − D in cash; if D = 0, investors should avoid the
stock completely and keep all their money in cash. From a practical standpoint, it is
desirable for the trading strategy to be decisive, i.e., |D| = 1, so that our allocation
of money to the stock is always fully invested in the stock (either as a long or a short
position). We show in section 3 that investment strategies that are continuous in
their parameter spaces are universalizable. Though decisive trading strategies T are
discontinuous, they can be approximated by continuous strategies whose investment
descriptions converge almost everywhere to Tt as t → ∞ (see, for example, (2.3)
below).

We now describe some commonly used and researched trading strategies [4, 10,
18, 22] and show how they can be parameterized.

MA[k]: Moving average cross-over with k-day memory. In traditional applica-
tions [10] of this rule, we compare the current stock price with the moving average
over, say, the previous 200 days: if the price is above the moving average, we take a
long position; otherwise we take a short position. Some generalizations of this rule
have been made, where we compare a fast moving average (over, for example, the
past 5 to 20 days) with a slow moving average (over the past 50 to 200 days). We
generalize this rule further. Given day t ≥ 0, let vt = (vt1, . . . , vtk) be the price-
history vector over the previous k days, where vtj is the stock price on day t − j.
Assume that the stock prices have been normalized such that 0 < vtj ≤ 1. Let
(wF ,wS) ∈ W2

k (where Wk is defined in (2.1)) be the weights used to compute the
fast moving and slow moving averages, so that these averages on day t are given by
wF ·vt and wS ·vt, respectively. Since the prices have been normalized to the interval
(0, 1], −1 ≤ (wF − wS) · vt ≤ 1, let g : [−1, 1] → [0, 1] be the long/short allocation
function. The idea is that g((wF −wS) ·vt) represents the proportion of wealth that
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we invest in a long position. The full investment description for the MA = MA[k]
trading strategy is

MAt(wF ,wS) =
(
g((wF − wS) · vt), 1 − g((wF − wS) · vt)

)
.

Note that the dimension of the parameter space for MA[k] is 2(k−1) since each of wF

and wS are taken from (k − 1)-dimensional spaces. Possible functions for g include

gs(x) =

{
0 if x < 0,

1 otherwise,
(step function)(2.2)

g(t)(x) =

⎧⎪⎨
⎪⎩

0 if x < − 1
t ,

t
2 (x + 1

t ) if − 1
t ≤ x ≤ 1

t ,

1 if 1
t < x,

(linear step approximation)(2.3)

and the line

g�(x) =
x + 1

2
(2.4)

that intersects gs(x) at the extreme points x = ±1 of its domain. Note that g(t)(x)
is parameterized by the day t during which it is called and that it converges to gs(x)
on [−1, 1] \ {0} as t increases.

Remark 4. The long/short allocation function used in traditional applications of
this rule is the step function gs(·). As we see in section 3, in order for an investment
strategy to be universalizable, its allocation function must be continuous, necessitating
the continuous approximation g(t)(·). The linear approximation g�(·) can be used
with the results of section 4, to allow for efficient computation of the universalization
algorithm.

SR[k]: Support and resistance breakout with k-day memory. Discussed as early
as the work of Wyckoff [22] in 1910, this strategy uses the idea that the stock price
trades in a range bounded by support and resistance levels. Should the price fall
below the support level, the idea is that it will continue to fall, and a short position
should be taken in the stock. Similarly, should the price rise above the resistance
level, the idea is that it will continue to rise, and a long position should be taken in
the stock. If the stock price remains between the support and resistance levels, the
idea is that it will continue to trade in this range in an unpredictable pattern, and the
stock should be avoided. Support and resistance levels are defined quite arbitrarily in
practice, usually as the minimum and maximum prices over the past k days, where
k is usually taken to be 50, 150, or 200 [4]. To generalize this rule, given day t ≥ 0,
let vt = (vt1, . . . , vtk) and vt = (vt1, . . . , vtk) be the minimum and maximum price
histories, where vtj and vtj are the minimum and maximum prices over the previous
j days, normalized so that they are in the range (0, 1]. Let w ∈ Wk be the weights for
computing the support and resistance levels, so that these levels on day t are given
by st = w · vt and rt = w · vt, respectively.

Lemma 2.2. The support level is bounded above by the resistance level: st ≤ rt.
Proof. This follows from the fact that for all 1 ≤ j ≤ k, vtj ≤ vtj .

The long/short allocation function will be denoted by h : {(x, y) ∈ [−1, 1]2 |x ≤
y} → [0, 1]. Let pt be the current stock price (normalized to (0, 1] along with vt and
vt). The idea is that h(pt − rt, pt − st) tells us the proportion of wealth that we



6 KARHAN AKCOGLU, PETROS DRINEAS, AND MING-YANG KAO

invest in a long position. The full investment description for the SR = SR[k] trading
strategy is

SRt(w) =
(
h(pt − rt, pt − st), 1 − h(pt − rt, pt − st)

)
.

The value of h need only be defined on {(x, y) ∈ [−1, 1]2 |x ≤ y} since, by Lemma 2.2,
st ≤ rt. A possible function for h is

hs(x, y) =

⎧⎪⎨
⎪⎩

0 if x ≤ y ≤ 0,
1

α+1 if x < 0 < y,

1 if y ≥ x ≥ 0,

(step function)(2.5)

where the investment allocation 1
α+1 long, 1 − 1

α+1 = α
α+1 short is equivalent to

having no position in the stock, since the return from such an allocation is xt

α+1 +(1+
1−xt

α ) α
α+1 = 1. Other possibilities include a continuous function

h(t)(x, y),(2.6)

which approximates hs(x, y) with maximum slope at most 1
t (defined similarly to

g(t)(x)), or the plane

hp(x, y) =
(x + 1)α

2(α + 1)
+

y + 1

2(α + 1)
(2.7)

that intersects hs(x, y) at the extreme points (x, y) = (−1,−1), (−1, 1), and (1, 1) of
its domain.

2.2. Portfolio strategies. Portfolio strategies are investment strategies that
distribute wealth among m stocks. The investment description of a portfolio strategy
P is Pt = (Pt1, . . . , Ptm), where 0 ≤ Pti ≤ 1 and

∑m
i=1 Pti = 1. We put a fraction Pti

of our wealth in stock i at time t.
CRP: Constantly rebalanced portfolio [5]. The parameter space for the CRP

strategy is W = Wm. The investment description is CRPt(w) = w: at the beginning
of each day, we invest a wi proportion of our wealth in stock i.

CRP-S: Constantly rebalanced portfolio with side information. Cover and Or-
dentlich [6] consider a generalization of CRP. Rather than rebalancing our hold-
ings according to a single portfolio vector w ∈ Wm every day, we have k vectors
w1, . . . ,wk ∈ Wm and a side information state yt ∈ {1, . . . , k} that classifies each
day t into one of k possible categories; on day t we rebalance our holdings accord-
ing to wyt . By partitioning the time interval into k subsequences corresponding
to each of the k side information states and running k instances of the univer-
salization algorithm (one instance for each state), Cover and Ordentlich show that
the average daily return approaches that of the underlying strategy operating with
k optimal parameters, w∗

1, . . . ,w
∗
k ∈ Wm, where w∗

j is used on days t when the
side information state is yt = j. We generalize this further by allowing portions
of our wealth to be rebalanced according to several of the wj every day. Sup-
pose that the side information is encapsulated in some vector v ∈ R

� for some �.
This vector can contain information about specific stocks, such as historic perfor-
mance and company fundamentals, or macroeconomic indicators such as inflation
and unemployment. Let f = (f1, . . . , fk) : R

� → [0, 1]k be some function satisfying
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∑k
j=1 fj(v) = 1 for all v ∈ R

�. The parameter space is Wk
m; the investment descrip-

tion is CRP-St(w1, . . . ,wk) =
∑k

j=1 fj(vt)wj , where vt is the indicator vector for
day t. Under such a scheme, we have the flexibility of splitting our wealth among
multiple sets of portfolios w1, . . . ,wk on any given day, rather than being forced to
choose a single one. For example, assume that v is a k-dimensional vector, with each
vi corresponding to portfolio wi. Define f : R

k → [0, 1]k by fi(vt) = vti∑k
ι=1 vtι

, so that

our allocation is biased towards portfolios corresponding to higher indicators while
still maintaining a position in the others.

IA[k]: k-way indicator aggregation. For each day t ≥ 0, suppose that each stock i
has a set of k indicators vti = (vti1, . . . , vtik), where each vtij ∈ (0, 1] and, for 1 ≤ j ≤
k, vt1j , . . . , vtmj have been normalized such that there is at least one i such that vtij =
1. Examples of possible indicators include historic stock performance and trading
volumes, and company fundamentals. Our goal is to aggregate the indicators for each
stock to get a measure of the stock’s attractiveness and put a greater proportion of our
wealth in stocks that are more attractive. We will aggregate the indicators by taking
their weighted average, where the weights will be determined by the parameters. The
parameter space is W = Wk, and the investment description is

IAt(w) =

(
w · vt1∑m
i=1 w · vti

, . . . ,
w · vtm∑m
i=1 w · vti

)
.

3. Universalization of investment strategies.

3.1. Universalization defined. In a typical stock market, wealth grows geo-
metrically. On day t ≥ 0, let xt be the return vector for day t, the vector of factors
by which stock prices change on day t. The return vector corresponding to a trading
strategy on a single stock is (xt, 1 + 1−xt

α ), where xt is the factor by which the price

of the stock changes and 1 + 1−xt

α is the factor by which our investment in a short
position changes, as described in Lemma 2.1; the return vector corresponding to a
portfolio strategy is (xt1, . . . , xtm), where xti is the factor by which the price of stock
i changes, where 1 ≤ i ≤ m. Henceforth, we do not make a distinction between
return vectors corresponding to trading and portfolio strategies; we assume that xt

is appropriately defined to correspond to the investment strategy in question. For an
investment strategy S with parameter vector w, the return of S(w) during the tth
day—the factor by which our wealth changes on the tth day when invested according
to S(w)—is St(w) · xt =

∑m
i=1 Sti(w) · xti. (Recall that St(w) is the investment

description of S(w) for day t, which is a vector specifying the proportion of wealth to

put in each stock.) Given time n > 0, let Rn(S(w)) =
∏n−1

t=0 St(w) · xt be the cumu-
lative return of S(w) up to time n; we may write Rn(w) in place of Rn(S(w)) if S
is obvious from context. We analyze the performance of S in terms of the normalized
log-return Ln(w) = Ln(S(w)) = 1

n logRn(w) of the wealth achieved.

For investment strategy S, let w∗
n = arg maxw∈R∗ Rn(S(w)) be the parameters

that maximize the return of S up to day n.4 An investment strategy U universalizes
(or is universal for) S if5

Ln(U) = Ln(S(w∗
n)) − o(1)

4As mentioned above, w∗
n can be computed only with hindsight.

5Unlike previously discussed investment strategies, the behavior of U is fully defined without an
additional parameter vector w.
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for all environment vectors En. That is, U is universal for S if the average daily
log-return of U approaches the optimal average daily log-return of S as the length n
of the time horizon grows, regardless of stock price sequences.

3.2. General techniques for universalization. Given an investment strat-
egy S, let W be the parameter space for S and let µ be the uniform measure over
W. Our universalization algorithm for S, U(S), is a generalization of Cover’s original
result [5]; we note that a similar algorithm appeared in [20] under the name “Aggre-
gating Algorithm.” The investment description Ut(S) for the universalization of S on
day t > 0 is a weighted average of St(w) over w ∈ W, with greater weight given to
parameters w that have performed better in the past (i.e., Rt(w) is larger). Formally,
the investment description is

Ut(S) =

∫
W
St(w)Rt(w)dµ(w)∫
W
Rt(w)dµ(w)

=

∫
W
St(w)Rt(S(w))dµ(w)∫
W
Rt(S(w))dµ(w)

,(3.1)

where we take R0(w) = 1 for all w ∈ W.6 Equivalently, the above integral might
be interpreted as “splitting our money” equally among all the different strategies and
“letting it sit.” In the following lemma, we will prove that this strategy has the same
expected gain as picking one strategy at random.

Remark 5. The definition of universalization can be expanded to include mea-
sures other than µ, but we consider only µ in our results.

Lemma 3.1 (see [3, 6]). The cumulative n-day return of U(S) is

Rn(U(S)) =

∫
W

Rn(w)dµ(w) = E
(
Rn(w)

)
,

which is the µ-weighted average of the cumulative returns of the investment strategies
{S(w) |w ∈ W}.

Proof. The return of U(S) on day t is Ut(S) ·xt, where xt is the return vector for
day t. The cumulative n-day return of U(S) is

Rn(U(S)) =

n−1∏
t=0

Ut(S) · xt =

n−1∏
t=0

∫
W
St(w)Rt(w)dµ(w)∫
W
Rt(w)dµ(w)

· xt

=

n−1∏
t=0

∫
W

(St(w) · xt)Rt(w)dµ(w)∫
W
Rt(w)dµ(w)

=
n−1∏
t=0

∫
W
Rt+1(w)dµ(w)∫

W
Rt(w)dµ(w)

.

The result follows from the fact that this product telescopes.
Rather than directly universalizing a given investment strategy S, we instead

focus on a modified version of S that puts a nonzero fraction of wealth into each of
the m stocks. Define the investment strategy S̄ by

S̄t(w) =

(
1 − ε

2(t + 1)2

)
St(w) +

ε

2m(t + 1)2

for t ≥ 0 and some fixed 0 < ε < 1. Rather than universalizing S, we instead
universalize S̄. Lemma 3.2 tells us that we do not lose much by doing this.

Lemma 3.2. For all n ≥ 0, (1) Rn(U(S̄)) ≥ (1−ε)Rn(U(S)) and (2) Ln(U(S̄)) =

Ln(U(S))− o(n)
n . (3) If U(S) is a universalization of S, then U(S̄) is a universalization

of S as well.

6Cover’s algorithm is a special case of this, replacing St(w) with w.
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Proof. Statements (2) and (3) follow directly from (1). Statement (1) follows from

the fact that for all w ∈ W, Rn(S̄(w)) =
∏n−1

t=0 S̄t(w) ·xt ≥
∏n−1

t=0 (1− ε
2(t+1)2 )St(w) ·

xt ≥ (1 −
∑n−1

t=0
ε

2(t+1)2 )Rn(S(w)) ≥ (1 − ε)Rn(S(w)).

Remark 6. Henceforth, we assume that suitable modifications have been made
to S to ensure that Sti(w) ≥ ε

2m(t+1)2 for all 1 ≤ i ≤ m and t ≥ 0.

Theorem 3.3. Given an investment strategy S, let W = W�
k (for some k ≥ 2

and � ≥ 1) be its parameter space. For 1 ≤ i ≤ m, 1 ≤ ι ≤ �, and 1 ≤ j ≤ k, assume

that there is a constant c such that
∣∣∣∂Sti(w)

∂wιj

∣∣∣ ≤ c(t+ 1) for all w ∈ W. Then U(S) is

a universalization of S.
To prove Theorem 3.3, we first prove some preliminary results; the proof follows

the same general strategy as in [5, 6].
Lemma 3.4. For nonnegative vector a and strictly positive vectors b and x,

min
i

ai
bi

≤ a · x
b · x ≤ max

i

ai
bi
.

Proof. Assume that the components of a and b are strictly positive. Otherwise,
the lemma holds trivially. Let imax = arg maxi

ai

bi
and imin = arg mini

ai

bi
, so that

ai
bi

≤ aimax

bimax

⇔ ai
aimax

≤ bi
bimax

and
ai
bi

≥ aimin

bimin

⇔ ai
aimin

≥ bi
bimin

.

Then

aimin
(ximin

+
∑

i �=imin

ai

aimin
xi)

bimin
(ximin

+
∑

i �=imin

bi
bimin

xi)
=

a · x
b · x =

aimax(ximax
+
∑

i �=imax

ai

aimax
xi)

bimax
(ximax

+
∑

i �=imax

bi
bimax

xi)
.

Therefore,

aimin

bimin

≤ a · x
b · x ≤ aimax

bimax

.

Our next two results are related to the (k−1)-dimensional volumes of some subsets
of R

k.
Lemma 3.5. The (k − 1)-dimensional volume of the simplex Wk = {w ∈

[0, 1]k |
∑k

i=1 wi = 1}, defined in (2.1), is
√
k

(k−1)! .

Proof. By induction on k, it can be shown that the k-dimensional volume of the

solid Wk(s) = {w |
∑k

i=1 wi ≤ s} is sk

k! . Written in terms of the length r of the line

segment passing between the origin and ( s
k , . . . ,

s
k ) ∈ R

k, the volume is 1
k!r

kk
k
2 since

s = r
√
k. Upon differentiation with respect to r, 1

(k−1)!r
k−1k

k
2 = 1

(k−1)!

√
ksk−1, we

arrive at the (k − 1)-dimensional volume of the simplex Wk(s) = {w |
∑k

i=1 wi = s}.
Setting s = 1 yields the desired result.

Lemma 3.6. The (k − 1)-dimensional volume of a (k − 1)-dimensional ball of

radius ρ embedded in Wk is π
k−1
2 ρk−1

Γ( k−1
2 +1)

, where

Γ(�) = (�− 1)! and Γ

(
� +

1

2

)
=

(
�− 1

2

)(
�− 3

2

)
· · ·

(
1

2

)√
π.

Proof. This result is proven in Folland [8, Corollary 2.56].
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Proof of Theorem 3.3. From Lemma 3.1, the return of U(S) is the average of
the cumulative returns of the investment strategies {S(w) |w ∈ W}. Let w∗ =
arg maxw∈W Rn(S(w)) be the parameters that maximize the return of S. We show
that there is a set B of nonzero volume around w∗ such that for w ∈ B the return
Rn(w) is close to the optimal return Rn(w∗). We then show that the contribution
of B to the average return is sufficiently large to ensure universalizability. We begin
by bounding the magnitude of the gradient vector ∇Rn(w). From Remark 6 and our
assumption in the statement of the theorem, for all w, t, i, ι, and j,∣∣∣∂Sti(w)

∂wιj

∣∣∣
Sti(w)

≤ c′m(t + 1)3,

where c′ = 2c
ε . Using this fact and Lemma 3.4, the partial derivative of the return

function Rn(w) = Rn(S(w)) =
∏n−1

t=0 rt(S(w)) with respect to parameter wιj is

∣∣∣∣∂Rn(w)

∂wιj

∣∣∣∣ ≤ Rn(w)

n−1∑
t=0

∣∣∣∂(St(w)·xt)
∂wιj

∣∣∣
St(w) · xt

≤ Rn(w)

n−1∑
t=0

∑m
i=1

∣∣∣∂Sti(w)
∂wιj

∣∣∣ · xti∑m
i=1 Sti(w) · xti

≤ Rn(w)

n−1∑
t=0

c′m(t + 1)3 ≤ c′Rn(w)mn4

and

|∇Rn(w)| ≤ c′Rn(w)mn4
√
k�.(3.2)

We would like to take our set B to be some d-dimensional ball around w∗; unfor-
tunately, if w∗ is on (or close to) an edge of W, the reasoning introduced at the
beginning of this proof is not valid. We instead perturb w∗ to a point w̃ that is at
least

ρ =
γ

c′mn4k2�

away from all edges, where 0 < γ < 1 is a constant, and such that Rn(w̃) is close
to Rn(w∗). To illustrate the perturbation, let w∗ = (w∗

1, . . . ,w
∗
� ), where w∗

ι =

(w∗
ι1, . . . , w

∗
ιk) and w∗

ιk = 1 −
∑k−1

i=1 w∗
ιi for 1 ≤ ι ≤ �. We perturb each w∗

ι in the
same way. Let w̃0

ι = w∗
ι . For 1 ≤ j ≤ k, given w̃j−1

ι , define w̃j
ι as follows. Let

jmax be the index of the maximum coordinate of w̃j−1
ι . If 0 ≤ w̃j

ιj < ρ, define

w̃j
ιj = w̃j−1

ιj + ρ, w̃j
ιjmax

= w̃j−1
ιjmax

− ρ and leave all other coordinates unchanged.

Otherwise, let w̃j
j0

= w̃j−1
j0

. The final perturbation is w̃ = (w̃1, . . . , w̃�), where

w̃ι = w̃k
ι . By construction, w̃ ∈ W, w̃ is at least ρ away from the edges of W and

|w∗
ιj − w̃ιj | ≤ kρ for all ι and j. We bound Rn(w∗)

Rn(w̃) by the multivariate mean value

theorem and the Cauchy–Schwarz inequality:

Rn(w̃) = Rn(w∗) + Rn(w̃) −Rn(w∗)

≥ Rn(w∗) − |∇Rn(w′) · (w̃ − w∗)| (for some w′ between w̃ and w∗)

≥ Rn(w∗) − |∇Rn(w′)| · |w̃ − w∗| ≥ Rn(w∗) − c′Rn(w′)mn4
√
k� · kρ

√
k�

≥ Rn(w∗) − c′Rn(w∗)mn4
√
k� · kρ

√
k� ≥ Rn(w∗)(1 − γ).
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For 0 ≤ ι ≤ � let Cι = {wι ∈ R
k | |w̃ι − wι| ≤ ρ}. From the construction of w̃,

Bι = Cι∩Wk is a (k−1)-dimensional ball of radius ρ. Let w̃∗
ι = arg maxw∈Bι Rn(w),

and let w̃∗ = (w̃∗
1, . . . , w̃

∗
� ) be the profit-maximizing parameters in B = B1×· · ·×B�.

For w ∈ B,

Rn(w) = Rn(w̃∗) + Rn(w) −Rn(w̃∗)

≥ Rn(w̃∗) − |∇Rn(w′)| · |w̃∗ − w| (for some w′ between w̃∗ and w)

≥ Rn(w̃∗) − c′Rn(w̃∗)mn4
√
k� · 2ρ

√
� ≥ Rn(w̃∗)(1 − γ)

≥ Rn(w∗)(1 − 2γ).

By Lemma 3.1,

Rn(U(S)) =

∫
W

Rn(S(w))dµ(w) ≥
∫
B

Rn(w)dµ(w) ≥ (1 − 2γ)Rn(w∗)

∫
B

dµ(w)

≥ (1 − 2γ)Rn(w∗)

∫
B
dw∫

W
dw

= (1 − 2γ)Rn(w∗)

(
π

k−1
2 ρk−1

Γ(k−1
2 + 1)

· (k − 1)!√
k

)�

(from Lemmas 3.5 and 3.6)

= Rn(w∗)Λ(γ,m, k, �)n−4k�,

where Λ is some constant depending on γ, m, k, and �. Therefore,

Ln(w∗) − Ln(U(S)) ≤ log Λ(γ,m, k, �)

n
+ 4k�

log n

n
=

o(n)

n
,(3.3)

as claimed.
Remark 7. The techniques used in the proof of Theorem 3.3 can be generalized to

other investment strategies with bounded parameter spaces W that are not necessarily
of the form W�

k.

3.3. Increasing the number of parameters with time. The reader may
notice from the proof of Theorem 3.3 that an investment strategy S may be uni-
versalizable even if the dimensions of its parameter space W grow with time. In
fact, even if the dimension of the parameter space (the coefficient of log n

n in (3.3))
is O( n

φ(n) log n ), where φ(n) is a monotone increasing function, the strategy is still

universalizable. This introduces an interesting possibility for investment strategies
whose parameter spaces grow with time as more information becomes available. As a
simple example, consider dynamic universalization, which allows us to track a higher-
return benchmark than basic universalization. Partition the time interval I = [0, n)
into ψ = O( n

φ(n) log n ) subintervals I1, . . . , Iψ, and let w∗
Ij

be the parameters that

optimize the return during Ij . In I1, we run the universalization algorithm given by
(3.1) over the basic parameter space W of S. In I2, we run the algorithm over W×W;
to compute the investment description for a day t ∈ I2 using (3.1), we compute the
return Rt(w1,w2) as the product of the returns we would have earned in I1 using w1

and what we would have earned up to day t in I2 using w2. We proceed similarly in
intervals I3 through Iψ. This will allow us to track the strategy that uses the optimal
parameters w∗

Ij
corresponding to each Ij . Such a strategy is useful in environments

where optimal investment styles (and the optimal investment strategy parameters
that go with them) change with time. Finally, we note that similar ideas appear in
the area of “tracking the best expert” in the theory of prediction with expert advice;
we refer the reader to [12, 19] for more details.
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3.4. Applications to trading strategies. By proving an upper bound on∣∣∂Tti(w)
∂wj

∣∣ for our trading strategies T , we show that they are universalizable.

Corollary 3.7. The moving average cross-over trading strategy, MA[k], is
universalizable for the long/short allocation functions g(t)(x) and g�(x) defined in
(2.3) and (2.4), respectively.

Proof. The parameters for MA[k] are of the form wF = (wF1, . . . , wF (k−1), 1 −
wF1 − · · · − wF (k−1)) and wS = (wS1, . . . , wS(k−1), 1 − wS1 − · · · − wS(k−1)). Using
the long/short allocation function g(t)(x) defined in (2.3), the partial derivative of the
investment description with respect to a parameter wFj (or similarly wSj) is∣∣∣∣∂MAti(wF ,wS)

∂wFj

∣∣∣∣ =

∣∣∣∣∂g((wF − wS) · vt)

∂wFj

∣∣∣∣ ≤ t

2
· (vtj − vtk) ≤

t

2
,

where 1 ≤ j < k and i ∈ {1, 2}. Similarly, we can show that using the long/short

allocation function g�(x) defined in (2.4),
∣∣∂MAti(wF ,wS)

∂wFj

∣∣ ≤ 1
2 .

Corollary 3.8. The support and resistance breakout trading strategy, SR[k], is
universalizable for the long/short allocation functions h(t)(x, y) and hp(x, y) defined
in (2.6) and (2.7), respectively.

Proof. We arrive at the result by differentiating the long/short allocation functions
h(t)(x, y) and hp(x, y) with respect to an arbitrary parameter wj and showing that
the partial derivative is O(t), as in the proof of Corollary 3.7.

3.5. Applications to portfolio strategies.

Corollary 3.9. The constantly rebalanced portfolio, CRP, and CRP with side
information, CRP-S, portfolio strategies are universalizable.

Proof. The partial derivatives of CRPti and CRP-Sti with respect to an arbitrary
parameter wj are at most 1.

Corollary 3.10. The k-way indicator aggregation portfolio strategy, IA[k], is
universalizable.

Proof. First, we show that
∑m

�=1 w · vt� ≥ 1
k for all t. Since

∑k
j=1 wj = 1, there

exists j0 such that wj0 ≥ 1
k . Then

∑m
�=1 w ·vt� ≥

∑m
�=1 wj0 ·vt�j0 ≥ 1

k

∑m
�=1 vt�j0 ≥ 1

k ,
since the {vt�j0}1≤�≤m have been normalized such that there is at least one �0 such
that vt�0j0 = 1.

Now, let S = IA[k]. By Theorem 3.3, we need only show that ∂Sti(w)
∂wj

= O(t) for

1 ≤ j ≤ k − 1. For t ≥ 0 and 1 ≤ i ≤ m recall that Sti(w) = w·vti∑m
�=1 w·vt�

. Then, for

1 ≤ j ≤ k − 1, since w = (w1, . . . , wk−1, 1 − (w1 + · · · + wk−1)),

∂Sti(w)

∂wj
=

vtij − vtik∑m
�=1 w · vt�

− w · vti

(
∑m

�=1 w · vt�)2
·

m∑
�=1

(vt�j − vt�k)

≤ 1∑m
�=1 w · vt�

+
m

(
∑m

�=1 w · vt�)2
≤ k + mk2,

as we wanted to show.

4. Fast computation of universal investment strategies.

4.1. Approximation by sampling. The running time of the universalization
algorithm depends on the time needed to compute the integral in (3.1). A straightfor-
ward evaluation takes time exponential in the number of parameters. Following Kalai
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and Vempala [14], we propose to approximate this integral by sampling the param-
eters according to a biased distribution, giving greater weight to better performing
parameters. Define the measure ζt on W by

dζt(w) =
Rt(S(w))∫

W
Rt(S(w))dµ(w)

dµ(w).

Lemma 4.1 (see [14]). The investment description Ut(S) for universalization is
the average of St(w) with respect to the ζt measure.

Proof. The average of St(w) with respect to ζt is

Ew∈(W,ζt)(St(w)) =

∫
W

St(w)dζt(w)

=

∫
W

St(w)
Rt(S(w))∫

W
Rt(S(w))dµ(w)

dµ(w) = Ut(S),

where the final equality follows from (3.1).
We now briefly outline our approach, which follows the lines of [2, 14]. The main

technical complication is that sampling efficiently with respect to ζt is not, in general,
an easy problem. As a result, we will need some (rather generic) assumption on the
investment strategies from which we can sample efficiently.

• Investment strategies with log-concavity properties. In section 4.3, we use
straightforward manipulations to prove that any investment strategy S which
is linear in the vector of parameters w (such strategies include MA[k], SR[k],
CRP, and CRP-S) has a cumulative return function Rt(S(w)) that is log-
concave. Our efficient sampling techniques are applicable only on such strate-
gies.

• Approximating ζt by ζ̄t. In section 4.2, we show that for strategies whose
cumulative return function is log-concave, it is possible to efficiently sample
from a distribution ζ̄t that is “close” to ζt. This “distribution approximation”
incurs some small, bounded error (see Lemma 4.2).

• Approximating the integral for ζ̄t via sampling. With such sampling abilities,
it is easy to approximate the average of St(w) with respect to ζ̄t: simply pick
Nt (as defined in Lemma 4.3) sample parameter vectors w with respect to ζ̄t
and compute their average. The error incurred by this approximation of the
average can be bounded in a straightforward manner using Chernoff bounds.

• Sampling with respect to ζ̄t. The critical issue (addressed in section 4.2) is
how to pick vectors w ∈ W with respect to ζ̄t. In order to tackle this problem,
we “discretize” it by placing a grid on W, and then we perform a Metropolis
random walk. The convergence properties of this random walk are discussed
in Theorems 4.12 and 4.13.

In section 4.2, we show that for certain strategies we can efficiently sample from
a distribution ζ̄t that is “close” to ζt; i.e., given γt > 0, we generate samples from ζ̄t
such that ∫

W

∣∣ζt(w) − ζ̄t(w)
∣∣ dµ(w) ≤ γt.(4.1)

Assume for now that we can sample from ζ̄t, with γt = ε2

4m(t+1)4 , where ε is the

constant appearing in Remark 6. Let Ūt(S) =
∫

W
St(w)dζ̄t(w) be the corresponding
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approximation to U(S). Lemma 4.2 tells us that we do not lose much by sampling
from ζ̄t.

Lemma 4.2. For all n ≥ 0, (1) Rn(Ū(S)) ≥ (1− ε)Rn(U(S)) and (2) if U(S) is
a universalization of S, then Ū(S) is a universalization of S as well.

Proof. Statement (2) follows directly from (1). To see (1), we need only show
that the fraction of wealth that we put into each stock i on day t under Ū(S) is within
a 1 − ε

2(t+1)2 factor of the corresponding amount under U(S); i.e., Ūti(S) ≥ (1 −
ε

2(t+1)2 )Uti(S) for 0 ≤ t < n and 1 ≤ i ≤ m. For w ∈ W, let γt(w) = |ζ̄t(w) − ζt(w)|,
so that

∫
W
γt(w)dw = γt ≤ ε2

4m(t+1)4 . We have

Ūti(S) =

∫
W

Sti(w)ζ̄t(w)dµ(w) ≥
∫

W

Sti(w)(ζt(w) − γt(w))dµ(w)

= Uti(S) −
∫

W

Sti(w)γt(w)dµ(w) ≥ Uti(S) − γt (since Sti(w) ≤ 1)

≥
(

1 − ε

2(t + 1)2

)
Uti(S)(

since Uti(S) ≥ min
w

S(w) ≥ ε

2m(t + 1)2
and γt ≤ ε2

4m(t+1)4

)
,

as we wanted to show.

By sampling from ζ̄t, we use a generalization of the Chernoff bound to get an ap-
proximation Ũ(S) to Ū(S) such that with high probability Ũti(S) ≥ (1− ε

2(t+1)2 )Ūti(S)

for 0 ≤ t < n and 1 ≤ i ≤ m. Using an argument similar to that in the proof of
Lemma 4.2, we see that if Ū(S) is a universalization of S, then such a Ũ(S) is a univer-
salization of S as well. Choose w1, . . . ,wNt ∈ W at random according to distribution

ζ̄t, and let Ũti(S) = 1
Nt

∑Nt

i=1 Sti(wi). Lemma 4.3 discusses the number of samples Nt

required to get a sufficiently good approximation to Ūt(S).

Lemma 4.3. Given 0 < δ < 1, use Nt ≥ 8m2(t+1)8

ε4 log 2m(t+1)2

δ samples to

compute Ũt(S), where ε is the constant appearing in Remark 6. With probability
1 − δ, Ũti(S) ≥ (1 − ε

2(t+1)2 )Ūti(S) for all 1 ≤ i ≤ m and t ≥ 0.

Proof. Hoeffding [13] proves a general version of the Chernoff bound. For random

variables 0 ≤ Xi ≤ 1 with E(Xi) = µ and X̃ = 1
N

∑N
i=1 Xi, the bound states that

Pr(X̃ ≤ (1 − α)µ) ≤ e−2Nα2µ2

. In our case, we would like Ũti ≥ (1 − ε
2(t+1)2 )Ūti.

As this must hold for 1 ≤ i ≤ m and t ≥ 0 with total probability 1 − δ, we require
Pr(Ũti ≤ (1 − ε

2(t+1)2 )Ūti) ≤ δ
2m(t+1)2 for each i and t. From our assumption stated

in Remark 6, µ = Ūti ≥ ε
2m(t+1)2 , and the desired probability bound is achieved with

Nt ≥ 8m2(t+1)8

ε4 log 2m(t+1)2

δ samples.

4.2. Efficient sampling. We now discuss how to sample from W = W�
k =

Wk × · · · ×Wk according to distribution ζt(·) ∝ Rt(·) = Rt(S(·)). W is a convex set
of diameter d =

√
2�. We focus on a discretization of the sampling problem. Choose

an orthogonal coordinate system on each Wk, and partition it into hypercubes of side
length δt, where δt is a constant chosen below. Let Ω be the set of centers of cubes
that intersect W, and choose the partition such that the coordinates of w ∈ Ω are
multiples of δt. For w ∈ Ω, let C(w) be the cube with center w. We show how to
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choose w ∈ Ω with probability “close to”

πt(w) =
Rt(w)∑

w∈Ω Rt(w)
.

In particular, we sample from a distribution π̃t that satisfies

∑
w∈Ω

|πt(w) − π̃t(w)| ≤ γt =
ε2

4m(t + 1)4
.(4.2)

Note that this is a discretization of (4.1). We will also have that for each w ∈ Ω,

π̃t(w)

πt(w)
≤ 2.(4.3)

We would like to choose δt sufficiently small that Rt is “nearly constant” over C(w);
i.e., there is a small constant ν > 0 such that

(1 + ν)−1Rt(w) ≤ Rt(w
′) ≤ (1 + ν)Rt(w)(4.4)

for all w′ ∈ C(w). Such a δt can be chosen for investment strategies S that have
bounded derivative, as we see in Lemma 4.4.

Lemma 4.4. Suppose that investment strategy S satisfies the condition for uni-

versalizability given in Theorem 3.3; i.e.,
∣∣∂Sti(w)

∂wj

∣∣ ≤ c(t + 1). Given ν > 0, let

δt = δt(ν) = ν
3c′mt4k� , where c′ is defined in the proof of Theorem 3.3. For w,w′ ∈ W

such that |wij − w′
ij | ≤ δt(ν) for all 1 ≤ i ≤ � and 1 ≤ j ≤ k, (1 + ν)−1Rt(w) ≤

Rt(w
′) ≤ (1 + ν)Rt(w).

Proof. Note that |w−w′| ≤ δt
√
k�. Let w∗ be the parameters that maximize the

return on the line between w and w′. By the multivariate mean value theorem and
the bound for |∇Rt| given in (3.2),

Rt(w
∗) = Rt(w) + Rt(w

∗) −Rt(w)

≤ Rt(w) + |∇Rt(wm)| · |w − w∗| (for some wm between w∗ and w)

≤ Rt(w) + c′Rt(wm)mn4
√
k� · δt

√
k� ≤ Rt(w) + Rt(w

∗)
ν

3

⇒ Rt(w) ≥ Rt(w
∗)

(
1 − ν

3

)
≥ Rt(w

′)
(
1 − ν

3

)
so that Rt(w

′) ≤ (1 + ν)Rt(w). By similar reasoning,

Rt(w
′) = Rt(w

∗) + Rt(w
′) −Rt(w

∗)

≥ Rt(w
∗) − |∇Rt(wm)| · |w′ − w∗| (for some wm between w∗ and w′)

≥ Rt(w
∗)

(
1 − ν

3

)
≥ Rt(w)

(
1 − ν

3

)
≥ Rt(w)(1 + ν)−1,

completing the proof.
We use a Metropolis algorithm [15] to sample from π̃t. We generate a random

walk on Ω according to a Markov chain whose stationary distribution is πt. Begin by
selecting a point w0 ∈ Ω according to either π̃t−1 or π̃t−2;

7 Remark 8 explains how
to do this.

7Ideally, we would like to begin with a point selected according to π̃t−1, but, as discussed in
Remark 8, this is not always possible.
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Remark 8. We can select a point according to π̃t−1 by “saving” our sam-
ples that were generated at time t − 1. By Lemma 4.3, we would have generated

Nt−1 ≥ 8m2t8

ε4 log 2mt2

δ samples at time t − 1, which is not enough to generate the

Nt ≥ 8m2(t+1)8

ε4 log 2m(t+1)2

δ samples necessary at time t. Instead, we can “save”
samples that were generated at times t − 1 and t − 2. For sufficiently large t, Nt ≤
Nt−1 + Nt−2 and our initial point w0 would be picked according to either π̃t−1 or
π̃t−2. As we see in the proof of Lemma 4.10, this distinction is not important.

If wτ is the position of our random walk at time τ ≥ 0, we pick its position at
time τ + 1 as follows. Note that wτ has 2(k − 1)� neighbors, two along each axis in
the Cartesian product of � (k − 1)-dimensional spaces. Let w be a neighbor of wτ ,
selected uniformly at random. If w ∈ Ω, set

wτ+1 =

{
w with probability p = min(1, Rt(w)

Rt(wτ ) ),

wτ with probability 1 − p.

If w �∈ Ω, let wτ+1 = wτ . It is well known that the stationary distribution of this
random walk is πt. We must determine how many steps of the walk are necessary
before the distribution has gotten sufficiently close to stationary. Let pτ be the dis-
tribution attained after τ steps of the random walk. That is, pτ (w) is the probability
of being at w after τ steps.

Remark 9. A distinction should be made between t and τ . We use t to refer
to the time step in our universalization algorithm. We use τ to refer to “sub-” time
steps used in the Markov chain to sample from πt. When t is clear from context, we
may drop it from the subscripts in our notation.

Applegate and Kannan [2] show that if the desired distribution πt is proportional
to a log-concave function F (i.e., logF is concave), then the Markov chain is rapidly
mixing and reaches its steady state in polynomial time. Frieze and Kannan [9] give an
improved upper bound on the mixing time using logarithmic Sobolev inequalities [7].

Theorem 4.5 (Theorem 1 of [9]). Assume the diameter d of W satisfies d ≥
δt
√
k� and that the target distribution π is proportional to a log-concave function.

There is an absolute constant κ > 0 such that

2

(∑
w∈Ω

|π(w) − pτ (w)|
)2

≤ e−
κτδ2t
k�d2 log

1

π∗
+

Mπek�d
2

κδ2
t

,(4.5)

where π∗ = minw∈Ω π(w), M = maxw∈Ω
p0(w)
π(w) log p0(w)

π(w) , p0(·) is the initial distribu-

tion on Ω, πe =
∑

w∈Ωe
π(w), and Ωe = {w ∈ Ω |Vol(C(w) ∩ W) < Vol(C(w))}.

(The “e” in the subscripts of πe and Ωe stands for “edge.”)
In the random walk described above, if wτ is on an edge of Ω, so that it has many

neighbors outside Ω, the walk may get “stuck” at wτ for a long time, as seen in the
“πe” term of Theorem 4.5. We must ensure that the random walk has a low probability
of reaching such edge points. We do this by applying a “damping function” to Rt,
which becomes exponentially small near the edges of W. For 1 ≤ i ≤ �, 1 ≤ j ≤ k,
and w = (w1, . . . ,w�) = ((w11, . . . , w1k), . . . , (w�1, . . . , w�k)) ∈ W let

fij(w) = eΓ min(−σ+wij ,0),(4.6)

where σ > 0 and Γ > 2 are constants that we choose below, and let

Ft(w) = Rt(w)

�∏
i=1

k∏
j=1

fij(w).
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Lemma 4.6. Ft is log-concave if and only if Rt is log-concave.8

Proof. This follows from the fact that log-concave functions are closed under mul-
tiplication and the fact that log fij(w) = Γ min(−σ + wij , 0), which is concave.

Choose σ = 1
k δt(

γt

2 ), where δt(·) is defined in Lemma 4.4 and γt is defined in
(4.2). Let ζF ∝ Ft be the probability measure proportional to Ft. We need to show
that, for our purposes, sampling from ζF is not much different than sampling from ζt.
By Lemma 4.2, we can do this by showing that

∫
W
|ζt(w)− ζF (w)|dw ≤ γt, which we

do in Lemma 4.7.

Remark 10. Before continuing, we show how W can be scaled, which will be
useful in future proofs. Take p = ( 1

k , . . . ,
1
k ) ∈ Wk; given χ ∈ (−1, 1), let

w(χ) = (1 + χ)(w − p) + p,

and let

W(χ)
k = {w(χ) |w ∈ Wk}

be a scaled version of Wk about p, where the scaling factor is 1 + χ. To extend this

scaling to W = W�
k, given w = (w1, . . . ,w�) ∈ W, let w(χ) = (w

(χ)
1 , . . . ,w

(χ)
� ) and

W
(χ) = {w(χ) |w ∈ W}.

A fact we use is that for 1 ≤ i ≤ �, 1 ≤ j ≤ k, and w = (w1, . . . ,w�) ∈ W,

|w(χ)
ij − wij | =

∣∣∣∣(1 + χ)

(
wij −

1

k

)
+

1

k
− wij

∣∣∣∣ ≤ |χ|.

Lemma 4.7.

∫
W
|ζt(w) − ζF (w)|dw ≤ γt.

Proof. Let W
′ = W

(−kσ) be the “scaled-in” version of W, as defined in Remark 10.
By Lemma 4.4, since |wij − w′

ij | ≤ kσ = δt(
γt

2 ) for all i and j, Rt(w
′) ≥ 1

1+
γt
2
Rt(w)

and ∫
W′

Rt(w)dw ≥ 1

1 + γt

2

∫
W

Rt(w)dw.(4.7)

Let Weq = {w ∈ W |Ft(w) = Rt(w)} be the subset of W where Ft(·) and Rt(·)
are equal; W

′ ⊂ Weq since, by construction of w′, w′
ij ≥ σ for all i and j. Let

W+ = {w ∈ W | ζF (w) ≥ ζt(w)} be the subset of W where ζF (·) is at least ζt(·) and
let W− = W − W+. We bound∫

W

|ζF (w) − ζt(w)|dw =

∫
W+

(ζF (w) − ζt(w))dw +

∫
W−

(ζt(w) − ζF (w))dw

by bounding
∫

W−
(ζt − ζF ), which also gives a bound for

∫
W+

(ζF − ζt), since

∫
W+

(ζF − ζt) =

(
1 −

∫
W−

ζF

)
−
(

1 −
∫

W−

ζt

)
=

∫
W−

(ζt − ζF ).

8We characterize investment strategies for which Rt is log-concave in Theorem 4.14.
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Since Ft ≤ Rt,
∫

W
Ft ≤

∫
W
Rt and ζF (w) = Ft(w)∫

W
Ft

≥ Rt(w)∫
W
Rt

= ζt(w) for w ∈ Weq;

thus W
′ ⊂ Weq ⊂ W+ and W− ⊂ W − W

′. We have

∫
W−

(ζt(w) − ζF (w))dw ≤
∫

W−W′
ζt(w)dw =

∫
W−W′ Rt(w)dw∫

W
Rt(w)dw

= 1 −
∫

W′ Rt(w)dw∫
W
Rt(w)dw

≤ 1 − 1

1 + γt

2

≤ γt
2
,

where the second-to-last inequality follows from (4.7). This completes the proof.

Henceforth, we are concerned with sampling from W with probability proportional
to Ft(·). We use the Metropolis algorithm described above, replacing Rt(·) with Ft(·);
we must refine our grid spacing δt so that (4.4) is satisfied by Ft; let δ′t be the new
grid spacing.

Lemma 4.8. Suppose that the conditions of Lemma 4.4 are satisfied. Given
ν > 0, let δ′t(ν) = δ′t = ν

3Γc′mt4k� = δt(
ν
Γ ), where Γ appears in (4.6). For w,w′ ∈ W

such that |wij − w′
ij | ≤ δ′t(ν) for all 1 ≤ i ≤ � and 1 ≤ j ≤ k, (1 + ν)−1Ft(w) ≤

Ft(w
′) ≤ (1 + ν)Ft(w).

Proof. By Lemma 4.4, Rt(w) and Rt(w
′) differ by at most a factor of 1 + ν

Γ .

For each i and j, fij(w) and fij(w
′) differ by at most a factor of eΓδ′t(ν), and hence∏�

i=1

∏k
j=1 fij(w) and

∏�
i=1

∏k
j=1 fij(w

′) differ by at most a factor of ek�Γδ
′
t(ν) =

e
ν

3c′mt4 . Hence, for Γ ≥ 2 and sufficiently large t, Ft(w) and Ft(w
′) differ by at most

a factor of 1 + ν.

We are now ready to use Theorem 4.5 to select τ so that the resulting distribution
pτ satisfies (4.2) (Theorem 4.12) and (4.3) (Theorem 4.13), with pτ in place of π̃t and
Ft in place of Rt. We begin with some preliminary lemmas.

Lemma 4.9. There is a constant β > 0 such that log 1
π∗

≤ k�Γσ + k� log β
δ′t

+
t log 2mt2

ε , where ε is defined in Remark 6.

Proof. Take β such that the number of points in Ω is at most ( β
δ′t

)(k−1)·�. For

w1,w2 ∈ Ω, the ratio of single-day returns on day t′ using w1 and w2 is

St′(w1) · xt′

St′(w2) · xt′
≥ ε

2m(t′ + 1)2
,

by Remark 6 and Lemma 3.4. The ratio of the cumulative returns up to day t is

Rt(w1)

Rt(w2)
≥

( ε

2mt2

)t

,

and thus Rt(w)∑
w∈Ω Rt(w) ≥ (

δ′t
β )(k−1)�

(
ε

2mt2

)t
. Factoring in the maximum dampening

effect of the fij , π∗ ≥ e−k�Γσ(
δ′t
β )(k−1)�

(
ε

2mt2

)t
and log 1

π∗
≤ k�Γσ + k� log β

δ′t
+

t log 2mt2

ε .

Lemma 4.10. M ≤ 4
( 2m(t+1)2

ε

)2
log 2m(t+1)2

ε .

Proof. As stated in Remark 8, the initial distribution is either p0 = π̃t−1 or π̃t−2.

It turns out that the worst case happens when p0 = π̃t−2. For all w ∈ Ω, π̃t−2(w)
πt−2(w) ≤ 2

by (4.3) and the following:
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πt−2(w)

πt(w)
=

Ft−2(w)∑
w∈Ω Ft−2(w)

·
∑

w∈Ω Ft(w)

Ft(w)

≤ Ft−2(w)

Ft(w)
· Ft(w

′)

Ft−2(w′)

(
by Lemma 3.4, where w′ = arg max

w∈Ω

Ft(w)

Ft−2(w)

)

=
Rt−2(w)

Rt(w)
· Rt(w

′)

Rt−2(w′)
(since the {fij(·)}i,j remain constant with time)

=
(St(w

′) · xt)(St−1(w
′) · xt−1)

(St(w) · xt)(St−1(w) · xt−1)
≤

(
2m(t + 1)2

ε

)2

,

where the final inequality follows from the discussion in the proof of Lemma 4.9. This

proves the result since π̃t−2(w)
πt(w) = π̃t−2(w)

πt−2(w)

πt−2(w)

πt(w) .

Lemma 4.11. πe ≤ (1 + ν)4(1 + γt

2 )e−Γσ, where ν appears in the definition of δ′t
in Lemma 4.8, γt appears in (4.2), and Γ and σ appear in (4.6).

Proof. Extend our δ′t-hypercube partition of W to the hyperplane containing W,
and let Ψ be the set of centers of the hypercubes in this extended partition. For
K ⊂ R

k�, let ΨK be the set of grid points w ∈ Ψ such that C(w) ∩K �= ∅, so that
Ω = ΨW. By Lemma 4.8, for K ⊂ W,

1

1 + ν

∑
w∈ΨK

Ft(w)Vol(C(w) ∩K) ≤
∫
K

Ft(w)dw ≤ (1 + ν)
∑

w∈ΨK

Ft(w)Vol(C(w) ∩K).

(4.8)

Using the notation of Lemma 4.7, let W
′ = W

(−kσ) be a “scaled-in” version of W; we
showed in Lemma 4.7 that for w ∈ W

′, Ft(w) = Rt(w), and that∫
W′

Ft(w)dw =

∫
W′

Rt(w)dw ≥ 1

1 + γt

2

∫
W

Rt(w)dw.(4.9)

Let W
′′ = W

(δ′t(ν)) be a “scaled-out” version of W, and extend the domains of Ft(·) and
Rt(·) to W

′′ by defining Ft(w
′′) = Ft(w̄

′′) and Rt(w
′′) = Rt(w̄

′′) for w′′ ∈ W
′′ − W,

where w̄′′ is the point where the line between w′′ and p� = (p, . . . ,p) ∈ W intersects
the boundary of W. By Lemma 4.8 and the construction of the extension of Rt,
Rt(w

′′) ≤ (1 + ν)Rt(w) and∫
W′′

Rt(w)dw ≤ (1 + ν)

∫
W

Rt(w)dw.(4.10)

By construction of W
′′, C(w) ⊂ W

′′ for w ∈ Ωe; from the definition of Ft and the
choice of δ′t, Ft(w) ≤ (1 + ν)e−ΓσRt(w) for w ∈ Ωe. Using these facts,

πe =

∑
w∈Ωe

Ft(w)∑
w∈Ω Ft(w)

≤ δ
(k−1)�
t

δ
(k−1)�
t

·
(1 + ν)e−Γσ

∑
w∈Ωe

Rt(w)∑
w∈Ω Ft(w)

≤ (1 + ν)e−Γσ

∑
w∈Ψ

W′′ Vol(C(w) ∩ W
′′)Rt(w)∑

w∈ΨW
Vol(C(w) ∩ W)Ft(w)

(
since Vol(C(w)) = δ

(k−1)�
t

)

≤ (1 + ν)e−Γσ (1 + ν)
∫

W′′ Rt(w)dw
1

(1+ν)

∫
W
Ft(w)dw

(by (4.8))

≤ (1 + ν)3e−Γσ

∫
W′′ Rt(w)dw∫
W′ Ft(w)dw

≤ (1 + ν)4
(
1 +

γt
2

)
e−Γσ

(by (4.9) and (4.10)).
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Remark 11. We simplify notation below by using O∗(·) notation, which ignores
logarithmic and constant terms. For our purposes, f(·) = O∗(g(·)) if there exists a
constant C ≥ 0 such that f(·) = O(g(·) logC(k�mt/ε)). The values derived above in

this notation are γt = O∗( ε2

mt4 ), δt = O∗( ν
mt4k� ), σ = O∗( ε2

m2t8k2� ), δ
′
t = O∗( ν

Γmt4k� ),

log 1
π∗

= O∗(k�Γσ + t), M = O∗(m
2t4

ε2 ), and πe = O∗(e−Γσ).

Theorem 4.12. Letting Γ = O∗( 1
σ ) = O∗(m

2t8k2�
ε2 ), the random walk reaches a

distribution π̃ that satisfies (4.2) after τ = O∗(k
7�6m6t24

κν2ε4 ) steps.
Proof. We show how to bound the right-hand side of (4.5), where the grid spacing

δt has been replaced by δ′t. The second term, Mπek�d
2

κδ′t
2 , can be made exponentially

small in Γ by choosing Γ = O∗( 1
σ ). The value of τ stated in the theorem is large

enough to make the first term, e−
κτδ′t

2

k�d2 log 1
π∗

, exponentially small in τ .
Theorem 4.13. Suppose that the distribution pτ0 obtained after τ0 steps satisfies

∑
w∈Ω

|π(w) − pτ0(w)| ≤ γt.

After τ ′0 ≥ τ0
τ0−log 1

π∗ −log 1
γt

log 1
π∗

= O∗(τ0(k�+ t)) steps, the resulting distribution pτ ′
0

satisfies

max
w∈Ω

pτ ′
0
(w)

π(w)
− 1 ≤ 1,

which implies (4.3).

Proof. Let d(τ) = 1
2

∑
w∈Ω |π(w) − pτ (w)| and d̂(τ) = maxw∈Ω

pτ (w)
π(w) − 1 so that

d(τ0) ≤ 1
2γt. Aldous and Fill [1, (5) and (6)] prove that if τ ≥ 1

λ log 1
π∗

, then d̂(τ) ≤ 1,
where π∗ = minw∈Ω πt(w) is as defined in the statement of Theorem 4.5 and λ is the
second-largest eigenvalue of the steady-state transition matrix P of πt.

To prove the bound on τ ′0, we show that λ ≥ τ0−log 1
π∗ −log 1

γt

τ0
= 1 − log 1

π∗ +log 1
γt

τ0
.

We do this by appealing to a result from Sinclair [17, Proposition 1(i)], which states
that

τ0 ≤
log 1

π∗
+ log 1

γt

1 − λ
.9

Solving for λ yields the bound for τ ′0. The O∗(·) bound comes from the fact that
Γσ = O∗(1) and that log 1

γt
and log 1

π∗
are low-order terms relative to the τ0 obtained

in Theorem 4.12.

4.3. Application to investment strategies. The efficient sampling techniques
of this section are applicable to investment strategies S whose return functions Rn(S(·))
are log-concave. Theorem 4.14 and Corollary 4.15 characterize such functions.

Theorem 4.14. Given investment strategy S, suppose that S is linear on w,

or, more formally, that for all parameters wi and wj,
∂2S

∂wi∂wj
= 0. Then Rt(w) =

Rt(S(w)) is log-concave.

9Strictly speaking, this result pertains to λmax, the second-largest absolute value of the eigenval-
ues of P , but as Sinclair discusses [17, p. 355], the smallest eigenvalue is unimportant, as P can be
modified so that all eigenvalues are positive without affecting mixing times beyond a constant factor.
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Proof. Let rt(w) = St(w) · xt, so that Rn(w) =
∏n−1

t=0 rt(w). Since log-concave
functions are closed under multiplication, we need only show that rt(w) is log-concave.

The gradient vector of log rt(w) has ith element ∂ log rt(w)
∂wi

= 1
rt(w)

∂rt(w)
∂wi

, and the

matrix of second derivatives has (i, j)th element

− 1

rt(w)2
∂rt(w)

∂wi

∂rt(w)

∂wj
+

1

rt(w)

∂2rt(w)

∂wi∂wj
= − 1

rt(w)2
∂rt(w)

∂wi

∂rt(w)

∂wj
,

since ∂2rt(w)
∂wi∂wj

=
∑m

ι=1
∂2Stι(w)
∂wi∂wj

· xtι = 0 by assumption. The matrix of second deriva-

tives is negative semidefinite, implying that log rt(w) is a concave function.
Corollary 4.15. Universalizations of the following investment strategies can be

computed using the sampling techniques of this section:
1. the trading strategies MA[k] and SR[k] with long/short allocation functions

g�(x) and hp(x, y), respectively, and
2. the portfolio strategies CRP and CRP-S.

Proof. The result follows from a straightforward differentiation of the investment
descriptions of these strategies.

5. Further research. We have introduced in this paper a general framework
for universalizing parameterized investment strategies. It would be interesting to
relax the condition of Theorem 3.3 and generalize the theorem. Likewise, it would be
interesting to see whether the proof of Theorem 3.3 can be optimized so that existing
universal portfolio proofs for CRP [3, 5, 6] are a special case of Theorem 3.3. These
proofs not only prove that Ln(U(CRP)) converges to Ln(CRP(w∗

n)), but also prove
a bound on the rate of convergence,

Rn(CRP(w∗
n))

Rn(U(CRP))
≤

(
n + m− 1

m− 1

)
≤ (n + 1)m−1.

It would also be interesting to study other trading and portfolio strategies that fit
into our universalization framework and to see how our universalization algorithms
perform in empirical tests.
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1. Introduction.

1.1. Problem and motivation. Network representations play an extensive role
in the areas of distributed computing and communication networks. Their goal is to
cheaply store useful information about the network and make it readily and con-
veniently accessible. This is particularly significant when the network is large and
geographically dispersed and information about its structure must be accessed from
various local points in it.

The current paper deals with a network representation method based on assigning
informative labels to the vertices of the network. In most traditional network repre-
sentations, the names or identifiers given to the vertices contain no useful information,
and they serve only as pointers to entries in the data structure, which forms a global
representation of the network. In contrast, the labeling schemes studied here use more
informative and localized labels for the network vertices. The idea is to associate with
each vertex a label selected in a such way that will allow us to infer information about
any two vertices directly from their labels, without using any additional information
sources. Hence, in essence this method bases the entire representation on the set of
labels alone.

Obviously, labels of unrestricted size can be used to encode any desired infor-
mation including, in particular, the entire graph structure. Our focus is thus on
informative labeling schemes using relatively short labels (say, of length polylogarith-
mic in n). Labeling schemes of this type were developed in the past for different graph
families and for a variety information types, including vertex adjacency [5, 4, 14, 6],
distance [17, 11, 10, 8, 13, 9, 1], tree ancestry [3, 12, 2], and various other tree func-
tions, such as center, least common ancestor, separation level, and Steiner weight of
a given subset of vertices [18].
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The current paper studies informative labeling schemes for flow and connectiv-
ity problems. Flow and connectivity information is useful in the decision making
process required for various reservation-based routing and connection establishment
mechanisms in communication networks, in which it is desirable to have accurate
information about the potential capacity of available routes between any two given
endpoints. This flow and connectivity information is particularly useful when it rep-
resents online the current availability of route capacity in a dynamically changing
setting. The methods presented in the current paper are limited to a static graph
with fixed topology and edge capacities. Hence, our results constitute only a prelim-
inary step toward handling the full problem in the dynamic setting. Initial studies of
the dynamic setting are presented in [16, 15].

1.2. Labeling schemes. Let us first formalize the notion of informative labeling
schemes. A vertex-labeling of the graph G is a function L assigning a label L(u) to
each vertex u of G. A labeling scheme is composed of two major components. The
first is a marker algorithm M which, given a graph G, selects a label assignment
L = M(G) for G. The second component is a decoder algorithm D which, given a set
of labels L̂ = {L1, . . . , Lk}, returns a value D(L̂). The time complexity of the decoder
is required to be polynomial in its input size.

Let f be a function defined on sets of vertices in a graph. Given a family G
of weighted graphs, an f labeling scheme for G is a marker-decoder pair 〈Mf ,Df 〉
with the following property. Consider any graph G ∈ G, and let L = Mf (G) be
the vertex-labeling assigned by the marker Mf to G. Then for any set of vertices
W = {v1, . . . , vk} in G, the value returned by the decoder Df on the set of labels

L̂(W ) = {L(v) | v ∈ W} satisfies Df (L̂(W )) = f(W ).
It is important to note that the decoder Df , responsible for the f -computation,

is independent of G as well as of the number of vertices in it. Thus Df can be viewed
as a method for computing f -values in a “distributed” fashion, given any set of labels
and the knowledge that the graph belongs to some specific family G. In particular,
it must be possible to define Df as a constant size algorithm. In contrast, the labels
contain some information that can be precomputed by considering the whole graph
structure.

For a labeling L for the graph G = 〈V,E〉, let |L(u)| denote the number of bits in
the (binary) string L(u). Given a graph G and a marker algorithm M, which assigns
the labeling L to G, denote LM(G) = maxu∈V |L(u)|. For a finite graph family G,
set LM(G) = max{LM(G) | G ∈ G}. Finally, given a function f and a graph family
G, let

L(f,G) = min{LM(G) | ∃D, 〈M,D〉 is an f labeling scheme for G}.

1.3. Flow and connectivity. In the current paper we focus on flow and con-
nectivity labeling schemes. Let G = 〈V,E, ω〉 be a weighted undirected graph where,
for every edge e ∈ E, the weight ω(e) is integral and represents the capacity of the
edge. For two vertices u, v ∈ V , the maximum flow possible between them (in either
direction), denoted flow(u, v), can be defined in this context as follows. Denote by
G′ the multigraph obtained by replacing each edge e in G with ω(e) parallel edges of
capacity 1. A set of paths P in G′ is edge-disjoint if each edge e ∈ E appears in no
more than one path p ∈ P . Let Pu,v be the collection of all sets P of edge-disjoint
paths in G′ between u and v. Then flow(u, v) = maxP∈Pu,v{|P |}. See Figure 1.

As a special case of the flow function, the edge-connectivity e-conn(u,w) of two
vertices u and w in a graph can be given an alternative definition as the maximum
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Fig. 1. A capacitated graph G and the (symmetric) flow between its vertices.

flow between the two vertices, assuming each edge is assigned one capacity unit.
A set of paths P connecting the vertices u and w in G is vertex-disjoint if each

vertex, except u and w, appears in at most one path p ∈ P . The vertex-connectivity
v-conn(u,w) of two vertices u and w in an unweighted graph equals the cardinality of
the largest set P of vertex-disjoint paths connecting them. By Menger’s theorem (cf.
[7]), for nonadjacent u and w, v-conn(u,w) equals the minimum number of vertices in
G \ {u,w} whose removal from G disconnects u from w. (When a vertex is removed,
all its incident edges are removed as well.)

1.4. Our results. In this paper we present a number of results concerning label-
ing schemes for maximum flow, edge-connectivity, and vertex-connectivity. In section
2 we present a flow labeling scheme for general graphs, with label size O(log n · log ω̂+
log2 n) over n-vertex graphs with maximum (integral) capacity ω̂. The scheme relies
on the fact that the relation “x and y admit a flow of k or more” is an equivalence
relation. In section 3 we establish the optimality of our flow labeling scheme by
proving a tight lower bound of Ω(logn · log ω̂ + log2 n) on the required label size for
flow labeling schemes on the class of n-vertex trees with maximum capacity ω̂. For
edge-connectivity, this yields a tight bound of Θ(log2 n).

In comparison, vertex-connectivity seems to require a more involved labeling
scheme whose label size depends on the connectivity parameter k. In section 4 we
present a k-vertex-connectivity labeling scheme for general n-vertex graphs. The label
sizes we achieve are log n for k = 1, 3 logn for k = 2, 5 logn for k = 3, and 2k log n
for k > 3. In section 5 we present a lower bound of Ω(k log n) for the required label
size for k-vertex connectivity on general n-vertex graphs, where k is polylogarithmic
in n.

2. Flow labeling schemes for general graphs. In this section we consider the
family G(n, ω̂) of undirected capacitated connected n-vertex graphs with maximum
(integral) capacity ω̂ and present a flow labeling scheme for this family with label size
O(log n · log ω̂ + log2 n). Given a graph G = 〈V,E, ω〉 in this family and an integer
1 ≤ k ≤ ω̂, let us define the following relation:

Rk = {(x, y) | x, y ∈ V, flow(x, y) ≥ k}.(2.1)

We use the following easy-to-prove fact.
Lemma 2.1. The relation Rk is an equivalence relation.
For every k ≥ 1, the relation Rk induces a collection of equivalence classes on V ,

Ck = {C1
k , . . . , C

mk

k } such that Ci
k ∩Cj

k = ∅ and
⋃

i C
i
k = V . Note that for k < k′, the

relation Rk′ is a refinement of Rk; namely, for every class Ci
k′ there is a class Cj

k such

that Ci
k′ ⊆ Cj

k.
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Given G, let us construct a tree TG corresponding to its equivalence relations. The
kth level of TG corresponds to the relation Rk, i.e., it has mk nodes, marked by the
classes C1

k , . . . , C
mk

k . In particular, the root of TG is marked by the unique equivalence
class of R1, which is V . The tree is truncated at a node once the equivalence class
associated with it is a singleton. For every vertex v ∈ G, denote by t(v) the leaf in TG

associated with the singleton set {v}. Figure 2 describes the tree TG corresponding
to the flow equivalence classes for the graph G of Figure 1.
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Fig. 2. The tree TG corresponding to the graph G of Figure 1.

For two nodes x, y in a tree T rooted at r, define the separation level of x and y,
denoted SepLevelT (x, y), as the depth of z = lca(x, y), the least common ancestor
of x and y. In other words, SepLevelT (x, y) = distT (z, r), the distance of z from
the root. As an immediate consequence of the construction, we have the following
connection.

Lemma 2.2. For every two vertices v, w ∈ V ,

flowG(v, w) = SepLevelT (t(v), t(w)) + 1.

It is proven in [18] that for the class T (n) of n-node unweighted trees, there
exists a SepLevel labeling scheme with O(log2 n)-bit labels. (This is also shown to
be optimal, in the sense that any such scheme must label some node of some n-node
unweighted tree with an Ω(log2 n)-bit label.)

Observe that if the maximum capacity of any edge in the n-vertex graph G is ω̂,
then the depth of the tree TG cannot exceed nω̂ levels; and it may have at most n
nodes per level; hence the total number of nodes in TG is O(n2ω̂). We immediately
have that L(flow,G(n, ω̂)) = O(log2(nω̂)).

A more careful design of the tree TG can improve the bound on the label size. This
is achieved by canceling all nodes of degree 2 in the tree TG and adding appropriate
edge weights. Specifically, a subpath (v0, v1, . . . , vk) in TG such that k ≥ 2, v0 and vk
have degree 3 or higher, and v1, . . . , vk−1 have degree 2 (with v1, . . . , vk all marked by
the same set C) is compacted into a single edge (v0, vk) with weight k, eliminating the
nodes v1, . . . , vk−1 and leaving the sets, marking the remaining nodes unchanged. Let
T̃G denote the resulting compacted tree. Figure 3 describes the tree T̃G corresponding
to the tree TG of Figure 2.
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Fig. 3. The compacted tree T̃G corresponding to the tree TG of Figure 2.

The notion of separation level can be extended to weighted rooted trees in a
natural way by defining SepLevelT (x, y) as the weighted depth of z = lca(x, y), i.e.,
its weighted distance from the root. The upper (and lower) bound presented in [18]
regarding SepLevel labeling schemes for unweighted trees can also be extended in a
straightforward manner to weighted trees, yielding SepLevel labeling schemes for the
class T (n, ω̂) of weighted n-node trees with maximum weight ω̂ using O(log n log ω̂ +
log2 n)-bit labels. We give a short overview of this extension.

Lemma 2.3. L(SepLevel, T (n, ω̂)) ≤ L(distance, T (n, ω̂)) + log(nω̂).

Proof. Given a distance labeling scheme 〈Mdist,Ddist〉 for the weighted distance
function in T (n, ω̂), define a SepLevel labeling scheme 〈M,D〉 for T (n, ω̂) as follows.
Given a tree T ∈ T (n, ω̂), let L be the labeling assigned by Ddist for T . The SepLevel-
marker M augments each label L(v) into a label L′(v) with an additional log(nω̂)-bit
field containing v’s weighted depth, d(v).

For two vertices x and y, denote by d(x, y) the weighted distance between x and
y. Consider two vertices v, w with z = lca(v, w). Let lv = d(z, v), lw = d(z, w). Given
the labels L′(v) = 〈L(v), d(v)〉 and L′(w) = 〈L(w), d(w)〉, the fields L(v) and L(w)
allow the SepLevel-decoder D to deduce the weighted distance d(v, w) = lv + lw,
and the two additional fields provide it with d(v) = lv + d(z) and d(w) = lw + d(z).
Combined, these three equations allow D to deduce d(z). Thus 〈M,D〉 is a SepLevel

labeling scheme, and the labels it uses are larger by log(nω̂) than those used by
〈Mdist,Ddist〉.

Based on the upper bounds of [17, 10] for distance labeling schemes for trees, we
get the following.

Lemma 2.4. L(SepLevel, T (n, ω̂)) = O(log n log ω̂ + log2 n).

It is also easy to verify that for two nodes x, y in G, the separation level of the
leaves t(x) and t(y) associated with x and y in the tree T̃G is still related to the flow
between the two vertices, as characterized in Lemma 2.2.

Finally, note that as T̃G has exactly n leaves, and every nonleaf node in it has
at least two children, the total number of nodes in T̃G is ñ ≤ 2n − 1. Moreover, the
maximum edge weight in T̃G is ω̃ ≤ ω̂ · n.

Combining the above observations, we have the following.

Theorem 2.5. L(flow,G(n, ω̂)) = O(log n · log ω̂ + log2 n).

As proved in the next section, this bound is asymptotically optimal.

The above theorem immediately yields the following upper bound for edge-
connectivity (which is also shown to be tight in the next section). Let G(n) denote
the class of n-vertex unweighted graphs.
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Corollary 2.6. L(e-conn,G(n)) = O(log2 n).
Remark. We note that a similar algorithm applies to any graph function g whose

induced relations Rg
k, defined as in (2.1), are equivalence relations.

3. A lower bound for flow labeling schemes on trees. In this section we
establish a lower bound of Ω(logn · log ω̂ + log2 n) on the label size for flow on the
class T (n, ω̂) of n-vertex trees with maximum edge capacity ω̂ (which is assumed to
be integral). The proof idea is based on a modification of the lower bound proof of [10]
for distance labeling schemes. Let us first define two more functions on tree vertex
pairs, named MaxE and MinE. For two vertices u, v in a tree T , let Path(u, v) denote
the unique path from u to v in T . Then MaxE(u, v) (respectively, MinE(u, v)) is the
maximum (resp., minimum) weight of an edge on Path(u, v).

Observe that, on a tree, the maximum flow between two vertices u and v equals
simply the minimum capacity of an edge on Path(u, v), i.e., flow(u, v) = MinE(u, v).
Hence

L(flow, T (n, ω̂)) = L(MinE, T (n, ω̂)).(3.1)

A MaxE labeling scheme 〈M,D〉 can be transformed into a MinE labeling scheme
(and vice versa) as follows. Given a weighted tree T , let ω̂ denote the maximum weight
of an edge in T , and let T ′ be the weighted tree obtained by replacing the weight ω(e)
of every edge e with weight ω′(e) = ω̂−ω(e). The MinE marker M′ will transform T
into T ′ and then apply M. The MinE decoder D′ will invoke D and then apply the
inverse transformation on the resulting weight. As this scheme requires us to encode
ω̂ in the labels, we have that

L(MinE, T (n, ω̂)) ≥ L(MaxE, T (n, ω̂)) − log ω̂.(3.2)

Combining the two relationships (3.1) and (3.2), it follows that, to prove our lower
bound on the label sizes required by flow labeling schemes on trees, it suffices to prove
it instead for the maximum edge function MaxE.

We focus on a special subclass of binary weighted trees referred to hereafter as
(h, µ)-trees for integer h, µ ≥ 1. Each tree of this class is a full binary tree with h
levels. Number the levels starting from the bottom of the tree, i.e., with the level of
the leaves numbered 0. Each edge e is associated with a weight ω(e) according to its
level. The two edges that connect a vertex at level i + 1 to its two children at level i
are assigned the same weight, taken from the set Qi(µ) defined as follows. For i ≥ 0,
let Zi(µ) = i · µ and

Qi(µ) = {Zi(µ) + j | 0 ≤ j ≤ µ− 1}.

Example. Figure 4 shows a (3, µ)-tree. The weights assigned satisfy x0,i ∈ Q0(µ)
for 1 ≤ i ≤ 4, x1,i ∈ Q1(µ) for 1 ≤ i ≤ 2, and x2,1 ∈ Q2(µ).

Note that an (h, µ)-tree T is completely defined by the triple T = (T0, T1, x),
where x is the weight associated with the two edges of the top level of the tree, and
T0 and T1 are the two (h − 1, µ)-trees attached to the endpoints of those two edges.
Let C(h, µ) be the class of (h, µ)-trees and let C(h, µ, x) be the subclass of C(h, µ)

consisting of (h, µ)-trees with topmost weight x. Hence C(h, µ) =
⋃µ−1

x=0 C(h, µ, x). By
the definition of these binary trees we have the following.

Observation 3.1. For every two leaves a, a′ of a tree T ∈ C(h, µ, x),
(1) if a, a′ ∈ Ti (for i ∈ {0, 1}), then MaxET (a, a′) = MaxETi(a, a

′).
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Fig. 4. A (3, µ)-tree.

(2) if a ∈ T0 and a′ ∈ T1, then MaxET (a, a′) = x.
This implies the following lemma.
Lemma 3.2. Consider two (h, µ)-trees T = (T0, T1, x) and T ′ = (T ′

0, T
′
1, x

′). For
any leaves a0 ∈ T0, a1 ∈ T1, a

′
0 ∈ T ′

0, and a′1 ∈ T ′
1,

MaxET (a0, a1) = MaxET ′(a′0, a
′
1) ⇐⇒ x = x′.

We assume that labels are nonnegative integers in N. Define an (h, µ)-legal MaxE
labeling scheme as a scheme 〈M,D〉 on all binary (h, µ)-trees that correctly pro-
vides MaxE(ai, aj) between any two leaves ai, aj . Namely, D is a decoder function
D : N

2 �→ N, and M is a marker algorithm assigning a label L(a, T ) to each leaf
a of any binary (h, µ)-tree T , such that for every two leaves a and a′ with labels
λ = L(a, T ) and λ′ = L(a′, T ), D computes the maximum weight of an edge between
a and a′, i.e., D(λ, λ′) = MaxE(a, a′).

For an (h, µ)-legal MaxE labeling scheme 〈M,D〉, let W (M, h, µ) denote the set
of all labels assigned by M to nodes in trees of C(h, µ), and let g(h, µ) denote the
minimum cardinality |W (M, h, µ)| over all flow labeling schemes on C(h, µ).

Hereafter, we fix 〈M̂, D̂〉 to be some MaxE labeling scheme attaining g(h, µ), i.e.,
such that |W (M̂, h, µ)| = g(h, µ).

Let W (x) denote the set of all possible pairs of labels assigned by M̂ to some
leaves aj ∈ T0 and at ∈ T1, respectively, for some tree T = (T0, T1, x) ∈ C(h, µ, x).

Let W =
⋃µ−1

x=0 W (x). As W ⊆ W (M̂, h, µ) ×W (M̂, h, µ), we have the following.
Lemma 3.3. |W| ≤ g(h, µ)2.
Claim 3.4. For every 0 ≤ x �= x′ < µ, the sets W (x) and W (x′) are disjoint.
Proof. Consider two different weights 0 ≤ x �= x′ < µ, and assume by way of

contradiction that there exists a pair (λ1, λ2) ∈ W (x) ∩W (x′). Then there exist two
(h−1, µ)-trees T0, T1 such that T = (T0, T1, x) uses the label λ1 for some leaf aj1 ∈ T0

and the label λ2 for some leaf aj2 ∈ T1, and there exist two (h − 1, µ)-trees T ′
0, T

′
1

such that T ′ = (T ′
0, T

′
1, x

′) uses the label λ1 for some leaf aj3 ∈ T ′
0 and the label λ2

for some leaf aj4 ∈ T ′
1. Therefore, by the definition of D,

x = MaxE(aj1 , aj2) = D(λ1, λ2) = MaxE(aj3 , aj4) = x′,

implying x = x′, a contradiction.
The following is our main lemma.
Lemma 3.5. For every x ∈ Qh(µ), |W (x)| ≥ g(h− 1, µ2).
Proof. In any (h− 1, µ2)-tree, and for every edge that connects a vertex on level

i + 1 to its child on level 0 ≤ i ≤ h − 1, a weight ωi ∈ Qi(µ
2), ωi = i · µ2 + j, for

0 ≤ j ≤ µ2 − 1, can be represented by the pair of weights

y0 = ωi mod µ = j mod µ and y1 =

⌊
ωi mod µ2

µ

⌋
=

⌊
j

µ

⌋
,
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such that y0, y1 ∈ [0, µ− 1] and ωi = y0 + µy1 + Zi(µ
2).

Consequently, one can associate with any (h−1, µ2)-tree T ′ a pair of (h−1, µ)-trees
T0 and T1 as follows. For any edge e of T ′ with weight ωi = y0 +µ ·y1 +Zi(µ

2), let the
corresponding weight of e in T0 (respectively, T1) be ωi0 = Zi(µ) + y0 (respectively,
ωi1 = Zi(µ) + y1). These two trees define also an (h, µ)-tree T = (T0, T1, x) in
C(h, µ, x).

Every leaf aj of T ′ is now associated with two homologous leaves of T , namely,
the leaf a0

j = aj (occurring in the left part of T , i.e., T0) and the leaf a1
j = aj+2h−1

(occurring in T1). For every two leaves aj , at of T ′ we now have

MaxET ′(aj , at) = MaxET0
(a0

j , a
0
t ) mod µ

+ µ · (MaxET1(a
1
j , a

1
t ) mod µ) + µ2 ·

⌊
MaxET1

(a1
j , a

1
t )

µ

⌋

= MaxET (a0
j , a

0
t ) mod µ

+ µ · (MaxET (a1
j , a

1
t ) mod µ) + µ2 ·

⌊
MaxET (a1

j , a
1
t )

µ

⌋
.

We use this observation to derive a labeling scheme for all (h − 1, µ2)-trees using at
most |W (x)| labels. Given an (h−1, µ2)-tree T ′, consider the pair of (h−1, µ)-trees T0,
T1 defined above, and use the marker algorithm M̂ to label the tree T = (T0, T1, x).
Now use the resulting labeling L̂ to define a labeling function L′ for the nodes of T ′ as
follows. A leaf aj ∈ T ′ receives as its label the pair 〈L′(aj , T

′) = {L̂(a0
j , T ), L̂(a1

j , T )〉.
Note that this pair belongs to W (x).

The MaxE decoder D′ for (h− 1, µ2)-trees, is now obtained by setting

D′(L′(aj , T
′), L′(at, T

′)) = D′
(〈

L̂(a0
j , T ), L̂(a1

j , T )
〉
,
〈
L̂(a0

t , T ), L̂(a1
t , T )

〉)
= D̂(L̂(a0

j , T ), L̂(a0
t , T )) mod µ

+ µ · D̂(L̂(a1
j , T ), L̂(a1

t , T )) mod µ

+ µ2 ·
⌊
D̂(L̂(a1

j , T ), L̂(a1
t , T ))

µ

⌋
.

As 〈M̂, D̂〉 is a MaxE labeling scheme for (h, µ)-trees, we have

D(L̂(a0
j , T ), L̂(a0

t , T )) = MaxET (a0
j , a

0
t )

and

D(L̂(a1
j , T ), L̂(a1

t , T )) = MaxET (a1
j , a

1
t );

therefore

D′(L′(aj , T
′), L′(at, T

′)) = MaxET (a0
j , a

0
t ) mod µ

+ µ · MaxET (a1
j , a

1
t ) mod µ + µ2 ·

⌊
MaxET (a1

j , a
1
t )

µ

⌋

= MaxET ′(aj , at).
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So we have obtained a labeling scheme 〈M′,D′〉 labeling any (h − 1, µ2)-tree with
labels taken from W (x). It follows that |W (x)| ≥ g(h− 1, µ2).

Combining Claim 3.4 and Lemmas 3.3 and 3.5, we deduce the following.
Corollary 3.6. g(h, µ) ≥ √

µ ·
√
g(h− 1, µ2).

Subsequently, we have the following.
Lemma 3.7. g(h, µ) ≥ µh/2.
This allows us to conclude with the lower bound. Let BT (n, ω̂) denote the family

of n-vertex balanced binary trees with height h = log(n + 1) and weights from the
range [0, ω̂], where ω̂ = h · µ− 1.

Theorem 3.8.

L(MaxE,BT (n, ω̂)) ≥ 1

2
· log(n + 1) log(ω̂ + 1) − 1

2
· log(n + 1) log log(n + 1).

Proof. By Lemma 3.7, for the class C(h, µ) we have L(ω̂, C(h, µ)) ≥ h
2 · logµ. This

yields the theorem, as

L(ω̂,BT (n, ω̂)) ≥ L(ω̂, C(h, µ)) ≥ 1

2
h logµ =

1

2
log(n + 1) · log

(
ω̂ + 1

h

)

=
1

2
· log(n + 1) log(ω̂ + 1) − 1

2
· log(n + 1) log log(n + 1) .

Hence assuming ω̂ + 1 > log(n + 1), there is a lower bound of Ω(logn log ω̂) for the
label size of MaxE labeling schemes on trees. Finally, by the relationships (3.1) and
(3.2) mentioned above between MinE and flow on trees, we get the following.

Corollary 3.9. For ω̂ > log(n + 1) − 1, L(flow, T (n, ω̂)) = Ω(logn log ω̂).
Each tree T of BT (n, ω̂) can be modified into an unweighted multigraph GT of

n nodes and O(nω̂) edges by replacing each edge e of weight ω(e) with ω(e) parallel
edges connecting the same endpoints. This multigraph can in turn be transformed
into a simple (unweighted) graph of O(nω̂) vertices by adding a new vertex pu,v in
the middle of every edge (u, v), splitting it into a path of length 2 consisting of the
two successive edges (u, pu,v) and (pu,v, v). Starting with BT (

√
n, ω̂) and looking

at the class of unweighted O(n)-vertex graphs obtained by setting ω̂ =
√
n, we get

the following tight lower bound on the required label size of schemes for flow and
edge-connectivity.

Theorem 3.10.

(1) L(flow,G(n)) = Θ(logn log ω̂ + log2 n).
(2) L(e-conn,G(n)) = Θ(log2 n).

4. Vertex-connectivity labeling schemes for general graphs. In this sec-
tion we turn to k-vertex-connectivity and present a labeling scheme for general n-
vertex graphs. The label sizes we achieve are log n for k = 1, 3 logn for k = 2, 5 logn
for k = 3, and 2k log n for k > 3.

4.1. Preliminaries. We start with some preliminary definitions. In an undi-
rected graph G, two vertices are called k-connected if there exist at least k vertex-
disjoint paths between them. A set S ⊆ V separates u from v in G = 〈V,E〉 if u and
v are not connected in the vertex-induced subgraph G \ S.

Theorem 4.1 (Menger (cf. [7])). In an undirected graph G, two nonadjacent
vertices u and v are k-connected iff no set S ⊂ G\{u, v} of k−1 vertices can separate
u from v in G.
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The k-connectivity graph of G = 〈V,E〉 is Ck(G) = 〈V,E′〉, where (u, v) ∈ E′ iff
u and v are k-connected in G. A graph G is closed under k-connectivity if it has the
property that, if u and v are k-connected in G, then they are neighbors in G. Let
C(k) be the family of all graphs G which are closed under k-connectivity.

Observation 4.2.

(1) If G ∈ C(k), then each connected component of G belongs to C(k).
(2) If G = H ∪ F , where H,F ∈ C(k) are vertex-disjoint subgraphs of G, then

G ∈ C(k).

Lemma 4.3. Let G′ = 〈V,E′〉, where E′ = E ∪ {(u, v)} for some pair of k-
connected vertices u and v. Then G and G′ have the same k-connectivity graph, i.e.,
Ck(G) = Ck(G

′).

Proof. Use induction on k. For k = 1 the lemma is obvious. Assume the lemma
is true for k − 1. It suffices to show that if two vertices w,w′ are not k-connected in
G, then they are not k-connected in G′. Suppose that w,w′ are not k-connected in
G. If w, w′ are neighbors in G, then let G− = G \ {u, v}. In G−, w and w′ are not
(k − 1)-connected and, since u and v are (k − 1) connected in G−, by the induction
hypothesis, w and w′ are not (k− 1)-connected in G′ \ {u, v}. This implies that they
are not k-connected in G′ as desired. If w,w′ are not neighbors in G, then by Menger’s
theorem there exists a set of vertices S = {x1, x2, . . . , xk−1} that separates w from w′

in G. We claim that S separates w from w′ also in G′. The proof breaks down into
the following cases.

Case 1. One or more of the xi’s is u or v. Then G \ S = G′ \ S.

Case 2. None of the xi’s is u or v. If u and v belong to the same connectivity
component of G \ S, then the connectivity components of G′ \ S will be the same as
the connectivity components of G \ S, implying that S separates w from w′ also in
G′, which is what we wanted to prove. If u and v belong to different connectivity
components of G \ S, then S separates u from v in G or, in other words, u and v are
not k-connected in G, contradicting our assumption.

Corollary 4.4. For every graph G, if u and v are k-connected in Ck(G), then
they are neighbors in Ck(G), i.e., Ck(G) ∈ C(k).

Proof. Transform a given graph G into G+ = G ∪ Ck(G) by adding the edges
of Ck(G) to G one by one. By induction on the steps of this process using the
previous lemma, we get Ck(G

+) = Ck(G). Therefore if u and v were k-connected in
Ck(G), then they are k-connected in G+ and are therefore neighbors in Ck(G

+) =
Ck(G).

For a connectivity component C of Ck(G), a leftmost breadth-first search (BFS)
tree for C, denoted T (C, k), is a BFS tree spanning C, constructed in the following
way. Take a vertex r from C to be the root of T (C, k). Let level(r) = 1. Assume
we constructed i levels of T (C, k) and haven’t used all vertices of C. Construct the
(i+ 1)st level of T (C, k) as follows. Repeatedly take a vertex v of level i and connect
it to all the vertices adjacent to it in Ck(G) that haven’t been included so far in the
tree construction. For each such new vertex w let level(w) = i + 1, and let v be w’s
parent in T (C, k).

When the context is clear we use the notation T instead of T (C, k).

For T = T (C, k), we make the following definitions. Let Wi denote the set of
vertices of level i in T , and let Hi = Hi(C, k) = 〈Wi, Ei〉 be the subgraph of C
induced by Wi. For vertices u and v, denote u′s parent in T by p(u), and let lca(u, v)
be the highest level common ancestor of both u and v in T . Let W ′

i+1 denote the
set of vertices of Wi+1 that are neighbors of at least k vertices of Wi in Ck(G). Let
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Fi = Fi(C, k) be the subgraph of C induced by Wi ∪W ′
i+1.

Lemma 4.5.

(1) For T = T (C, k), Hi ∈ C(k − 1).
(2) For T = T (C, k), Fi ∈ C(k − 1).
Proof. To prove (1), we show that every two vertices u, v ∈ Wi that are (k − 1)-

connected in Hi are neighbors in Ck(G) and therefore in Hi, implying Hi ∈ C(k− 1).
Assume, for contradiction, that u and v are not neighbors in Ck(G). By Corollary
4.4 they are also not k-connected in Ck(G); i.e., there exists a set S = {x1, . . . , xk−1}
that separates them in Ck(G). Let S′ = S ∩Wi. Since S′ separates u from v in Hi

and since u and v are (k − 1)-connected in Hi, we get that |S′| = k − 1, and hence
S′ = S, so all the vertices in S must be of level i. This implies, however, that S does
not separate u from v even in T , which is a subgraph of Ck(G), contradicting our
assumption.

Turning to (2), let u and v be (k − 1)-connected in Fi. As before, it suffices to
show that they are neighbors in Ck(G). Assume for contradiction that u and v are
not neighbors in Ck(G). Therefore they are also not k-connected in Ck(G); i.e., there
exists a set S = {x1, . . . , xk−1} that separates them in Ck(G). Since S′ = S ∩ Fi

separates u from v in Fi and since u and v are (k − 1)-connected in Fi we get, as
before, that all the vertices of S must belong to Fi. We claim that S cannot separate
either u or v from the root r, and therefore we get that u and v are connected in
Ck(G) \ S, contradicting our assumption. If u (or v) is of level i, then the claim is
clear since u is connected to r in Ck(G) \ S via the edges of T . If u (or v) is of level
i+1, then u has at least k neighbors in Ck(G) of level i. Therefore, u has at least one
neighbor w of level i in Ck(G) \ S. Since all vertices of S are in Fi, w is connected to
r in Ck(G) \ S via the edges of T .

4.2. Overview of the scheme. We rely on the basic observation that labeling
k-connectivity for some graph G is equivalent to labeling adjacencies for Ck(G). By
Corollary 4.4, Ck(G) ∈ C(k). Therefore, instead of presenting a k-connectivity label-
ing scheme for general graphs, we present an adjacency labeling scheme for the graphs
of C(k).

The general idea used for labeling adjacencies for some G ∈ C(k), especially for
k > 3, is to decompose G into at most three “simpler” graphs. One of these graphs is
a k-orientable graph K, and the other two, called Geven and Godd, belong to C(k−1).
The labeling algorithm for G ∈ C(k) recursively labels subgraphs of G that belong to
C(t) for t < k. When we are concerned with labeling some n-vertex graph G ∈ C(k)
for k > 1, the first step in the labeling is to assign each vertex u in G a distinct
identity id(u) from 1 to n. This identity will always appear as the last logn bits of
the label L(G, u). Thus, when labeling the subgraphs of G in the recursion we may
assume that the id’s for the vertices are given.

For graphs G = 〈V,E〉 and Gi = 〈Vi, Ei〉, i > 1, we say that G can be decomposed
into the Gi’s if

⋃
i Vi = V ,

⋃
i Ei = E, and the Ei’s are pairwise disjoint.

Lemma 4.6. Let G,G1, and G2 be families of graphs such that each G ∈ G can be
decomposed into G1 ∈ G1 and G2 ∈ G2. If G1 and G2 have adjacency labeling schemes
of sizes l1 and l2, respectively, then G has adjacency labeling scheme of size l1 + l2.

Proof. The general idea in the proof is to use concatenation of the labels of the
decomposed graphs. Let 〈Mi,Di〉 be adjacency labeling schemes for Gi (i = 1, 2). Let
us construct an adjacency labeling scheme 〈M,D〉 for G as follows.

The marker algorithm M for G. For a given graph G ∈ G, decompose G into
Gi ∈ Gi (i = 1, 2). Let Li = Mi(Gi) for i = 1, 2. We construct L = M(G) as follows.
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For a vertex u in G, let L(u) = 〈L1(u), L2(u)〉, where the first l1 bits of the label L(u)
consist of L1(u) and the next l2 bits give L2(u). Altogether we use l1 + l2 bits.

The decoder algorithm D for G. Let G,G1, and G2 be as before. Given the
two labels L(u) = 〈L1(u), L2(u)〉 and L(v) = 〈L1(v), L2(v)〉 let D(L(u), L(v)) =
D1(L1(u), L1(v)) ∨ D2(L2(u), L2(v)).

Since G was decomposed into G1, G2, the vertices u and v are neighbors in G iff
they are neighbors in either G1 or G2; hence the decoding algorithm is correct.

Corollary 4.7. Let G,G1, . . . ,Gm be families of graph such that each G ∈ G
can be decomposed into G1, . . . , Gm, where Gi ∈ Gi for i = 1 to m. If the Gi’s have
adjacency labeling schemes of size li, then G has an adjacency labeling scheme of size∑

li.
A graph G is called k-orientable if there exists an orientation of the edges such

that the out-degree of each vertex is bounded above by k. The class of k-orientable
graphs is denoted Jor(k).

Observation 4.8. If G = H ∪ F , where H,F ∈ Jor(k) are vertex-disjoint
subgraphs of G, then G ∈ Jor(k).

Lemma 4.9. Let Jn(k) be the family of n-vertex graphs in Jor(k). Assuming id’s
are given, L(adjacency,Jn(k)) ≤ k log n.

Proof. Suppose G ∈ Jn(k). Then G is a k-orientable graph with n vertices. Hence
there exists an orientation to the edges of G such that the out-degree of each vertex
is bounded above by k. In this orientation, for each u there exist at most k outgoing
edges, say (u, v1), (u, v2),. . . , (u, vt), for t ≤ k.

The marker algorithm M for Jn(k). Label u by L(u) = 〈id(v1), id(v2), . . . , id(vt)〉,
i.e., use the first log n bits to write id(v1), the second log n bits to write id(v2), etc.
Hence, for every u’s, the size of L(u) is at most k log n bits.

The decoder algorithm D for Jn(k). Given L(u) and L(v) check whether u’s id
appears in L(v), by inspecting each block of logn bits in L(v) separately. Analogously,
check if v’s id appears in L(u).

As u and v are neighbors in G iff one of the two cases applies, the decoding
algorithm is correct.

To illustrate the approach, we preface the treatment of the general case with a
discussion of the cases k = 1, 2, 3, for which slightly better schemes are available. The
simple case of k = 1 is handled in section 4.2.1. For k = 2 we show in section 4.2.2
that a connected graph G ∈ C(2) can be decomposed into a tree and disjoint graphs
in C(1). Graphs in C(1) are collections of cliques. It follows that each G ∈ C(2) can be
decomposed into a forest (which is a 1-orientable graph) and a graph made of disjoint
cliques. For k = 3 we show in section 4.2.3 that a connected graph G ∈ C(3) can be
decomposed into a graph in C(2) and a 2-orientable graph.

4.2.1. A 1-connectivity labeling scheme. Let us give a labeling scheme for
1-connectivity for Gn, the family of all n-vertex graphs.

The marker algorithm M for Gn. Fix G = 〈V,E〉 ∈ Gn. To each connected
component C of G assign a distinct identity id(C) from the range {1, . . . , n}. For
a vertex u ∈ V , let Cu be the connected component of G to which u belongs. The
marker algorithm sets L(u) = id(Cu).

The decoder D for Gn. Let D(L(u), L(v)) = 1 iff L(u) = L(v).
Clearly u and v are 1-connected in G iff they are in the same connected component;

hence the decoder’s response is correct. The size of the label is bounded above by
log n.

Theorem 4.10. L(1 − v-conn,Gn) ≤ log n.
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4.2.2. A 2-connectivity labeling scheme. As explained earlier, labeling 2-
connectivity for a family of graphs G is equivalent to labeling adjacencies for the family
{C2(G) | G ∈ G} ⊆ C(2). In this section we present an efficient adjacency labeling
scheme for C(2).

Consider a graph G ∈ C(2) and let C1, . . . , Cm be its connected components. By
Observation 4.2(1), Ci ∈ C(2) for every i. Fix i and let T = T (Ci, 2).

Claim 4.11. The only neighbor of u in G which has a strictly lower level than u
in T is p(u).

Proof. Suppose, for contradiction, that there exist neighbors v and w such that
level(w) > level(v) but v is not p(w) in T . In this case, w and z = lca(v, w) are
2-connected in T ∪ {(v, w)}, which is a subgraph of G. Since G ∈ C(2), v must be a
neighbor of w. Since level(w) < level(u)− 1 we get a contradiction to the way T was
constructed.

Claim 4.12. G ∈ C(2) can be decomposed into a forest F and a graph H of
disjoint cliques.

Proof. Fix a connected component Ci of G and let T = T (Ci, 2). Since, by
Lemma 4.5(1), each Hi

j subgraph of Ci induced by level j of T is in C(1), it follows

that Hi
j is a collection of disjoint cliques. Hence G can be decomposed into a forest

F and a graph H of disjoint cliques, composed of the collection of all the Hi
j from all

i’s and j’s.
Let Cn(2) be the family of n-vertex graphs in C(2). Let us now give an adjacency

labeling scheme for the graphs of Cn(2).
The marker algorithm M for Cn(2). Decompose G into F and H as in Claim

4.12. Fix a vertex u of G. Let p(u) be u’s parent in F . To each clique C in H give a
distinct identity from the range {1, . . . , n}, id(C). Let C(u) be the clique in H that
contains u.

The marker algorithm for G assigns L(u) = 〈id(c(u)), id(p(u)), id(u)〉. As before,
we use the first log n bits for id(c(u)), the second log n bits for id(p(u)), etc. The
label size is bounded above by 3 logn.

The decoder D for Cn(2). Given L(u) and L(v) we compare id(p(u)) with id(v)
and id(p(v)) with id(u) to check whether one is the parent of the other in the forest
F . We also check if id(C(u)) = id(C(v)) to see whether u and v are neighbors in H.
We do this by looking at the corresponding bits in the label; for example, id(p(u))
is written in the second block of logn bits of L(u). Let D(L(u), L(v)) = 1 iff either
id(C(u)) = id(C(v)), id(p(u)) = id(v), or id(p(v)) = id(u).

Clearly, u and v are neighbors in G iff they are neighbors in F or in H; hence the
decoder’s response is correct. We get the following.

Theorem 4.13. Let Gn be the family of n-vertex graphs. Then L(2−v-conn,Gn) ≤
3 log n bits.

4.2.3. A 3-connectivity labeling scheme. Again, labeling 3-connectivity for
a family G is equivalent to labeling adjacencies for the family {C3(G) | G ∈ G} ⊆ C(3).
In this section we show how to label adjacencies for C(3).

Consider a graph G ∈ C(3), and let C1, . . . , Cm be its connected components. By
observation 4.2(1), Ci ∈ C(3) for all i. Fix i and let T = T (Ci, 3).

Lemma 4.14. Each vertex u has at most one neighbor of G which has a strictly
lower level than u in T apart from p(u).

Proof. Assume, for contradiction, that there exists a vertex u with two neighbors
in G, v and w, both with a strictly lower level than u and both different from p(u).
In this case, u must be 3-connected in G to either lca(u, v), lca(u,w), or lca(v, w),
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whichever has the highest level number. However, the levels of lca(u, v), lca(u,w),
lca(v, w) are all smaller than level(u)− 1, and since G ∈ C(3), u is adjacent to one of
them, contradicting the way T was constructed. (See Figure 5.)

root

lca(w,v)

p(u) vw

u

Fig. 5. An illustration of the contradiction in the proof of Lemma 4.14.

Lemma 4.15. Each G ∈ C(3) can be decomposed into a graph H ∈ C(2) and a
2-orientable graph.

Proof. First, it suffices to show the lemma for connected graphs C ∈ C(3), since by
Observations 4.2(2) and 4.8, C(2) and Jor(2) are closed under vertex-disjoint unions.
Consider a connected graph C ∈ C(3) and let T = T (C, 3). By Lemma 4.5(1), each
subgraph Hj of C induced by the vertices of level j in T is in C(2). All the subgraphs
Hj are vertex-disjoint; hence by letting H be the union of all the Hj , we get H ∈ C(2).
Let U be the graph C after deleting the edges of H. By Lemma 4.14, each vertex u
of U has at most two neighbors of a strictly lower level (one of which is u’s parent in
T ). Hence directing the edges of U from higher level vertices to lower level vertices,
each u has out-degree at most 2; i.e., U is 2-orientable.

By Lemmas 4.6 and 4.9 and from Theorem 4.13 we get the following theorem.

Theorem 4.16. Let Gn be the family of n-vertex graphs. Then L(3−v-conn,Gn) ≤
5 log n bits.

4.3. A k-connectivity labeling scheme. Finally, labeling k-connectivity for a
family G is equivalent to labeling adjacencies for the family {Ck(G) | G ∈ G} ⊆ C(k).
In this section we show how to label adjacencies for C(k).

Consider a graph G ∈ C(k), and let C1, . . . , Cm be its connected components. By
observation 4.2(1), Ci ∈ C(k) for all i. Fix i and let T = T (Ci, k).

Lemma 4.17. Each G ∈ C(k) can be decomposed into two graphs in C(k− 1) and
a (k − 1)-orientable graph.

Proof. Again, it suffices to prove the lemma for connected graphs C ∈ C(k)
since, by Observations 4.2(2) and 4.8, both C(k − 1) and Jor(k) are closed under
vertex-disjoint unions. Consider a connected graph C ∈ C(k) and let T = T (C, k).

All the Fi’s for odd i’s are vertex-disjoint, and Fi ∈ C(k− 1) for all i’s by Lemma
4.5(2). Therefore, by letting Godd be the union of all the Fi’s for odd i’s, we get
Godd ∈ C(k− 1). By the same reasoning, by letting Geven be the union of all the Fi’s
for even i’s, we get Geven ∈ C(k − 1).

Let K be the graph C after omitting the edges of Godd and Geven (or equivalently,
omitting all edges of all the Fi’s). The proof is completed once we show that K is
(k−1)-orientable. Since all edges (u, v) of C such that level(u) = level(v) = i for some
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i are in Fi for the appropriate i, if (u, v) is an edge of K, then level(u) �= level(v).
By the way T was constructed, we can see that the difference between the levels is 1.

Let us direct the edges of K from higher level vertices to lower level vertices.
Assume, for contradiction, that for some u and some i, level(u) = i + 1 and the out-
degree of u in K is at least k. Then u must have at least k neighbors of level i in C,
in which case all edges (u, v) for v such that level(v) = i appear in Fi and therefore
not in K. Thus, the out-degree of u in K is 0, contradicting our assumption.

Before stating and proving the next theorem, let us remark that we can get a
weaker upper bound of 3k log n label size for L(adjacency, Cn(k)) in the following
way. Use induction on k. For k = 1, 2, 3 our remark holds. For k > 3 fix k and
assume that the remark holds for k − 1. The remark for k follows from Lemmas 4.9
and 4.17 and Corollary 4.7.

To prove the next theorem, we show that instead of concatenating u’s labels in
the three decomposed graphs (Godd, Geven,K), it suffices to give u its label in only
two of the three decomposed graphs. This yields the desired 2k log n bits bound on
L(adjacency, Cn(k)).

Theorem 4.18. Let Cn(k) be the family of n-vertex graphs in C(k). Then

L(adjacency, Cn(k)) ≤ 2k log n.

Proof. Use induction on k. For k = 1, 2, or 3 the theorem holds as seen in
Theorems 4.10, 4.13, and 4.16. For k > 3, fix k and assume that the theorem holds
for k − 1. Consider a graph G ∈ Cn(k). For a vertex u in G, let C be its connected
component in G, let T = T (C, k), and let i = level(u). Let us now give a labeling
scheme for adjacency on G ∈ C(k).

The marker algorithm Mk for C(k). For t ≤ k, G ∈ Cn(t), and u, a vertex of G,
denote the adjacency labeling on G by Lt(G) and u’s label by Lt(G, u). Let G ∈ Cn(k)
and let u be a vertex in G. We define State(u) according to the following three cases.

Case 1. u participates in both Godd and Geven. Let State(u) = Dual. Note that
in this case the out-degree of u in K is 0. The marker algorithm assigns to u the
label Lk(G, u) = 〈Lk−1(Godd, u), Lk−1(Geven, u)〉, where the first 2k−1 log n bits are
reserved for Lk−1(Godd, u) and the last 2k−1 log n bits are reserved for Lk−1(Geven, u).

Case 2. u doesn’t participate in Godd; i.e., u participates only in Geven and in K.
Let State(u) = Even. Let Lk(G, u) = 〈0k log n, 10, L(u,K), 00 . . . 000, Lk−1(Geven, u)〉,
where the two bits in the second field, 10, indicate that State(u) = Even. The
next k log n bits are reserved for L(u,K) and the last 2k−1 log n bits are reserved
for Lk−1(Geven, u).

Case 3. u doesn’t participate in Geven; i.e., u participates only in Godd and in K.
Let State(u) = Odd. Let Lk(G, u) = 〈0k log n, 11, L(u,K), 00 . . . 00, LK−1(Godd, u)〉,
where the two bits in the second field, 11, indicate that State(u) = Odd, the next
k log n bits are reserved for L(u,K), and the last 2k−1 log n bits are reserved for
LK−1(Godd, u).

The size of the label Lk(G, u) is, by induction, at most 2k log n since, by Lemma
4.9, the size of L(v,K) is at most k log n and both sizes of Lk−1(Godd, u) and
Lk−1(Geven, u) are at most 2k−1 log n.

By the definition of K, it is clear that the out-degree of some u in K is higher
than 0 iff State(u) = Even or Odd.

The decoder Dk for C(k). For t ≤ k denote the decoder for C(t) by Dt. Denote
the decoder for Jor(k) (from Lemma 4.9) by Dor. Given Lk(G, u) and Lk(G, v) we
will first want to know the states of u and v. Take for example Lk(G, u). For k > 3,
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the first k log n bits are 0 iff State(u) �= Dual. So by looking at the first k log n+2 bits
of Lk(G, u) and Lk(G, v) we know the states of u and v. Consider the following cases.

Case a. State(u) = State(v) = Dual: Then Dk for G uses Dk−1 on Geven and
Godd as follows:

Dk(Lk(G, u), Lk(G, v))

= (Dk−1(Lk−1(Godd, u), Lk−1(Godd, v)))

∨(Dk−1(Lk−1(Geven, u), Lk−1(Geven, v))).

Case b. State(u) = State(v) = Even. Then Dk for G uses Dk−1 on Geven and Dor

for K as follows:

Dk(Lk(G, u), Lk(G, v))

= Dor(L(u,K), L(v,K)) ∨ Dk−1(Lk−1(Geven, u), Lk−1(Geven, v)).

Case c. State(u) = State(v) = Odd. Then Dk for G uses Dk−1 on Godd and Dor

for K as follows:

Dk(Lk(G, u), Lk(G, v))

= Dor(L(u,K), L(v,K)) ∨ Dk−1(Lk−1(Godd, u), Lk−1(Godd, v)).

Case d. State(u) = Dual, State(v) = Even. Then let Dk(Lk(G, u), Lk(G, v)) = 1
iff Dk−1(Lk−1(Geven, u), Lk−1(Geven, v)) = 1 or id(u) appears in L(v,K).

Case e. State(u) = Dual, State(v) = Odd. Then let Dk(Lk(G, u), Lk(G, v)) = 1 iff
Dk−1(Lk−1(Godd, u), Lk−1(Godd, v)) = 1 or id(u) appears in L(v,K).

Case f. State(u) = Even, State(v) = Odd. Then

Dk(Lk(G, u), Lk(G, v)) = Dor(L(u,K), L(v,K)).

To prove correctness, use induction on k. If u and v are neighbors of level i, then
the edge (u, v) appears in Fi and therefore both u and v participate in either Godd or
Geven depending on the parity of i. Thus, by comparing the appropriate labels, say
Lk−1(Godd, u) and Lk−1(Godd, v), we can deduce that u and v are indeed neighbors
by the induction hypothesis.

If u and v are neighbors, u is of level i, and v is of level i + 1, then the edge (u, v)
either appears in Fi and State(v) = Dual or appears in K and State(v) = Even or Odd.
Thus, if (v, u) is in Fi then, if i is even, both vertices participate in Geven and, if i is
odd, then both vertices participate in Godd. By comparing the appropriate labels of
u and v (either their L(k− 1, Geven) label or their L(k− 1, Godd) label) and by using
the induction hypothesis we are able to deduce that u and v are indeed neighbors.

If State(v) = Even or Odd, then the edge (v, u) is in K, so by looking at L(v,K)
in Lk(G, v) and detecting id(u) appearing there, we conclude that u and v are indeed
neighbors.

It is clear that if u and v are not neighbors in G, then they are not neighbors in
either one of the decomposed subgraphs, and therefore, by the induction hypothesis
we can never deduce that they are neighbors by our procedure.

We get the following corollary.

Corollary 4.19. Let Gn be the family of n-vertex graphs. Then L(k−v-conn,Gn)
≤ 2k log n.
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5. A lower bound for vertex-connectivity on general graphs. In this
section we establish a lower bound of Ω(k log n) on the required label size for k-
vertex-connectivity on the class of n-vertex graphs, where k is polylogarithmic in n.
Fix a constant integer c ≥ 1, assume that k ≤ logc n, and for m = n

2(k2−k) let Gm be

the class of all m-vertex graphs 〈V,E〉 with fixed id’s {v1, . . . , vm} and degree at most
k − 1. Transform a given graph G ∈ Gm into a graph T (G) = H with n vertices in
the following way. Replace each edge ei,j = (vi, vj) in G with k vertices w1

i,j through

wk
i,j and connect all the wl

i,j ’s to both vi and vj . Since G has at most n
2k edges, H

has at most n vertices. If necessary, add arbitrary isolated vertices to H so that it
has precisely n vertices.

Observation 5.1. Two vertices vi, vj are adjacent in G iff u and v are k-vertex-
connected in T (G) = H.

Assume we have a labeling scheme 〈M,D〉 for k-vertex connectivity on n-vertex
graphs.

Observation 5.2. Consider two distinct graphs G1, G2 ∈ Gm, and let Li =
M(T (Gi)) for i = 1, 2. Then there exists a vertex vj in V such that L1(vj) �= L2(vj),
i.e., {L1(v1), . . . , L1(vm)} �= {L2(v1), . . . , L2(vm)}.

Since the number of graphs in Gm is (mk )Ω(km), which is mΩ(km) for k polyloga-
rithmic in n, we get the following corollary.

Corollary 5.3. There exists a graph G ∈ G(k) such that {L(v1), . . . , L(vm)}
consists of at least logmΩ(km) = Ω(km logm) bits, where L = M(G).

We get the following theorem.
Theorem 5.4. L(k−v-conn,Gn) = Ω(k logm) = Ω(k log n) for k polylogarithmic

in n.
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Abstract. We study universal stability of directed and undirected graphs in the adversarial
queuing model for static packet routing. In this setting, packets are injected in some edge and
have to traverse a predefined path before leaving the system. Restrictions on the allowed packet
trajectory provide a way to analyze stability under different packet trajectories. We consider five
packet trajectories, two for directed graphs and three for undirected graphs, and provide polynomial
time algorithms for testing universal stability when considering each of them. In each case we obtain
a different characterization of the universal stability property in terms of a set of forbidden subgraphs.
Thus we show that variations of the allowed packet trajectory lead to nonequivalent characterizations.

Using those characterizations we are also able to provide polynomial time algorithms for testing
stability under the ntg-lis (Nearest To Go-Longest In System) protocol.

Key words. interconnection networks, adversarial queueing theory, greedy scheduling protocols,
network stability, graph algorithms
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1. Introduction. One of the main goals in the study of the behavior of packet-
switched communication networks is to determine the conditions of stability, i.e.,
the fact that the number of packets in the system remains bounded as the system
dynamically evolves in time. Stability is studied considering that a communication
system is formed by three main components: the network, the scheduling protocol,
and the traffic pattern. Networks are modeled with (directed or undirected) graphs
in which nodes represent the hosts and edges represent the links between these hosts.
The protocol is used to schedule a packet when more than one packet wants to cross
the same edge at the same time step. Packets waiting to traverse an edge are kept
in a queue at the tail of the edge. The protocol determines the order in which the
waiting packets cross the edge. The traffic pattern controls where and how packets
join the system and defines their trajectory.

Adversarial models. The problem of deciding stability has been investigated under
various models of packet routing [8, 9, 7, 12, 3]. Some models make probabilistic
assumptions on the traffic pattern, while others replace more traditional stochastic
arrival assumptions by worst-case inputs in the traffic pattern to perform a worst-case
analysis. These latter models are closer to the traditional analysis of algorithms and to
real network configurations. The adversarial queuing theory proposed by Borodin et
al. [6], which is a robust model of queuing theory in network traffic, can be considered
as the pioneering work in studying stability via worst-case analysis.
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Adversarial models consider the time evolution of a packet-routing network as a
game between an adversary and a protocol. The adversary may inject a set of packets
at some nodes at each time step. In this work, we consider static packet routing; in
this setting, the adversary also specifies for each packet the complete path that the
packet must traverse.

Adversarial models have been shown to be good theoretical frameworks for traffic
patterns in modern communication networks. These models can reflect the behavior
of connection-oriented networks with transient connections (such as atm networks)
as well as connectionless networks (such as the Internet). Different factors are used
in those adversarial models to describe the adversary and quantify its power. Three
of these factors refer to the injection rate (i.e., the frequency at which the adversary
introduces packets into the network), the burstiness (i.e., the maximum number of
packets that can be injected in an edge in one step), and the initial configuration (i.e.,
the initial quantity of packets distributed over the network at time zero). Restrictions
on the quantity of packets injected are introduced in order to avoid adversaries that
could trivially collapse the system. In general, during each interval of time (that can
be defined in different ways), the number of packets injected during that time interval
requiring any edge in their trajectory cannot exceed a certain bound proportional to
the length of the time interval. Two main adversarial models have been considered
in the last years, both of them assuming an empty initial configuration:

The windowed adversarial (queuing) model by Borodin et al. [6]. An adver-
sary in this model is restricted by two parameters (w, r), where w ≥ 1 is the
window size and 0 < r ≤ 1 is the injection rate. The adversary is allowed to
inject sequences of packets under the restriction that, at any w consecutive
time steps, the total number of packets requiring any concrete edge e is at
most �rw�.
The leaky-bucket adversarial model by Andrews et al. [4]. An adversary in
this model is also restricted by two parameters (b, r), where b ≥ 0 is the
burstiness and 0 < r ≤ 1 is the injection rate. The adversary is allowed to
inject sequences of packets under the load condition that, of the packets that
the adversary injects in any interval T , at most �r|T |� + b may have paths
that contain the same particular edge.

In a recent work Rosén compares the relative power of the windowed and the leaky-
bucket adversarial models [18]. For injection rates r < 1, adversaries in one model can
be simulated by adversaries in the other model injecting the same sequence of packets.
Thus, the results for one model also hold for the other model. However, when r ≤ 1
a leaky-bucket adversary is more powerful than a windowed adversary, since there
are some sequences of packets that can be produced by the former when r = 1, but
cannot be produced by the latter.

In this work we will study universal stability of directed and undirected graphs
when r < 1 under the leaky-bucket adversarial model, as it is done in [4]. In general,
stability results are shown for any network with an empty initial configuration, while
instability results are shown starting from a network with a given nonempty initial
configuration (see [6] or [4]). The results in [4] show that any instability result for a
network with a given initial configuration can be translated into an instability result
with empty initial configuration for a different network. These results can be used to
show the nonuniversal stability of a given protocol but not to characterize universal
stability of networks. However, we will show that network stability is independent of
whether the initial configuration is empty or not.

Greedy protocols are those that forward a packet across an edge e whenever there
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is at least one packet stored in the queue of e waiting to traverse the edge. Some
natural greedy protocols are fifo (First In First Out), in which highest priority is
given to the packet that has arrived first in the queue; lis (Longest In System), in
which every queue gives priority to the packet that has been in the system the longest
and; and ntg (Nearest To Go), in which highest priority is assigned to the packet that
still has to cross the smallest number of edges. Other protocols are ftg (Furthest To
Go), nts (Nearest To Source), sis (Shortest In System), lifo (Last In First Out),
and ffs (Farthest From Source).

In this paper, as customary in the literature about stability, we consider only
greedy protocols. All the instability results in this paper will be shown under the
ntg-lis protocol, which works as the ntg protocol and solves ties using lis.

The packet trajectory refers to the form of the paths that packets are allowed to
follow over the network. For directed graphs, two different types of paths have been
considered in the literature. Borodin et al. [6] and Andrews et al. [4] assumed that
when a packet is injected, its assigned path does not contain any edge more than once
(see page 45 of [4]); however, a different definition of packet trajectory was considered
by Goel in [14]. Although a detailed definition is not given in [14], only paths that do
not contain any vertex more than once are allowed (see, for example, the comment
just before Lemma 2.4 on page 221 of [14]). Hence, the paths considered by Goel
(referred to in the following as simple paths) are a restrictive version of the paths
considered by Andrews et al. (referred to in the following as paths).

In the case of undirected graphs, Andrews et al. assume that packets can use
only paths that do not cross the same edge twice. This means that a packet cannot
traverse the same edge in both directions (see page 57 of [4]). We refer to these paths
as undirected paths. Together with this type of path, we will also consider paths and
simple paths defined over the directed version of the undirected graph.

Gamarnik [13] considers undirected graphs and uses a different model for the
allowed packet traffic: each edge is undirected and can carry only a single packet in
one step. This contrasts with the Andrews et al. model in which the edges can be
seen as bidirected, and each edge can carry a packet in each direction at each step.

Known results. A network is said to be universally stable when the systems com-
posed by that concrete network are stable regardless of the selected protocol and traffic
pattern. A protocol is said to be universally stable when all the systems that use it
are stable. The existence of networks and scheduling protocols that are (respectively,
are not) universally stable was initially shown in [6] and [4].

Until the work of Rosén [18], it was not clear if both the windowed and the leaky-
bucket models were equivalent. Since it was shown that they are for injection rates
r < 1, results for one model also hold for the other model when the injection ratio
accomplishes this condition. Keeping this equivalence in mind, let us summarize some
of the most important results obtained in the respective models.

In the windowed adversarial model, universal stability of networks with tree,
mesh, and directed acyclic topologies was shown to hold in [6]. On ring topologies,
protocols lis and fifo were shown to be nonstable with injection rate r = 1, whereas
ftg was shown to be stable. Concerning only protocols, it was also shown in [6] that,
for every r > 0, there exists a queuing network for which ntg is nonstable at rate r.
Every greedy protocol is shown in [16] to be stable if the injection rate is not more
than 1/(d + 1), where d denotes the diameter of the network.1 Much effort has been

1The diameter of a graph is the length of the longest path in it that does not pass twice over the
same edge.
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dedicated to the fifo protocol, for which the best known lower bound for instability
was improved in [16] down to 0.5.

In the leaky-bucket adversarial model with r < 1, stability of networks describing
a ring topology was shown to hold under any greedy protocol (see [4]). In the same
work, some commonly used simple greedy protocols (namely, ftg, nts, sis, and lis)
were shown to be universally stable, while some others (namely, fifo, lifo, ntg, and
ffs) were shown not to be universally stable. Considering that the system might have
initial configuration, stability and instability properties of fifo have been recently
studied in this model. A network-dependent constant is provided in [10] such that
fifo is stable against any adversary with a smaller injection rate. A lower bound of
0.749 for the instability of fifo was given in [15], where the stability of networks with
heterogeneous protocols also was addressed. Moreover, in [19] it was shown that fifo

is stable when the injection rate is smaller than 1/(d − 1). In this model, fifo has
been shown to be unstable at arbitrarily low injection rates [5].

With regard to the universal stability of networks one of the first questions that
arose was whether it would be possible to detect stability from the knowledge of the
topological structure of the network and the scheduling protocols. For undirected
graphs, Andrews et al. show in [4] that, for a particular type of packet trajectory (the
one we call undirected path), cycles and trees are universally stable. Furthermore, they
also show that the family of undirected-path universally stable graphs is minor-closed
and that there exists a finite set of basic undirected graphs such that a graph is stable
if and only if it does not contain as a minor any of the graphs in that set. These
results guarantee decidability in polynomial time; however, a constructive proof is
not presented.

Our results. In this paper we consider the computational complexity of deciding
universal stability of directed and undirected graphs. We consider different restrictions
on the type of path that the packets can follow, i.e., the packet trajectory. We would
like to highlight the importance of specifying the type of path since, for each category,
the characterization of universal stability is different. For each considered case we
obtain a characterization in terms of forbidden subgraphs and provide an explicit
polynomial time algorithm for deciding the property of stability. Concerning directed
graphs, and under the assumption that packets follow simple paths, we obtain a
characterization of universal stability that disproves the characterization in [14] under
the same assumption (which was presented in terms of the forbidden minors given in
Figure 1). Further comments concerning this fact will be given after presenting our
characterization.

An interesting question concerning stability is that of deciding the stability of a
concrete network under a fixed protocol. Using the fact that all the instability results
obtained in this paper apply to networks under the ntg-lis protocol, we can show
that the problem of deciding whether a network is stable under the ntg-lis protocol
can also be solved in polynomial time.

Organization. Section 2 sets out the definitions of all models considered in this
work and some preliminary results. In section 3, universal stability of some partic-
ular directed and undirected graphs is shown. Section 4 contains the basic results
on instability of directed and undirected graphs. Finally, section 5 details the char-
acterizations for universal stability in terms of forbidden subgraphs, and section 6
provides alternative characterizations in terms of graph properties together with the
algorithms that check them. Finally, section 7 shows the polynomial time decidability
of checking for stability under the ntg-lis protocol. For sake of readability several
technical proofs have been delayed to the appendix.
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Fig. 1. Forbidden minors proposed in [14] for simple-path universal stability of digraphs.

2. Preliminaries. All the graphs in this paper may have multiple edges but no
loops. Multiple edges share the same pair of different endpoints, while the endpoints
of a loop are the same vertex. We will use the term digraph to refer to a directed
graph and simply graph for an undirected graph. For a digraph we will use the term
arc instead of edge. Given a graph G, Gd denotes the digraph formed from the same
vertex set as G but replacing every edge {u, v} in G with the two arcs (u, v) and
(v, u).

Two edges are incident if they share at least one vertex. A walk is an alternating
sequence of vertices and edges (respectively, arcs) in the form

v0, e1, v1, . . . , vn−1, en, vn,

where for each i, 1 ≤ i ≤ n, ei = {vi−1, vi} (respectively, ei = (vi−1, vi)) and each vj
is a vertex. A path is a walk in which all the edges (respectively, arcs) are different.
A simple path is a walk in which all the vertices, and thus necessarily all the edges
(respectively, arcs) are different. A walk is closed if v0 = vn. A closed walk is an
n-cycle provided its n vertices are distinct.

In this work we adopt, without loss of generality, the leaky-bucket definition of
adversary which is defined by two parameters (r, b), where b ≥ 0 and 0 < r ≤ 1. An
(r, b)-adversary (or just an adversary) is allowed to inject sequences of packets under
the load condition that, of the packets that the adversary injects in any interval T ,
at most �r|T |� + b packets may have trajectories that contain any particular edge.
Rosén [18] showed that adversaries in the windowed and in the leaky-bucket models
(starting with an empty configuration) have the same power provided that r < 1.
The equivalence requires only a change in the parameters of the adversary, not in the
sequence of packet trajectories; therefore it provides a valid equivalence for all our
subclasses of adversaries.

When in addition to an (r, b)-adversary A, we are given an initial configuration
C, we can define a new (r, b′)-adversary A’ as follows:

Let b′ = b + |C|; then A′ injects all the packets in C at time step
1, and at any other time step t > 1, the same set of packets that A
would inject at time t− 1.

Here the initial configuration means the set of packets that are in the system
initially. Both systems, with empty or nonempty initial configuration, behave alike;
hence we can work equivalently with empty or not empty initial configuration. Since
only the parameters of the adversary have to be changed, this remark is also valid
for any system with some restrictions on the packet trajectory. Notice that this is a
stronger result than the analogous result given in [4] since here the graph does not
need to be changed (if the graph topology is changed, then results on stability of
networks cannot be translated from one model to the other).

Throughout the paper we will use the leaky-bucket adversarial model with empty
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Table 1

Summary of concepts.

Directed Graphs
Packet trajectory Characteristics of the route Stability term

path walk with nonrepeated edges stability
simple path walk with nonrepeated vertices simple-path stability

Undirected Graphs
Packet trajectory Characteristics of the route Stability term

path path in Gd stability
undirected path path in G undirected-path stability

simple path simple path in Gd simple-path stability

initial configuration and r < 1. However, for the sake of simplicity, we will use non-
empty initial configurations when describing adversaries causing network instability.
In the following, we establish the definitions of stability in the adversarial queuing
model used in this work. The different definitions are summarized in Table 1.

Definition 1. Given a network G, a protocol P , and an adversary A, we say
that the system (G,P,A) is stable if the number of packets in the system is always
bounded.

2.1. Networks as digraphs. When the network is represented by a digraph
G, we consider two classes of packet trajectories, thus giving rise to two adversary
classes: an adversary can use as packet trajectory any path in G, while a simple-path
adversary can use as packet trajectory only simple paths in G. Accordingly we set
the two definitions of stability under a protocol.

Definition 2. Given a digraph G and a protocol P , we say that

– G is stable under protocol P (the pair (G,P ) is stable) if for any adversary
A, the system (G,P,A) is stable.

– G is simple-path stable under protocol P (the pair (G,P ) is simple-path sta-
ble) if for any simple-path adversary A, the system (G,P,A) is stable.

Similarly, we define universal stability of digraphs in the following form.

Definition 3. A digraph G is universally stable if, for any protocol P , the pair
(G,P ) is stable. A digraph G is simple-path universally stable if, for any protocol P ,
the pair (G,P ) is simple-path stable.

Observe that any universally stable digraph is also simple-path universally stable,
but the opposite, as we will see, is not true.

The property of simple-path universal stability was shown in [14] to be maintained
when acyclically joining simple-path universally stable digraphs. A closer inspection of
the proof reveals its validity for the two proposed models for directed graphs proposed
in this work.

Lemma 1. If digraphs G1 and G2 are (simple-path) universally stable, then so is
any graph G formed by joining them with edges that go only from G1 to G2.

As a consequence of the previous result we have the following theorem.

Theorem 1. A digraph G is (simple-path) universally stable if and only if all its
strongly connected components are (simple-path) universally stable.

2.2. Networks as graphs. When representing networks by undirected graphs,
we consider three different packet trajectory restrictions: given a graph G, an adver-
sary can use as packet trajectory any path in Gd; an undirected-path adversary can
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use as packet trajectory any path in G; and a simple-path adversary can use as packet
trajectory only simple paths in Gd.

Observe that, in the first case, an edge can be used twice by the same packet pro-
vided it is traversed in opposite directions, but both directions have different queues
and thus this model is different from Gamarnik’s proposal [13]. In the second model
the same edge can be traversed only once. This corresponds with the model used by
Andrews et al. in [4]. The third model does not allow a packet to pass twice through
the same vertex. Notice that, in this latter model, a multiedge can be traversed
only once and only in one direction. Observe that the condition simple-path in G
is equivalent to simple-path in Gd, so the fourth possible model has already been
considered.

As before, we set the definitions of stability under a protocol.
Definition 4. Given a graph G and a protocol P , we say that

– G is stable under protocol P (the pair (G,P ) is stable) if for any adversary
A, the system (G,P,A) is stable.

– G is undirected-path stable under protocol P (the pair (G,P ) is undirected-
path stable) if for any undirected-path adversary A, the system (G,P,A) is
stable.

– G is simple-path stable under protocol P (the pair (G,P ) is simple-path sta-
ble) if for any simple-path adversary A, the system (G,P,A) is stable.

It is straightforward to show that if a pair (G,P ) is stable, then (G,P ) is also
undirected-path stable, and if (G,P ) is undirected-path stable, then (G,P ) is simple-
path stable. As we will see later, these inclusions are strict. Now we can write the
corresponding definitions of universal stability.

Definition 5. A graph G is universally stable if for any protocol P the pair
(G,P ) is stable. A graph G is undirected-path universally stable if for any protocol
P the pair (G,P ) is undirected-path stable. A graph G is simple-path universally
stable if for any protocol P the pair (G,P ) is simple-path stable.

The universal stability of graphs under the undirected-path model (as defined
above) was addressed in [4] where it is proved to be closed under minors and therefore
decidable in polynomial time; however, no constructive algorithm is known. For the
other models this question was unresolved. We show a constructive way of deciding
the universal stability property also for the other models.

We can also state an equivalent result to that in Theorem 1 for the three forms
of universal stability for undirected graphs presented here. Note that in the case of
undirected graphs, each pair of connected components are independent, i.e., there is
no edge connecting them.

Theorem 2. A graph G is (simple-path | undirected-path) universally stable if
and only if all its connected components are (simple-path | undirected-path) universally
stable.

Finally, let us remark that in any of the five packet trajectory models considered in
this paper (i.e., two for digraphs and three for graphs), the instability of a sub(di)graph
implies the instability of the whole (di)graph.

3. Some universally stable graphs and digraphs. In the following, we use
standard graph terminology to denote the following graphs and digraphs: directed
and undirected trees, the cycle on k vertices (k ≥ 2), the directed cycle on k vertices
(k ≥ 2), and directed acyclic graphs. For graphs and digraphs with multiple edges we
define

– a unicyclic graph as those graphs that contain only one cycle (see Figure 2(b.3));
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– a multi-tree as an undirected tree with multiple edges (see Figure 2(c.1));
– a decorated cycle as being obtained from a k-cycle with k ≥ 3, and some

multitrees (see Figure 2(c.2)), after identifying one vertex from each tree
with a vertex from the cycle;

– an oriented multitree as the directed version of an undirected tree in which
each edge is substituted by two arcs (one in each direction), and which can
also contain multiple arcs (see Figure 2(c.3)). Note that all the simple directed
cycles have two vertices;

– a decorated directed cycle as the directed version of a k-cycle with k ≥ 3, and
some oriented multitrees, after identifying one vertex from each “tree” with
a vertex from the cycle (see Figure 2(c.4)). Note that the obtained graph is
strongly connected.

In this section we prove the universal stability of some graphs and digraphs accord-
ing to the different packet trajectories considered. Previous results from [6] and [4] are
rewritten as Lemmas 2 and 3 according to the terminology introduced in this work.

Lemma 2. All acyclic digraphs and the directed cycle on any number of vertices
are universally stable.

As we have commented before, universal stability of digraphs implies simple-path
universal stability; therefore, acyclic digraphs and directed cycles are also simple-path
universally stable. Concerning graphs, we know that the following lemmas hold.

Lemma 3. All trees and cycles on any number of vertices are undirected-path
universally stable.

Now we give another family of undirected-path universally stable graphs, thus
extending the previous result.

Lemma 4. All unicyclic graphs are undirected-path universally stable.

Proof. Observe that, if G is a unicyclic graph, removing the edges in the cycle
results in a forest. We root each tree in this forest at the vertex that is common with
the cycle; this gives an orientation upwards or downwards to every arc in Gd.

We classify the packets into three flow types. Flow type α is formed by those
packets injected in an upward arc. Flow type β is formed by packets injected in a
cycle arc; in fact, we will consider this flow split into two flows, depending on whether
the initial arc follows one of the two cycle orientations. Finally, flow type γ is formed
by the packets injected in a downward arc.

Observe that packets starting in a downward arc can follow only downward arcs;
otherwise they will use twice an edge in G. Similarly, packets starting in the cycle
cannot change the initial cycle orientation. Therefore they either die in the cycle or
leave the cycle using a downward arc. This provides a directed acyclic interaction of
the three flow types. Upward edges can carry only packets from α flow. As directed
acyclic graphs are undirected-path stable, the corresponding queues will have bounded
maximum size. The edges in the cycle can be considered as two directed cycles, as
no flow can be passed from one to the other. These cycle edges can get packets
from α flow and β flow. In this situation we have a stable network (upward edges)
entering in another stable network (one of the directed cycles) and, by Lemma 1, the
corresponding queues will have bounded maximum size. For the downward arcs we
have the same situation, a flow coming from a stable network entering in another
stable network. Thus the result follows.

All the families of graphs which are undirected-path universally stable are also
simple-path universally stable. However, we can enlarge the set of simple-path uni-
versally stable graphs by allowing multiple edges.
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Lemma 5. A multitree is simple-path universally stable.
Proof. Observe that a packet can use only once, and only in one direction, one

of the multiple edges connecting the same pair of vertices. The argument is similar
to the one in Lemma 4: we root the tree in order to assign an upward/downward
direction to the edges in Gd. The simple-path requirement prevents packets starting
in a downward arc from using an upward arc (even in the case where the arcs in Gd

come from different edges in G), because in this case, a vertex would be visited twice.
Thus, we can conclude the simple-path universal stability of a multitree.

Lemma 6. A decorated cycle is simple-path universally stable.
Proof. The result follows from Lemmas 4 and 5 using the same arguments as in

Lemma 5.
Lemma 7. A oriented multitree and a decorated directed cycle are simple-path

universally stable.
Proof. The result follows from Lemmas 5 and 7 using the arguments similar to

those in Lemmas 4 and 5.
Figure 2 summarizes and classifies the families of graphs and digraphs that are

universally stable according to the different packet trajectories considered.

4. Some graphs and digraphs that are not universally stable. Once the
families of universally stable graphs and digraphs are identified for each of the cases
considered, we focus on detecting which are the simplest graphs and digraphs that are
not stable. By iteratively applying subdivision operations to those simplest graphs
and digraphs we will “extend” them and we will define families of graphs. Each family
will characterize one of the cases of universal stability introduced in this work. We
consider the following subdivision operations on graphs and digraphs:

– The subdivision of an edge {u, v} in a graph G consists of the addition of
a new vertex w and the replacement of {u, v} by the two edges {u,w} and
{w, v}.

– The subdivision of an arc (u, v) in a digraph G consists of the addition of a
new vertex w and the replacement of (u, v) by the two arcs (u,w) and (w, v).

– The subdivision of a 2-cycle (u, v), (v, u) in a digraph G consists of the addi-
tion of a new vertex w and the replacement of (u, v), (v, u) by the arcs (u,w),
(w, u), (v, w), and (w, v).

Given a graph G, E (G) denotes the family of graphs formed by G and all the
graphs obtained from G by successive edge subdivisions. Given a digraph G, E (G)
denotes the family of digraphs formed by G and all the digraphs obtained from G by
successive arc or 2-cycle subdivisions. Observe that, for a graph G, E (G)

d ⊆ E
(
Gd

)
,

but it might be the case that E (G)
d �= E

(
Gd

)
; see Figure 3 for an example.

In this section we will prove instability results of networks under the ntg-lis

protocol. To simplify the notation, a path is specified by the sequence of its edges.
First we show that some simple graphs are not stable and second we apply subdivision
operations to these graphs and also show their instability. Observe that, as we are
using the ntg protocol, if the length of the path that a packet has to traverse is in-
creased, then its priority at a given edge can be changed. Therefore, edges composing
a packet path cannot be replaced indistinctly with paths. However, for the particular
graphs and adversaries we will deal with, the adversary can be adapted to provide
an instability proof. The names used to denote the graphs correspond to the ones
depicted in Figures 4 and 5.

Theorem 3. All the digraphs in E (U1)∪E (U2) are not stable under the ntg-lis

protocol.
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Fig. 2. Examples of representatives of the families of universally stable graphs and digraphs in
different cases considered in this work.

Fig. 3. An example illustrating the differences between E (G)d and E
(
Gd

)
.

Proof. We sketch here the main lines and refer the reader to Appendix A where
some of the most technical auxiliary results are proved. We start by showing that
the pair (U1,ntg-lis) is not stable; to do so we provide an adversary and an initial
configuration. The adversary works in rounds, and at the end of the presented rounds
the network has a configuration with the same type of packets as in the initial con-
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Fig. 4. Some not universally stable digraphs.

Fig. 5. Some not universally stable graphs.
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figuration but with an increased number of them. By repeatedly playing the set of
rounds the system shows instability.

Initial configuration. At the beginning there are s packets that want to traverse
edge f ; half of them are of the form (e1 f), and half of them are of the form (e2 f).
The adversary A will play injections in four rounds.

Round 1. For s steps, the adversary injects rs packets of the form (f e2). These
injections get mixed with the initial packets at edge f and are blocked there because
the queuing protocol is ntg.

Round 2. For the next rs steps, the adversary injects a set of r2s packets of the
form (f e1) and r2s packets of the form (e2). Injections (f e1) are blocked by the
packets (f e2) from the first round because they are at the same distance to their
destination and the secondary protocol that we apply is lis. The r2s injections of the
form (e2) are also blocked.

Round 3. For the next r2s steps, the adversary injects r3s packets of the form (e2)
and r3s of the form (e1 f). The simple injections on e2 will be blocked by the packets
at e2 from the previous round. The (e1 f) injections get mixed with the packets of
the form (f e1) from the previous round at edge f , where the injections get blocked
because their distance to destination is longer.

Round 4. For the next r3s steps, the adversary injects r4s packets of the form
(e2 f) and r4s packets of the form (e1). The simple injections at e1 block the packets
(e1 f) from the previous round because their distance to destination is shorter. The
(e2 f) injections are blocked by the (e2) packets from the previous round.

At the end there are 2r4s packets queued at e1 and e2 that want to traverse edge
f , r4s are of the form (e1 f), and r4s are of the form (e2 f). If cycles are allowed, the
adversary A described above makes the network U1 nonstable when 2r4s > s, i.e., at
injection rate r > 0.84089.

The second step is to prove instability for the pair (U2,ntg-lis), as is done in
Lemma 9 of Appendix A. Once the two base digraphs are shown not to be stable, we
have to show instability for any extension of them. Observe that only the extensions
obtained by arc subdivision have to be considered since the extensions obtained by
2-cycle subdivision already contain U2 as a subgraph. Therefore, we have only to
consider the two extensions depicted in Figures 6(a) and 6(b) whose corresponding
instability results are given in Lemmas 10 and 11 (see Appendix A).

We remark that, for digraphs, simple-path stability and stability are not equiv-
alent. The pair (U1,ntg-lis) is not stable although U1 is simple-path universally
stable. The last result is easy to obtain as the set of simple-paths in U1 is the set
{(e1), (e2), (f)}, and any adversary using this set of disjoint packet trajectories is
equivalent to an adversary playing on a digraph with three isolated arcs. The latter
digraph is acyclic and therefore universally stable. Similar reasoning can be applied
to U2. These considerations lead to digraphs S1, S2, S3, and S4 (see Figure 4(b)) as
the smallest digraphs which are not simple-path universally stable.

Theorem 4. All the digraphs in E (S1)∪E (S2)∪E (S3)∪E (S4) are not simple-
path stable under the ntg-lis protocol.

Proof. The proof follows the same lines as for Theorem 3. We first prove that S1,
S2, S3, and S4 are not simple-path stable (Lemmas 12, 13, 14, and 15). The restriction
on considering simple-path trajectories justifies the need for having cycles of length
at least 3 in a simple-path nonstable digraph. Extensions by 2-cycle subdivision
are applicable only to S4. Therefore, to finish the proof we show that the digraphs
corresponding to the extensions depicted in Figures 7(a), 7(b), 7(c), and 7(d) are not
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simple-path stable (Lemmas 16, 17, 18, 19, and 11). See Appendix B for details.

Theorem 5. All the graphs in E (H1)∪ E (H2) are not stable under the ntg-lis

protocol.

Proof. First observe that Hd
1 contains U1 as a subgraph and that Hd

2 is U2.
Furthermore, any graph in E (H1) ∪ E (H2) can be oriented to contain, as a sub-
graph, a graph in E (U1)∪E (U2); therefore its instability under ntg-lis follows from
Theorem 3.

Observe that the graph H1 is undirected-path universally stable; again the set
of possible undirected-path packet trajectories is formed by nonoverlapping paths
with length 1. Therefore, undirected-path stability and stability are nonequivalent
properties. Similar reasoning can be applied to H2.

To characterize undirected-path stability we need to consider some larger graphs.
Furthermore, instead of considering a fully directed version of the graph, we will need
to fix an orientation to all the edges, with the exception of those that are graph
separators, as those edges may have to be crossed in both directions.

Theorem 6. All the graphs in E (F 1) ∪ E (F 2) ∪ E (F 3) are not undirected-path
stable under the ntg-lis protocol.

Proof. Let us prove first that the graphs F 1 and F 2 are ntg-lis undirected-path
nonstable. Giving an adequate orientation to the edges in F 1 and F 2, we get the
digraphs U1 and U2 and as each arc corresponds to a different edge, the instability
follows. Maintaining these orientations, any graph in G ∈ E (F 1) ∪ E (F 2) can be
identified with a digraph in E (U1) ∪ E (U2) and therefore G is not undirected-path
stable under ntg-lis.

For the graph F 3 we can fix an orientation for the edges forming the 2-cycles but
we have to keep both directions, where possible, for the middle edge. Although no
packet can use both, different packets may traverse the edge in different directions.
Starting with the proof of ntg-lis instability for the graph U2 and working in a
similar way as in Lemmas 15 and 19 it follows that F 3 and any graph in E (F 3) are
not undirected-path stable under ntg-lis.

The graph F 1 is simple-path universally stable but not undirected-path stable;
therefore simple-path stability differs from undirected-path stability. Cycles of length
3 or longer are needed to obtain simple-path nonstable graphs, thus obtaining K1,
K2, and K3 as the smallest graphs which are not simple-path stable.

Theorem 7. All the graphs in E (K1)∪E (K2)∪E (K3) are not simple-path stable
under ntg-lis.

Proof. Observe that we can give an orientation to the edges in K1 and K2 to
obtain the digraphs S1 and S3 that are not simple-path stable under ntg-lis. For
the graph K3 we can orient the two cycles and maintain the two opposite arcs for
the middle edge, obtaining the graph S4. Theorem 4 gives the simple-path instability
under ntg-lis for any graph in E (K1) ∪ E (K2) ∪ E (K3).

5. Characterizing universal stability. In this section we provide character-
izations for the universal stability property of digraphs and graphs for each of the
five proposed adversarial models. As before, the graph nomenclature corresponds to
Figures 4 and 5.

We first show the characterization of the simple-path universal stability property
since, in our opinion, the properties defining the simple-path stability for graphs are
easier to understand once the corresponding properties for simple-path stability of
digraphs are given.
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Theorem 8. A digraph is universally stable if and only if it does not contain as
subgraphs any of the digraphs in E (U1) ∪ E (U2).

Proof. The “only if” part follows from Theorem 3 and the fact that the instability
of a subgraph implies the instability of the whole graph. If G does not contain as a
subgraph a digraph in E (U1) ∪ E (U2), then all its strongly connected components
must consist of a simple cycle. Therefore, according to Lemma 2 and Theorem 1 we
have that G is universally stable.

Using the arguments in the previous proof, Theorem 8 gives the following prop-
erty.

Corollary 1. A strongly connected digraph G with n vertices is universally
stable if and only if G is the directed cycle on n vertices.

For the case of universal stability of graphs, the basic set of forbidden subgraphs
is given in Figure 5(a).

Theorem 9. A graph is universally stable if and only if it does not contain as
subgraphs any of the graphs in E (H1) ∪ E (H2).

Proof. The “only if” part follows from Theorem 5. If a graph G does not contain
as a subgraph any of the graphs in E (H1)∪ E (H2), then G has no incident edges, so
it is universally stable.

For the case of universal stability the corresponding graph property is the follow-
ing corollary.

Corollary 2. A graph G is universally stable if and only if all the vertices in
G have degree at most 1.

For the case of undirected-path universal stability of graphs, the basic set of
forbidden subgraphs is given in Figure 5(b).

Theorem 10. A graph G is undirected-path universally stable if and only if G
does not contain as a subgraph any of the graphs in E (F 1) ∪ E (F 2) ∪ E (F 3).

Proof. The “only if” part follows from Theorem 6. Assume now that G does not
contain as a subgraph any of the graphs in E (F 1) ∪ E (F 2) ∪ E (F 3). In this case
G does not contain any edge with multiplicity 3, and all the connected components
of G contain at most one cycle. Therefore, all the connected components of G are
undirected-path universally stable by Lemma 3.

For the case of undirected-path universal stability of graphs, the corresponding
property is the following corollary.

Corollary 3. A connected graph G is undirected-path universally stable if and
only G is a subgraph of a unicyclic graph.

For the case of simple-path universal stability of graphs, the basic set of forbidden
subgraphs is given in Figure 5(c).

Theorem 11. A graph G is simple-path universally stable if and only if G does
not contain as a subgraph any of the graphs in E (K1) ∪ E (K2) ∪ E (K3).

Proof. The “only if” part follows from Theorem 7. When G does not contain as
subgraphs any of the graphs in E (K1) ∪ E (K2) ∪ E (K3), all the connected compo-
nents of G can have at most one cycle with more than two vertices, so they must be
subgraphs of a decorated cycle graph. Therefore, using Lemma 6, G is simple-path
universally stable.

Corollary 4. A connected graph G is simple-path universally stable if and only
if G is a subgraph of a decorated cycle graph.

The case of simple-path universal stability is needed to complete the character-
ization for digraphs. In this case the basic set of forbidden subgraphs is given in
Figure 4(b).
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Theorem 12. A digraph G is simple-path universally stable if and only if G does
not contain as a subgraph any of the graphs in E (S1) ∪ E (S2) ∪ E (S3) ∪ E (S4).

Proof. As before, the “only if” part follows from Theorem 4. When G excludes the
family of forbidden subgraphs, each strongly connected component of G must contain
at most one directed cycle with more than two vertices. Therefore all the strongly
connected components are subgraphs of a decorated directed cycle graph. Therefore,
by Lemma 7, all the strongly connected components are simple-path universally stable,
and by Theorem 1, G is simple-path universally stable.

Corollary 5. A strongly connected digraph G is simple-path universally stable
if and only if G is a subgraph of a decorated directed cycle graph.

We have shown that the graph S1 in Figure 4(b) is not simple-path stable under
the ntg-lis protocol. The only graph transformation proposed by Goel in [14] consists
of replacing arcs by disjoint directed paths (see Corollaries 2.5 and 2.7 in [14]). Hence,
our graph S1 is a minor of the first minor proposed there. We also show that the
digraph S4 is not simple-path stable; however, S4 does not contain as minor any of
the forbidden minors in the characterization in [14], and therefore must be universally
stable according to Goel’s result. However, we have shown this is not the case. These
facts disprove the characterization proposed by Goel in [14] and they establish the
set {S1, S2, S3, S4} (see Figure 4(b)) as the set of forbidden subgraphs characterizing
the property of simple-path stability for digraphs.

6. Deciding universal stability. In this section we show that the five cases
of universal stability presented in this work can be decided in polynomial time. For
undirected graphs we could use the polynomial time algorithm for checking subgraph
homeomorphism of the corresponding forbidden subgraphs given in [17]; however, our
algorithms are much simpler. Notice that for directed graphs checking subdigraph
homeomorphism to a fixed digraph is NP-complete. In particular this is the case for
the digraphs S1, S2, and S3 (see [11]). However, the combination of several digraphs
and the properties outlined in Corollaries 1, 2, 3, 4, and 5 are, as we will see, easier
to test.

Theorem 13. The universal stability of a given graph or digraph can be decided
in polynomial time.

Proof. According to Corollary 2, to decide universal stability for graphs we only
have to check if the graph has two incident edges. To check universal stability for
digraphs, following Corollary 1, we have to compute the strongly connected compo-
nents of the graph and then check whether all of them are just one directed cycle.
Both tests can be performed in polynomial time.

For the remaining adversarial models we first need to characterize the graphs that
are subgraphs of a unicyclic graph.

Lemma 8. A connected graph G with m edges and without multiple edges is a
subgraph of a unicyclic graph if and only if any spanning tree of G has m or m − 1
edges.

According to the previous lemma, Algorithm 1 checks whether a connected graph
G, without multiple edges, is a subgraph of a unicyclic graph, in polynomial time. The
algorithms to decide universal stability combine this checking with some additional
testing for the multiedges.

Theorem 14. The undirected-path universal stability of a given graph can be
decided in polynomial time.

Proof. Algorithm 2 checks the undirected-path universal stability of a given con-
nected graph G according to Corollary 3. Its total execution time is polynomial. Then,
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Algorithm 1 : Subgraph of a unicyclic graph

input: A connected graph G
Compute a spanning tree of G
if there are more than one edge left then

return no
else

return yes
end if

Algorithm 2 : Graph undirected-path stability

input: A connected graph G
if some edge has multiplicity 3 then

return no
else

compute the connected components of G
if a connected component has two edges with multiplicity 2 then

return no
end if
‖ Now all the connected components have at most one edge with multiplicity 2
if there is a connected component of G that is not a subgraph of a unicyclic
graph then

return no
else

return yes
end if

end if

by combining this algorithm with the computation of the connected components of
the given graph, we obtain a polynomial time algorithm.

Theorem 15. The simple-path universal stability of a given graph can be decided
in polynomial time.

Proof. Algorithm 3 checks the simple-path universal stability of a given connected
graph G according to Corollary 4. The total execution time is polynomial. Thus,
combining this algorithm with the computation of the connected components of the
given graph, we can check the property in polynomial time.

Theorem 16. The simple-path universal stability of a given digraph can be de-
cided in polynomial time.

Proof. Algorithm 4 checks the simple-path universal stability of a given strongly
connected digraph G according to Corollary 5. The total execution time is polyno-
mial. By combining this algorithm with the computation of the strongly connected
components of the given digraph, we obtain a polynomial time algorithm.

All the algorithms presented in this section run in polynomial time. Note that the
most expensive operations are the computation of the strongly connected components
of a digraph, the computation of the connected components of a graph, and the
computation of a spanning tree of a connected graph.

7. Stability under NTG-LIS. An interesting question concerning stability is
that of deciding the stability of a concrete network under a fixed protocol. Since all
the instability results in this work hold for the ntg-lis protocol, we can conclude that



A CHARACTERIZATION OF UNIVERSAL STABILITY 57

Algorithm 3 : Graph simple-path stability

input: A connected graph G
Let G′ be the graph obtained from G by setting all edge multiplicities to one
Compute the connected components of G′

if there is a connected component H of G′ s.t. H is not a subgraph of a unicyclic
graph or H is a unicyclic graph having k ≥ 3 vertices in the cycle and with some
cycle edge having multiplicity bigger than 1 in G then

return no
else

return yes
end if

Algorithm 4 : Digraph simple-path stability

input: A strongly connected digraph G
if G does not have a directed k-cycle with k ≥ 3 then

return yes
else

compute a directed cycle C = (vk, e1, v1, . . . , vk−1ek, vk) in G (k ≥ 3)
if any of the cycle arcs has multiplicity bigger than one then

return no
end if
Let e′i be the arc opposite to ei, 1 ≤ i ≤ k
if all the arcs e′i are present in G and some of them have multiplicity bigger than
one then

return no
end if
Let G′ be the digraph obtained by setting the multiplicity of all arcs in G to one
and by removing the arcs in C and all the opposite arcs e′i (if any).
if there are 2-cycle vertices connected by a directed path in G′ then

return no
else

Compute the strongly connected components of G′

if a strongly connected component of G′ contains a directed k-cycle with k ≥ 3
then

return no
else

return yes
end if

end if
end if

testing universal stability is equivalent to testing stability under ntg-lis. Moreover,
deciding whether a network is stable under the ntg-lis protocol can also be solved
in polynomial time. The equivalences hold for all the cases of universal stability
considered in this work, as we state in the following theorem.

Theorem 17. The following equivalences hold:

– A digraph G is stable under ntg-lis if and only if G is universally stable.
– A digraph G is simple-path stable under ntg-lis if and only if G is simple-
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Fig. 6. Family of digraphs formed by extensions of U1 and U2.

path universally stable.
– A graph G is stable under ntg-lis if and only if G is universally stable.
– A graph G is undirected-path stable under ntg-lis if and only if the graph G

is undirected-path universally stable.
– A graph G is simple-path stable under ntg-lis if and only if G is simple-path

universally stable.

A similar result was obtained in [1] for the universal stability of digraphs under
the ffs protocol, for which the same characterization (i.e., in terms of the family of
graphs generated from U1 and U2; see Figure 4(a)) is obtained. The technique can be
easily extended to show the equivalence of stability under ffs and universal stability
in all the models of adversary considered in this work. To the best of our knowledge
the complexity of deciding stability under other nonuniversally stable protocols is still
open, in particular for fifo and lifo. Even though much effort has been devoted to
the study of the fifo protocol, it is still not known whether deciding stability under
fifo is polynomial time decidable. The bottleneck, with regard to the characterization
of universal stability, is whether the pair (U1, fifo) is stable, as the pair (U2, fifo)
was shown to be not stable in [2].

Appendix A. Proof of Theorem 3. All the instability proofs are based on
induction. A set of rounds compose a step of the induction reasoning. The goal is to
demonstrate that the number of packets in the system can increase from one step to
the next (and, by applying the inductive hypothesis, they can increase indefinitely).
The configuration of the system at the end of every step must be the same as the
configuration at the beginning of each inductive step (in terms of the type of packets
and their location), but with an increased number of packets. In these appendices we
reproduce only the inductive step.

Lemma 9. The pair (U2,ntg-lis) is not stable.

Proof. At the beginning there are s packets that must traverse edge f2. Half of
them are of the form (e1 f2), and half are of the form (e2 f1 f2). Then the adversary
will play injections in four rounds.

Round 1. For s steps, the adversary injects rs packets of the form (f2 e1). These
injections get mixed with the initial packets at edge f2 and are blocked there because
the queuing protocol is ntg.

Round 2. For the next rs steps, the adversary injects a set of r2s packets of the
form (f2 e1 e2) that are blocked by the remaining packets at f2 from the previous
round because the protocol is ntg.

Round 3. For the next r2s steps, the adversary injects r3s packets of the form
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(e2) and r3s of the form (e1 f2). A total number of r3s packets of the from (e2) will
remain at e2. Injections of the form (e1 f2) will meet packets from the previous round
at edge e1 and, because the secondary protocol is lis, they all will be blocked at this
edge.

Round 4. For the next r3s steps, the adversary injects r4s packets of the form (e2

f1 f2) and r4s packets of the form (e1). The simple injections at e1 block the packets
(e1 f2) from the previous round because their distance to destination is shorter. The
(e2 f1 f2) injections are blocked by the (e2) packets from the previous round.

At the end of the fourth round there are r4s packets of the form (e2 f1 f2)
and r4s packets of the form (e1 f2). If cycles are allowed, the adversary described
above makes the network U2 nonstable when 2r4s > s, i.e., at injection rate r >
0.84089.

Lemma 10. Any graph in E (U1) is not stable for ntg-lis.
Proof. Let G be the graph in E (U1) described in Figure 6(a). This graph is

obtained from S1 by replacing the edges by paths. Let us denote by pn, pm, and pd
the path replacing the edges. Let us assume that n ≥ m− 1. The adversary operates
in four rounds. Initially, there are s packets wanting to traverse pd and they are
distributed in the following way: x packets of the form (pn e1 pd) and y packets of
the form (pm pd).

Round 1. For s steps, the adversary injects rs packets of the form (pd pm). These
injections are blocked by the initial packets because the queuing protocol is ntg, but
rm of them are lost. We consider a big enough s to guarantee that a continuous flow
arrives to the first edge of pd after the arrival of the first packet.

Round 2. For the next rs − rm steps, the adversary injects a set of r2s − r2m
packets of the form (pd pn e1) and r2s−r2m packets of the form (pm). These injections
are blocked by the remaining packets from the previous round because the queuing
protocol is ntg (or because of the lis protocol if n = m− 1). Note that rd injections
of the form (pm) will be lost.

Round 3. For the next r2s− r2m steps, the adversary injects r3s− r3m packets
of the form (pm) that will all be blocked by packets from the previous round. The
adversary also injects r3s− r3m packets of the form (pn e1 pd) that will collapse with
packets from the previous round. These injections will be blocked there because their
distance to destination is longer at that point, but rd of them will be lost. At the end
of this round there are r3s− r3m− r2d packets of the form (pm) and r3s− r3m− rd
packets of the form (pn e1 pd).

Round 4. For the next r3s− r3m− r2d steps, the adversary injects r4s− r4m−
r3d packets of the form (pn e1) and r4s − r4m − r3d packets of the form (pm pd).
The injections on pn will keep some packets of the previous round blocked, and the
injections on pm will be blocked by the remaining packets from the previous round.

At the end of the fourth round, there are r4s−r4m+r3d−r2d packets of the form
(pn e1 pd) and r4s− r4m− r3d packets of the form (pm pd). The adversary described
above uses packets describing cycles and makes the graph G described above nonstable
when 2r4s− 2r4m− r2d > s. Note that C = 2r4m + r2d > 2m + d and, for a big
enough s, an injection rate r can be found such that 2r4s− C > s holds.

Lemma 11. Any graph in E (U2) is not stable for ntg-lis.
Proof. Let G be a graph in E (U2) described in Figure 6(b). This graph is formed

from S2 by extending its cycles with paths. We call pk and pl the additional edges in
the two sides, noting that k, l, or both may be zero. The adversary operates in four
rounds. Initially, there are s

2 packets of the form (e1 f2) and s
2 packets of the form

(e2 pl f1 f2).
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Round 1. For s steps, the adversary injects rs packets of the form (f2 pk e1).
These injections are blocked by the initial packets because the queuing protocol is
ntg. Note that rl of such new packets are lost.

Round 2. For the next rs−rl steps, the adversary injects a set of r2s−r2l packets
of the form (f2 pk e1 e2). These injections are blocked by the remaining packets from
the previous round because the queuing protocol is ntg.

Round 3. For the next r2s− r2l steps, the adversary injects r3s− r3l packets of
the form (e2) and r3s − r3l of the form (e1 f2). These injections will be blocked by
packets from the previous round when collapsing at edges e2 and e1, respectively, but
rk of them will be lost.

Round 4. For the next r3s− r3l − rk steps, the adversary injects r4s− r4l − r2k
packets of the form (e1) that will block packets from the previous round at e1 because
they are closer to their destination. The adversary also injects r4s− r4l− r2k packets
of the form (e2 pl f1 f2) that will be blocked by the (e2) remaining packets from the
previous round.

At the end of the fourth round, there are r4s−r4l−r2k packets of the form (e2 pl
f1 f2) and r4s− r4l− r2k packets of the form (e1 f2). The adversary described above
uses packets describing cycles and makes the graph G described above nonstable when
2(r4s− r4l − r2k) > s. Note that C = 2(l + k) > 2(r4l + r2k), and, for a big enough
s, an injection rate r can be found such that 2r4s− C > s holds.

Appendix B. Proof of Theorem 4.
Lemma 12. The pair (S1,ntg-lis) is not simple-path stable.
Proof. The adversary operates in five rounds. Initially, there are s

2 packets of the
form (e1 f1) and s

2 of the form (e2 f1).
Round 1. For s steps, the adversary injects rs packets of the form (f1 f2). These

injections get mixed with the initial packets at edge f1 and are blocked there because
the protocol is ntg.

Round 2. For the next rs steps, the adversary injects a set of r2s packets of the
form (f2 e2) that are blocked at f2 by the packets from the first round because, at
that point, they are at longer distance to their destination.

Round 3. For the next r2s steps, the adversary injects r3s packets of the form
(e2) and r3s of the form (f2 e1). All these injections are blocked by the remaining
packets from the previous round because the secondary protocol is lis.

Round 4. For the next r3s steps, the adversary injects r4s packets of the form
(e1) and r4s packets of the form (e2 f1). A total number of r4s simple packets will
remain at e1. The injections of the form (e2 f1) are blocked at e2 by packets from the
previous round because distance to their destination is longer.

Round 5. For the next r4s steps, the adversary injects r5s packets of the form
(e1 f1) and r5s packets of the form (e2). The simple packets queued at e1 from the
previous round will block the injections introduced at this edge. The simple injections
at e2 will block the packets of the form (e2 f1) from the previous round.

At the end of the fifth round, there are r5s packets of the form (e2 f1) and r5s
packets of the form (e1 f1). The adversary described above uses only packets describ-
ing simple paths and makes network U1 nonstable when 2r5s > s, i.e., at injection
rate r > 0.87055.

Lemma 13. The pair (S2,ntg-lis) is not simple-path stable.
Proof. The adversary operates in four rounds in this case. Initially, there are s

2
packets of the form (e12 f) and s

2 of the form (e22 f).
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Round 1. For s steps, the adversary injects rs packets of the form (f e21). These
injections get mixed with the initial packets and are blocked in edge f because the
protocol is ntg.

Round 2. For the next rs steps, the adversary injects a set of r2s packets of the
form (f e11) and r2s packets of the form (e21 e22). The injections made on f are
blocked by old packets because in this situation the secondary protocol lis is applied.
When the (f e21) packets from the previous round reach edge e21, they block the
injections made on e21. So at this round all the injections introduced are blocked.

Round 3. For the next r2s steps, the adversary injects r3s packets of the form
(e22 f) and r3s of the form (e11 e12). The injections on e22 are blocked by packets
of the form (e21 e22) from the previous round. The injections introduced on e11 are
blocked by packets from the previous round at e11 because their destination is farther.

Round 4. For the next r3s steps, the adversary injects r4s packets of the form
(e12 f) and r4s packets of the form (e22). Injections on e12 are blocked by old packets,
and injections on e22 block old packets of the form (e22 f).

At the end of the fourth round, there are 2r4s packets queued at e12 and e22

that want to traverse edge f ; r4s are of the form (e12 f) and r4s are of the form
(e22 f). The adversary described above uses only simple paths and makes network
S2 nonstable when 2r4s > s, i.e., at injection rate r > 0.84089.

Lemma 14. The pair (S3,ntg-lis) is not simple-path stable.

Proof. The adversary operates in four rounds. Initially, there are s
2 packets of the

form (e1 f21) and s
2 of the form (e22 f1 f21).

Round 1. For s steps, the adversary injects rs packets of the form (f21 f22). These
injections get mixed with the initial packets and get blocked in edge f21 because the
protocol is ntg.

Round 2. For the next rs steps, the adversary injects a set of r2s packets of the
form (f22 e1 e21) that are blocked at f22 by the packets from the first round because,
at that point, they are at longer distance to their destination.

Round 3. For the next r2s steps, the adversary injects r3s packets of the form
(e21 e22) and r3s of the form (e1 f21). The injections introduced at e1 reach the
packets from the previous round at this edge, but they are blocked there because the
secondary protocol is lis. Old packets block the injections introduced at their last
edge e21.

Round 4. For the next r3s steps, the adversary injects r4s packets of the form
(e22 f1 f21) and r4s packets of the form (e1). The simple injections on e1 will block
the packets queued at this edge from the previous round. Injections of the form (e22

f1 f21) are blocked at e22 by packets from the previous round because distance to
their destination is longer.

At the end of the fourth round, there are r4s packets of the form (e22 f1 f21)
queued at e22, and r4s of the form (e1 f21) queued at e1. The adversary described
above uses only simple paths and makes network S3 nonstable when 2r4s > s, i.e., at
rate r > 0.84089.

Lemma 15. The pair (S4,ntg-lis) is not simple-path stable.

Proof. The adversary operates in four rounds. Initially, there are s
2 packets of the

form (e1 f21) and s
2 of the form (e22 f1 g2 f21).

Round 1. For s steps, the adversary injects rs packets of the form (f21 f22). These
injections get mixed with the initial packets and are blocked in edge f21 because the
protocol is ntg.

Round 2. For the next rs steps, the adversary injects a set of r2s packets of the
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Fig. 7. Family of digraphs formed by extensions of S1, S2, S3, and S4.

form (f22 e1 g1) that are blocked at f22 by the packets from the first round because,
at that point, they are at longer distance to their destination.

Round 3. For the next r2s steps, the adversary injects r3s packets of the form
(g1 e21 e22) and r3s of the form (e1 f21). The injections introduced at e1 reach the
packets from the previous round at this edge, but they are blocked there because the
secondary protocol is lis. When the old packets arrive at their last edge g1, they
block the injections introduced at that edge. So, at this round, all the injections are
blocked.

Round 4. For the next r3s steps, the adversary injects r4s packets of the form
(e22 f1 g2 f21) and r4s packets of the form (e1). The simple injections on e1 will block
the packets queued at this edge from the previous round. Injections of the form (e22

f1 g2 f21) are blocked at e22 by packets from the previous round because distance to
their destination is longer.

At the end of the fourth round, there are r4s packets of the form (e22 f1 g2 f21)
queued at e22, and r4s packets of the form (e1 f21) queued at e1. The adversary
described above uses only packets defining simple paths and makes the S4 network
nonstable when 2r4s > s, i.e., at injection rate r > 0.84089.

Lemma 16. Any graph in E (S1) is not stable for ntg-lis.

Proof. Let G be the graph in E (S1) described in Figure 7(a). There are two
vertices a and b with two paths pn and pm from a to b and a path pd from b to a,
with d ≥ 2. We assume that n ≥ m. We call e and f the first and last edges in pd,
respectively. By including a whole path (e.g., pd) in the description of the form of a
packet, we mean that the path to be followed by the packet must include all of this
path. The adversary operates in five rounds. Initially, there are s

2 packets of the form
(pn e) and s

2 of the form (pm e).

Round 1. For s steps, the adversary injects rs packets of the form (pd). These
injections get mixed with the initial packets at edge e. Except for the first rm injec-
tions, the rest are blocked there because the queuing protocol is ntg (m is the time
in which a first packet arrives to e). We consider s big enough to guarantee that a
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continuous flow arrives to edge e after the arrival of the first packet.

Round 2. For the next rs − rm steps, the adversary injects a set of r2s − r2m
packets of the form (f pm). These packets will be blocked at f by the packets from
the first round because they will be at longer distance to their destination, but notice
that rd of them will not be blocked (d is the time needed for the first packet in e to
reach f).

Round 3. For the next r2s−r2m−rd steps, the adversary injects r3s−r3m−r2d
packets of the form (pm) and r3s − r3m − r2d packets of the form (f pn). The first
injections are blocked because secondary protocol is lis. The later injections are
blocked because n ≥ m (or also because of the lis protocol if n = m).

Round 4. For the next r3s−r3m−r2d steps, the adversary injects r4s−r4m−r3d
packets of the form (pn), which are blocked due to the lis effect. Also r4s−r4m−r3d
packets of the form (pm e) are injected, which are blocked at the first edge of pm by
packets from the previous round because distance to their destination is longer.

Round 5. For the next r4s−r4m−r3d steps, the adversary injects r5s−r5m−r4d
packets of the form (pn e), all of which will be blocked by the packets of the form (pn)
from the previous round. The adversary also introduces r5s − r5m − r4d injections
of the form (pm), which will block the packets of the form (pm e) queued since the
previous round.

At the end of the fifth round, there are r5s − r5m − r4d packets of the form
(pn e) and r5s−r5m−r4d packets of the form (pm e). The adversary described above
uses only packets describing simple paths and makes the graph G described above
nonstable when 2(r5s− r5m− r4d) > s. Note that C = 2(m+d) > 2(r5m+ r4d) is a
constant quantity and then, for a big enough s, an injection rate r can be found such
that 2r5s− C > s holds.

Lemma 17. Any graph in E (S2) is not simple-path path stable for ntg-lis.

Proof. Let G be a digraph in E (S2) described in Figure 7(b). This graph is formed
from S2 by extending its cycles with paths of length m, n, and d, with m,n, d ≥ 0. We
denote by pm, pn, and pd the additional path in the respective side. The adversary
operates in four rounds. Initially, there are α packets of the form (e12 pd f) and β
packets of the form (e22 pd f), where α + β = s.

Round 1. For s steps, the adversary injects rs packets of the form (pd f e21).
These injections are blocked at the first edge of pd f because the queuing protocol is
ntg.

Round 2. For the next rs steps, the adversary injects a set of r2s packets of
the form (f e11 pm) and also r2s packets of the form (e21 pn e22). Both types of
injections will collapse with the remaining packets from the previous round but their
destination is always farther; thus they are blocked. Note, however, that rd of each
type of packets are lost.2

Round 3. For the next r2s− rd steps, the adversary injects r3s− r2d packets of
the form (e11 pm e12), which are blocked by the remaining packets from the previous
round because the protocol is ntg. The adversary also injects r3s−r2d packets of the
form (pn e22 pd f), which block r3s− r2d of the remaining packets from the previous
round because of the same reason.

Round 4. For the next r3s− r2d steps, the adversary injects r4s− r3d packets of
the form (e12 pd f) and also r4s − r3d packets of the form (e22). The injections on
e12 are blocked by packets from the previous round, but rm of them are lost. The

2More exactly, r(d+ 1) of the type (e21 pn e22) are lost, but we round to rd to clarify the proof.
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simple injections on e22 block packets queued at the previous round, but rn of them
are lost.

At the end of the fourth round, there are r4s− r3d− rm packets of the form (e12

pd f) queued at e12 and r4s− r3d− rn packets of the form (e22 pd f) queued at e22.
The adversary described above uses only packets defining simple paths and makes the
digraph described in Figure 7(b) nonstable when 2(r4s − r3d) − rm − rn > s. Note
that C = 2d + m + n > 2r3d + rm + rn and, for a big enough s, an injection rate r
can be found such that 2r4 − C > s holds.

Lemma 18. Any digraph G in E (S3) is not simple-path stable for ntg-lis.

Proof. Let G be a digraph in E (S3) described in Figure 7(c). This graph is formed
from S3 by extending its cycles with paths of length l and k, l, k ≥ 1. We denote by
pk and pl the additional path in the respective side. The adversary operates in four
rounds. Initially, there are s

2 packets of the form (e1 f2) and s
2 packets of the form

(pl f1 f2).

Round 1. For s steps, the adversary injects rs packets of the form (f2 pk). These
injections are blocked by the initial packets because the queuing protocol is ntg. Note
that rl of such new packets are lost.

Round 2. For the next rs−rl steps, the adversary injects a set of r2s−r2l packets
of the form (pk e1 e2). These injections are blocked by the remaining packets from
the previous round because the queuing protocol is ntg.

Round 3. For the next r2s− r2l steps, the adversary injects r3s− r3l packets of
the form (e2 pl) and r3s − r3l of the form (e1 f2). These injections will be blocked
by packets from the previous round when collapsing at edges e2 and e1, respectively,
but rk of them will be lost.

Round 4. For the next r3s− r3l − rk steps, the adversary injects r4s− r4l − r2k
packets of the form (e1) that will block packets from the previous round at e1 because
they are closer to their destination. The adversary also injects r4s− r4l− r2k packets
of the form (pl f1 f2) that will be blocked by the remaining (e2 pl) packets from the
previous round.

At the end of the fourth round, there are r4s− r4l − r2k packets of the form (pl
f1 f2) and r4s− r4l− r2k packets of the form (e1 f2). The adversary described above
uses packets following simple paths and makes the graph G ∈ E (S3) nonstable when
2(r4s− r4l − r2k) > s. Note that C = 2(l + k) > 2(r4l + r2k) and, for a big enough
s, an injection rate r can be found such that 2r4s− C > s holds.

Lemma 19. Any digraph G in E (S4) is not simple-path path stable for ntg-lis.

Proof. Let G be a digraph in E (S4). Notice that if one of the arcs in the 2-cycle is
subdivided, G contains as a subgraph a graph in E (S3) that by Lemma 18 is ntg-lis

nonstable. Therefore we will consider the case described in Figure 7(d). This graph
is formed from S4 by extending its 3-cycles with paths of length l and k, l, k ≥ 1, and
its 2-cycle by m, m ≥ 1, 2-cycle successive subdivisions. Let us denote by pl and pk
the paths of length l and k, by p1

m the path (g11 g12 . . . g1m), and by p2
m the path (g21

g22 . . . g2m). The adversary operates in four rounds. Initially, there are s
2 packets of

the form (e1 f2) and s
2 of the form (pl f1 p2

m f2).

Round 1. For s steps, the adversary injects rs packets of the form (f2 pk). These
injections get mixed with the initial packets at edge f2 and are blocked there because
the queuing protocol is ntg. Note that r(m + l) of such new packets are lost.

Round 2. For the next rs − r(m + l) steps, the adversary injects a set of r2s −
r2(m + l) packets of the form (pk e1 g1m) that are blocked at the first edge of pk by
the packets from the first round because, at that point, they are at longer distance to
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their destination.

Round 3. For the next r2s− r2(m+ l) steps, the adversary injects r3s− r3(m+ l)
packets of the form (p1

m e2 pl) and r3s− r3(m+ l) of the form (e1 f2). The injections
introduced at e1 reach the packets from the previous round at this edge, but they are
blocked there because the secondary protocol is lis. When the old packets arrive at
their last edge g1k, they block the injections introduced.

Round 4. For the next r3s− r3(m+ l) steps, the adversary injects r4s− r4(m+ l)
packets of the form (pl f1 p2

m f2) and r4s− r4(m + k) packets of the form (e1). The
simple injections on e1 will block the packets queued at this edge from the previous
round. The other injections are blocked at the first edge of pl by packets from the
previous round because distance to their destination is longer, but note that rm of
them are lost.

At the end of the fourth round, there are r4s − r4(m + l) packets of the form
(e1 f2) queued at e1 and r4s − r4(m + l) − rm packets of the form (pl f1 p2

m f2)
queued at the first edge of pl. The adversary described above uses only packets
following simple paths and makes the digraph G described in Figure 7(d) nonstable
when 2(r4s− r4(m + l)) − rm > s. Note that C = 2(m + l) > 2r4(m + l) − rm and,
for a big enough s, an injection rate r can be found such that 2r4−C > s holds.
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Abstract. We call a pseudorandom generator Gn : {0, 1}n → {0, 1}m hard for a propositional
proof system P if P cannot efficiently prove the (properly encoded) statement Gn(x1, . . . , xn) �= b for
any string b ∈ {0, 1}m. We consider a variety of “combinatorial” pseudorandom generators inspired
by the Nisan–Wigderson generator on the one hand, and by the construction of Tseitin tautologies
on the other. We prove that under certain circumstances these generators are hard for such proof
systems as resolution, polynomial calculus, and polynomial calculus with resolution (PCR).

Key words. generator, propositional proof complexity, resolution, polynomial calculus

AMS subject classifications. 03F20, 03D15

DOI. 10.1137/S0097539701389944

1. Introduction. The notion of a pseudorandom generator, originally intro-
duced by Yao [Yao82], has become by now one of the most important concepts in
theoretical computer science, penetrating virtually all its subareas. In its simplest
form it says the following: a mapping Gn : {0, 1}n → {0, 1}m is (computationally) se-
cure with respect to (w.r.t.) some circuit class C if no “small” circuit C(y1, . . . , ym) ∈ C
can distinguish between the two probabilistic distributions Gn(x) and y in the sense
that |P[C(Gn(x)) = 1] − P[C(y) = 1]| is small (x is picked at random from {0, 1}n,
and y is picked at random from {0, 1}m).

Propositional proof complexity is an area of study that has seen rapid development
over the last decade. It plays as important a role in the theory of feasible proofs as the
role of the complexity of Boolean circuits plays in the theory of efficient computations.
Although the original motivations for this study were in many cases different (and
originated from proof-theoretical questions about first-order theories), it turns out
after all that the complexity of propositional proofs revolves around the following
basic question: What can be proved (in the ordinary mathematical sense!) by a prover
whose computational abilities are limited to small circuits from some circuit class C
(see, e.g., [BP98])? Thus, propositional proof complexity is in a sense complementary
to (nonuniform) computational complexity; moreover, there exist extremely rich and
productive relations between the two areas (see [Raz96, BP98]).

Given the importance of pseudorandom generators for computational complexity,
it is natural to wonder which mappings Gn : {0, 1}n → {0, 1}m should be considered
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hard from the perspective of proof complexity. In this paper we propose the following
paradigm: a generator Gn : {0, 1}n → {0, 1}m is hard for some propositional proof
system P if and only if for any string b ∈ {0, 1}m there is no efficient P -proof of the
(properly encoded) statement G(x1, . . . , xn) �= b (x1, . . . , xn are treated as proposi-
tional variables). A similar suggestion is independently made in the recent paper by
Kraj́ıček [Kra01].

This definition is very natural: it simply says (to the extent allowed by our frame-
work) that P cannot efficiently prove even the most basic thing about the behavior
of Gn, namely, that it is not an onto mapping. In fact, one a priori reasonable
concern might be precisely whether this exceedingly natural requirement is not too
strong, namely, whether nontrivial generators (say, with m ≥ n + 1) can exist at all.
This concern is best addressed by exhibiting how several known results fit into our
framework; these examples also explain some of our motivations for introducing this
concept.

Example 1 (Tseitin tautologies). Let G = (V,E) be a connected undirected

graph. Consider the (F2-linear) mapping TG : {0, 1}E → {0, 1}V given by TG(�x)v
def
=

⊕e�vxe, where �x ∈ {0, 1}E is a {0, 1}-valued function on edges. Then b ∈ {0, 1}V is
not in im(TG) if and only if ⊕v∈V bv = 1, and if we properly encode this statement
in propositional logic, we arrive exactly at the tautologies introduced by Tseitin in
his seminal paper [Tse68]. These tautologies turned out to be extremely useful in
propositional proof complexity, and the many strong lower bounds proved for them
[Tse68, Urq87, BW99, Gri98, BGIP01, Gri01, ABRW02] never depend on the partic-
ular choice of b ∈ {0, 1}V . This means that all of them can be viewed as showing that
the generators TG are hard for the corresponding proof system, as long as the graph
G itself has good expansion properties.

Tseitin generators TG : {0, 1}E → {0, 1}V make little sense from the computa-
tional point of view since the size of the seed |E| is larger than the size of the output
|V |. Our remaining examples are more satisfactory in this respect.

Example 2 (natural proofs). Let Gn : {0, 1}nk → {0, 1}2n

be any pseudorandom
function generator that stretches nk random bits to a Boolean function in n variables
viewed as a string of length 2n in its truth-table representation. Assume that Gn is
hard w.r.t. 2O(n)-sized circuits. Razborov and Rudich [RR97] proved that there is
no “natural” (in the strict sense also defined in that paper) proof of superpolynomial
lower bounds for any complexity class C that can efficiently compute Gn. Their
argument shows in fact that any natural circuit lower bound techniques fail to prove
that a given function fn does not belong to the image of Gn. Stating it equivalently,
for any function fn there is no natural proof of the fact that fn �∈ im(Gn). Although
in this result we are primarily interested in the case when fn is the restriction of SAT
(or any other NP-complete predicate) onto strings of length n, the argument, as in
Example 1, absolutely does not depend on the particular choice of fn.

One might argue that natural proofs do not correspond to a propositional proof
system at all, and that their definition rather explicitly includes the transition “the
proof works for a single fn ⇒ it works for many fn,” which provides the link to the
ordinary (randomized) definition of a pseudorandom generator. The last two examples
illustrate that this drawback sometimes can be circumvented.

Example 3 (hardness in presence of feasible interpolation). Let Gn : {0, 1}n →
{0, 1}m be an arbitrary pseudorandom generator that is hard w.r.t. polynomial size
(in m + n) circuits, and let n < m/2. Following Razborov [Raz95b], let us take
bitwise XOR of two independent copies of this generator G′

n : {0, 1}2n → {0, 1}m;
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G′
n(x1, . . . , xn, x

′
1, . . . , x

′
n)

def
= Gn(x1, . . . , xn) ⊕ Gn(x′

1, . . . , x
′
n). Then G′

n is hard for
any propositional proof system P which has the property of feasible interpolation (for
a definition, see, e.g., [Kra97] or [BP98]).

Indeed, assume for the sake of contradiction that G′
n is easy for a proof system

that possesses feasible interpolation. This means that in this system there exists a
polynomial size proof of b �∈ im(G′

n) for some string b ∈ {0, 1}m. Let r be picked uni-
formly and at random from {0, 1}m, and consider the propositional formula encoding
the statement r �∈ im(Gn)∨ r �∈ im(Gn ⊕ b). The fact b �∈ im(G′

n) implies that this is
a tautology and thus, by feasible interpolation, there exists a polynomial size circuit
C that given r correctly tells us whether r �∈ im(Gn) or r �∈ im(Gn ⊕ b). One of
these answers occurs with probability at least 1/2; thus, C can be used to break the
generator G.

The study of such a keystone concept in computational complexity as pseudoran-
dom generators, but in the new framework of proof complexity, should be interesting
in its own right. As suggested by the examples above, we also keep one quite prag-
matic goal in mind: we believe that pseudorandomness is methodologically the right
way to think of lower bounds in the proof-theoretic setting for really strong proof
systems. Whenever we have a generator Gn : {0, 1}n → {0, 1}n+1 which is hard for
a propositional proof system P , we have lower bounds for P . Suppose we manage
to increase significantly the number of output bits and construct a polynomial time

computable function generator Gn : {0, 1}nk → {0, 1}2n

that is hard for P . Then,
similarly to [RR97, Raz95b], we can conclude that the tautologies ¬Circuitt(fn), ex-
pressing the fact that the function fn cannot be computed by a circuit of size t, do not
have efficient P -proofs.1 Our final example shows that, modulo a concrete complex-
ity assumption (namely, that randomness helps in interactive proofs), the tautologies
¬Circuitt(fn) are hard for every proof system.

Example 4. Assume that there is some proof system P , which efficiently proves
¬Circuitt(fn) for some Boolean function fn. This proof constitutes an NP-certificate
of hardness of fn. Using the derandomization machinery of the NW -generator [NW94,
BFNW93, IW97, IKW01], it follows that for, say, t = 2εn (with arbitrary ε > 0), such
a certificate implies that MA = NP (and in particular BPP ⊆ NP).2

Put differently, let Gn be the mapping that takes (the encoding of) a circuit of
size t to the truth-table of the function computed by it [Raz95a, Appendix C]. Then,
assuming MA �= NP, we conclude that for an appropriate choice of t, there are no
efficient proofs of fn �∈ im(Gn) for any sequence of functions fn. In other words, the
generator Gn is hard for any propositional proof system whatsoever!

It should be stressed, however, that some of the authors believe the conclusion far
more than the assumption. Nevertheless, the connection illuminates another relation-
ship between computational and proof complexity, and the importance of generators
in both.

In this paper we begin by looking at a class of generators inspired by the Nisan–

1Note that for fn an NP-complete function and t superpolynomial in n, the tautologies
¬Circuitt(fn) express the statement NP �⊆ P/poly. The general idea of this reduction to the
hardness of generators is similar to the reduction in Example 2: the propositional system cannot
prove efficiently that any given fn does not belong to the image of G. However, for every particular
system the details of implementation are a little bit different, and one has to be extra careful for
weak proof systems.

2Follows from BPP ⊆ MA of Goldreich and Zuckerman [GZ97]. This weaker conclusion
BPP ⊆ NP of the existence of efficient proofs for ¬Circuitt(fn) was also independently observed
by Impagliazzo.
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Wigderson generator [NW94] on the one hand, and by Example 1 on the other. Let
A be an (m × n) 0-1 matrix, let g1(x1, . . . , xn), . . . , gm(x1, . . . , xn) be Boolean func-

tions such that gi essentially depends only on the variables Xi(A)
def
= {xj | aij = 1},

and let Gn : {0, 1}n → {0, 1}m be given by Gn(x1, . . . , xn)
def
= (g1(x1, . . . , xn), . . . ,

gm(x1, . . . , xn)). Nisan and Wigderson [NW94] proved that if A satisfies certain com-
binatorial conditions (namely, if it is a (k, s)-design for suitable choice of parameters),
and the functions gi are computationally hard, then Gn is a good pseudorandom
generator in the computational sense. In this paper we study which combinatorial
properties of the matrix A and which hardness assumptions imposed on gi guaran-
tee that the resulting generator Gn is hard for such proof systems as resolution or
polynomial calculus.

The framework of proof complexity, however, adds also the third specific dimen-
sion that determines hardness properties of Gn. Namely, in our examples the base
functions gi are at least supposed to be hard for the circuit class underlying the
propositional proof system P . Thus, P cannot even express the base functions, and
we should encode them using certain extension variables. Using these extension vari-
ables, our tautologies can be written as 3-CNFs and thus can be expressed in any
proof system. The choice of encoding makes an important part of the framework.
We propose three different encodings: functional, circuit, and linear encodings, all
natural from both computational and proof complexity viewpoints.

Our results are strong lower bounds for each of these encodings (and appropriate
choices of base functions and combinatorial properties of the matrix A) in such stan-
dard proof systems as resolution, polynomial calculus, and PCR (which combines the
power of both). Naturally, the results get weaker as the encoding strength increases.

We strongly believe that this set of tautologies can serve as hard examples for
much stronger systems, and specifically that the hardness of the base functions in
the generators should be a key ingredient in the proof. This factor is evident in
our modest results above, and if extended to stronger systems, it may be viewed as a
generalization of the feasible interpolation results, reducing in a sense proof complexity
to computational complexity.

The paper is organized as follows. In section 2 we give necessary definitions
and describe precisely combinatorial properties of the matrix A, hardness conditions
imposed on the base functions gi, and types of their encodings needed for our purposes.

Section 3 contains our hardness results for resolution width and polynomial cal-
culus degree that hold for the most general functional encoding similar in spirit to the
functional calculus from [ABRW02]. These can be considered as far-reaching general-
izations of lower bounds for Tseitin tautologies from [BW99, BGIP01]. We also state
here size lower bounds directly implied by our results via the known width/size and
degree/size relations.

Section 4 contains a stronger lower bound for the weaker linear encoding. In
section 5 we consider the question of maximizing the number of output bits m = m(n)
in the generators constructed in the previous sections. For that purpose we show that
with high probability a random matrix A has very good expansion properties. The
paper is concluded in sections 6 and 7 with a brief account of some recent developments
and several remaining open questions.

2. Preliminaries. Let x be a Boolean variable, i.e., a variable that ranges over
the set {0, 1}. A literal of x is either x (denoted sometimes as x1) or x̄ (denoted
sometimes as x0). A clause is a disjunction of literals.
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For any Boolean function f : {0, 1}n → {0, 1}, V ars(f) will denote the set of
its essential variables. An assignment to f is a mapping α : V ars(f) → {0, 1}. A
restriction of f is a mapping ρ : V ars(f) → {0, 1, �}. We denote by |ρ| the number

of assigned variables, |ρ| def
= |ρ−1({0, 1})|.

The restriction of f by ρ, denoted f |ρ, is the Boolean function obtained from f
by setting the value of each x ∈ ρ−1({0, 1}) to ρ(x) and leaving each x ∈ ρ−1(�) as a
variable.

We say that an assignment α satisfies f if f(α) = 1. For Boolean functions
f1, . . . , fk, g we say that f1, . . . , fk semantically imply g (denoted f1, . . . , fk |= g) if

every assignment to V
def
= V ars(f1) ∪ · · · ∪ V ars(fk) ∪ V ars(g) satisfying f1, . . . , fk

satisfies g as well (i.e., for all α ∈ {0, 1}V (f1(α) = · · · = fk(α) = 1 ⇒ g(α) = 1)).

For n a nonnegative integer, let [n]
def
= {1, 2, . . . , n}.

Let A be an (m× n) 0-1 matrix,

Ji(A)
def
= {j ∈ [n] | aij = 1} ,(1)

and let Xi(A)
def
= {xj | j ∈ Ji(A)} and g1(x1, . . . , xn), . . . , gm(x1, . . . , xn) be Boolean

functions such that V ars(gi) ⊆ Xi(A). We will be interested in systems of Boolean
equations, ⎧⎨

⎩
g1(x1, . . . , xn) = 1,

· · ·
gm(x1, . . . , xn) = 1.

(2)

We want to state combinatorial properties of the matrix A and hardness conditions
of the base functions gi such that if we properly encode the system (2) as a CNF
τ(A,�g), then this CNF does not possess efficient refutations in a propositional proof
system P . This sentence has four ingredients, and the necessary definitions for each
of them are provided fairly independently.

2.1. Combinatorial properties of the matrix A. All hardness results proved
in this paper will be based on the following combinatorial property generalizing the
“edge-expansion” property for ordinary graphs. It is similar to the expansion defined
in [BW99].

Definition 2.1. For a set of rows I ⊆ [m] in the matrix A, we define its bound-
ary ∂A(I) as the set of all j ∈ [n] (called boundary elements) such that {aij | i ∈ I }
contains exactly one 1. We say that A is an (r, s, c)-expander if |Ji(A)| ≤ s for all
i ∈ [m] and for all I ⊆ [m](|I| ≤ r ⇒ |∂A(I)| ≥ c · |I|).

Let us relate (r, s, c)-expanders to several other combinatorial properties already
known from the literature.

Example 5. For an ordinary graph G = (V,E), its edge-expansion coefficient
cE(G) is defined by

cE(G)
def
= min

|U |≤|V |/2

e(U, V − U)

|U | ,

where e(U,W ) is the number of edges between U and W (see, e.g., [Alo98] and the
references therein). Let AG be the incidence matrix of a graph G with m vertices

and n edges (i.e., ave
def
= 1 if and only if v ∈ e), and let d be the maximal degree of a

vertex in G. Then AG is an (m/2, d, c)-expander if and only if cE(G) ≥ c.
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Example 6. Let us turn to the combinatorial property originally used in [N91,
NW94]. A matrix A is called (k, s)-design if |Ji(A)| = s for all i ∈ [m] and

|Ji1(A) ∩ Ji2(A)| ≤ k(3)

for all 1 ≤ i1 < i2 ≤ m. We have the following.
Fact 1. Every (k, s)-design is also an (r, s, s−kr)-expander for any parameter r.
Proof. Let I ⊆ [m] and |I| ≤ r. Then, due to the property (3), every Ji(A) with

i ∈ I has at most k · (r − 1) elements which are not in ∂A(I). Hence it contains at
least s− k · (r − 1) elements which are in ∂A(I).

2.2. Hardness conditions on the base functions. As explained in the in-
troduction, we are interested in the methods which, given a mapping Gn : {0, 1}n →
{0, 1}m, allow us to show that the fact b �∈ im(Gn) is hard to prove for any b ∈ {0, 1}m.
This means that we want our lower bounds on the refutation complexity to work uni-
formly not only for system (2) but also for all 2m shifted systems,⎧⎨

⎩
g1(x1, . . . , xn) = b1,

· · ·
gm(x1, . . . , xn) = bm,

b ∈ {0, 1}m. We will enforce this simply by requiring that the conditions placed on
the base functions g1, . . . , gm be symmetric; i.e., they are satisfied by some f if and
only if they are satisfied by (¬f).

Definition 2.2. A Boolean function f is �-robust if every restriction ρ such that
f |ρ = const satisfies |ρ| ≥ �.

Clearly, this property is symmetric. The most important example of robust func-
tions are the PARITY functions x1 ⊕ · · · ⊕ xn ⊕ b, b ∈ {0, 1}, which are n-robust.
Our strongest hardness results for the polynomial calculus work only for this specific
function.

In fact, �-robust functions are already very familiar from the computational com-
plexity literature. [FSS84, Ajt83, Yao85, H̊as86] proved computational lower bounds
for �-robust functions (when � is close to n = |V ars(f)|) w.r.t. bounded-depth cir-
cuits. (1 − θ)n-robust functions (where θ is meant to be a small positive constant)
were recently used in [BST98] for obtaining strong lower bounds for branching pro-
grams (property “P(θ)”). In this paper we will use �-robust functions for constructing
generators that are hard for propositional proof systems. It is easy to see that most
functions on n-bits are (say) 0.9n-robust.

2.3. Encodings. Having constructed system (2), we still should decide how to
represent it in propositional logic. This step is nontrivial since we are deliberately
interested in the case when the propositional system P cannot directly speak of the
functions g1, . . . , gm. We consider three major possibilities: functional, circuit, and
linear encodings; all of them lead to CNFs that in fact without loss of generality
(w.l.o.g.) can be further restricted to 3-CNFs (see the proof of Corollary 3.5 below).

2.3.1. Functional encoding. This is the strongest possible encoding which is
also universal in the sense that it obviously simulates any other conceivable encoding
(in fact, it is a “localized” variant of the functional calculus system considered in
[ABRW02]).

Definition 2.3. Let A be an (m × n) 0-1 matrix. For every Boolean func-
tion f with the property ∃i ∈ [m](V ars(f) ⊆ Xi(A)), we introduce a new extension
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variable yf . Let V ars(A) be the set of all these variables. For the sake of conve-
nience, single variables sometimes will be denoted as xi instead of yxi . For a clause
C = yε1f1

∨ · · · ∨ yεwfw in the variables V ars(A), denote by ||C|| the Boolean function in

the variables x1, . . . , xn given by ||C|| def
= f ε1

1 ∨ · · · ∨ f εw
w .

Given Boolean functions �g = (g1, . . . , gm) such that V ars(gi) ⊆ Xi(A), we denote
by τ(A,�g) the CNF in the variables V ars(A) that consists of all the clauses C =
yε1f1

∨ · · · ∨ yεwfw for which there exists i ∈ [m] such that

V ars(f1) ∪ · · · ∪ V ars(fw) ⊆ Xi(A)(4)

and

gi |= ||C||.(5)

Fact 2. τ(A,�g) is satisfiable if and only if system (2) is consistent.
Proof. If (a1, . . . , an) is a solution to (2), then the assignment which assigns every

yf to f(a1, . . . , an) is satisfying for τ(A,�g). For the other direction, let �b = (bf |yf ∈
V ars(A)) be a satisfying assignment for τ(A,�g). Let aj

def
= bxj

; then, using those
axioms yε1f1

∨ · · · ∨ yεwfw from τ(A,�g) for which f ε1
1 ∨ · · · ∨ f εw

w ≡ 1, we can show by
induction on the circuit size of f that bf = f(a1, . . . , an) for every yf ∈ V ars(A). In
particular, gi(a1, . . . , an) = bgi = 1 (since τ(A,�g) contains the axiom ygi). Thus, the
vector (a1, . . . , an) is a solution to the system (2).

2.3.2. Circuit encoding. This encoding is much more economical in terms of
the number of variables than functional encoding. Also, it looks more natural and
conforms better to the underlying idea of the extended Frege proof system. The
tautologies under this encoding will be polynomial size as long as all gi’s have polyno-
mial size circuits, and thus are potentially hard for Frege (assuming P/poly contains
functions computationally hard for NC1/poly).

Definition 2.4. Let A be an (m× n) 0-1 matrix, and let C1, . . . , Cm be single-
output Boolean circuits over an arbitrary fixed finite basis, Ci being a circuit in the
variables Xi(A). For every i ∈ [m] and every gate v of the circuit Ci, we introduce
a special extension variable yv, and we identify extension variables corresponding to
input gates labeled by the same variable xj. Let V ars�C(A) be the set of all these
extension variables.

By τ(A, �C) we denote the CNF that consists of the following clauses:

1. yε̄1v1
∨ · · · ∨ yε̄dvd ∨ y

π(ε1,...,εd)
v whenever v := π(v1, . . . , vd) is an instruction of

one of the circuits C1, . . . , Cm and ε ∈ {0, 1}d is an arbitrary vector;
2. yvi when vi is the output gate of Ci for all i ∈ [m].

For a circuit C in the variables x1, . . . , xn, let ||C|| be the Boolean function (in
the same variables x1, . . . , xn) it computes.

Fact 3. τ(A, �C) is satisfiable if and only if the system ||C1|| = · · · = ||Cm|| = 1
is consistent.

Proof. The proof is similar to that of Fact 2.
Fact 4. There exists a substitution σ of variables from V ars�C(A) by variables

from V ars(A) such that σ(τ(A, �C)) is a subset of the set of clauses τ(A, ||�C||). In

particular, every refutation of τ(A, �C) in every “reasonable” propositional proof system

can be transformed (by applying σ) into a refutation of τ(A, ||�C||) in the same system,
which is simpler w.r.t. any “reasonable” complexity measure.

Proof. Let σ(yv)
def
= y||v||, where ||v|| is the function computed by the gate v.
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2.3.3. Linear encoding. This encoding makes sense only when the functions gi
are F2-linear forms (for historical reasons, this special case of NW-generators is often
referred to as Nisan generators). In some cases it is more economical than functional
encoding in terms of the number of variables. Also, it is much better structured, and
we will take advantage of this in section 4.

Definition 2.5. Let A be an (m × n) 0-1 matrix. For every J ⊆ [n] such that
∃i ∈ [m](J ⊆ Ji(A)), we introduce a new extension variable yJ (with the intended
meaning yJ ∼ ⊕j∈Jxj). Let V ars⊕(A) be the set of all these variables.

Given a Boolean vector b ∈ {0, 1}m, we denote by τ⊕(A, b) the CNF in the vari-
ables V ars⊕(A) that consists of the following clauses:

1. yε1J1
∨ · · · ∨ yεdJd

whenever there exists i ∈ [m] such that J1 ∪ · · · ∪ Jd ⊆ Ji(A),
the symmetric difference J1 � · · · � Jd is empty, and ε̄1 ⊕ · · · ⊕ ε̄d = 1;

2. ybiJi(A) for all i ∈ [m].

Let us denote by Σi(A, bi) the Boolean function
⊕

j∈Ji(A) xj ⊕ b̄i.

Fact 5. τ⊕(A, b) is satisfiable if and only if the system Σ1(A, b1) = Σ2(A, b2) =
· · · = Σm(A, bm) = 1 of linear equations over F2 is consistent.

Proof. The proof follows from the observation that the conjunction of clauses
yε1J1

∨ · · · ∨ yεdJd
for all ε̄1 ⊕ · · · ⊕ ε̄d = 1 is semantically equivalent to the formula⊕d

i=1 yJi
= 0.

Fact 6. There exists a substitution σ of variables from V ars⊕(A) by variables

from V ars(A) such that σ(τ⊕(A, b)) is a subset of the set of clauses τ(A, �Σ(A, b))
def
=

τ(A,Σ1(A, b1),Σ2(A, b2), . . . ,Σm(A, bm)).

Proof. σ(yJ)
def
= y⊕

j∈J
xj

.

It might be instructive to look at the place occupied in our framework by original
Tseitin tautologies (cf. Examples 1 and 5). Let AG be the incidence matrix of an undi-
rected graph G. Then our framework provides three different ways3 to talk of Tseitin
tautologies for graphs G of arbitrary degree. All these possibilities are reasonable in
the sense that although the resulting CNF τ may have a huge size, it always possesses
a sub-CNF of polynomial size that is still unsatisfiable. The fourth (unreasonable!)
encoding is primitive: we allow no extension variables at all and simply represent the
functions Σi(A, bi) themselves as CNFs of exponential size. For graphs of bounded
degree (which is the only case researchers were interested in prior to this paper), the
subtle differences between the four encodings disappear, and the whole rich spectrum
of various possibilities collapses into ordinary Tseitin tautologies.

In fact, the unreasonable primitive encoding can in principle be considered in the
framework of our paper as well. Namely, as we will see in section 5, good (r, s, c)-
expanders exist even for large constants s (say, s = 10). And for constant values of s,
results proved in any of our reasonable encodings can be translated to the primitive
encoding with only constant time increase in the size of the tautology. The primitive
encoding, however, is very counterintuitive to the main idea that the base functions
gi should be hard for the circuit class underlying our propositional theory, and to the
hope of using these tautologies for stronger proof systems. For this reason we do not
discuss in this paper either the primitive encoding itself or the trade-off between the
tautology size and the bounds appearing in this encoding when s → ∞.

3For circuit encoding we must additionally fix some natural circuits computing the functions
Σi(A, bi).
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2.4. Propositional proof systems.

2.4.1. Resolution. Resolution is the simplest and probably the most widely
studied proof system. It operates with clauses and has one rule of inference called the
resolution rule:

A ∨ x B ∨ x̄

A ∨B
.

A resolution refutation of a CNF formula τ is a resolution proof of the empty clause
from the clauses appearing in τ .

The size of a resolution proof is the number of different clauses within it. The
width w(C) of a clause C is the number of literals in C. The width w(τ) of a set of
clauses τ (in particular, the width of a resolution proof) is the maximal width of a
clause appearing in this set.

The story of propositional proof complexity began some 35 years ago when, in
the seminal paper [Tse68], Tseitin proved superpolynomial lower bounds on the size
of any resolution refutation of (what was afterwards called) Tseitin tautologies under
one extra regularity assumption on the structure of refutation. Haken [Hak85] was
the first to remove this restriction and prove exponential lower bounds for general
resolution (for the pigeonhole principle). Urquhart [Urq87] proved exponential lower
bounds on the size of general resolution refutations for Tseitin tautologies.

Ben-Sasson and Wigderson [BW99], strengthening a result from [CEI96] (cf. sec-
tion 2.4.2 below), proved the following width-size relation.

Proposition 2.6. Let τ be an unsatisfiable CNF in n variables that has a res-
olution refutation of size S. Then τ has a resolution refutation of width at most
w(τ) + O(

√
n logS).

[BW99] also established a linear lower bound on the width of resolution refutation
for Tseitin tautologies. In combination with Proposition 2.6, this gave an alternate
(and much simpler) proof of the size lower bound from [Urq87].

2.4.2. Polynomial calculus and PCR. Polynomial calculus, introduced by
Clegg, Edmonds, and Impagliazzo in [CEI96], is a proof system that models common
algebraic reasoning. Despite its algebraic nature, polynomial calculus (PC) turned
out extremely useful for studying “pure” propositional proof systems.

PC operates with polynomials P ∈ F [x1, . . . , xn] for some fixed field F ; a poly-
nomial P is interpreted as, and often identified with, the polynomial equation P = 0.
PC has polynomials x2

i − xi (i ∈ [n]) as default axioms and has two inference rules:

P1 P2

αP1 + βP2
; α, β ∈ F (scalar addition)

and

P

x · P (variable multiplication).

A PC refutation of a set of polynomials Γ is a PC proof of 1 from Γ. The degree
of a PC proof is the maximal degree of a polynomial appearing within it. The size of
a PC proof is the total number of monomials within the proof.

First nontrivial lower bounds on the degree of PC refutations were proved by
Razborov [Raz98] (for the pigeonhole principle). Grigoriev [Gri98] proved linear lower
bounds on the degree of Nullstellensatz refutations (which is a subsystem of PC)
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for Tseitin tautologies. Finally, Buss et al. [BGIP01] extended the latter bound to
arbitrary PC proofs. Following [BGIP01] and the research whose outcome is presented
in this paper, Ben-Sasson and Impagliazzo [BI99] further simplified this argument and
derived linear degree lower bounds for random CNFs.

[CEI96] proved that small size resolution proofs can be simulated by low degree
PC proofs (Proposition 2.6 is a later improvement of this result). [IPS99] observed
that the same simulation works also for small size polynomial calculus proofs.

Motivated in part by this similarity, [ABRW02] proposed considering the following
natural system PCR extending both PC and resolution. PCR operates with polynomi-
als P ∈ F [x1, . . . , xn, x̄1, . . . , x̄n], where x̄1, . . . , x̄n are treated as new formal variables.
PCR has all default axioms and inference rules of PC (including, of course, those that
involve new variables x̄i), plus additional default axioms xi + x̄i = 1 (i ∈ [n]). The
size and degree of a PCR proof are defined in the same way as for PC. It should be
noted that there is not much sense in giving a separate definition for the degree of
PCR proofs since the linear transformation x̄i �→ 1− xi takes a PCR proof to (essen-
tially) a PC proof while preserving degree. This system, however, becomes extremely
convenient when it is the number of clauses which matters (see [ABRW02]).

PCR is an extension of PC by definition. Also, PCR extends resolution via the
following translation. For a clause C, let C+ [(C−)] be the set of positive (respectively,
negative) literals appearing within it. Then a CNF formula τ gets translated into the

set of polynomials Γτ defined by Γτ
def
= {(

∏
x̄∈C−

x ·
∏

x∈C+
x̄)|C ∈ τ}. Clearly, τ is

satisfiable if and only if Γτ has a common root in F satisfying all default axioms

x2
i = xi; x̄2

i = x̄i; xi + x̄i = 1.(6)

Moreover, it is easy to see that every width w size S resolution refutation of τ can
be transformed into degree (w + 1) size O(nS) PCR refutations of the associated
set of polynomials Γτ (cf. [BG99, section 5]). For ease of notation, we will omit the
translation and define a PCR refutation of a CNF τ as a PCR refutation of Γτ . A
PC refutation of τ is a PC refutation of the set of polynomials

Γ′
τ

def
=

⎧⎨
⎩
⎛
⎝ ∏

x̄∈C−

x ·
∏

x∈C+

(1 − x)

⎞
⎠
∣∣∣∣∣∣ C ∈ τ

⎫⎬
⎭(7)

obtained from Γτ by the linear transformation x̄i �→ 1 − xi.
In fact all our lower bounds for PC hold also for PCR, so we will usually use the

translation to PCR and prove PCR lower bounds which imply the hardness for PC.
[ABRW02] observed that the two simulations from [CEI96, IPS99] can be merged

into one, as follows.
Proposition 2.7. Let Γ be a system of polynomials in the variables x1, . . . , xn,

x̄1, . . . , x̄n that have no common roots in F satisfying all default axioms (6), and let

d(Γ)
def
= max {deg(P ) | P ∈ Γ}. Then every size S PCR refutation of Γ can be trans-

formed into another PCR refutation of Γ that has degree at most d(Γ)+O(
√
n logS).

3. Lower bounds on width and degree in the functional encoding. In
this section we establish strong lower bounds on the resolution width and PC degree
in the most general functional encoding, and we derive from them some size lower
bounds. Our results in this section can be viewed as a far-reaching generalization of
the corresponding lower bounds for Tseitin tautologies from [BW99, BGIP01].
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But first a word about important and less important parameters. The parameters
s, c, l of the defining tautologies will feature in most of the calculations. (Recall that
s is the number of 1’s in each row of the matrix A, which is also the number of
arguments to each function gi; c is the expansion factor of the matrix A; and � will
lower bound the robustness of the gi’s.) We will show in section 5 that almost all
matrices satisfy c > 0.9s. Similarly, most functions satisfy � > 0.9s. Assuming this,
Theorems 3.1 and 3.7 provide Ω(r) lower bounds on the width of resolution and degree
of PC, respectively. (Recall that r is the key parameter defining what size sets expand
and can be taken to be essentially n/s; see section 5 for details.) Our corollaries for
the size lower bounds implied by the width and degree lower bounds will be stated
(for simplicity) only for this situation.

Theorem 3.1. Let A be an (r, s, c)-expander of size (m×n), and let g1, . . . , gm be
�-robust functions with V ars(gi) ⊆ Xi(A), where c+ � ≥ s+1. Then every resolution

refutation of τ(A,�g) must have width > r(c+�−s)
2� .

Proof. The proof follows the ideology developed in [BW99]. We define a measure
µ with subadditive growth on the clauses, and we show that the measure of the empty
clause is large (µ(0) > r); hence there must be a clause with medium size measure
(r/2 < µ(C) ≤ r). We show that such a clause must have large width.

Fix an (r, s, c)-expander A of size (m× n) and �-robust functions g1, . . . , gm with
V ars(gi) ⊆ Xi(A), where c + � ≥ s + 1.

Definition 3.2. For C a clause in the variables V ars(A), define µ(C) to be the
minimal size of I ⊆ [m] such that the following pair of conditions hold:

∀yεf ∈ C ∃i ∈ I (V ars(f) ⊆ Xi(A));(8)

{gi | i ∈ I } |= ||C||.(9)

Claim 3.3.

1. For a clause C with r/2 < µ(C) ≤ r, w(C) ≥ r(c+�−s)
2� .

2. µ(0) > r.

Proof. Part 1. Let I be a set of minimal size satisfying Definition 3.2. Since
|I| ≤ r, we get |∂A(I)| ≥ c · |I|. Let us partition I into I0, any minimal subset
satisfying (8), and I1 = I \ I0. Notice that by the minimality of I, removing any row
from I1 will ruin property (9).

We claim that for any i1 ∈ I1, Ji1(A) has small intersection with ∂A(I). Namely,

|Ji1(A) ∩ ∂A(I)| ≤ s− �.(10)

Indeed, as we note above, {gi | i ∈ I \ {i1}} �|= ||C||. Let α be any assignment
such that gi(α) = 1 (i ∈ I \ {i1}) but ||C||(α) = 0. Let ρ be the restriction given by

ρ(xj)
def
=

{
α(xj) if j �∈ ∂A(I) ∩ Ji1(A),
� if j ∈ ∂A(I) ∩ Ji1(A).

Then, since ρ is totally defined on V ars(gi) for i �= i1, and also on V ars(||C||) (by
(8) and i1 �∈ I0), we have gi|ρ ≡ 1 (i �= i1) and C|ρ ≡ 0. Hence, using (9), we
conclude that gi1 |ρ ≡ 0. Since gi1 is �-robust and |Ji1(A)| ≤ s, this implies the desired
inequality (10).
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Now we may sum up: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c · |I| ≤ |∂A(I)|
≤ s · |I0| + (s− �)|I1|
= (s− �)|I| + � · |I0|
≤ (s− �)|I| + � · w(C),

(11)

which implies w(C) ≥ |I|(c+�−s)
� . Recalling that |I| > r/2, we get our bound. Part 1

is proven.
Part 2. Suppose the contrary, that is, µ(0) ≤ r. Then we can repeat the first

part of the above argument (since that part did not use the condition |I| > r/2) and
still get (11). But now I0 = ∅, and hence (11) alone implies a contradiction with the
expansion property. This proves part 2.

Claim 3.4. Any resolution refutation of τ(A,�g) must include a clause C with
r/2 < µ(C) ≤ r.

Proof. µ is subadditive; i.e., if C was derived from C0, C1 by a single resolution
step, then µ(C) ≤ µ(C0) + µ(C1). Additionally, for any axiom C, µ(C) = 1. The
statement now follows from Claim 3.3(2).

Theorem 3.1 is immediately implied by Claims 3.4 and 3.3(1).
In order to see which size lower bounds are implied by Theorem 3.1 via Proposition

2.6, we consider only the typical (and most important) case c+�−s = Ω(s), for which
our width lower bound is Ω(r).

Corollary 3.5. Let ε > 0 be an arbitrary fixed constant, let A be an (r, s, εs)-
expander of size (m×n), and let g1, . . . , gm be (1−ε/2)s-robust functions. Then every

resolution refutation of τ(A,�g) must have size exp(Ω( r2

m·22s ))/2s.
Proof. Fix a resolution refutation of τ(A,�g) that has size S. It is easy to see that

every axiom in τ(A,�g) contains a subclause of width ≤ 2s which is also an axiom of
τ(A,�g). Moreover, this latter clause can be easily inferred in O(2s) steps from those
axioms in τ(A,�g) that have width ≤ 3. This allows us to replace the original refuta-
tion by a refutation that may have a slightly bigger size O(S · 2s) but uses only those
axioms from τ(A,�g) that have width ≤ 3. In this new refutation we infer all clauses of
τ(A,�g) that were used in the original refutation from width 3 clauses and then apply
the original refutation itself. Hence, by Proposition 2.6, τ(A,�g) also has a resolution
refutation of width O(

√
|V ars(A)| · log(S · 2s)) ≤ O(

√
m · 22s · log(S · 2s)). Compar-

ing this with the lower bound of Ω(r) that comes from Theorem 3.1, we finish the
proof of Corollary 3.5.

We can obtain much better size lower bounds (i.e., get rid of the disappointing
term 22s

in the denominator) for the circuit encoding. We further confine ourselves
to the optimal case when the circuits C1, . . . , Cm have size O(s).

Corollary 3.6. Let ε > 0 be an arbitrary fixed constant, let A be an (r, s, εs)-
expander of size (m × n), and let C1, . . . , Cm be single-output Boolean circuits over
arbitrary fixed finite basis such that Ci is a circuit of size O(s) in the variables Xi(A),
and all functions ||Ci|| are (1 − ε/2)s-robust. Then every resolution refutation of

τ(A, �C) must have size exp(Ω( r2

ms )).

Proof. By Fact 4 and Theorem 3.1, every resolution refutation of τ(A, �C) must
have width Ω(r). Since

∣∣V ars�C(A)
∣∣ ≤ O(ms), the required bound immediately follows

from Proposition 2.6.
Our second major result in this section generalizes the bound from [BGIP01].

Unfortunately, it also inherits all the limitations of their technique: essentially the
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only base functions g1, . . . , gm we can handle are F2-linear forms, and for char(F ) = 2
our approach fails completely (cf. [Gri98]). On the positive side, note that although
we do require the linearity of the base functions, the bound itself still holds for the
most general functional framework.

Theorem 3.7. Let A be an (r, s, c)-expander of size (m×n), and let b1, . . . , bm ∈
{0, 1}. Then every PCR refutation of τ(A, �Σ(A, b)) over an arbitrary field F with
char(F ) �= 2 must have degree ≥ rc

4s .
Proof. As the first step toward proving Theorem 3.7, we show one simple reduction

to a lower bound problem about PC refutations in the original variables x1, . . . , xn.
This step is very general and does not depend on the linearity of the base functions
gi.

Definition 3.8. For a Boolean function f(x1, . . . , xn), Pf (x1, . . . , xn) is the
(unique) multilinear polynomial such that

Pf (α) =

{
0 if f(α) = 1,
1 if f(α) = 0

for all α ∈ {0, 1}n.
Lemma 3.9. For any (m × n) 0-1 matrix A and any functions g1, . . . , gm with

V ars(gi) ⊆ Xi(A), every degree d PCR refutation of τ(A,�g) can be transformed into
a PC refutation of the system

Pg1 = · · · = Pgm = 0(12)

(in the original variables x1, . . . , xn) that has degree ≤ s · d.
Proof of Lemma 3.9. Let us consider some PCR refutation π of τ(A,�g). Substitute

in π the polynomial Pfε(x1, . . . , xn) for every variable yεf . Since deg(Pfε) ≤ s for any
f(x1, . . . , xn) such that V ars(f) ⊆ Xi(A) for some i ∈ [m], the degrees of all lines
resulting from this substitution are at most s · d. Moreover, any axiom from τ(A,�g),
as well as default axioms, gets transformed into a polynomial P such that for some
i ∈ [m] P contains only variables from Xi(A) and is a semantical corollary of Pgi

on {0, 1}Xi(A). Hence, it can be inferred from Pgi in degree ≤ s using only variables
from Xi(A). Appending these auxiliary inferences to the beginning of the transformed
refutation π, we obtain the required PC refutation of the system (12). Lemma 3.9 is
proved.

Thus, in order to complete the proof of Theorem 3.7, we should establish the rc
4

lower bound on the degree of any PC refutation π of the system (12) for gi = Σi(A, bi).
The proof is based on the connection between PC degree and Gaussian width

found in [BI99]. With this connection in hand, we may quote here, word for word,
Theorem 3.3 from [BI99], plugging in our current parameters.

Theorem 3.10. For A an (r, s, c)-expander, {gi} linear equations mod 2, and F
a field of characteristic �= 2, any PCR refutation of Pg1 = · · · = Pgm = 0 has degree
≥ rc

4 .
Theorem 3.7 follows.
Corollary 3.11. Let ε > 0 be an arbitrary fixed constant, let A be an (r, s, εs)-

expander of size (m × n), and let b1, . . . , bm ∈ {0, 1}. Then every PCR refuta-

tion of τ(A, �Σ(A, b)) over an arbitrary field F with char(F ) �= 2 must have size

exp(Ω( r2

m·22s ))/2s.
Proof. The proof is identical to that of Corollary 3.5, using Proposition 2.7.
Corollary 3.12. Let ε > 0 be an arbitrary fixed constant, let A be an (r, s, εs)-

expander of size (m× n), let b1, . . . , bm ∈ {0, 1}, and let C1, . . . , Cm be single-output
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Boolean circuits over an arbitrary fixed finite basis such that Ci is a circuit of size
O(s) in the variables Xi(A) that computes the function Σi(A, bi). Then every PCR

refutation of τ(A, �C) over an arbitrary field F with char(F ) �= 2 must have size

exp(Ω( r2

ms )).

Proof. The proof is identical to that of Corollary 3.6, using Proposition 2.7.

4. Size lower bounds for linear encoding. In this section we show better
lower bounds (although our requirement on the expansion rate is somewhat stronger)
on the size of PCR refutation for the more structured linear encoding than those
provided by Corollaries 3.11 and 3.12. We will apply the random restriction method
for killing large clauses rather than directly referring to the general degree/size relation
from Proposition 2.7. In this sense our approach is similar in spirit to that of [BP96].

Theorem 4.1. Let A be an (r, s, 3
4s)-expander of size (m×n), and let b1, . . . , bm ∈

{0, 1}. Then every PCR refutation of τ⊕(A,�b) over an arbitrary field F with char(F ) �=
2 must have size exp(Ω( r

2

m )).

Proof. As the first step toward proving Theorem 4.1, we show how to get rid of
the variables yJ for large (= of size > s/2) sets J . For technical reasons, we also
switch during this step from the linear encoding to the functional one.

Definition 4.2. For an (m × n)-matrix A, the set of variables V ars⊕(A) ⊆
V ars(A) consists of those yf ∈ V ars(A) for which f has the form

⊕
j∈J xj. Also let

Ṽ ars⊕(A)
def
=

{
y(⊕

j∈J
xj

) ∈ V ars⊕(A) | |J | ≤ s/2

}
.

τ⊕(A, b) (respectively, τ̃⊕(A, b)) is the set of those axioms in τ(A, �Σ(A, b)) that

contain variables only from V ars⊕(A) (respectively, from Ṽ ars⊕(A)).

It is worth noting that τ⊕(A, b) possesses the following clean algebraic description:
if gi = Σi(a, bi), and f1, . . . , fw are F2-linear forms, then (5) holds if either the system
of linear equations f1 = ε̄1, . . . , fw = ε̄w is inconsistent or the vector space spanned
by these equations contains ḡi.

Lemma 4.3. Suppose that A is an (2, s, 3
4s)-expander. Then every PCR refutation

of τ⊕(A, b) can be transformed into a PCR refutation of τ̃⊕(A, b) that has the same
size.

Proof of Lemma 4.3. For every two distinct rows i1 and i2 we have |∂A({i1, i2})| ≥
3
2s, which implies |Ji1(A) ∩ Ji2(A)| ≤ s/2. Hence, for every J ⊆ [n] with |J | > s/2
there can exist at most one row i ∈ [m] such that J ⊆ Ji(A). Therefore, the mapping

yJ �→
{

y⊕{xj | j∈J } if |J | ≤ s/2,

y⊕{xj | j∈Ji(A)\J } ⊕ bi if |J | > s/2 and J ⊆ Ji(A)

is well-defined. It is easy to see that it takes every axiom from τ⊕(A, b) to an axiom
from τ̃⊕(A, b), which proves Lemma 4.3.

Now, for a monomial m = yε1f1
. . . yεdfd in the variables Ṽ ars⊕(A), we define its

A-degree degA(m) as the minimal cardinality of a set of rows I with the property
V ars(f1)∪· · ·∪V ars(fd) ⊆

⋃
i∈I Xi(A). The A-degree of a polynomial is the maximal

A-degree of a monomial within it, and similarly the A-degree of a PCR proof is
the maximal A-degree of a polynomial within it. The following lemma rephrases
Theorem 3.7 for degA.
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Lemma 4.4. Let A be an (r, s, c)-expander of size (m × n), and let b1, . . . , bm ∈
{0, 1}. Then every PCR refutation of τ(A, �Σ(A, b)) over an arbitrary field F with
char(F ) �= 2 must have A-degree ≥ rc

4s .

Proof of Lemma 4.4. The only difference from Theorem 3.7 is that we consider
here A-degree instead of an ordinary one. It is easy to see by inspection that this
change does not affect the reduction in Lemma 3.9, and the same proof applies here
as well.

Lemmas 4.3 and 4.4 determine the strategy of the rest of the proof (cf. [BP96]).
We want to hit the prospective refutation of τ̃⊕(A, b) by a random restriction ρ in such

a way that ρ preserves the structure of τ(A, �Σ(A, b)) and, if the size of the original
refutation is small, with a high probability also kills all monomials in the variables

Ṽ ars⊕(A) that have high A-degree.

Definition 4.5. For a set of rows I, let us denote by MI the set of all restrictions
ρ such that ρ−1({0, 1}) =

⋃
i∈I Xi(A) and ρ satisfies all equations Σi(A, bi) = 1 for

all i ∈ I.

Note that if |I| ≤ r, then, since A is an (r, s, 3
4s)-expander, the linear forms⊕

{xj | xj ∈ Xi(A)} = Σi(A, bi) ⊕ b̄i (i ∈ I) are linearly independent (because each
of its subsets has a form that contains a boundary variable) and thus MI is a nonempty
linear subspace.

Let A|I be the result of removing from the matrix A all rows i ∈ I and all columns
j ∈

⋃
i∈I Ji(A). Any restriction ρ ∈ MI can be naturally extended to the variables

from V ars(A) by letting ρ(yf )
def
= yf |ρ . ρ takes variables from V ars(A) to variables

from V ars(A|I). Moreover, those yf for which ∃i ∈ I (V ars(f) ⊆ Xi(A)) are set to
a constant. Finally, ρ always takes axioms from τ(A,�g) to axioms from τ(A|I , �g|ρ).
The only remaining problem is that A|I may not inherit good expansion properties:
it is easy to get an example showing that it may even contain an empty row! We
circumvent this difficulty by further removing all rows that have large intersection
with

⋃
i∈I Ji(A) and show in the following lemma that this can always be done in an

efficient manner.

Lemma 4.6. Let A be an (r, s, c)-expander. Then every set of rows I with |I| ≤
r/2 can be extended to a larger set of rows Î ⊇ I such that |Î| ≤ 2 · |I| and A|Î is an
(r, s, 3c− 2s)-expander.

Proof of Lemma 4.6. Let us recursively add to I new rows (one row i0 at a time)
with the property

∣∣Ji0(A) ∩
(⋃

i∈I′ Ji(A)
)∣∣ > 2(s− c), where I ′ is the current value of

I. We claim that this process will terminate (i.e., no new row can be added) in less
than |I| steps.

Suppose the contrary, and let Î be the set of cardinality 2 · |I| reached after |I|
steps. Then every row i0 ∈ Î \ I contains less than |Ji0(A) − 2(s− c)| ≤ (2c − s)
boundary elements from ∂A(Î). Hence, |∂A(Î)| < s · |I| + (2c − s) · |I| = 2c · |I|, a
contradiction.

We choose as our Î the result of termination of this process. Let I0 be a set of
rows in A|Î (i.e., I0 ∩ Î = ∅) of cardinality at most r. Then ∂A|Î (I0) = ∂A(I0) \⋃

i∈Î Ji(A). Since for every i ∈ I0,
∣∣Ji0(A) ∩

(⋃
i∈Î Ji(A)

)∣∣ ≤ 2(s − c), we have the

bound
∣∣∂A|Î (I0)

∣∣ ≥ |∂A(I0)| − 2(s − c) · |I0| ≥ c · |I0| − 2(s − c)|I0| = (3c − 2s) · |I0|.
Lemma 4.6 is proved.

Now we are ready to finish the proof of Theorem 4.1. Fix a PCR refutation π
of τ̃⊕(A, b). Assume w.l.o.g. that 18 divides r, and pick at random a set of rows
I of cardinality r/3 (we are using boldface to stress that it is a random variable).
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Choose arbitrarily Î ⊇ I according to Lemma 4.6, i.e., such that |Î| ≤ 2r
3 and A|Î

is an (r, s, s/4)-expander. Pick ρ ∈ MÎ at random, and apply this restriction to our

PCR refutation π. This will produce a PCR refutation ρ(π) of τ̃⊕(A|Î ,ρ(�Σ(A, b))).
By Lemma 4.4 (with c = s/4), ρ(π) must contain a nonzero monomial ρ(m) of A|Î -
degree > r/18. Thus, π contains a monomial m that has A-degree > r/18 and is
not killed by ρ. In order to finish the proof, we only have to estimate from above the
probability P[ρ(m) �= 0] for every individual monomial m with degA(m) > r/18.

Fix any such m = yε1f1
. . . yεdfd , and recall that f1, . . . , fd are F2-linear forms

of weight ≤ s/2. W.l.o.g. assume that f1, . . . , ft form a linear basis of the space

Span(f1, . . . , fd). Then
⋃t

ν=1 V ars(fν) =
⋃d

ν=1 V ars(fν) and, therefore, degA(yε1f1
. . .

yεtft) = degA(m) > r/18. Hence, w.l.o.g. we can assume from the very beginning that
f1, . . . , fd are linearly independent.

Let us now introduce one variation of the notion of A-degree. Namely, for m =
yε1f1

. . . yεdfd , let deg′A(m) be the minimal cardinality of a set of rows I such that these
rows “cover” m in the stronger sense for all ν ∈ [d]∃i ∈ I(V ars(fν) ⊆ Xi(A)). Clearly,
degA(m) ≤ deg′A(m) (and ≤ deg(m)). Also, deg′A is “continuous” in the sense that for
every monomial m, and for every variable yεf , deg′A(m) ≤ deg′A(m ·yεf ) ≤ deg′A(m)+1.
Therefore, we can gradually remove variables from the monomial m, one variable at
a time, until we find in it a submonomial m′ such that deg′A(m′) is exactly equal
to r/18. For ease of notation, assume w.l.o.g. that deg′A(m) = r/18 for the original
monomial m.

Fix now any set of rows I0 with |I0| = r/18 and such that

∀ν ∈ [d] ∃i ∈ I0 (V ars(fν) ⊆ Xi(A)).(13)

We estimate the probability P[ρ(m) �= 0] as follows:

P[ρ(m) �= 0] ≤ P

[
|I0 ∩ I| < r2

100m

]
+ max

|I|=r/3

|I0∩I|≥ r2
100m

P[ρ(m) �= 0 | |I = I| ] .

Since |I0| = r/18 and |I| = r/3, we can estimate the first term by Chernoff inequality
as

P

[
|I0 ∩ I| < r2

100m

]
≤ exp

(
−Ω

(
r2/m

))
.(14)

For estimating the second term, fix any individual I such that |I| = r/3 and

|I0 ∩ I| ≥ r2

100m , and let Î ⊇ I be a corresponding set of rows satisfying the conclusion
of Lemma 4.6. We want to estimate P

[
ρÎ(m) �= 0

]
, where ρÎ is picked at random

from MÎ (thus, ρÎ is a random variable that results from ρ after revealing Î = Î).

Let I ′0 = I0 ∩ Î , I ′0 = {i1, . . . , i�}; � ≥ r2/100m. Since I0 is minimal with the
property (13), for every ν ∈ [�] we can choose f ∈ {f1, . . . , fd} such that V ars(f) ⊆
Xiν (A) but V ars(f) �⊆ Xi(A) for any other i ∈ I0. Hence, we can assume w.l.o.g.
that V ars(fν) ⊆ Xiν (A) for ν = 1, . . . , �.

Now, let V0
def
= Span(f1, . . . , f�) be the F2-linear space generated by the linear

functions f1, . . . , f�, and let V̂
def
= Span ({

⊕
j∈Ji(A) xj |i ∈ Î}). P

[
ρÎ(m) �= 0

]
≤

P[ρÎ(y
ε1
f1
. . . yε�f�) �= 0], and the latter probability is less than or equal to 2−(V0:V0∩V̂ )

(here (V0 : V0 ∩ V̂ )
def
= dim(V0) − dim(V0 ∩ V̂ ) is the standard codimension of linear
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spaces). To see this, note that ρÎ gives {0, 1}-values to all variables of f1, . . . , f�.

Let k = (V0 : V0 ∩ V̂ ). We can choose k linear forms fi1 , fi2 , . . . , fik ∈ {f1, . . . , f�}
such that the family fi1 , . . . , fik is linearly independent modulo V̂ . Then the values
ρÎ(fi1), . . . ,ρÎ(fik) are independent, and each equal 0 with probability 1/2. Thus,
the probability that no yfi is killed is less than or equal to 2−k.

Clearly, 2−(V0:V0∩V̂ ) = 2dim(V0∩V̂ )−�. Hence, we only have to upper bound dim(V0∩
V̂ ). Let us denote by Î+ the set of all rows i ∈ Î which appear with coefficient αi �= 0
in at least one sum of the form

⊕
i∈Î

αi ·

⎛
⎝ ⊕

j∈Ji(A)

xj

⎞
⎠(15)

that happens to belong to V0, and let V̂ + def
= Span ({

⊕
j∈Ji(A) xj |i ∈ Î+}). Then

V0 ∩ V̂ ⊆ V0 ∩ V̂ + by our choice of Î+, and dim(V0 ∩ V̂ ) ≤ dim(V̂ +) ≤ |Î+|.
In order to bound from above |Î+|, we apply the expansion property to I ′0 ∪ Î+

(its cardinality does not exceed r/18+2r/3 < r). We get |∂A(I ′0∪ Î+)| ≥ 3
4s · |I ′0∪ Î+|.

Note that rows from Î+\I ′0 may not contain elements from ∂A(I ′0∪Î+) at all; otherwise,
the corresponding variable would not cancel out in the sum (15), and this would
prevent the latter from being in V0 (note that for any form f ∈ V0, V ars(f) ⊆⋃

i∈I′
0
Xi(A)).

The key observation is that every row iν from Î+ ∩ I ′0 may also contain only
a relatively small number of boundary elements, namely, at most (s/2). Indeed,
|V ars(fν)| ≤ s/2 (see Definition 4.2). Therefore, if Jiν would have contained > s/2
boundary elements, then at least one boundary variable xj ∈ Xiν (A) would not
belong to V ars(fν), and would once more prevent the sum (15) from lying in V0

(since j belongs to the boundary, xj may not occur in other forms appearing in this
sum).

Summing up the above remarks, we have the upper bound |∂A(I ′0∪ Î+)| ≤ s · |I ′0 \
Î+| + s

2 · |I ′0 ∩ Î+|. Comparing it with the lower bound given by expansion, we get

3

4
s · |I ′0 ∪ Î+| ≤ |∂A(I ′0 ∪ Î+)| ≤ s · |I ′0 \ Î+| + s

2
· |I ′0 ∩ Î+|,

3

4
s
(
|Î+| + |I ′0 \ Î+|

)
≤ s · |I ′0 \ Î+| + s

2
· |I ′0 ∩ Î+|,

and

3

4
s|Î+| ≤ 1

4
s · |I ′0 \ Î+| + s

2
· |I ′0 ∩ Î+|,

which implies |Î+| ≤ 2
3 |I ′0| = 2�

3 .

Therefore, dim(V0 ∩ V̂ ) ≤ 2�
3 and P

[
ρÎ(m) �= 0

]
≤ 2−�/3 ≤ exp

(
−Ω

(
r2/m

))
.

Together with (14) this implies P[ρ(m) �= 0] ≤ exp
(
−Ω

(
r2/m

))
. Hence, π must

contain at least exp
(
Ω
(
r2/m

))
monomials (of A-degree ≥ r/18) since otherwise we

could find a restriction ρ that kills all of them, contrary to Lemma 4.4. The proof of
Theorem 4.1 is complete.
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5. Existence of strong expanders and hard generators. All our hardness
results in the previous two sections are based upon the notion of an (r, s, c)-expander.
As we noted in the introduction, one of our eventual goals is to be able to stretch n
seed bits to as many output bits m as possible so that the resulting generator is hard
for as strong propositional proof systems P as possible. In this section we will see
what I/O ratio we can achieve with the results from the two previous sections.

All explicit constructions of (r, s, c)-expanders that we know of are based upon
Examples 5 and 6 from section 2.1. Unfortunately, the resulting expanders turn out to
be virtually useless for our purposes since they cannot even break the barrier m = n.
Let us turn instead to a simple probabilistic argument. We note that in the context
of proof complexity, there is not much advantage in having explicit constructions of
hard tautologies over existence proofs.

Theorem 5.1. For any parameters s, n there exists an
(
Ω(n/s) · n−O(1/s), s, 3

4s
)
-

expander of size (n2 × n).
Proof. Let us construct a random (n2 × n) matrix A as follows. For every

i ∈ [n2], let Ji(A)
def
= {ji1, . . . , jis}, where all jiν (i ∈ [n2], ν ∈ [s]) are picked from

[n] independently and at random (in fact, we would also obtain the same result by
letting Ji(A) be uniformly and independently distributed over all s-subsets of [n], but
with our choice of Ji(A) calculations become simpler). We wish to show that

P[A is not an (r, s, 3s/4)-expander] < 1

for some r ≥ Ω(n/s) ·n−O(1/s). Let p� be the probability that any given � rows of the
matrix A violate the expansion property. Then, clearly,

P[A is not an (r, s, 3s/4)-expander] ≤
r∑

�=1

n2�p�.(16)

Fix an arbitrary I of cardinality � ≤ r. Since every column j ∈
⋃

i∈I Ji(A)\∂A(I)

belongs to at least two sets Ji(A), we have the bound
∣∣⋃

i∈I Ji(A)
∣∣ ≤ |∂A(I)| +

1
2 ·

(∑
i∈I |Ji(A)| − |∂A(I)|

)
≤ 1

2 (s� + |∂A(I)|). Hence ∂A(I) < 3
4s� implies also∣∣⋃

i∈I Ji(A)
∣∣ < 7

8s�, and p� can be estimated by the union bound as

p� ≤
(

n
7
8s�

)
·
(

7s�

8n

)s�

≤ (O(s�/n))s�/8 ≤ (O(sr/n))s�/8.

Substituting this bound into (16), we obtain

P[A is not an (r, s, 3s/4)-expander] ≤
r∑

�=1

n2� ·
(
O
(sr
n

))s�/8
.(17)

The sum in the right-hand side is the geometric progression with the base n2 ·
(O(sr/n))Ω(s). Hence, if r = (εn/s) · n−1/sε for a sufficiently small ε > 0, the right-
hand side of (17) is less than (1/2), which completes the proof of Theorem 5.1.

Corollary 5.2. There exists a family of (m× n) matrices A(m,n) such that for

every b = (b1, . . . , bm) ∈ {0, 1}m, any PCR refutation of τ(A(m,n), �Σ(A(m,n), b)) over

an arbitrary field with char(F ) �= 2 must have size exp(n
2−O(1/ log log n)

m ).
Proof. Since for m ≥ n2 the bound becomes trivial, we can assume that m ≤ n2.

Apply Theorem 5.1 with s = 1
2 log2 log2 n, and cross out in the resulting matrix all
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rows but (arbitrarily chosen) m. This will result in an (r, s, 3
4s)-expander A(m,n) of

size (m × n), where r ≥ n1−O(1/ log log n). Now we only have to apply Corollary 3.11

and notice that 22s

= 2
√

logn ≤ n1/ log log n.

Corollary 5.2 shows that in the functional encoding we can stretch n random
bits to n2−O(1/ log log n) bits so that this generator will be hard for (polynomial size)
PCR proofs over an arbitrary field F with char(F ) �= 2. In particular, it is hard for
resolution.

Corollary 5.3. There exists a family of (m × n) matrices A(m,n) such that∣∣Ji (A(m,n)
)∣∣ ≤ log2 n for all i ∈ [m], and for every b = (b1, . . . , bm) ∈ {0, 1}m we

have the following bounds:

1. Let C1, . . . , Cm be single-output Boolean circuits over an arbitrary fixed fi-
nite basis, where Ci is a circuit of size O(log n) in the variables Xi(A

(m,n))
that computes the function Σi(A

(m,n), bi). Then every PCR refutation of

τ(A(m,n), �C) over an arbitrary field with char(F ) �= 2 must have size

exp(Ω( n2

m(log n)3 )).

2. Every PCR refutation of τ⊕(A(m,n), b) over an arbitrary field with char(F ) �=
2 must have size exp(Ω( n2

m(log n)2 )).

Proof. The proof is the same as that of Corollary 5.2, only this time we let
s = log2 n. Namely, Theorem 5.1 provides us with an (r, s, 3

4s)-expander for r ≥
Ω(n/ log n). The proof now follows by Corollary 3.6 and Theorem 4.1.

Corollary 5.3 allows us to construct generators that stretch n bits to m =
o(n2/(log n)4) bits in the circuit encoding, and to m = o(n2/(log n)3) bits in lin-
ear encoding, which are hard for polynomial size PCR proofs in odd characteristic.

6. Recent developments. Since the preliminary version of this paper (see Re-
port TR00-23 of the Electronic Colloquium on Computational Complexity, and the
Proceedings of the 41st IEEE Symposium on Foundations of Computer Science) was
disseminated, many open problems presented there have been solved, and many other
related developments have occurred.

Alekhnovich and Razborov [AR01] extended our lower bounds for the PC degree
(Theorems 3.10 and 3.7) to a large natural class of base functions g1, . . . , gm. This
class is defined by the requirement that the ideal spanned by every individual gi does
not contain any nonzero multilinear polynomials of low degree.

The principles studied in this paper expressing that Nisan–Wigderson generators
are not onto bear a striking similarity to the pigeonhole principle PHPm

n (with the
same meaning of the parameters m,n). At the time this paper was written, one of
the most interesting open problems, both for NW-generators and for PHPm

n , was to
break through the quadratic barrier m ≥ n2 for (at least) the resolution size. This
has been solved in both contexts.

The pigeonhole principle PHPm
n was the first to yield. Raz [RanRaz02] proved ex-

ponential lower bounds on the size of its resolution refutations when m � n. Razborov
[Raz02a] gave a simpler proof of a somewhat better bound that also holds for the more
general functional onto version of this principle.

The quadratic barrier for pseudorandom generators did not stand for much longer.
Razborov [Raz02b] constructed Nisan generators (that is, when the base functions gi
are F2-linear forms) that allow m ≥ nΩ(log n) output bits and are exponentially hard
not only for resolution but also for its extensions Res(ε log n) (operating with (ε log n)-
DNF instead of clauses) and PCR when char(F ) �= 2.
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Another question asked in the earlier version of our paper was whether any struc-
tural theory of pseudorandom generators is possible within the framework of proof
complexity. In particular, we asked whether it is possible to formulate and prove any
reasonable statement that would say, possibly in a restricted way, that the compo-
sition of hard generators is hard (for a given propositional proof system). This was
satisfactorily answered by Kraj́ıček [Kra02], who showed that this is indeed the case,
provided hardness is replaced by a stronger notion of s-iterability (inspired by the
so-called counterexample interpretation).

It was also conjectured in the earlier version that such a composition result might
provide an alternate approach to the quadratic barrier problem (but for more com-
plicated generators). This has indeed turned out to be the case. Kraj́ıček [Kra02]
proved (independently of [Raz02b]) that our generator from section 4 can be iterated
with itself once, which immediately allowed him to get as many as m = n3−ε output
bits. The Nisan generator from [Raz02b] turned out to be particularly suitable for
Kraj́ıček’s notion of s-iterability, and it can be composed with itself exponentially
many times while preserving hardness. In this way [Raz02b] constructed a function
generator with m = 2n

ε

outputs which is hard for Res(ε log n) and for PCR with
char(F ) �= 2. Along the lines described in the discussion after Example 3, this imme-
diately implied that neither of these systems possess efficient proofs of NP �⊆ P/poly
(the same conclusion for resolution had already followed from [RanRaz02, Raz02a]).

Finally, [CRVW02] took an important step toward constructing explicit expanders
(called there and in [Raz02b] “lossless”) with very good expansion properties (even if
not sufficient yet for many of our purposes).

7. Open problems. As indicated in the previous section, the most intriguing
open problems asked by us in earlier versions have been solved. Some of them, how-
ever, remain open.

Can we reduce the devastating 22s

factor in our size lower bounds for the func-
tional framework (Corollaries 3.5 and 3.11)? One way to approach this would be to
look for generalizations of the basic Proposition 2.6 that would take into account the
structure of the variables yf (which can be originally divided into m large groups).

Find explicit constructions of (r, s, c)-expanders with parameters that would be
sufficient for (at least some of) the applications in the current paper and in [Raz02b]
(as we remarked above, one step in this direction was made in [CRVW02]).

The bound from [AR01] on the PC degree mentioned in the previous section is
not entirely satisfactory since for this bound we need rather good expanders with the
expansion ratio c > 3s/4. Can we improve it in such a way that it will work under
less restrictive conditions, such as similar bounds in Theorems 3.1, 3.7, and 3.10?

More open problems representing the next generation of tasks faced by this theory
can be found in [Raz02b].

Acknowledgment. We are grateful to both anonymous referees for many useful
remarks.
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Abstract. Radiation hybrid (RH) mapping is a technique for constructing a physical map
describing the locations of n markers on a chromosome of an organism. In [J. Comput. Biol., 4
(1997), pp. 517–533], Ben-Dor and Chor presented new algorithms for the RH problem and gave the
first performance guarantees for such algorithms. We improve the lower bounds on the number of
experiments in a way that is sufficient for two of these algorithms to give a correct ordering of the
markers with high probability. Not only are the new bounds tighter, but our analysis also captures to
a much higher extent how the bounds depend on the actual arrangement of the markers. Furthermore,
we modify the two algorithms to utilize RH mapping data produced with several radiation intensities.
We show that the new algorithms are almost insensitive to the problem of using the correct intensity.
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1. Introduction. Physical mapping is an important problem in large-scale se-
quencing of DNA as well as for locating genes. In RH (radiation hybrid) mapping, a
physical map describing the locations of n markers on a chromosome of an organism is
constructed. The markers can be genes or arbitrary DNA sequences, and the resulting
information consists of the relative order of these markers and the distance between
them on the chromosome. The RH mapping procedure can be divided into an experi-
mental and an algorithmic part. In the experimental part a series of RH experiments
is made, which yields pairwise distances between markers. In the algorithmic part an
algorithm generates a map of the markers, given these distances. Here, we study the
latter algorithmic part, called the RH problem.

There exist several algorithms for the RH problem. Most algorithms are heuris-
tics [4, 10, 13], but for a few algorithms theoretical results exist as well. In [2], for
instance, Ben-Dor and Chor presented three algorithms for the RH problem, together
with bounds on the number of experiments that is sufficient for the algorithms to
give the correct order of the markers in the map. In [7], an approximation algorithm
for the Matrix-To-Line problem was used to generate a map from pairwise dis-
tances. Arrangements produced with this algorithm were shown to converge to the
true arrangements.

The three algorithms in [2] are called P-Order, K-Order, and MST-Order. The
traveling salesman problem (TSP)-based algorithm MST-Order was developed into
the program RHO [3], which has been even further developed using the combinatorial
optimization package CONCORDE [1]. TSP/CONCORDE has been compared to
other RH mapping software [8], and has been practically used to create RH maps for
the canine genome [6] as well as the feline genome [12]. In this paper we improve the
analysis of the other two algorithms: P-Order and K-Order, inspired by Prim’s and
Kruskal’s algorithms (see [5]), respectively. We obtain better lower bounds on the

∗Received by the editors April 24, 2001; accepted for publication (in revised form) May 4, 2004;
published electronically October 8, 2004.

http://www.siam.org/journals/sicomp/34-1/38835.html
†Stockholm Bioinformatics Center, Department of Numerical Analysis and Computer Science,

KTH, Stockholm, Sweden (ivan@nada.kth.se, jensl@nada.kth.se).

89



90 LARS IVANSSON AND JENS LAGERGREN

number of experiments sufficient to obtain the correct order of the markers with high
probability. Furthermore, our bounds capture the impact that the true arrangement
of the markers has on the performance of the two algorithms. In fact, it is possible
to construct instances for which the gap between our bound and the previous known
bounds are arbitrarily large. Our analysis also allows us to gain insight into the
question of for which arrangements the algorithms are likely to perform well and for
which arrangements they are more likely to fail. The improved analysis suggests that
the K-Order algorithm is the better of the two algorithms in most cases.

The new analysis of the P-Order and K-Order algorithms suggests that the use of
several intensities for the radiation in the RH experiments could improve the perfor-
mance bounds for the two algorithms. We propose modified versions of the P-Order

and K-Order algorithms, which allow for the use of RH data produced with several
intensities. We show that, given O(log n) series of experiments, using a range of inten-
sities, the dependency on the choice of intensity can be removed from the performance
bounds, under the assumption that the markers are uniformly distributed along the
chromosome. Although multiple intensity algorithms have been proposed before [11],
this is, to our knowledge, the first performance bound for such an algorithm.

2. The probabilistic model. A marker is a gene or an arbitrary DNA sequence
the presence of which can be detected in any DNA fragment via a laboratory test.
To obtain information about the order of and distance between a pair of markers
on a fragment of DNA, an RH experiment is performed. In an RH experiment the
chromosome is exposed to gamma radiation, which shatters it into fragments. Some
of the fragments are incorporated into (retained in) a hamster cell, which is grown
to yield a hybrid cell line. Cells from this cell line are then tested for the presence
of each DNA marker. The outcome of one experiment is represented by a vector in
{0, 1}n, where 1 in the ith position corresponds to the presence of the ith marker; the
outcome from m experiments is in the natural way represented by an m × n-matrix
consisting of 0’s and 1’s.

The probabilistic model as well as the notation used in this paper are the same as,
for instance, those used in [2] and [7]. We let λ be the intensity of the gamma radiation
used in the RH experiment. We let p be the retention probability, i.e., the probability
that a fragment is incorporated into the hamster cell. To simplify the calculations in
section 4, we assume that this probability is independent of the radiation intensity. In
practice, the retention probability goes down when the intensity goes up. In testing
for the presence of a marker, we allow for errors. We let α be the probability of a false
positive answer, and β be the probability of a false negative answer. Furthermore, we
assume that the retention of the different fragments, as well as the tests for presence,
are independent events.

In [7] it was shown that, under this model, the separation probability for two
markers a and b is

ϕa,b = 2pq(1 − e−λ�ab)(1 − (α + β))2 + g(α, β, p),(2.1)

where q = 1 − p, �ab is the distance between a and b, and

g(α, β, p) = 2p(α− β)(α + β − 1) + 2α(1 − α).(2.2)

The separation probabilities can be estimated from a series of RH experiments. With



ALGORITHMS FOR RH MAPPING 91

Si(a, b) as the random variable defined by

Si(a, b) =

{
1 if a and b are separated in experiment i,

0 otherwise,
(2.3)

for i = 1, . . . ,m, we get an estimate ϕ̂a,b through

ϕ̂a,b =
1

m

m∑
i=1

Si(a, b).(2.4)

We note that this estimate is unbiased since E[ϕ̂a,b] = ϕa,b. From (2.1), an expression
can be obtained for the distance between two markers as a function of the separation
probability. Using the estimates ϕ̂a,b in this expression, we obtain estimates d̂(a, b)
of the physical distances between any two markers a and b, i.e.,

d̂(a, b) = − 1

λ
ln

(
1 − ϕ̂a,b − g(α, β, p)

2pq(1 − (α + β))2

)
.(2.5)

However, we are not as interested in the estimated distance between two markers a
and b as in whether the estimated distance between them is greater than the estimated
distance between two other markers c and d. Since the separation probability is
an increasing function of the distance, this is equivalent to the question of whether
ϕ̂a,b > ϕ̂c,d. More precisely, we are interested in the probability that this inequality
holds, given that d(a, b) > d(c, d). In this context it is natural to define a distance
comparator.

Definition 2.1. A function C(a, b; c, d) from quadruples of markers to the set
of integers {−1, 0, 1} is a distance comparator if, for all choices of markers a, b, c,
and d,

1. C(a, b; c, d) = C(b, a; c, d),
2. C(a, b; c, d) = C(a, b; d, c),
3. C(a, b; c, d) + C(c, d; a, b) = 0.

We should think of a distance comparator as any procedure that compares pairs
of distances between markers. If the procedure decides that the distance between
two markers a and b is greater than the distance between two other markers c and d,
then C(a, b; c, d) = 1; if it decides that the distance between a and b is less than the
distance between c and d, then C(a, b; c, d) = −1; and if it decides that the distances
are equal, then C(a, b; c, d) = 0.

The specific distance comparator induced by the distance estimate d̂(a, b) above

will be denoted Ĉ.
Definition 2.2. Let d̂(x, y) be the distance estimate defined by (2.5). Define

Ĉ(a, b; c, d) =

⎧⎪⎨
⎪⎩

1 if d̂(a, b) > d̂(c, d),

0 if d̂(a, b) = d̂(c, d),

−1 if d̂(a, b) < d̂(c, d).

(2.6)

This means that Ĉ is the distance comparator used to compare distances in the
P-Order and K-Order algorithms. Using Definition 2.2, we can rewrite the probability
for which we want to find a lower bound as the probability that Ĉ(a, b; c, d) = 1, given
that d(a, b) > d(c, d).
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As was pointed out above, the question of whether Ĉ(a, b; c, d) = 1, given that
d(a, b) > d(c, d), is equivalent to the question of whether ϕ̂a,b > ϕ̂c,d, given that
d(a, b) > d(c, d). This question bears close resemblance to the question of whether
the estimated separation probabilities are what Ben-Dor and Chor call consistent or
not [2]. The difference is that to show consistency, the inequality has to be true only
for the case when c and d are consecutive in the true order and are located between
a and b. It turns out, however, that the calculations in [2] can be carried through in
this more general case as well.

Lemma 2.3. Let a, b, c, and d be four markers such that d(a, b) > d(c, d). Then

Pr
[
Ĉ(a, b; c, d) �= 1

]
≤ e−2mp2q2(1−(α+β))4f�ab−�cd,�cd

(λ)2 ,(2.7)

where f�1,�2(λ) = (1 − e−λ�1)e−λ�2 .
Proof. Let Xi, i = 1, . . . ,m, be the random variables defined by Xi = 1 if a, b

but not c, d are separated in experiment i; Xi = −1 if c, d but not a, b are separated
in experiment i; and Xi = 0 otherwise. We observe that if we let

Y =

m∑
i=1

Xi,(2.8)

then ϕ̂a,b − ϕ̂c,d = Y/m. Hence Y > 0 if and only if Ĉ(a, b; c, d) = 1. From (2.1) it
follows that

ϕa,b − ϕc,d = 2pq(1 − (α + β))2(1 − e−λ(�ab−�cd))e−λ�cd

= 2pq(1 − (α + β))2f�ab−�cd,�cd(λ),
(2.9)

which means that the expectation E[Y ] can be written

E[Y ] = m(ϕa,b − ϕc,d)

= 2mpq(1 − (α + β))2f�ab−�cd,�cd(λ).
(2.10)

Our aim is to bound the probability that Y < 0, given that E[Y ] > 0, i.e., the
probability that Y deviates from E[Y ] toward zero by more than E[Y ]. Since the
variables Xi are independent, Hoeffding’s inequality [9] immediately yields that

Pr
[
E[Y ] − Y ≥ E[Y ]

]
≤ e−2E[Y ]2/4m

= e−2mp2q2(1−(α+β))4f�ab−�cd,�cd
(λ)2 .

(2.11)

The function f�1,�2(λ) can be given the following interpretation. If I1 and I2 are
two intervals of length �1 and �2, respectively, then

Pr
[
(at least one break occurs in I1) ∧ (no breaks occur in I2)

]
= (1 − e−λ�1)e−λ�2 = f�1,�2(λ).

(2.12)

This function will be explored in more detail later, but for now the following intuitively
obvious properties will be sufficient to carry through our derivations.

Lemma 2.4. Let λ > 0. If � ≥ �1 > 0, then f�,�2(λ) ≥ f�1,�2(λ). If � ≥ �2 > 0,
then f�1,�(λ) ≤ f�1,�2(λ). If �1 ≥ �2 > 0, then f�1,�2(λ) ≥ f�2,�1(λ).

Proof. Assume that λ > 0. If � ≥ �1 ≥ 0, then

f�,�2(λ) = (1 − e−λ�)e−λ�2 ≥ (1 − e−λ�1)e−λ�2 = f�1,�2(λ).(2.13)
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If � ≥ �2 ≥ 0, then

f�1,�(λ) = (1 − e−λ�1)e−λ� ≤ (1 − e−λ�1)e−λ�2 = f�1,�2(λ).(2.14)

If �1 ≥ �2 ≥ 0, then

f�1,�2(λ) = (1 − e−λ�1)e−λ�2 ≥ (1 − e−λ�2)e−λ�1 = f�2,�1(λ).(2.15)

3. An improved analysis of known algorithms. In [2], Ben-Dor and Chor
proposed two simple algorithms for the calculation of the marker order: the P-Order

and K-Order algorithms. In the P-Order algorithm a chain of markers is built in a
stepwise fashion. Initially, a chain is constructed by connecting the two markers with
the shortest estimated distance. Then, in each step of the algorithm, the marker with
the shortest estimated distance to any of the two ends of the chain is connected to
that end of the chain. In the K-Order algorithm, a collection of chains is maintained.
Initially there are n chains of length 1. Then, in each step of the algorithm, the two
endmarkers with the shortest estimated distance between them are connected.

It was shown in [2] that if δmax and δmin are the longest and shortest, respectively,
distances between any pair of consecutive markers on the chromosome, then given

m ≥ log

(
n3

ε

)
1

2p2q2(1 − (α + β))4fδmin,δmax(λ)2
(3.1)

experiments, the estimated distances are consistent with probability 1 − ε, i.e., that
d̂(a, d) > d̂(b, c) for all markers a, b, c, and d, appearing in this order on the genome,
such that b and c are consecutive and d(a, d) > d(b, c). Furthermore, they showed
that if the estimated distances are consistent, both the P-Order and the K-Order

algorithms yield a correct order of the markers. We prove new tighter bounds for
both the P-Order and the K-Order algorithms. These new bounds improve the above
bound, by taking into account the actual arrangement of the markers.

3.1. Analyzing the P-Order algorithm. In the P-Order algorithm one marker
at a time is added to the chain that is being built. In order to show correctness of
the P-Order algorithm we thus need to assert that, with high probability, a marker
adjacent to an endmarker of the chain is added to that marker in each step, i.e.,
that the estimated distance between the endmarker and the marker adjacent to that
marker is smaller than the estimated distance between the endmarker and any other
marker. The following definition will be useful for this purpose.

Definition 3.1. A distance comparator C satisfies the P-Order condition with
parameter γ if, for any markers a, b, c, and d appearing in this order on the chro-
mosome such that b and c are consecutive and d(a, d) > d(b, c), the probability that
C(a, d; b, c) = 1 is at least 1 − γ.

Note the difference between the concept of consistency and the P-Order condition.
For a distance estimate to be consistent it is required that d̂(b, c) ≤ d̂(a, d) for all
markers a, b, c, and d appearing in this order on the chromosome such that b and c
are consecutive and d(a, d) > d(b, c). It turns out to be sufficient that the P-Order

condition hold for n2 such quadruples of markers simultaneously, namely, the pairs of
distances actually compared in the algorithm.

Theorem 3.2. If a distance comparator C satisfying the P-Order condition with
parameter γ is used in the P-Order algorithm, then the P-Order algorithm will give
the correct order of the markers with probability greater than 1 − γn2.
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Fig. 3.1. The kth step of the P-Order algorithm.

Proof. Let a be an arbitrarily chosen marker, and let b be the marker immediately
to the right of a. From the P-Order condition it follows that C(a, b; a, c) = −1 with
probability at least 1 − γ for any marker c to the right of b. Since there are at most
n−2 markers to the right of b, this means that, with probability at least 1−γ(n−2),
C(a, b; a, c) = −1 for all markers c to the right of b. Let A1 be the event that the first
two markers connected in the P-Order algorithm are adjacent, and let L(i) be the
event that the ith marker is the leftmost marker of the two markers chosen. Then

Pr
[
A1

]
=

n−1∑
i=1

Pr
[
A1 | L(i)

]
· Pr

[
L(i)

]

≥
n−1∑
i=1

(1 − γ(n− 2)) · Pr
[
L(i)

]
= 1 − γ(n− 2).

(3.2)

Hence, the first two markers connected in the P-Order algorithm are adjacent with
probability ≥ 1 − γ(n− 2).

Now, assume that the P-Order algorithm has correctly constructed a chain con-
sisting of k markers (k ≥ 2). Let a be the left endpoint of the chain, and let b be the
right endpoint of the chain. Finally, let c be the marker immediately to the right of
b; see Figure 3.1. From the P-Order condition it follows that C(b, c; b, d) = −1 with
probability ≥ 1 − γ for any marker d to the right of c. Furthermore, it follows that
C(b, c; a, d) = −1 with probability ≥ 1 − γ for any marker d to the right of b. The
same derivations can obviously be carried through for the markers to the left of a.

In the kth step of the algorithm (k ≥ 2) there are n − k nonconnected markers.
Let Ak be the event that a marker adjacent to one of the endmarkers of the chain is
connected to that endmarker in step k. Let L be the event that the new marker is
added to the left endmarker of the chain, and let R be the event that the new marker
is added to the right endmarker of the chain. Then

Pr
[
Ak | A1, . . . , Ak−1

]
= Pr

[
Ak | L,A1, . . . , Ak−1

]
· Pr

[
L | A1, . . . , Ak−1

]
+ Pr

[
Ak | R,A1, . . . , Ak−1

]
· Pr

[
R | A1, . . . , Ak−1

]
≥ (1 − 2γ(n− k)) · Pr

[
L | A1, . . . , Ak−1

]
+ (1 − 2γ(n− k)) · Pr

[
R | A1, . . . , Ak−1

]
= 1 − 2γ(n− k).

(3.3)

We thus conclude that if only adjacent markers have been connected in the first k− 1
steps of the P-Order algorithm, then the marker being connected to an endmarker in
the kth step is adjacent to that marker with probability ≥ 1 − 2γ(n− k).

If we sum up all steps of the algorithm, including the first step, we get an upper
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bound on the error probability ε:

ε ≤ γ(n− 2) +
n∑

k=2

2γ(n− k) <

n−1∑
j=1

2γj = γn(n− 1) ≤ γn2.(3.4)

We have thus shown that with probability greater than 1−γn2 the P-Order algorithm
gives the correct order of the markers.

Now, we will show how to find an expression for the parameter in the P-Order

condition such that the distance comparator Ĉ satisfies the P-Order condition. This
expression will obviously be heavily dependent on how the markers are arranged on
the chromosome, as well as on the radiation intensity used in the experiment.

Definition 3.3. Define the function fp(λ) as

fp(λ) = min
1<i<n

{f�i−1,i,�i,i+1(λ), f�i,i+1,�i−1,i
(λ)}.(3.5)

Lemma 3.4. Given m experiments, the distance comparator Ĉ, defined in Defini-
tion 2.2, satisfies the P-Order condition with parameter

e−2mp2q2(1−(α+β))4fp(λ)2 .(3.6)

Proof. Let a, b, c, and d be four markers appearing in this order on the chromo-
some; assume that b and c are consecutive and that d(a, d) > d(b, c). Without loss of
generality we assume that d �= c. Let e be the marker immediately to the right of c.
Note that e may be identical to the marker d. Now, it follows from Lemmas 2.3 and
2.4 that

Pr
[
Ĉ(a, d; b, c) �= 1

]
≤ e−2mp2q2(1−(α+β))4f�ad−�bc,�bc

(λ)2

= e−2mp2q2(1−(α+β))4f�ce,�bc
(λ)2

≤ e−2mp2q2(1−(α+β))4fp(λ)2 ,

(3.7)

where the last inequality follows from the fact that the markers b, c, e are consecutive,
together with Definition 3.3. Hence, for any four markers a, b, c, and d appearing in
this order on the chromosome such that b and c are consecutive and d(a, d) > d(b, c),

Pr
[
Ĉ(a, d; b, c) = 1

]
≥ 1 − e−2mp2q2(1−(α+β))4fp(λ)2 .(3.8)

If we use Lemma 3.4 in combination with Theorem 3.2, we get the following
theorem, which gives an upper bound on the number of experiments that is sufficient
for the P-Order algorithm to give the correct order of the markers.

Theorem 3.5. Given

m ≥ ln

(
n2

ε

)
1

2p2q2(1 − (α + β))4fp(λ)2
(3.9)

experiments, the P-Order algorithm gives the correct order of the markers with prob-
ability greater than 1 − ε.

Proof. From Lemma 3.4 it follows that with

m ≥ ln

(
n2

ε

)
1

2p2q2(1 − (α + β))4fp(λ)2
(3.10)

experiments, Ĉ satisfies the P-Order condition with parameter ≤ ε/n2. By Theo-
rem 3.2, this implies that the P-Order algorithm will give the correct order of the
markers with probability greater than 1 − ε.
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Fig. 3.2. Notation used in the analysis of the K-Order algorithm.

3.2. Analyzing the K-Order algorithm. In the K-Order algorithm the two
markers with the shortest estimated distance are joined in each step. This suggests
that sequences of tightly packed markers surrounded by long distances probably will
be connected to each other before any of the markers are connected to surrounding
markers that are far away. This will greatly facilitate the objective of correctly order-
ing the tightly packed markers, since in this case we just have to order the distances
between the surrounding markers and the ends of the chain, instead of the distances
between the surrounding markers and the individual markers in the cluster. In or-
der to analyze the algorithm rigorously we will use the following notation (for an
illustration, see Figure 3.2).

Definition 3.6.

Li = max

({
k : k < i, �k−1,k >

�i−1,i

2

}
∪ {1}

)
,(3.11)

Ri = min

({
k : k > i, �k,k+1 >

�i,i+1

2

}
∪ {n}

)
,(3.12)

Li = {j : Li < j ≤ i− 1}, Ri = {j : i + 1 ≤ j < Ri},(3.13)

mi = max({�j−1,j : j ∈ Li} ∪ {�j,j+1 : j ∈ Ri}),(3.14)

σL
i = �i−2,i−1 +

i−2∑
j=Li+1

�j−1,j , σR
i = �i+1,i+2 +

Ri−1∑
j=i+2

�j,j+1.(3.15)

The idea is thus to make sure that before we connect the markers i and i+ 1, all
short edges to the left of i and to the right of i + 1 are connected. To capture this
idea we define what we call the K-Order conditions, which have two parameters.

Definition 3.7. A distance comparator C satisfies the K-Order conditions with
parameters γ and ζ if

1. for any markers a, b, c, and d appearing in this order on the chromosome
such that b and c are consecutive, d(a, d) > d(b, c), and d /∈ Rb or a /∈ Lc, the
probability that C(a, d; b, c) = 1 is at least 1 − γ;

2. for each a ∈ [2, n] and b ∈ La the probability that C(a − 1, a; b − 1, b) = 1 is
at least 1 − ζ;

3. for each a ∈ [1, n− 1] and b ∈ Ra the probability that C(a, a+ 1; b, b+ 1) = 1
is at least 1 − ζ.

It turns out that if a distance comparator satisfies these K-Order conditions, then
it is possible to show that the K-Order algorithm using this distance comparator will
find the true order of the markers with high probability.

Theorem 3.8. If a distance comparator C satisfying the K-Order condition with
parameters γ and ζ is used in the K-Order algorithm, then the K-Order algorithm will
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Fig. 3.3. A step in the K-Order algorithm.

give the correct order of the markers with probability greater than 1 − 2γn2 − ζn2.

Proof. We say that a distance comparator C is L-closed if, for all a ∈ [2, n] and
b ∈ La, we have C(a− 1, a; b− 1, b) = 1; analogously, we say that C is R-closed if, for
all a ∈ [1, n− 1] and b ∈ Ra, we have C(a, a+ 1; b, b+ 1) = 1. This means that if C is
L-closed and if the K-Order algorithm has only connected adjacent markers, then all
markers in La will be connected before the markers a−1 and a are connected to each
other. Analogously, if C is R-closed and if the K-Order algorithm has only connected
adjacent markers, then all markers in Ra will be connected before the markers a and
a + 1 are connected to each other.

To prove the theorem, we will therefore show that if the distance comparator C,
used in the K-Order algorithm, satisfies the K-Order conditions with parameters γ
and ζ, then

1. C is L-closed and R-closed, with probability at least 1 − ζn2;
2. if C is L-closed and R-closed, then only adjacent markers will be connected

by the K-Order algorithm with probability at least 1 − 2γn2.

From the K-Order conditions it follows that for any marker a and any marker
b ∈ La, C(a− 1, a; b− 1, b) = 1 with probability at least 1− ζ. There are at most

(
n
2

)
pairs of markers altogether, so with probability at least 1−ζn2/2, C(a−1, a; b−1, b) = 1
for all markers a and all markers b ∈ La. Hence, C is L-closed with probability at least
1− ζn2/2. Analogously, from the K-Order conditions it follows that for any marker a
and any marker b ∈ Rb, C(a, a+1; b, b+1) = 1 with probability at least 1− ζ. Hence,
with probability at least 1 − ζn2/2, C(a, a + 1; b, b + 1) = 1 for all markers a and all
markers b ∈ Ra. Thus, C is R-closed with probability at least 1 − ζn2/2 as well. To
sum up, this means that C is L-closed and R-closed with probability at least 1− ζn2.

Now, assume that the K-Order algorithm has connected only adjacent markers
in its first k − 1 steps and that C is L-closed and R-closed. Let c� be the leftmost
chain that is connected in the kth step. Let a and c be the left and right endpoints,
respectively, of the chain c� (note that in the singleton case c is identical to a). Let d
be the marker immediately to the right of c, and let e be any free marker to the right
of d; see Figure 3.3. Notice that, since C is R-closed, no free marker to the right of
d belongs to Rc. From the K-Order condition it thus follows that C(c, d; c, e) = −1
with probability ≥ 1− γ. For the same reason, in the case where a and c are distinct,
the K-Order condition implies that C(c, d; a, e) = −1 with probability ≥ 1 − γ. Since
C is L-closed, a does not belong to Ld, which means that if a and c are distinct,
C(c, d; a, d) = −1 with probability ≥ 1 − γ as well.

Let ek be the number of endmarkers in the kth step. In the case where a and c are
distinct, the number of endmarkers not belonging to c� is ek − 2, and the probability
that an adjacent marker is connected to c� is ≥ 1 − 2γ(ek − 2), given that c� is the
leftmost chain in the connection. In the case where a and c are identical, the number of
endmarkers not belonging to c� is ek−1, so the probability that an adjacent marker is
connected to c� is ≥ 1−γ(ek−1), given that c� is the leftmost chain in the connection.
Since 1− 2γ(ek − 2) ≤ 1− γ(ek − 1) for ek ≥ 3, we thus conclude that the probability
that an adjacent marker is connected to c� is ≥ 1 − 2γ(ek − 2), given that c� is the
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leftmost chain in the connection.
Let Ak be the event that two adjacent markers are connected in the kth step, and

let L(i) be the event that the ith chain from the left is chosen as the leftmost chain
in the connection. Then

Pr
[
Ak |A1, . . . , Ak−1

]
=

n−k+1∑
i=1

Pr
[
Ak | L(i), A1, . . . , Ak−1

]
· Pr

[
L(i) | A1, . . . , Ak−1

]

≥ (1 − 2γ(ek − 2))

n−k+1∑
i=1

Pr
[
L(i) | A1, . . . , Ak−1

]
= 1 − 2γ(ek − 2).

(3.16)

We know that the number of endpoints in step k is at most twice the number of
chains in step k, i.e., at most 2(n − k + 1). If we sum up the error probabilities for
the k− 1 steps of the algorithm, we get an upper bound on the error probability ε for
the K-Order algorithm, given that C is L-closed and R-closed:

ε ≤
n−1∑
k=1

2γ(ek − 2) ≤
n−1∑
k=1

4γ(n− k) = 2γn(n− 1) ≤ 2γn2.(3.17)

Let A be the event that the K-Order algorithm gives a correct order of the markers.
What we have shown is that

Pr
[
C is L-closed ∧ C is R-closed

]
> 1 − ζn2(3.18)

and that

Pr
[
A | C is L-closed ∧ C is R-closed

]
> 1 − 2γn2.(3.19)

Hence the probability that K-Order gives the correct order of the markers is

Pr
[
A
]
≥ Pr

[
A ∧ (C is L-closed ∧ C is R-closed)

]
> (1 − 2γn2)(1 − ζn2)

> 1 − 2γn2 − ζn2.

(3.20)

The number of experiments required to make the distance comparator Ĉ satisfy
the K-Order conditions is naturally dependent on how the markers are arranged on
the particular chromosome. Using the distances defined in Definition 3.6, we find
expressions for the parameters γ and ζ such that the distance comparator Ĉ satis-
fies the K-Order conditions.

Definition 3.9. Define the functions fkγ(λ) and fkζ(λ) as

fkγ(λ) = min

{
min

2≤i≤n−1
{fσL

i+1,�i,i+1
(λ)}, min

1≤i≤n−2
{fσR

i ,�i,i+1
(λ)}

}
,(3.21)

fkζ(λ) = min
1≤i≤n−1

Li+1∪Ri �=∅

{f�i,i+1−mi,mi
(λ)},(3.22)

and let fk(λ) = min{fkγ(λ), fkζ(λ)}.
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Lemma 3.10. Given m experiments, the distance comparator Ĉ, defined in Defi-
nition 2.2, satisfies the K-Order condition with parameters

γ = e−2mp2q2(1−(α+β))4fkγ(λ)2 and ζ = e−2mp2q2(1−(α+β))4fkζ(λ)2 .(3.23)

Proof. Lemma 2.3 states that for any four markers a, b, c, and d such that
d(a, d) > d(b, c)

Pr
[
Ĉ(a, d; b, c) �= 1

]
≤ e−2mp2q2(1−(α+β))4f�ad−�bc,�bc

(λ)2 .(3.24)

Let a, b, c, and d be four markers appearing in this order on the chromosome, and
assume that b and c are consecutive, that d(a, d) > d(b, c), and that d /∈ Rb. If we let
e = Rb, it follows from Lemma 2.4 and Definition 3.6 that

Pr
[
Ĉ(a, d; b, c) �= 1

]
≤ e−2mp2q2(1−(α+β))4f�ad−�bc,�bc

(λ)2

≤ e−2mp2q2(1−(α+β))4f�be−�bc,�bc
(λ)2

= e
−2mp2q2(1−(α+β))4f

σR
b

,�bc
(λ)2

.

(3.25)

In a similar way we can show that if a /∈ Lc, then

Pr
[
Ĉ(a, d; b, c) �= 1

]
≤ e

−2mp2q2(1−(α+β))4fσL
c ,�bc

(λ)2
.(3.26)

Hence, from Definition 3.9 it follows that, for any four markers a, b, c, and d appearing
in this order on the chromosome such that b and c are consecutive, d(a, d) > d(b, c),
and either d /∈ Rb or a /∈ Lc,

Pr
[
Ĉ(a, d; b, c) = 1

]
> 1 − e−2mp2q2(1−(α+β))4fkγ(λ)2 .(3.27)

Let a ∈ [2, n] be an arbitrary marker, and assume that b ∈ La. From Lemma 2.4,
Definition 3.6, and Definition 3.9 it follows that

Pr
[
Ĉ(a− 1, a; b− 1, b) �= 1

]
≤ e−2mp2q2(1−(α+β))4f�a−1,a−�b−1,b,�b−1,b

(λ)2

≤ e−2mp2q2(1−(α+β))4f�a−1,a−ma−1,ma−1
(λ)2

≤ e−2mp2q2(1−(α+β))4fkζ(λ)2 .

(3.28)

In the same way it is possible to show that for any a ∈ [1, n− 1] and b in Ra

Pr
[
Ĉ(a, a + 1; b, b + 1) �= 1

]
≤ e−2mp2q2(1−(α+β))4f�a,a+1−ma,ma (λ)2

≤ e−2mp2q2(1−(α+β))4fkζ(λ)2 .
(3.29)

If we use Lemma 3.10 in combination with Theorem 3.8, we get the following
theorem, which gives an upper bound on the number of experiments that is sufficient
for the K-Order algorithm to give the correct order of the markers.

Theorem 3.11. Given

m ≥ ln

(
4n2

ε

)
1

2p2q2(1 − (α + β))4fk(λ)2
(3.30)

experiments, the K-Order algorithm gives the correct order of the markers with prob-
ability greater than 1 − ε.
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Proof. From Lemma 3.10 it follows that with

m ≥ ln

(
4n2

ε

)
1

2p2q2(1 − (α + β))4fk(λ)2
(3.31)

experiments, Ĉ satisfies the K-Order condition with parameters γ ≤ ε/4n2 and ζ ≤
ε/4n2. By Theorem 3.8, this implies that the K-Order algorithm will give the correct
order of the markers with probability greater than 1 − ε.

4. New multiple intensity algorithms. It is clear from the bounds in Theo-
rems 3.5 and 3.11 that the number of experiments needed for the P-Order and K-Order

algorithms to compute the correct marker order is heavily dependent on the radiation
intensity used, or more precisely, on the relation between intensity and the distances
compared given by the function f�1,�2(λ). Here we present the Modified-P-Order

and Modified-K-Order algorithms which are able to use RH data from several series
of experiments, performed with different intensities of the radiation. We show that
if the output from O(log(n)) series of experiments with suitably chosen intensities
is used, the dependency on the intensity of the radiation can be removed from the
performance bounds if we assume that the markers are uniformly distributed.

In each step of both the K-Order and P-Order algorithms, we look for the mini-
mum distance in a set of given distances (between pairs of markers �i). This is done
through a sequence of pairwise comparisons between separation probabilities. In the
Modified-P-Order and Modified-K-Order algorithms, each such comparison is made
with the estimates calculated from the series of experiments giving the greatest differ-
ence in the estimated separation probabilities for the two pairs of markers. We thus
get the following distance comparator.

Definition 4.1. Let λ = (λ1, . . . , λt) be the intensities used in the t experiment

series, and let d̂λi
(x, y) be the distance estimate obtained by applying the distance

estimate defined by (2.5) to the data from series i. For any four markers a, b, c, and
d, let λ̃ be the intensity maximizing the difference in separation probability between a,
b and c, d among the t intensities λi. Define

Ct,λ(a, b; c, d) =

⎧⎪⎨
⎪⎩

1 if d̂λ̃(a, b) > d̂λ̃(c, d),

0 if d̂λ̃(a, b) = d̂λ̃(c, d),

−1 if d̂λ̃(a, b) < d̂λ̃(c, d).

(4.1)

The use of this distance comparator is motivated by Lemma 2.3 and (2.1). Lem-
ma 2.3 states that if a, b, c, and d are four markers such that d(a, b) > d(c, d), then

Pr
[
d̂(a, b) ≤ d̂(c, d)

]
≤ e−O(f�ab−�cd,�cd

(λ)2). This means that we get the best bound
for the error probability when using the intensity λ that maximizes f�ab−�cd,�cd(λ).
Unfortunately, this value is unknown, since the distances between the markers are
unknown. However, (2.9) implies that the difference in separation probability between
a, b and c, d is proportional to f�ab−�cd,�cd(λ); we would thus expect the optimal
intensity to be the one maximizing this difference.

To analyze the modified algorithms, we will start by showing an upper bound on
the probability of misjudging a pair of distances when using the distance comparator
Ct,λ. This bound will be similar to the bound in Lemma 2.3.

Assume that two series of RH experiments have been made, each consisting of m
experiments. In the first series the intensity λ1 was used, and in the second series the
intensity λ2 was used. For i = 1, . . . ,m and j = 1, 2 we define Xj

i = 1 if a, b but not
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c, d are separated in the ith experiment of series j; Xj
i = −1 if c, d but not a, b are

separated in the ith experiment of series j; and Xj
i = 0 otherwise. Furthermore, for

j = 1, 2, we let

Yj =

m∑
i=1

Xj
i .(4.2)

Equation (2.10), states that in this case

E[Yj ] = 2mpq(1 − (α + β))2f�ab−�cd,�cd(λj).(4.3)

Assume that d(a, b) > d(c, d), and that Y1 > 0, i.e., that the series of experiments
using intensity λ1 has given the correct ordering of the distances. We will bound the
probability that, in the algorithm, the results from the second series of experiments
will mislead us into drawing the incorrect conclusion about the two distances d(a, b)
and d(c, d). This will happen when Y2 < −Y1, i.e., when Y1 + Y2 < 0. Let

Z =

m∑
i=1

X1
i +

m∑
i=1

X2
i = Y1 + Y2.(4.4)

Since d(a, b) > d(c, d), it is clear that

E[Z] = E[Y1] + E[Y2] > 0.(4.5)

Using the Hoeffding inequality and (4.3), we see that

Pr
[
Z < 0

]
= Pr

[
E[Z] − Z ≥ E[Z]

]
= Pr

[
E[Z] − Z

2m
≥ E[Z]

2m

]

≤ e−2E[Z]2/8m = e−2(E[Y1]+E[Y2])
2/8m

= e−mp2q2(1−(α+β))4(f�ab−�cd,�cd
(λ1)+f�ab−�cd,�cd

(λ2))
2

.

(4.6)

This inequality will be used to prove the following lemma.
Lemma 4.2. Let a, b, c and d be four markers such that d(a, b) > d(c, d). Then

Pr
[
Cλ,t(a, b; c, d) �= 1

]
≤ te−mp2q2(1−(α+β))4f�ab−�cd,�cd

(λ∗)2 ,(4.7)

where λ∗ is the intensity maximizing f�ab−�cd,�cd(λ) among the t intensities λ1, . . . , λt

in λ.
Proof. Let B1 be the event that the decision based on the series of experiments

using intensity λ∗ is incorrect, and let B2 be the event that the series of experiments
using intensity λ∗ is correct but some other series is chosen and the decision based on
that series is incorrect. From Lemma 2.3 follows that

Pr
[
B1

]
≤ e−2mp2q2(1−(α+β))4f�ab−�cd,�cd

(λ∗)2 ,(4.8)

and from (4.6) follows that

Pr
[
B2

]
≤

∑
λi �=λ∗

e−mp2q2(1−(α+β))4(f�ab−�cd,�cd
(λ∗)+f�ab−�cd,�cd

(λi))
2

.(4.9)
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This means that

Pr
[
Cλ,t(a, b; c, d) �= 1

]
≤ Pr

[
B1

]
+ Pr

[
B1

]
≤ e−2mp2q2(1−(α+β))4f�ab−�cd,�cd

(λ∗)2

+
∑

λi �=λ∗

e−mp2q2(1−(α+β))4(f�ab−�cd,�cd
(λ∗)+f�ab−�cd,�cd

(λi))
2

(4.10)

≤ te−mp2q2(1−(α+β))4f�ab−�cd,�cd
(λ∗)2 .

To eliminate the dependency on the intensity λ from the bound in Lemma 4.2
we need to investigate the function f�1,�2(λ) in more detail. Differentiation of the
function f�1,�2(λ) with respect to λ yields that

df�1,�2(λ)

dλ
= (�1 + �2)e

−λ(�1+�2) − �2e
−λ�2 ,(4.11)

d 2f�1,�2(λ)

dλ2
= −(�1 + �2)

2e−λ(�1+�2) + �22e
−λ�2 .(4.12)

We observe that

λ̂ =
1

�1
ln

�1 + �2
�2

(4.13)

is the only stationary point for f�1,�2(λ) when �1, �2 > 0, and that this stationary
point is in fact a maximum since

d 2f�1,�2(λ̂)

dλ2
= −�1�2

(
�2

�1 + �2

) �2
�1

< 0(4.14)

for �1, �2 > 0. Furthermore, we see that the corresponding optimal value is

f�1,�2(λ̂) =

(
�1

�1 + �2

)(
�2

�1 + �2

) �2
�1

.(4.15)

If an intensity λ̃ is sufficiently close to the optimal intensity λ̂, the value of f�1,�2(λ̃)

should not be too far from the optimal value f�1,�2(λ̂). The following lemma states

that for λ̃ ∈ [λ̂/2, 2λ̂] a lower bound on f�1,�2(λ̃) can be given that is independent of
the intensity.

Lemma 4.3. Let λ̂ be the unique optimum for f�1,�2(λ), i.e.,

λ̂ =
1

�1
ln

�1 + �2
�2

.(4.16)

Then, for any λ̃ ∈ [λ̂/2, 2λ̂],

f�1,�2(λ̃) ≥ 1

2e2

�1
�1 + �2

.(4.17)

Proof. Since f�1,�2(λ) has a single stationary point which is a local maximum, we

know that for any λ̃ such that λ̃ ∈ [λ̂/2, 2λ̂],

f�1,�2(λ̃) ≥ min

{
f�1,�2

(
λ̂

2

)
, f�1,�2(2λ̂)

}
.(4.18)
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From the definition of f�1,�2(λ) it follows that for any k > 0

f�1,�2(kλ̂) =

(
1 +

�1
�2

)−k
�2
�1

(
1 −

(
1 − �1

�1 + �2

)k
)
.(4.19)

Since we know that (1 + 1/x)−kx ≥ e−k for x > 0, this means that

f�1,�2(kλ̂) ≥ e−k

(
1 −

(
1 − �1

�1 + �2

)k
)
.(4.20)

If we insert k = 1/2 and k = 2 into this equation and use the inequality

min{1 − (1 − x)2, 1 − (1 − x)1/2} ≥ x

2
(4.21)

for 0 < x < 1, we thus get that

f�1,�2(λ̃) ≥ 1

2e2

�1
�1 + �2

.(4.22)

Lemma 4.3 implies that by using a range of intensities, the choice of intensities is
eliminated completely from the bound in Lemma 4.2.

Lemma 4.4. Let a, b, c, and d be four markers such that d(a, b) > d(c, d). Let

λ = (λ1, . . . , λt), where λi = 4λi−1, for 2 ≤ i ≤ t. Let λ̂ be the intensity maximizing

f�ab−�cd,�cd(λ), and assume that λ1 ≤ λ̂ ≤ λt. Then,

Pr
[
Cλ,t(a, b; c, d) �= 1

]
≤ te

−mp2q2(1−(α+β))4
(

�ab−�cd
2e2�ab

)2

.(4.23)

Proof. By assumption, the intensities used in the t series will satisfy λi+1 = 4λi,
for i = 1, . . . , t − 1. Since the optimal intensity λ̂ satisfies λ1 ≤ λ̂ ≤ λt, this means
that there is some intensity λ̃ ∈ {λi} such that λ̂/2 ≤ λ̃ ≤ 2λ̂. Let λ∗ be the intensity
maximizing f�ab−�cd,�cd(λ) among the t intensities λ1, . . . , λt. Then, from Lemma 4.3
it follows that

f�ab−�cd,�cd(λ
∗) ≥ f�ab−�cd,�cd(λ̃) ≥ �ab − �cd

2e2�ab
.(4.24)

If we use this inequality in Lemma 4.2, we get that

Pr
[
Cλ,t(a, b; c, d) �= 1

]
≤ te−mp2q2(1−(α+β))4f�ab−�cd,�cd

(λ∗)2

≤ te
−mp2q2(1−(α+β))4

(
�ab−�cd
2e2�ab

)2

.
(4.25)

To be able to use Lemma 4.4 in the same way as we used Lemma 2.3 in the
proof of the original P-Order and K-Order algorithms, we need to make sure that the
optimal intensity λ̂ satisfies λ1 ≤ λ̂ ≤ λt, for all parameters �1 and �2 of the function
f�1,�2(λ) considered in the analyses. The following lemma shows that the constraint
on the optimal intensity can be transformed into a constraint on the two parameters
�1 and �2.

Lemma 4.5. Let �1 and �2 be two distances such that 0 < �min ≤ �1, �2 ≤ �max,
and let λ̂ be the optimal value of f�1,�2(λ). Then λ̂ ∈ [ln 2/�max, ln 2/�min].
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Proof. Above, we observed that f�1,�2(λ) is maximized by λ̂ = ln((�1 + �2)/�2)/�1.
Differentiation yields that

dλ̂

d�1
=

1

�21

(
1

1 + �2/�1
− ln

(
1 +

�1
�2

))
,(4.26)

dλ̂

d�2
= − 1

�2 + �1�2
.(4.27)

It follows immediately from (4.27) that λ̂ is decreasing when �2 is increasing. To see

that λ̂ is also decreasing when �1 is increasing, we observe that

d

dx

(
1

1 + 1/x
− ln(1 + x)

)
=

1

(1 + x)2
− 1

1 + x
< 0,(4.28)

for x > 0, and that

lim
x→0

(
1

1 + 1/x
− ln(1 + x)

)
= 0.(4.29)

Hence, if 0 < �min ≤ �1, �2 ≤ �max, we are guaranteed that ln 2/�max ≤ λ̂ ≤
ln 2/�min.

If we look carefully at the analyses of the P-Order and K-Order algorithms, we
observe that the parameters �1 and �2 of the function f�1,�2(λ) always are less than or
equal to the longest distance between any pair of markers, and greater than or equal to
the shortest distance between any pair of markers. The longest distance between any
pair of markers can obviously be bounded by the length of the genome. Furthermore,
if we assume that the markers are uniformly distributed along the genome, we can
derive a probabilistic lower bound on the shortest distance between any two markers.

Lemma 4.6. Let L be the length of a genome containing n uniformly distributed
markers. Then the distance between any two markers is at least L/(2n2+δ), with
probability 1 − n−δ.

Proof. Divide the genome into 2n2+δ disjoint intervals, each of length L/(2n2+δ).
Define the

(
n
2

)
random variables Xij in the following way:

Xij =

{
1 if i and j are in the same or neighboring subintervals,

0 otherwise.
(4.30)

Since the markers are assumed to be uniformly distributed, we know that

Pr
[
Xij = 1

]
≤ 3

2n2+δ
.(4.31)

Let

Y =
∑
i<j

Xij .(4.32)

It is clear that Y ≥ 1 if and only if some pair of markers are in the same or neighboring
subintervals. From the Markov inequality it follows that

Pr
[
Y ≥ 1

]
≤ E[Y ] ≤

(
n

2

)
3

2n2+δ
<

1

nδ
.(4.33)

Hence, the distance between any two markers will be at least L/(2n2+δ), with prob-
ability 1 − n−δ.



ALGORITHMS FOR RH MAPPING 105

4.1. Analyzing the Modified-P-Order algorithm. The similarity between
the bound in Lemmas 2.3 and 4.4 makes it possible to carry through derivations
similar to those in section 3. The role of the intensity-dependent function fp(λ) will
be played by the function f∗

p defined below.
Definition 4.7. Define the parameter f∗

p as

f∗
p = min

1<i<n

{
�i−1,i

�i−1,i+1
,

�i,i+1

�i−1,i+1

}
.(4.34)

Lemma 4.8. Assume that n markers are uniformly distributed along a chromo-
some of length L. Assume that t = �(1+δ/2) log(n)+3/2� series of experiments have
been made, each consisting of m experiments using intensities λ = (λ1, . . . , λt), where
λi = 4i−1 ln 2/L. Then, with probability greater than 1−n−δ, the distance comparator
Cλ,t satisfies the P-Order condition with parameter

te−mp2q2(1−(α+β))4
(

f∗
p

2e2

)2

.(4.35)

Proof. From Lemmas 4.5 and 4.6 follows that, with probability greater than
1−n−δ, the optimal intensities λ̂, for all choices of �1 and �2 such that �min ≤ �1, �2 ≤
L, will satisfy λ̂ ∈ [λ1, λt], where �min is the shortest distance between any two markers
and t is chosen as above.

Let a, b, c, and d be four markers, appearing in this order on the genome, such
that b and c are consecutive and d(a, d) > d(b, c). Without loss of generality, we
assume that d �= c. Let e be the marker immediately to the right of c. Note that e
may be identical to the marker d. Then, under the condition above, it follows from
Lemma 4.4 that

Pr
[
Cλ,t(a, d; b, c) �= 1

]
≤ te

−mp2q2(1−(α+β))4
(

�ad−�bc
2e2�ad

)2

≤ te
−mp2q2(1−(α+β))4

(
�ce

2e2�be

)2

≤ te−mp2q2(1−(α+β))4
(

f∗
p

2e2

)2

,

(4.36)

where the last inequality follows from the fact that the markers b, c, e are consecutive,
together with Definition 4.7.

Theorem 4.9. Assume that n markers are uniformly distributed along a chromo-
some of length L. Assume that t = �(1+δ/2) log(n)+3/2� series of experiments have
been made using intensities λ = (λ1, . . . , λt), where λi = 4i−1 ln 2/L, each consisting
of

m ≥ ln

(
tn2

ε

)
4e4

p2q2(1 − (α + β))4(f∗
p )2

(4.37)

experiments. Then the Modified-P-Order algorithm, i.e., the P-Order algorithm
using the distance comparator Cλ,t, gives the correct order of the n markers with
probability greater than 1 − ε− n−δ.

Proof. From Lemma 4.8 it follows that, given

m ≥ ln

(
tn2

ε

)
4e4

p2q2(1 − (α + β))4
(
f∗
p

)2(4.38)
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experiments, the distance comparator Cλ,t satisfies the P-Order condition with param-
eter ≤ ε/n2 with probability greater than 1−n−δ. By Theorem 3.2, this implies that
the P-Order algorithm using this distance comparator will compute the correct order
of the markers with probability greater than 1 − ε. Hence, the Modified-P-Order

algorithm will compute the correct order of the markers with probability greater than
1 − ε− n−δ.

4.2. Analyzing the Modified-K-Order algorithm. The equivalents of the
functions fkγ(λ), fkζ(λ), and fk(λ) in section 3 will in the modified case be denoted
f∗
kγ , f∗

kζ , and f∗
k , respectively.

Definition 4.10. Define the parameters f∗
kγ and f∗

kζ as

f∗
kγ = min

{
min

2≤i≤n−1

{
σL
i+1

σL
i+1 + �i,i+1

}
, min
1≤i≤n−2

{
σR
i

σR
i + �i,i+1

}}
,(4.39)

f∗
kζ = min

1≤i≤n−1
Li+1∪Ri �=∅

{
�i,i+1 −mi

�i,i+1

}
,(4.40)

and let f∗
k = min{fkγ , fkζ}.

Lemma 4.11. Assume that n markers are uniformly distributed along a chromo-
some of length L. Assume that t = �(1 + δ/2) log(n) + 3/2� series of experiments
have been made, each consisting of m experiments, using intensities λ = (λ1, . . . , λt),
where λi = 4i−1 ln 2/L. Then, with probability greater than 1 − n−δ, the distance
comparator Cλ,t satisfies the K-Order conditions with parameters

γ = te−mp2q2(1−(α+β))4
(

f∗
kγ

2e2

)2

and ζ = te−mp2q2(1−(α+β))4
( f∗

kζ

2e2

)2

.(4.41)

Proof. From Lemmas 4.5 and 4.6 it follows that, with probability greater than
1−n−δ, the optimal intensities λ̂, for all choices of �1 and �2 such that �min ≤ �1, �2 ≤
L, will satisfy λ̂ ∈ [λ1, λt], where �min is the shortest distance between any two markers
and t is chosen as above.

Let a, b, c, and d be four markers appearing in this order on the genome; assume
that b and c are consecutive; assume that d(a, d) > d(b, c); and assume that d /∈ Rb. If
we let e = Rb, it follows from Definition 3.6 and Lemma 4.4 that, under the condition
above,

Pr
[
Cλ,t(a, d; b, c) �= 1

]
≤ te

−mp2q2(1−(α+β))4
(

�ad−�bc
2e2�ad

)2

≤ te
−mp2q2(1−(α+β))4

(
�be−�bc
2e2�be

)2

= te
−mp2q2(1−(α+β))4

(
σR
b

2e2(σR
b

+�bc)

)2

.

(4.42)

In a similar way we can show that if a /∈ Lc, then

Pr
[
Cλ,t(a, d; b, c) �= 1

]
≤ te

−mp2q2(1−(α+β))4
(

σL
c

2e2(σL
c +�bc)

)2

.(4.43)

Hence, from Definition 4.10 it follows that, for any four markers a, b, c, and d appear-
ing in this order on the genome such that b and c are consecutive, d(a, d) > d(b, c),
and either d /∈ Rb or a /∈ Lc,

Pr
[
Cλ,t(a, d; b, c) = 1

]
≥ 1 − te−mp2q2(1−(α+β))4

(
f∗
kγ

2e2

)2

.(4.44)
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Let a ∈ [2, n] be an arbitrary marker, and assume that b ∈ La. From the def-
inition of La it follows that �a−1,a − �b−1,b ≥ �b−1,b. Hence, from Definition 3.6,
Definition 4.10, and Lemma 4.4 it follows, under the condition above, that

Pr
[
Cλ,t(a− 1, a; b− 1, b) �= 1

]
≤ te

−mp2q2(1−(α+β))4
(

�a−1,a−�b−1,b

2e2�a−1,a

)2

≤ te
−mp2q2(1−(α+β))4

(
�a−1,a−ma

2e2�a−1,a

)2

≤ te−mp2q2(1−(α+β))4
( f∗

kζ

2e2

)2

.

(4.45)

In the same way it is possible to show that for any a ∈ [1, n− 1] and b in Ra

Pr
[
Cλ,t(a, a + 1; b, b + 1) �= 1

]
≤ te−mp2q2(1−(α+β))4

( f∗
kζ

2e2

)2

.(4.46)

Theorem 4.12. Assume that n markers are uniformly distributed along a chro-
mosome of length L. Assume that t = �(1 + δ/2) log(n) + 3/2� series of experiments
have been made using intensities λ = (λ1, . . . , λt), where λi = 4i−1 ln 2/L, each con-
sisting of

m ≥ ln

(
4tn2

ε

)
4e4

p2q2(1 − (α + β))4(f∗
k )2

(4.47)

experiments. Then the Modified-K-Order algorithm, i.e., the K-Order algorithm
using the distance comparator Cλ,t, gives the correct order of the n markers with
probability greater than 1 − ε− n−δ.

Proof. From Lemma 4.11 it follows that, if the number of experiments m satis-
fies (4.47), then the distance comparator Cλ,t satisfies the K-Order conditions with
parameters γ ≤ ε/4n2 and ζ ≤ ε/4n2 with probability greater than 1− n−δ. By The-
orem 3.8, this implies that the K-Order algorithm using this distance comparator will
compute the correct order of the markers with probability greater than 1− ε. Hence,
the Modified-K-Order algorithm will compute the correct order of the markers with
probability greater than 1 − ε− n−δ.

5. Discussion. In [2], Ben-Dor and Chor presented the P-Order and K-Order

algorithms for the RH problem. As support for the algorithms, they also proved
an upper bound on the number of RH experiments sufficient for both algorithms to
compute the correct marker order with high probability.

We have improved the analysis of the P-Order and K-Order algorithms. By
taking into account what decisions the two algorithms actually need to make, we
derive tighter bounds than those in [2]. The major improvement is the replacement of
fδmin,δmax(λ) with fp(λ) and fk(λ), respectively. It is easy to see from their definitions
that fδmin,δmax

(λ) ≤ fp(λ) ≤ fk(λ). In fact, for any constant c > 0 it is possible to
construct marker arrangements such that fk(λ)/fp(λ) > c and fp(λ)/fδmin,δmax

(λ) > c.
The new analysis thus suggests that the K-Order algorithm is to be preferred to
the P-Order algorithm, a suggestion which is confirmed by experimental results not
shown here. The introduction of distance comparators has allowed us to formulate
very general results. The bounds in Theorems 3.2 and 3.8 apply to any P-Order- and
K-Order-like strategy for ordering points on the line, such that the probability for
errors in the distance comparisons can be bounded.

The new analysis of the P-Order and K-Order algorithms shows that the inten-
sity of the radiation used in the RH experiments is less suitable for some distance
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comparisons than for others. This suggests that the use of RH data produced with
several different intensities would improve the stability of the algorithms with respect
to the choice of intensity. The Modified-P-Order and Modified-K-Order algorithms
are modified versions of the original P-Order and K-Order algorithms, designed to be
able to use multiple intensity data. We show that using RH data from O(log n) series
of experiments, produced with suitable intensities, the dependency on the choice of
intensity can be removed from the performance bounds, under the assumption that
the markers are uniformly distributed.

Although the analysis of the modified algorithms assumes that a specified range
of intensities is used, the algorithms can be used on any experimental data involving
different intensities. Experimental studies on synthetic data (omitted here) suggest
that the Modified-K-Order algorithm works especially well in practice. The use of
only three different intensities makes the algorithm more stable against the effects of
the choice of intensity. However, the most important conclusion that can be drawn
from these results is that the use of multiple intensity data does have a positive effect
on the performance of P-Order- and K-Order-like RH algorithms.

6. Acknowledgment. We would like to thank Johan H̊astad for useful ideas
and fruitful discussions.
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Abstract. A graph property is called elusive (or evasive) if every algorithm for testing this

property has to read in the worst case
(
n
2

)
entries of the adjacency matrix of the given graph.

Several graph properties have been shown to be elusive, e.g., planarity or k-colorability. A famous
conjecture of Karp says that every nontrivial monotone graph property is elusive. We prove that a
nonmonotone but hereditary graph property is elusive: perfectness.
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1. Introduction. Given a graph property, consider the following two-player
game to define elusiveness. Player A wants to know whether an unknown simple
graph on a given node set has the graph property in question by asking Player B one
pair of nodes at a time whether this pair of nodes is an edge. At each stage Player
A makes full use of the information of edges and nonedges he has up to that point
in order to decide whether the graph has the property or not. Player A wants to
minimize the number of his questions; Player B wants to force him to ask as many
questions as possible. The number of questions needed for the decision if both players
play optimally from their point of view is the recognition complexity of the studied
graph property. The property is said to be elusive (or also evasive) if there is a strat-
egy enabling Player B to force Player A to test every pair of nodes, respectively, to
ask all possible

(
n
2

)
questions before coming to a decision. (More precisely, such a

strategy has to exist for all nontrivial cases, i.e., for all n such that there are graphs
on n nodes with and without the studied property.)

Several graph properties are known to be elusive, e.g., having a clique of a certain
size or a coloring with a certain number of color classes (Bollobás [3]) or being planar
(Best, van Emde Boas, and Lenstra [2]); see [4, 14, 18] for more examples. On the
other hand, it is well known that there exist nontrivial graph properties that need
only O(n) questions; see [2, 4].

Aanderaa and Rosenberg conjectured [2] that there exist some γ > 0 such that the
complexity of every nontrivial monotone graph property (i.e., a property preserved
under deleting edges) is at least γn2. This conjecture has been proved by Rivest
and Vuillemin [12] for γ = 1

16 . The value of γ has been improved over the years.
Currently the largest value of γ for which the conjecture of Aanderaa and Rosenberg
is known to be true is 1

4 − o(1). This result was established by Kahn, Saks, and
Sturtevant [9]. A sharpened version of the Aanderaa–Rosenberg conjecture is due to
Karp [13]. He conjectures that every nontrivial monotone graph property is elusive;
i.e., he conjectures that γ = 1

2 − o(1) holds.
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Karp’s conjecture has been verified for several graph properties, some of which
have already been mentioned above. The most general result in this area is due to
Kahn, Saks, and Sturtevant [9], who proved Karp’s conjecture for all n that are prime
powers.

Karp’s conjecture is a very challenging open problem. But even more challenging
is the problem of getting a complete characterization of all graph properties that are
elusive. Currently we still seem to be far away from even formulating a reasonable
conjecture. Recent progress in this direction has been made by Chakrabarti, Khot,
and Shi [6], who proved that any minor closed graph property (which need not be
monotone) is elusive. The subject of the present paper is to prove elusiveness for some
other nonmonotone graph property.

Theorem 1.1. Perfectness is an elusive graph property.

Perfectness is a property which is not monotone but hereditary (preserved under
deleting nodes) and concerned with the relation of maximum cliques and optimal
colorings. Perfect graphs behave nicely from an algorithmic point of view [8] and have
interesting relationships to surprisingly many other fields of scientific enquiry [11].

Berge [1] proposed calling a graph G perfect if, for each of its (node-)induced
subgraphs G′ ⊆ G, the chromatic number equals the clique number (i.e., if we need
as many stable sets to cover all nodes of G′ as a maximum clique of G′ has nodes).
This means that identifying one induced imperfect subgraph would enable Player A
to make the final decision: the graph in question is not perfect. For that, so-called
minimally imperfect graphs are of particular interest. These are imperfect graphs,
and all of their proper induced subgraphs are perfect. As was proved recently by
Chudnovsky et al. [7], the only minimally imperfect graphs are chordless odd cycles
of length ≥ 5, termed odd holes, and their complements, called odd antiholes. This
result was conjectured by Berge in 1960 and is called the strong perfect graph theorem.
In our proof for Theorem 1.1 we do not need to rely on this deep result, nor would it
help to simplify our proofs.

Player B has to answer in such a way that no minimally imperfect induced sub-
graph appears until Player A asks the last question but that the last answer can create
a minimally imperfect induced subgraph.

The odd hole of length five is the smallest imperfect graph. Hence, the cases with
n ≤ 4 nodes are trivial: Player A knows without asking any question that the studied
graph is perfect. In order to show that perfectness is an elusive graph property we
have to treat the nontrivial cases n ≥ 5.

The idea for providing a strategy to Player B is as follows. Find perfect graphs
such that you cannot reach another perfect graph by deleting or adding one edge. We
call an edge e of a perfect graph G critical if G − e is imperfect. Analogously, we
call an edge e not contained in a perfect graph G anticritical if G+ e is imperfect. A
perfect graph G is critical if G has only critical edges. The complement of a critically
perfect graph is again perfect (due to Lovász [10]) and has the property that adding
an edge not contained in the graph so far yields an imperfect graph. We call the
complements of critically perfect graphs anticritically perfect. We look for bicritically
perfect graphs, which are both critically and anticritically perfect: the deletion and
addition of an arbitrary edge yields an imperfect graph.

If there exists a bicritically perfect graph Gn, then Player B has only to answer
all but the last question “ij ∈ E?” of Player A as in Gn. That is, Player B has only
to apply the following strategy for graphs on n nodes.

Strategy 1. Let Gn be a bicritically perfect graph on n nodes.
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For questions 1 to
(
n
2

)
− 1: Answer “ ij ∈ E?” with YES if ij ∈ E(Gn), NO

otherwise.

Then no induced imperfect subgraph appears during the first
(
n
2

)
− 1 questions,

and the answer to the last question yields the following decision:

Answer “ij ∈ E?” with

⎧⎪⎪⎨
⎪⎪⎩

YES if ij ∈ E(Gn); then the graph is perfect.
NO if ij ∈ E(Gn); then the graph is imperfect.
YES if ij �∈ E(Gn); then the graph is imperfect.
NO if ij �∈ E(Gn); then the graph is perfect.

In order to prove Theorem 1.1, our task is as follows.

Problem 1. Find, for as many n as possible, a bicritically perfect graph Gn on
n nodes.

A first step towards solving Problem 1 was a computer search enumerating which
perfect graphs on up to 10 nodes are critically perfect.

Theorem 1.2. No critically perfect graphs with fewer than 9 nodes exist. On 9,
10, and 11 nodes there are precisely 3, 10, and 52 critically perfect graphs.

Fig. 1.1. The three smallest critically perfect graphs.

Clearly, Theorem 1.2 remains true if “critically perfect” is replaced by “anticri-
tically perfect.” Figure 1.1 shows the three critically perfect graphs on nine nodes.
The first graph, G9, is self-complementary and, therefore, also anticritical. That is,
it is our first example of a bicritically perfect graph. The other two graphs are not
anticritical, but only their complements are. Each of the critically perfect graphs
with ten nodes is not anticritical (see the next section). This means particularly that
there are no bicritically perfect graphs Gn with n ≤ 8 and n = 10. In section 2, we
present a technique of constructing examples of bicritically perfect graphs based on
the characterization of critically and anticritically perfect line graphs. In section 3, we
apply the knowledge from the previous section to construct bicritically perfect graphs
Gn if n ≥ 12. Section 4 provides a slightly different strategy for the cases n = 10, 11.

The cases 5 ≤ n ≤ 8 are treated as follows. The odd hole C5 is the only imperfect
graph on five nodes (note: the C5 is self-complementary, and hence so is the odd
antihole on five nodes). Consequently, one cannot reach another imperfect graph
from the C5 by deleting or adding one edge. Thus, the C5 is bicritically imperfect and
Strategy 1 does also work for n = 5 when choosing Gn = C5. For 6 ≤ n ≤ 8 there is
no bicritically imperfect graph with n nodes. In order to treat these cases we do not
provide an explicit strategy, but we show in section 5 that there exists a strategy: we
prove elusiveness for 6 ≤ n ≤ 8 with the help of a result of Rivest and Vuillemin [12]
by using a parity argument and doing some computer searches.

In summary, we show the existence of a strategy in all nontrivial cases n ≥ 5
which proves Theorem 1.1: perfectness is an elusive graph property.
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2. Bicritically perfect line graphs. This section provides a construction for
bicritically perfect line graphs established in [17]. We obtain the line graph L(F ) of a
graph F by taking the edges of F as nodes of L(F ) and joining two nodes of L(F ) by
an edge iff the corresponding edges of F are incident. It is well known [15] that the
line graph L(F ) of a graph F is perfect iff F is line-perfect, i.e., iff F does not contain
any odd cycle of length at least 5 as a (not necessarily induced) subgraph.

(a) (b)

C
e

Px,y
x,y

x,yx,ye

(c) (d)

x

y

x

y

x

y

x

y

L L

Fig. 2.1. Definition of H-pairs and A-pairs.

In order to obtain critical and anticritical edges in L(F ), we define two structures
in F .

We say that two incident edges x and y form an H-pair in F if there is an edge
ex,y different from x and y incident to the common node of x and y and if there is an
even cycle Cx,y containing x and y but only one endnode of ex,y (see Figure 2.1(a)).
L(Cx,y) is an even hole, and the node in L(F ) corresponding to ex,y has precisely two
neighbors on L(Cx,y), namely, x and y (see Figure 2.1(b)).

Two nonincident edges x and y are called an A-pair if they are the endedges of
an odd path Px,y with length at least five (see Figure 2.1(c)). L(Px,y) is an even,
chordless path of length at least four with endnodes x and y (see Figure 2.1(d)).

It is straightforward that deleting and adding the edge xy in L(Cx,y ∪ ex,y) and
L(Px,y), respectively, yields an odd hole. Consequently, if L(F ) is intended to be
critically (anticritically) perfect, it is sufficient to obtain that every pair of incident
(nonincident) edges in F forms an H-pair (A-pair). We define a graph with at least
two incident (nonincident) edges to be an H-graph (A-graph) if each pair of incident
(nonincident) edges forms an H-pair (A-pair).

Obviously, the line graph L(F ) of any bipartite H-graph (A-graph) is critically
(anticritically) perfect. A line graph L(F ) is bicritically perfect iff the graph F is a
bipartite A- and H-graph [16]. The three smallest critically perfect graphs are the
complements of the line graphs of the three bipartite A-graphs presented in Figure 2.2.
A1 is also an H-graph, and hence L(A1) is bicritical (it is in fact self-complementary).
Furthermore, A1 is the only bipartite H-graph with 3 nodes in each color class. If
there are 4 nodes in one color class, then an H-graph has at least 12 edges since it
has minimum degree 3 by definition. Hence, the second smallest H-graph admits 12
edges and there cannot be any bicritically perfect line graph on 10 or 11 nodes. By
complete enumeration we proved that bicritically perfect graphs on 10 or 11 nodes do
not exist at all.

The following sufficient condition for a bipartite graph F to be an H-graph and
an A-graph is established in [17].

Lemma 2.1 (see [17]). Every simple, 3-connected, bipartite graph is an H-graph
as well as an A-graph.

Proof. Let F = (A ∪ B,E) be a simple, 3-connected, bipartite graph. First,
consider two arbitrary incident edges ab1, ab2 of F with a ∈ A and b1, b2 ∈ B. We



PERFECTNESS IS AN ELUSIVE GRAPH PROPERTY 113

AA1 A2 3

Fig. 2.2. The three smallest bipartite A-graphs.

show that ab1 and ab2 form an H-pair in F . Since F is 3-connected, there is a third
node b3 �= b1, b2 adjacent to a and F −{a, b3} is still connected. In particular, b1 and
b2 are linked by a path P in F − {a, b3}. Hence, we obtain Cab1,ab2 = P ∪ {b2a, ab1}
and eab1,ab2 = ab3; i.e., ab1 and ab2 form an H-pair in F .

Now, consider two nonincident edges a1b1 and a2b2 of F with ai ∈ A, bi ∈ B.
We show that a1b1 and a2b2 form an A-pair in F . Since F is 3-connected, there are
internally disjoint, odd (a1, b2)-paths P1, . . . , Pk with k ≥ 3. At most two paths among
P1, . . . , Pk can contain a2 or b1. Without loss of generality, let P3, . . . , Pk be a2, b1-
free. If there is a path Pi with 3 ≤ i ≤ k of length ≥ 3, then b1Pia2 is the studied
path Pa1b1,a2,b2 . Otherwise, the only a2, b1-free (a1, b2)-path is the edge a1b2. We
obtain k = 3 and let b1 ∈ P1, a2 ∈ P2. By the 3-connectivity of F again, there must
be an a1, b2-free (a2, b1)-path Q of odd length ≥ 3, and we get Pa1b1,a2,b2 = b2Qa1.
Otherwise, if the edge a2b1 were the only a1, b2-free (a2, b1)-path, {a1, a2} would be
a cutset of size two, separating the nodes of P1 between b1 and b2 from the nodes of
P2 between a1 and a2—a contradiction, as F is 3-connected.

Remark 2.2. Note that duplicating edges preserves the property of being an A-
graph (since no new pair of nonincident edges occurs), while it does not preserve the
property of being an H-graph (since parallel edges are incident but never form an
H-pair).

3. Construction of the graphs Gn for n ≥ 12. In order to treat Prob-
lem 1, this section is intended to present a bicritically perfect graph Gn for each
n ≥ 12. Lemma 2.1 ensures that L(F ) is bicritically perfect whenever F is a simple,
3-connected, bipartite graph. Hence we will construct simple, 3-connected, bipar-
tite graphs Fn with n ≥ 12 edges to obtain the studied bicritically perfect graphs
Gn = L(Fn) on n ≥ 12 nodes. Consider the graphs F3k = (A∪B,E1∪E2) with k ≥ 3
and

A
B
E1

E2

= {1, 3, . . . , 2k − 1},
= {2, 4, . . . , 2k},
= {ii + 1 : 1 ≤ i ≤ 2k},
= {ii + 3 : i ∈ A},

where all indices are taken modulo 2k. The three smallest examples of graphs F3k for
k ∈ {3, 4, 5} are shown in Figure 3.1 (note A1 = F9). F3k is an even cycle (A∪B,E1)
on its 2k nodes with k chords E2 outgoing from a node in A with odd index and
ending in a node in B with even index. Thus, the graphs F3k are bipartite and simple
by construction. We have to show that they are 3-connected.

Lemma 3.1. The graphs F3k are 3-connected for k ≥ 3.
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9F F12 F15

Fig. 3.1. The graphs F3k with k = 3, 4, 5.

Proof. We have to show that the graph obtained from F3k by removing two
arbitrary nodes i and j is still connected. Let i < j. Recall that F3k = (A∪B,E1∪E2)
has a Hamilton cycle C = (A ∪ B,E1) and additional chords ii + 3 ∈ E2 with i ∈ A
odd, i+3 ∈ B even. If i and j are neighbors on C (i.e., j = i+1), then the remaining
nodes i+2 = j+1, . . . , 2k, 1, . . . , i−1 of F3k are connected by a path with edges in E1.
Otherwise, removing i and j divides the cycle C into two paths, P1 = i+ 1, . . . , j − 1
and P2 = j + 1, . . . , 2k, 1, . . . , i − 1. It is easy to see that there is always an edge
e ∈ E2 which connects P1 and P2: If i is odd, then i + 1 is even and i− 2i + 1 ∈ E2.
We have e = i− 2i + 1 as the studied edge connecting P1 and P2 if i− 2 is a node of
P2 or else V (P2) = {i− 1} and j = i− 2 holds. But then i− 4 is a node of P1 (since
k ≥ 3) and we obtain e = i− 4i− 1 (all indices are taken modulo 2k). Analogously, if
i is even, then i− 1i + 2 ∈ E2. We have e = i− 1i + 2 if i + 2 is a node of P1 or else
V (P1) = {i + 1} and j = i + 2. But then i + 4 is a node of P2 (by k ≥ 3 again) and
we get e = i+ 1i+ 4. Hence, the graph obtained from F3k by removing two arbitrary
nodes is still connected.

Thus, we can choose Gn as the line graph of Fn whenever n = 3k, k ≥ 3, by
Lemma 2.1. To close the gaps with n = 3k + 1, 3k + 2 for k ≥ 4 we use the following
immediate consequence of Lemma 2.1.

Lemma 3.2. If F = (A ∪ B,E) is a simple, 3-connected, bipartite graph and
ab �∈ E with a ∈ A, b ∈ B, then F + ab is a simple bipartite A- and H-graph.

Thus, we obtain the studied bipartite A- and H-graphs Fn for n = 3k + 1 and
n = 3k + 2 if k ≥ 4 by adding one and two edges, respectively, to F3k such that the
resulting graph is simple and bipartite. This is possible for each F3k with k ≥ 4 (but
not for the complete bipartite graph F9). We obtain, therefore, the studied bicritically
perfect graphs Gn = L(Fn) for n ≥ 12 and can apply Strategy 1 for all cases with
n ≥ 12 nodes.

4. Construction of the graphs Gn for n = 10, 11. As mentioned in section 2
there are no bicritically perfect graphs on 10 or 11 nodes. Therefore we construct
bipartite A-graphs with 10 and 11 edges which are as close to H-graphs as possible.

Duplicating an arbitrary edge of F9 = A1 yields the graph F10 shown in Figure 4.1.
F10 is an A-graph but not an H-graph by Remark 2.2. However, L(F10) has only one
noncritical edge, namely, the edge connecting the nodes that correspond to the parallel
edges of F10. Next, the bipartite graph F11 in Figure 4.1 can be obtained by adding
two edges to the A-graph A2 from Figure 2.2. It is easy to check that F11 is an
A-graph and that the two edges incident to the only node of degree two in F11 form
the only non-H-pair. L(F11) is anticritically perfect and all edges but one are critical,
too.

Let us call a graph G almost bicritically perfect if G is anticritically perfect and all
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F10 F11

Fig. 4.1. The graphs F10 and F11.

edges but one are critical. Then we slightly modify Strategy 1 for almost bicritically
perfect graphs as follows.

Strategy 2. Let Gn be an almost bicritically perfect graph on n nodes and let
uv be its only noncritical edge. For question 1: Answer “ ij ∈ E?” with YES; number
the nodes of Gn s.t. i = u, j = v. For questions 2 to

(
n
2

)
− 1: Answer “ ij ∈ E?” with

YES if ij ∈ E(Gn), NO otherwise.
Then no imperfect subgraph appears during the first

(
n
2

)
− 1 questions, and the

answer to the last question yields the decision again. Since L(F10) and L(F11) are
almost bicritically perfect graphs by construction, we choose G10 = L(F10) and G11 =
L(F11) and apply Strategy 2.

5. The remaining cases 6 ≤ n ≤ 8. To prove that perfectness is an elusive
graph property for 6 ≤ n ≤ 8 we use a parity argument due to Rivest and Vuillemin.
In [12] they proved the following: If a property P is not elusive for graphs on n nodes,
then the number G(P, n, even) of labeled graphs on n nodes with property P having
an even number of edges equals the number G(P, n, odd) of labeled graphs on n nodes
with property P that have an odd number of edges. In particular, G(P, n, even) �=
G (P, n, odd) implies that P is elusive for graphs on n nodes. In Table 5.1 we show
the numbers G(P, n, even) and G(P, n, odd) for perfect graphs on 6 ≤ n ≤ 8 nodes,
which we calculated with the help of a computer program. For the calculation we
used a very simple brute force approach: We generated all graphs on up to 8 nodes.
Such a graph is perfect iff it does not contain a C5, a C7, or a complement of a C7 as
an induced subgraph. Now one simply has to count how many of these graphs have
an even, respectively, odd number of edges. As one can see from Table 5.1, for n = 8
perfectness is an elusive graph property, as the values in columns 3 and 4 differ.

Table 5.1

The number of perfect graphs with an even, respectively, odd number of edges.

n # perfect graphs G(P, n, even) G(P, n, odd)
6 30824 15412 15412
7 1741616 870808 870808
8 174494128 87264704 87229424

For n = 6 and n = 7 we apply an extension of the previously used argument.
If perfectness is not elusive for graphs on n nodes, then it is also not elusive for the
graphs containing one fixed edge, say ij. Therefore the number of labeled perfect
graphs on n nodes which contain the edge ij and have an even number of edges must
equal the number of these graphs with an odd number of edges. The last two columns
in Table 5.2 show these numbers for n = 6 and n = 7. Note that they add up to
half the number of labeled perfect graphs, as the complement of a perfect graph is
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Table 5.2

The number of perfect graphs with a fixed edge and an even, respectively, odd number of edges.

n # perfect graphs G(P, n, even), ij ∈ E G(P, n, odd), ij ∈ E
6 30824 7712 7700
7 1741616 435284 435524

again perfect [10]. As the numbers in columns 3 and 4 are different in both cases, this
finishes the proof that perfectness is elusive for n = 6, 7, 8.

6. Summary. In order to figure out whether perfectness is an elusive graph
property, we used the following as our main idea: Find, for as many numbers n of
nodes as possible, a bicritically perfect graph Gn (Problem 1). Since one cannot
reach another perfect graph from Gn by deleting or adding one edge, there is a simple
strategy for Player B in that case: Answer all but the last question as in the bicritically
perfect graph Gn (Strategy 1). We constructed bicritically perfect graphs Gn with
n = 9 and n ≥ 12 (section 3) and almost bicritically perfect graphs G10 and G11

(section 4) where a slightly different strategy has to be used (Strategy 2). Moreover,
the C5 is bicritically imperfect and Strategy 1 does also work for n = 5 with choosing
Gn = C5. Consequently, our main idea works for n = 5 and for all cases with n ≥ 9
nodes. We used a parity argument from [12] in order to show the desired result for
the remaining cases with 6 ≤ n ≤ 8 nodes (section 5).

In summary, we showed the existence of a strategy for Player B in all nontriv-
ial cases n ≥ 5, which finally proves Theorem 1.1: Perfectness is an elusive graph
property.

Acknowledgment. The authors are grateful to Günter M. Ziegler for drawing
their attention to the result of Rivest and Vuillemin [12].
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Abstract. Lattices have received considerable attention as a potential source of computational
hardness to be used in cryptography, after a breakthrough result of Ajtai [in Proceedings of the 28th
Annual ACM Symposium on Theory of Computing, Philadelphia, PA, 1996, pp. 99–108] connecting
the average-case and worst-case complexity of various lattice problems. The purpose of this paper
is twofold. On the expository side, we present a rigorous self-contained proof of results along the
lines of Ajtai’s seminal work. At the same time, we explore to what extent Ajtai’s original results
can be quantitatively improved. As a by-product, we define a random class of lattices such that
computing short nonzero vectors in the class with nonnegligible probability is at least as hard as
approximating the length of the shortest nonzero vector in any n-dimensional lattice within worst-
case approximation factors γ(n) = n3ω(

√
logn log logn). This improves previously known best

connection factor γ(n) = n4+ε [J.-Y. Cai and A. P. Nerurkar, in Proceedings of the 38th Annual
IEEE Symposium on Foundations of Computer Science, Miami Beach, FL, 1997, pp. 468–477]. We
also show how our reduction implies the existence of collision resistant cryptographic hash functions
based on the worst-case inapproximability of the shortest vector problem within the same factors
γ(n) = n3ω(

√
logn log logn).

In the process we distill various new lattice problems that might be of independent interest,
related to the covering radius, the bounded distance decoding problem, approximate counting of
lattice points inside convex bodies, and the efficient construction of lattices with good geometric and
algorithmic decoding properties. We also show how further investigation of these new lattice problems
might lead to even stronger connections between the average-case and worst-case complexity of the
shortest vector problem, possibly leading to connection factors as low as γ(n) = n1.5ω(logn).

Key words. point lattices, shortest vector problem, average-case complexity, covering radius,
cryptography, hash functions, almost perfect lattices, closest vector problem with preprocessing
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1. Introduction. It has long been realized that the relevant notion of hardness
in cryptography is average-case hardness: if the key of a cryptographic function is
chosen at random, then no probabilistic polynomial time algorithm can break the
scheme with nonnegligible probability. In the past few years, computational problems
on point lattices have attracted considerable interest for their potential cryptographic
applications because of the following remarkable discovery of Ajtai [2]: a certain
natural computational problem (namely, finding small nonzero solutions to a suitably
chosen random system of homogeneous linear equations) is at least as hard on the
average as the worst-case instance of various lattice problems, e.g., approximating
the length of the shortest nonzero vector in a lattice within a worst-case factor γ(n)
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polynomial in the dimension n of the lattice. This immediately gives provably secure
cryptographic functions based on the conjectured worst-case intractability of lattice
problems.1 Moreover, since the set of integer solutions of a linear system forms a
lattice, the result in [2] can also be regarded as a connection between the complexity
of finding short nonzero vectors in suitably chosen random lattices on the average,2

and the complexity of approximating the length of the shortest nonzero vector (as
well as solving various other lattice problems) in any lattice in the worst case.

We remark that building cryptographic functions that are as hard to break as the
worst-case instance of the underlying mathematical problem is especially important
in the case of lattices because lattice approximation algorithms (like the Lenstra–
Lenstra–Lovász (LLL) algorithm [27]) are believed to perform much better on the
average than their worst-case theoretical upper bounds. Moreover, since lattice prob-
lems get easier and easier as the approximation factor γ(n) increases, determining
the smallest worst-case inapproximability factor γ(n) that implies the average-case
hardness of solving Ajtai’s random equations is both a theoretically interesting and
a practically important problem, and it has been the subject of subsequent work by
Cai and Nerurkar [11] and Micciancio [35] in a preliminary version of this paper.

Our contribution. The purpose of this paper is twofold. First, we give a full,
self-contained proof of Ajtai’s original result [2] and a detailed account of all relevant
techniques introduced in subsequent improvements by Cai and Nerurkar [11]. Previous
papers [2, 11] appeared only in the form of extended abstracts or technical reports
that left to the reader the burden of reconstructing the details of many technical steps.
In this paper we develop a number of elementary, still useful, general techniques that
allow us both to cover all the steps in great detail, and at the same time also offer a
cleaner high level picture of the proof. Second, we explore to what extent the worst-
case inapproximability factors γ(n) for lattice problems (shown to imply the average-
case hardness of solving random linear equations in [2, 11]) can be further reduced.
In the process, we introduce and start investigating various new lattice problems that
might be of independent interest and that are discussed in more detail in the following
subsections. These technical contributions are summarized as follows. On the average-
case complexity side, we introduce a kind of lattice (that we call almost perfect in
analogy with perfect codes), and use lattices of this kind to define a new random
class of linear equations such that finding small solutions on the average is potentially
harder than in the random class proposed by Ajtai. On the worst-case complexity
side, we consider various new lattice problems, like approximating the covering radius
of a lattice. Using these new problems, we are able to improve the connection factor
for the shortest vector problem (SVP) established in [2, 11]. Specifically, we show
that finding small solutions to our random equations (with nonnegligible probability)
is at least as hard as the worst-case instance of

(i) approximating the length of the shortest nonzero vector in any n-dimensional

1In particular, Ajtai [2] showed that if no algorithm can efficiently approximate the length of the
shortest nonzero vector in any n-dimensional lattice within (worst-case) polynomial approximation
factors γ(n) = nO(1), then one-way functions exist. Subsequently, Goldreich, Goldwasser, and Halevi
[18] observed that under essentially the same assumptions as Ajtai’s, one can prove the existence of
collision resistant hash functions, a particularly useful kind of one-way function family with many
applications in cryptography.

2For clarity, in the rest of the paper we always refer to this average-case problem as “finding
small solutions to random equations,” while lattices are used only to describe worst-case problems.
However, we remark that the two formulations are equivalent, and all results discussed in this paper
can be regarded as connections between the average-case and worst-case complexity of (different)
lattice problems.
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lattice within a factor γ(n) = τ(n) · n2.5ω(log n), where τ(n) ∈ [1,
√
n] is a parameter

that depends on the almost perfect lattices used in the construction and ω(log n) is
an arbitrary superlogarithmic function.

Even for τ(n) =
√
n this improves the connection factor γ(n) = n4+ε of [11] by

more than a factor n. (See section 1.3 for details about the results of [11].) We remark
that function τ(n) is a parameter that depends on the construction of the random
equations, and it equals

√
n in Ajtai’s construction as studied in [2, 11]. In this paper

we give a better construction showing that smaller values of τ(n) are possible. The
improvement we present is quantitatively modest (namely, τ(n) =

√
n log log n/ log n)

but qualitatively interesting, as it shows that Ajtai’s class of random equations is not
necessarily optimal, and there is room to hope that more substantial improvements
are possible.

We also relate the average-case complexity of computing small solutions to our
random equations to other lattice problems, like the worst-case instances of the fol-
lowing:

(ii) computing maximal sets of linearly independent vectors that are within a
factor γ(n) = τ(n) · n2 · ω(log n) from the shortest,3

(iii) approximating within a factor γ(n) = τ(n) · n2 · ω(log n) the covering ra-
dius of any n-dimensional lattice, i.e., the maximum possible distance ρ(L(B)) =
maxt dist(t,L(B)) where t ranges over the entire space spanned by B,

(iv) finding, given an n-dimensional lattice basis B and a target point t, a lattice
point whose distance from the target t is at most γ(n) = τ(n) ·n2 ·ω(log n) times the
covering radius of the lattice.

Even for τ(n) =
√
n, the first relation improves previously known best connection

factor n3+ε of [11] by more than
√
n. (See section 1.3 for details about the results

of [11].) The other two relations are the first results explicitly connecting the com-
plexity of finding small solutions to random equations to the covering radius problem
(CRP). Although neither problem has been previously considered in computational
complexity, they are both natural computational problems on lattices that might be
of independent interest. The last problem is a “guaranteed distance” variant of the
well-studied closest vector problem (CVP), where the error, instead of being mea-
sured with respect to the distance of the given target, is measured with respect to the
worst-case distance over all possible target vectors.

All our results are obtained as corollaries to a main theorem that shows that
finding small solutions to our random equations is at least as hard as the worst-case
instance of finding maximal sets of linearly independent vectors of length at most
γ(n) = τ(n)

√
n · ω(log n) times a new lattice invariant that we call the generalized

uniform radius. Notice how this factor is extremely small: depending on the value of
τ(n), γ(n) can be as small as

√
n ·ω(log n). This suggests that further investigation of

almost perfect lattices and the connection between the uniform radius and other lat-
tice invariants might lead to even stronger connections between the average-case and
worst-case complexity of computing short lattice vectors. In particular, we conjecture
that there exist random classes of linear equations such that finding small solutions
on the average is at least as hard as approximating the length of the shortest nonzero
vector in any n-dimensional lattice within a factor γ(n) = n1.5 · ω(log n) in the worst
case.

3Here, and throughout the rest of the paper, the length of a finite set of (linearly independent)
vectors is defined as the maximum length of the vectors in the set.
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In the following subsections we give a more detailed description of the new lattice
problems introduced in this paper and then review previous work in related areas.

1.1. New lattice problems. A lattice is the set of intersection points of a
regular, but not necessarily orthogonal, n-dimensional grid. Mathematically, it can
be described as the set of all integer linear combinations x1b1 + · · · + xnbn (with
x1, . . . , xn ∈ Z) of a sequence of linearly independent vectors b1, . . . ,bn in Euclidean
space R

m. The simplest example is the integer lattice Z
n, i.e., the set of all n-

dimensional vectors with integer coordinates. Two fundamental constants associated
to any lattice are the packing radius and the covering radius: the packing radius is
the largest radius such that (open) spheres centered at distinct lattice points do not
intersect, and the covering radius is the smallest radius such that (closed) spheres
centered at all lattice points cover the entire space. Equivalently, the packing radius
can be defined as the largest r such that any (open) sphere of radius r (not necessarily
centered around a lattice point) contains at most one lattice point. Similarly, the
covering radius can be defined as the smallest r such that any (closed) sphere of
radius r contains at least one lattice point. In this paper we introduce a new quantity,
the uniform radius, defined as the smallest r such that all spheres of radius r contain
approximately the same number of lattice points. (See section 3 for a formal definition.)
For technical reasons, we also introduce a variant of the uniform radius, the generalized
uniform radius, which considers not only spheres but also arbitrary convex bodies.

Of all these quantities, only the packing radius has received considerable atten-
tion from a computational complexity point of view. It is easy to see that for any
lattice, the packing radius equals half the length of the shortest nonzero lattice vec-
tor, so (approximately) computing the packing radius is computationally equivalent
to computing the (approximate, within the same approximation factor) length of the
shortest nonzero lattice vector. (See section 2.3 for a discussion of the computational
complexity of this problem.)

Determining the covering radius of a lattice is a classic problem in the geometry
of numbers, but so far it has received very little attention from a computational com-
plexity point of view. We suggest that the covering radius is, by itself, an interesting
problem to be studied as a potential source of computational hardness. We conjecture
that computing the covering radius is NP-hard. We remark that even for the exact
version of the problem, no NP-hardness result is currently known. However, the exact
solution to the CRP is not even known to be computable in nondeterministic polyno-
mial time (NP), and the analogous problem for linear codes is known to be complete
for the second level of the polynomial hierarchy [30], a class of problems presumably
much harder than NP-complete ones.

The problem of estimating the (generalized) uniform radius has been implicitly
considered before in connection with vector quantization4 [29] and volume estimation
problems [25] but only for the special case of the integer lattice Z

n and specific convex
bodies (spheres or polyhedra). In this paper we generalize this natural geometric
problem to arbitrary lattices and convex bodies and show that the generalized uniform
radius is always within a factor O(n) from the covering radius.

1.2. Almost perfect lattices. The packing radius and covering radius have
been extensively studied in coding theory. Codes are sets of strings (called codewords)
of some fixed length n over a finite alphabet Σ, with the (Hamming) distance between

4Vector quantization is the problem of mapping arbitrary real vectors to a discrete set of points
(e.g., the points of a lattice) in such a way that each vector is mapped to a nearby point.
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strings measured as the number of positions in which the two strings differ. Similarly
to lattices, the packing radius and covering radius of a code are defined as the largest
and smallest radii such that the Hamming spheres centered at codewords are disjoint
or cover the entire space Σn, respectively. A code is called perfect if the packing radius
equals the covering radius. In other words, the code is perfect if it is possible to par-
tition the entire space Σn with equal (Hamming) spheres centered at the codewords.
Interestingly, perfect codes are rare but do exist (see [21, section 5]). However, the
same is not true for lattices: it is not possible to partition the Euclidean space R

n with
equal spheres of radius bounded away from 0. However, one can attempt to partition
the space with almost spherical bodies. Any lattice naturally defines a partition of
space into regions, the Voronoi cells, obtained by mapping each point in space to the
closest lattice point (with ties broken in some standard way). It is easy to see that
each Voronoi cell contains an open sphere of radius equal to the packing radius and
is completely contained in a closed sphere of radius equal to the covering radius. The
covering radius is always at least as large as the packing radius, and the smaller the
gap between the two radii, the closer the Voronoi cells are to perfect spheres. We
say that a lattice is τ -perfect if the covering radius is at most τ times the packing
radius. We are interested in lattices that are τ -perfect for τ > 1 as small as possible.
Notice that the integer lattice Z

n is τ(n)-perfect for τ(n) =
√
n, so—is trying to

minimize τ(n)—we may assume without loss of generality that τ(n) ∈ [1,
√
n]. We

say that a sequence of lattices is almost perfect if it is τ(n)-perfect for some function
τ(n) = o(

√
n) asymptotically smaller than

√
n. Ideally, we would like to find almost

perfect lattices with τ(n) = O(1) equal to a constant independent of the dimension.

Another fundamental problem in coding theory is the maximum likelihood de-
coding: given a target point, find the codeword closest to the target. The analogous
problem on lattices, called the CVP, is as follows: given a lattice and a target vector,
find the lattice point closest to it. Differently from lattices, in coding theory most
work has focused on finding efficient decoding algorithms for specific codes, whereas
in the CVP the lattice is usually considered part of the input. In this paper, we
consider the lattice decoding problem for specific lattices. We say that a lattice is
easily decodable if there is an efficient algorithm that, on input a target point, outputs
the lattice point closest to the target. (Formally, we need to consider a sequence of
lattices in higher and higher dimensions. See section 4 for details.) For example, the
integer lattice Z

n is easily decodable: given a target point y ∈ Q
n, the closest lattice

point is easily found by rounding each coordinate of y to the closest integer.

The random classes of equations defined in this paper are based on easily de-
codable τ(n)-perfect lattices, and the smaller τ(n) is, the harder it is to find small
solutions to the random equations. So, it is natural to ask, What is the smallest
value of τ(n) for which we can efficiently build easily decodable τ(n)-perfect lattices?
It is known [40, 10] that very good almost perfect lattices exist, achieving constant
τ(n) = O(1). Unfortunately, the proofs in [40, 10] do not give an efficient procedure
to build and decode these lattices. Various examples of easily decodable lattices are
given in [12], but none of them is almost perfect; i.e., they achieve only τ(n) = Θ(

√
n).

It is natural to ask if almost perfect easily decodable lattices exist at all. In this paper
we initiate the study of almost perfect lattices from a computational point of view,
and we give the first efficient construction of easily decodable almost perfect lattices
with τ(n) = O(

√
n log log n/ log n).

Our almost perfect lattices allow us to slightly improve (by a multiplicative factor
O(
√

log n/ log log n)) the worst-case/average-case connection factor γ(n) for all lattice
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problems considered in this paper. Although not substantial, this improvement in the
connection factor is qualitatively important because it shows that there are random
classes of linear equations for which finding small solutions is potentially harder than
for the random class originally considered by Ajtai. Moreover, it suggests that it
might be possible to find even better easily decodable almost perfect lattices that
allow us to further reduce the connection factors for all lattice problems considered
in this paper by almost

√
n.

1.3. Related work. This work directly builds upon techniques of Ajtai [2], Cai
and Nerurkar [11] and Goldreich, Goldwasser, and Halevi [18], and it is the final
version of [35]. In [2] Ajtai showed5 that if one can efficiently find small solutions to
random linear equations on the average with nonnegligible probability δ(n) = 1/nO(1),
then one can efficiently approximate the length of the shortest nonzero vector in any n-
dimensional lattice within a (worst-case) polynomial factor γ(n) = nO(1)/δ(n), where
the smaller the success probability δ(n), the larger the approximation factor γ(n).6

Moreover, even for large values of δ(n) (say, δ(n) = 1/2), the factor γ(n) given by
[2] is rather large.7 Following Ajtai’s seminal work, Cai and Nerurkar [11] showed
that finding small solutions to Ajtai’s random linear equations (with nonnegligible
probability δ(n) = 1/nO(1)) is at least as hard as computing maximal sets of linearly
independent vectors that are within a worst-case factor n3+ε from the shortest8 (for
any fixed ε > 0, independently of the success probability δ(n)). It immediately fol-
lows (using standard relations between lattice problems [26, 7]) that Ajtai’s random
problem is at least as hard to solve on the average as approximating the length of the
shortest nonzero vector in any n-dimensional lattice within a factor γ(n) = n4+ε in
the worst case.9

The question of determining under what conditions the number of lattice points
inside a convex body Q is roughly proportional to the volume has been extensively
studied, but mostly for the case of the integer lattice Z

n. For example Mazo and
Odlyzko [29] study the problem when Q is a sphere of radius r, in connection with

5To be precise, [2] proves only the result for δ(n) = 1/2 and remarks that the proof can be
generalized to any nonnegligible δ(n) = 1/nO(1).

6It should be remarked that, as observed in [2], setting δ(n) = 1/2 already gives weak one-
way functions, which can be transformed (using standard techniques; see [16]) into strong one-way
functions based on the worst-case hardness of approximating the shortest vector problem (SVP)
within a fixed polynomial factor γ(n) = nO(1). However, in order to argue that no efficient algorithm
can solve Ajtai’s original problem with nonnegligible probability, [2] seems to require that no efficient
algorithm can approximate the worst-case lattice problems within any polynomial factors.

7No specific value of γ(n) is given in [2], but [11] estimates that a factor γ(n) = n8 can be derived
from the proof.

8Cai and Nerurkar [11] prove only the result for the shortest basis problem, but it is easy to modify
their proof to yield a result for the shortest independent vector problem (SIVP). (See footnote 9 for
more information.)

9 To be precise, Cai and Nerurkar [11] claim only a γ(n) = n5+ε connection factor, which is
proved in three steps: (1) first they use small solutions (say, of size O(n)) of random linear equations
to find linearly independent lattice vectors within an n3+ε factor from the shortest basis in the
lattice; (2) then, they use these linearly independent vectors to get an n3.5+ε approximation to the
shortest basis problem; and (3) finally, they connect the shortest basis problem to the SVP, losing an
additional n1.5 factor. We observe that the linear equations of [11] have solutions as small as n0.5+ε,
which, if used in the proof, result in linearly independent lattice vectors within an n2.5+ε factor from
the shortest lattice basis. Then, we observe that the same technique used in [11] to transform these
vectors into an n3+ε-approximate solution to the shortest basis problem can also be used to show
that the original vectors are an n3+ε-approximate solution to the SIVP. This allows us to use known
results [26, 7] to solve the SVP by losing only an additional factor n (instead of n1.5), leading to an
n4+ε-approximate solution to the SVP.
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universal quantization and low density subset-sum problems. (See [29] and references
therein for a description of these problems.) In particular, they show that for r =
O(

√
n) the number of integer lattice points in the sphere can deviate from the expected

value by factors exponential in n, but they claim that if r = n1/2+ε (for any ε > 0),
then the number of integer lattice points in the sphere is always asymptotic to the
volume, no matter where the center is located. A different class of convex bodies
is considered by Kannan and Vempala in [25], but, as usual, only for the special
case of the integer lattice Z

n. In [25] Q is an n-dimensional convex polytope with m
facets, and the result is that the number of integer lattice points in Q is approximately
proportional to the volume provided that Q contains a sphere of radius Ω(n·

√
logm).10

A result for arbitrary convex bodies is proved by Dyer, Frieze, and Kannan [14], who
show that the number of integer lattice points in Q is approximately proportional to
the volume of Q, provided Q contains a sphere of radius Ω(n1.5). In section 3 we
generalize the result of [14] to arbitrary lattices and show that the number of lattice
points in Q is approximately proportional to the volume provided that Q contains
a sphere of radius Ω(n) times bigger than the covering radius of the lattice (see
Theorem 3.6).

The CRP has been extensively studied from a mathematical point of view, lead-
ing, for example, to the transference theorems of Banaszczyk [7], but it has received
little or no attention from a computational perspective. Two relevant results about the
CRP are McLoughlin’s proof [30] that the analogous problem on linear codes is hard
for the second level of the polynomial hierarchy and Kannan’s algorithm [24] showing
that a variant of the CRP for lattices (where the norm defined by an input parallelo-
tope is used, instead of the usual Euclidean norm) can be solved in polynomial time
for any fixed dimension. Partly motivated by our work [35], some initial progress to-
ward understanding the computational complexity of (approximately) computing the
covering radius of lattices and linear codes has been recently made by Guruswami,
Micciancio, and Regev [20]. The reader is referred to that paper and section 2.3 for
further information about the computational complexity of the CRP.

The problem of decoding specific lattices has been considered in coding theory,
for example, in connection with vector quantization. In [12] Conway and Sloane give
polynomial time decoding algorithms for the root lattices An, Dn and their duals
A∗

n, D
∗
n, as well as various other low-dimensional lattices.11 From a computational

complexity point of view, the problem has been considered under the name closest
vector problem with preprocessing. Adapting similar results of Bruck and Naor [9]
and Lobstein [28] for coding and subset-sum problems, Micciancio [31] showed that
there are sequences of lattices such that solving the CVP is NP-hard. These results
have been improved by Feige and Micciancio [15] and then Regev [38] to show that
(unless P = NP) there are lattices and codes that cannot be efficiently decoded even
approximately for any constant approximation factor smaller than

√
3. Notice that

the goal of [31, 15, 38] is opposite ours: while [31, 15, 38] give explicit constructions of
lattices that cannot be easily decoded, in this paper we search for explicit constructions
of easily decodable lattices.

Almost perfect lattices have been extensively studied from a mathematical point of

10As a side remark, the motivation to study this problem in [25] is somehow opposite ours, as
they count the number of lattice points in a polytope to estimate its volume. Here, we try to get a
bound on the number of lattice points for convex bodies Q of known volume.

11Asymptotically, only results for infinite families of lattices are interesting because the CVP is
known to be solvable in polynomial time in any fixed dimension [23].
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view. In particular, Rogers [40] proved that there exist τ(n)-perfect lattices for τ(n) <
3 and any dimension n, and Butler [10] improved the result to τ(n) = 2 + o(1). Our
exponential time construction of almost perfect lattices in Theorem 4.4 is essentially
an algorithmic variant of Rogers’s proof.

In this paper we consider the worst-case complexity of computing short vectors
(as well as solving other computational lattice approximation problems) in any lat-
tice. In a recent breakthrough paper [39], Regev has given encryption schemes and
collision resistant hash functions that are as hard to break as computing shortest
nonzero vectors in lattices with special structure. The results proved in [39] achieve
approximation factors O(n1.5) which are smaller than any other known reduction,
but only for lattices where the shortest vector is unique is some technical sense. This
special structure is common in the construction of lattice-based public key encryp-
tion schemes [4] but does not seem necessary to build one-way or collision resistant
hash functions. In section 8 we explain how the techniques presented in this paper
might lead to one-way and collision resistant hash functions that are as hard to break
as solving the SVP (or other lattice problems) in any lattice, within approximation
factors similar to those established in [39] for the special class of lattices possessing
unique shortest vectors.

Another relevant paper establishing results similar to ours, but for a special class
of lattices, is [34], where the goal is to obtain hard-on-average problems with very
compact representation, rather than improving the connection factor. In [34] Mic-
ciancio shows that if approximating the SVP (or various other lattice problems) is
hard in the worst case over a class of lattices with a special cyclic property, then one
can define random linear equations with only ω(log n) variables that are hard to solve
on the average. This yields random equations (and cryptographic one-way functions)
with a much smaller representation size than those considered in this paper, possibly
leading to practical and provably secure lattice-based cryptographic functions.

1.4. Outline. The rest of the paper is organized as follows. In section 2 we
introduce basic definitions and notation used throughout the paper and give back-
ground about lattice problems and computational complexity. In section 3 we define
the (generalized) uniform radius and relate it to other lattice quantities. In section 4
we initiate the algorithmic study of almost perfect lattices and present the first poly-
nomial time construction of easily decodable almost perfect lattices. These lattices
are used in section 5 to define a new random class of equations that generalizes Ajtai’s.
In section 6 we prove the main technical result of the paper: finding small solutions to
the random linear equations of section 5 is at least as hard as finding short (relative
to the generalized uniform radius) linearly independent lattice vectors in the worst
case. In section 7 we relate this problem to other well-known lattice problems, like
approximating the length of the shortest vector in a lattice. Section 8 concludes with
a brief summary of our main results and some open problems whose solution would
allow us to further improve the connection factors established in this paper.

2. Preliminaries. In this section, we introduce the notation that will be used in
the rest of the paper, and then we briefly recall basic notions about lattices, statistical
distance, and iterative reductions. For more background material about lattices the
reader is referred to the book [36].

2.1. Notation. For any finite set S, the size of S is denoted #S. For any real x,
�x� denotes the largest integer not greater than x, and �x� = �x+1/2� is the rounding
of x to the closest integer. For any string s, the length of s is denoted |s|. For any
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positive real ε > 0, we write [1 ± ε] to denote the interval [1 − ε, 1 + ε]. Arithmetic
operations on intervals are defined in the obvious way by extending the standard
arithmetic operations pointwise; e.g., x · [1 ± ε] denotes the interval [x − εx, x + εx].
Notice that a ∈ b · [1± ε] if and only if the relative additive error |a− b|/|b| is at most
ε. For any two positive reals a, b ≥ 0, we write a � b if a ≥ (1/2) · b and a � b if
a ≤ (3/2) · b. We say that a is approximately equal to b (written a ≈ b) if both a � b
and a � b, i.e., a ∈ b · [1 ± 1/2]. Notice that a ≈ b is not a symmetric relation; i.e.,
a ≈ b does not imply b ≈ a. For any a, b, c ≥ 0, if a ≈ c and b ≈ c, then a and b are
within a factor 3 one from the other, i.e.,

∀a, b, c. (a ≈ c) ∧ (b ≈ c) ⇒ (a/3 ≤ b ≤ 3a).(2.1)

In the paper we use the standard asymptotic notation for functions. For any two
positive real functions f, g, we write f = O(g) or g = Ω(f) if there exists a constant
c > 0 such that f(x) ≤ c · g(x) for all sufficiently large x. We write f = Θ(g) if
f = O(g) and f = Ω(g). We write f = o(g) or g = ω(f) if f(x) < c · g(x) for all
c > 0 and all sufficiently large x. We also use notation O(f), (resp., Ω(f), o(f), ω(f))
to denote the class of all functions g such that g = O(f) (resp., g = Ω(f), etc.), or an
arbitrary, but fixed, function from that class. For example, we write O(1) to denote
an arbitrary constant or nO(1) to denote an arbitrary polynomially bounded function
of n. A function f is negligible if f(n) = n−ω(1), i.e., if f(n) is asymptotically smaller
than any inverse polynomial in n.

Let R, Q, and Z be the sets of the reals, the rationals, and the integers, respec-
tively. The m-dimensional Euclidean space is denoted R

m. We use bold lowercase
letters (e.g., x) to denote vectors and bold uppercase letters (e.g., M) to denote
matrices. The n-dimensional identity matrix, i.e., the n × n diagonal matrix with
1’s on the diagonal, is denoted In or simply I when the dimension is clear from the
context. The columns of a matrix M are usually denoted by the corresponding low-
ercase letters, e.g., m1, . . . ,mn. As an exception, the standard unit vectors, i.e., the
columns of the identity matrix In, are denoted e1, . . . , en. If Q ⊆ R

n is an arbi-
trary region of space and x ∈ R

n is a vector, Q + x = {y + x:y ∈ Q} denotes a
copy of Q shifted by x. The �2 norm of a vector x ∈ R

n is ‖x‖ =
√∑

x2
i , and

the associated distance is dist(x,y) = ‖x − y‖. For a matrix M = [m1, . . . ,mn],
we define ‖M‖ = maxi ‖mi‖, where mi are the columns of M. For vector v ∈ R

n

and set Q ⊆ R
n, let dist(v,Q) = infw∈Q ‖v − w‖ be the distance between v and

Q. For vector v ∈ R
n and real r, let B(v, r) = {w ∈ R

n : dist(v,w) < r} be the
open ball of radius r centered in v and B̄(v, r) = {w ∈ R

n : dist(v,w) ≤ r} its
topological closure. When the center v = 0 is the origin, we simply write B(r) and
B̄(r). We often use matrix notation to denote sets of vectors. For example, matrix
S ∈ R

m×n represents the set of m-dimensional vectors {s1, . . . , sn}, where s1, . . . , sn
are the columns of S. The linear space spanned by a set of vectors S is denoted
span(S) = {

∑
i xi · si: for all i.xi ∈ R}. For any set of linearly independent vectors S,

we define the centered half-open parallelepiped P(S) = {Sx : −1/2 ≤ xi < 1/2}.
2.2. Lattices. An m-dimensional lattice is the set of all integer combinations

{
∑n

i=1 xibi:xi ∈ Z} of n linearly independent vectors b1, . . . ,bn in R
m (m ≥ n).

The set of vectors b1, . . . ,bn is called a basis for the lattice, and the integer n =
dim(span(B)) is called the rank of the lattice. If the rank n equals the dimension m,
then the lattice is called full rank or full dimensional. Lattices are infinite Abelian
groups with respect to the vector addition operation and can be equivalently defined
as discrete additive subgroups of R

m. A basis can be compactly represented by the
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matrix B = [b1| . . . |bn] ∈ R
m×n having the basis vectors as columns. The lattice

generated by B is denoted L(B). Notice that L(B) = {Bx:x ∈ Z
n}, where Bx is

the usual matrix-vector multiplication. We use the notation L(B) to denote the set
{Bx:x ∈ Z

n} even when vectors B are not linearly independent. The dual of a lattice
L(B) is the set

L(B)∗ = {x ∈ span(L(B)):∀y ∈ L(B).〈x,y〉 ∈ Z}

of all vectors in the linear span of L(B) that have integer scalar product with all
lattice vectors. The dual of a lattice is a lattice, and a possible basis for the dual of
L(B) is given by B∗ = B(BTB)−1, where BT is the transpose of B. (Notice that if
B is a basis, it has full column rank and the square matrix BTB is invertible.)

The minimum distance of a lattice L(B) (denoted λ1(L(B))) is the minimum
distance between any two (distinct) lattice points and equals the length of the shortest
nonzero lattice vector:

λ1(L(B)) = min{dist(x,y) : x �= y ∈ L(B)} = min{‖x‖ : x ∈ L(B) \ {0}}.

This definition can be generalized to define the ith successive minimum as the smallest
λi such that B̄(λi) contains i linearly independent lattice points:

λi(L(B)) = min{r: dim(span(L(B) ∩ B̄(r))) ≥ i}.

Another important constant associated to a lattice is the covering radius. The covering
radius ρ(L(B)) of a lattice is the maximum distance dist(x,L(B)) when x ranges over
the linear span of B:

ρ(L(B)) = max
x∈span(B)

{dist(x,L(B))}.

A sublattice of L(B) is a lattice L(S) such that L(S) ⊆ L(B). L(S) is a full rank
sublattice of L(B) if it has the same rank as L(B). The determinant of a (rank
n) lattice det(L(B)) is the (n-dimensional) volume of the fundamental parallelepiped
P(B), and it does not depend on the choice of the basis B. If L(B) is full dimensional,
then det(L(B)) equals the absolute value of the determinant of the n×n basis matrix
|det(B)|. Hadamard’s bound gives a simple way to bound the determinant of a
lattice as det(L(B)) ≤

∏
i ‖bi‖. Hadamard’s bound can be much larger than the

actual value of the determinant, and it equals the determinant if and only if the basis
B is orthogonal. Minkowski’s first theorem (see [36, pp. 11–14]) implies that any
rank n lattice L(B) contains a nonzero vector of length at most

λ1(L(B)) ≤
√
n det(L(B))1/n.(2.2)

The Voronoi cells of a lattice, defined below, play an important role in our proofs.
For uniformity, and by analogy with the definition of the half-open parallelepiped, we
first define the half-open Voronoi cells. However, we remark that in the rest of the
paper we need only the more standard notions of open and closed Voronoi cells.

Definition 2.1. Let � be the total order on R
n where x � y if and only if

‖x‖ < ‖y‖ or ‖x‖ = ‖y‖ and x precedes y lexicographically; i.e., xi < yi for the first
coordinate i such that xi �= yi. For any lattice L(B) and lattice point x ∈ L(B), the
(half-open) Voronoi cell of x is the set

V(x,L(B)) = {z ∈ span(L(B)):∀y ∈ L(B).(z − x) � (z − y)}.
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The closed (resp., open) Voronoi cell V̄(x,L(B)) (resp., Vo(x,L(B))) is defined as
the topological closure (resp., interior) of V(x,L(B)).

For simplicity, the Voronoi cell of the origin x = 0 is denoted V(L(B)). Notice that
the Voronoi cell of the integer lattice equals the half-open unit cube: V(Zn) = P(In).
We need some simple properties about Voronoi cells, as listed below. All properties
are easily verified and their proof is left to the reader.

Proposition 2.2. For any lattice L(B), the Voronoi cells of L(B) satisfy the
following properties:

(i) The half-open Voronoi cells form a partition of span(L(B)); i.e., for any
y ∈ span(L(B)) there exists a unique lattice point x ∈ L(B) such that y ∈ V(x,L(B)).

(ii) All Voronoi cells V(x,L(B)) (for x ∈ L(B)) are shifted copies V(x,L(B)) =
V(L(B)) + x of the fundamental cell associated to the origin.

(iii) Each cell V(x,L(B)) contains the open sphere B(x, λ1(L(B))/2), and it is
contained in the closed sphere B̄(x, ρ(L(B))).

(iv) The volume of a Voronoi cell equals vol(V(x,L(B))) = det(L(B)).
(v) The open Voronoi cell Vo(x,L(B)) is the set of all points in span(L(B))

which are strictly closer to x than to any other lattice point.
(vi) The closed Voronoi cell V̄(x,L(B)) is the set of all points in span(L(B))

which are at least as close to x as to any other lattice point.
(vii) The cells Vo(x,L(B)) and V̄(x,L(B)) are convex and symmetric about their

center x.

2.3. Computational problems on lattices. When discussing computational
issues related to lattices, it is customary to assume that the lattices are represented
by a basis matrix B and that B has integer entries. Other representations are pos-
sible; e.g., a sublattice of Z

n can be defined as the set of integer solutions to a
system of homogeneous modular linear equations. These alternative representations
are computationally equivalent to giving a basis, i.e., for example, given a system of
homogeneous modular linear equations one can compute in polynomial time a basis
for the corresponding lattice.

In this paper we consider the following problems on lattices. All problems are
defined in their approximation version, where the approximation factor γ(n) can be
a function of the rank n of the lattice. The exact version of the problems corresponds
to approximation factor γ(n) = 1.

Definition 2.3. The shortest vector problem (SVP), given a lattice basis B,
asks for a nonzero lattice vector v ∈ L(B) of length at most γ(n) · λ1(L(B)), where
n is the rank of B and γ(n) ≥ 1 is the approximation factor. The problem can be
defined also in a length estimation version, where given a basis B, one has only to
find a value λ̂1 such that λ1(L(B)) ≤ λ̂1 ≤ γ(n) · λ1(L(B)). The promise problem12

naturally associated to the length estimation version of SVP (denoted GapSVPγ) is
as follows: given (B, d), where B is a lattice basis and d is a (rational) number, decide
if λ1(L(B)) ≤ d or λ1(L(B)) > γ(n) · d.

The promise problem is easily shown to be equivalent to the length estimation
version of SVP. (See, for example, [36, pp. 20–21].) However, the promise and length

12Promise problems are a natural generalization of decision problems where one is asked whether
a given input satisfies one of two mutually exclusive properties (e.g., tell if a given input lattice
contains a short nonzero vector, or it does not). However, differently from decision problems, the
two properties are not necessarily exhaustive. The problem is, under the promise that the given
input satisfies one of the two conditions, tell which of the two properties is satisfied. If the input
satisfies neither property, then any answer is acceptable.
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estimation problems are not known to be equivalent to the search (vector finding) ver-
sion of SVP for γ(n) > 1; i.e., given an oracle to (approximately) compute the length
of the shortest nonzero vector in any lattice, it is not clear how to find short lattice
vectors.13 The SVP is NP-hard (under randomized reductions), even in its promise
version, for any constant approximation factor γ(n) <

√
2 [3, 33]. The promise version

of the problem is clearly solvable in NP. For γ(n) = Ω(
√
n/ log n), the problem is in

coAM [17], and for γ(n) = Ω(
√
n) it is also in coNP [1]. (See [26, 7] for earlier results

with approximation factor γ(n) = Ω(n).) Finally, when γ(n) = eΩ(n log log n/ log n) the
problem can be solved in random polynomial time [5], and deterministic polynomial

time solutions are known only for γ(n) = eΩ(n(log log n)2/ log n) [41].
Definition 2.4. The shortest independent vectors problem (SIVP), given a

lattice basis B of rank n, asks for a set of n linearly independent lattice vectors S ⊆
L(B) such that ‖S‖ ≤ γ(n) · λn(L(B)). The problem can be defined also in a length

estimation version, where given a basis B, one has only to find a value λ̂n such that
λn(L(B)) ≤ λ̂n ≤ γ(n) · λn(L(B)). The promise problem naturally associated to the
length estimation version of SIVP (denoted GapSIVPγ) is as follows: given (B, d),
where B is a lattice basis and d is a (rational) number, decide if λn(L(B)) ≤ d or
λn(L(B)) > γ(n) · d.

SIVP is NP-hard (as usual, already in its promise version) for any constant
approximation factor [8]. The (promise version of) SIVP is clearly in NP. For
γ(n) = Ω(

√
n/ log n) the problem is in coAM [20, 17], and for γ(n) = Ω(

√
n) it is also

in coNP [20, 1]. On the algorithmic side, it is possible to reduce approximating SIVP

within a factor
√
n·γ(n) to approximating SVP within a factor γ(n), where both SIVP

and SVP are considered in their search version. (See, for example, [36, Chapter 7].)
For the promise version of the problems, the transference theorems of [26, 7] imme-
diately give a reduction from GapSIVPn·γ(n) to (the complement of) GapSVPγ(n).
These reductions from SIVP to SVP immediately give deterministic polynomial time
algorithms for approximating SIVP within factors γ(n) = eO(n(log log n)2/ log n) and
probabilistic polynomial time algorithms for γ(n) = eO(n(log log n)/ log n).

Definition 2.5. The covering radius problem (CRP), given a lattice basis B,
asks for a value ρ̂ such that ρ(L(B)) ≤ ρ̂ ≤ γ(n) · ρ(L(B)). The promise problem
naturally associated to CRP, (denoted GapCRPγ) is as follows: given (B, d) where
B is a lattice basis and d is a (rational) number, decide if ρ(L(B)) ≤ d or ρ(L(B)) >
γ(n) · d.

Currently, no NP-hardness result is known for CRP. However, we do not even
know how to solve the problem (in its exact version, i.e., for γ(n) = 1) in non-
deterministic polynomial time (NP), and the analogous problem for linear codes is
known to be hard for the second level of the polynomial hierarchy [30]. So, we can
reasonably conjecture that the same is true for the CRP on lattices.

Conjecture. The CRP for lattices (GapCRP1) is Π2-hard.
Recently, [20] has shown that GapCRPγ is in AM for γ = 2, in coAM for

γ(n) = Ω(
√
n/ log(n)), and in NP ∩ coNP for γ(n) = Ω(

√
n). The problem can

also be approximated within γ = 1 + ε (for any constant ε > 0) in random ex-
ponential time [20], γ(n) = eO(n(log log n)/ log n) in random polynomial time, and

γ(n) = eO(n(log log n)2/ logn) in deterministic polynomial time.

13A reduction for the exact case (γ = 1) is given in [22]. This is the only direct reduction known
to date. Technically, a (trivial) reduction between the two problems also exists for approximation
factors γ for which approximating λ1 is NP-hard or finding short vectors is solvable in polynomial
time. No reduction is known for any other intermediate approximation factor.
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Definition 2.6. The closest vector problem (CVP), given a lattice basis B
and target vector t, asks for a lattice point v ∈ L(B) such that dist(t,v) ≤ γ(n) ·
dist(t,L(B)). The problem can be defined also in a distance estimation version, where

given a basis B and target t, one has only to find a value d̂ such that dist(t,L(B)) ≤
d̂ ≤ γ(n) · dist(t,L(B)). The promise problem naturally associated to CVP (denoted
GapCVPγ) is as follows: given (B, t, d), where B is a lattice basis, t is a target vector,
and d is a (rational) number, decide if dist(t,L(B)) ≤ d or dist(t,L(B)) > γ(n) · d.

The CVP is known to be at least as hard as the SVP [19] for any approximation
factor γ(n). Moreover, it is NP-hard for quasi-polynomial approximation factors
γ(n) = n1/O(log log n) [13]. For γ(n) = Ω(

√
n/ log n) the problem is in coAM [17],

and for γ(n) = Ω(
√
n) it is also in coNP [1]. (See [26, 7, 38] for earlier results with

approximation factor γ(n) = Ω(n).) Finally, the problem can be approximated in

deterministic polynomial time within γ(n) = eΩ(n(log log n)2/ log n) [41, 22].
In the CVP, the target point t can be arbitrarily far from the lattice. In coding

theory, Vardy [42] has considered a variant of the CVP where the distance of the
target from the code is guaranteed to be less than the packing radius of the code.
This problem (called the bounded distance decoding problem (BDD)) is interesting
because decoding within the packing radius, if solvable, has a unique solution. (For
this reason, the packing radius is sometimes also called the “unique decoding” radius.)
For lattices, the analogous problem would be the following: given a lattice B and a
point t within distance d < λ1(L(B))/2 from L(B), find the (unique) lattice point
within distance d from t. In general we can consider a similar problem for values
of d different from λ1(L(B))/2, although when d ≥ λ1(L(B))/2 the solution is not
necessarily unique. We consider the case when d = ρ(L(B)) equals the covering
radius of the lattice. This case is interesting because there is always a lattice point
within distance ρ(L(B)) from the target. Below we formally define an approximation
version of this problem. Since for any lattice L(B) and target t, there is always a
lattice point within distance ρ(L(B)) from t, we do not define distance estimation or
promise versions of this problem.

Definition 2.7. The guaranteed distance decoding problem (GDDγ), given a
lattice B and a target point t ∈ span(B), asks for a lattice point x ∈ L(B) such that
dist(t,x) ≤ γ(n)ρ(L(B)), where n is the rank of the lattice.

The following relations are known among the parameters of a lattice L(B).
Proposition 2.8. For any rank n lattice B,

λ1(L(B)) ≤ λn(L(B)) ≤ 2ρ(L(B)) ≤
√
nλn(L(B)).(2.3)

Moreover, if L(B)∗ is the dual lattice of L(B), then

1 ≤ λ1(L(B))2ρ(L(B)∗) ≤ n(2.4)

and

1 ≤ λ1(L(B))λn(L(B)∗) ≤ n.(2.5)

Proof. See [36, Theorem 7.9] for (2.3) and [7] for (2.4) and (2.5).

2.4. Lattices and groups. Let L(L) be a lattice. Any sublattice L(M) ⊆ L(L)
defines a natural equivalence relation on L(L) as follows: two lattice points x,y ∈
L(L) are equivalent (written x ≡M y) if and only if x − y ∈ L(M). The reader
can easily check that ≡M is an equivalence relation; i.e., it is reflexive (x ≡M x),
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symmetric (x ≡M y ⇔ y ≡M x), and transitive (x ≡M y ∧ y ≡M z ⇒ x ≡M z).
The ≡M-equivalence class of x ∈ L(L) (denoted [x]M) is the set of all y ∈ L(L) such
that x ≡M y. The quotient L(L)/L(M) = {[x]M:x ∈ L(L)} is the set of all ≡M-
equivalence classes of L(L). The equivalence relation ≡M is a congruence with respect
to the addition operation; i.e., if x ≡M x′ and y ≡M y′, then (x + y) ≡M (x′ + y′).
It follows that for any two equivalence classes [x]M and [y]M, the sum [x]M +[y]M =
[x + y]M is well defined; i.e., it does not depend on the choice of representatives x,
y, and the quotient L(L)/L(M) is an additive group with the sum operation just
described. Notice that if L(L) is regarded as an Abelian group, then sublattice L(M)
is a subgroup of L(L) and (L(L)/L(M),+) is just the standard quotient group.

Group L(L)/L(M) is finite if and only if L(M) is a full rank sublattice of L(L),
in which case the cardinality of the group is

#(L(L)/L(M)) =
det(L(M))

det(L(L))
.

Elements of this group can be represented using several standard techniques, e.g.,
selecting a unique representative from each equivalence class. It is easy to see that
for every equivalence class [x]M there exists a unique element x′ ∈ L(L)∩P(M) such
that x ≡M x′. So, a possible set of (unique) representatives is given by the set

L(L) ∩ P(M)

of all lattice points that belong to the half-open parallelepiped P(M). Given an
arbitrary lattice point x ∈ L(B), the corresponding representative can be efficiently
computed as follows: write x as Mz, let z′i = �zi� for all i = 1, . . . , n, and set
x′ = M(z − z′).

The representation of group elements using vectors in P(M) ∩ L(L), although
polynomial, is not very efficient. In particular, the number of bits necessary to store a
single group element can be much larger than log2 #G. Other more efficient ways to
represent group elements are possible—for example, using the Hermite normal form or
the Smith normal form. These representations allow us to store group elements using
only log |G| bits and perform the group operations in linear time. The techniques
described in this paper are largely independent from the way group elements are
represented, so we do not elaborate on this any further, and we refer the reader to
[32, 36] for more details.

Later in this paper we need to sample elements from group G = L(L)/L(M)
uniformly at random. This can be easily done using an elementary group theoretic
technique described in the following proposition.

Proposition 2.9. Let G be a finite Abelian group and g1, . . . , gn a generating
set for G. Then, if d1, . . . , dn are chosen uniformly at random in {1, . . . ,#G}, then
the group element

g =
n∑

i=1

digi

is distributed uniformly at random over G.
Proof. Since elements g1, . . . , gn generate the entire group, we know that for

any group element a ∈ G there exists an integer vector da = [da,1, . . . , da,n] such
that

∑n
i=1 da,igi = a. Let K be the set of all integer vectors d = [d1, . . . , dn] such

that
∑

digi = 0 (in G). Notice that for any a ∈ G and d ∈ Z
n,
∑

i digi = a if
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and only if d ∈ K + da. Therefore, if d1, . . . , dn are chosen uniformly at random
in {1, . . . ,#G}, then the probability that

∑
i digi = a equals exactly the size of

(K + da) ∩ {1, . . . ,#G}n divided by (#G)n. Since K is periodic modulo #G (i.e.,
it is invariant under translations by vectors in #G · Z

n), all sets (K + da) ∩ {1, . . . ,
#G}n have the same size, and the probability that

∑
i digi = a is the same for all

a ∈ G.
Of particular interest in this paper are quotient groups G = L(L)/L(M), where

M defines an almost orthogonal sublattice of L(L). The following lemma gives a
possible way to build almost orthogonal sublattices for any input lattice L(L).

Lemma 2.10. Let L(B) be a lattice of rank n, σ be a positive real, and D
be a decoding procedure that on input a vector y ∈ span(B) returns a lattice point
D(y) ∈ L(B) such that dist(D(y),y) ≤ σ. For any α ≥ 2

√
n · σ, one can efficiently

find (with n calls to D) a basis of a full rank sublattice S ⊂ L(B) such that for all
x ∈ R

n

‖Sx‖ ≈ α · ‖x‖.

Proof. Let si = D(α · ti), where t1, . . . , tn are an orthonormal basis of span(B);
e.g., if L(B) is a full rank lattice, set ti = ei. Clearly si ∈ L(B) for all i = 1, . . . , n.
Let x ∈ R

n be an arbitrary vector. We want to prove that ‖Sx‖ ≈ α · ‖x‖. We know
that si = α · ti + ri, where ‖ri‖ = ‖D(α · ti) − α · ti‖ ≤ σ. Therefore,

‖Sx‖ = ‖(α · T + R)x‖ = ‖α · Tx + Rx‖.

By the triangle inequality, and using ‖Tx‖ = ‖x‖ (which follows from the fact that
T is an orthonormal set of vectors), we get

α · ‖x‖ − ‖Rx‖ ≤ ‖Sx‖ ≤ α · ‖x‖ + ‖Rx‖.

So, we need to prove that ‖Rx‖ ≤ α
2 ‖x‖. By the triangle inequality and Cauchy–

Schwarz,

‖Rx‖ ≤
n∑

i=1

‖ri‖ · |xi| ≤ σ ·
n∑

i=1

|xi| ≤
√
nσ · ‖x‖ ≤ α

2
· ‖x‖.

This proves that ‖Sx‖ ≈ α · ‖x‖. The linear independence of vectors S immediately
follows because if S were linearly dependent, then one could find a nonzero vector x
such that Sx = 0, contradicting ‖Sx‖ ≈ α · ‖x‖ > 0.

So far, we have shown how to use lattices and sublattices to define finite Abelian
groups. It is also possible to use finite Abelian groups to define lattices.

Proposition 2.11. Let G be a finite Abelian group, and let g1, . . . , gn be a
sequence of elements of G. Then, the set

Λ(g1, . . . , gn) =

{
x ∈ Z

n:

n∑
i=1

xigi = 0

}

is a lattice, and its determinant satisfies det(Λ(g1, . . . , gn)) ≤ #G, with equality if
and only if g1, . . . , gn generate the entire group G.

Proof. Λ(g1, . . . , gn) is a lattice because it is an additive subgroup of Z
n. Let G′

be the subgroup generated by g1, . . . , gn. Notice that the quotient Z
n/Λ(g1, . . . , gn) is

isomorphic to G′, with isomorphism given by φ([x]) =
∑

i xigi. It follows that the size
of G′ is det(Λ(g1, . . . , gn))/det(Zn) = det(Λ(g1, . . . , gn)), and det(Λ(g1, . . . , gn)) =
#G′ ≤ #G.
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2.5. Statistical distance. The statistical distance is a measure of how two
probability distributions are far apart from each other, and it is a convenient tool in
the analysis of randomized algorithms and reductions. In this subsection we define
the statistical distance and state some simple facts that will be used in the analysis
of the algorithms in this paper. All the properties of the statistical distance stated
in this subsection are easily verified. For more details the reader is referred to [36,
Chapter 8].

Definition 2.12. Let X and Y be two discrete random variables over a (count-
able) set A. The statistical distance between X and Y is the quantity

∆(X,Y ) =
1

2

∑
a∈A

|Pr{X = a} − Pr{Y = a}|.

We say that two random variables X,Y are identically distributed (written X ≡
Y ) if and only if Pr{X = a} = Pr{Y = a} for every a ∈ A. The reader can easily
check that the statistical distance satisfies the usual properties of distance functions,
i.e., ∆(X,Y ) ≥ 0 (with equality if and only if X ≡ Y ), ∆(X,Y ) = ∆(Y,X), and
∆(X,Z) ≤ ∆(X,Y ) + ∆(Y,Z).

The following proposition shows that applying a (possibly randomized) function
to two distributions does not increase the statistical distance.

Proposition 2.13. Let X,Y be two random variables over a common set A. For
any (possibly randomized) function f with domain A, the statistical distance between
f(X) and f(Y ) is at most

∆(f(X), f(Y )) ≤ ∆(X,Y ).(2.6)

Another useful property of the statistical distance is the following.

Proposition 2.14. Let X1, . . . , Xk and Y1, . . . , Yk be two lists of totally inde-
pendent random variables. Then

∆((X1, . . . , Xk), (Y1, . . . , Yk)) ≤
k∑

i=1

∆(Xi, Yi).(2.7)

The next proposition and corollary show how to use the statistical distance to
estimate expectations and probabilities.

Proposition 2.15. If X and Y are random variables over set A and f :A → [a, b]
is a real valued function, then

|Exp[f(X)] − Exp[f(Y )]| ≤ |b− a| · ∆(X,Y ).(2.8)

As a corollary, we immediately obtain the following.

Corollary 2.16. If X and Y are random variables over set A and p:A → {0, 1}
is a predicate, then

|Pr[p(X) = 1] − Pr[p(Y ) = 1]| ≤ ∆(X,Y ).(2.9)

The following proposition gives a standard amplification technique that allows us
to generate almost uniform samples from a group by adding a relatively small number
of independent samples that are not too far from uniform.
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Proposition 2.17. Let (G,+) be a finite group, and let A1, . . . , Ak be k inde-
pendent (but possibly not identically distributed) random variables over G such that
Pr{Ai = g} ≈ 1/#G for all i = 1, . . . , k and any g ∈ G. Then, for any g ∈ G,

Pr

{
k∑

i=1

Ai = g

}
∈ 1

#G
·
[
1 ± 1

2k

]
.

In particular, the statistical distance between the sum A =
∑k

i=1 Ai and the uniform
distribution U over G is at most

∆

(
k∑

i=1

Ai, U

)
≤ 1

2k+1
.

The next proposition gives a way to estimate how much a given distribution is
affected by conditioning.

Proposition 2.18. For any random variable X over set A, and event Y , the
statistical distance between distribution X and the conditional distribution of X given
Y is exactly half the expected relative additive error of Y given X; i.e.,

∆(X, (X|Y )) =
1

2
Exp
X

[∣∣∣∣Pr{Y | X}
Pr{Y } − 1

∣∣∣∣
]
≤ 1

2
max
a∈A

∣∣∣∣Pr{Y |X = a}
Pr{Y } − 1

∣∣∣∣ .
2.6. Iterative algorithms and reductions. Many lattice algorithms work by

first computing a relatively poor solution to the problem in question, and then itera-
tively improving it until a solution meeting some desired condition is found. Examples
of such iterative algorithms are the LLL basis reduction algorithm [27] and the Ajtai
worst- to average-case reduction and variants [2, 11, 35, 34]. Many other fundamental
algorithms can also be described as an iterative process; e.g., Euclid’s algorithm starts
from two input numbers a, b and iteratively computes smaller and smaller numbers
until the greatest common divisor of a and b is found.

The high level structure of many iterative algorithms is the same, and it can be
formulated abstractly without any reference to the specific problem in question. Al-
though the method is now standard and has been repeatedly used to solve many lattice
problems, it has never been explicitly formulated. In order to avoid unnecessary repe-
titions and highlight both the similarities and differences among all these algorithms,
below we give an abstract formulation of this iterative method and present a general
proof that the method implies standard polynomial time algorithms and reductions.

Computational problems can be abstractly defined by giving a binary relation
consisting of all problem-solution pairs.

Definition 2.19. The language associated to a binary relation R is the set LR

of all strings x such that (x,w) ∈ R for some w. The problem defined by relation R is
as follows: given a string x ∈ LR, find a w such that (x,w) ∈ R. For any (x,w) ∈ R,
we say that w is a solution to problem x.

Since no polynomial time algorithm (or reduction) can possibly output a solution
w of size superpolynomial in |x|, it is usually assumed that there exists a polynomial
p such that |w| ≤ p(|x|) for all (x,w) ∈ R. This is the case for all problems considered
in this paper. However, we remark that in general relation R is not required to be
polynomial time computable. For example, in the γ approximate SVP, membership
in the associated relation R = {(B,v):v ∈ L(B) \ {0} ∧ ‖v‖ ≤ γ · λ1(L(B))} is
probably not polynomial time computable for γ <

√
2 (unless NP = RP [33]). If
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membership in R is polynomial time computable (and there exists a polynomial p
such that |w| ≤ p(|x|) for all (x,w) ∈ R), then R is an NP-relation.

A deterministic algorithm F solves problem R if for any x ∈ LR the output
w = F(x) satisfies (x,w) ∈ R. If F is a randomized algorithm, then we say that F
solves R in the worst case with probability p (possibly a function of the input length);
if for any x ∈ LR the probability (over the internal randomness of F alone) that
(x,F(x)) ∈ R is at least p(|x|). Algorithm F solves R on the average if (x,F(x)) ∈ R
with probability at least p(|x|), when the probability is computed over the internal
randomness of F and the random selection of the input x according to some specified
distribution over all strings in LR of length |x|.

For all worst-case problems considered in this paper, given two tentative solutions
w0, w1 for a problem x, it is possible to efficiently select the “best” of the two; i.e.,
there is a polynomial time algorithm that selects a wi such that if (x,w0) ∈ R or
(x,w1) ∈ R, then (x,wi) ∈ R. It follows that any algorithm that solves the prob-
lem with nonnegligible probability p(|x|) ≥ |x|−O(1) can be easily transformed into an
algorithm that solves the problem with probability exponentially close to 1, by repeat-
edly executing the basic algorithm a polynomial (e.g., |x| / p(|x|)) number of times
and selecting the best solution. So, we describe any such algorithm as solving the
problem with high probability, without explicitly stating the exact value of the success
probability. Notice, however, that this applies only to (randomized) algorithms that
solve a problem in the worst case. The success probability amplification technique
we just described may not work when applied to an algorithm that solves a problem
with nonnegligible probability, but only on the average, when the input is chosen at
random.

Before we give the general definition of iterative reduction (or algorithm), we
illustrate it with a familiar example. Consider Euclid’s algorithm. The input is a pair
of numbers x = (a, b), and we want to find the greatest common divisor w = gcd(a, b).
The algorithm works iteratively, maintaining at each iteration a pair s = (s0, s1) such
that s0 ≥ s1 and gcd(s0, s1) = w. At every iteration, if s1 �= 0, the state is updated
from (s0, s1) to (s1, s0 mod s1). Polynomial time termination is guaranteed because
at every iteration the function f(s0, s1) = s0 · s1 + 1 decreases at least by a factor 2.
When s1 = 0 no more progress is possible, and the algorithm terminates with output
s0. In the case of lattice problems, the input is usually a lattice basis x = B, and the
algorithm maintains a set of linearly independent vectors s = S ⊂ L(B), or a basis for
the input lattice L(S) = L(B). Typically, the goal is to find a set of short vectors S.
This set is found by initially setting S to the input basis and then iteratively applying
an algorithm that on input B and S outputs a better set S′. This general idea is
formalized in the following definition. (See Figure 1 for a pictorial representation
of the intended use of iterative reductions and the proof of Theorem 2.21 below for
further explanations.)

x

I(x)

S(x, s)

s

s′ f(x, s′) ≤
f(x, s)/2

yes

no
O(x, s)

w

Fig. 1. Iterative reduction.
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Definition 2.20. An iterative reduction from problem P to a target problem P ′

is a tuple (R, f, I, O,S), where the following hold:

(i) R is a relation (defining the set Rx = {s: (x, s) ∈ R} of valid internal states)
such that |s| ≤ p(|x|) for some polynomial p and all (x, s) ∈ R.

(ii) f : R → Q
+ (the progress function) is a polynomial time computable func-

tion mapping pairs (x, s) ∈ R to positive rational numbers f(x, s) ∈ Q
+.

(iii) I (the initialization function) is a polynomial time computable function map-
ping each problem instance x ∈ LR to an initial state I(x) satisfying (x, I(x)) ∈ R.

(iv) O (the output function) is a polynomial time computable function mapping
valid pairs (x, s) ∈ R to tentative solutions O(x, s), possibly satisfying (x,O(x, s)) ∈
P .

(v) S(·) (the iterative step) is a polynomial time oracle algorithm such that for
any oracle F solving problem P ′, and for all (x, s) ∈ R, the output s′ = SF (x, s)
satisfies
(a) (x, s′) ∈ R; and
(b) if P (x,O(x, s)) is false, then f(x, s′) ≤ f(x, s)/2.

The following theorem shows that iterative reductions easily imply the existence
of standard Cook reductions. We remark that the notion of iterative reduction for-
mulated in Definition 2.20 and used in Theorem 2.21 below considers both P and P ′

as worst-case problems. The definition can be easily extended to the case where P ′

is an average-case problem; however, this is not needed in this paper. In section 6 we
will show that the iterative reduction implicit in Ajtai’s worst-case to average-case
connection and variants can be easily factored into an iterative reduction between two
worst-case problems and a worst- to average-case reduction that involves no iteration.

Theorem 2.21. If there is an iterative reduction from problem P to problem P ′,
then there is a polynomial time (Cook) reduction from P to P ′.

Proof. Let (R, f, I, O,S) be an iterative reduction from P to P ′. We define a
standard polynomial time reduction between the two problems. The reduction works
as follows (see Figure 1):

1. On input x, compute s = I(x).
2. Compute SF (x, s) = s′ and check if f(x, s′) ≤ f(x, s)/2.
3. If the check succeeds, replace s with s′ and repeat the previous step.
4. If the check fails, then terminate and output w = O(x, s).

It is immediate to verify that the algorithm satisfies the invariant (x, s) ∈ R
at all iterations. Moreover, the termination condition f(x, s′) > f(x, s)/2 implies
P (x,O(x, s)), and therefore the final output is a correct solution. We need to prove
that the running time is polynomial in |x|. Notice that since (x, s) ∈ R, |s| is bounded
by a fixed polynomial in |x| in all iterations, and all steps can be performed in poly-
nomial time. We need to bound the number of iterations. Let p be a polynomial such
that |s| ≤ p(|x|) for all (x, s) ∈ R, and let q be a polynomial bounding the running
time of f . It follows that the initial value of f(x, s) is at most 2q(|x|+p(|x|)) and that
f(x, s) is always at least 2−q(|x|+p(|x|)). Since at every iteration f(x, s) decreases by
a factor 2, the maximum number of iterations is at most 2q(|x| + p(|x|)), which is
polynomial in |x|.

3. Covering radius and uniform radius. Let L(B) be an n-dimensional lat-
tice, and let Q be a convex body in R

n. It can be shown that if we consider a randomly
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shifted copy of the body Q+ x (where x is chosen uniformly at random14 ), then the
expected number of lattice points in Q + x equals exactly

Exp
x

[#(L(B) ∩ (Q + x))] =
vol(Q)

det(L(B))
.

In particular, if Q is a sphere of radius r, then

Exp
x

[#(L(B) ∩ B(x, r))] =
vol(B(r))

det(L(B))
.

This corresponds to the intuition that the determinant det(L(B)) is the inverse of the
density of lattice points in space. Notice that the actual number of lattice points in
a specific Q may deviate arbitrarily from the expectation, even for the special case of
spherical Q. Consider, for example, a lattice generated by two orthogonal vectors e1

and De2, where D is a large constant. Notice that the determinant of the lattice is
D, so on the average we would expect to find vol(Q)/D lattice points inside Q. Now,
let Q = B(x,

√
D) be the open disc of radius

√
D. The area of Q is vol(Q) = πD, so

on the average we would expect to find π lattice points in Q. However, if x = 0, the
number of lattice points in Q is 2�

√
D�−1. Even worse, if x = (D/2)e2, then Q does

not contain any lattice point at all.
We define the uniform radius of a lattice as the smallest value r = ζ(L(B)) such

that any sphere B(x, r) contains a number of lattice points close to the expected value.
Definition 3.1. For any n-dimensional lattice L(B), the uniform radius ζ(L(B))

is the smallest positive real r such that

#(L(B) ∩ B(x, r)) ≈ vol(B(r))

det(L(B))

for any x ∈ span(L(B)).
The following proposition shows that the uniform radius ζ(L(B)) is at least as

large as the covering radius ρ(L(B)). Later we will also show that the uniform radius
is never much bigger than that.

Proposition 3.2. For any lattice L(B), ρ(L(B)) < ζ(L(B)).
Proof. The proof is immediate because for r ≤ ρ(L(B)) any sphere of radius r

centered in a deep hole (i.e., a point in space at distance ρ(L(B)) from the lattice)
does not contain any lattice point.

The uniform radius can be used to estimate the number of lattice points contained
in a sphere. Later in this paper, we need to estimate the number of lattice points
inside arbitrary convex bodies. So, we generalize the definition of the uniform radius
to arbitrary convex bodies.

Definition 3.3. For any n-dimensional lattice L(B), the generalized uniform

radius ζ̂(L(B)) is the smallest positive real r such that for any convex body Q con-
taining a sphere B(x, r) ⊆ Q of radius r, the number of lattice points inside the body
satisfies

#(L(B) ∩Q) ≈ vol(Q)

det(L(B))
.

14Intuitively, we would like to choose x uniformly at random from R
n, but this is not possible

because R
n has infinite measure. This problem is easily solved observing that it is enough to choose

x uniformly at random from the fundamental region P(B) of the lattice, because the lattice repeats
identically when translated by Bx for x ∈ Z

n.
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Clearly, the generalized uniform radius is at least as large as the uniform radius:
for any lattice L(B), ζ(L(B)) ≤ ζ̂(L(B)). In particular, ζ̂(L(B)) is always larger than
the covering radius ρ(L(B)). We bound the (generalized) uniform radius from above
and show that for any lattice L(B), the (generalized) uniform radius is not much

larger than the covering radius. Specifically, we show that ζ̂(L(B)) = O(n) · ρ(L(B)).
A similar result was proved by Dyer, Frieze, and Kannan in [14] for the special case of
L(B) = Z

n. We observe that the proof of [14] is a general volume argument and does
not use any special property of lattice Z

n. So, it can be easily adapted to arbitrary
lattices. Below we recall two simple geometric lemmas proved in [14] and then use

them to prove the bound on ζ̂(L(B)).
Lemma 3.4 (see [14, Proposition 1]). Suppose Q is a convex body in R

n containing
the unit ball B(1), and let ε > 0 be any positive real. Then all points within distance
ε from Q belong to (1 + ε)Q.

Lemma 3.5 (see [14, Proposition 2]). Suppose Q is a convex body in R
n containing

the unit ball B(1), and let 0 < ε ≤ 1. Then, all points within distance ε from (1− ε)Q
belong to Q.

We can now prove the bound on the uniform radius in terms of the covering
radius.

Theorem 3.6. For any n-dimensional lattice L(B),

ζ̂(L(B)) ≤ 3nρ(L(B)).

Proof. Let L(B) be a full rank lattice in R
n with covering radius ρ(L(B)), and

let Q be a convex body containing a sphere of radius r = 3nρ(L(B)). We want to

prove that #(L(B) ∩ Q) ≈ vol(Q)
det(L(B)) . Let L(B′) = L(B)/r and Q′ = Q/r be scaled

versions of L(B) and Q, and consider the set of points

S = L(B′) ∩Q′ =
L(B) ∩Q

r
.

Clearly, #S = #(L(B′) ∩Q′) = #(L(B) ∩Q). We want to prove that

#S ≈ vol(Q′)

det(L(B′))
=

vol(Q)

det(L(B))
.

Consider the union of all Voronoi cells V(x,L(B′)) with centers x ∈ S. Notice that all
points y ∈ V(x,L(B′)) are within distance ρ(L(B′)) = ρ(L(B))/r from x. Moreover,
Q′ contains a sphere of radius 1. Therefore, by Lemma 3.4, for all x ∈ S ⊂ Q′ and
y ∈ V(x,L(B′)), we have y ∈ Q′ ·(1+ρ(L(B))/r), i.e., V(x,L(B′)) ⊆ (1+ρ(L(B))/r)·
Q′. (Scaling, this time, was performed using as origin the center of the unit sphere
contained in Q′.) Since Voronoi cells are disjoint and have the same volume, we have

#S =

∑
x∈S vol (V(x,L(B′)))

vol(V(L(B′)))

=
vol

(⋃
x∈S V(x,L(B′))

)
vol(V(L(B′)))

≤ vol(Q′ · (1 + ρ(L(B))/r))

det(L(B′))

=

(
1 +

ρ(L(B))

r

)n
vol(Q′)

detL(B′)
.
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Finally, using the assumption r ≥ 3nρ(L(B)), we get(
1 +

ρ(L(B))

r

)n

<

(
1 +

1

3n− 1

)n

=
1(

1 − 1
3n

)n
≤ 1

1 − 1
3

=
3

2
.

This proves the upper bound #S � vol(Q′)/detL(B′).
We now turn to the lower bound. Let S′ be the set of all lattice points x ∈ L(B′)

such that the Voronoi cell V(x,L(B′)) intersects (1 − ρ(L(B))/r)Q′. Notice that if
V(x,L(B′)) intersects (1−ρ(L(B))/r)Q′, then x must be within distance ρ(L(B′)) =
ρ(L(B))/r from (1 − ρ(L(B))/r) · Q′. So, by Lemma 3.5, x ∈ Q′. This proves that
S′ ⊆ S, and #S ≥ #S′. Since Voronoi cells cover R

n, (1 − ρ(L(B))/r)Q′ is fully
contained in the union

⋃
x∈S′ V(x,L(B′)), and

#S′ =

∑
x∈S′ vol(V(x,L(B′)))

vol(V(L(B′)))

=
vol(

⋃
x∈S′ V(x,L(B′)))

vol(V(L(B′)))

≥ vol((1 − ρ(L(B))/r)Q′)

det(L(B′))

=

(
1 − ρ(L(B))

r

)n
vol(Q′)

det(L(B′))
.

Using the assumption r ≥ 3nρ(L(B)), we immediately get(
1 − ρ(L(B))

r

)n

>

(
1 − 1

2n

)n

≥ 1 − 1

2
.

This proves the lower bound #S � vol(Q′)/det(L(B′)) and completes the proof of
the theorem.

Using inequality ρ(L(B)) ≤
√
n · λn(L(B))/2 from (2.3), we can bound ζ̂(L(B))

in terms of λn(L(B)):

ζ̂(L(B)) ≤ 3

2
n1.5λn(L(B)).(3.1)

Similarly, using the transference theorem (2.4), we can bound ζ̂(L(B)) in terms of the
length of the shortest nonzero vector in the dual lattice:

ζ̂(L(B)) ≤ 3

2
n2 1

λ1(L(B)∗)
.(3.2)

These bounds can be used to relate the average-case complexity of finding small
solutions to random equations to the worst-case complexity of approximating SIVP

or GapSVP.
It would be interesting to improve bounds (3.1) and (3.2). In particular, is it true

that ζ̂(L(B)) = O(n) · λn(L(B)) for any n-dimensional lattice L(B)? Is it true that

ζ̂(L(B)) = O(n)/λ1(L(B)∗)? Proving these improved bounds would immediately
result in a reduction of the connection factor for SIVP by a factor O(

√
n) and for

GapSVP by a factor O(n).
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4. Easily decodable almost perfect lattices. We are interested in lattices
that have both good algorithmic and geometric properties. Algorithmically, we would
like lattices where the CVP can be efficiently solved. Notice that, despite the NP-
hardness of CVP, the CVP may be efficiently solvable for specific lattices. For exam-
ple, in the integer lattice Z

n, a lattice vector x ∈ Z
n closest to a given target t ∈ Q

n

can be easily found rounding each coordinate of t to the closest integer xi = �ti�.
Since for any fixed dimension the CVP can be solved in polynomial time, in order
to properly formulate this problem one needs to consider not a single lattice but an
infinite sequence of lattices in increasing dimension. For simplicity, in the definition
below we focus on full rank lattices, although this restriction is not necessary.

Definition 4.1. Let {Ln}n≥1 be a sequence of full rank lattices L(Ln) ⊆ R
n. We

say that the sequence {Ln}n≥1 is easily decodable if there exists a polynomial time
algorithm CVPL such that for any n ≥ 1 and t ∈ Q

n, CVPL(t) outputs a lattice
vector in L(Ln) closest to t.

The simplest example of an easily decodable sequence of lattices is given by the
integer lattices Z

n defined by matrices Ln = In. Other easily decodable lattices
considered in [12] are the root lattices An and Dn and their duals D∗

n and A∗
n.15

From a geometric point of view, we would like the Voronoi cells of the lattice to be
as spherical as possible. Remember that the Voronoi cell V(L(L)) contains a sphere
B(λ1(L(L))/2) with radius equal to the packing radius and is completely contained
in a sphere B̄(ρ(L(L))) with radius equal to the covering radius. So, the closer the
covering radius is to the packing radius, the better the Voronoi cells are approximated
by spheres. This motivates the following definition.

Definition 4.2. For any τ ≥ 1, a lattice L(L) is τ -perfect if

ρ(L(L)) ≤ τ ·
(
λ1(L(L))

2

)
.

For any function τ(n), a sequence of (full rank) lattices {Ln}n≥1 (where n is the
dimension of L(Ln)) is τ(n)-perfect if L(Ln) is τ(n)-perfect for any n ≥ 1. A sequence
of (full rank) lattices {Ln}n≥1 is almost perfect if it is τ(n)-perfect for some τ(n) =
o(
√
n).
We are interested in sequences of lattices such that τ(n) is as small as possible.

Moreover, we would like the lattices to be easily decodable. The integer lattice Z
n,

as well as all other sequences An, A
∗
n, Dn, D

∗
n of easily decodable lattices considered

in [12], are τ(n)-perfect for τ(n) = Θ(
√
n), so they are not almost perfect. It is

natural to ask if nontrivial easily decodable almost perfect lattices (i.e., τ(n)-perfect
lattices with τ(n) = o(

√
n)) exist, or if the almost perfectness and easy decodability

requirements are incompatible.
In this section we start the algorithmic study of almost perfect lattices and give

the first efficient construction of nontrivial easily decodable almost perfect lattices.
Our lattices are τ(n)-perfect for τ(n) =

√
n log log n/ log n = o(

√
n). Although this is

not a substantial improvement over τ(n) = Θ(
√
n) from a quantitative point of view,

it is qualitatively interesting because it shows that nontrivial easily decodable almost
perfect lattices exist.

We first present a construction of 3-perfect lattices such that the construction
and the decoding algorithm run in exponential time nO(n). Then we show how to

15Conway and Sloane [12] also describe other efficient decoding algorithms for specific lattices,
but Z

n, An, A∗
n, Dn, D∗

n are the only infinite sequences of lattices considered for which the problem
of efficient decoding admits an interesting asymptotic formulation.
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use small-dimensional lattices obtained using this construction to efficiently construct
O(
√
n log log n/ log n)-perfect lattices such that the CVP can be solved in polynomial

time. The construction is based on the following simple lemma.
Lemma 4.3. For any lattice L(B), there exists a lattice vector v ∈ L(B) such

that dist(v/3,L(B)) ≥ (2/3)ρ(L(B)). In particular, if ρ(L(B)) ≥ 3 · λ1(L(B))/2,
then dist(v/3,L(B)) ≥ λ1(L(B)).

Proof. Let h be a deep hole, i.e., a point in span(L(B)) at distance ρ(L(B)) from
L(B). Consider the point 3h, and let v ∈ L(B) be a lattice point closest to 3h. By
definition of the covering radius, it must be ‖v− 3h‖ ≤ ρ(L(B)). Therefore, dividing
by 3, we get ‖v/3 − h‖ ≤ ρ(L(B))/3, and by the triangle inequality

dist(v/3,L(B)) ≥ dist(h,L(B)) − dist(v/3,h)

≥ ρ(L(B)) − 1

3
ρ(L(B))

=
2

3
· ρ(L(B)).

We use the lemma to give an algorithmic construction of τ -perfect lattices with
τ < 3. The following theorem is essentially an algorithmic variant of the proof of
existence given in [40]. Both the procedure to build the lattice and the one to decode
it run in time nO(n). It should be noted that for any n-dimensional lattice, in principle
the CVP can always be solved in time nO(n) [23]. However, the algorithm of [23] for
general lattices is rather complex. In the theorem below we show how to build a lattice
L(B) together with some (polynomial size) auxiliary information V that allows us to
solve the CVP in lattice L(B), still in time nO(n) as in [23], but with a much simpler
algorithm.

Theorem 4.4. There is an algorithm running in time nO(n) that on input n out-
puts an n-dimensional 3-perfect lattice Ln. Moreover, the sequence of lattices {Ln}n≥1

is decodable in time nO(n); i.e., there is an algorithm CVPL running in time nO(n)

that on input a vector t ∈ Q
n outputs a lattice vector CVPL(t) ∈ L(Ln) closest to t.

Proof. The algorithm starts from an arbitrary n-dimensional easily decodable
lattice L(B0), e.g., the integer lattice L(B0) = Z

n generated by the identity matrix
B0 = I. Notice that the closest vector in Z

n to a target t can be easily found by
rounding each coordinate of t to the closest integer. Below we assume that B0 = I
and, in particular, det(L(B0)) = 1 and λ1(L(B0)) = 1, but the construction works
for any easily decodable lattice.

Starting from B0, we iteratively build a sequence of lattice bases Bi and auxiliary
vectors vi for i = 1, . . . ,m for some m = O(n log n) to be determined. The final output
are basis B = Bm and set of vectors V = [v1, . . . ,vm]. For each k = 1, . . . ,m, vector
vk and basis Bk are computed as follows:

1. For any vector s ∈ {−1, 0,+1}n, let t = (1/3)Bk−1s and compute the dis-
tance of t from the lattice L(Bk−1). (We will show below how this can be done in
time nO(1) · 3k.)

2. If for all s ∈ {−1, 0,+1}n, dist(t,L(Bk−1)) < 1, then set m = k − 1, and
terminate with output B = Bk−1 and V = [v1, . . . ,vk−1].

3. Otherwise (if dist(t,L(Bk−1)) ≥ 1 for some s), proceed as follows. Notice
that since dist(t,L(Bk−1)) > 0, it must be s �= 0.

4. Let i ∈ {1, . . . , n} such that si �= 0.
5. Set vk = t.
6. Set Bk to the matrix obtained by replacing the ith vector in Bk−1 with vk.
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The algorithm uses a procedure to find closest vectors in lattice L(Bk). We
will show that the maximum number of iterations performed by the algorithm is
m ≤ (n/2) log3 n = O(n log n), and that for any k, the CVP in L(Bk) can be solved
in time nO(1) · 3k. It follows that the total running time of the algorithm is

O(m · nO(1) · 3m) = nO(n)

and that the CVP in L(B) can also be solved in time nO(n).
The correctness of the algorithm is based on the fact that for any k,

(i) vector 3vk belongs to the lattice L(Bk−1),
(ii) Bk is a basis for the lattice generated by [Bk−1|vk],
(iii) the shortest vector in L(Bk) has length 1.

The first property immediately follows by construction. For the second property, it is
clear that L(Bk) is a subset of L([Bk−1|vk]). In order to prove L(Bk) = L([Bk−1|vk])
we need only to show that the ith vector of Bk−1 (namely, Bk−1ei) belongs to L(Bk).
Notice that 3vk = Bk−1s =

∑
j sjBk−1ej . So, si ·Bk−1ei = 3vk −

∑
j �=i sjBk−1ej =

3Bkei−
∑

j �=i sjBkej belongs to L(Bk). Since si = ±1, also Bk−1ei = ±(si ·Bk−1ei)
belongs to L(Bk). Now, let us get to the third property. Consider any nonzero
vector in L(Bk). Since L(Bk) = L([Bk−1|vk]), any such a vector can be written
as Bk−1x + vk · y. Moreover, since 3vk ∈ L(Bk−1), we can assume without loss of
generality that y ∈ {−1, 0,+1}. So, the length of Bk−1x+vk·y is at least the minimum
of λ1(L(Bk−1)) (if y = 0) or dist(±vk,L(Bk−1)) (if y = ±1). But λ1(L(Bk−1)) ≥ 1
by induction, and dist(±vk,L(Bk−1)) = dist(vk,L(Bk−1)) ≥ 1 by construction. It
follows that λ1(L(Bk)) ≥ 1.

It is also easy to see that for any k, the determinant of lattice L(Bk) equals
det(L(Bk)) = 3−k det(L(B0)) = 3−k because each Bk can be obtained from Bk−1

by first performing some elementary integer column operations, and then dividing a
column by 3. We can now prove that the algorithm performs at most m = O(n log n)
iterations. Since λ1(L(Bk)) = 1 and det(L(Bk)) = 3−k, by Minkowski’s first theorem
(2.2),

1 = λ1(L(Bk)) ≤
√
n det(L(Bk))

1/n =
√
n3−(k/n).

It follows that

k ≤ (1/2)n log3 n = O(n log n)

is an upper bound on the maximum number of iterations. (It can also be shown
by a volume argument that m = Θ(n log n) iterations are required in order to reach
termination.)

Next we prove that upon termination ρ(L(Ln)) < 3 · λ1(L(Ln))/2. We show
that if ρ(L(Ln)) ≥ (3/2) ·λ1(L(Ln)), then the algorithm certainly performs one more
iteration. By Lemma 4.3, if ρ(L(Ln)) ≥ (3/2)λ1(L(Ln)), then there exists a vector
v = Bk−1x ∈ L(Bk−1) such that

dist(v/3,L(Bk−1)) ≥ λ1(L(Bk−1)) ≥ 1.

Let s ∈ {−1, 0,+1}n be such that s ≡ x (mod 3), i.e., (s − x)/3 ∈ Z
n. We claim

that the distance of t = (1/3)Bk−1s from the lattice L(Bk−1) is at least 1. Notice
that

t = (1/3)Bk−1s = Bk−1x/3 + Bk−1(s − x)/3 ∈ v/3 + L(Bk−1).
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It follows that dist(t,L(Bk−1)) = dist(v/3,L(Bk−1)) ≥ 1, and therefore the algorithm
does not terminate at iteration k.

We conclude the proof of the theorem by giving a simple algorithm to solve the
CVP in L(Bk) in time nO(1) · 3k ≤ nO(n). Notice that any lattice point in L(Bk)
can be written as B0x + [v1, . . . ,vk]y, where x ∈ Z

n and y ∈ {−1, 0,+1}k. So, in
order to find the lattice point closest to some target t, we can consider all vectors of
the form t − [v1, . . . ,vk]y and compute their distance from L(B0). Let y be such
that dist(t − [v1, . . . ,vk]y,L(Bk)) is minimized, and let B0x be the lattice vector
closest to t − [v1, . . . ,vk]y. The lattice vector in L(Bk) closest to t is B0x +
[v1, . . . ,vk]y.

The theorem gives an algorithmic construction of almost perfect lattices and an
algorithm to solve the CVP; however, the running time is huge. The next theorem
shows how to use these lattices for small values of n to get a construction that runs
in polynomial time.

Theorem 4.5. There exists a family of τ(n)-perfect easily decodable lattices with
τ(n) = O(

√
n log log n/ log n).

Proof. In order to keep the construction polynomial in n, we use Theorem 4.4
to build a 3-perfect lattice M in dimension m = log n/ log log n. Notice that such a
lattice can be constructed in time

2O(m logm) = 2O(log n log(log n/ log log n)/ log log n) = nO(1)

polynomial in n. Moreover, the CVP in this lattice can also be solved in polynomial
time 2O(m logm) = nO(1).

Now set L(Ln) to the direct sum of (n/m) copies of L(M), i.e., the lattice gener-
ated by the block diagonal matrix with n/m blocks, all equal to M. The lattice vector
in L(Ln) closest to a target t is easily found by breaking t into n/m blocks, each with
m coordinates in it, and finding the L(M) vector closest to each block. Moreover,
the length of the shortest nonzero vector in L(Ln) is λ1(L(M)) because vectors from
different copies of M are orthogonal. Finally, the covering radius of L(Ln) is

√
n/m

times ρ(L(M)). So, L(Ln) is τ(n)-perfect for

τ(n) =

√
n/mρ(L(M))

λ1(L(M))/2
≤ 3

√
n/m = O(

√
n log log n/ log n).

5. A generalized class of random equations. In this section we define a class
of random equations that generalizes Ajtai’s one. Ajtai’s problem can be described as
finding a small (e.g., with respect to the bound proved in Theorem 5.5 below) nonzero
integer solution to a homogeneous linear equation in m(n) variables with coefficients
chosen uniformly at random from the group Gn = Z

n
q(n) of n-dimensional vectors

modulo q(n), for appropriately chosen functions q(n) and m(n). Here we consider
equations with coefficients in a group Gn possibly different from Z

n
q(n). In general, we

define the following problem.
Definition 5.1. Let {Gn} be a sequence of finite Abelian groups, and let m(n)

and β(n) be two arbitrary (polynomial time computable) functions. For any m(n)-

dimensional vector g = [g1, . . . , gm(n)]
T ∈ G

m(n)
n , define the set of solutions to the

associated homogeneous linear equation

Λ(g) =

⎧⎨
⎩z ∈ Z

m(n):

m(n)∑
i=1

zi · gi = 0

⎫⎬
⎭ .(5.1)
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The homogeneous small integer solution problem HSISG,m,β (in the �2 norm) is as

follows: given a (random) homogeneous linear equation g ∈ G
m(n)
n , find a nonzero

solution z ∈ Λ(g) \ {0} of �2 norm at most ‖z‖ ≤ β(n).
Of course, the problem is interesting only when a solution of length at most β(n)

exists. Below we define a family of groups (that includes Ajtai’s groups as a special
case) and give conditions under which a solution of length at most β(n) is guaranteed
to exist.

Our groups are parametrized by an easily decodable family of lattices {L(Ln)}n>0

and a function α(n), and each group Gn = G(L(Ln), α(n)) is defined as the quotient
of L(Ln) modulo an appropriately chosen full dimensional sublattice L(Mn) ⊆ L(Ln).

Definition 5.2. For any easily decodable family of lattices {L(Ln)}n>0 (with
decoding algorithm CVPL) and function α(n) satisfying α(n) ≥ 2

√
nρ(L(Ln)), define

the sequence of quotient groups

Gn = G(L(Ln), α(n)) = L(Ln)/L(Mn),(5.2)

where for any n > 0, L(Mn) is the full rank sublattice of L(Ln) obtained by applying
Lemma 2.10 with value α(n) and decoding procedure CVPL.

From Lemma 2.10 we immediately obtain the following corollary.
Corollary 5.3. For any family of lattices {L(Ln)}n>0 and function α(n) sat-

isfying the conditions in Definition 5.2, the groups G(L(Ln), α(n)) = L(Ln)/L(Mn)
can be computed in time polynomial in n and the matrix Mn satisfies

∀x ∈ R
n.‖Mnx‖ ≈ α(n) · ‖x‖.

Proof. Matrix Mn is polynomial time computable because lattice L(Ln) is easily
decodable, so the decoding procedure CVPL runs in polynomial time. In order to
bound ‖Mnx‖, simply observe that L(Ln), α(n) and CVPL satisfy the conditions of
Lemma 2.10 because α(n) ≥ 2

√
nρ(L(Ln)) ≥ 2

√
n dist(x,CVPL(x)) for all

x ∈ R
n.

Notice that if L(Ln) = Z
n is the integer lattice and α(n) = q(n), then Defini-

tion 5.2 gives matrix Mn = q(n) · I and Ajtai’s group G(L(Ln), α(n)) = Z
n
q(n) as a

special case. We will see that this choice of group Gn is not the best possible for our
analysis, and setting L(Ln) to an almost perfect lattice leads to better results. In the

rest of this section, we prove that for any g ∈ G
m(n)
n and all sufficiently large m(n),

the set Λ(g) always contains small nonzero solutions. The main result of this paper
(proved in section 6) is that although these small solutions are guaranteed to exist,
they are computationally hard to find when g is chosen uniformly at random.

We know from Proposition 2.11 that Λ(g) is a lattice with determinant at most
det(Λ(g)) ≤ #Gn. We show that Λ(g) always contains small solutions by bounding
the size of group Gn and then applying Minkowski’s first theorem.

Lemma 5.4. For any n, the group Gn = G(L(Ln), α(n)) defined in Definition 5.2
has size at most

#Gn ≤
(

3α(n)
√
n

2λ1(L(Ln))

)n

.

Proof. The size of the group is #Gn = det(L(Mn))/det(L(Ln)). We bound the
two determinants separately. By Corollary 5.3, the columns of Mn have length at
most

‖Mnei‖ ≤ (3/2)α(n) · ‖ei‖ = 3α(n)/2.
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Therefore, by Hadamard’s inequality

det(L(Mn)) ≤ (3α(n)/2)n.

We bound the determinant of L(Ln) using Minkowski’s inequality (2.2) λ1(L(Ln)) ≤√
n det(L(Ln))1/n. Solving for det(L(Ln)), we get that the determinant of L(Ln) is

at least (λ1(L(Ln))/
√
n)n. Combining the two bounds, we get that group Gn has

cardinality

#Gn =
det(L(Mn))

det(L(Ln))
≤
(

3α(n)
√
n

2λ1(L(Ln))

)n

.(5.3)

A bound on the size of the smallest nonzero solution to equation g easily follows
from Proposition 2.11 and Minkowski’s first theorem (2.2).

Theorem 5.5. For any equation g ∈ G
m(n)
n in m(n) = Ω(n log n) variables with

coefficients in a group Gn of size #Gn ≤ nO(n) (e.g., Gn = G(L(Ln), α(n)) for some
α(n) = nO(1) · λ1(L(Ln))), there exists a nonzero solution z ∈ Λ(g) of length at most
‖z‖ = O(

√
m(n)).

6. The worst- to average-case reduction. In this section we prove the main
technical result of the paper. Namely, we show that finding short solutions to ran-
dom linear equations as defined in section 5 (on the average and with nonnegligible
probability) is at least as hard as finding linearly independent vectors of length not
much bigger than the generalized uniform radius in any lattice (in the worst case and
with high probability). Formally, we prove the hardness of the HSIS of Definition 5.1
over groups G(L(Ln), α(n)), by reduction from the following variant of SIVP, where
the quality of a solution ‖S‖, instead of being measured with respect to the size
of the smallest possible solution λn(L(B)), is measured with respect to some other
parameter of interest φ(L(B)).

Definition 6.1. Let φ be an arbitrary function mapping lattices to positive
reals. The generalized independent vectors problem GIVP

φ
γ , given a lattice basis B

of rank n, asks for a set of n linearly independent lattice vectors S ⊂ L(B) such that
‖S‖ ≤ γ(n) · φ(L(B)).

Notice that SIVPγ is a special case of GIVP
φ
γ , where φ = λn. Here we are

interested in GIVP
ζ̂
γ , i.e., the problem of finding a maximal independent set of lattice

vectors which are not much longer than the generalized uniform radius.
The reduction is performed in two steps. First we reduce GIVP

φ
γ to an interme-

diate problem. Next, we reduce this intermediate problem to the problem of solving
random instances of HSISG,m,β . We remark that the intermediate problem is a worst-
case one; i.e., the first part of the reduction is a standard worst-case to worst-case
Cook reduction. Only the second part of the reduction, from the intermediate prob-
lem to the problem of solving random equations, is a worst- to average-case reduction.
The advantage of introducing the intermediate problem is that the first part of the
reduction (which involves solving many instances of the target problem) is a standard
reduction where all problems are solved in the worst case. Once the GIVP problem
has been reduced to the intermediate problem, the worst-case to average-case reduc-
tion can be expressed in a conceptually simpler setting where a single (worst-case)
instance of the intermediate problem is reduced to a single (random) instance of the
average-case problem.

The rest of this section is organized as follows. In section 6.1 we reduce GIVP to
the intermediate problem and give sufficient conditions for the solutions of the latter.
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Table 1

Symbols used in the reduction from GIVP
ζ̂
γ to HSISG,m,β .

Symbol Explanation Reference
Ln easily decodable τ(n)-perfect lattice Theorem 6.5
Mn almost orthogonal sublattice of L(Ln) Equation (6.2)
B GIVP input lattice
C almost orthogonal sublattice of L(B) Equation (6.3)
S full rank sublattice of L(B)
Gn Abelian group (L(Ln) modulo L(Mn)) Definition 5.1
ψ Linear function mapping Mn to C Equation (6.4)
(wi,j ,vi,j) vectors in L(Ln) × L(B) output by the sampling algorithm Lemma 6.6
ai,j group element (wi,j mod Mn) ∈ Gn

ai sum of ai,j for j = 1, . . . , k(n)
k(n) Number of samples used to generate each ai Equation (6.7)
a homogeneous linear equation over Gn (input to F)
Λ(a) set of solutions to equation a Definition 5.1
z solution to equation a output by F
n rank of Ln,Mn,B,C and S
m(n) number of variables in a
α(n) scaling factor used in the definition of Mn Equation (6.1)
β(n) length of the solution z returned by F Theorem 6.5
γ(n) GIVP approximation factor Theorem 6.5
τ(n) upper bound on 2ρ(L(B))/λ1(L(B))
yi,j offset vector vi,j − ψ(wi,j)
s output of A Equation (6.5)

In section 6.2 we present the worst- to average-case reduction from the intermediate
problem to HSIS (Theorem 6.5). The reduction is based on a sampling procedure
(Lemma 6.6) that is described and analyzed in section 6.3. Three technical lemmas
(Lemmas 6.8, 6.9, and 6.10) used in the proof of Theorem 6.5 are proved in section 6.4
after establishing some important properties of the sampling procedure. For reference,
the notation and symbols used in the reduction are listed in Table 1.

6.1. The intermediate problem. In this subsection, we define the interme-
diate problem, reduce GIVP to it, and present sufficient conditions for its solution.
The intermediate problem is essentially an incremental version of GIVP, where given
a set of linearly independent vectors S, one has to find a single slightly shorter lattice
vector.

Definition 6.2. The incremental generalized independent vectors problem
(IncGIVP

φ
γ), given a rank n lattice basis B, a set of n linearly independent vectors

S ⊂ L(B) satisfying ‖S‖ > γ(n) · φ(L(B)), and an (n − 1)-dimensional hyperplane
H ⊂ span(B), asks for a lattice vector s ∈ L(B) \ H such that ‖s‖ ≤ ‖S‖/2.

The following theorem shows that GIVP
φ
γ is easily reducible to IncGIVP

φ
γ .

Theorem 6.3. For any functions φ and γ, there is a polynomial time (Cook)
reduction from GIVP

φ
γ to IncGIVP

φ
γ .

Proof. We give an iterative reduction (see section 2.6) from GIVP
φ
γ to IncGIVP

φ
γ .

By Theorem 2.21, this immediately implies a standard Cook reduction between the
two problems. Let A(B,S,H) be an algorithm solving IncGIVP

φ
γ in the worst case.

The iterative reduction (R, f, I, O,S) is defined as follows. Relation R is the set of all
(B,S) where B is the GIVP input lattice, and S ⊂ L(B) is a maximal set of linearly
independent lattice vectors such that ‖S‖ ≤ ‖B‖. (This condition is introduced to
make sure that the size of S is polynomial in the input size.) Initially, S is set
to the input basis I(B) = B. Upon termination, the iterative reduction outputs



ALMOST PERFECT LATTICES AND AJTAI’S CONNECTION 147

the current set O(B,S) = S. Progress at each iteration is measured by the function
f(B,S) =

∏n
i=1 ‖si‖2. Notice that function f is polynomial time computable. In order

to complete the iterative reduction we give a polynomial time oracle algorithm SA

(the iterative step) that on input a rank n lattice basis B and n linearly independent
lattice vectors S ⊂ L(B) such that γ(n) ·φ(L(B)) < ‖S‖ ≤ ‖B‖, finds a set of linearly
independent lattice vectors S′ such that ‖S′‖ ≤ ‖B‖ and f(S′) ≤ f(S)/2.

Algorithm SA(B,S) works as follows. Let i be the index of a longest vector
in S, i.e., ‖si‖ = ‖S‖, and let H = span(s1, . . . , si−1, si+1, . . . , sn) be the (n − 1)-
dimensional hyperplane spanned by the other vectors. The iterative step S computes
s = A(B,S,H) and checks that vector s satisfies s ∈ L(B)\H and ‖s‖ ≤ ‖S‖/2. If so,
then S replaces si with s and outputs S′ = [s1, . . . , si−1, s, si+1, . . . , sn]. Otherwise, S
simply outputs the input set S′ = S. Notice that in both cases, the output S′ satisfies
the relation (B,S′) ∈ R; i.e., S′ ⊂ L(B) is a set of n linearly independent lattice
vectors and ‖S′‖ ≤ ‖S‖ ≤ ‖B‖. Moreover, if ‖S‖ > γ(n) · φ(L(B)), then A(B,S,H)
successfully returns a vector s ∈ L(B) \ H satisfying ‖s‖ ≤ ‖S‖/2, and

f(B,S′) = f(B,S)
‖s‖2

‖si‖2
= f(B,S)

‖s‖2

‖S‖2
≤ f(B,S)

4
.

The following lemma establishes sufficient conditions for reducing IncGIVP (in
the worst case) to HSIS (on the average).

Lemma 6.4. Let A(·)(B,S,H) be a probabilistic polynomial time oracle algorithm
that on input a rank n lattice basis B, a full rank subset S ⊂ L(B), and an (n − 1)-

dimensional hyperplane H ⊂ span(B), makes a single oracle call a ∈ G
m(n)
n and

(provided the query is answered with a valid solution z ∈ Λ(a)) outputs a lattice vector
s ∈ L(B). Assume that for any input (B,S,H) such that ‖S‖ > γ(n) · φ(L(B)), the
vectors a, z, s produced by A(·)(B,S,H) satisfy the following properties:

(i) the statistical distance between the query a and a uniformly distributed u ∈
G

m(n)
n is negligible, i.e.,

∆(a,u) = n−ω(1),

(ii) for any â ∈ G
m(n)
n and ẑ ∈ Λ(â)\{0}, the conditional probability that s /∈ H

is at least

Pr{s /∈ H | a = â, z = ẑ} = Ω(1),

(iii) for any â ∈ G
m(n)
n and ẑ ∈ Λ(â), the conditional expectation of ‖s‖ is at

most

Exp[‖s‖ | a = â, z = ẑ] = o

(
‖ẑ‖ · ‖S‖
β(n)

)
.

Then, for any randomized procedure F that solves HSISG,m,β on the average with

nonnegligible probability δ(n), AF (B,S,H) solves IncGIVP
φ
γ in the worst case with

high probability16 Ω(δ(n)).
Proof. Let F be a randomized procedure that solves HSISG,m,β with nonnegligible

probability δ(n). We want to prove that, for any valid input, AF (B,S,H) solves

16Remember that, since A solves IncGIVP in the worst case, and given a vector s it is easy to
check if s is a correct solution to an IncGIVP instance, the success probability of A can be efficiently
boosted from any nonnegligible fraction to exponentially close to one.
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IncGIVP
φ
γ with probability Ω(δ(n)). Namely, we want to prove that for any rank n

lattice basis B, full rank subset S ⊂ L(B) such that ‖S‖ > γ(n)·φ(L(B)), and (n−1)-
dimensional hyperplane H ⊂ span(B), procedure AF (B,S,H) outputs a lattice vector
s ∈ L(B) \ H of length ‖s‖ ≤ ‖S‖/2 with nonnegligible probability Ω(δ(n)).

Assume without loss of generality that F(a) always returns a (possibly zero)
solution F(a) ∈ Λ(a) of length ‖F(a)‖ ≤ β(n). The assumption on F is that

Pr{F(u) �= 0} = δ(n) when u ∈ G
m(n)
n is chosen uniformly at random. Since F(a)

always returns a valid solution z ∈ Λ(a), the output vector s is guaranteed to belong
to the lattice L(B). We need to bound the probability that s also satisfies s /∈ H
and ‖s‖ ≤ ‖S‖/2. Consider an execution of AF (B,S,H) = s, and let F(a) = z be
the oracle call made by A. Conditioning on the value of a and z, and restricting our
attention to the nonzero solutions z �= 0, we get

Pr{s /∈ H ∧ ‖s‖ ≤ ‖S‖/2}
=
∑
â,ẑ

Pr{a = â ∧ z = ẑ} · Pr{s /∈ H ∧ ‖s‖ ≤ ‖S‖/2 | a = â ∧ z = ẑ}

≥
∑

â,ẑ:ẑ �=0

Pr{a = â ∧ z = ẑ}

· (Pr{s /∈ H | a = â ∧ z = ẑ} − Pr{‖s‖ > ‖S‖/2 | a = â ∧ z = ẑ}) ,

where the summations range over all â ∈ G
m(n)
n and ẑ ∈ [F(â)] ⊆ Λ(â)∩B(β(n)). By

assumption on A, for any â ∈ G
m(n)
n and ẑ ∈ Λ(â) such that 0 < ‖ẑ‖ ≤ β(n), the two

conditional probabilities in the last expression satisfy

Pr{s /∈ H | a = â ∧ z = ẑ} = Ω(1),

and, using Markov’s inequality,

Pr{‖s‖ > ‖S‖/2 | a = â ∧ z = ẑ} ≤ Exp[‖s‖ | a = â ∧ z = ẑ]

‖S‖/2

≤ o

(
2‖ẑ‖ · ‖S‖
‖S‖ · β(n)

)
= o(1).

Adding up for all possible values of â and ẑ �= 0, we get

Pr{s /∈ H ∧ ‖s‖ ≤ ‖S‖/2} ≥
∑

â,ẑ:ẑ �=0

Pr{a = â ∧ z = ẑ} · (Ω(1) − o(1))

= Ω(Pr{z �= 0}).

Notice that z = F(a) and Pr{F(u) �= 0} = δ(n) when u ∈ G
m(n)
n is uniformly

distributed. By assumption, the statistical distance ∆(a,u) between a and u is neg-
ligible. Therefore, by Corollary 2.16,

Pr{z �= 0} = Pr{F(a) �= 0}
≥ Pr{F(u) �= 0} − ∆(a,u)

≥ δ(n) − n−ω(1).

So, for all nonnegligible δ(n), Pr{s /∈ H ∧ ‖s‖ ≤ ‖S‖/2} ≥ Ω(δ(n) − n−ω(1)) =
Ω(δ(n)).
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6.2. The main reduction. In this subsection we show that for appropriate
choice of groups Gn, and parameters β(n),m(n), γ(n), there is a reduction from solv-

ing IncGIVP
ζ̂
γ in the worst case to solving HSISG,m,β on the average.

Theorem 6.5. Let τ(n) ≥ 1 such that there exists an easily decodable fam-
ily of τ(n)-perfect lattices. Then, for any β(n) ≥ 1, m(n) = nO(1) and γ(n) =
β(n)τ(n) ·

√
ω(log n), there is a sequence of efficiently computable Abelian groups Gn

of size #Gn ≤ (n1.5γ(n)/8)n such that solving IncGIVP
ζ̂
γ in the worst case with high

probability reduces to solving HSISG,m,β on the average with nonnegligible probability.
Proof. Let {L(Ln)} be a family of easily decodable τ(n)-perfect lattices. For any

β(n) ≥ 1 and m(n) = nO(1), let γ(n) = β(n)τ(n) ·
√

ω(log n) and

α(n) =
nλ1(L(Ln))γ(n)

12
.(6.1)

Notice that from the definition of α(n) and γ(n), and the assumption that L(Ln) is
τ(n)-perfect, we get

α(n) =
nλ1(L(Ln))β(n)τ(n)

√
ω(log n)

12

≥
(
β(n)

√
n · ω(log n)

12

)
2
√
nρ(L(Ln))

≥ 2
√
nρ(L(Ln)).

So, α(n) satisfies the condition in Definition 5.2, and we can define a full rank subset
Mn ⊆ L(Ln) and quotient group Gn = G(L(Ln), α(n)) = L(Ln)/L(Mn) such that
Corollary 5.3 and Lemma 5.4 hold true; i.e.,

∀x ∈ R
n.‖Mnx‖ ≈ α(n) · ‖x‖(6.2)

and group Gn has size at most

#Gn ≤
(

3α(n)
√
n

2λ1(L(Ln))

)n

=

(
n1.5γ(n)

8

)n

.

We define a probabilistic polynomial time oracle algorithm A(·) satisfying the
conditions in Lemma 6.4 with φ = ζ̂. It follows from Lemma 6.4 that A(·) is a

probabilistic polynomial time worst-case to average-case reduction from IncGIVP
ζ̂
γ to

HSISG,m,β . The intuition behind procedure A(·) is the following. (See Figure 2.) Map
L(Mn) to a sublattice L(C) = ψ(L(Mn)) ⊂ L(B) using a linear function ψ with small
distortion, i.e., a function that approximately preserves distance ratios. One possible
way to achieve this is to map the almost orthogonal set Mn to an almost orthogonal
subset C = ψ(Mn) ⊂ L(B) and extend ψ to span(Mn) by linearity. Now, consider the
Voronoi cells V(w,L(Ln)) of the τ(n)-perfect lattice L(Ln). Function ψ maps each
cell to a corresponding region ψ(V(w,L(Ln))) centered around ψ(w). Partition the
points of L(B) into subsets, according to these regions. Pick m(n) points vi ∈ L(B)
at random, and map each of them to the center ψ(wi) of the corresponding region.
Notice that each region ψ(V(w,L(Ln))) is associated to a group element [w]Mn ∈ Gn.
So, the points vi define m(n) group elements ai = [wi]Mn

∈ Gn. Use F to find a
small nonzero solution z = F(a) to the equation a = [a1, . . . , am(n)]. The output of
AF (B,S,H) is vector s =

∑
i zi(vi−ψ(wi)). Notice that s ∈ L(B) because

∑
zivi is
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ψ

m2

V(w,L(Ln))

c2

ψ(w)

v

c1
C ⊂ L(B)

m1

Mn ⊂ L(Ln)

0

w

ψ−1(v)
ψ

ψ

0

Fig. 2. Sampling lattice points.

an integer combination of lattice vectors, and
∑

i ziwi ∈ L(Mn) ⊆ ψ−1(L(B)). (See
Lemma 6.7 for details.) Before moving to the actual proof, we informally explain why
vectors a, z, s are expected to satisfy the three conditions in Lemma 6.4. (1) Vector a
is distributed almost uniformly at random because coefficients ai = [wi]Mn

are chosen
independently, and each region ψ(V(w,L(Ln))) contains roughly the same number of
lattice points from L(B). (2) Vector s does not belong to any fixed hyperplane H
with high probability because each vi−ψ(wi) is somehow randomly distributed within
ψ(V(L(Ln))). (3) Finally, s is short because it is a small combination of short vectors
vi − ψ(wi), each one lying within the region ψ(V(L(Ln))). This is an oversimplified
description of the reduction. For example, Lemma 6.4 requires distribution a to be
extremely close to uniform. In order to ensure the almost uniform distribution of
a, we will need to slightly modify the above procedure by sampling many points
(wi,j ,vi,j) and adding up the corresponding ai,j = [wi,j ]Mn to obtain group elements
ai =

∑
j ai,j whose distribution is extremely close to uniform.

We now give a detailed description of procedure AF (B,S,H). Notice that the
procedure outlined above does not use the input hyperplane H, and condition s /∈ H
holds with high probability for any fixed hyperplane H. Therefore, below we simply
write AF (B,S) instead of AF (B,S,H) to emphasize the fact that A does not use the
input hyperplane H.

Procedure A(·)(B,S) works as follows. First, notice that using Babai’s nearest
plane algorithm [6], matrix S allows us to approximate any vector x ∈ span(B) with a
lattice point y ∈ L(S) ⊆ L(B) within distance σ = (

√
n/2)‖S‖ from x.17 Therefore,

using Lemma 2.10, we can find an almost orthogonal sublattice L(C) ⊂ L(B) such
that

∀x ∈ R
n.‖Cx‖ ≈ n‖S‖ · ‖x‖.(6.3)

Let ψ(x) = CM−1
n x be the linear transformation that maps mi to ci for all i =

1, . . . , n. Combining (6.2) and (6.3), and using (2.1), we get

∀x ∈ R
n.

1

3

(
n‖S‖
α(n)

)
· ‖x‖ ≤ ‖ψ(x)‖ ≤ 3

(
n‖S‖
α(n)

)
· ‖x‖;(6.4)

17This is not a particularly critical part of the reduction, and using poorer rounding procedures
(e.g., rounding off the coordinates of x with respect to basis S to the closest integers as done in [2])
results in substantially the same connection factors as using Babai’s nearest plane algorithm [6].
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i.e., the linear function ψ is close to an orthogonal transformation that scales all
distances by a factor n‖S‖/α(n).

Notice that L(Mn) is a common sublattice of both L(Ln) and ψ−1(L(B)). The
following lemma shows how to use function ψ together with decoding algorithm
CVPL to simultaneously sample from groups Gn = L(Ln)/L(Mn) and L(B)/L(C) ≡
ψ−1(L(B))/L(Mn).

Lemma 6.6. There is a sampling algorithm that on input two rank n lattices Ln

and B, a full rank sublattice Mn ⊂ L(Ln), and a nonsingular linear transformation
ψ such that C = ψ(Mn) ⊂ L(B), outputs two vectors w ∈ L(Ln) and v ∈ L(B) such
that the following hold:

1. The group element [v]C is uniformly distributed over L(B)/L(C).
2. ψ−1(v) ∈ V̄(w,L(Ln)), or, equivalently, v − ψ(w) ∈ ψ(V̄(L(Ln))).
3. The distribution of v−ψ(w) is symmetric about the origin, and, in particular,

Exp[v − ψ(w)] = 0.
4. w ∈ P(Mn).

Moreover, if lattice Ln is easily decodable, then the sampling procedure runs in poly-
nomial time.

The actual properties of the sampling algorithm are not important at this point,
and the proof of Lemma 6.6 is deferred to section 6.3. All that matters for now
is that the sampling algorithm generates pairs of vectors (w,v) ∈ L(Ln) × L(B).
Below we describe how to use any such sampling procedure to compute a lattice
vector s ∈ L(B). After defining the full rank sublattice C ⊂ L(S) and linear function
ψ(Mn) = C satisfying (6.4), algorithm AF (B,S) proceeds as follows:

1. Run the sampling procedure of Lemma 6.6 m(n) · k(n) times (where k(n) =
ω(log n) is a superlogarithmic function to be specified) to generate vectors wi,j ∈
L(Ln) and vi,j ∈ L(B) for i = 1, . . . ,m(n) and j = 1, . . . , k(n).

2. Let ai,j = [wi,j ]Mn ∈ Gn be the group elements corresponding to lattice

points wi,j and, for every i = 1, . . . ,m(n), define group element ai =
∑k(n)

j=1 ai,j .
3. Use oracle F to compute a nonzero solution z = F(a) ∈ Λ(a) \ {0} to the

equation a = [a1, . . . , am(n)].
4. For any i, j, let yi,j = vi,j − ψ(wi,j), and output

s =

m(n)∑
i=1

zi

k(n)∑
j=1

yi,j .(6.5)

Notice that randomness is used twice in the routine: first in step 1 and then in
step 3. In step 1, randomness is used to run the sampling procedure m(n) ·k(n) times
and generate a random equation a to be passed as input to F . In step 3 randomness
is used to run the probabilistic procedure F on input a to compute a solution z. Since
F is only guaranteed to work on the average, it is important that both the input a
and the internal randomness of F are chosen (almost) uniformly and independently at
random. We remark that, although the value of z depends on both the randomness
used by the sampling procedure and that used directly by F , the two procedures
use independent sources of randomness. So, for example, given the value of a, the
conditional distribution of z is independent from the conditional distribution of the
samples (wi,j ,vi,j). We will use this fact in the probabilistic analysis of the success
probability of the reduction.

In the following lemma we prove that algorithm AF is correct, i.e., the output
vector s belongs to lattice L(B), provided query a is answered with a valid solution
z ∈ Λ(a).
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Lemma 6.7. Let s be the output vector defined in (6.5). If z ∈ Λ(a), then
s ∈ L(B).

Proof. Define the vector

w =

m(n)∑
i=1

zi

k(n)∑
j=1

wi,j .

Using the definition of yi,j and the linearity of ψ, we get

s =

m(n)∑
i=1

zi

k(n)∑
j=1

yi,j =
∑
i,j

zi(vi,j − ψ(wi,j)) =

⎛
⎝∑

i,j

zivi,j

⎞
⎠− ψ(w).

The first term
∑

i,j zivi,j clearly belongs to L(B) because it is an integer linear com-
bination of lattice vectors vi,j ∈ L(B). We need to prove that the second term ψ(w)
also belongs to L(B). We show that w ∈ L(Mn). Since ψ maps L(Mn) to L(C), it
follows that ψ(w) ∈ L(C) ⊆ L(B).

Remember that z = F(a) ∈ Λ(a), i.e.,
∑

i ziai = 0 (in Gn). Since all wi,j belong
to L(Ln), w is also a lattice point of L(Ln) and [w]Mn

∈ Gn. The group element
corresponding to lattice vector w is

[w]Mn
=

m(n)∑
i=1

zi

k(n)∑
j=1

[wi,j ]Mn
=
∑
i

zi
∑
j

ai,j =
∑
i

ziai = 0.

Since Gn is the quotient of L(Ln) modulo L(Mn), this proves that w ∈ L(Mn).
The following three lemmas show that, provided α(n) is in a prescribed range,

procedure A satisfies the conditions in Lemma 6.4. The lemmas are proved in section
6.4, after establishing some useful properties of the sampling procedure in section 6.3.

The first lemma shows that the equation a passed as input to oracle F is almost
uniformly distributed.

Lemma 6.8. If n‖S‖λ1(L(Ln)) ≥ 6α(n)ζ̂(L(B)) and (6.4) holds true, then the
statistical distance between vector a (passed as input to F during the execution of

AF (B,S)) and a uniformly distributed u ∈ G
m(n)
n is at most ∆(a,u) ≤ m(n)/2k(n)+1.

In particular, for any polynomially bounded m(n) = nO(1) and superlogarithmic func-
tion k(n) = ω(log n), the statistical distance ∆(a,u) = n−ω(1) is negligible.

The other two lemmas show that the output vector s of procedure AF is suffi-
ciently random and usually short, even after conditioning on the input and output
values of oracle F .

Lemma 6.9. Assume n‖S‖λ1(L(Ln)) ≥ 12α(n)ζ̂(L(B)) and (6.4) holds true.

Then, for any â ∈ G
m(n)
n , ẑ ∈ Λ(â) \ {0}, and (n − 1)-dimensional hyperplane H ⊂

span(B),

Pr{s /∈ H | a = â, z = ẑ} = Ω(1).

Lemma 6.10. If n‖S‖λ1(L(Ln)) ≥ 6α(n)ζ̂(L(B)), (6.4) holds true, and function

α(n) satisfies α(n) = ω(n
√
k(n)β(n)ρ(L(Ln))), then for any â ∈ G

m(n)
n and ẑ ∈ Λ(â),

Exp[‖s‖ | a = â, z = ẑ] = o

(
‖ẑ‖ · ‖S‖
β(n)

)
·
√

1 +
m(n)k(n)

2k(n)
.
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In particular, for any polynomially bounded m(n) = nO(1) and superlogarithmic func-
tion k(n) = ω(log n),

Exp[‖s‖ | a = â, z = ẑ] = o

(
‖ẑ‖ · ‖S‖
β(n)

)
.

We complete the proof of the theorem by showing that if k(n) is appropriately
chosen, then the hypotheses of Lemmas 6.8, 6.9, and 6.10 are satisfied. Notice that
from the definition of α(n) = nλ1(L(Ln))γ(n)/12 and the assumption that ‖S‖ >

γ(n)ζ̂(L(B)), we immediately get

12α(n)ζ̂(L(B)) = nλ1(L(Ln))γ(n)ζ̂(L(B)) < nλ1(L(Ln))‖S‖.(6.6)

So, the first condition in Lemmas 6.8, 6.9, and 6.10 is satisfied. We already observed
that (6.4) follows from (6.2) and (6.3). In order to satisfy the third hypothesis of
Lemma 6.10, we set

k(n) =
γ(n) ·

√
log n

β(n) · τ(n)
= ω(log n).(6.7)

Solving (6.7) for γ(n) = k(n)β(n)τ(n)/
√

log n and substituting this value in the defi-
nition of α(n), we get

α(n) =
nλ1(L(Ln))

12

k(n)β(n)τ(n)√
log n

≥ ω(n
√

k(n)β(n)ρ(L(Ln))),

where we have used the perfectness condition ρ(L(Ln)) ≤ τ(n)λ1(L(Ln))/2 and the
fact that k(n)/

√
log n =

√
k(n)/ log n

√
k(n) = ω(

√
k(n)). This proves that for any

polynomially bounded function m(n) = nO(1), and k(n) as defined in (6.7), the hy-
potheses of Lemmas 6.8, 6.9, and Lemma 6.10 are satisfied, and algorithm A satisfies
the conditions in Lemma 6.4. Therefore, for any (possibly probabilistic) oracle F solv-

ing HSISG,m,β on the average with nonnegligible probability, AF solves IncGIVP
ζ̂
γ

in the worst case with high probability.

6.3. The sampling procedure. In this subsection we give a simple sampling
procedure that satisfies the conditions in Lemma 6.6. Then, we establish some addi-
tional properties of the output of the sampling procedure that will be useful in section
6.4. The sampling procedure is illustrated in Figure 2.

Proof of Lemma 6.6. We first show how to achieve the first two properties in the
lemma. Choose integers

d1, . . . , dn ∈ {1, . . . ,det(L(C))/det(L(B))}

uniformly at random and let v′′ =
∑

i dibi ∈ L(B). By Proposition 2.9, [v′′]C is dis-
tributed uniformly at random, in L(B)/L(C). Then, compute w′′ = CVPL(ψ−1(v′′)).
Clearly, ψ−1(v′′) belongs to the Voronoi cell V̄(w′′,L(Ln)). So, the pair (v′′,w′′) sat-
isfies the first two properties.

Now, choose b ∈ {0, 1} uniformly at random and set v′ = (−1)bv′′ and w′ =
(−1)bw′′. Clearly, for any v′′ and w′′, the distribution of v′ − ψ(w′) = (−1)b(v′′ −
ψ(w′′)) is symmetric about the origin. So, (v′,w′) satisfies the third property. We
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need to check that the first two properties are preserved. Since [v′′]C is uniformly
distributed, [−v′′]C = −[v′′]C is also uniform. It follows that [v′]C is uniformly
distributed because v′ is a convex combination of distributions v′′ and −v′′. Finally,
since closed Voronoi cells of a lattice are symmetric,

v′ − ψ(w′) = (−1)b(v′′ − ψ(w′′)) ∈ (−1)bV̄(L(Ln)) = V̄(L(Ln)).

This proves that (v′,w′) satisfies the first three properties in the lemma.
In order to also achieve the fourth property, set w = (w′ mod Mn) and v =

(v′ − ψ(w′ − w)). Property w ∈ P(Mn) immediately follows by the definition of
w. We show that the first three properties are preserved. By the definition of v, we
have v′ − v = ψ(w′ − w) and v − ψ(w) = v′ − ψ(w′). So, the second and third
properties are satisfied because they depend only on v − ψ(w). In order to prove
the first property, notice that w′ − w = w′ − (w′ mod Mn) ∈ L(Mn). Therefore,
v′ − v ∈ ψ(L(Mn)) = L(C), and [v]C = [v′]C, proving that [v]C is distributed
identically to [v′]C.

The sampling procedure produces vectors v ∈ L(B) such that [v]C is distributed
uniformly at random over the group L(B)/L(C). However, vector v (before the
reduction modulo C) is not necessarily uniformly distributed over any set of lattice
vectors. (This is due to lattice points v ∈ L(B) such that ψ−1(v) lies on the boundary
of Voronoi cells V(w,L(Ln)).) In the next lemma, we give simple upper and lower
bounds on the probability of outputting any specific vector v ∈ L(B).

Lemma 6.11. Let (w,v) be generated according to a sampling procedure of
Lemma 6.6. Then, for any v̂ ∈ L(B), Pr{v = v̂} ≤ det(L(B))/det(L(C)). More-
over, if ψ−1(v̂) belongs to the interior of a Voronoi cell Vo(ŵ,L(Ln)) for some
ŵ ∈ L(Ln) ∩ P(Mn), then Pr{v = v̂} = det(L(B))/det(L(C)).

Proof. The upper bound is easy: for any v̂ ∈ L(B),

Pr{v = v̂} ≤ Pr{[v]C = [v̂]C} = det(L(B))/det(L(C))

because [v]C is uniformly distributed over a quotient group L(B)/L(C) whose size
equals det(L(C))/det(L(B)).

Now assume ψ−1(v̂) ∈ Vo(ŵ,L(Ln)) for some ŵ ∈ L(Ln) ∩ P(Mn). We claim
that if [v]C = [v̂]C, then v = v̂, and therefore

Pr{v = v̂} ≥ Pr{[v]C = [v̂]C} = det(L(B))/det(L(C)).

Let [v]C = [v̂]C, i.e., v − v̂ ∈ L(C). It follows that vector

y = ψ−1(v) − ψ−1(v̂) = ψ−1(v − v̂)

belongs to lattice ψ−1(L(C)) = L(Mn). Since L(Mn) is a sublattice of L(Ln), and
ŵ ∈ L(Ln), ŵ + y is also a lattice point in L(Ln). Consider the open Voronoi cells
Vo(ŵ,L(Ln)) and Vo(ŵ + y,L(Ln)). Using the definition of y and the hypothesis
ψ−1(v̂) ∈ Vo(ŵ,L(Ln)), we get

ψ−1(v) = ψ−1(v̂) + y ∈ Vo(ŵ,L(Ln)) + y = Vo(ŵ + y,L(Ln));

i.e., ψ−1(v) is closer to ŵ +y than to any other lattice point in L(Ln). But we know
from Lemma 6.6 that ψ−1(v) belongs to the Voronoi cell V̄(w,L(Ln)); i.e., ψ−1(v)
is at least as close to w ∈ L(Ln) as to any other lattice point. Therefore, it must be
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w = ŵ + y. We also know that both w and ŵ belong to P(Mn), and y ∈ L(Mn).
So, w = ŵ + y is possible only if y = 0, which implies v = v̂.

Lemma 6.11 can be used to establish two important properties of the sampling
algorithm of Lemma 6.6. The distribution [v]C produced by the sampling algorithm
is uniform. However, [w]Mn

is not in general uniformly distributed over Gn. The first
property is that, provided ‖S‖ is large enough, the distribution of [w]Mn is relatively
close to uniform.

Lemma 6.12. Let (w,v) be generated according to the sampling procedure of

Lemma 6.6. If n‖S‖λ1(L(Ln)) ≥ 6α(n)ζ̂(L(B)) and (6.4) holds true, then for any
group element g ∈ Gn,

Pr{[w]Mn = g} ≈ 1

#Gn
.

Proof. Fix group element g, and let ŵ be the unique lattice point in L(Ln) ∩
P(Mn) such that [ŵ]Mn = g. Since w ∈ P(Mn), [w]Mn = g if and only if w = ŵ.
We estimate the probability that w = ŵ.

Notice that if v ∈ ψ(Vo(ŵ,L(Ln))), then w = ŵ. Therefore,

Pr{w = ŵ} ≥
∑

v̂∈ψ(Vo(ŵ,L(Ln)))∩L(B)

Pr{v = v̂}.

By Lemma 6.11, for any v̂ ∈ ψ(Vo(ŵ,L(Ln))) ∩ L(B),

Pr{v = v̂} = det(L(B))/det(L(C)).

So,

Pr{w = ŵ} ≥ det(L(B))

det(L(C))
· #(ψ(Vo(ŵ,L(Ln))) ∩ L(B)).

Similarly, if w = ŵ, then v ∈ ψ(V̄(ŵ,L(Ln))). Therefore,

Pr{w = ŵ} ≤
∑

v̂∈ψ(V̄(ŵ,L(Ln)))∩L(B)

Pr{v = v̂}

≤ det(L(B))

det(L(C))
· #(ψ(V̄(ŵ,L(Ln))) ∩ L(B)).

In order to complete the proof, we need to estimate the number of lattice points
from L(B) that belong to ψ(Vo(ŵ,L(Ln))) and ψ(V̄(ŵ,L(Ln))). Since Vo(ŵ,L(Ln))
contains an open sphere of radius λ1(L(Ln))/2, using (6.4) we get that the set
ψ(Vo(ŵ,L(Ln))) (and therefore, also ψ(V̄(ŵ,L(Ln)))) contains a sphere of radius

n‖S‖
3α(n)

· λ1(L(Ln))

2
≥ ζ̂(L(B)).

Therefore, by definition of the generalized uniform radius ζ̂(L(B)), the number of
lattice points in ψ(Vo(ŵ,L(Ln))) (and ψ(V̄(ŵ,L(Ln)))) is approximately equal to

vol(ψ(Vo(ŵ,L(Ln))))

det(L(B))
=

vol(ψ(V̄(ŵ,L(Ln))))

det(L(B))
=

vol(ψ(V(ŵ,L(Ln))))

det(L(B))
.
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Combining this estimate with the upper and lower bounds on the probability that
w = ŵ, we get

Pr{[w]Mn = g} ≈ det(L(B))

det(L(C))
· vol(ψ(V(ŵ,L(Ln))))

det(L(B))

=
vol(ψ(V(ŵ,L(Ln))))

det(ψ(L(Mn)))

=
vol(V(ŵ,L(Ln)))

det(L(Mn))

=
det(L(Ln))

det(L(Mn))
=

1

#Gn
.

The second property implies that, provided ‖S‖ is large enough, the distribution
of v − ψ(w), as generated by the sampling procedure, is not concentrated over any
fixed (n− 1)-dimensional hyperplane. In fact, we prove a stronger property and show
that v − ψ(w) belongs to any of the two half-spaces defined by the hyperplane with
high probability. This is true even for the conditional distribution of v − ψ(w) given
w.

Lemma 6.13. Let (w,v) be generated according to the sampling procedure of

Lemma 6.6. If n‖S‖λ1(L(Ln)) ≥ 12α(n)ζ̂(L(B)) and (6.4) holds true, then for any
h ∈ span(B) \ {0} and g ∈ Gn,

Pr{hT · (v − ψ(w)) > 0 | [w]Mn = g} ≥ 1

6
.

Proof. Fix group element g, and let ŵ be the unique lattice point in L(Ln) ∩
P(Mn) such that [ŵ]Mn

= g. Since Lemma 6.6 guarantees w ∈ P(Mn), condition
[w]Mn = g is equivalent to w = ŵ. Let Q = {x ∈ Vo(ŵ,L(Ln)):hT · ψ(x − ŵ) > 0}
be one of the two (open) halves of the Voronoi cell Vo(ŵ,L(Ln)) defined by the
hyperplane hT · ψ(x) = hT · ψ(ŵ). (See Figure 3.) First we estimate the probability

ŵ

Q

λ1(Ln)/4

λ1(Ln)/4

λ1(Ln)/2

V(ŵ,Ln)

hT · ψ(ŵ)

hT · ψ(x)

Fig. 3. The conditional distribution of sampled lattice points.
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that v ∈ ψ(Q). Since Q is contained in the open Voronoi cell Vo(ŵ,L(Ln)), by
Lemma 6.11,

Pr{v ∈ ψ(Q)} =
∑

v̂∈ψ(Q)∩L(B)

Pr{v = v̂} =
det(L(B))

det(L(C))
· #(ψ(Q) ∩ L(B)).

Notice that Q contains an open sphere of radius λ1(L(Ln))/4. (See Figure 3.) There-
fore, by (6.4), ψ(Q) contains a sphere of radius

n‖S‖
3α(n)

· λ1(L(Ln))

4
≥ ζ̂(L(B)).

By definition of ζ̂(L(B)), the number of lattice points in ψ(Q) satisfies

#(ψ(Q) ∩ L(B)) ≈ vol(ψ(Q))

det(L(B))
=

1

2

vol(ψ(V(ŵ,L(Ln))))

det(L(B))

and

Pr{v ∈ ψ(Q)} ≈ 1

2

det(L(B))

det(L(C))
· vol(ψ(V(ŵ,L(Ln))))

det(L(B))

=
1

2

vol(ψ(V(ŵ,L(Ln))))

det(ψ(L(Mn)))

=
1

2

vol(V(ŵ,L(Ln)))

det(L(Mn))

=
1

2 · #Gn
.

Notice that if v ∈ ψ(Q), then w = ŵ and hT · (v − ψ(ŵ)) > 0. Therefore,

Pr{[w]Mn
= g ∧ hT · (v − ψ(ŵ)) > 0} ≥ Pr{v ∈ ψ(Q)} ≥ 1

4 · #Gn
.

We can now compute the conditional probability,

Pr{hT · (v − ψ(w)) > 0 | [w]Mn
= g} =

Pr{hT · (v − ψ(w)) > 0 ∧ [w]Mn = g}
Pr{[w]Mn = g}

≥ 1

4 · #Gn · Pr{[w]Mn
= g} .

Using Lemma 6.12, Pr{[w]Mn = g} � 1/#Gn, i.e., #Gn · Pr{[w]Mn = g} ≤ 3/2.
Substituting in the previous inequality we get

Pr{hT · (v − ψ(w)) > 0 | [w]Mn = g} ≥ 1

6
.

6.4. Proofs of the lemmas. In this subsection we prove Lemmas 6.8, 6.9, and
6.10 used in the analysis the algorithm AF (B,S) in section 6.2. The intuition behind
Lemma 6.8 is that since group elements ai,j are independent and not too far from
uniformly distributed, their sums ai =

∑
j ai,j are extremely close to uniform.

Proof of Lemma 6.8. First consider the distribution of a single group element
ai,j = [wi,j ]Mn as output by the sampling procedure. Since n‖S‖λ1(L(Ln)) ≥
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6α(n)ζ̂(L(B)) and (6.4) holds true by assumption, Lemma 6.12 tells us that for any
group element g ∈ Gn,

Pr{ai,j = g} ≈ 1

#Gn
.

So, the probability distribution of each ai,j is not too far from uniform. Adding

up a relatively small number of ai,j we get a group element ai =
∑k(n)

j=1 ai,j which
is almost uniformly distributed. In particular, by Proposition 2.17, the statistical
distance between ai and a uniformly distributed ui ∈ G is at most

∆(ai, ui) ≤
1

2k(n)+1
.(6.8)

Since the random variables ai are independent, by Proposition 2.14 the statistical

distance between vector a = [a1, . . . , am(n)]
T and a uniformly distributed u ∈ G

m(n)
n

is at most

∆(a,u) ≤
m(n)∑
i=1

∆(ai, ui) ≤
m(n)

2k(n)+1
=

nO(1)

nω(1)
= n−ω(1).(6.9)

The intuition behind Lemma 6.9 is that since each yi,j = vi,j − ψ(wi,j) has the
property described in Lemma 6.13, then also s (which is a nonzero linear combination
of the yi,j ’s) has a similar property.

Proof of Lemma 6.9. Fix â ∈ G
m(n)
n , ẑ ∈ Λ(â) \ {0}, and (n − 1)-dimensional

hyperplane H ⊂ span(B). Since ẑ �= 0, there exists a coordinate i such that ẑi �= 0.
Assume without loss of generality that ẑ1 �= 0.

The output of AF (B,S) is a random variable that depends on the randomness
of oracle F and the randomness used during the execution of the sampling procedure
in the computation of (wi,j ,vi,j) for i = 1, . . . ,m(n) and j = 1, . . . , k(n). Fix the
randomness of F and sampling procedure, except for (i, j) = (1, 1). Finally, for
this remaining run of the sampling procedure, fix the value of w1,1 and consider the
conditional distribution of v1,1. Notice that this uniquely determines

(i) the values of vi,j for all (i, j) �= (1, 1),
(ii) the values of wi,j for all i, j,
(iii) the value of a =

∑
i,j [wi,j ]Mnei, and

(iv) the value of z = F(a).
We prove a stronger statement than the one in the lemma. Namely, we show that the
conditional probability

Pr{s /∈ H | a = â, z = ẑ,∀(i, j).wi,j = ŵi,j ,∀(i, j) �= (1, 1).vi,j = v̂i,j}

is at least 1/6. Notice that this probability depends only on the conditional distribu-
tion of v1,1, because all other vectors are fixed by conditioning. Averaging over all
cases such that a = â and z = ẑ, we get that Pr{s /∈ H | a = â, z = ẑ} ≥ 1/6.

For any fixed values ŵi,j , v̂i,j , and â, define the vector

y =
∑

(i,j) �=(1,1)

ẑi · (v̂i,j − ψ(ŵi,j)).

Notice that, given z = ẑ, wi,j = ŵi,j for all i, j, and vi,j = v̂i,j for all (i, j) �= (1, 1),

s =
∑
i,j

zi · (vi,j − ψ(wi,j)) = y + ẑ1 · (v1,1 − ψ(ŵ1,1)).
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We want to bound the conditional probability that s ∈ H or, equivalently,

v1,1 − ψ(ŵ1,1) ∈
H − y

ẑ1
= H′.

Let h ∈ span(B) be a vector orthogonal to H′ such that hT · x ≤ 0 for any x ∈ H′.
(Notice that since h is orthogonal to H′, the function x �→ hT · x is constant over
H′.) Since hT · x > 0 implies x /∈ H′ for all vectors x, the conditional probability
that v1,1 − ψ(ŵ1,1) /∈ H′ is at least as big as the conditional probability that hT ·
(v1,1 −ψ(ŵ1,1)) > 0. Since n‖S‖λ1(L(Ln)) ≥ 12α(n)ζ̂(L(B)) and (6.4) holds true by
assumption, Lemma 6.13 tells us that the latter probability is at least 1/6.

The intuition behind Lemma 6.10 is that vector s is short because it is a linear
combination (with small coefficients zi) of short vectors yi,j lying within ψ(V̄(L(Ln))).
A bound on the length of ‖s‖ can be easily computed using the triangle inequality.
This would lead to a result similar to the one in Theorem 6.5, but with a larger (by
approximately

√
m(n) · k(n)) value of γ(n). Here we use cancellations between the

yi,j vectors to prove a better bound.
Proof of Lemma 6.10. First, we prove an upper bound on the length of yi,j =

vi,j −ψ(wi,j) for all (wi,j ,vi,j) in the range of the sampling algorithm of Lemma 6.6.
We know from Lemma 6.6 that ψ−1(vi,j) ∈ V̄(wi,j ,L(Ln)), and therefore ‖ψ−1(vi,j)−
wi,j‖ ≤ ρ(L(Ln)). Using (6.4) we immediately get that yi,j = ψ(ψ−1(vi,j) − wi,j)
has length at most

‖yi,j‖ ≤ 3n‖S‖ · ρ(L(Ln))

α(n)
.(6.10)

Substituting α(n) = ω(n
√

k(n)β(n)ρ(L(Ln))) into (6.10), we get

‖yi,j‖ ≤ 3‖S‖
ω(
√
k(n)β(n))

= o

(
‖S‖√

k(n)β(n)

)
.(6.11)

By the triangle inequality and Cauchy–Schwarz, it immediately follows that

‖s‖ ≤
m(n)∑
i=1

|zi|
k(n)∑
j=1

‖yi,j‖ ≤
√

m(n)k(n) · o
(
‖S‖ · ‖z‖
β(n)

)
.

We want to prove a better (probabilistic) bound by computing the conditional expec-
tation of ‖s‖2. Using the definition of s (6.5), we get

Exp[‖s‖2 | a = â, z = ẑ] = Exp

⎡
⎣
〈

m(n)∑
i=1

ẑi

k(n)∑
j=1

yi,j ,

m(n)∑
i′=1

ẑi′

k(n)∑
j′=1

yi′,j′

〉∣∣∣∣∣a = â, z = ẑ

⎤
⎦

=
∑
i,i′

ẑiẑi′
∑
j,j′

Exp[〈yi,j ,yi′,j′〉 | a = â, z = ẑ]

≤
∑
i,i′

|ẑiẑi′ |
∑
j,j′

|Exp[〈yi,j ,yi′,j′〉 | a = â, z = ẑ]|.

We bound each term Exp[〈yi,j ,yi′,j′〉 | a = â, z = ẑ] separately. Notice that, given a =
â, vector z = F(a) = F(â) depends only on the randomness of oracle F . Therefore,
given a = â, z is independent from yi,j and yi′,j′ , and

Exp[〈yi,j ,yi′,j′〉 | a = â, z = ẑ] = Exp[〈yi,j ,yi′,j′〉 | a = â].(6.12)
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We will bound the value of (6.12) and show that

Exp[〈yi,j ,yi′,j′〉 | a = â] =

⎧⎪⎪⎨
⎪⎪⎩

o
(

‖S‖2

β(n)2k(n)

)
if (i, j) = (i′, j′),

o
(

‖S‖2

β(n)2k(n) ·
1

2k(n)

)
otherwise.

(6.13)

Using (6.13) in the expression for Exp[‖s‖2 | a = â, z = ẑ], we get

Exp[‖s‖2 | a = â, z = ẑ] ≤

⎛
⎝∑

i,j

ẑ2
i +

∑
(i,j) �=(i′,j′)

|ẑi| · |ẑi′ |
2k(n)

⎞
⎠ · o

(
‖S‖2

β(n)2k(n)

)

≤
(
k(n) · ‖ẑ‖2 +

k(n)2 · (
√
m(n)‖ẑ‖)2

2k(n)

)
· o
(

‖S‖2

β(n)2k(n)

)

≤
(

1 +
m(n)k(n)

2k(n)

)
· o
(
‖S‖2‖ẑ‖2

β(n)2

)
.

It follows from the concavity of the square root function that

Exp[‖s‖ | a = â, z = ẑ] = Exp[
√

‖s‖2 | a = â, z = ẑ]

≤
√

Exp[‖s‖2 | a = â, z = ẑ]

≤ o

(
‖S‖ · ‖ẑ‖
β(n)

)
·
√

1 +
m(n)k(n)

2k(n)
.

In order to complete the proof of the lemma, we need to prove bound (6.13). The
case (i, j) = (i′, j′) immediately follows from (6.11):

Exp[〈yi,j ,yi,j〉 | a = â] ≤ max ‖yi,j‖2 = o

(
‖S‖2

β(n)2k(n)

)
,

where the maximum is over all yi,j in the support of the sampling algorithm. Now
assume i = i′, but j �= j′, and let us bound Exp[〈yi,j ,yi,j′〉 | a = â]. Notice that ah
is independent from yi,j and yi,j′ for all h �= i. Therefore,

Exp[〈yi,j ,yi,j′〉 | a = â] = Exp[〈yi,j ,yi,j′〉 | ai = âi].

We want to bound the conditional expectation of 〈yi,j ,yi,j′〉 given ai = âi. Notice
that vectors yi,j and yi,j′ are statistically independent (because they come from dif-
ferent runs of the sampling procedure) and symmetrically distributed (by Lemma 6.6).
Therefore,

Exp[〈yi,j ,yi,j′〉] = 〈Exp[yi,j ],Exp[yi,j′ ]〉 = 〈0,0〉 = 0.(6.14)

Using (6.14), we immediately get

|Exp[〈yi,j ,yi,j′〉 | ai = âi]| = |Exp[〈yi,j ,yi,j′〉 | ai = âi] − Exp[〈yi,j ,yi,j′〉]|.(6.15)

Notice that, by (6.11), for any yi,j and yi,j′ in the range of the sampling procedure,

|〈yi,j ,yi,j′〉| ≤ ‖yi,j‖ · ‖yi,j′‖ = o

(
‖S‖2

β(n)2k(n)

)
.
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Therefore, by Proposition 2.15, the difference (6.15) is at most

2 · o
(

‖S‖2

β(n)2k(n)

)
· ∆((yi,j ,yi,j′ | ai = âi), (yi,j ,yi,j′)),

where (yi,j ,yi,j′ | ai = âi) is the conditional distribution of (yi,j ,yi,j′) given ai. In
the following lemma, we bound ∆((yi,j ,yi,j′ | ai = âi), (yi,j ,yi,j′)).

Lemma 6.14. The statistical distance between (yi,j ,yi,j′ | ai = âi) and (yi,j ,yi,j′)
is at most

∆((yi,j ,yi,j′ | ai = âi), (yi,j ,yi,j′)) ≤
5

2(2k(n) − 1)
.

Proof. Notice that (yi,j ,yi,j′) = (vi,j − ψ(wi,j),vi,j′ − ψ(wi,j′)) is a randomized
function of (wi,j ,wi,j′), where vi,j and vi,j′ are computed according to the conditional
distribution of the sampling algorithm (given w = wi,j or w = wi,j′). Therefore, by
Proposition 2.13,

∆((yi,j ,yi,j′ | ai = âi), (yi,j ,yi,j′)) ≤ ∆((wi,j ,wi,j′ | ai = âi), (wi,j ,wi,j′)).

By Proposition 2.18, the distance between (wi,j ,wi,j′ | ai = âi) and (wi,j ,wi,j′) is at
most

∆((wi,j ,wi,j′ | ai = âi), (wi,j ,wi,j′))

≤ 1

2
max
ŵ,ŵ′

∣∣∣∣Pr{ai = âi | wi,j = ŵ,wi,j′ = ŵ′}
Pr{ai = âi}

− 1

∣∣∣∣
=

1

2
max
ŵ,ŵ′

∣∣∣∣∣
Pr{

∑
h/∈{j,j′} ai,h = âi − [ŵ]Mn − [ŵ′]Mn}

Pr{
∑k(n)

h=1 ai,h = âi}
− 1

∣∣∣∣∣ .
By Proposition 2.17, the probability at the denominator equals (1/#Gn)(1 + ε) for
some |ε| ≤ 2−k(n). Similarly, the probability at the numerator equals (1/#Gn)(1+ ε′)
for some |ε′| ≤ 2−(k(n)−2). It follows that

∆((wi,j ,wi,j′ | ai = âi), (wi,j ,wi,j′)) ≤
1

2

∣∣∣∣ (1/#Gn)(1 + ε′)

(1/#Gn)(1 + ε)
− 1

∣∣∣∣
=

1

2

∣∣∣∣ε′ − ε

1 + ε

∣∣∣∣
≤ 1

2

|ε′| + |ε|
1 − |ε|

≤ 5

2(2k(n) − 1)
.

Using Lemma 6.14, we get that

Exp[〈yi,j ,yi,j′〉 | a = â] ≤ 2 · o
(

‖S‖2

β(n)2k(n)

)
· 5

2(2k(n) − 1)
= o

(
‖S‖2

β(n)2k(n)
· 1

2k(n)

)
,

proving (6.13) for the case when i = i′ and j �= j′.
The case when i �= i′ is similar. Consider the conditional distribution of yi,j ,yi′,j′

given a = â. Notice that ah is independent from yi,j and yi′,j′ for all h /∈ {i, i′}.
Therefore,

Exp[〈yi,j ,yi′,j′〉 | a = â] = Exp[〈yi,j ,yi′,j′〉 | ai = âi, ai′ = âi′ ].
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Moreover, yi,j and ai are independent from yi′,j′ and ai′ because they come from
different runs of the sampling algorithm. Therefore,

Exp[〈yi,j ,yi′,j′〉 | ai = âi, ai′ = âi′ ] = Exp[〈(yi,j | ai = âi), (yi′,j′ | ai′ = âi′)〉]
= 〈Exp[yi,j | ai = âi],Exp[yi′,j′ | ai′ = âi′ ]〉,

where, as usual, (yi,j | ai = âi) (resp., (yi′,j′ | ai′ = âi′)) is the conditional distribution
of yi,j given ai (resp., yi′,j′ given ai′). Let y = Exp[yi′,j′ | ai′ = âi′ ]. We know

from (6.11) that ‖y‖ = o(‖S‖/(β(n)
√
k(n))). Since yi,j is symmetrically distributed,

〈Exp[yi,j ],y〉 = 〈0,y〉 = 0, and

Exp[〈yi,j ,yi′,j′〉 | ai = âi, ai′ = âi′ ] = 〈Exp[yi,j | ai = âi],y〉
= 〈Exp[yi,j | ai = âi],y〉 − 〈Exp[yi,j ],y〉
= Exp[〈(yi,j | ai = âi),y〉] − Exp[〈yi,j ,y〉].

Notice that, by (6.11), for all yi,j in the range of the sampling algorithm

|〈yi,j ,y〉| ≤ ‖yi,j‖ · ‖y‖ = o

(
‖S‖2

β(n)2k(n)

)
.

Therefore, by Proposition 2.15, the difference between Exp[〈(yi,j | ai = âi),y〉] and
Exp[〈yi,j ,y〉] is at most

2 · o
(

‖S‖2

β(n)2k(n)

)
· ∆((yi,j | ai = âi), (yi,j)).

Since (for any j′) vector yi,j is a function of (yi,j ,yi,j′), by Proposition 2.13 and
Lemma 6.14,

∆((yi,j | ai = âi), (yi,j)) ≤ ∆((yi,j ,yi,j′ | ai = âi), (yi,j ,yi,j′)) ≤
5

2(2k(n) − 1)
.

So, also in this case we have

Exp[〈yi,j ,yi′,j′〉 | a = â] ≤ 2 · o
(

‖S‖2

β(n)2k(n)

)
· 5

2(2k(n) − 1)

= o

(
‖S‖2

β(n)2k(n)
· 1

2k(n)

)
.

7. Applications. In the previous section we proved (Theorems 6.3 and 6.5)
that the problem of finding n linearly independent lattice vectors of length not much
bigger than the generalized uniform radius (in the worst case) reduces to the problem
of finding small integer solutions to random linear equations on the average. In this
section we show how this result can be reformulated as a connection between the
average-case and worst-case complexity of various lattice approximation problems.
As usual, we refer to the average-case problem as the problem of finding a nonzero
integer solution to a random linear equation, but we stress that this is equivalent to
finding (approximately) shortest vectors in a random lattice.

We also show that our results imply the existence of provably secure crypto-
graphic (collision resistant) hash functions based on the worst-case hardness of lattice
approximation problems.
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Corollary 7.1. Let τ(n) = nO(1) be a function such that there exists a fam-
ily of τ(n)-perfect easily decodable lattices. For every polynomially bounded function
µ(m) = mO(1) and m(n) = Ω(n log n), there exists a sequence of groups {Gn} of size
#Gn = nO(n) such that the following is true. If there is a probabilistic polynomial

time algorithm F that on input a uniformly chosen random equation g ∈ G
m(n)
n , out-

puts with nonnegligible probability a nonzero solution F(g) ∈ Λ(g) of length within a
factor µ(m(n)) from the shortest (or, more generally, within a factor µ(m(n)) from
Minkowski’s bound (2.2)), then there is a probabilistic polynomial time algorithm that
on input any rank n lattice basis B solves, in the worst case and with high proba-
bility, any of the following problems, where ω(1) is an arbitrary superconstant and
polynomially bounded function of n:

1. [SIVP] Find a set S ⊆ L(B) of n linearly independent vectors such that

‖S‖ ≤ ω(1) · µ(m(n)) · n1.5 · τ(n) ·
√
m(n) · log n · λn(L(B)).

2. [GapSVP] Compute an approximation λ̂1 such that

λ1(L(B))

ω(1) · µ(m(n)) · n2 · τ(n) ·
√
m(n) · log n

≤ λ̂1 ≤ λ1(L(B)).

3. [GapCRP] Compute an approximation ρ̂ such that

ρ(L(B)) ≤ ρ̂ ≤ ω(1) · µ(m(n)) · n1.5 · τ(n) ·
√
m(n) · log n · ρ(L(B)).

4. [GDD] Given also a target vector t ∈ span(B), find a lattice vector v ∈ L(B)
such that

‖v − t‖ ≤ ω(1) · µ(m(n)) · n1.5 · τ(n) ·
√
m(n) · log n · ρ(L(B)).

Proof. Let β(n) =
√

ω(1) ·m(n) ·µ(m(n)), γ(n) = β(n)τ(n)
√

ω(1) · log n and Gn

be as defined in Theorem 6.5. Notice that γ(n) ≤ ω(1)·
√

m(n) · log n·τ(n)·µ(m(n)) =
nO(1) and #Gn ≤ (n1.5γ(n)/8)n = nO(n). Therefore, by Theorem 5.5, any equation

g ∈ G
m(n)
n has a nonzero solution of length at most O(

√
m(n)). Let F(·) be a

probabilistic polynomial time algorithm to find nonzero solutions of length within a
factor µ(m(n)) from the shortest (with nonnegligible probability). We know that,
when successful, F(·) finds solutions of length at most

‖F(g)‖ ≤ µ(m(n))O(
√
m(n)) ≤ β(n).

So, algorithm F(·) solves HSISG,m,β on the average with nonnegligible probability.
Combining F with the reductions from Theorems 6.5 and 6.3, we get a polynomial

time algorithm S(·) that solves GIVP
ζ̂
γ (in the worst case and with high probability)

for approximation factor

γ(n) = β(n) · τ(n) ·
√

ω(1) · log n = ω(1) ·
√

m(n) · log n · µ(m(n)) · τ(n).

We show how to use this algorithm to solve all the worst-case problems in the con-
clusion of the corollary.

1. [SIVP] Just run S = S(B) and output S. By (3.1),

‖S‖ ≤ γ(n) · ζ̂(L(B)) ≤ 3

2
n1.5 · γ(n) · λn(L(B))

=
3

2
ω(1) · n1.5 · τ(n) · µ(m(n)) ·

√
m(n) · log n · λn(L(B)).
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2. [GapSVP] On input basis B, run S = S(B∗), where B∗ is the basis of the
dual lattice, and output 1/‖S‖. By (2.5),

‖S‖ ≥ λn(L(B)∗) ≥ 1

λ1(L(B))
.

Also, by (3.2),

‖S‖ ≤ γ(n) · ζ̂(L(B)∗) ≤ 3

2
n2 · γ(n)/λ1(L(B))

=
3

2
ω(1) · n2 · τ(n) · µ(m(n)) ·

√
m(n) · log n/λ1(L(B)).

3. [GapCRP] This time, we run S = S(B) and output
√
n‖S‖/2. By (2.3),

√
n‖S‖/2 ≥ (

√
n/2)λn(L(B)) ≥ ρ(L(B)).

Moreover, by Theorem 3.6,

√
n‖S‖/2 ≤ 3

2
n1.5 ·γ(n)·ρ(L(B)) =

3

2
ω(1)·n1.5 ·τ(n)·µ(m(n))·

√
m(n) · log n·ρ(L(B)).

4. [GDD] In order to find a lattice point close to target t, we first run S = S(B)
and then execute Babai’s nearest plane algorithm [6] using sublattice S and target t.
The result is a point within distance

√
n‖S‖/2 from the target. As in the proof for

the CRP, this bound satisfies

√
n‖S‖/2 ≤ 3

2
ω(1) · n1.5 · τ(n) · µ(m(n)) ·

√
m(n) · log n · ρ(L(B)).

Notice that in the proof of Corollary 7.1, the definition of group Gn implicitly
depends on the function m(n). This is because in Theorem 6.5 the definition of group
Gn depends on the value of α(n), which in turn depends (via γ(n)) on the value
of β(n). Moreover, the definition of β(n) in the proof of Corollary 7.1 depends on
µ(m(n)). So, unless µ(·) is a constant function, group Gn can be selected only after
the value of m(n) has been chosen. The following corollary immediately follows from
Corollary 7.1 by setting m(n) = Θ(n log n) and µ(m) = 1 and observing that the
definition of group Gn does not depend on m(n) when µ(m) is constant.

Corollary 7.2. Let τ(n) = nO(1) be a function such that there exists a family
of τ(n)-perfect easily decodable lattices. For every superlogarithmic function ω(log n),
there exists a sequence of groups {Gn} of size #Gn = nO(n) such that for any m(n) =
Θ(n log n), the following is true. If there is a probabilistic polynomial time algorithm

F(·) that on input a uniformly chosen random equation g ∈ G
m(n)
n , outputs with non-

negligible probability a shortest nonzero solution F(g) ∈ Λ(g) (or, more generally, a
solution satisfying Minkowski’s bound (2.2) ‖F(g)‖ ≤

√
m(n) ·det(Λ(g))1/m(n)), then

there is a probabilistic polynomial time algorithm that on input any rank n lattice basis
B solves, in the worst case and with high probability, any of the following problems:

1. [SIVP] Find a maximal set of linearly independent vectors of length within
n2 · τ(n) · ω(log n) from the shortest.

2. [GapSVP] Approximate λ1(L(B)) within a factor n2.5 · τ(n) · ω(log n).
3. [GapCRP] Approximate ρ(L(B)) within a factor n2 · τ(n) · ω(log n).
4. [GDD] Given also a target vector t ∈ span(B), find a lattice vector v ∈ L(B)

within distance n2 · τ(n) · ω(log n) · ρ(L(B)) from t.
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We now turn to the construction of collision resistant hash functions. Following

[18], for any g ∈ G
m(n)
n , define function hg: {0, 1}m(n) → Gn by

hg(x) =

n∑
i=1

gixi.

Notice that function hg maps m(n) bits to log2 #G bits. If m(n) > log2 #G, then
the function compresses the input x, and collisions hg(x) = hg(y) (for x �= y) are
guaranteed to exist by the pigeon hole principle. We prove that, if the key g is chosen
at random, then these collisions are computationally hard to find.

Corollary 7.3. Let τ(n) = nO(1) be a function such that there exists a family
of τ(n)-perfect easily decodable lattices. For every superlogarithmic function ω(log n),
there exists a sequence of groups {Gn} of size #Gn = nO(n) such that the following
is true. Assume no probabilistic polynomial time algorithm can solve problems SIVP,
GapSVP, GapCRP, or GDD (in the worst case and with high probability) within
the factors specified in Corollary 7.2. Then for any c > 1 and m(n) = max{c ·
log2 #Gn,Θ(n log n)}, there exists no probabilistic polynomial time algorithm that on

input a random key g ∈ G
m(n)
n outputs with nonnegligible probability an hg-collision,

i.e., two binary vectors x �= y such that hg(x) = hg(y).
Proof. Notice that m(n) ≥ c · log2 #Gn, so function hg is a hash function with

compression ratio c. Assume, for contradiction, that F(g) = (x,y) is a collision finder
algorithm with nonnegligible success probability, and notice that if F is successful,
then x − y ∈ Λ(g) \ {0} is a nonzero solution to equation g of length at most

‖x − y‖ ≤
√

m(n).

Since Λ(g) is a sublattice of Z
n, det(Λ(g)) ≥ det(Zn) = 1, and solution x− y ∈ Λ(g)

satisfies Minkowski’s bound (2.2)

‖x − y‖ ≤
√
m(n) ≤

√
m(n) det(Λ(g))1/m(n).

In order to apply Corollary 7.2 and get a contradiction, we need only to show that
m(n) = Θ(n log n). The lower bound m(n) = Ω(n log n) immediately follows from the
definition of m(n) ≥ Θ(n log n). The upper bound m(n) = O(n log n) follows from the
fact that #Gn = nO(n). This proves that m(n) = Θ(n log n), and by Corollary 7.2
there exist probabilistic polynomial time algorithms to approximately solve SIVP,
GapSVP, GapCRP, and GDD in the worst case and with high probability.

We conclude the section with two remarks about the choice of the groups Gn in
the previous corollaries.

Remark. It can be shown that the groups Gn defined in the proofs of Corollar-
ies 7.1, 7.2, and 7.3 have size #Gn = nΘ(n). In particular, in Corollary 7.3, we could
have simply defined m(n) = c log2 #Gn, instead of max{c log2 #Gn,Θ(n log n)}, be-
cause c log2 #Gn = Θ(n · log n).

Remark. Corollaries 7.1, 7.2, and 7.3 are pretty flexible in terms of the choice
of group Gn. The only property required for the proof to go through is that Gn is
a group of size nΘ(n) that can be represented as the quotient of an easily decodable
τ(n)-perfect lattice L(Ln) modulo a sublattice L(Mn) such that (6.2) holds true.

8. Conclusion and open problems. We related the computational complex-
ity of finding (approximately) shortest nonzero integer solutions to random linear
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equations with coefficients in a suitably chosen group (on the average and with non-
negligible probability) to the worst-case complexity of approximating various lattice
problems. Since the set of integer solutions to a homogeneous linear equation forms
a lattice, the result can be interpreted as a connection between the average-case and
worst-case complexity of various lattice problems. The connection immediately also
gives provably secure cryptographic hash functions that are as hard to break on the av-
erage as the worst-case complexity of approximating various lattice problems within
polynomial factors. The worst-case approximation factors achieved depend on the
class of easily decodable lattices used in the definition of the class of equations (or
cryptographic hash functions). In particular, if τ(n)-perfect easily decodable lattices
are used, then finding shortest solutions to random equations (or finding collisions to
hash functions) is at least as hard as approximating the length of the shortest vector
in any lattice, in the worst case, within a factor γ(n) = n2.5τ(n)ω(log n). Even for
τ(n) =

√
n (which corresponds, as a special case, to Ajtai’s random class of equa-

tions), this improves the previously known best connection factor of [11] by more
than O(n). We also showed that finding shortest solutions to random equations is
at least as hard as approximating within a factor n2τ(n)ω(log n) any of the following
problems:

(i) [SIVP] computing a maximal set of shortest linearly independent vectors,
(ii) [GapCRP] computing the covering radius, and
(iii) [GDD] computing a lattice vector within distance maxx dist(x,L(B)) from

a given target,
improving [11] in the case of SIVP by more than O(

√
n), and connecting the average

case complexity of solving random equations to two new computational problems on
lattices that might be of independent interest.

We also gave polynomial time constructions of easily decodable τ(n)-perfect lat-
tices with τ(n) = o(

√
n). These constructions allow us to achieve approximation fac-

tors n2.5ω(
√

log n log log n) (for SIVP, GapCRP, and GDD) and n3ω(
√

log n log log n)
(for SVP). While this improvement over τ(n) =

√
n is not substantial, it suggests that

further investigation of almost perfect lattices might allow us to find easily decodable
τ(n)-perfect lattices with much smaller τ(n), e.g., τ(n) = nε or even τ(n) = O(1).
This would immediately reduce the approximation factor for all the above problems
by about

√
n.

Another possible source of improvement are better bounds relating the fundamen-
tal constants associated to a lattice. Our main theorem (Theorem 6.5) shows that
finding short solutions on the average is at least as hard as finding vectors that are
not much longer than a new lattice quantity called the generalized uniform radius.
All other results are obtained by first relating the generalized uniform radius to the
covering radius (Theorem 3.6), and then bounding the covering radius in terms of
other lattice constants using standard transference theorems and other well-known
bounds (Proposition 2.8). In particular, (3.1) and (3.2) show that the generalized

uniform radius ζ̂(L(B)) is at most O(n1.5) times λn(L(B)) or at most O(n2) times
1/λ1(L(B)∗). It would be interesting to improve (3.1) and (3.2) to show, for example,
that

ζ̂(L(B)) ≤ O(n)λn(L(B))(8.1)

and

ζ̂(L(B)) ≤ O(n)/λ1(L(B)∗).(8.2)
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Whether these bounds hold true is a natural geometric question, and proving them
would be of independent interest. Moreover, it would allow us to reduce the approxi-
mation factors for SIVP and SVP by O(

√
n) and O(n), respectively. Together with

the construction of better almost perfect easily decodable lattices, this would immedi-
ately improve the approximation factors for both SVP and SIVP to just n1.5ω(log n).
Connections with such small approximation factors are currently known only for re-
strictions of the (worst-case) SVP to lattices with special structure where the shortest
vector is unique in some technical sense [39].

Notice that by (2.5), bound (8.2) would also imply (8.1). Also, (8.2), if correct,
would be asymptotically optimal because Conway and Thompson (see [37]) showed
that there exist self-dual lattices such that ρ(L(B)) · λ1(L(B)∗) ≥ O(n), and by

Proposition 3.2 ρ(L(B)) ≤ ζ(L(B)) ≤ ζ̂(L(B)). We conjecture that (8.2) holds true
and that there exist classes of random equations such that finding shortest nonzero
solutions on the average (with nonnegligible probability) is at least as hard as ap-
proximating the length of the shortest nonzero vector (or finding a maximal set of
shortest linearly independent vectors) in any n-dimensional lattice within a factor
n1.5ω(log n).
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Abstract. Juedes and Lutz [SIAM J. Comput., 24 (1995), pp. 279–295] proved a small span
theorem for polynomial-time many-one reductions in exponential time. This result says that for
language A decidable in exponential time, either the class of languages reducible to A (the lower
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Comput. System Sci., 69 (2004), pp. 97–122], provides rescalings of resource-bounded dimension. We
use scaled dimension to further understand the contrast between measure and dimension regarding
polynomial-time spans and degrees. We strengthen prior results by showing that the small span
theorem holds for polynomial-time many-one reductions in the −3rd-order scaled dimension, but
fails to hold in the −2nd-order scaled dimension. Our results also hold in exponential space.

As an application, we show that determining the −2nd- or −1st-order scaled dimension in
ESPACE of the many-one complete languages for E would yield a proof of P = BPP or P �= PSPACE.
On the other hand, it is shown unconditionally that the complete languages for E have −3rd-order
scaled dimension 0 in ESPACE and −2nd- and −1st-order scaled dimension 1 in E.
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1. Introduction. Resource-bounded measure [16] defines the relative size of
classes of decision problems and has been used very successfully to study polynomial-
time reductions within exponential-time complexity classes. Measure-theoretic ar-
guments were the first to show that for all α < 1, every ≤p

nα−tt-hard language for
exponential time is exponentially dense [19]. The first plausible hypothesis on NP
to separate the ≤p

m and ≤p
T reducibilities within NP came from resource-bounded

measure [20].

The degrees and spans of languages under polynomial-time reductions have also
been studied by several researchers using resource-bounded measure. For a reducibil-
ity ≤p

r and any A ⊆ {0, 1}∗, the ≤p
r -lower span of A is the class Pr(A) of all lan-

guages that are ≤p
r -reducible to A, the ≤p

r -upper span of A is the class P−1
r (A)

of all languages to which A is ≤p
r -reducible, and the ≤p

r -degree of A is the class
degp

r (A) = Pr(A) ∩ P−1
r (A). Juedes and Lutz [12] proved the following small span

theorem for ≤p
m-reductions in both E and in EXP. Here the notation µ(C | D) denotes

the measure of C within D, where D is a suitable complexity class. If µ(C | D) = 0,
then intuitively C ∩ D is a negligible subset of D.
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Theorem 1.1 (Juedes and Lutz [12]). Let D ∈ {E,EXP}. For every A ∈ D,

µ(Pm(A) | D) = 0

or

µ(P−1
m (A) | D) = 0.

In particular, µ(degp
m(A) | D) = 0.

That is, at least one of the upper or lower spans of A is small within D. Using a
result of Bennett and Gill [4], Juedes and Lutz [12] noted that strengthening Theorem
1.1 from ≤p

m-reductions to ≤p
T-reductions would achieve the separation BPP �= EXP.

Pursuing this program, small span theorems for reductions of progressively increasing
strength between ≤p

m and ≤p
T have been obtained by Lindner [14], Ambos-Spies, Neis,

and Terwijn [3], and Buhrman and van Melkebeek [6].
Resource-bounded dimension was introduced by Lutz [18] as an effectivization

of Hausdorff dimension [9] to investigate the fractal structure of complexity classes.
Just like resource-bounded measure, resource-bounded dimension is defined within
suitable complexity classes D. For any complexity class C, the dimension of C within
D is a real number in [0, 1] and is denoted by dim(C | D). If dim(C | D) < 1, then
µ(C | D) = 0, but the converse may fail. This means that resource-bounded dimension
is capable of quantitatively distinguishing among the measure 0 sets. With regard to
the measure 0 sets in Theorem 1.1, Ambos-Spies, Merkle, Reimann, and Stephan [2]
proved the following.

Theorem 1.2 (Ambos-Spies et al. [2]). For every A ∈ E,

dim(degp
m(A) | E) = dim(Pm(A) | E).

In particular, as dim(E | E) = 1, the ≤p
m-complete degree for E has dimension

1 within E. This implies that replacing “µ” by “dim” in Theorem 1.1 makes the
statement for E no longer true. In other words, there is no analogue of the small span
theorem for dimension in E. Dimension in E cannot distinguish between lower spans
and degrees.

To overcome limitations of resource-bounded dimension for investigating com-
plexity classes within ESPACE, Hitchcock, Lutz, and Mayordomo [11] introduced for

each integer i ∈ Z an ith-order scaled dimension dim(i)(· | D). For any class C and

i ∈ Z, dim(i)(C | D) ∈ [0, 1], and if it is less than 1, then µ(C | D) = 0. The quan-

tity dim(i)(C | D) is nondecreasing in i, and there is at most one i ∈ Z for which

0 < dim(i)(C | D) < 1. The 0th-order dimension, dim(0)(· | D), is precisely the stan-
dard unscaled dimension, and the other orders can be more useful than it for certain
complexity classes. To illustrate this, we mention some examples from circuit-size
complexity. For a function s : N → N, let SIZE(s(n)) consist of all languages decid-
able by nonuniform Boolean circuit families of size at most s(n). Lutz [18] showed
that

dim

(
SIZE

(
α

2n

n

)∣∣∣∣ESPACE

)
= α(1.1)

for all α ∈ (0, 1). Circuit size bounds of the form 2αn and 2n
α

are typically of more
interest in complexity theory, but (1.1) implies that SIZE(2αn) and SIZE(2n

α

) have
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dimension 0 in ESPACE for all α ∈ (0, 1). For these size bounds, the scaled dimensions
are useful; in [11] it is shown that

dim(1)(SIZE(2αn) | ESPACE) = α

and

dim(2)(SIZE(2n
α

) | ESPACE) = α

for any α ∈ (0, 1).
This paper uses scaled dimension to investigate polynomial-time spans and de-

grees and further understand the contrast between Theorems 1.1 and 1.2. We show
that the same dichotomy also occurs between the −3rd- and −2nd-orders of scaled
dimension. The main contribution of this paper is a strengthening of Theorem 1.1
to give a small span theorem for scaled dimension. (The following is a corollary of a
stronger result proved in Theorem 6.3.)

Theorem 1.3. Let D ∈ {E,EXP,ESPACE,EXPSPACE}. For every A ∈ D,

dim(−3)(Pm(A) | D) = 0

or

dim(−3)(P−1
m (A) | D) = 0.

In particular, dim(−3)(degp
m(A) | D) = 0.

In contrast, Theorem 1.2 is extended to scaled dimension at orders i with |i| ≤ 2.
Theorem 1.4. Let D ∈ {E,EXP,ESPACE,EXPSPACE}. For every A ∈ D and

−2 ≤ i ≤ 2,

dim(i)(degp
m(A) | D) = dim(i)(Pm(A) | D).

This implies that Theorem 1.3 cannot be improved to −2nd-order scaled dimen-
sion.

As an application of these results, we consider the scaled dimension of Cp
m(E),

the class of polynomial-time many-one complete sets for E, within ESPACE. Let
i ∈ {−2,−1}. We extend a theorem of Lutz [15] to show that

dim(i)(Cp
m(E) | ESPACE) > 0 ⇒ P = BPP.

On the other hand, we show that

dim(i)(Cp
m(E) | ESPACE) < 1 ⇒ P �= PSPACE.

Therefore, determining the −1st- or −2nd-order scaled dimension of Cp
m(E) in ESPACE

would derandomize BPP or separate P from PSPACE. In contrast, we also show that

dim(−3)(Cp
m(E) | ESPACE) = 0

and

dim(−2)(Cp
m(E) | E) = dim(−1)(Cp

m(E) | E) = 1

hold without any hypothesis.
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This paper is organized as follows. Section 2 contains the basic preliminaries, and
section 3 reviews resource-bounded scaled dimension. We develop some new tools for
computing scaled dimension in section 4. The scaled dimensions of some auxiliary
classes involving polynomial reductions are calculated in section 5. Our small span
theorem for scaled dimension is proved in section 6. Section 7 shows that lower spans
and degrees have the same dimension in orders i with −2 ≤ i ≤ 2. Extensions of
the results to ≤p

1−tt-reductions are discussed in section 8. The results on the scaled
dimension of the complete sets for E are presented in section 9. Section 10 concludes
with a brief summary.

2. Preliminaries. The set of all finite binary strings is {0, 1}∗. The empty
string is denoted by λ. We use the standard enumeration of binary strings s0 = λ, s1 =
0, s2 = 1, s3 = 00, . . . . The length of a string x ∈ {0, 1}∗ is denoted by |x|. We use the
notation {0, 1}≤n = {x ∈ {0, 1}∗ | |x| ≤ n} and {0, 1}>n = {x ∈ {0, 1}∗ | |x| > n}.

All languages (decision problems) in this paper are encoded as subsets of {0, 1}∗.
For a language A ⊆ {0, 1}∗, we define A≤n = {x ∈ A

∣∣|x| ≤ n}. We routinely
identify A with its infinite binary characteristic sequence according to the standard
enumeration of binary strings. We write A � n for the n-bit prefix of the characteristic
sequence of A, and A[n] for the nth-bit of its characteristic sequence.

Let ≤p
r be a polynomial-time reducibility. For any A ⊆ {0, 1}∗, let

Pr(A) = {B ⊆ {0, 1}∗ | B ≤p
r A}

be the ≤p
r -lower span of A,

P−1
r (A) = {B ⊆ {0, 1}∗ | A ≤p

r B}

be the ≤p
r -upper span of A, and

degp
r (A) = Pr(A)∩P−1

r (A)

be the ≤p
r -degree of A. For any complexity class D, the class of ≤p

r -hard languages
for D is

Hp
r (D) = {A ⊆ {0, 1}∗ | D ⊆ Pr(A)},

and the class of ≤p
r -complete languages for D is

Cp
r (D) = D∩Hp

r (D).

Let resource ∈ {time, space} and let t(n) be a resource bound. Let l ∈ N. A
function f : N

l × {0, 1}∗ → [0,∞) ∩ Q is t(n)-resource exactly computable if there is
a Turing machine that computes f(k1, . . . , kl, w) using at most t(k1 + · · · + kl + |w|)
resource for all (k1, . . . , kl, w) ∈ N

l × {0, 1}∗. Let g : N
l × {0, 1}∗ → [0,∞) be a

real-valued function. An approximation of g is a function ĝ : N
l+1 × {0, 1}∗ → [0,∞)

such that

|g(x) − ĝ(r, x)| ≤ 2−r

for all x ∈ N
l × {0, 1}∗ and r ∈ N. We say that g is t(n)-resource computable if there

is an exactly t(n)-resource computable approximation ĝ of g. A family of functions
(fi : N

l × {0, 1}∗ → [0,∞) | i ∈ N) is uniformly t(n)-resource (exactly) computable if
the function f(i, x) = fi(x) is t(n)-resource (exactly) computable.
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A function f is p-computable (respectively, pspace-computable) if it is O(nk)-
time (respectively, O(nk)-space) computable for some k ∈ N, and f is p2-computable

(respectively, p2
space-computable) if it is O(2(log n)k)-time (respectively, O(2(log n)k)-

space) computable for some k ∈ N. Throughout this paper, unless otherwise specified,
∆ denotes any of the resource bounds p, p

2 , pspace, or p2space. The concept of an
exactly ∆-computable function is defined analogously.

3. Scaled dimension. Hitchcock, Lutz, and Mayordomo [11] introduced resource-
bounded scaled dimension. This section briefly reviews the essentials of this theory.

The principle concept is a scale, which is a function g : H × [0,∞) → R, where
H = (a,∞) for some a ∈ R ∪ {−∞}. A scale must satisfy certain properties that are
given in [11] and will not be discussed here.

The canonical example of a scale is the function g0 : R × [0,∞) → R defined by
g0(m, s) = sm. This scale is used in the standard (unscaled) dimension. Other scales
of interest are obtained from g0 by rescaling and reflection operations.

Definition. Let g : H × [0,∞) → R be a scale.
1. The first rescaling of g is the scale g# : H# × [0,∞) −→ R defined by

H# = {2m | m ∈ H},

g#(m, s) = 2g(logm,s).

2. The reflection of g is the scale gR : H × [0,∞) → R defined by

gR(m, s) =

{
m + g(m, 0) − g(m, 1 − s) if 0 ≤ s ≤ 1,
g(m, s) if s ≥ 1.

A family of scales, one for each integer, is defined as follows.
Definition.
1. For each i ∈ N, define ai by the recurrence a0 = −∞, ai+1 = 2ai .
2. For each i ∈ Z, define the ith scale gi : (a|i|,∞)× [0,∞) → R by the following

recursion:
(a) g0(m, s) = sm.

(b) For i ≥ 0, gi+1 = g#
i .

(c) For i < 0, gi = gR−i.
For clarity, we compute the first few scales. For all s ∈ [0, 1], if m > a|i|, then

gi(m, s) is defined by

g3(m, s) = 22(log log m)s

,

g2(m, s) = 2(logm)s ,

g1(m, s) = ms,

g0(m, s) = sm,

g−1(m, s) = m + 1 −m1−s,

g−2(m, s) = m + 2 − 2(logm)1−s

,

g−3(m, s) = m + 4 − 22(log log m)1−s

.

Scaled dimension is defined using functions called scaled gales. The more familiar
concepts of gales [18] and martingales [16] are special cases in the following definition.

Definition. Let i ∈ Z and let s ∈ [0,∞).
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1. An ith-order scaled s-gale (briefly, an s(i)-gale) is a function d : {0, 1}>a|i| →
[0,∞) such that for all w ∈ {0, 1}∗ with |w| > a|i|,

d(w) = 2−∆gi(|w|,s)[d(w0) + d(w1)],

where ∆gi : (a|i|,∞) × [0,∞) → R is defined by

∆gi(m, s) = gi(m + 1, s) − gi(m, s).

2. An s-gale is an s(0)-gale, that is, a function d : {0, 1}∗ → [0,∞) satisfying

d(w) = 2−s[d(w0) + d(w1)]

for all w ∈ {0, 1}∗.
3. A martingale is a 1-gale, that is, a function d : {0, 1}∗ → [0,∞) satisfying

d(w) =
d(w0) + d(w1)

2

for all w ∈ {0, 1}∗.
Success sets are a crucial concept for resource-bounded measure and also for scaled

dimension.
Definition. Let d : {0, 1}>a → [0,∞), where a ∈ Z.
1. We say that d succeeds on a language A ⊆ {0, 1}∗ if

lim sup
n→∞

d(A � n) = ∞.

2. The success set of d is

S∞[d] = {A ⊆ {0, 1}∗ | d succeeds on A}.

Resource-bounded measure is defined using success sets of martingales. Here ∆
denotes any of the resource bounds {p,p

2 ,pspace,p2space}, and R(∆) is the following
exponential-time or exponential-space complexity class:

R(p) = E = DTIME(2O(n)),

R(p2) = EXP = DTIME(2n
O(1)

),
R(pspace) = ESPACE = DSPACE(2O(n)),

R(p2space) = EXPSPACE = DSPACE(2n
O(1)

).

Definition. Let C be a class of languages.
1. We say that C has ∆-measure 0 and write µ∆(C) = 0 if there is a ∆-

computable martingale d such that C ⊆ S∞[d].
2. We say that C has measure 0 in R(∆) and write µ(C | R(∆)) = 0 if µ∆(C ∩

R(∆)) = 0.
The measure conservation theorem of Lutz [16] asserts that µ∆(R(∆)) �= 0, justi-

fying the definition of measure in R(∆) above.
Success sets of scaled gales are used to define scaled dimension.
Definition. Let C be a class of languages and i ∈ Z.
1. The ith-order scaled ∆-dimension of C is

dim
(i)
∆ (C) = inf

{
s

∣∣∣∣ there exists a ∆-computable
s(i)-gale d for which C ⊆ S∞[d]

}
.
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2. The ith-order scaled dimension of C within R(∆) is

dim(i)(C | R(∆)) = dim
(i)
∆ (C ∩R(∆)).

The 0th-order dimension dim
(0)
∆ (·) is precisely the dimension dim∆(·) of Lutz [18],

and the other orders are interpreted as rescalings of this concept.
The following lemma relates resource-bounded scaled dimension to resource-bounded

measure.
Lemma 3.1 ([11]). For any class C of languages and i ∈ Z,

dim
(i)
∆ (C) < 1 ⇒ µ∆(C) = 0

and

dim(i)(C | R(∆)) < 1 ⇒ µ(C | R(∆)) = 0.

The following is another key property of scaled dimension.

Theorem 3.2 (see [11]). Let C be a class of languages and i ∈ Z. If dim
(i+1)
∆ (C) <

1, then dim
(i)
∆ (C) = 0.

This theorem tells us that for every class C, the sequence of dimensions dim
(i)
∆ (C)

for i ∈ Z satisfies exactly one of the following three conditions:

(i) dim
(i)
∆ (C) = 0 for all i ∈ Z.

(ii) dim
(i)
∆ (C) = 1 for all i ∈ Z.

(iii) There exist i∗ ∈ Z such that dim
(i)
∆ (C) = 0 for all i < i∗ and dim

(i)
∆ (C) = 1

for all i > i∗.

4. Measures, log-loss, and scaled dimension. This section provides some
tools involving measures and the log-loss concept that are useful for working with
the scaled dimensions. It was shown in [10] that log-loss unpredictability is equivalent
to dimension. Here we characterize scaled dimension using the log-loss of measures.
A similar approach to classical fractal dimension using measures has been used by
Cutler [7] (see also [8]).

Definition. A measure is a function ρ : {0, 1}∗ → [0,∞) satisfying

ρ(w) = ρ(w0) + ρ(w1)

for all w ∈ {0, 1}∗.
Measures have the following fundamental relationship with scaled gales. This

extends Schnorr’s “likelihood ratio” characterization of martingales [23].
Observation 4.1. Let i ∈ Z and s ∈ [0,∞).
1. If ρ : {0, 1}∗ → [0,∞) is a measure, then the function dρ : {0, 1}>a|i| → [0,∞)

defined by

dρ(w) = 2gi(|w|,s)ρ(w)

for all w ∈ {0, 1}>a|i| is an s(i)-gale.
2. If d : {0, 1}>a|i| → [0,∞) is an s(i)-gale, then the function ρd : {0, 1}∗ →

[0,∞) defined by

ρd(w) = 2−gi(|w|,s)d(w)
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for all w ∈ {0, 1}>a|i| and

ρd(w) =
∑

|v|=a|i|+1−|w|
ρd(wv)

for all w ∈ {0, 1}≤a|i| is a measure.
The following lemma relates the scaled dimension of a class to limits involving

scales and logarithms of measures.
Lemma 4.2. Let C be a class of languages and let i ∈ Z.

1. If s > dim
(i)
∆ (C), then there is a ∆-computable measure ρ such that

lim sup
n→∞

[
gi(n, s) + log ρ(A � n)

]
= ∞

for all A ∈ C.

2. If s < dim
(i)
∆ (C), then for any ∆-computable measure ρ there is an Aρ ∈ C

such that

lim
n→∞

[
gi(n, s) + log ρ(Aρ � n)

]
= −∞.

Proof. Let r be rational with s > r > dim
(i)
∆ (C) and let d be a ∆-computable

r(i)-gale succeeding on C. Then the measure ρd from Observation 4.1 is also ∆-
computable. Let A ∈ C. There are infinitely many n ∈ N such that d(A � n) ≥ 1
since A ∈ S∞[d]. For such n,

gi(n, s) + log ρd(A � n) = gi(n, s) − gi(n, r) + log d(A � n)

≥ gi(n, s) − gi(n, r).

Part 1 follows because r < s.
For part 2, let ρ be a ∆-computable measure. Let t be rational with s < t <

dim
(i)
∆ (C) and obtain the t(i)-gale dρ from Observation 4.1. Then C �⊆ S∞[dρ] because

dρ is ∆-computable; thus there are an Aρ ∈ C and a constant c such that d(A � n) ≤ c
for all n > a|i|. Then

gi(n, s) + log ρ(A � n) = gi(n, s) − gi(n, t) + log dρ(A � n)

≤ gi(n, s) − gi(n, t) + log c,

and therefore the claim follows because s < t.
Lemma 4.2 asserts that if the ith-order scaled dimension of a class C is less than

s, then there is a measure ρ such that for every A ∈ C, there are prefixes w � A where
the log-loss quantity

− log ρ(w)

is arbitrarily less than gi(|w|, s).
It is often convenient to replace computable measures by exactly computable

measures. The following lemma is proved in the same way as the exact computation
lemma for martingales [13].

Lemma 4.3. Let ρ be a measure that is computable in t(n) time (respectively,
space), where t(n) ≥ n is nondecreasing. Then there is a measure ρ̃ that is exactly
computable in n · t(2n + 2) time (respectively, space) such that ρ̃(w) ≥ ρ(w) for all
w ∈ {0, 1}∗.
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The measures that are exactly computable within a fixed time or space bound
are uniformly exactly computable with slightly more time or space.

Lemma 4.4. For any nondecreasing time constructible function t(n) ≥ n the
family of exactly t(n)-time computable measures is uniformly exactly computable in
O(n2t(n) log t(n)) time. The family of exactly t(n)-space computable measures is uni-
formly exactly computable in O(t(n)) space.

Proof. There is a uniform enumeration (Mi | i ∈ N) of all t(n)-time clocked
Turing machines such that for all i ∈ N, Mi(w) can be computed in i · t(|w|) log t(|w|)
time for all w ∈ {0, 1}∗. Define ρi : {0, 1}∗ → [0,∞) inductively by ρi(λ) = Mi(λ)
and

ρi(w0) =

{
Mi(w0) if Mi(w0) ≤ ρi(w),

ρi(w) otherwise,

ρi(w1) = ρi(w) − ρi(w0)

for all w ∈ {0, 1}∗. Then each ρi is a measure. Also, if ν is a measure that is exactly
computed by Mi in t(n) time, then ρi(w) = ν(w) for all w. We can compute ρi(w)
by using |w| computations of Mi on strings of length at most |w|; thus the function
ρ : N×{0, 1}∗ → [0,∞) defined by ρ(i, w) = ρi(w) is computable in O(n2t(n) log t(n))
time. The argument for space is similar.

Uniformly exactly computable families of measures can be combined into a single
measure in an efficient manner.

Lemma 4.5. Let (ρk | k ∈ N) be a uniformly exactly ∆-computable family of
measures. There is a ∆-computable measure ρ∗ such that for any k, there is a constant
ck such that

log ρ∗(w) ≥ log ρk(w) − ck

for all w ∈ {0, 1}∗.
Proof. Define

ρ∗(w) =

∞∑
k=0

ρk(w)

2kρk(λ)
.

Then ρ is a measure by linearity. Also, ρ∗ is ∆-computable by the approximation
function ρ̂∗ : N × {0, 1}∗ → [0,∞) defined by

ρ̂∗(r, w) =

r∑
k=0

ρk(w)

2kρk(λ)

since

∣∣∣ρ∗(w) − ρ̂∗(r, w)
∣∣∣ =

∞∑
k=r+1

ρk(w)

2kρk(λ)

≤
∞∑

k=r+1

ρk(λ)

2kρk(λ)

= 2−r.
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Let k ∈ N. For any w ∈ {0, 1}∗,

log ρ∗(w) ≥ log
ρk(w)

2kρk(λ)

= log ρk(w) − k − ρk(λ),

and thus the lemma holds with ck = k + ρk(λ).
We now combine the preceding lemmas to obtain a tool that will be useful in

calculating scaled dimensions.
Theorem 4.6. Let C be a class of languages, i ∈ Z, and k ∈ N.
1. If for each A ∈ C there is a measure ρA computable in O(nk) time such that

(∃cA ∈ Z)(∃∞n)gi(n, s) + log ρA(A � n) ≥ cA,(4.1)

then dim(i)
p (C) ≤ s.

2. If for each A ∈ C there is a measure ρA computable in O(2(log n)k) time such

that (4.1) holds, then dim(i)
p2

(C) ≤ s.

3. If for each A ∈ C there is a measure ρA computable in O(nk) space such that

(4.1) holds, then dim(i)
pspace(C) ≤ s.

4. If for each A ∈ C there is a measure ρA computable in O(2(log n)k) space such

that (4.1) holds, then dim(i)
p2

space(C) ≤ s.
Proof. From Lemmas 4.3, 4.4, and 4.5 we obtain an exactly ∆-computable mea-

sure ρ such that log ρ(w) ≥ log ρA(w) − bA for all w ∈ {0, 1}∗ where bA is a constant
that depends on A but not on w.

Let t > s. For any A ∈ C,

gi(n, t) + log ρ(A � n) ≥ gi(n, t) − gi(n, s) + cA − bA

for infinitely many n. Therefore

lim sup
n→∞

gi(n, t) + log ρ(A � n) = ∞

since t > s. It follows from the contrapositive of Lemma 4.2(2) that dim∆(C) ≤
t.

5. Scaled non-bi-immunity and compressibility. In this section we intro-
duce some classes involving scales, non-bi-immunity, and compressibility by polynomial-
time reductions and calculate their scaled dimensions.

A Turing machine M is consistent with a language A ⊆ {0, 1}∗ if for all x ∈
{0, 1}∗,

M(x) halts ⇐⇒ M(x) = A(x).

Let t be a time bound. The fast set of M with respect to t is

F t
M = {x ∈ {0, 1}∗ | timeM (x) ≤ t(|x|)}.

Recall that A is not DTIME(t)-bi-immune if there is a machine M consistent with A
such that F t

M is infinite.
Definition. For any time bound t, let X(t) be the class of all languages that are

not DTIME(t)-bi-immune.
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Let A ⊆ {0, 1}∗ and f : {0, 1}∗ → {0, 1}∗. We say that f is a many-one reduction
of A if there is some B ⊆ {0, 1}∗ such that x ∈ A ⇐⇒ f(x) ∈ B. The collision set
of f is

Cf = {si|(∃j < i)f(si) = f(sj)}.

Recall that A is compressible by ≤DTIME(t)
m -reductions if there exists an f ∈ DTIMEF(t)

that is a many-one reduction of A and has Cf infinite [12].
Definition. For any time bound t, let C(t) be the class of all languages that are

compressible by ≤DTIME(t)
m -reductions.

The following theorem asserts that almost every language in E is DTIME(2cn)-

bi-immune [21] and incompressible by ≤DTIME(2cn)
m -reductions [12].

Theorem 5.1 (Mayordomo [21], Juedes and Lutz [12]). For all c ∈ N,

µp(X(2cn)) = µp(C(2cn)) = 0

and

µp
2
(X(2n

c

)) = µp
2
(C(2n

c

)) = 0.

The next two definitions introduce scaled versions of X(t) and C(t).
Definition. For any i ∈ Z, α ∈ [0, 1], and time bound t, let

X(i)
α (t) =

{
A ⊆ {0, 1}∗

∣∣∣∣ (∃M)M is consistent with A and
(∃∞n)#(1, F t

M � n) ≥ n− gi(n, α)

}
.

That is, X
(i)
α (t) consists of the languages that are not DTIME(t)-bi-immune in a

particular strong way: for infinitely many n, all but gi(n, α) of the first n strings can
be decided in less than t time by a consistent Turing machine.

Definition. For any i ∈ Z, α ∈ [0, 1], and time bound t, let

C(i)
α (t) =

{
A ∈ {0, 1}∗

∣∣∣∣ (∃f ∈ DTIMEF(t)) f is a many-one reduction of A
and (∃∞n)#(1, Cf � n) ≥ n− gi(n, α)

}
.

In other words, C
(i)
α (t) is the class of languages compressible by ≤DTIME(t)

m -
reductions where for infinitely many n, all but gi(n, α) of the first n strings have
downward collisions under some reduction.

For α < 1, X
(i)
α (2n) ⊆ X(2n) and C

(i)
α (2n) ⊆ C(2n), and thus Theorem 5.1

implies that X
(i)
α (2n) and C

(i)
α (2n) have measure 0. We now refine this by calculating

their scaled dimensions.
Theorem 5.2. For all i ∈ Z, c ≥ 1, and α ∈ [0, 1],

dim(i)
p (X(i)

α (2cn)) = dim(i)
p (C(i)

α (2cn)) = α

and

dim(i)
p2

(X(i)
α (2n

c

)) = dim(i)
p2

(C(i)
α (2n

c

)) = α.
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Proof. We focus on the p-dimension portion of the theorem; the argument for
p2-dimension is identical. Let α ∈ (0, 1) and let s, t > 0 be arbitrary rationals with
s < α < t. It suffices to show that

s ≤ dim(i)
p (X(i)

α (2cn)) ≤ dim(i)
p (C(i)

α (2cn)) ≤ t.

The inequality dim(i)
p (X

(i)
α (2cn)) ≤ dim(i)

p (C
(i)
α (2cn)) holds because of the inclusion

X
(i)
α (2cn) ⊆ C

(i)
α (2cn).

For the lower bound, let ρ be any p-computable measure; assume without loss
of generality that ρ(λ) ≤ 1. We define a language A inductively by lengths. Let
s < s′′ < s′ < α with s′ rational. The first �gi(2n, s′)� bits of A=n are set by
diagonalization to minimize ρ. The remaining 2n − �gi(2n, s′)� bits are identically 0.

More formally, if x is the characteristic string of A≤n−1, we choose v ∈ {0, 1}�gi(2
n,s′)�

so that ρ(xv) is minimized, and we let A=n have characteristic string v02n−�gi(2n,s′)�.
Then A is in X

(i)
α (2cn). Let w � A, and let n be such that 2n − 1 ≤ |w| < 2n+1 − 1.

Then

log ρ(w) ≤

⎛
⎝n−1∑

j=0

−gi(2
j , s′)

⎞
⎠− min {|w| − (2n − 1), gi(2

n, s′)} ,

which is at most −gi(|w|, s′′) if |w| is sufficiently large by Lemma 5.3 below. Then

log ρ(w) + gi(|w|, s) ≤ −gi(|w|, s′′) + gi(|w|, s),

and thus

lim
n→∞

log ρ(A � n) + gi(n, s) = −∞

since s′′ > s. Since ρ is an arbitrary p-computable measure, the contrapositive of

Lemma 4.2(1) implies that dim(i)
p (X

(i)
α (2cn)) ≥ s.

Now we prove the upper bound. Let A ∈ C
(i)
α (2cn) by a function f ∈ DTIMEF(2cn).

Define a measure ρ inductively by ρ(λ) = 1 and for all w ∈ {0, 1}∗, b ∈ {0, 1},
1. if f(si) �= f(s|w|) for all i < |w|, then

ρ(wb) =
ρ(w)

2
;

2. otherwise, let i = min{i < |w| | f(si) = f(s|w|)} and define

ρ(wb) =

{
ρ(w) if b = w[i],

0 if b �= w[i].

Then for all w � A,

log ρ(w) = −#(0, Cf � |w|)
= #(1, Cf � |w|) − |w|.

Whenever #(1, Cf � n) ≥ n− gi(n, α), we have

gi(n, t) + log ρ(A � n) = gi(n, t) + #(1, Cf � n) − n

≥ gi(n, t) − gi(n, α).
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This happens infinitely often; thus

lim sup
n→∞

gi(n, t) + log ρ(A � n) = ∞

because t > α. Also, ρ is computable in O(|w| · 2c log |w|) = O(|w|c+1) time. Such a

ρ can be defined for each A ∈ C
(i)
α (2cn), and thus dim(i)

p (C
(i)
α (2cn)) ≤ t follows by

Theorem 4.6.
Lemma 5.3. Let i ∈ Z, 0 < r < r′ < 1. Then for all sufficiently large n and k

with 2n − 1 ≤ k < 2n+1 − 1,

n−1∑
j=0

gi(2
j , r′) + min{k − (2n − 1), gi(2

n, r′)} ≥ gi(k, r).

Proof. If i = 0, then the left-hand side is

r′(2n − 1) + min{k − (2n − 1), r′2n} ≥ r′k = g0(k, r
′) > g0(k, r).

If i = 1, then the left-hand side is

n−1∑
j=0

2jr
′
+ min{k − (2n − 1), 2nr

′} > 2(n−1)r′ > 2(n+1)r > kr = g1(k, r)

when n is large enough. The argument for i > 1 is similar.
If i = −1, then the left-hand side is

2n − 1 −
n−1∑
j=0

2j(1−r′) + n + min{k − (2n − 1), 2n − 2n(1−r′) + 1}

≥ k − (n + 1)2n(1−r′)

≥ k − 2n(1−r) + 1

= g−1(k, r)

if n is sufficiently large. The argument for i < −1 is similar.

6. Small span theorem. In this section we establish our small span theorem
for scaled dimension. We begin with a simple, but important, lemma about the scales.

Lemma 6.1. For all k ≥ 1 and s, t ∈ (0, 1), g3(2
nk

, s) = o(g2(2
n, t)).

Proof. We have

g3(2
nk

, s) = 22

(
log log 2n

k
)s

= 22(k log n)s

and

g2(2
n, t) = 2(log 2n)t = 2n

t

= 22t log n

.

The lemma holds since (k log n)s = o(t log n).
Juedes and Lutz [12] proved that the upper spans of incompressible languages

are small. Specifically, for any language A ∈ EXP that is incompressible by ≤p
m-

reductions, they showed that µp2
(P−1

m (A)) = 0, and if additionally A ∈ E, then
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µp(P−1
m (A)) = 0. The following theorem is a scaled dimension analogue of this. For

any i ∈ Z, let

C(i)
α (poly) =

⋃
c∈N

C(i)
α (nc + c).

Theorem 6.2. Let α ∈ (0, 1).

1. Let ∆ ∈ {p,pspace}. For any B ∈ R(∆)−C
(1)
α (poly), dim

(−3)
∆ (P−1

m (B)) = 0.

2. Let ∆ ∈ {p
2 ,p2space}. For any B ∈ R(∆)−C

(2)
α (poly), dim

(−3)
∆ (P−1

m (B)) =
0.

Proof. We first give the proof for ∆ = p. Let B ∈ E − C
(1)
α (poly) and let M be

a Turing machine that decides B in O(2cn) time. Assume B ≤p
m C via f where f is

computable in nk time almost everywhere. Then for all sufficiently large n,

f({0, 1}≤n) ⊆ {0, 1}≤nk

(6.1)

and ∣∣f({0, 1}≤n)
∣∣ ≥ g1(2

n+1 − 1, α) ≥ g1(2
n, α),(6.2)

with the latter holding because B �∈ C
(1)
α (poly).

Let r ∈ N such that 1
r < α. Define d : N → N by d(n) = �n/r�. For each n ∈ N

we define a measure ρn : {0, 1}∗ → [0, 1] by

ρn(λ) = 2−n

and for all w ∈ {0, 1}∗ and b ∈ {0, 1},
1. If |w| < 2d(n) or

[
(∀i < 2n+1 − 1)f(si) �= f(s|w|)

]
, then

ρn(wb) =
ρn(w)

2
.

2. Otherwise, let i = min
{
i < 2n+1 − 1

∣∣ f(si) = f(s|w|)
}

and define

ρn(wb) =

{
ρn(w) if b = B[i],

0 if b �= B[i].

If |w| < 2d(n), then ρn(w) is computable in O(|w|) time. If |w| ≥ 2d(n), we can
compute ρn(w) by using 2n+1 − 1 = O(|w|n/d(n)) = O(|w|r) computations of M and
f on strings with length at most n = O(log |w|). Therefore ρn(w) is computable in
O(|w|r(2c log |w| + (log |w|)k)) = O(|w|r+c) time for all w ∈ {0, 1}∗.

Let wn = C � 2n
k+1 − 1 be the characteristic string of C≤nk . Then letting

m(n) =
∣∣∣ {j < |wn|

∣∣(∀i < 2n+1 − 1)f(si) �= f(sj)
} ∣∣∣,

we have

ρn(wn) ≥ ρn(λ)2−2d(n)−m(n) = 2−2d(n)−m(n)−n.

By (6.1) and (6.2), we have

m(n) ≤ 2n
k+1 − 1 − g1(2

n, α)
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if n is sufficiently large. In this case,

log ρn(wn) ≥ g1(2
n, α) − 2d(n) − 2n

k+1 − n.(6.3)

The function ρ : {0, 1}∗ → [0,∞) defined by

ρ(w) =
∞∑

n=0

ρn(w)

for all w is a measure by linearity. Notice that ρ(w) can be approximated to a precision
of 2−l in O(|w|r+cl) time by adding the first l + 1 terms of the sum.

Using (6.3), for all sufficiently large n, we have

g−3(|wn|, s) + log ρn(wn) = 2n
k+1 + 4 − g3(2

nk+1 − 1, 1 − s) + log ρn(wn)

≥ g1(2
n, α) − g3(2

nk+1 − 1, 1 − s) − 2d(n) − n.

By Lemma 6.1, g3(2
nk+1 − 1, 1 − s) = o(g1(2

n, α)). Also, 2d(n) = 2�n/r	 is little-o of
g1(2

n, α) = 2αn because α > 1/r. Using these facts, it follows that

lim sup
n→∞

g−3(n, s) + log ρn(C � n) = ∞.

Appealing to Theorem 4.6, we establish dim(−3)
p (P−1

m (B)) ≤ s. As s > 0 is arbitrary,
the ∆ = p part of the theorem holds. The argument is identical for ∆ = pspace.

The proof for ∆ ∈ {p
2
,p

2
space} is very similar, so we sketch only the differences

for ∆ = p
2
. Let B ∈ EXP − C

(2)
α (2n) and let M be a Turing machine that decides

B in O(2n
c

) time. Assume B ≤p
m C via f . The measures ρn and ρ are defined in

the same way, except we use a different function d(n). For this, we let r > 1/α
and define d(n) = �nε�, where ε = 1/r. Then, if |w| ≥ 2d(n), as before we can
compute ρn(w) by using 2n+1 − 1 computations of M and f on strings with length

at most n = O(log |w|). Since 2n = 2(log 2nε
)r = O(2(log |w|)r ), we can compute ρn(w)

in O(2(log |w|)r · 2(log |w|)c) = O(2(log |w|)max(r,c)

) time. Instead of (6.3), we arrive at

log ρn(wn) ≥ g2(2
n, α) − 2d(n) − 2n

k+1 − n. The proof is completed in the same way
using the fact that 2d(n) = o(g2(2

n, α)) because ε < α.
We are now ready to prove our main theorem.
Theorem 6.3.

1. Let ∆ ∈ {p,pspace}. For every A ∈ R(∆),

dim(1)(Pm(A) | R(∆)) = 0

or

dim(−3)(P−1
m (A) | R(∆)) = dim

(−3)
∆ (P−1

m (A)) = 0.

2. Let ∆ ∈ {p2 ,p2space}. For every A ∈ R(∆),

dim(2)(Pm(A) | R(∆)) = 0

or

dim(−3)(P−1
m (A) | R(∆)) = dim

(−3)
∆ (P−1

m (A)) = 0.
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Proof. Let ∆ ∈ {p,pspace} and let A ∈ R(∆). As in the proof of the small span
theorem in [12], we consider two cases.

(I) Suppose that

Pm(A) ∩R(∆) ⊆
⋂

α∈(0,1)

C(1)
α (2n).

Then dim
(1)
∆ (Pm(A) ∩ R(∆)) ≤ dim(1)

p (C
(1)
α (2n)) ≤ α by Theorem 5.2 for all

α ∈ (0, 1), and thus dim(1)(Pm(A) | R(∆)) = dim
(1)
∆ (Pm(A) ∩R(∆)) = 0.

(II) Otherwise, there is an α ∈ (0, 1) such that

Pm(A) ∩R(∆) �⊆ C(1)
α (2n).

Let B ∈ Pm(A)∩R(∆)−C
(1)
α (2n). Then by Theorem 6.2, dim

(−3)
∆ (P−1

m (B)) = 0.

Since P−1
m (A) ⊆ P−1

m (B), we have dim
(−3)
∆ (P−1

m (A)) = 0.
Part 2 is proved in the same way.

Theorem 6.3 implies that there is a small span theorem for −3rd-order scaled
dimension, but it is stronger than the following.

Corollary 6.4. For every A ∈ R(∆),

dim(−3)(Pm(A) | R(∆)) = 0

or

dim(−3)(P−1
m (A) | R(∆)) = dim

(−3)
∆ (P−1

m (A)) = 0.

Proof. This follows immediately from Theorem 6.3 using Theorem 3.2.
The small span theorem of Juedes and Lutz [12] is also a corollary.
Corollary 6.5 (Juedes and Lutz [12]). Let ∆ ∈ {p,p

2
}. For every A ∈ R(∆),

µ(Pm(A) | R(∆)) = 0

or

µ(P−1
m (A) | R(∆)) = µ∆(P−1

m (A)) = 0.

Proof. This follows immediately from Theorem 6.3 and Lemma 3.1.
We also have the following regarding the scaled dimensions of the hard languages

for EXP and NP.
Corollary 6.6.

1. dim(−3)
p (Hp

m(EXP)) = dim(−3)
p2

(Hp
m(EXP)) = 0.

2. If dim(1)(NP | E) > 0, then dim(−3)
p (Hp

m(NP)) = 0.

3. If dim(2)(NP | EXP) > 0, then dim(−3)
p2

(Hp
m(NP)) = 0.

Proof. Let H ∈ Cp
m(E). Then also H ∈ Cp

m(EXP), so P−1
m (H) = Hp

m(EXP).
Since dim(Pm(H) | E) = dimp(E) = 1, Theorem 6.3 tells us that dimp(Hp

m(EXP)) =
dimp(P−1

m (H)) = 0.
Parts 2 and 3 follow from Theorem 6.3 using any NP-complete language A.
Juedes and Lutz [12] concluded from their small span theorem that every ≤p

m-
degree has measure 0 in E and in EXP. From Theorem 6.3 we similarly derive a
stronger version of this fact: every ≤p

m-degree actually has −3rd-order dimension 0.
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Corollary 6.7. For every A ⊆ {0, 1}∗,

dim(−3)(degp
m(A) | R(∆)) = 0.

Proof. If degp
m(A) is disjoint from R(∆), then dim(−3)(degp

m(A) | R(∆)) =

dim(−3)
p (∅) = 0, so assume that there is some B ∈ degp

m(A) ∩ R(∆). Because
degp

m(A) = degp
m(B) = Pm(B) ∩ P−1

m (B), we have

dim(−3)(degp
m(A) | R(∆)) ≤ dim(−3)(Pm(B) | R(∆))

and

dim(−3)(degp
m(A) | R(∆)) ≤ dim(−3)(P−1

m (B) | R(∆)).

By Corollary 6.4, we have either dim(−3)(Pm(B) | R(∆)) = 0 or dim(−3)(P−1
m (B) |

R(∆)) = 0. Therefore dim(−3)(degp
m(A) | R(∆)) = 0.

The ≤p
m-complete languages for any complexity class have −3rd-order dimension

0 in every R(∆).

Corollary 6.8. For any class D of languages, dim(−3)(Cp
m(D) | R(∆)) = 0.

Proof. If Cp
m(D) = ∅, this is trivial. Assume Cp

m(D) �= ∅ and let A ∈ Cp
m(D). Then

Cp
m(D) ⊆ degp

m(A), so this follows from Corollary 6.7.

7. Lower spans versus degrees in orders −2 through 2. We now present
some results that stand in contrast to the small span theorem of the previous section.
We begin by extending the work of Ambos-Spies et al. [2] to show that lower spans
and degrees have the same scaled dimension in orders i with |i| ≤ 2.

Theorem 7.1. For any A ∈ R(∆) and −2 ≤ i ≤ 2,

dim(i)(degp
m(A) | R(∆)) = dim(i)(Pm(A) | R(∆))

and

dim
(i)
∆ (degp

m(A)) = dim
(i)
∆ (Pm(A)).

Proof. We write the proof for dimension in R(p) = E; the rest of the theorem is
proved in the same manner. The proof is based on [2].

Let A ∈ E be decidable in O(2cn) time. By monotonicity, dim(i)(degp
m(A) | E) ≤

dim(i)(Pm(A) | E). For the other inequality, let t > s > dim(i)(degp
m(A) | E). By

Lemmas 4.2 and 4.3, for some l ∈ N there is an exactly nl-time computable measure
ρ satisfying

lim sup
m→∞

gi(m, s) + log ρ(C � m) = ∞(7.1)

for all C ∈ degp
m(A) ∩ E.

Letting k ≥ 1 be a natural number to be specified later, we define a padding
function f : {0, 1}∗ → {0, 1}∗ by

f(x) = 0|x|
k−|x|x

for all x. Let R = f({0, 1}∗) be the range of f .
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Let B ∈ Pm(A). We define another language B′ as

B′ = (B −R) ∪ f(A).

Then B′ ∈ degp
m(A). Intuitively, B′ is a language that is very similar to B but has A

encoded sparsely in it. Define a function τ : {0, 1}∗ → {0, 1}∗ inductively by τ(λ) = 1
and

τ(wb) =

⎧⎪⎨
⎪⎩
τ(w)b if s|w| �∈ R,

τ(w)1 if s|w| ∈ R ∩B′,

τ(w)0 if s|w| ∈ R−B′

for all w ∈ {0, 1}∗ and b ∈ {0, 1}. Notice that

τ(B � n) = B′ � n

for all n.
Define a measure γ by γ(λ) = 1 and

γ(wb) =

{
γ(w)

2 if s|w| ∈ R,
ρ(τ(w)b)
ρ(τ(w)) γ(w) if s|w| �∈ R

for all w ∈ {0, 1}∗ and b ∈ {0, 1}. Intuitively, γ is designed to have performance on B
that is similar to ρ’s performance on B′. This is done by mimicking the conditional
probabilities of ρ for strings that are not in R. Note that γ(w) can be exactly computed
in O(|w| · (|w|l + 2c log |w|) = O(|w|max(l,c)+1) time.

Let n ∈ N and let 2(n−1)k+1 ≤ m ≤ 2n
k+1 − 1. Then

log γ(B � m) =
∑

1≤i≤m

log
γ(B � i)

γ(B � i− 1)

=
∑

1≤i≤m
si 
∈R

log
ρ(τ(B � i− 1)B[i])

ρ(τ(B � i− 1))
+

∑
1≤i≤m
si∈R

log
1

2

=
∑

1≤i≤m
si 
∈R

log
ρ(B′ � i)

ρ(B′ � i− 1)
−
∣∣{1 ≤ i ≤ m | si ∈ R}

∣∣

≥
∑

1≤i≤m

log
ρ(B′ � i)

ρ(B′ � i− 1)
−
∣∣{1 ≤ i ≤ 2n

k+1 − 1 | si ∈ R}
∣∣

= log ρ(B′ � m) −
n∑

i=0

2n

= log ρ(B′ � m) − 2n+1 + 1.

Now assume that gi(m, s) + log ρ(B′ � m) ≥ 1. Then we have gi(m, t) + log γ(B �
m) ≥ 1 if

2n+1 + gi(m, s) < gi(m, t).(7.2)

To establish

lim sup
n→∞

gi(m, t) + log γ(B � m) ≥ 1,(7.3)
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it now suffices to show we can choose k so that (7.2) holds for all sufficiently large m.
For each −2 ≤ i ≤ 2, we now give an appropriate choice of k that yields this.

• i = 2: Let k > 1/t. Then g2(m, t) ≥ g2(2
(n−1)k , t) = 2(n−1)kt

, so 2n+1 =
o(g2(m, t)) because kt > 1. Also, g2(m, s) = o(g2(m, t)) since s < t, so (7.2)
holds when m is sufficiently large.

• i = 1: Let k = 2. Then g1(m, t) ≥ g1(2
(n−1)2 , t) = 2t(n−1)2 , so 2n+1 =

o(g1(m, t)). Also, g1(m, s) = o(g1(m, t)), so (7.2) holds for sufficiently large
m.

• i = 0: Let k = 2. Then g0(m, t) ≥ g0(2
(n−1)2 , t) = t2(n−1)2 , so 2n+1 =

o(g0(m, t)). Also, g0(m, s) = o(g0(m, t)), so (7.2) holds for sufficiently large
m.

• i = −1: We have g−1(m, t) = m + 1 − g1(m, 1 − t), so (7.2) is true if 2n+1 +
g1(m, 1− t) < g1(m, 1− s). Taking k = 2, this follows from the argument for
i = 1 above since 1 − s > 1 − t.

• i = −2: Just as in the i = −1 case, (7.2) is true if 2n+1 + g2(m, 1 − t) <
g2(m, 1 − s). Taking k > 1/(1 − s), this follows from the argument for i = 2
above since 1 − s > 1 − t.

For each B ∈ Pm(A), we have given a O(nmax(l,c))-time computable measure γ

such that (7.3) holds. By Theorem 4.6, dim(i)(Pm(A) | E) ≤ t. As t > dim(i)(degp
m(A) |

E) is arbitrary, this establishes dim(i)(Pm(A) | E) ≤ dim(i)(degp
m(A) | E).

Theorem 7.1 for (unscaled) dimension was proved in [2] for ∆ = p.
Corollary 7.2 (Ambos-Spies et al. [2]). For any A ∈ E,

dim(degp
m(A) | E) = dim(Pm(A) | E)

and

dimp(degp
m(A)) = dimp(Pm(A)).

Theorem 7.1 implies that Theorem 6.3 cannot be improved in one respect. For
any i, j ∈ Z, let SST[i, j] be the following statement.

SST[i, j]: For every A ∈ E,dim(i)(Pm(A) | E) = 0 or dim(j)(P−1
m (A) | E) = 0.

Let H ∈ Cp
m(E). Then

dim(i)(Pm(H) | E) = dim(i)(E | E) = 1

for all i and dim(−2)(degp
m(H) | E) = 1 by Theorem 7.1, which in turn implies

dim(−2)(P−1
m (H) | E) = 1.

Therefore, SST[i, j] is false if j ≥ −2. Theorem 6.3 says that SST[1,−3] is true; now
we know that the −3 in it cannot be improved to −2.

We have the following corollary regarding the classes of complete sets for E, EXP,
and NP.

Corollary 7.3. Let −2 ≤ i ≤ 2.
1. dim(i)(Cp

m(E) | E) = dim(i)(Cp
m(EXP) | EXP) = 1.

2. dim(i)(NP | E) = dim(i)(Cp
m(NP) | E).

3. dim(i)(NP | EXP) = dim(i)(Cp
m(NP) | EXP).
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Proof. Let H ∈ Cp
m(E). Then Cp

m(E) = degp
m(H) ∩ E, so dim(i)(Cp

m(E) | E) =

dim(i)(degp
m(H) | E) = dim(i)(Pm(H) | E) = dim(i)

p (E) = 1 by Theorem 7.1. The
other statements follow similarly.

We can now observe a difference between the −3rd- and −2nd-order scaled di-
mensions regarding complete degrees. Corollaries 6.8 and 7.3 together with Theorem
3.2 tell us that for D ∈ {E,EXP},

dim(i)(Cp
m(D) | D) =

{
0 if i ≤ −3,

1 if i ≥ −2

and

dim(i)(Cp
m(NP) | D) =

{
0 if i ≤ −3,

dim(i)(NP | D) if i ≥ −2.

In section 9 we will discuss the scaled dimension of Cp
m(E) within ESPACE. The

following extension of Theorem 7.1 will be useful.
Theorem 7.4. For all −2 ≤ i ≤ 2,

dim(i)(Cp
m(E) | ESPACE) = dim(i)(E | ESPACE).

Proof. We use the construction from the proof of Theorem 7.1. Let t > s >
dim(i)(Cp

m(E) | ESPACE) and take an exactly nl-space computable measure ρ satisfy-
ing (7.1) for all C ∈ Cp

m(E). Fix an A ∈ Cp
m(E). For any B ∈ E, the set B′ constructed

from A and B is in Cp
m(E). The arguments then show dim(i)(E | ESPACE) ≤ t.

8. ≤p
1−tt-lower spans versus ≤p

m-lower spans. Theorem 7.1 is also true for
most other polynomial-time reducibilities. (This fact was mentioned in [2] for Corol-
lary 7.2 when it was proved.) To replace ≤p

m by ≤p
r in the theorem, we need only to

have B′ ∈ degp
r (A) for the set B′ that was constructed in the proof from B ∈ Pr(A).

In particular, Theorem 7.1 is true for the ≤p
1−tt reducibility. In this section we show

that this holds because of another reason: the scaled dimensions of ≤p
1−tt-lower spans

and ≤p
m-lower spans are always the same.

The following proposition was used to show that a set is weakly ≤p
m-complete for

exponential time if and only if it is ≤p
1−tt-complete.

Proposition 8.1 (Ambos-Spies et al. [1]). Let A ≤p
1−tt B. Then there is a

language C ∈ P such that

Â = (A ∩ C) ∪ (Ac ∩ Cc) ≤p
m B.

The idea of the following lemma also comes from [1].
Lemma 8.2. Let i ∈ Z. Let C, Ĉ be classes of languages such that for any

A ∈ C, there is some C ∈ R(∆) such that Â = (A ∩ C) ∪ (Ac ∩ Cc) ∈ Ĉ. Then

dim
(i)
∆ (C) ≤ dim

(i)
∆ (Ĉ).

Proof. We prove this for ∆ = p. The other cases are proved by identical argu-
ments.

Let s > dim(i)
p (Ĉ) be rational and obtain ρ computable in O(nr) time from Lemma

4.2 such that

lim sup
n→∞

gi(n, s) + log ρ(Â � n) = ∞(8.1)
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for all Â ∈ Ĉ.
Let A ∈ C and let C ∈ DTIME(nk) such that Â = (A∩C)∪ (Ac∩Cc) ∈ Ĉ. Define

a function τ : {0, 1}∗ → {0, 1}∗ by

τ(w)[j] =

{
w[j] if sj ∈ C,

1 − w[j] if sj �∈ C

for each 0 ≤ j < |w|. Define another measure ρ′ by

ρ′(w) = ρ(τ(w)).

Then for all n,

ρ′(A � n) = ρ(τ(A � n)) = ρ(Â � n).

Therefore

lim sup
n→∞

gi(n, s) + log ρ′(A � n) = ∞

because of (8.1). As ρ′ is computable in time O(|w| · (log |w|)k + |w|r), it follows by

Theorem 4.6 that dim(i)
p (C) ≤ s.

We now show that the scaled dimension of a ≤p
m-lower span is always equal to

the scaled dimension of the ≤p
1−tt-lower span.

Theorem 8.3. Let B ⊆ {0, 1}∗ and let i ∈ Z. Then

dim
(i)
∆ (Pm(B)) = dim

(i)
∆ (P1−tt(B))

and

dim(i)(Pm(B) | R(∆)) = dim(i)(P1−tt(B) | R(∆)).

Proof. By Proposition 8.1, for each A ∈ P1−tt(B) there is a language C ∈ P such
that Â = (A ∩ C) ∪ (Ac ∩ Cc) ∈ Pm(B). Let Ĉ be the set of all such Â as A ranges
over P1−tt(B). Then by Lemma 8.2,

dim
(i)
∆ (P1−tt(B)) ≤ dim

(i)
∆ (Ĉ).

As Ĉ ⊆ Pm(B) ⊆ P1−tt(B), we also have

dim
(i)
∆ (Ĉ) ≤ dim

(i)
∆ (Pm(B)) ≤ dim

(i)
∆ (P1−tt(B)),

so the first equality holds. The proof for dimension in R(∆) is analogous.
We can now give a stronger version of Theorem 7.1.
Corollary 8.4. For any A ∈ R(∆) and −2 ≤ i ≤ 2,

dim(i)(Pm(A) | R(∆)) = dim(i)(degp
m(A) | R(∆))

� �

dim(i)(P1−tt(A) | R(∆)) = dim(i)(degp
1−tt(A) | R(∆)),

and similarly when dim(i)(· | R(∆)) is replaced by dim
(i)
∆ (·).
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Proof. From Theorems 7.1 and 8.3 we have

dim(i)(degp
m(A) | R(∆)) = dim(i)(Pm(A) | R(∆)) = dim(i)(P1−tt(A) | R(∆)).

By monotonicity, we have

dim(i)(degp
m(A) | R(∆)) ≤ dim(i)(degp

1−tt(A) | R(∆)) ≤ dim(i)(P1−tt(A) | R(∆)),

so the corollary follows. The proof for dim
(i)
∆ (·) is analogous.

Theorem 8.3 also yields a strengthening of Theorem 6.3: the Pm(A) in it can be
replaced by P1−tt(A). In fact, it is also possible to replace the P−1

m (A) in Theorem
6.3 by P−1

1−tt(A) by extending Theorems 5.2 and 6.2 to deal with ≤p
1−tt-reductions.

We omit the details.

9. The scaled dimension of Cp
m(E) in ESPACE. Lutz [17] proved a small

span theorem for nonuniform Turing reductions in ESPACE. This implies that Cp
m(E)

has measure 0 in ESPACE. In Corollary 6.8 we saw that Cp
m(E) actually has −3rd-

order scaled dimension 0 in ESPACE. In this section we show that determining the
−2nd- or −1st-order scaled dimension of Cp

m(E) in ESPACE would yield a proof of
P = BPP or P �= PSPACE.

The P = BPP hypothesis was related to the measure of E in ESPACE by Lutz
[15].

Theorem 9.1 (Lutz [15]). If µ(E | ESPACE) �= 0, then P = BPP.
We will extend this result to scaled dimension. We now recall the tools Lutz used

to prove it.
Nisan and Wigderson [22] showed that BPP can be derandomized if there is

a decision problem in E that requires exponential-size circuits to be approximately
solved. The hardness of a decision problem at a given length is the minimum size of a
circuit that can approximately solve it. The details of the definition of this hardness
are not needed in this paper; we need only to recall existing results regarding classes
of languages with exponential hardness.

Definition. Let Hα be the class of all languages that have hardness at least 2αn

almost everywhere in the sense of [22].
The aforementioned derandomization of BPP can be stated as follows.
Theorem 9.2 (see Nisan and Wigderson [22]). If E ∩Hα �= ∅ for some α > 0,

then P = BPP.
We will also need space-bounded Kolmogorov complexity.
Definition. Given a machine M , a space bound s : N → N, a language L ⊆ {0, 1}∗,

and a natural number n, the s-space-bounded Kolmogorov complexity of L=n with
respect to M is

KSs
M (L=n) = min

{
|π|

∣∣∣M(π, n) = χL=n in ≤ s(2n) space
}
,

i.e., the length of the shortest program π such that M , on input (π, n), outputs the
characteristic string of L=n and halts without using more than s(2n) workspace.

Well-known simulation techniques show that there exists a machine U which is
optimal in the sense that for each machine M there is a constant c such that for all
s, L, and n we have

KScs+c
U (L=n) ≤ KSs

M (L=n) + c.

As usual, we fix such a universal machine and omit it from the notation.
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Definition. For each space bound s : N → N and function f : N → N define the
complexity class

KSs
i.o.(f) = {L ⊆ {0, 1}∗ | (∃∞n)KSs(L=n) < f(n)}.

Lutz showed that Hα has measure 1 in ESPACE (i.e., that Hc
α has measure 0 in

ESPACE) if α < 1/3 by showing that languages not in Hα have low space-bounded
Kolmogorov complexity.

Lemma 9.3 (Lutz [15]). There exist a polynomial q and a constant c such that
for all 0 < α < β < 1,

Hc
α ⊆ KSq

i.o.(2
n − c2(1−2α)n + 2βn).

The class on the right-hand side in Lemma 9.3 has measure 0 in ESPACE [16].
The scaled dimensions of similar space-bounded Kolmogorov complexity classes were
studied in [11].

Theorem 9.4 (see Hitchcock, Lutz, and Mayordomo [11]). For any i ≤ −1,
polynomial q(n) = Ω(n2), and α ∈ [0, 1],

dim(i)(KSq
i.o.(gi(2

n, α)) | ESPACE) = α.

Lemma 9.3 and Theorem 9.4 provide an easy upper bound on the −1st-order
scaled dimension of Hc

α in ESPACE.
Corollary 9.5. If 0 < α < 1/3, then

dim(−1)(Hc
α | ESPACE) ≤ 2α.

Proof. Let ε > 0 and β ∈ (α, 1 − 2α). Then for all sufficiently large n,

2n − c2(1−2α)n + 2βn < 2n + 1 − 2(1−2α−ε)n

= g−1(2
n, 2α + ε),

so Lemma 9.3 implies Hc
α ⊆ KSq

i.o.(g−1(2
n, 2α+ε)). Therefore dim(−1)(Hc

α | ESPACE) ≤
2α + ε by Theorem 9.4.

We can now state a stronger version of Theorem 9.1. The hypothesis has been
weakened, but the conclusion remains the same.

Theorem 9.6. If dim(−1)(E | ESPACE) > 0, then P = BPP.

Proof. Assume the hypothesis and let s = min{1/2,dim(−1)(E | ESPACE)}.
Then by Corollary 9.5, E �⊆ Hc

s/2, i.e., E∩Hs/2 �= ∅. Therefore P = BPP by Theorem
9.2.

We now relate the scaled dimension of Cp
m(E) to the P

?
= PSPACE and P

?
= BPP

problems.
Theorem 9.7. For i ∈ {−2,−1},

dim(i)(Cp
m(E) | ESPACE) < 1 ⇒ P �= PSPACE

and

dim(i)(Cp
m(E) | ESPACE) > 0 ⇒ P = BPP.
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Proof. From Theorem 7.4 we know that dim(i)(Cp
m(E) | ESPACE) = dim(i)(E |

ESPACE). Also, dim(i)(E | ESPACE) < 1 implies E �= ESPACE, which implies
P �= PSPACE [5]. This proves the first implication. The second one follows from

Theorem 9.6 since dim(i)(Cp
m(E) | ESPACE) > 0 implies dim(−1)(E | ESPACE)

> 0.
In other words, establishing any nontrivial upper or lower bound on dim(−1)(Cp

m(E) |
ESPACE) or dim(−2)(Cp

m(E) | ESPACE) would derandomize BPP or separate P from
PSPACE. This is in contrast to the unconditional facts from Corollaries 6.7 and 7.3
that

dim(−3)(Cp
m(E) | E) = 0

and

dim(−2)(Cp
m(E) | E) = dim(−1)(Cp

m(E) | E) = 1.

10. Conclusion. Our main results, Theorems 6.3 and 7.1, use resource-bounded
scaled dimension to strengthen from both ends the contrasting theorems of Juedes
and Lutz [12] and Ambos-Spies et al. [2] regarding spans under polynomial-time re-
ductions.

1. The small span theorem for ≤p
m-reductions [12] was strengthened from mea-

sure to −3rd-order scaled dimension. (In fact, Theorem 6.3 is even stronger
than this.)

2. The result that lower spans and degrees have the same dimension [2] was
extended to all orders −2 ≤ i ≤ 2 of scaled dimension. This implies that
there is no small span theorem in −2nd-order scaled dimension.

These results suggest that the contrast between the −2nd- and −3rd-orders of
resource-bounded scaled dimension will be useful for studying complexity classes in-
volving polynomial-time reductions. For example, regarding the many-one complete
degree of NP, Corollaries 6.7 and 7.3 say that

dim(−3)(Cp
m(NP) | E) = 0

and

dim(−2)(Cp
m(NP) | E) = dim(−2)(NP | E).

Scaled dimension therefore provides two different types of dimension for studying NP.
The NP-complete degree provides all the dimension of NP in order −2, but in order
−3 the NP-complete degree unconditionally has dimension 0.
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Abstract. We solve an open problem concerning the mixing time of symmetric random walk
on the n-dimensional cube truncated by a hyperplane, showing that it is polynomial in n. As
a consequence, we obtain a fully polynomial randomized approximation scheme for counting the
feasible solutions of a 0-1 knapsack problem. The results extend to the case of any fixed number of
hyperplanes. The key ingredient in our analysis is a combinatorial construction we call a “balanced
almost uniform permutation,” which is of independent interest.
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1. Introduction. For a positive real vector a = (ai)
n
i=1 and real number b, let

Ω denote the set of 0-1 vectors x = (xi)
n
i=1 for which

a · x ≡
n∑

i=1

aixi ≤ b.

Geometrically, we can view Ω as the set of vertices of the n-dimensional cube {0, 1}n
which lie on one side of the hyperplane a · x = b. Combinatorially, Ω is the set of
feasible solutions to the 0-1 knapsack problem defined by a and b: if we think of
the ai as the weights of a set of n items and b as the capacity (weight limit) of a
knapsack, then there is a 1-1 correspondence between vectors x ∈ Ω and subsets of
items X whose aggregated weight does not exceed the knapsack capacity, given by
X = {i : xi = 1}. We shall write a(X) for the weight of X, i.e., a(X) =

∑
i∈X ai.

This paper is concerned with the natural nearest neighbor random walk on the
“truncated cube” GΩ (i.e., the subgraph of the cube induced by Ω), in which the
probability of moving to any neighbor is 1

n . In the knapsack terminology, this walk is
described by the following transition rule from any state X ∈ Ω:

1. with probability 1
2 do nothing; else

2. pick an item i ∈ {1, . . . , n} uniformly at random (u.a.r.);
3. if i ∈ X, move to X −{i}; if i /∈ X and a(X ∪ {i}) ≤ b, move to X ∪ {i}; else

do nothing.
(We have added a uniform holding probability of 1

2 at every state to avoid technical
issues involving periodicity.)
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It is easy to check that this walk converges to the uniform distribution over Ω for
any choice of a and b. Our main concern in this paper is with the number of steps
required until the distribution is close to uniform, starting from an arbitrary initial
state. We refer to this as the mixing time of the walk (see section 2 for a precise
definition).

The question of determining good bounds on the mixing time of this random walk
has been posed as an open problem in several places (e.g., [5, 12, 14, 17]) and is of
interest for two main reasons. First, despite the development over the past decade of
several powerful tools for analyzing the mixing time of combinatorial Markov chains,
which have led to a string of surprising results in the field (see, e.g., [12, 9, 14, 17]
for surveys), this natural and deceptively simple example remains a challenge to all
existing techniques. In particular, the mixing time is not known to be bounded by
any polynomial function of n. There is strong geometric intuition that it should
be: random walk on the entire cube {0, 1}n has a mixing time of only O(n log n),
and truncation by a hyperplane presumably cannot create “bottlenecks” that would
severely slow down convergence. Nonetheless, the best known bound on the mixing
time remains exp

(
O(

√
n(log n)5/2)

)
[5], which beats the trivial bound of exp(O(n))

but is still exponential.

The second reason for the interest in this random walk is its connection to ap-
proximate counting. Because the walk converges to the uniform distribution over Ω,
it provides an algorithm for sampling (almost) uniformly at random from Ω: just sim-
ulate the walk for sufficiently many steps, starting from an arbitrary vertex of GΩ ,
and output the final vertex. (This is often known as the “Markov chain Monte Carlo”
paradigm.) The running time of the algorithm will be essentially the mixing time
of the walk. Now by a well-known relationship based on self-reducibility, for most
natural combinatorial structures (including 0-1 knapsack solutions) the problems of
approximate counting and of sampling from an (almost) uniform distribution are
polynomial time reducible to one another [13, 12]. Therefore, a proof that the above
random walk has mixing time polynomial in n would immediately imply the existence
of a polynomial time approximation algorithm (actually a full polynomial random-
ized approximation scheme, or fpras [12]) for computing |Ω|, the number of feasible
knapsack solutions. This problem is #P-complete in exact form, so an fpras is essen-
tially the best we can hope for. Again, following a string of approximate counting
algorithms for #P-complete problems in recent years (many of them based on the
Markov chain Monte Carlo technique), this problem remains one of the canonical
unresolved examples.

In this paper we prove that the above random walk is indeed rapidly mixing, with
a mixing time of O(n9/2+ε) steps for any ε > 0. This immediately implies the existence
of the first fpras for counting 0-1 knapsack solutions.1 Along the way we develop some
new machinery for bounding the mixing time of Markov chains which we believe will
be useful for tackling other examples of a similar flavor, and possibly beyond.

We also present a nontrivial extension of these results to the case of multiple
hyperplanes (more precisely, multiple constraints of the form aj ·x ≤ bj for nonnegative
vectors aj).

2 Here we are also able to prove a mixing time of O(nc) (where c is a

1Very recently, and after the appearance of the conference version of this paper [16], Martin
Dyer gave an algorithm for random sampling and approximate counting of knapsack solutions with
running time only O(n2.5) [4]. However, Dyer’s algorithm is based on dynamic programming and
gives no insight into the mixing time of the random walk.
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constant) for any fixed number of hyperplanes. The exponent c depends on the
number d of hyperplanes, but this is inevitable as it is not hard to prove a lower
bound of nΩ(d) on the mixing time. Moreover, it is possible to encode NP-hard
problems if the number of hyperplanes is permitted to depend on n, so we would not
expect any polynomial time sampling algorithm for this case.

To prove rapid mixing we use a technique based on multicommodity flow (see [18]):
if we can route unit flow between each pair of vertices X,Y in GΩ simultaneously in
such a way that no edge carries too much flow, then the random walk is rapidly
mixing. This technique is well known, but most previous applications (e.g., [10, 11])
have made use of “degenerate” flows in which all X → Y flow is routed along a
single canonical path (though see [2, 18] for exceptions). Our analysis seems to rely
essentially on spreading out the flow along multiple paths.

The key ingredient in our analysis is the specification of these paths, which we
achieve via an auxiliary combinatorial construction that we believe is of independent
interest and will find further applications elsewhere.3 Note that a shortest path be-
tween a pair of vertices X,Y of GΩ can be viewed as a permutation of the symmetric
difference X ⊕ Y , the set of items that must be added to or removed from the knap-
sack in passing from X to Y . A natural approach to defining a good flow is to use a
random permutation, so that the flow is spread evenly among all shortest paths and
no edge is overloaded. However, a fundamental problem with this approach is that a
random permutation will tend to violate the knapsack constraint, as too many items
will have been added at some intermediate point. Slightly less obviously, a symmetric
problem arises because a random permutation will tend to remove too many items
at some intermediate point, causing congestion among edges of the hypercube near
the origin. To avoid these problems, we want our permutations to remain “balanced”
in the sense that items are added and removed at approximately the correct rates
throughout the path; but we also want them to be “sufficiently random” to ensure a
well-spread flow. More specifically, it turns out that we require the distribution of the
initial segment {π(1), . . . , π(k)}, viewed as an unordered set, to be “almost uniform.”
We call permutations with these properties balanced almost uniform permutations. A
main contribution of this paper is to show the existence of such permutations.

The remainder of the paper is structured as follows. We begin with some necessary
background on flows and rapid mixing in section 2. Then in section 3 we define the
notion of balanced almost uniform permutations and show how to construct them; this
section is independent of the random walk analysis and should be of wider interest.
We go on to use these balanced permutations to define a good flow for the knapsack
random walk in section 4. The extension to multiple constraints is handled in section 5;
this involves extending our construction of balanced almost uniform permutations in
a nontrivial way from scalar weights to vectors in arbitrary dimension, which is again
of independent interest. We conclude with the proofs of some technical lemmas in
section 6.

2. The mixing time and multicommodity flow. As indicated earlier, we will
view elements of Ω either as 0-1 vectors x = (xi)

n
i=1 or, more commonly, as subsets

X ⊆ {1, . . . , n}, under the equivalence X = {i : xi = 1}. Recall that a(X) =
∑

i∈X ai

2We mention in passing that all our results extend from the 0-1 case to more general cubes of the
form [0, . . . , L]n. This extension is purely technical and does not require any substantial new ideas,
so we omit the details.

3Indeed, these ideas have already been used by Cryan et al. in the analysis of Markov chain
Monte Carlo algorithms for contingency tables [1].
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is the weight of X so that Ω = {X : a(X) ≤ b}. Without loss of generality, we will
assume that ai ≤ b for all i.

We consider the symmetric random walk defined in the introduction on the por-
tion GΩ of the hypercube {0, 1}n. This walk is connected (all states communicate
via the zero vector) and aperiodic (because of the holding probabilities), and since
the transition probabilities are symmetric, the distribution at time t converges to the
uniform distribution over Ω as t → ∞, regardless of the initial state. Our goal is to
bound the rate of convergence as measured by the mixing time, defined as

τmix = max
X0

min
{
t : ‖Pt − U‖ ≤ 1

4

}
,

where X0 is the initial state, Pt is the distribution of the walk at time t, U is the
uniform distribution over Ω, and ‖ · ‖ denotes variation distance.4 Thus τmix is the
number of steps required, starting from any initial state, to get the variation distance
from the uniform distribution down to 1

4 . By standard facts about geometric conver-
gence, O(τmix log ε−1) steps suffice to reduce the variation distance to any desired ε.

Fairly standard techniques (see [18]) allow us to estimate τmix by setting up a
suitable multicommodity flow on the underlying graph GΩ . Our task is to route one
unit of flow from X to Y for each ordered pair of vertices X,Y ∈ Ω simultaneously.
For any such flow f and any oriented edge e in GΩ , let f(e) denote the total flow
along e; i.e., f(e) is the sum over all ordered pairs X,Y of the X → Y flow carried
by e. Define the congestion C(f) = 1

|Ω| maxe f(e), i.e., the maximum flow along

any edge normalized by |Ω|, and the length L(f) to be the length of a longest flow-
carrying path. The following theorem5 is a special case of results in [18], which in
turn generalize those in [3].

Theorem 2.1. For any flow f on GΩ, the mixing time is bounded by τmix ≤
4n(n + 1)C(f)L(f).

We will bound τmix by constructing a flow f with congestion C(f) = O(n3/2+ε) for
any ε > 0, and length L(f) = O(n). By Theorem 2.1 this implies τmix = O(n9/2+ε).

Remark. We note that our bound on the mixing time is only slightly larger
than the upper bound of O(n3) which one obtains by applying Theorem 2.1 to the
hypercube itself (without the hyperplane constraint); see, e.g., [19]. This is in turn
somewhat off from the true mixing time of O(n log n). On the other hand, it is fairly
easy to obtain a lower bound of Ω(n2/ log n) for the mixing time of the truncated
cube; consider, for example, an instance in which logn items have weight 1, the other
n− log n items have weight n, and the knapsack capacity is b = n.

As explained in the introduction, our flow will be based on the idea of a balanced
almost uniform permutation. We devote the next section to this topic and then return
to the knapsack random walk in section 4.

3. Balanced almost uniform permutations. We begin by defining the no-
tions of “balanced” and “almost uniform” permutations. We will write Sm to denote
the set of all permutations of {1, . . . ,m}.

Definition 3.1. Let {wi}mi=1 be a set of real (not necessarily positive) weights,
with M = maxi≤m |wi| and W =

∑
i wi, and let ∆ ≥ 1 be a nonnegative number. A

4For probability distributions µ, ν on Ω, the variation distance is defined as ‖µ − ν‖ =
1
2

∑
x∈Ω |µ(x) − ν(x)| = maxS⊆Ω |µ(S) − ν(S)|.
5This theorem applies to symmetric random walk on any connected subgraph of the hypercube

{0, 1}n in which transitions are made to each neighbor with probability 1
2n

.
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permutation π ∈ Sm is ∆-balanced if, for all k with 1 ≤ k ≤ m,

min{W, 0} − ∆M ≤
k∑

i=1

wπ(i) ≤ max{W, 0} + ∆M.(3.1)

Thus a balanced permutation is one whose partial sums do not fluctuate widely.
In particular, if

∑
i wi = 0, then condition (3.1) becomes |

∑k
i=1 wπ(i)| ≤ ∆M .

Definition 3.2. Let π be a random permutation in Sm, and let λ ∈ R. We call
π a λ-uniform permutation if

Pr
[
π{1, . . . , k} = U

]
≤ λ×

(
m
k

)−1
(3.2)

for every k with 1 ≤ k ≤ m and every U ⊆ {1, . . . ,m} of cardinality k. (Here
π{1, . . . , k} denotes the initial segment {π(1), . . . , π(k)}.)

Note that, if π were a uniform random permutation, the probability in (3.2)

would be exactly
(
m
k

)−1
for every U . In a λ-uniform permutation the probabilities

are permitted to vary with U , but only by an amount specified by the parameter λ.
In our applications, λ will be a fixed polynomial function of m; in this case we call π
an almost uniform permutation. The perhaps surprising result of this section is that,
for any set of weights {wi}, it is possible to construct an almost uniform permutation
that is guaranteed to be balanced.

3.1. The bounded ratio case. In this section, we prove that there are bal-
anced almost uniform permutations when the ratios of the weights are bounded by
a constant. In section 3.2 we will show how to dispense with any restrictions on the
weights.

Lemma 3.3. Let {wi}mi=1 be an arbitrary set of weights with 1 ≤ |wi| ≤ B for a
constant B ∈ [1, 2]. Then there exists a 1-balanced permutation π on {wi} which is

p(m)-uniform, where p(m) = Cm10(B−1)2+1/2 for a universal constant C.
Proof. Let M = maxi |wi| and W =

∑m
i=1 wi. Assume first that W = 0; we

will show how to discharge this assumption later. Let I1 = {i : wi > 0}, I2 =
{i : wi < 0}, m1 = |I1|, and m2 = |I2|. Define the means µ1 = 1

m1

∑
i∈I1

wi and

µ2 = − 1
m2

∑
i∈I2

wi. Note that m1µ1 = m2µ2 since W = 0.
Consider an arbitrary permutation ν ∈ Sm. This induces permutations ν1, ν2 on

I1, I2, respectively.6 We call ν1 α-good if, for every k1 with 1 ≤ k1 ≤ m1,∣∣∣∣
k1∑
i=1

wν1(i) − k1µ1

∣∣∣∣ ≤ α(M − 1)
√
k∗1 ,(3.3)

where k∗1 = min{k1,m1 − k1}, with an analogous definition for ν2. We call ν α-good
if both ν1 and ν2 are α-good. Thus in a good permutation, the partial sums of both
positive and negative weights are reasonably close to their expected values.

Now suppose ν is chosen u.a.r. from Sm. A routine application of Hoeffding’s
bound to the partial sums (see Lemma 6.1 later) yields

Pr[ν is not α-good] ≤ 2m exp(−2α2).(3.4)

If we set α =
√

lnm, this probability is at most 2
m ≤ 1

2 for m ≥ 4.

6Formally, we view ν1 as a bijection from {1, . . . ,m1} to I1, and similarly for ν2. Throughout
we shall adopt this convention where appropriate, without comment.
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Consider now a modified sample space in which ν is selected u.a.r. among all√
lnm-good permutations. We shall write Prunif for probabilities in the original uni-

form space to distinguish them from those in this modified space. By the above
calculation, for any event E ⊆ Sm we have

Pr[E ] ≤ 2 Prunif [E ].(3.5)

We are now in a position to construct our balanced almost uniform permutation.
Let ν be chosen u.a.r. from all

√
lnm-good permutations, and let ν1, ν2 be the induced

permutations on I1, I2. To get a balanced permutation π, we interleave ν1 and ν2 as
follows. We take the first element from ν1, i.e., set π(1) = ν1(1). Thereafter, for each

k > 1 in turn we set π(k) to be the next element in ν2 if
∑k−1

i=1 wπ(i) > 0, and the
next element in ν1 otherwise. Since

∑
i wi = 0, this process is well defined and yields

a permutation π ∈ Sm. Moreover, since |wi| ≤ M for all i, it is clear that π satisfies
the balance condition (3.1) with ∆ = 1.

We now need to verify the uniformity condition (3.2) for λ = p(m). Let U ⊆
{1, . . . ,m} be any subset of items with |U | = k and Pr[π{1, . . . , k} = U ] > 0, and
define

U1 = U ∩ I1, U2 = U ∩ I2, k1 = |U1|, k2 = |U2|.

Then we have

Pr
[
π{1, . . . , k} = U

]
≤ Pr

[
ν1{1, . . . , k1} = U1 and ν2{1, . . . , k2} = U2

]
≤ 2 Prunif

[
ν1{1, . . . , k1} = U1 and ν2{1, . . . , k2} = U2

]
=

2(
m1

k1

)(
m2

k2

) ,(3.6)

where the second inequality follows from (3.5).
Now some routine calculations involving Stirling’s formula (see Lemma 6.2 later)

allow us to relate
(
m1

k1

)(
m2

k2

)
to

(
m1+m2

k1+k2

)
=

(
m
k

)
. Specifically, (3.6) becomes

Pr
[
π{1, . . . , k} = U

]
≤ Am1/2(

m
k

) exp

{
l2 + 1

2 |l|
γ(1 − γ)

(
1

m1
+

1

m2

)}
,(3.7)

where γ = k
m , l = m1k2−m2k1

m , and A > 0 is a universal constant. The quantity l
measures the deviation of the numbers k1, k2 of positive and negative elements in U
from the “expected” values γm1, γm2, respectively. But since π is balanced, ν is
good, and the element sizes do not vary too much, |l| cannot in fact be very large. To
formalize this intuition, note first that

l = (k2µ2 − k1µ1)
m2

µ1m
,(3.8)

since m2

m1
= µ1

µ2
. Now by the goodness condition (3.3) on ν1, ν2 we have

∣∣∣∣
k∑

i=1

wπ(i) − (k1µ1 − k2µ2)

∣∣∣∣ =

∣∣∣∣
( k1∑

i=1

wν1(i) +

k2∑
i=1

wν2(i)

)
− (k1µ1 − k2µ2)

∣∣∣∣
≤ 2(M − 1)

√
k∗ lnm,



RANDOM WALKS ON TRUNCATED CUBES 201

where k∗ = min{k,m−k}. Since π is 1-balanced we also know that |
∑k

i=1 wπ(i)| ≤ M ,
and therefore

|k1µ1 − k2µ2| ≤ 2(M − 1)
√
k∗ lnm + M.

Together with (3.8) and our assumption that M ≤ B, this implies the following bound
on |l|:

|l| ≤
(
2(B − 1)

√
k∗ lnm + B

) m2

µ1m
.

Plugging in this value for |l|, we see that the exponent in (3.7) is bounded above,
when |l| is sufficiently large, by

5(B − 1)2k∗ lnm
m2

2

µ2
1m

2

m2

k(m− k)

m

m1m2

= 5(B − 1)2 lnm
k∗m

k(m− k)

1

µ1µ2

≤ 10(B − 1)2 lnm,(3.9)

since k(m− k) ≥ k∗m
2 and µ1, µ2 ≥ 1. Note also that if |l| is bounded, then so is the

exponent in (3.7), since

1

γ(1 − γ)

(
1

m1
+

1

m2

)
=

m2

k(m− k)

m

m1m2
≤ m3

(m/2)(m/3)(m/3)
≤ 18,

where we have used the fact that m1,m2 ≥ m
3 which follows because B ≤ 2 and

W = 0.
Thus (3.7) becomes

Pr
[
π{1, . . . , k} = U

]
≤ C

(
m
k

)−1
m10(B−1)2+1/2(3.10)

for a universal constant C, which verifies the uniformity condition (3.2) with λ =

p(m) = Cm10(B−1)2+1/2.
This concludes the proof of the theorem for the case W =

∑
i wi = 0. We can

extend the argument to general values of W using a simple trick. We will assume
W > 0; the case W < 0 is entirely symmetrical. We begin by padding the sequence of
weights with d = W/M� values wm+1, . . . , wm+d each of which (except possibly the

last) is −M , so that
∑m+d

i=1 wi = 0. Note that d ≤ m. By the above argument for the
W = 0 case, we can construct a 1-balanced almost uniform permutation π′ on this
padded sequence (though see the remark immediately following this proof). Let π be
the induced permutation on the weights {wi}ni=1. We claim that π is also 1-balanced
and almost uniform.

To see that π is 1-balanced, note that

k∑
i=1

wπ(i) ≥
k′∑
i=1

wπ′(i) ≥ −M and

k∑
i=1

wπ(i) ≤
k′∑
i=1

wπ′(i) + W ≤ M + W

for some k′ ≥ k, using the balance property of π′.
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To see that π is almost uniform, let us call the indices {1, . . . ,m} true and the
remainder fake. Let U be an arbitrary subset of true indices of cardinality k. We
need to show that

Pr
[
π{1, . . . , k} = U

]
≤

(
m
k

)−1
p(m).(3.11)

Since π is induced by π′, this probability is bounded above by
∑

S Pr[ES ], where for
S ⊆ {1, . . . ,m + d}, ES is the event that π′{1, . . . , |S|} = S and the sum is over all
S of the form U ∪U ′, where all elements of U ′ are fake. Now by the almost uniformity
of π′, this sum is at most

p(m + d)
∑
S

Prunif [ES ],(3.12)

where Prunif denotes probability under the uniform distribution on permutations in
Sm+d. But the sum in (3.12) is just the expectation, under the uniform distribution,
of the random variable X =

∑
S XS , where XS is the indicator random variable of ES .

Thus X counts the number of events ES that occur. We claim that

E(X) =
(
m
k

)−1
(

1 +
d

m + 1

)
.(3.13)

This will complete the verification of condition (3.11), for replacing the sum in (3.12)
by E(X) gives

Pr
[
π{1, . . . , k} = U

]
≤

(
m
k

)−1
(

1 +
d

m + 1

)
p(m + d)

≤
(
m
k

)−1
2C(2m)10(B−1)2+1/2,

where the second inequality holds because d ≤ m. Thus, if we incorporate into C an
extra factor 210(2−1)2+3/2, we see that π is λ-balanced for λ = p(m) = Cm10(B−1)2+1/2,
as required.

To see the claim in (3.13), let E be the event that π{1, . . . , k} = U . Clearly

Prunif [E ] =
(
m
k

)−1
, and X = 0 unless E occurs, so we have

E(X) =
(
m
k

)−1
E(X|E).(3.14)

Conditioning now on E , let r be the position in π′ of the last element of U , so that
U ⊆ π′{1, . . . , r} and π′(r) ∈ U . Also, let s be the position of the next true element;
i.e., π′(s) is true and π′(t) is fake for r < t < s. (If no such element exists, let
s = m + d + 1.) Then ES holds for precisely those sets S = π′{1, . . . , t}, where
r ≤ t < s. The number of such sets is just the number of fake elements that fall
between the true element at position r and the next true element (at position s),
plus one. The expectation of this quantity under the uniform distribution is plainly
1+ d

m+1 . Plugging this into (3.14), we get the value claimed in (3.13), which concludes
the proof that π is almost uniform.

Remark. We should point out that the padded sequence we introduced in the
second part of the above proof might contain one weight whose absolute value is
less than one. Thus it is not, in a strict sense, a special case of the earlier W = 0
case, where we assumed that all the weights had absolute values in the range [1, B].
However, as the reader may easily verify, the analysis leading up to (3.10) still holds
(with minor modifications) even when there is a single small weight.
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3.2. The general case. In this section we extend our construction of balanced
almost uniform permutations to handle arbitrary weights. The chief obstacle here
is that it is no longer true (as in the bounded ratio case) that each item of positive
weight can be balanced by a bounded number of items of negative weight. To overcome
this difficulty, we will need to group items into “intervals” so that each interval has
approximately the same (positive or negative) weight. We can then reduce to the
bounded ratio case.

The following theorem is a generalization of Lemma 3.3; it says that we can
construct a balanced almost uniform permutation for an arbitrary set of weights.
Moreover, we can bound the uniformity parameter λ by a polynomial whose degree is
arbitrarily close to 1/2 at the cost of a modest increase in the balance parameter ∆.
This is almost the best that one can hope for; we encourage the reader to check by a
simple counting argument that, if we have m/2 weights of +1 and m/2 of −1, then
for any constants ∆, C, and p < 1/2, there can be no ∆-balanced Cmp-uniform
permutation if m is sufficiently large.

In order to achieve the tightest possible bound in our random walk analysis in
the next subsection, we shall actually prove a slightly stronger uniformity property
which can be obtained with no additional effort. Call π strongly λ-uniform if

Pr
[
π{1, . . . , k} = U and π(k + 1) = l

]
≤ λ×

(
m

k, m−k−1, 1

)−1
(3.15)

for every k with 1 ≤ k ≤ m, every U ⊆ {1, . . . ,m} of cardinality k, and every
l /∈ U . Note that the expression on the right-hand side of (3.15) is just λ times the
probability of the given event if π were chosen uniformly at random. Plainly (3.15) is
a strengthening of (3.2) in Definition 3.2.

Theorem 3.4. Fix 0 < ε < 2 and let ∆ = 1 +
√

90/ε. For any m and set of
weights {wi}mi=1, there exists a ∆-balanced, strongly Cm1/2+ε-uniform permutation,
where C is a universal constant.

To illustrate this theorem, if we plug in the value ε = 3/2 (say), we obtain the
following corollary.

Corollary 3.5. For any set of weights {wi}mi=1, there exists a 9-balanced, Cm2-
uniform permutation.

Proof of Theorem 3.4. First, we observe that the permutation constructed in the
proof of Lemma 3.3 actually satisfies the strong uniformity property (3.15), provided
that we incorporate an extra factor of 3 into the constant C. To see why, note that
the permutation must first choose U and then l. Suppose that the sum of the weights
of the indices of U is positive. Then l is chosen uniformly from the remaining indices
of negative weight. But these must constitute at least 1/3 of all of the remaining
indices since B ≤ 2. Hence the restriction on the choice of l introduces a factor of at
most 3 into the uniformity parameter.

Now let {wi} be an arbitrary set of weights, let M = maxi |wi|, and set ∆̂ = ∆−1
3 .

Let β be a uniform random permutation in Sm, and let T1 be the smallest t such that
the partial sum

∑t
i=1 wβ(i) has absolute value greater than ∆̂M (or T1 = m if no such t

exists). Similarly, let T2 be the smallest t > T1 such that |
∑t

i=T1+1 wβ(i)| > ∆̂M .

Define T3, T4, . . . in the same way. Then let I1 be the sequence {β(i)}T1
i=1 and I2 the

sequence {β(T1 + i)}T2−T1
i=1 . Continue in this way, dividing β into intervals I1, . . . , Iq

(so that Tq = m).
Now let αi be the aggregated weight of interval Ii for i = 1, 2, . . . , q−1. Note that

|αi| ∈ [∆̂M, (∆̂ + 1)M ] for all i < q, so the ratio of the weights of any two of these
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intervals is at most (∆̂+1)/∆̂ ∈ [1, 2]. Thus, by Lemma 3.3, there exists a 1-balanced

λ-uniform permutation on {αi}q−1
i=1 for λ = Cq10((∆̂+1)/∆̂−1)

2
+1/2 = Cq1/2+ε, where

C is a universal constant. Moreover, as argued above, we can in fact assume that
this permutation is strongly λ-uniform. Call this permutation πI . We claim that the
permutation

π = IπI(1)IπI(2) · · · IπI(q−1)Iq

obtained by rearranging the first q − 1 intervals according to πI is a ∆-balanced
strongly Cm1/2+ε-uniform permutation on the original m weights.

We prove the balance property first. Let W ′ =
∑q−1

i=1 αi = W − αq. Since πI is
1-balanced, π satisfies

min{0,W ′} − (∆̂ + 1)M ≤
Tj∑
i=1

wπ(i) ≤ max{0,W ′} + (∆̂ + 1)M

for all 1 ≤ j ≤ q. Hence we have, for all j,

min{0,W ′} − (2∆̂ + 1)M ≤
j∑

i=1

wπ(i) ≤ max{0,W ′} + (2∆̂ + 1)M,

since the partial sums within any interval lie in the range [−∆̂M, ∆̂M ]. Finally, note

that |W −W ′| = |αq| ≤ ∆̂M . It follows that for all j,

min{0,W} − (3∆̂ + 1)M ≤
j∑

i=1

wπ(i) ≤ max{0,W} + (3∆̂ + 1)M,

and hence π is ∆-balanced.
To verify the strong uniformity property, consider first an alternative experiment

in which the permutation πI is chosen u.a.r. from Sq−1, without regard to the balance
property. Note that, conditional on the value of q, the distribution of (I1, . . . , Iq−1) is
exchangeable. Thus, rearranging the intervals according to a uniform πI is a measure-
preserving transformation, so π itself has the uniform distribution. Thus we need to
show that for any U and any index l /∈ U , the likelihood ratio

Pr[π{1, . . . , k} = U and π(k + 1) = l]

Prunif [π{1, . . . , k} = U and π(k + 1) = l]
≤ Cm1/2+ε,

where we write Prunif for the probability when πI is uniform and Pr for the probability
when πI is Cm1/2+ε-uniform. In fact, it suffices to show that the above bound on the
likelihood ratio holds conditional on any β. So fix a permutation β. In order for the
numerator to be nonzero, only the interval containing l can contain elements from
both U and U c (the complement of U). Additionally, in the interval containing l, all
the elements before l must be in U and all those after l must be in U c. Let A1 be
the collection of intervals in {Ii}q−1

i=1 containing only elements of U , and let A2 be the
collection of intervals containing only elements of U c. Then |A1| + |A2| must have
value either q − 1 or q − 2. Writing E1 for the event πI{1, . . . , |A1|} = A1 and E2 for
the event πI{q − 1, . . . , q − |A2|} = A2, the above likelihood ratio is

Pr[E1 and E2]

Prunif [E1 and E2]
≤ Cq1/2+ε ≤ Cm1/2+ε.
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In the case where |A1| + |A2| = q − 1, this is just the Cq1/2+ε-uniformity property;
when |A1| + |A2| = q − 2 it is the strong Cq1/2+ε-uniformity property. Thus π is
strongly Cm1/2+ε-uniform, and the proof is complete.

4. Constructing a good flow. We now return to the random walk for the
knapsack problem and show how to construct a flow f with small congestion C(f) and
length L(f). Our construction will make heavy use of the balanced almost uniform
permutations discussed in the previous section. In the first subsection below, we
present a slightly informal high-level sketch of the argument, concentrating on showing
how the balance and almost uniformity properties of the permutations are used. In
section 4.2 we will give the full details of the flow.

4.1. High-level sketch. Let X,Y be two arbitrary vertices of GΩ , viewed as
subsets of {1, . . . , n}. We need to specify how to route one unit of flow from X to Y .
The high-level idea is the following. Let S = X ⊕ Y (where ⊕ denotes symmetric
difference) and m = |S|, and let {wi}mi=1 be an arbitrary enumeration of the weights
of the items in S, with the weights of items in X,Y appearing with negative and posi-
tive signs, respectively. Note that each permutation of these items specifies a geodesic
path from X to Y . Thus a balanced almost uniform permutation on the {wi} specifies
a scheme for routing unit flow between X and Y along geodesic paths; the amount
of flow allocated to a given path is just the probability assigned to the correspond-
ing permutation. Moreover, the weight of the kth point along the path is given by
a(X) +

∑k
i=1 wπ(i). We would like to use the balance property to argue that these

paths remain within Ω, and the almost uniformity property to argue that they are
“well spread out” and thus lead to small congestion. In what follows, we assume the
existence of ∆-balanced, p(m)-uniform permutations on any set of weights {wi}mi=1,
where ∆ is a fixed positive integer and p is a fixed polynomial. (By Corollary 3.5 we
know we can take, e.g., ∆ = 9 and p(m) = O(m2).)

The problem with the above idea is that we need X and Y to be at least some
small distance below the bounding hyperplane to accommodate the fluctuations that
are still present within the balanced permutations. At this point, for the purposes of
illustration, we make a simplifying assumption: we assume that there exists a fixed
constant h (independent of n and the ai) such that, by removing at most h items from
X ⊕ Y , we arrive at vertices X ′ and Y ′ which satisfy a(X ′), a(Y ′) ≤ b− ∆M , where
M = maxi∈X′⊕Y ′ ai. Note that removing the h = 2∆ heaviest items from X ⊕ Y
ensures this for at least one of X ′, Y ′. In fact, if we increase h by a constant factor,
then the same holds for both X ′ and Y ′ for most pairs (X,Y ) ∈ Ω × Ω. For now,
however, we simply assume this property for all pairs. Denote by X0, Y0 the sets of
items removed from X,Y , respectively (i.e., X = X ′ ∪ X0 and Y = Y ′ ∪ Y0, with
|X0 ∪ Y0| ≤ h).

We can now describe the flow from X to Y in three stages:

Stage 1. Send the entire unit flow along a single path from X to X ′ by re-
moving the items in X0 in index order.
Stage 2. Distribute the unit flow along geodesic paths from X ′ to Y ′ ac-
cording to a balanced almost uniform permutation π on the (signed) weights
{wi}mi=1 of the items in S = X ′ ⊕ Y ′, where m = |S|.
Stage 3. Send the entire unit flow along a single path from Y ′ to Y by adding
the items in Y0 in index order.

Figure 4.1 gives a schematic illustration of this flow. Notice how the upper bound
in the balance property keeps the path below the hyperplane, while the lower bound
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Fig. 4.1. Schematic illustration of flow from X to Y . The function a( · ) increases in the
vertical direction; the bounding hyperplane is a(Z) = b. In the case shown, a(X′) = a(Y ′); the
balance property of the permutation of X′ ⊕ Y ′ ensures that the path remains within ±∆M of this
level.

keeps the path from passing too close to the origin (thus avoiding a potential bottle-
neck).

Let us first observe that the above flow is valid. For this, we just need to check
that all the flow-carrying paths remain within the set Ω. This is obvious for stages 1
and 3. For stage 2 it follows from the balance property of π; for if Z is the kth point
along a flow-carrying path from X ′ to Y ′, then

a(Z) = a(X ′) +

k∑
i=1

wπ(i)

≤ a(X ′) + max{a(Y ′) − a(X ′), 0} + ∆M(4.1)

= max{a(Y ′), a(X ′)} + ∆M

≤ b,

where in the last line we have used the fact that a(X ′), a(Y ′) ≤ b − ∆M . Hence
Z ∈ Ω.

Next we must bound the quantities C(f) and L(f) for this flow f , as defined in
section 2. L(f), the length of a longest flow-carrying path, is plainly at most m ≤ n.
To estimate the congestion C(f), we must bound the flow along any edge of GΩ . For
convenience in this sketch, we will in fact bound the flow f(Z) through any vertex Z;
clearly this is also an upper bound on the flow along any edge.

So let Z be an arbitrary vertex of GΩ . Define P(Z) to be the set of pairs (X,Y )

such that some X → Y flow passes through Z. Note that P(Z) =
⋃3

i=1 Pi(Z), where

Pi(Z) are the pairs whose paths pass through Z in stage i. We shall bound the
contribution to f(Z) from each Pi(Z) separately. For i = 1, 3 this is simple: since
stage-1 paths have length at most h, for any given Y ∈ GΩ the number of vertices X
such that (X,Y ) ∈ P1(Z) is (crudely) at most (h+ 1)nh, so the contribution to f(Z)
from such paths is no more than (h+ 1)nh|Ω|. The same bound holds symmetrically
for P3(Z). The main portion of the paths, P2(Z), presents more of a challenge.
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We shall actually work with P ′
2(Z), the set of pairs (X ′, Y ′) such that Z lies on

the stage-2 path with endpoints X ′, Y ′. By the observation in the previous paragraph,
the flow contribution from P2(Z) will be (again crudely) at most (h + 1)2n2h times

that from P ′
2(Z). Recall that we are really interested in the ratio f(Z)

|Ω| , rather than

in f(Z) itself. Accordingly, following earlier analyses of this general type (see, e.g.,
[10, 11]), we measure the set P ′

2(Z) by associating with each of its elements (X ′, Y ′)

an “encoding” Z̃, which belongs to Ω. This is defined by

Z̃ = X ′ ⊕ Y ′ ⊕ Z.

To see that Z̃ ∈ Ω, we need to check that a(Z̃) ≤ b. But this follows because

a(Z̃) = a(X ′) + a(Y ′) − a(Z)

≤ a(X ′) + a(Y ′) − t(min{a(X ′), a(Y ′)} − ∆M)

= max{a(X ′), a(Y ′)} + ∆M

≤ b,

where in the second line we have used the balance property of π as in (4.1) to bound
a(Z), this time from below.

How many pairs (X ′, Y ′) could be mapped to a given Z̃? First note that Z̃
uniquely determines both S = X ′ ⊕ Y ′ and I = X ′ ∩ Y ′ via the relations

S = Z̃ ⊕ Z, I = Z̃ ∩ Z.

Thus, in particular, such pairs share the same symmetric difference, S, of cardinal-
ity m, say. To determine X ′ and Y ′ uniquely, it suffices to specify the subset U ⊆ S
of elements that have already been processed (i.e., added or deleted) by the stage-2
path by the time it reaches Z. For then we know, from the fact that all stage-2 paths
are geodesic, that X ′ agrees with Z on S−U and with Z̃ on U , and vice versa for Y ′.
More formally,

X ′ = Z ⊕ U, Y ′ = Z̃ ⊕ U.

The upshot of the foregoing discussion is that we can define a mapping from P ′
2(Z)

to pairs of the form (Z̃, U), where Z̃ ∈ Ω and U is a subset of Z ⊕ Z̃. Moreover, and
crucially, this mapping is injective. It therefore effectively enumerates the set P ′

2(Z).
Finally, we need to take account of the actual quantity of flow traveling along the

paths. Consider a pair (X ′, Y ′) ∈ P ′
2(Z), corresponding to the pair (Z̃, U). Recall

that the flow distribution between X ′ and Y ′ is determined by a balanced almost
uniform permutation π of the weights in S = X ′ ⊕ Y ′. The proportion of this flow
that passes through Z is precisely

Pr
[
π{1, . . . , |U |} = U

]
≤

(
m
|U |

)−1
p(m),

by the almost uniform property of π.
Putting all this together, we can bound the total contribution to f(Z) from P ′

2(Z)
as follows:∑

Z̃∈Ω

∑
U⊆Z⊕Z̃

Pr
[
π{1, . . . , |U |} = U

]
≤

∑
Z̃∈Ω

∑
k

∑
U⊆Z⊕Z̃, |U |=k

(
m
k

)−1
p(m)

≤ p(n)
∑
Z̃∈Ω

∑
k

(
m
k

)(
m
k

)−1

≤ np(n)|Ω|,
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where in the summations m = |Z ⊕ Z̃|. The total contribution from all stage-2 paths
is thus at most (h + 1)2n2h+1p(n)|Ω|.

Combining this with our earlier bounds for stages 1 and 3, we obtain that f(Z) ≤
(2(h + 1)nh + (h + 1)2n2h+1p(n))|Ω|, and hence C(f) ≤ p′(n) (for a different poly-
nomial p′). Since both L(f) and C(f) are bounded polynomially in n, we obtain
immediately from Theorem 2.1 that the mixing time, τmix, is polynomial in n as
required.

In the above sketch, we assumed that we could remove a fixed number of items
from X and Y and thereby ensure that they are well separated from the bounding
hyperplane. The main extra work in the full description of the flow in the next
subsection is concerned with discharging this assumption. In addition, we will be
more precise in our accounting so as to achieve the tightest possible bound on C(f).

4.2. Complete description. In this subsection, we present a complete con-
struction, for an arbitrary instance of the 0-1 knapsack problem, of a flow f with
congestion C(f) = O(n3/2+ε) for any ε > 0 and length L(f) = O(n). By Theorem 2.1,
this will imply that the mixing time of the random walk on GΩ is O(n9/2+ε). From
now on we assume that ε > 0 is arbitrary but fixed.

Let X,Y be arbitrary vertices of GΩ . Recall the scheme for constructing a flow
from X to Y in the sketch of section 4.1; we essentially followed a balanced almost
uniform permutation of X ⊕ Y , except that we removed a constant number of items
from consideration (processing them at the beginning and end of the path) to ensure
that both path endpoints were far enough from the hyperplane so that the path
remained within GΩ . In reality this property is not guaranteed by the removal of
a fixed number of items because of the possibly large variations in weights between
X and Y . (For example, if all the items in X are much larger than those in Y ,
then removing any fixed number of items from X and Y could still leave Y too
close to the hyperplane relative to the size of the largest remaining item in X ⊕ Y .)
However, it turns out that after removing a fixed number of heavy items from X⊕Y ,
we can perform a “preprocessing” operation by randomly switching items between
X and Y to roughly balance their weights. Moreover, we will need to add and delete
the removed items repeatedly along the path to maintain fine balance. The resulting
flow-carrying paths will not in general be geodesics, as before, though they will have
length only O(n).

In preparation for describing the flow, we first describe the preprocessing oper-
ation. We assume that a(X) + a(Y ) ≤ 2b − 6∆M , where M = maxi∈X⊕Y ai and
∆ = ∆(ε) is the constant appearing in Theorem 3.4. (We will reduce to this case by
first deleting a fixed number of items from X ⊕ Y .) Call the pair (X,Y ) full if either
a(X) > b − ∆M or a(Y ) > b − ∆M . Our goal is to shift items randomly between
X and Y and thereby reach a pair (X ′, Y ′) that is not full.

Consider the following random walk on {(X ′, Y ′) : X ′ ∪ Y ′ = X ∪ Y , X ′ ∩ Y ′ =
X ∩Y , a(X ′), a(Y ′) ≤ b}. If the current state is (X ′, Y ′), choose an index i ∈ X ′⊕Y ′

u.a.r. With probability 1
2 , do nothing; else move i from X ′ to Y ′ or Y ′ to X ′ if possible.

We call this the preprocessing random walk (PRW). We claim in the following lemma
that, if we run the PRW for a number of steps chosen randomly between 1 and O(n),
we will with reasonable probability arrive at a pair (X ′, Y ′) that is not full. The proof
uses a martingale argument and is deferred to section 6.

Lemma 4.1. Let (X,Y ) be a full pair of vertices in GΩ with a(X) + a(Y ) ≤
2b − 6∆M , where M = maxi∈X⊕Y ai. Pick T u.a.r. from {1, 2, . . . , C1m}, where
m = |X ⊕ Y | and C1 is a suitable constant (which depends only on ∆), and let
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(X ′, Y ′) be the result of running the PRW for T steps starting from (X,Y ). Then
Pr[(X ′, Y ′) is not full ] ≥ 1/C2 for a positive constant C2 (which again depends only
on ∆).

We are now ready to construct and analyze the flow.
Lemma 4.2. For arbitrary weights and any ε > 0, it is possible to construct a

multicommodity flow f in GΩ with C(f) = O(n3/2+ε) and L(f) = O(n).
Proof. Let X,Y be arbitrary vertices of GΩ . Viewing X and Y as subsets of

{1, . . . , n}, let H be the h = 6∆� elements of X ⊕ Y having largest weight (or let
H = X ⊕ Y if |X ⊕ Y | ≤ h), with ties broken according to index order. Define
X ′ = X −H, Y ′ = Y −H, and S = X ′ ⊕ Y ′. Let m = |S| and M = maxi∈S ai.

We will say that a set of indices Z is good if Z−H ∈ Ω and (Z⊕X⊕Y )−H ∈ Ω.
For a set of indices Z and an index i, define

Zi =

{
Z ⊕ {i} if Z ⊕ {i} is good,
Z otherwise.

Define Zi1i2 = ((Zi1)i2) and so on. Note that if Y = Xi1 · · · il, then the sequence
i1, . . . , il defines a path from X to Y in the unit hypercube of length at most l. This
path need not in general lie within GΩ ; however, it is “close to” GΩ in the sense that
for every point Z of the path, Z −H ∈ Ω.

If (X ′, Y ′) is not full, set T = 0; otherwise, choose T u.a.r. from {1, . . . , C1m},
where C1 is the constant in Lemma 4.1. Next, let i1, . . . , iT be chosen independently
from the uniform distribution over S. Define X ′′ = X ′i1 · · · iT and Y ′′ = X ′′ ⊕X ′ ⊕
Y ′ = Y ′i1 · · · iT . Thus (X ′′, Y ′′) is the result of running the PRW for T steps starting
from (X ′, Y ′). Note that a(X ′)+a(Y ′) ≤ 2b−a(H) ≤ 2b−6∆M . So, by Lemma 4.1,
we can condition on the event that the pair (X ′′, Y ′′) is not full and thus increase the
probability of any path by a factor of at most C2.

Now let {wi}mi=1 be an arbitrary enumeration of the weights of the items in S, with
the weights of items in X ′′, Y ′′ appearing with negative and positive signs, respectively,
and let π be a ∆-balanced, strongly Cm1/2+ε-uniform permutation on the {wi} whose
existence is guaranteed by Theorem 3.4. We claim that the sequence

i1, . . . , iT , π(1), . . . , π(m), iT . . . , i1(4.2)

defines a path from X to Y in the hypercube. This is true because the condition that
(X ′′, Y ′′) be not full, together with the fact that π is balanced, guarantees that all of
the transitions indicated by π will actually take place.

Set

jk =

⎧⎨
⎩

ik if 1 ≤ k ≤ T,
π(k − T ) if T < k ≤ T + m,
i2T+m−k−1 if T + m < k ≤ 2T + m,

and let l = 2T + m. Then j1, . . . , jl is the sequence in (4.2). Our flow from X to Y
will essentially follow the sequence jk, except that along the way elements of H will
be used to keep the knapsack as full as possible but will be removed as necessary to
make room for new items jk to be added. Thus each intermediate state Z will be of
the form H ⊕Xj1 · · · jk, for some H ⊆ H and k ≤ l.

Suppose that, after processing the first k ≤ l elements of the sequence in (4.2),
we have Z = H ⊕Xj1 · · · jk for some H ⊆ H. The transition rule will be as follows.

1. If k < l and jk+1 /∈ Z, then move to Zjk+1 if possible (i.e., if the result is an
element of Ω); otherwise, delete an element from H.
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2. If k < l and jk+1 ∈ Z, then add an element from H if possible; otherwise,
move to Zjk+1.

3. If k = l, then add an element from H ∩ Y if possible; otherwise, delete an
element from H ∩X.

The fact that all of the sets Xj1 · · · jk are good ensures that sufficient elements
of H can always be removed so as to make room to add the next element jk+1 when
necessary; hence the above rule defines a feasible random path from X to Y . Similarly,
goodness also implies that a(Z⊕X⊕Y −H) ≤ b for every intermediate state Z; since
our rule keeps the weight as large as possible, this implies that, at any intermediate
edge (Z,W ) along the path, there exists (at most) one element u ∈ H such that

a(Z ⊕X ⊕ Y − {u, z}) ≤ b,(4.3)

where z is the index such that {z} = Z ⊕W . Then (Z̃ − {u, z}) ∈ Ω, where, exactly

as in the analysis in section 4.1, we define the “encoding” Z̃ by

Z̃ = X ⊕ Y ⊕ Z.

Thus, for any given edge (Z,W ), the number of encodings Z̃ is at most n|Ω|.
Note that the path from X to Y can be naturally divided into three stages,

corresponding to the three parts of the sequence jk. We will write the flow through
any given edge (Z,W ) ∈ GΩ as f(Z,W ) = f1(Z,W ) + f2(Z,W ) + f3(Z,W ), where
fi(Z,W ) is the contribution of stage-i paths. We will bound f by bounding each of
the three contributions fi separately.

Consider stage 1 first, and focus on a particular edge (Z,W ). For any pair (X,Y )
that sends flow through (Z,W ) in stage 1, we can write Z = H ⊕ Xj1 · · · jk, where
j1, . . . , jk are the first k elements processed along the path. Thus the pair (X,Y ) is

completely specified by k, j1, . . . , jk, Z̃, and H, via the easily verified relations

X = H ⊕ Zjk · · · j1, Y = H ⊕ Z̃jk · · · j1.

The amount of flow corresponding to a given sequence j1, . . . , jk is bounded above by
the probability that j1, . . . , jk, z were the first k+1 indices chosen in the PRW, which
is at most C2m

−(k+1). (The factor C2 here arises from our earlier conditioning on the
event that (X ′′, Y ′′) is not full.) Thus we can bound the stage-1 flow f1(Z,W ) as in
section 4.1. We have

f1(Z,W ) ≤
∑
Z̃

∑
k

∑
j1,...,jk

∑
H

C2m
−(k+1)

≤
∑
Z̃

∑
k

2hC2m
−1

≤
∑
Z̃

C1m2hC2m
−1

≤ C1C22
hn|Ω|,

where the factors C1m and 2h arise from summing over k and H, respectively.
The flow f3(Z,W ) from stage-3 paths can be handled symmetrically, so consider

now the stage-2 paths. For a given edge (Z,W ), every pair (X,Y ) that sends flow

through (Z,W ) in stage 2 can be completely specified by Z̃, T , k, j1, . . . , jT , U ,
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and H, where k is the number of elements of the sequence in (4.2) processed along
the path from X to Z and U = {π(1), . . . , π(k − T )}, via

X = H ⊕ (Z ⊕ U)jT · · · j1, Y = H ⊕ (Z̃ ⊕ U)jT · · · j1.

Let k′ = k − T . The amount of flow corresponding to a given j1, . . . , jT and U is
bounded above by

(C2m
−T )(C1m)−1

[
Cm1/2+ε

(
m

k′,m−k′−1,1

)−1
]
,

where the first factor comes from the PRW, the second factor is the probability of
choosing a particular T , and the third factor is an upper bound on the probability
Pr[π{1, . . . , k′} = U and π(k′+1) = z], which comes from the strong almost uniformity
of π. Thus we can again bound the flow f2(Z,W ) as in section 4.1. We have

f2(Z,W ) ≤
∑
Z̃

∑
T

∑
k

∑
j1,...,jT

∑
U

∑
H

(C2m
−T )(C1m)−1

[
Cm1/2+ε

(
m

k′,m−k′−1,1

)−1
]

≤
∑
Z̃

(C1m)mmT
(
m−1
k′

)
2h(C2m

−T )(C1m)−1
[
Cm1/2+ε

(
m

k′,m−k′−1,1

)−1
]

=
∑
Z̃

2hC2

[
m
(
m−1
k′

)(
m

k′,m−k′−1,1

)−1
]
Cm1/2+ε

=
∑
Z̃

2hC2Cm1/2+ε

≤ 2hCC2n
3/2+ε|Ω|,

where the factors in the second line are written in the same order as the sums they
arise from.

Adding the contributions f1, f2, and f3, we see that the above flow satisfies
C(f) = O(n3/2+ε), while plainly L(f) = O(n). Since ε > 0 was arbitrary, this
completes the proof.

Given such a flow, we need only invoke Theorem 2.1 to derive our main result.
Theorem 4.3. Let Ω be the set of solutions to an arbitrary instance of the 0-1

knapsack problem. The mixing time of the random walk on GΩ is τmix = O(n9/2+ε)
for any ε > 0.

As mentioned in the introduction, this immediately yields an fpras for comput-
ing |Ω|, via a standard reduction to random sampling (whose details are spelled out
in [12]).

Remark. The mixing time bound of O(n9/2+ε) in Theorem 4.3 is reasonably tight
for this type of analysis. If we apply Theorem 2.1 to analyze random walk on the entire
cube {0, 1}n, we get a bound of O(n3) even with an optimal flow. Thus the truncation
introduces an extra factor of only O(n3/2+ε) into the bound. It is instructive to see
where this extra factor comes from; O(n1/2+ε) is due to the balanced almost uniform
permutation construction (Theorem 3.4, which is tight), while O(n) comes from the

fact that the “encoding” Z̃ may lie just outside Ω.

5. Multiple hyperplanes.

5.1. Introduction. In this section, we will extend our earlier results to handle
multiple hyperplanes. For a nonnegative real d × n matrix A = (aij) and a positive
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real vector b = (b1, . . . , bd), let Ω denote the set of 0-1 vectors x = (xi)
n
i=1 for

which Ax ≤ b. The vertices in Ω constitute the set of feasible solutions to the
multidimensional knapsack problem with the d simultaneous constraints

aj · x ≡
n∑

i=1

ajixi ≤ bj for 1 ≤ j ≤ d,(5.1)

where aji ≡ aji. (In (5.1) the superscript j indexes the jth linear constraint; we will
follow this convention throughout.)

Geometrically, Ω is obtained by truncating the unit cube by d hyperplanes, each
of which corresponds to a knapsack constraint. The essential geometric property of
these “knapsack” hyperplanes is that their normal vectors all lie in the same quadrant.
The results of this section will easily extend to any collection of hyperplanes with this
property.7

Following our earlier notation, we identify a 0-1 vector x = (xi)
n
i=1 with the

set of indices X = {i : xi = 1} and write a(X) = (a1(X), . . . , ad(X)) for the (now
d-dimensional) weight of X. As before we denote by GΩ the subgraph of the hypercube
{0, 1}n induced by the vertices in Ω, and we again study symmetric random walk
on GΩ ; i.e., transitions from a given state X ⊆ {1, . . . , n} are made as follows:

1. pick an item i ∈ {1, . . . , n} u.a.r.;
2. if i ∈ X, move to X − {i}; if i /∈ X and aj(X ∪ {i}) ≤ bj for all j, move to

X ∪ {i}; otherwise, do nothing.
Again, to avoid issues involving periodicity, we add to every state a holding probability
of 1

2 .
In this section we will prove that this random walk on GΩ has mixing time

that is polynomially bounded in n for any fixed dimension d. Just as in the one-
dimensional case, this immediately gives a polynomial time algorithm for sampling
(almost) uniformly at random from Ω and an fpras for computing |Ω|.

We note that the degree of our polynomial upper bound for the mixing time will
depend on the dimension d, but this is unavoidable as the following simple example
shows. Consider a d-dimensional knapsack problem in which there are n

2d items having
each of the d weight vectors (n, 0, . . . , 0), (0, n, . . . , 0), . . . , (0, . . . , 0, n), and the remain-
ing n

2 items have weight vector (1, 1, . . . , 1); the knapsack capacity is b = (n, . . . , n).
Let S be the set of feasible solutions in Ω which do not contain any of the (1, . . . , 1)
items. Then |S| = ( n

2d + 1)d, but S is connected to Ω − S only through the origin. It

follows easily that the mixing time is nΩ(d).
In fact, for arbitrary d there can be no uniform polynomial upper bound for the

running time of any sampling algorithm unless RP = NP. This follows immediately by
reduction from the problem of sampling independent sets in a graph. By Theorem 1.17
of [19], there is no algorithm for (almost) uniformly sampling independent sets in a
graph unless RP = NP. Now if G = (V,E) is an arbitrary (undirected) graph, there
is a 1-1 correspondence between the independent sets in G and the feasible solutions
to the knapsack problem with |V | variables and the |E| constraints xu + xv ≤ 1 for
all {u, v} ∈ E.

To prove rapid mixing of the random walk on GΩ for any fixed d, we use the
multicommodity flow technique as before. Recall that Theorem 2.1, which bounds

7However, we cannot allow the hyperplanes to be arbitrary. If arbitrary truncations were allowed,
then it would be possible to use just two hyperplanes to cause exponential bottlenecks or even
disconnect the graph GΩ .
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the mixing time in terms of the cost of a flow f , holds for symmetric random walk
on any connected subset of the hypercube, so it again suffices to come up with a
flow of small cost. As before, the idea is to spread each X → Y flow evenly using a
balanced almost uniform permutation. However, since the weight function a( · ) is now
vector-valued, we first need to extend the definition of balance to higher dimensions.

Definition 5.1. Fix an integer d > 0, and let {wi}mi=1 be a set of weights in Rd

satisfying
∑m

i=1 wi = 0. For a positive real number ∆, a permutation π ∈ Sm is
∆-balanced if

max
k

∣∣∣∣
k∑

i=1

wj
π(i)

∣∣∣∣ ≤ ∆M j for 1 ≤ j ≤ d,(5.2)

where wi = (w1
i , . . . , w

d
i ) and M j = max1≤i≤m |wj

i |.
Thus π is balanced with respect to vector weights {wi} if and only if it satisfies the

d one-dimensional balance conditions given by (5.2). Note that this generalizes Defi-
nition 3.1 for the one-dimensional case (except that, for simplicity, we have assumed
that

∑
i wi = 0).

Constructing balanced almost uniform permutations is significantly more difficult
in higher dimensions since one has to control fluctuations in all dimensions simultane-
ously. In fact, for d ≥ 2, it is nontrivial to prove for an arbitrary set of vector weights
that even a single balanced permutation exists. (For d = 1, of course, this is trivial.)
The existence of such a permutation follows at once from a lemma due to Grinberg
and Sevast’yanov [7], which was proved in an entirely different context.

Lemma 5.2 (see [7]). Let x1, . . . , xn be vectors in Rd such that
∑

i xi = 0. Then
there exists a permutation ν ∈ Sn such that

k∑
i=1

xν(i) ∈ d× conv{x1, . . . , xn} for 1 ≤ k ≤ n,

where d× conv denotes the dilation of the convex hull by d.

Of course, we need something much stronger than this, namely, almost uniform
permutations with a similar balance property. Perhaps surprisingly, we will show that
balanced almost uniform permutations exist in arbitrary dimension d. To illustrate
the main ideas involved in extending from one to higher dimensions, we now give a
sketch of the proof in the special case where d = 2 and the weights satisfy 1 ≤ |wj

i | ≤ 2
for all i and j.

In this setting, let I1 = {i : w2
i ≥ 0}, I2 = {i : w2

i < 0}, and define v =
∑

i∈I1
wi.

For every i ≤ m, let yi be the projection of wi onto v⊥. Let π1 be an almost uniform
permutation on I1 which is balanced (in the one-dimensional sense) with respect
to {yi}i∈I1 , with a similar definition for π2. Finally, interleave π1 and π2 to give a
permutation on {1, . . . ,m} which is balanced with respect to {w2

i }mi=1 (the projections
of the wi onto the second coordinate axis). Since π1 and π2 are both almost uniform,
so is π, by an argument similar to that in the proof of Lemma 3.3.

Furthermore, since π1 and π2 are each balanced with respect to projections
onto v⊥, so is π. (Note that the projections yi satisfy

∑
i∈I1

yi =
∑

i∈I2
yi = 0.)

Thus, for every k, the projections of
∑k

i=1 wπ(i) onto the second coordinate axis and

onto v⊥ are both bounded, and since the wj
i are all in [1, 2], the angle between the

coordinate axis and v⊥ is bounded away from zero. Thus, the partial sums
∑k

i=1 wπ(i)
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stay inside a parallelogram of bounded diameter. Hence π is balanced with respect
to the weights {wi}mi=1.

This concludes the sketch proof for the above special case with d = 2. Note
that it is a straightforward reduction to the one-dimensional result. Unfortunately, in
general the reduction from d to d − 1 dimensions is not quite so straightforward; we
deal with the extra technical difficulties in the next subsection.

5.2. Balanced almost uniform permutations in arbitrary dimensions.
The following theorem says that one can always construct balanced almost uniform
permutations when the dimension d is fixed.

Theorem 5.3. Let d be any positive integer. There is a constant cd and a poly-
nomial function pd such that, for any set of weights {wi}mi=1 in Rd with

∑
i wi = 0,

there exists a cd-balanced, pd(m)-uniform permutation.
Proof. The proof will be by induction on d. The base case d = 1 follows from

Corollary 3.5, with c1 = 9 and p1(m) = Cm2. Now let d > 1 be arbitrary, and
suppose that the result holds for dimensions up to d − 1. Let {wi}mi=1 be a set of
weights in Rd. Suppose first that the weights satisfy

M j = 2 for all j,(5.3)

1 ≤ max
1≤j≤d

|wj
i | ≤ 2 for all i.(5.4)

Thus each weight is at least half as large as the maximum (positive or negative) weight
in some coordinate. Then

max
1≤j≤d

m∑
i=1

|wj
i | ≥

m

d
.

Without loss of generality, suppose that the sum in the left-hand side is maximized
by j = d. Then we have

m∑
i=1

(wd
i )

+ =

m∑
i=1

(wd
i )

− ≥ m

2d
,

where we are using the notation z+ = max{z, 0} and z− = max{−z, 0}.
Let I1 = {i : wd

i ≥ 0}, I2 = {i : wd
i < 0}, m1 = |I1|, and m2 = |I2|. Define

the means µ1 = 1
m1

∑
i∈I1

wd
i and µ2 = − 1

m2

∑
i∈I2

wd
i . Note that µ1, µ2 ≥ 1

2d . For
1 ≤ j < d, let

γj =

∑
i∈I1

wj
i∑

i∈I1
wd

i

=

∑
i∈I2

wj
i∑

i∈I2
wd

i

.

For all i ≤ m and j < d, let yji = wj
i − γjwd

i , and let yi = (y1
i , . . . , y

d−1
i ). Note that

|γj | ≤ 1, |yji | ≤ 4, and
∑

i∈I1
yi =

∑
i∈I2

yi = 0.
Now, for s = 1, 2 let πs be a pd−1(m)-uniform permutation on Is which is cd−1-

balanced with respect to {yi}i∈Is . Call π1 α-good if for every k1 with 1 ≤ k1 ≤ m1

we have

∣∣∣∣
k1∑
i=1

wd
π1(i)

− k1µ1

∣∣∣∣ ≤ 2α
√
k∗1 ,(5.5)
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where k∗1 = min{k1,m1−k1}. In similar fashion to the proof of Lemma 6.1, Hoeffding’s
bounds [8] imply that for a particular value of k1 we have

Prunif [π1 does not satisfy (5.5)] ≤ 2 exp(−2α2),

and since the event depends only on the initial segment π1{1, . . . , k1}, we also have

Pr[π1 does not satisfy (5.5)] ≤ pd−1(m) · Prunif [π1 does not satisfy (5.5)]

≤ pd−1(m) · 2 exp(−2α2).

Hence

Pr[π1 is not α-good] ≤ mpd−1(m) · 2 exp(−2α2).(5.6)

Suppose that for some constants C and r, the polynomial pd−1 satisfies pd−1(k) ≤ Ckr

for all k. If we let α =
√

(r + 1) ln(m), then the right-hand side of (5.6) is at most
2Cmr+1−2(r+1) ≤ 1

2 for sufficiently large m. Thus, we can assume that π1 is α-good
with probability 1 and only increase C by a constant factor. Similar arguments apply
to π2.

Finally, note that it is always possible to interleave π1 and π2 to give a permu-
tation on {1, . . . ,m} which is 1-balanced with respect to {wd

i }mi=1. Let π be such a

permutation. Then we have |
∑k

i=1 w
d
π(i)| ≤ 2, and

∣∣∣∣
k∑

i=1

wj
π(i)

∣∣∣∣ =

∣∣∣∣∣
∑
i∈I1:
i≤k

wj
π(i) +

∑
i∈I2:
i≤k

wj
π(i)

∣∣∣∣∣
=

∣∣∣∣∣
∑
i∈I1:
i≤k

yjπ(i) +
∑
i∈I2:
i≤k

yjπ(i) + γj
k∑

i=1

wd
π(i)

∣∣∣∣∣
≤

∣∣∣∣∣
∑
i∈I1:
i≤k

yjπ(i)

∣∣∣∣∣ +

∣∣∣∣∣
∑
i∈I2:
i≤k

yjπ(i)

∣∣∣∣∣ + |γj |
∣∣∣∣∣

k∑
i=1

wd
π(i)

∣∣∣∣∣
≤ 4cd−1 + 4cd−1 + 2|γj |
≤ 8cd−1 + 2

for all j < d and k. Hence π is c′d-balanced for c′d = 4cd−1 + 1 by assumption (5.3).
To verify that π is almost uniform, we follow the proof of Lemma 3.3. Let U ⊆

{1, . . . ,m} be arbitrary with |U | = k, and let U1 = U ∩ I1, U2 = U ∩ I2, k1 = |U1|,
and k2 = |U2|. Then we have

Pr
[
π{1, . . . , k} = U

]
≤ Pr

[
π1{1, . . . , k1} = U1 and π2{1, . . . , k2} = U2

]
≤ (Cmr)2 Prunif

[
π1{1, . . . , k1} = U1 and π2{1, . . . , k2} = U2

]
=

C ′m2r(
m1

k1

)(
m2

k2

) .
Now we can bound the quantity

(
m1

k1

)(
m2

k2

)
by mimicking (with minor modifications)

the calculations from (3.7) to (3.10) in the proof of Lemma 3.3. In our current setting,
we have µ1, µ2 ≥ 1

2d , and the |wd
i | are in [0, 2]. Because we have changed the definition
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of α-good and the value of α, we also have to make the substitutions (B − 1)2 → 22

and lnm → (r+ 1) lnm, respectively. Thus the bound on the exponent given in (3.9)
becomes

10 · 22

( 1
2d )2

(r + 1) lnm = 160d2(r + 1) lnm.(5.7)

Hence π is pd(m)-uniform for pd(m) = C ′′m160d2(r+1)+2r+1/2.

We have shown how to make balanced almost uniform permutations if the weights
satisfy (5.3) and (5.4). To generalize to arbitrary weights {wi}mi=1, we use the interval
trick introduced in section 3.2. Let β be a uniform random permutation in Sm, and let
T1 = min{t : |

∑t
i=1 w

j
i | > M j for some j}. Define T2, T3, . . . similarly. Now use the Ti

to divide β into intervals I1, . . . , Iq. Let {αi}q−1
i=1 be the aggregated (d-dimensional)

weights of the first q−1 intervals. Note that if we divide each αj
i by 1

2 maxi |αj
i |, then

the resulting weights satisfy (5.3) and (5.4). Hence these weights admit a c′d-balanced,
pd(q)-uniform permution (though see the remark immediately following this proof).
Rearranging the intervals {Ii}q−1

i=1 according to such a permutation gives a permutation
on {1, . . . ,m} which is pd(m)-uniform and cd-balanced for cd = 2c′d + 1.

Remark. We should point out that the weights {αi}q−1
i=1 of the first q− 1 intervals

will not in general sum to zero. However, we can easily get around this by introducing
a dummy weight αq which is equal to the weight of interval Iq. The presence of this
single small weight does not affect (5.7) for sufficiently large m. Hence there is a
c′d-balanced, pd-uniform permutation on this padded sequence {αi}qi=1. This induces

a permutation on {αi}q−1
i=1 which is (c′d + 1)-balanced and cpd(q)-uniform for some

constant c. Thus, if we incorporate an extra +1 into the constant c′d and an extra
factor of c into pd, then the argument in the above proof is still valid.

Before we specify our flow, we need one more definition.

Definition 5.4. Let {wi}mi=1 be a sequence in Rd, with wi = (w1
i , . . . , w

d
i ), let

µ = (µ1, . . . , µd) = 1
m

∑m
i=1 wi, and let l be a positive integer. A permutation π is

strongly l-balanced if, for all k ≤ m and j ≤ d, there exists a set S ⊆ {1, . . . ,m}
with |S ⊕ π{1, . . . , k}| ≤ l such that (

∑k
i=1 w

j
π(i) − kµj) and (

∑
i∈S wj

π(i) − kµj) have

opposite signs (or either is 0).

Thus, in a strongly balanced permutation, whenever the initial segment {π(i)}ki=1

is “above average” with respect to a particular coordinate j, it can be made “below
average” by flipping at most some fixed number l of items, and vice versa. As the name
suggests, the strong balance condition is stricter than the usual balance condition.
Nonetheless, the following lemma says that strongly balanced permutations always
exist.

Lemma 5.5. For any sequence {wi}mi=1 in Rd, there exists a strongly 16d2-
balanced permutation.

Note that this lemma claims only that a single strongly balanced permutation
exists; unlike Theorem 5.3, it makes no claims regarding almost uniformity. The
proof of the lemma relies heavily on the result of Grinberg and Sevast’yanov quoted
earlier (Lemma 5.2); the proof is straightforward but rather technical, so we defer it
to section 6.

5.3. A good flow. Now that we have multidimensional balanced almost uniform
permutations and strongly balanced permutations, we are ready to construct a good
flow.
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Lemma 5.6. Fix any number of knapsack constraints d. For arbitrary item
weights, it is possible to construct a multicommodity flow f in GΩ with C(f) bounded
by a polynomial in n and L(f) = O(n).

Proof. Recall that we identify a vertex x ∈ Ω with the index set X = {i : xi = 1}.
Let Ω̂ = {X ∈ Ω : aj(X) ≤ bj − 3cd maxi∈X aji}, where cd is the constant in the
construction of balanced almost uniform permutations as in Theorem 5.3. Our main
goal will be to construct a flow f̂ which, simultaneously for every X,Y ∈ Ω̂, sends
one unit of flow from X to Y . This flow will satisfy C(f̂) ≤ poly(n) and L(f̂) = O(n).

Note that, from any vertex X ∈ Ω, we can obtain a vertex X̂ ∈ Ω̂ by removing
at most 3dcd items. Thus, we can use an approach similar to that in section 4.1 to
extend f̂ to a multicommodity flow f on the whole of Ω, and f will satisfy C(f) ≤
O(n6dcd) poly(n) ≤ poly′(n) and L(f) ≤ L(f̂) + 6dcd = O(n).

It remains to define the flow f̂ and show that it has the properties claimed. Fix
X,Y ∈ Ω̂. As in the one-dimensional case, the high-level idea is to route the flow from
X to Y according to a balanced almost uniform permutation on the symmetric differ-
ence X ⊕Y . Recall from the one-dimensional case that we want both path endpoints
to be far enough below the hyperplane before we apply the balanced permutation;
recall also that we cannot in general ensure this by removing only a fixed number of
items from X and Y (e.g., if the items in X are much larger than those in Y ). In the
one-dimensional case (see section 4.2), we overcame this obstacle using the prepro-
cessing random walk. Here we will use a different mechanism based on considering
the “large” and the “small” items in X⊕Y separately. This mechanism is cruder but
more robust and works in the multidimensional setting.

Let M = (M1, . . . ,Md), where M j = min{maxi∈X aji ,maxi∈Y aji}. Let L =

{i ∈ X ⊕ Y : aji > M j for some j} and S = (X ⊕ Y ) − L. (L and S are the “large”
and “small” items, respectively.) Let {wi}i∈X⊕Y be an enumeration of the weights of
the items in X ⊕ Y , where weights from Y appear with a positive sign and weights
from X appear with a negative sign. Let µ1 = 1

|L|
∑

i∈L wi, and let µ2 = 1
|S|

∑
i∈S wi.

Let π1 be a permutation on L which is strongly 16d2-balanced with respect to the
weights {wi}i∈L, and let π2 be a pd(|S|)-uniform permutation which is cd-balanced
with respect to the weights {wi−µ2}i∈S . The existence of π1 and π2 is guaranteed by
Lemma 5.5 and Theorem 5.3, respectively. To obtain π, we will interleave the strongly
balanced permutation π1 and the balanced permutation π2. The rule for interleaving
will be as follows. Suppose that π(1), . . . , π(k) have already been assigned and that

π{1, . . . , k} = π1{1, . . . , k1}∪ π2{1, . . . , k2}. Now, either k1

k ≤ |L|
|L|+|S| or k2

k < |S|
|L|+|S| ,

so we can define π(k + 1) by

π(k + 1) =

{
π1(k1 + 1) if k1

k ≤ |L|
|L|+|S| ,

π2(k2 + 1) if k2

k < |S|
|L|+|S| .

Now let µ = 1
|X⊕Y |

∑
i∈X⊕Y wi = |L|µ1+|S|µ2

|L|+|S| . We claim that π satisfies the

following condition. Fix j and k. Then there exist sets of indices V1 and V2, with
|Vi ⊕ {1, . . . , k}| ≤ 17d2, such that∑

i∈V1

wj
π(i) ≤ (k − 1)µj + 3cdM

j ,(5.8)

∑
i∈V2

wj
π(i) ≥ (k − 1)µj − 3cdM

j .(5.9)
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We will prove this in the case µ1
j ≥ µ2

j ; if µ1
j < µ2

j , the proof is similar. Again, let
k1 = |L∩π{1, . . . , k}| and k2 = |S∩π{1, . . . , k}|, so that π{1, . . . , k} = π1{1, . . . , k1}∪
π2{1, . . . , k2}. The method of interleaving ensures that

k1 − 1

k − 1
≤ |L|

|L| + |S| ,
k2 − 1

k − 1
≤ |S|

|L| + |S| .

Therefore, since µ1
j ≥ µ2

j , we have

(k1 − 1)µj
1 + k2µ

j
2 ≤ (k − 1)µj ,(5.10)

k1µ
j
1 + (k2 − 1)µj

2 ≥ (k − 1)µj .(5.11)

Clearly, the strong balance condition on π1 implies that there exist A,A′, with
|A⊕ {1, . . . , k1}| ≤ 16d2 + 1 and similarly for A′, such that∑

i∈A

wj
π1(i)

≤ (k1 − 1)µj
1,(5.12)

∑
i∈A′

wj
π1(i)

≥ k1µ
j
1.(5.13)

Also, by the balance condition on π2 we have

k2∑
i=1

wj
π2(i)

≤ k2µ
j
2 + cd max

i∈S
{|wj

i − µj
2|} ≤ k2µ

j
2 + 3cdM

j ,(5.14)

k2∑
i=1

wj
π2(i)

≥ k2µ
j
2 − cd max

i∈S
{|wj

i − µj
2|} ≥ (k2 − 1)µj

2 − 3cdM
j .(5.15)

Now, let B = π−1(π1(A)∪π2{1, . . . , k2}) and B′ = π−1(π1(A
′)∪π2{1, . . . , k2}). Then

we have |B ⊕ {1, . . . , k}| ≤ 16d2 + 1 ≤ 17d2, and

∑
i∈B

wj
π(i) =

∑
i∈A

wj
π1(i)

+

k2∑
i=1

wj
π2(i)

.

Exactly analogous relations hold with B,A replaced by B′, A′. Combining this with
(5.10)–(5.15) gives (5.8) and (5.9).

Now, π determines a path {Zi}|X⊕Y |
i=0 from X to Y , where Z0 = X and Zi =

X ⊕ {π(1), . . . , π(i)} for 1 ≤ i ≤ |X ⊕ Y |. This path might not stay in Ω, but we
can alter it slightly so that it does. Inequalities (5.8) and (5.9) imply that for every
k and j, there exists a set of indices W j

k with |W j
k | ≤ 34d2 such that

aj(Zk −W j
k ) ≤ max{aj(X), aj(Y )} + 3cdM

j ≤ bj ,(5.16)

aj(Zk ∪W j
k ) ≥ min{aj(X), aj(Y )} − 3cdM

j .(5.17)

Let W0 = ∅ and for k = 1, . . . , |X ⊕ Y |, let Wk =
⋃d

j=1 W
j
k . Then, for all k,

|Wk| ≤ 34d3 and a(Zk −Wk) ≤ b. For 0 ≤ k ≤ |X ⊕ Y |, define

Zk = Zk −Wk.

Then each Zk ∈ Ω. Our flow from X to Y will pass through each of the Zk in turn.
To get from Zk to Zk+1, we perform the following steps:
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1. Remove each item in Zk − (Zk ∩ Zk+1) in index order.
2. Add each item in Zk+1 − (Zk ∩ Zk+1) in index order.

Define Wx = (Wk ∪ Wk+1) ∩ X and Wy = (Wk ∪ Wk+1) ∩ Y . By analogy with

section 4, for each intermediate point Z along the path define the “encoding” Z̃ by

Z̃ = (X ⊕ Y − Z) ∪ (X ∩ Y ) − (Wk ∪Wk+1),

and let U = π{1, . . . , k}. By analogy with our earlier analysis, one can see that, for

a given Z, X and Y are completely specified by the 4-tuple (Z̃, U,Wx,Wy). We also
have

aj(Z̃) = aj(X) + aj(Y ) − aj(Z ∪Wk ∪Wk+1)

≤ aj(X) + aj(Y ) − min{aj(Zk ∪Wk), a
j(Zk+1 ∪Wk+1)}

≤ aj(X) + aj(Y ) − (min{aj(X), aj(Y )} − 3cdM
j)

= max{aj(X), aj(Y )} + 3cdM
j

≤ bj ,

where the second inequality follows from (5.17). Hence Z̃ ∈ Ω. We can therefore

bound the flow f̂(Z) through Z by

f̂(Z) ≤
∑
Z̃∈Ω

∑
Wx,Wy,U

Pr
[
{π(1), . . . , π(|U |)} = U

]
.(5.18)

Finally, for a given X and Y , let Lj = {i ∈ X ∪ Y : aji > M j}, so that L =⋃d
j=1 L

j . Note that for every j, Lj ∩ Y is equal to either Lj or ∅. Thus, if we define

k2 = |U ∩ S|, then for given values of M and k2, there are at most 2d
(|S|
k2

)
possible

values for U in the inner sum of (5.18). Therefore, we have

f̂(Z) ≤
∑
Z̃∈Ω

∑
M,Wx,Wy,k2

∑
U :|U∩S|=k2

Pr
[
{π2(1), . . . , π2(k2)} = U ∩ S

]

≤
∑
Z̃∈Ω

∑
M,Wx,Wy,k2

∑
U :|U∩S|=k2

pd(|S|)
(
|S|
k2

)−1

≤
∑
Z̃∈Ω

∑
M,Wx,Wy,k2

2dpd(|S|)

≤
∑
Z̃∈Ω

nd

[(
n

68d3

)
268d3

]
n× 2dpd(n)

= poly(n)|Ω|,

where in the second line we have appealed to the almost uniformity of permutation π2.
This completes the proof.

Given such a flow, we can appeal to Theorem 2.1 to derive the main result of this
section.

Theorem 5.7. Fix any dimension d > 0, and let Ω be the set of solutions to
an arbitrary instance of the d-dimensional 0-1 knapsack problem. The mixing time of
the random walk on GΩ is polyd(n).

As in one dimension, this immediately implies the existence of an fpras for com-
puting |Ω| in this more general setting.
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Remark. In the multidimensional case we have made no attempt to optimize the
exponent in our polynomial bound on the mixing time. Indeed, tracing through the
proof of Lemma 5.6, we see that the bound is of the form nO((3d)!). This is much
larger than the lower bound nΩ(d) mentioned earlier. It would be interesting to try
to close this gap.

6. Proofs of technical lemmas. In this final section we supply the proofs of
some technical results that were omitted from the main text.

6.1. Lemmas for section 3.1. The following two lemmas were used in the
proof of Lemma 3.3.

Lemma 6.1. Let ν be a uniform random permutation in Sm. Then

Pr[ν is not α-good ] ≤ 2m exp(−2α2).

Proof. We adopt the notation of the proof of Lemma 3.3. Let 1 ≤ k1 ≤ m1. It
suffices to show that

Pr

[ ∣∣∣∣
k1∑
i=1

wν1(i) − k1µ1

∣∣∣∣ > α(M − 1)
√
k1

]
≤ 2 exp(−2α2),

for then the lemma follows from the union bound and from symmetry (which allows
us to replace k1 by k∗1 = min{k1,m1−k1}). But this inequality is a direct consequence
of Hoeffding’s bound on deviations in sampling without replacement [8].

Lemma 6.2. Let m1,m2, k1, k2 be nonnegative integers and m = m1 + m2,
k = k1 + k2. Then(

m1

k1

)(
m2

k2

)
(
m
k

) ≥ Am−1/2 exp

{
−
l2 + 1

2 |l|
γ(1 − γ)

(
1

m1
+

1

m2

)}
,

where γ = k
m , l = m1k2−m2k1

m , and A > 0 is a universal constant.
Proof. Note that k = γm, k1 = γm1 − l, and k2 = γm2 + l. By the symmetry

of binomial coefficients, we may assume that l ≥ 0. We shall prove the lemma by
showing the two inequalities(

m1

γm1

)(
m2

γm2

)
(
m
γm

) ≥ A1m
−1/2(6.1)

and

(
m1

γm1−l

)(
m2

γm2+l

)
(
m1

γm1

)(
m2

γm2

) ≥ A2 exp

{
−
l2 + 1

2 |l|
γ(1 − γ)

(
1

m1
+

1

m2

)}
(6.2)

for positive constants A1, A2.
The first inequality is an immediate consequence of Stirling’s approximation,√

2πn(ne )n ≤ n! ≤ A3

√
2πn(ne )n, where A3 = 1 + e1/12 is a constant. To prove the

second inequality, we apply Stirling’s approximation to all four binomial coefficients
to get the following lower bound on the left-hand side of (6.2):[

P(γm1)P((1 − γ)m1)P(γm2)P((1 − γ)m2)

P(γm1 − l)P((1 − γ)m1 + l)P(γm2 + l)P((1 − γ)m2 − l)

]

×
[

γm1(1 − γ)m1γm2(1 − γ)m2

(γm1 − l)((1 − γ)m1 + l)(γm2 + l)((1 − γ)m2 − l)

]1/2

,(6.3)
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where P(x) denotes xx. Now we have

P(γm1)

P(γm1 − l)
= (γm1)

l

(
1 +

l

γm1 − l

)γm1−l

≥ (γm1)
l exp

{
l(γm1 − l)

γm1

}
,

where we have used the inequality (1 + x
y )y ≥ exp( xy

x+y ), valid for x, y > 0. Handling
the three other pairs of factors in the numerator and denominator in a similar fashion
(using in addition the inequality (1 − x

y )y ≥ exp(−xy
y−x ), valid for y > x > 0), we see

that the first parenthesis in (6.3) is bounded below by

exp

{
− l2

γ(1 − γ)

(
1

m1
+

1

m2

)}
.(6.4)

A similar calculation bounds the second parenthesis in (6.3) by

exp

{
− |l|
γ(1 − γ)

(
1

m1
+

1

m2

)}
.(6.5)

Combining (6.4) and (6.5) completes the verification of inequality (6.2) above and
hence the proof of the lemma.

6.2. Proof of Lemma 4.1. By removing X∩Y from both X and Y and replac-
ing b by b− a(X ∩ Y ), we may assume that X ∩ Y = ∅. Moreover, by scaling all the
ai and b we may assume that M = maxi ai = 1. Finally, we may assume that b ≥ 3∆
since otherwise there are no pairs (X,Y ) satisfying the hypothesis of the lemma.

Define

F = {(X ′, Y ′) : a(X ′) ≥ b− ∆ or a(Y ′) ≥ b− ∆},
E = {(X ′, Y ′) : a(X ′) ≤ b− 2∆ and a(Y ′) ≤ b− 2∆}.

Note that F contains all full pairs (X ′, Y ′), and E ,F are disjoint. Also, define the
hitting times

T = max
(X′,Y ′)∈F

E(number of PRW steps to hit E starting at (X ′, Y ′)),

U = min
(X′,Y ′)∈E

E(number of PRW steps to hit F starting at (X ′, Y ′)).

Now we claim that the lemma will follow if we can show the following:
(i) T ≤ αm for some constant α > 0;
(ii) U/T ≥ β for some constant β > 0.
To see this, set the length of the PRW to be C1m = 4αm, and let (Xt, Yt) denote

the sequence of pairs visited by the PRW, with (X0, Y0) = (X,Y ) ∈ F . Let T0 be
the first time t at which (Xt, Yt) ∈ E (or T0 = C1m if the walk ends before this
occurs); then let U1 be the first t for which (XT0+t, YT0+t) ∈ F , and T1 the first
t for which (XT0+U1+t, YT0+U1+t) ∈ E . Continue defining a sequence of hitting times
U2, T2, U3, T3, . . . in this way until the end of the walk is reached. Note that the PRW
is not full for at least

∑
i Ui steps and that

∑
i≥0 Ti +

∑
i≥1 Ui = 4αm is the total

walk length. Now from facts (i) and (ii) we have

E

(∑
i≥0

Ti − 1
β

∑
i≥1

Ui

)
= E

(
T0 +

∑
i≥1

(Ti − 1
βUi)

)
≤ αm.
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An application of Markov’s inequality then ensures that
∑

i≥0 Ti− 1
β

∑
i≥1 Ui ≤ 2αm

with probability at least 1
2 . Conditioning on this event, we have (1+ 1

β )
∑

Ui ≥ 2αm,

and thus the proportion of steps during which the PRW is not full is at least 1/2(1+ 1
β ),

a constant. The lemma now follows easily.

It remains to verify facts (i) and (ii) above: these are immediate consequences of
the following two claims. Let σ2 = 1

m

∑
i∈X∪Y a2

i be the second moment of the item
weights, and note that σ2 ≥ 1/m since maxi ai = 1.

Claim 1. T ≤ γ1/σ
2 for a constant γ1 > 0.

Claim 2. U ≥ γ2/σ
2 for a constant γ2 > 0.

Proof of Claim 1. Choose an initial pair (X0, Y0) ∈ F that maximizes the expected
time until the PRW hits E , and let (Xt, Yt) denote the PRW starting at (X0, Y0). We
may assume without loss of generality that a(X0) > a(Y0), so that a(X0) ∈ [b−∆, b]
and T is the expected time until a(Xt) ≤ b−2∆. We estimate T by coupling the PRW
with the unconstrained random walk, which behaves exactly like the PRW except
that the constraint

∑
ai ≤ b is ignored. (Thus it is just simple random walk on an

m-dimensional hypercube with holding probability 1
2 at every step.) Write (X̂t, Ŷt) for

the unconstrained random walk, with (X̂0, Ŷ0) = (X0, Y0), and consider the first time

t = T̂ at which |a(X̂t)− a(X0)| ≥ 2∆. Now a(X̂t) is a supermartingale up to time T̂ ,

since E(a(X̂t+1)−a(X̂t)|X̂t) = 1
2m (a(Ŷt)−a(X̂t)) < 0. Thus with constant probability

a(X̂T̂ ) ≤ a(X̂0)− 2∆, and so (XT̂ , YT̂ ) ∈ E . Hence T is bounded above by a constant

times E(T̂ ). But we also have E((a(X̂t+1) − a(X̂t))
2|X̂t) = 1

2m

∑
i a

2
i = σ2

2 . So E(T̂ )
is the expected time for a supermartingale with increments bounded by ±1 and with
second moment σ2/2 to move a distance ±2∆ from its initial value. A standard
application of the martingale optional stopping theorem (see, e.g., [6, section 12.5])

now yields that E(T̂ ) ≤ (4∆+1)2

σ2/2 = γ1/σ
2 for a positive constant γ1. This completes

the proof of Claim 1.

Proof of Claim 2. As above, let (Xt, Yt) denote the PRW, but now with (X0, Y0) ∈
E . We follow the random variable Zt = a(Xt)−a(Yt), which always has a drift toward 0
(i.e., E(Zt+1 − Zt|Xt) × Zt ≤ 0 for all t). Note that initially |Z0| ≤ 2(b − 2∆) − V ,
where V = a(Xt) + a(Yt) =

∑
i ai is independent of t. And when (Xt, Yt) ∈ F we

have |Zt| ≥ 2(b − ∆) − V . Thus U is bounded below by the minimum expected
time for |Zt| to increase by 2∆ from its initial value. But the second moment is
E((Zt+1 − Zt)

2|Xt) = 1
2m

∑
i(2ai)

2 = 2σ2, so by a similar application of the optional
stopping theorem we conclude that U ≥ γ2/σ

2, as claimed.

This completes the verification of Claims 1 and 2 and hence the proof of the
lemma.

6.3. Proof of Lemma 5.5. First suppose that
∑m

i=1 wi = 0. We will show
that, in this case, there exists a strongly 8d2-balanced permutation π. Let L be the
set containing the 4d indices i with the largest values of wj

i and the 4d indices i with

the largest values of −wj
i for each j ≤ d. Then |L| ≤ 8d2.

The permutation π we construct will satisfy {π(m), . . . , π(m− |L| + 1)} = L. It
will be enough to check that the strong balance condition holds for 1 ≤ k ≤ m− |L|.
It suffices to show that, for all j ≤ d and k ≤ m− |L|, we have

−sj+ ≤
k∑

i=1

wj
π(i) ≤ sj−,(6.6)
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where

sj+ ≡
∑
i∈L

(wj
i )

+, sj− ≡
∑
i∈L

(wj
i )

−.

We will need the Grinberg–Sevast’yanov result (Lemma 5.2), which states that
for any set of vectors x1, . . . , xn in Rd with

∑
i xi = 0, there exists a permutation

ν ∈ Sn such that

k∑
i=1

xν(i) ∈ d× conv{x1, . . . , xn} for 1 ≤ k ≤ n.

Note that the permutation ν′ defined by ν′(i) = ν(n + 1 − i) for all i satisfies

k∑
i=1

xν′(i) ∈ −d× conv{x1, . . . , xn} for 1 ≤ k ≤ n,

because
∑k

i=1 xν′(i) =
∑m

i=m−k+1 xν(i) = −
∑k

i=1 xν(i).
Let S1 = {1, . . . ,m} − L, let m′ = m − |L|, and let π1 be a permutation on S1

such that

k∑
i=1

(wπ1(i) − µ1) ∈ −d× conv{wi − µ1 : i ∈ S1}

for all k, where µ1 = 1
m′

∑
i∈S1

wi. Suppose that m′ is even and m′ = 2r; if m′ is
odd, the proof is similar. Now, let S2 = {π1(r + 1), . . . , π1(m

′)}, and let π2 be a
permutation on S2 such that

k∑
i=1

(wπ2(i) − µ2) ∈ d× conv{wi − µ2 : i ∈ S2},(6.7)

where µ2 = 1
r

∑
i∈S2

wi. Define the permutation π by

π(i) =

{
π1(i) if i ≤ r,
π2(i− r) if r < i ≤ m′.

We must check that π satisfies (6.6). Fix j. Without loss of generality, sj+ ≤ sj−,
so that µj

1 ≥ 0. For k ≤ r we have

k∑
i=1

wj
π(i) =

k∑
i=1

wj
π1(i)

≥
k∑

i=1

(wj
π1(i)

− µj
1)

≥ −d max
1≤i≤m′

{wj
i − µj

1}

≥ −d max
1≤i≤m′

{wj
i }

≥ −1
4s

j+(6.8)

≥ −sj+

and



224 BEN MORRIS AND ALISTAIR SINCLAIR

k∑
i=1

wj
π(i) =

k∑
i=1

wj
π1(i)

= kµj
1 +

k∑
i=1

(wπ1(i) − µj
1)

≤ rµj
1 + d max

1≤i≤m′
{−(wj

i − µj
1)}

= 1
2 (sj− − sj+) + d max

1≤i≤m′
{−wj

i } + dµj
1

≤ 1
2 (sj− − sj+) + 1

4s
j− + 1

4s
j+

= 3
4s

j− − 1
4s

j+

≤ sj− − 1
4s

j+.(6.9)

(We will need the extra − 1
4s

j+ in the second part of the proof.) For r < k ≤ 2r we
have

k∑
i=1

wj
π(i) =

r∑
i=1

wj
π1(i)

+

k−r∑
i=1

wj
π2(i)

.(6.10)

Now if µj
2 < 0, then the conditional expectation of

∑k
i=1 w

j
π(i) given π1 is at least

−sj+ + sj−. Hence we must have

k∑
i=1

wj
π(i) ≥ −sj+ + sj− − dmax

i∈S2

{−(wj
i − µj

2)}

≥ −sj+ + sj− − dmax
i∈S2

{−wj
i }

≥ −sj+ + sj− − 1
4s

j−

≥ −sj+.

On the other hand, if µj
2 ≥ 0, the right-hand side of (6.10) can be bounded below as

follows:

r∑
i=1

wj
π1(i)

+

k−r∑
i=1

wj
π2(i)

=

[ r∑
i=1

wj
π1(i)

+ (k − r)µj
2

]
+

k−r∑
i=1

(wj
π2(i)

− µj
2)

≥
[

1
2 (sj− − sj+) − d max

1≤i≤m′
{wj

i − µj
1}
]
− dmax

i∈S2

{−(wj
i − µj

2)}

≥
[

1
2 (sj− − sj+) − d max

1≤i≤m′
{wj

i }
]
− dmax

i∈S2

{−wj
i } − dµj

2

≥
[
1
2 (sj− − sj+) − 1

4s
j+

]
− 1

4s
j− − 1

4s
j−

= − 3
4s

j+

≥ −sj+.

For a corresponding upper bound, we can write

k∑
i=1

wj
π(i) ≤

r∑
i=1

wj
π1(i)

+ (k − r)µj
2 + min{d, k − r}max

i∈S2

{wj
i − µj

2}.(6.11)



RANDOM WALKS ON TRUNCATED CUBES 225

If µj
2 ≥ 0, the right-hand side of (6.11) is bounded above by

(sj− − sj+) + dmax
i∈S2

{wj
i } ≤ (sj− − sj+) + 1

4s
j+ ≤ sj−.

If µj
2 < 0, the right-hand side of (6.11) is bounded above by

r∑
i=1

wj
π1(i)

+ min{d, k − r}max
i∈S2

{wj
i } ≤ (sj− − 1

4s
j+) + 1

4s
j+ ≤ sj−,

where in the first inequality we have used (6.9).
Putting all the above together, we see that π is strongly 8d2-balanced. Further-

more, in light of (6.6), we know also that, for all k and j, there exists a set of indices

S ⊇ {1, . . . , k}, with |S| ≤ k+8d2, such that
∑k

i=1 w
j
π(i) and

∑
i∈S wj

π(i) have opposite
signs.

Now let {wi}mi=1 be arbitrary. From the above, there exists a permutation π
which is strongly 8d2-balanced with respect to the sequence {wi − µ}mi=1, where
µ = 1

m

∑m
i=1 wi. We claim that π is also strongly 16d2-balanced with respect to

the original sequence {wi}mi=1. Fix k and j, and define µj = 1
m

∑m
i=1 w

j
i . Without

loss of generality, µj ≥ 0. Then there exists S ⊇ {1, . . . , k} with |S| ≤ k + 8d2 such
that ∑

i∈S

wj
π(i) − kµj ≥

∑
i∈S

wj
π(i) − |S|µj ≥ 0.

In addition, there exists S ⊇ {1, . . . , k}, with |S| ≤ k + 8d2 such that
∑

i∈S wj
π(i) ≤

|S|µj . It follows that, for some S′ ⊆ S with |S′| = k, we have
∑

i∈S′ w
j
π(i) ≤ kµj .

Since |S′ ⊕ {1, . . . , k}| ≤ 16d2, this completes the proof.

Acknowledgment. We thank Persi Diaconis for bringing reference [7] to our
attention.

REFERENCES

[1] M. Cryan, M. Dyer, L. Goldberg, M. Jerrum, and R. Martin, Rapidly mixing Markov
chains for sampling contingency tables with a constant number of rows, in Proceedings of
the 43rd IEEE Symposium on Foundations of Computer Science, IEEE Computer Society,
Los Alamitos, CA, 2002, pp. 711–720.

[2] P. Dagum, M. Luby, M. Mihail, and U. Vazirani, Polytopes, permanents and graphs with
large factors, in Proceedings of the 29th IEEE Symposium on Foundations of Computer
Science, IEEE Computer Society, Los Alamitos, CA, 1988, pp. 412–421.

[3] P. Diaconis and D. Stroock, Geometric bounds for eigenvalues of Markov chains, Ann. Appl.
Probab., 1 (1991), pp. 36–61.

[4] M. Dyer, Approximate counting by dynamic programming, in Proceedings of the 35th ACM
Symposium on Theory of Computing, ACM, New York, 2003, pp. 693–699.

[5] M. Dyer, A. Frieze, R. Kannan, A. Kapoor, L. Perkovic, and U. Vazirani, A mildly ex-
ponential time algorithm for approximating the number of solutions to a multidimensional
knapsack problem, Combin. Probab. Comput., 2 (1993), pp. 271–284.

[6] G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, 3rd ed., Oxford
University Press, Oxford, UK, 1992.

[7] V. Grinberg and S. Sevast’yanov, Value of the Steinitz constant, Funktsional. Anal. i
Prilozhen., 14 (1980), pp. 56–57.

[8] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist.
Assoc., 58 (1963), pp. 13–30.



226 BEN MORRIS AND ALISTAIR SINCLAIR

[9] M. R. Jerrum, Mathematical foundations of the Markov chain Monte Carlo method, in Prob-
abilistic Methods for Algorithmic Discrete Mathematics, M. Habib, C. McDiarmid, J.
Ramirez-Alfonsin, and B. Reed, eds., Algorithms Combin. 16, Springer-Verlag, Berlin, 1998,
pp. 116–165.

[10] M. R. Jerrum and A. J. Sinclair, Approximating the permanent, SIAM J. Comput., 18
(1989), pp. 1149–1178.

[11] M. R. Jerrum and A. J. Sinclair, Polynomial-time approximation algorithms for the Ising
model, SIAM J. Comput., 22 (1993), pp. 1087–1116.

[12] M. R. Jerrum and A. J. Sinclair, The Markov chain Monte Carlo method: An approach to
approximate counting and integration, in Approximation Algorithms for NP-Hard Prob-
lems, D. S. Hochbaum, ed., PWS Publishing, Boston, 1997, pp. 482–520.

[13] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani, Random generation of combinatorial
structures from a uniform distribution, Theoret. Comput. Sci., 43 (1986), pp. 169–188.

[14] R. Kannan, Markov chains and polynomial time algorithms, in Proceedings of the 35th IEEE
Conference on Foundations of Computer Science, IEEE Computer Society, Los Alamitos,
CA, 1994, pp. 656–671.

[15] B. Morris, Random Walks in Convex Sets, Ph.D. thesis, University of California at Berkeley,
Berkeley, CA, 2000.

[16] B. Morris and A. J. Sinclair, Random walks on truncated cubes and sampling 0-1 knap-
sack solutions, in Proceedings of the 40th IEEE Symposium on Foundations of Computer
Science, IEEE Computer Society, Los Alamitos, CA, 1999, pp. 230–240.

[17] L. Saloff-Coste, Lectures on finite Markov chains, in Lectures on Probability Theory and
Statistics, Lecture Notes in Math. 1665, Springer-Verlag, Berlin, 1997, pp. 301–413.

[18] A. J. Sinclair, Improved bounds for mixing rates of Markov chains and multicommodity flow,
Combin. Probab. Comput., 1 (1992), pp. 351–370.

[19] A. J. Sinclair, Algorithms for Random Generation and Counting, Progr. Theoret. Comput.
Sci., Birkhäuser Boston, Boston, MA, 1993.



BALANCED-REPLICATION ALGORITHMS
FOR DISTRIBUTION TREES∗

EDITH COHEN† AND HAIM KAPLAN‡

SIAM J. COMPUT. c© 2004 Society for Industrial and Applied Mathematics
Vol. 34, No. 1, pp. 227–247

Abstract. In many Internet applications, requests for a certain object are routed bottom-up
over a tree where the root of the tree is the node containing the object. When an object becomes
popular, the root node of the tree may become a hot-spot. Therefore, many applications allow
intermediate nodes to acquire the ability to serve the requests, for example, by caching the object.
We call such distinguished nodes primed. We propose and analyze different algorithms where nodes
decide when to become primed; these algorithms balance the maximum load on a node and the
number of primed nodes.

Many applications require both fully distributed decisions and smooth convergence to a stable
set of primed nodes. We first present optimal algorithms which require communication across the
tree. We then consider the natural previously proposed threshold algorithm, where a node becomes
primed when the incoming flow of requests exceeds a threshold. We show examples where threshold

exhibits undesirable behavior during convergence. Finally, we propose another fully distributed
algorithm, gap, which converges gracefully.

Key words. replication, peer-to-peer, cache, networks, distributed algorithms, algorithms
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1. Introduction. The Internet provides a platform for decentralized applica-
tions where content or services are requested, stored, and provided by a very large
number of loosely coupled hosts. In these applications, there is no centralized sup-
port. Requests are forwarded from peer to peer, and each peer can become a server
for each item.

Many supporting architectures for such applications are such that the search
pattern for each request is “routed”; that is, every peer has a list of neighbors, and
for each request a peer might receive, there is a preferred neighbor that brings the
request “closer” to its destination. Therefore, the forwarding pattern of each request
forms a tree, with edges directed toward the root. We call this tree a distribution tree.
The stream of requests traveling up the distribution tree is called a flow.

When a certain request becomes popular, the respective root of its distribution
tree can become a hot-spot. In this case, hosts further down the tree can “replicate”
the service, that is, acquire the ability to satisfy these requests, e.g., by “caching” data
or duplicating code. The focus of this paper is proposing and evaluating algorithms
for hosts to decide when to become replicas.

Before providing further details on our model, we describe some concrete applica-
tions and architectures where this setup arises. A relatively old existing application
is the domain name service (DNS). The DNS already offers caching of records at
intermediate nodes; in fact, caching is the default at all “intermediate” servers, and
DNS records are cached until they expire. A forward-looking application is to place

∗Received by the editors July 29, 2002; accepted for publication (in revised form) March 27,
2004; published electronically October 28, 2004. A preliminary version of this paper appeared in the
Proceedings of the 10th European Symposium on Algorithms (ESA’2002) [4].

http://www.siam.org/journals/sicomp/34-1/41214.html
†AT&T Labs–Research, Florham Park, NJ 07932 (edith@research.att.com).
‡School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel (haimk@cs.tau.ac.il).

This author’s work was supported, in part, by the Israel Science Foundation (ISF) grant 548/00.

227



228 EDITH COHEN AND HAIM KAPLAN

HTTP caches “near” Internet routers, augmenting these routers with the capability
to intercept and forward HTTP traffic; such a service can shorten latency and network
load. The growing popularity of peer-to-peer applications (e.g., [8, 2]) sparked the
development of architectures for fully distributed name-lookup, which enable clients
to locate objects or services. Two such proposed architectures are Chord [18] (which
is based on consistent hashing [9]) and CAN (content addressable network) [15]. With
Chord and CAN, objects have keys which are hashed to points in some metric space
S. Each node is responsible for some segment of the space S. Note that the metric of
S has no correspondence to the underlying network distances. Each node maintains
a small number of pointers P (v) to nodes responsible for other regions of S. When a
node receives a request for an object with key k, it forwards it to the node in P (v)
responsible for a region containing the point closest to the hash of k (according to the
metric on S). Thus, the search paths for each object form a distribution tree, with the
root of the tree being the node responsible for the region of the metric space where
the hash of the object lies. Note that even though these hashing-based architectures
balance the load well across different objects, replication is still necessary for avoiding
hot-spots caused by highly skewed per-object demands. Thus, to alleviate hot-spots,
it is proposed in [15, 18] that intermediate nodes cache items (or keys).

In all these applications, replication on intermediate nodes constitutes a tool in
avoiding “hot-spots” at the roots of distribution trees. Such hot-spots are caused by
flash-crowd events or objects with persistent high demand. We would like to empha-
size that generally, each distribution tree corresponds to a single “item,” and thus one
might worry about interaction of flows from different trees. In many of these appli-
cations, however, the balance between trees is taken care of by the process selecting
these trees; e.g., in CAN and Chord, the trees are such that nodes are essentially as-
signed randomly to their positions in different trees. Thus, it is reasonable to consider
the trees independently of each other and focus on a single tree, which is the problem
we model and address in this paper.

We say that we prime a node when we give it the ability to serve requests. We
refer to a set of primed nodes as an allocation. We look for algorithms that select an
allocation. We model the problem and propose metrics for the quality of a solution.
The objective is to balance two parameters: the maximum load of a node, which we
would like to be as small as possible, and the total size of the allocation (number of
primed nodes), which we would also like to be as small as possible. The objective of
minimizing the number of primed nodes models a wide range of applications where
being primed consumes resources (e.g., storage space). Other desirable properties
pertain to the complexity and communication requirements of the algorithm and the
stability of the allocation. We consider two models: The first, called the must-serve
model, requires that a primed node will serve all the flow it gets. The second, called
the serve-or-forward model, allows a node to serve some of the flow it gets and forward
the rest to its parent.

In the first part of the paper we assume that there is a strict upper bound of C
on the amount of flow that a primed node can serve and on the amount of flow that a
single leaf can generate. Then it is obvious that to serve a total of R flow we need to
prime at least �R/C� nodes. We prove in section 3 that if the tree has large degrees,
then we may in fact have to prime Ω(R∆/C) nodes, where ∆ is the maximum degree.

In section 4 we consider the problem of finding the optimal allocation. Both for
the must-serve and the serve-or-forward models, we present algorithms that given the
tree and the flow generated at each leaf calculate a smallest allocation in time almost
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linear in the size of the tree. These algorithms can be implemented distributively but
with some overhead of two rounds of passing messages up and down the tree.

In section 5 we consider a simple and natural algorithm proposed with both
Chord and CAN which we call the threshold algorithm. The threshold algorithm
runs locally at each node and primes the node when the incoming flow is above a
certain threshold. An advantage of the threshold algorithm is that it requires no
communication other than the incoming flow itself. We provide bounds on the size of
the allocation obtained by threshold and show that it is no more than R∆/C, the
same as the worst-case lower bound.

According to the threshold algorithm, the decision of a node whether to prime
itself or not depends on its incoming flow, which in turn depends on the priming
decisions of its descendants. This implies that when nodes run threshold asyn-
chronously, they may change their state from primed to unprimed multiple times
before reaching a stable allocation. This dependency may result in instability. In
particular, when the incoming flow changes, the size of interim allocations may be
much larger than the size of the final stable one. Furthermore, small changes in the
incoming flow may cause large changes in the allocation. Such instability is a disad-
vantage for any application where there is a cost associated with a change of state
from primed to unprimed or vice versa. For example, to serve requests for a particular
big file you have to store a copy of the file. This may be an overhead even when this
storage is only temporary, particularly if the node participates in several such trees.

Finally, in section 6, we propose a different local algorithm called gap. Like
threshold, gap also runs independently at each node and makes a local decision.
Unlike threshold, gap makes its decision at a node v based on the total flow gener-
ated at leaf descendants of v. Notice that the value of the total flow generated below
a particular node is independent of the decisions made by other nodes. Thus gap

converges immediately to an allocation which is stable. Furthermore, gap’s allocation
is unlikely to change significantly due to minor changes in the flow.

The algorithm gap is randomized, and as a result a node primed by gap may
end up serving more than C units of flow. We show that, with an appropriate choice
of parameters, the probability that a primed node serves more than C units of flow is
small. Furthermore, we show that by running gap iteratively logarithmically many
times, one can find an allocation of expected size O(R∆

C ) in which no node serves
more than C units of flow with high probability.

Related work. There has been extensive work on caching and replicating con-
tent in order to improve response time and reduce the load on particular servers. In
particular, several groups have proposed and analyzed many aspects of cooperating
caches [5, 7, 13, 3, 10]. This work is related to ours only in the sense that load is dis-
tributed among many caches. The main question considered in these papers is how to
distribute the load among the cooperating caches assuming typically that each client
can send requests to any cache. We ask a different question: Which nodes should we
distinguish as caches so that there are no hot-spots on one hand, and not too many
nodes become caches on the other hand?

A recent analysis of traffic of Internet content delivery systems [16] suggests that
peer-to-peer traffic now accounts for the majority of HTTP bytes transferred, exceed-
ing traffic due to WWW accesses by nearly a factor of three. Peer-to-peer documents
are large, so peer-to-peer flows last longer, and many of them are concurrently open.
All this, and the fact that a small number of extremely large objects accounts for a
large fraction of the traffic, indicates the large possible gain of replication in a peer-
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to-peer system. The large file sizes also indicate that there is a nonnegligible overhead
in priming a node, even temporarily.

The same study [16] also observed that outbound and inbound peer-to-peer traffic
through a node at the border of some local network may be imbalanced. This indicates
that the location of a node in the underlying network may affect the load it has in the
overlay distribution trees which it belongs to. It is an interesting topic for future work
to try to model this relation between distribution trees and the underlying overlay
network, and its effect on the ideas that we present here.

Plaxton, Rajaraman, and Richa proposed a related scheme that also takes into
account the underlying topology when overlaying the distribution network [14]. Other
related work focused on balancing load through replication but mainly addressed a
different aspect—the layout of the distribution trees (placing caches as “nodes”) on
top of a larger network (e.g., [1, 11]). A conceptually similar problem is that of
placing proxy caches in an existing distribution tree to minimize the average number
of hops. This problem was explored by Li et al., who provided a quadratic dynamic
programming algorithm [12]. The difference between the objective function we use
and the one in [12] is due to a basic difference between the applications we consider
and those they consider. Placing caches in a network is a slow manual operation
that is better optimized via a centralized calculation. In our setting, nodes already
have “cache” capabilities, and the goal is to best utilize resources and to do so in a
distributed manner.

2. Model. A distribution tree is a rooted tree with flow generated at the leaves
and flowing toward the root. We suggest algorithms that would prime some nodes in
the tree. A primed node can serve flow coming into it, while a nonprimed node only
forwards flow to its parent. The goal is to prime as few nodes as possible such that
all flow is serviced subject to constraints that we define below. As explained in the
introduction, flow corresponds to requests, and priming corresponds to configuring
the node such that it is able to service requests.

Formally, the input to our problem is the tree T and a function f : {v | v is a leaf} →
R+ mapping each leaf v to a nonnegative real which describes the flow generated at
v. We also assume another input parameter, denoted by C, which is a number that
bounds the maximum amount of flow a node can serve. We also assume that each
leaf generates at most C units of flow.

An algorithm that solves the problem outputs an allocation, which is a subset of
the nodes that are primed. The conditions which the allocation has to satisfy vary in
the following two service models. These two models differ by whether a primed node
is allowed to forward flow or not.

1. The must-serve model. In this model a primed node serves all its incoming
flow. An allocation constitutes a solution in this model if, when we cut the
tree by removing the edge from each primed node to its parent, then the flow
generated at the leaves of each subtree is at most C (and therefore can be
served at the root of this subtree). In other words, an allocation is a good
solution if, when we process nodes from the leaves up, forwarding all the flow
into an unprimed node to its parent, then each time we reach a primed node
it has at most C units of flow coming into it.

2. The serve-or-forward model . In this model a primed node serves at most C
units of the flow coming into it and forwards the rest. Here an allocation
constitutes a solution if the following process ends such that the amount of
flow reaching the root is at most C if it is primed and 0 if it is not primed. We



BALANCED-REPLICATION ALGORITHMS 231

primed

Not primed

C/2 C/2 C/2 C/2 C/2 C/2 C/2 C/2 C/2 C/2 C/2 C/2 C/2 C/2 C/2 C/2

primed

Not primed

C/2 C/2 C/2 C/2 C/2 C/2 C/2 C/2 C/2 C/2 C/2 C/2 C/2 C/2 C/2 C/2

must-serve serve-or-forward

Fig. 2.1. Example of optimal allocation for the two variants of the problem. The tree has
16 leaves, each generating a flow of C/2; thus the total flow is 8C. Serve-or-forward primes 11 nodes
and must-serve primes 12 nodes.

process the nodes from the leaves up. When an unprimed node is processed
we “forward” all its flow to the parent; when a primed node is processed we
assign it to serve all the flow it receives, up to C units, and forward the rest
to its parent.

In both models an allocation constitutes a solution if there is an assignment of
all flow to primed nodes (each unit of flow is assigned to a node on its way to the
root) such that the load (assigned flow) of each primed node is at most C and the
load of other nodes is 0. The size of an allocation is the number of nodes it primes.
An allocation is optimal if it is correct and of minimum size.

The must-serve model is more restrictive than the serve-or-forward model; thus
must-serve allocations constitute serve-or-forward allocations. Figure 2.1 illustrates
an example flow serviced in the two service models. The serve-or-forward model is
appropriate for applications where “servicing” is a more expensive operation than
“forwarding” (e.g., when servicing involves intensive computation or large file trans-
fers). The must-serve model is appropriate for applications with low service cost such
as simple database lookups. In the must-serve model the traffic traversing each edge
(link) is also bounded by C, which is important in some applications.

We analyze a static setting where the flow generated by each leaf remains fixed
through time.1 We consider both centralized and distributed algorithms. For dis-
tributed algorithms we assume that each node is able to communicate with its parent
and children. In the distributed settings, priming decisions of different nodes can de-
pend on each other, and we consider the “convergence” process until the nodes decide
on a stable allocation. We measure the convergence time in units of the maximum
“reaction time” of a node, that is, the maximum elapsed time until it reacts to a new
input.

One of our distributed algorithms, gap, assumes flow reporting, where each child
reports to its parent on the flow generated below it (regardless of whether it is served
or not). This reporting process is similar to “hit count” reporting in cache hierarchies.

3. What allocation size is necessary? Let R be the total flow generated in
the tree. An obvious lower bound on the required allocation size is R/C. This bound
can be further refined if we also consider the maximum number of children of a node,
which we denote by ∆. The following lemma shows a better bound for the must-serve
model.

1The algorithms, however, are applicable in a dynamic context where flow changes.
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Lemma 3.1. For any C and ∆ > 4, there are instances such that ∆R/(4C)
primed nodes are necessary in the must-serve model.

Proof. Consider a complete ∆-ary tree of depth d, where each leaf generates
2C/∆ flow. Therefore, the total flow is R = 2C∆d−1.

Consider a two-level subtree of this tree consisting of a node x of depth d − 1
and its ∆ children which are leaves. At least �∆/2� of the children of x must be
primed, since otherwise x receives more than C units of flow. Furthermore, there is
an optimal selection that primes exactly �∆/2� of the children of x. This is because we
can always prime x instead of all but �∆/2� of its primed children without increasing
the allocation size.

Let s(x) be the nearest primed ancestor of x. (Note that s(x) = x if x is primed.)
Since the combined value of the flow of all the unprimed children of x strictly exceeds
C/2, it follows that if x �= y are two nodes of the depth d − 1, then s(x) �= s(y).
(Otherwise s(x) must serve more than C units of flow.) Thus, there is one primed
internal node for each node x of depth d− 1.

Since there are ∆d−1 nodes of depth d− 1, we obtain that the size of an optimal
solution of this instance is ∆d−1(1 + �∆/2�) ≥ R∆

4C .
A similar bound for the serve-or-forward model is given by the following lemma.
Lemma 3.2. For any C and ∆ > 5, there are instances such that ∆R/(5C)

storage is necessary with serve-or-forward.
Proof. Consider a complete ∆-ary tree of depth d where all leaf nodes generate

2C/∆ flow and therefore the total flow is R = 2C∆d−1, as in the proof of Lemma 3.1.
The total number of internal nodes is (∆d−1)/(∆−1), and therefore the total amount
of flow which these nodes can serve is C(∆d − 1)/(∆ − 1). The remaining flow must
be served, less efficiently, at primed leaves. The amount of flow remaining for leaves
to serve is at least

R− C(∆d − 1)/(∆ − 1) ≥ C∆d

(
2

∆
− 1

(∆ − 1)

)

flow. Each leaf generates 2C/∆ flow, and hence this is the greatest amount of flow
any leaf can serve. So we need to prime at least

∆d

(
2

∆
− 1

(∆ − 1)

)
∆

2
≥ R∆

5C

leaf nodes for ∆ ≥ 6.
Remark. Note that the proof of Lemma 3.2 applies also to the must-serve model

and gives a slightly worse constant than the proof of Lemma 3.1.

4. Optimal algorithms. In this section we present algorithms that find an
optimal allocation in both the serve-or-forward and must-serve models. In section 4.1
we present an optimal algorithm for the serve-or-forward model, and in section 4.2
we present an optimal algorithm for the must-serve model.

4.1. Serve-or-forward. The algorithm opt SoF works in two phases. In the
first phase it processes the nodes from the leaves upward and makes some priming
decisions. In the second phase additional nodes are primed throughout the tree. Each
node primed in the first phase is assigned C units of flow that are generated below it.
Nodes primed in the second phase may be assigned less than C units of flow.2

2Note that there could be several such mappings for each optimal allocation, including mappings
where nodes assigned in the first phase obtain less than C units of flow. We consider particular
assignments where this holds.
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Our algorithm utilizes the notion of a residual problem. In each iteration of the
first phase the algorithm primes a node and allocates C units of flow for it to serve.
Then it generates a residual instance by transferring children of the primed node v
that have remaining unserved flow to v’s parent. In the following we denote by f(v)
the flow into node v at the “current” residual problem.

Algorithm 1 (opt SoF).

Phase 1. While there is a node v other than the root such that f(v) > C, do the follow-
ing. Let v be a deepest nonroot node such that f(v) > C, and let v1, v2, . . . be
the children of v ordered by increasing flow value, i.e., f(v1) ≤ f(v2) ≤ · · · .3
Let j be the smallest integer such that

∑
i≤j f(vi) ≥ C. Prime the node v.

Assign to v all the flow coming up from v1, . . . , vj−1 and C−
∑

i≤j−1 f(vi) of
the flow from leaf descendants of vj (chosen arbitrarily). Make the children
vj+1, vj+2, . . . of v with their respective flow values f(vj+1), f(vj+2), . . . chil-
dren of the parent of v. Make vj, with the f(vj) − C +

∑
i<j f(vi) units of

flow generated in its subtree and not served by v, a child of the parent of v.4

Phase 2. Let v be the root, and let v1, v2, . . . be the children of the root ordered by
increasing flow value, i.e., f(v1) ≤ f(v2) ≤ · · · . If f(v) > C let j be the
smallest integer such that

∑
i≤j f(vi) ≥ C.

Prime the nodes vj+1, vj+2, . . . , and assign each of them to serve all the flow
generated in its subtree.
If

∑
i≤j f(vi) > C, prime also the node vj, and assign it to serve all the flow

generated in its subtree.
If f(v) > 0, prime v, and assign it to serve all remaining unserved flow in
the tree.

We can implement opt SoF to run in O(n log n) time, where n is the number
of nodes in the tree. To do that we maintain the children of every node in a heap.
When processing a node v we do a series of delete-mins on the heap of v until we
have accumulated the lightest children whose weight is above C. We reinsert the last
deleted child back into the heap with its adjusted flow value if the cumulative flow of
the deleted children is greater than C. Finally, we meld the heap of v with the heap
of the parent of v.

A distributed implementation of opt SoF follows these two phases. In the first
“upward” phase, communication occurs from the leaves to the root with nodes primed
along the way. In this phase each node sends to its parent the identity and the
current flow value of each transferred child. In the second “downward” phase, the
root “decides” to prime a subset of its children. Since some of these children are
nodes that have been transferred up during the first phase, we then communicate
these priming decisions to the nodes themselves. The amount of communication
passed when children are transferred could be (in the worst case) of the order of the
number of descendants of the transferring node.

We now establish the correctness and optimality of opt SoF.
Theorem 4.1. opt SoF produces a correct allocation of minimum size.
Proof. To establish correctness we have to verify that each primed node is assigned

to serve no more than C units of flow and that all flow is served. By the definition
of the algorithm it is clear that each node v which gets primed at the first phase is
assigned to serve exactly C units of flow. When the first phase ends all children of

3If there is more than one node v which is deepest with f(v) > C, we break ties arbitrarily.
4In the residual problem we eliminate the flow served by v. Other than that, the subtrees hanging

off of the children of v, which are made children of the parent of v, remain the same.
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the root receive less than C units of flow. Therefore, having a subset of these children
serve the flow they generate, and having the root serve the rest, produces a legal
solution as long as the subset is large enough that at most C units of flow are served
at the root. The subset primed by the second phase clearly satisfies this requirement.

We now show that the allocation produced is of minimum size. Consider an
iteration of the first phase. Let T be the network when the iteration starts, let v be
the node which is primed during the iteration, and let A be the flow assigned to v.
Let T ′ be the residual problem generated from T at the end of the iteration. It is not
hard to see that if T has an optimal allocation in which v is primed and serves A, then
we can obtain an optimal solution to T from any optimal solution of T ′, by using the
allocation of the optimal solution of T ′ together with priming v and assigning v to
serve A. Thus by induction on the iterations of the first phase, it suffices to show that
the choice of v and A can be extended to an optimal solution of T . As a base case
of the induction we show that the solution of the residual problem obtained by the
second phase is optimal. The optimality of the allocation of the second phase follows
since we prime the children of the root with largest incoming flow. Therefore, we
prime as small a subset of them as possible so that the root can serve the remaining
flow.

It remains to show that T has an optimal solution in which v is primed and serves
A. Consider any optimal solution O to T . We show that we can change it to another
solution with the same number of primed nodes in which v serves A.

If v is not primed in O, then we first change O so v is primed as follows. If v has
a primed descendant, then let v′ be such a primed descendant where the nodes on the
path from v to v′ are not primed. Clearly if we prime v instead of v′ and have v serve
the flow previously served by v′, we still have an optimal solution. In case v does not
have a primed descendant, let u be the closest ancestor of v which is primed. Since
f(v) > C if u serves flow which is not generated below v, some ancestor of u serves
flow generated below v. It follows that by interchanging flow assigned to u with flow
assigned to its ancestors, we can change the flow assignment so that all the flow that
u serves is generated below v. Finally, since all the flow which u serves is generated
below v, we can prime v instead of u and have it serve the flow that u serves.

Last, we have to show that we can change the allocation and the flow assignment
so that v serves A. First notice that since the flow reached to each child of v is at
most C we may assume that O does not contain prime descendants of v which are
not immediate children of v. (We can prime a child of v instead of each such primed
descendant of v without increasing the allocation.) Furthermore, if v has a primed
child v1, and a child v2 which is not primed, such that f(v2) > f(v1), we can change O
and prime v2 instead of v1. Ancestors of v that served the flow coming up from v2 are
now assigned to serve the flow coming up from v1 instead. Since less flow is coming
up from v1 this allocation is still legal and hence optimal. So we may assume that
the primed children of v are those from which the largest amount of flow originates.

Finally, if v serves C units of flow but this flow is not identical to A, we can
interchange the flow assigned to v with the flow assigned to its ancestors so that v
serves exactly the flow in A. If v serves less than C units of flow, we can increase the
flow assigned to it so that it serves exactly the flow in A and assign less flow to v’s
primed child that serves the smallest amount of flow among the children of v.

4.2. Must-serve. Must-serve instances have a simpler definition of the residual
problem: Given an instance and a subset of primed nodes, the residual problem
is obtained by eliminating all subtrees rooted at primed nodes along with the flow
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generated in them.
Unlike the case with serve-or-forward instances, we do not need to consider flow

assignments for obtaining the residual instance. The identity of the primed nodes
suffices.

We now state the optimal must-serve algorithm, opt MS. The algorithm it-
eratively primes nodes; it considers the residual network after each priming step.
Computationally, the algorithm performs one bottom-up pass, but information can
propagate one level down from parents back to children during that pass.

Algorithm 2 (opt MS). Let v be a deepest node with f(v) > C.
Order the children of v by decreasing flow v1, v2, . . . with f(v1) ≥ f(v2) . . . .
Let j be the smallest integer such that

∑
i≤j f(vi) ≥ f(v) − C. Prime the nodes

v1, . . . , vj.
If there is no v with f(v) > C and positive flow enters the root, then prime the

root.
The correctness and optimality analysis is similar to (and somewhat simpler than)

the one performed in the serve-or-forward model.
Lemma 4.2. Algorithm opt MS is correct and finds a minimum-size must-serve

allocation.
Proof. Consider a deepest node v with f(v) > C. We claim that any solution

with the heaviest child of v being unprimed can be transformed to a solution with
the same number of primed nodes where the heaviest child of v is primed and with
v serving or transferring at most the same amount of flow. The claim concludes the
correctness proof since it implies that the repeated step of choosing a deepest node
with f(v) > C, priming its heaviest child, and focusing on the residual problem is
consistent with an optimal solution.

We now prove the claim. Consider an optimal solution where the heaviest child
of v is not primed. First observe that no node can receive flow value that exceeds C
in a solution; the first primed ancestor that this flow arrives at will have to serve it
all, which is a contradiction. Therefore, node v must have at least one primed proper
descendant in its subtree. First we show that there is an optimal solution where one
of the children of v is primed. Suppose no one of the children of v is primed. It follows
that v must have a primed descendant u which is not a child of v. Then the child of
v which is an ancestor of u can be primed instead of u. This child can serve all the
flow that u was serving plus additional flow.

Suppose now that the heaviest child of v is not primed and another child u is
primed. If we prime the heaviest child and unprime u, then the total unserved flow
reaching v can only decrease.

We next consider algorithms where nodes make local decisions on when to become
primed, by simply observing incoming flow.

5. The THRESHOLD algorithm. The threshold(C,∆) algorithm runs inde-
pendently at each node. The only communication it receives is the amount of incoming
flow. We also assume each node knows ∆, the indegree of its parent node (or some
bound on it). threshold produces an allocation which is good for the must-serve
model.

A copy of threshold running at a node v performs as follows.
Algorithm 3 (threshold(C,∆)). Let f(v) be the flow into the node v with

respect to the current allocation assuming each primed descendant of v serves all the
flow it gets.

The node v is primed if and only if
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• f(v) > C/∆, or
• v is the root and f(v) > 0.

In our model nodes may make their decisions asynchronously. Let u be an ancestor
of v such that there is no primed node which is a proper descendant of u and a
proper ancestor of v in the current allocation. We assume that if node v decides to
change its priming status from primed to unprimed or vice versa, the flow into u
changes instantaneously to reflect this change. We also assume that each node runs
the algorithm above at least every t seconds. Therefore, if the incoming flow into a
node changes so that it crosses the threshold C/∆, and it remains stable at its new
value for at least t seconds, then the priming status of v would change.

In reality there may be a delay from the moment a node v changes its priming
status until an ancestor u of v realizes that its incoming flow has changed. Further-
more, this delay may be proportional to the distance between u and v. We discuss at
the end of this section how this may affect the performance of threshold.

Initially, the algorithm starts with some configuration of primed nodes (possibly
no primed nodes). Since each node makes local decisions that depend on decisions
made by the nodes below it, it may change its decision multiple times. We argue that
eventually, a stable allocation is reached which is good for the must-serve model. In
fact, threshold(C,∆) converges to the same allocation generated by the following
iterative centralized algorithm (assuming it starts with an empty allocation).

• Prime all nodes such that the flow generated below them exceeds C/∆, and
the flow generated below each of their children does not exceed C/∆.

• Truncate the tree by removing these newly primed nodes along with all nodes
and flow generated below them, and repeat this process.

Let N be the set containing each node v such that the total flow generated in
the subtree of v exceeds C/∆ and the total flow generated below each child of v is no
larger than C/∆. The centralized algorithm above primes the nodes in N in its first
iteration. We claim that threshold also primes N and unprimes all descendants of
nodes in N , after at most 2t seconds, starting with any allocation. Indeed, regardless
of the initial allocation, descendants of nodes in N must see incoming flow of at most
C/∆. Thus, threshold cannot prime them, and if they started out being primed,
then after at most t seconds threshold will unprime them. Once all descendants
of nodes in N are unprimed, each node in N receives flow exceeding C/∆ so it will
become primed in the following t seconds. Once the nodes in N are primed and all
their descendants are unprimed, this state will prevail as long as the input flow does
not change. By induction one can complete this argument to show that above the
nodes of N , threshold also primes exactly the same nodes as the iterative algorithm
above when applied to the truncated tree.

Observe that since each child of a node in N sends to its parent at most C/∆ flow,
the total flow that each node in N receives is at most C. So when threshold primes
a node in N , this node can serve all the flow generated below it, and it transfers 0 flow
to its parent. The following lemma follows from this equivalence between these two
algorithms.

Lemma 5.1. threshold(C,∆) eventually reaches a correct stable allocation.
The allocation produced is legal in the must-serve model and thus also applies to the
serve-or-forward model. The final allocation is of size at most R∆/C (since each
primed node serves at least C/∆ flow).

We define the convergence time of threshold as the time it takes for it to reach
the stable state. To bound the convergence time of threshold recall that we defined
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t to be the maximum time it takes for a node to respond to a change in its incoming
flow, where by responding we mean a change of state from prime to unprime or vice
versa. It is easy to prove by induction on i that after i ∗ t seconds all nodes of depth
at least d− (i−1) have reached their stable state. Indeed, after t seconds the nodes of
depth d reach their final state, since their incoming flow does not depend on decisions
made by other nodes and therefore cannot change. Once the nodes of depth d are
stable, the incoming flow into nodes of depth d− 1 will not change anymore. So after
an additional t seconds nodes of depth d− 1 reach their stable allocation as well. In
general, after k ∗ t seconds nodes of depth at least d− (k−1) have reached their stable
state, so the flow into nodes of depth d−k will not change anymore, and consequently
these nodes of depth d− k reach their stable state during the next t seconds.

How far can threshold be from the optimal solution? We provide examples
where the worst-case ratio approaches ∆ for both the serve-or-forward and must-
serve models. We start with the serve-or-forward model. For an integer i, construct
a binary tree of depth i, and then attach ∆ children to each of the 2i leaves of the
binary tree. Now suppose that each of the ∆2i leaves of the modified tree generates
flow of value C/∆+ε (ε < C/(∆2i)). The threshold algorithm will prime all leaves,
and this results in an allocation of size ∆2i. The algorithm opt SoF will prime all
depth-i nodes and the root node of the tree and thus will obtain an allocation of
size 2i + 1. The ratio of the allocation size obtained by threshold to the optimal
allocation of opt SoF approaches ∆ as i increases.

For the must-serve model consider a tree of depth one consisting of a node and ∆
children. Among these ∆ children ∆−1 generate C/∆+ε flow, and the remaining child
generates C/∆− (∆− 1)ε flow. The threshold algorithm primes all ∆− 1 children
and the root node, thus producing an allocation of size ∆. The optimal algorithm
opt MS primes only the root. A family of examples with arbitrarily large values of
total flow can be obtained by attaching ∆ children generating flow as defined above
to each of the leaves of a binary tree. For small enough ε, the threshold algorithm
will prime (∆ − 1)2i of the leaves and all 2i−1 nodes of depth i − 1. The algorithm
opt MS will prime all depth-i nodes. The ratio between the size of the allocation of
threshold and the size of the allocation of opt MS is ∆ − 0.5.

Observe that any algorithm that takes independent local decisions at each node
would not be able to improve on this approximation ratio. Intuitively, since no infor-
mation is available to a node on what its siblings send to its parent, the algorithm
cannot allow sending more than C/∆ units of flow to the parent and at the same time
guarantee that every node receives at most C units of flow.

5.1. Convergence of THRESHOLD. We learned that the worst-case final allo-
cation obtained by threshold is within ∆ of optimal. We now consider the “inter-
mediate” allocations obtained during the convergence process.

Consider a tree that consists of a path of n nodes v1, . . . , vn (ordered from the
bottom to the root); each path node has ∆−1 leaves attached to it. The ∆−1 leaves
at each path node generate together εC/∆ flow. (To simplify the presentation we
assume that 1/ε is integral.) The total flow entering the tree is R = nεC/∆. Observe
that threshold will never prime a leaf node; thus only the nodes on the path get
primed.

Consider the following possible convergence scenario. (1) Initially, all nodes are
not primed; thus the ith path node vi sees iεC/∆ flow. (2) Every vi for i ≥ 1/ε
receives more than C/∆ flow and primes itself. (3) Next, all primed nodes above
v1+1/ε see only εC/∆ flow and unprime themselves. (4) The deepest primed path
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node v1/ε remains primed from now on, since all nodes below it remain unprimed.
(5) The process continues on the new tree obtained after truncating the current tree
at v1/ε. The new tree has the same structure with n′ = n− 1/ε interior path nodes.

It is not hard to see that convergence takes εn = R∆/C such “iterations.” The
average number of nodes that change state (from primed to unprimed or vice versa) in
an iteration is Ω(n). The largest intermediate allocation occurs at the first iteration
and is of size n − 1/ε = (R∆/C − 1)/ε. That is, there is a factor of 1/ε between
intermediate and final allocation sizes.

Interestingly, these undesirable properties are not merely an artifact of the “sharp”
threshold exhibited by threshold: a similar convergence pattern with very large size
of intermediate allocation and slow convergence time is possible even under a natural
modification of threshold. In this modification we prime a node when the incoming
flow exceeds C/∆ and unprime a node when its flow drops to L/∆ or below (for some
εC < L < C). This variant of threshold would result in worse-quality final alloca-
tions (which can be C/L times the allocation size obtained by the original version of
threshold). The worst-case convergence patterns, however, are similar.

In our model we assumed that the flow incoming into any node v changes in-
stantaneously to reflect any change in the allocation of the descendants of v. Clearly
the scenario above where intermediate allocations are large used this property of the
model. Such bad convergence patterns are less likely to happen in cases where, by the
time a node v figures out the value of its incoming flow, the allocation in its subtree is
stable or close to stable. We can force this to happen if each node v starts out primed
and unprimes itself only when the allocation in its subtree is final and the local deci-
sion of threshold at v is to be unprimed. Notice, however, that the bad convergence
pattern of threshold may reoccur at any time where the input changes even if we
manage to avoid it at initialization time. Furthermore, for some applications priming
a large number of nodes even temporarily may be undesirable.

Another undesirable property of threshold occurs when the flow incoming into
the leaves changes and threshold adjusts its allocation to the new flow. It is not
hard to see that relatively small changes in the input may trigger large changes in
the allocation. In particular, a node v may change its allocation even if the total flow
generated in its subtree has not changed. Consider, for example, a node v with three
children v1, v2, and v3 that are leaves. Assume v1 generates 2ε flow, v2 generates
C
∆ − ε flow, and v3 generates C

∆ + ε flow. threshold will prime v3 and v. Assume

now that the flow changes slightly so that v1 generates 0 flow, v2 generates C
∆ + ε,

and v3 still generates C
∆ + ε flow. Then, threshold primes v2 and unprimes v, even

though the total flow generated below v has not changed.
To summarize, we showed that the simple local threshold algorithm can have

certain convergence and instability patterns that may be considered as serious draw-
backs for some applications. In section 6 we propose and analyze a different local
algorithm, called gap, that overcomes some of problems of threshold.

5.2. Parent priming. By the definition of threshold, no node can send to
its parent more than C/∆ units of flow in the final allocation. This requirement is
necessary to guarantee that no node serves more than C units of flow in situations
where a node has no information on what its siblings send to the parent. As a result,
threshold may converge to an allocation of size R∆

C . Indeed we showed in section 3

that for some trees and flows an allocation of size about R∆
C may be necessary, but

for other inputs threshold may produce an allocation that is off from the optimal
by a factor of ∆. In this section we suggest a technique that improves this worst-
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case approximation ratio of ∆ by a constant factor and may perform even better in
practice.

Consider running threshold using the bound C ′ = ∆C rather than C. This,
of course, can result in a primed node serving up to ∆C units of flow. To solve this
problem, and turn the solution into a valid one, we allow a correcting parent priming
phase, where nodes that were primed in the first phase are allowed to prime some of
their children. Specifically, a node that ends up with more than C units of flow (that
is, flow in (C,∆C]) primes its children, in decreasing order of flow value, until its own
flow drops to C or fewer units.

It is easy to see that this additional local phase will always result in a correct
allocation since before the parent priming phase each unprimed child was delivering
at most C units of flow. The next lemma upper bounds the approximation ratio of an
allocation produced using the parent priming technique with respect to the optimal
allocation.

Lemma 5.2. The approximation ratio of threshold with parent priming is
(∆ + 2)2/(4∆).

Proof. Every node that is primed in the first phase serves at least C (and at most
∆C) units of flow. Consider a node primed in the first phase that serves αC ≥ C
units of flow. An optimal algorithm must use at least α primed nodes to serve the
flow. Our algorithm primes at most �∆(α − 1)/α� children and thus uses at most
2 + ∆(α− 1)/α primed nodes to serve the flow. The ratio is thus (2 + ∆)/α−∆/α2.
The maximum on the interval α ∈ [1,∆] is obtained at α = (2∆)/(∆ + 2) and is
(∆ + 2)2/(4∆).

6. The GAP algorithm. The gap algorithm runs locally at each node. Like
threshold, gap makes its decisions locally. However, in contrast to threshold,
decisions made by each node are independent of the state of other nodes. The only
information gap relies on at each node is the total amount of flow generated below
each of its children (regardless of where it is served). Note that if nodes are running
threshold and all start unprimed, then the initial value of the incoming flow to each
node is the total flow generated in its subtree. In practice, nodes can propagate this
information bottom-up on the distribution tree by periodic reports from children to
parents.

Let F (v) be the total flow generated under a node v, and let Fs(v) be the flow
generated under its heaviest child, that is, Fs(v) = max{F (u) | u ∈ children(v)}. If v
is a leaf, then we define Fs(v) = 0.5

We consider gap in the must-serve model. gap is a randomized algorithm which
depends on two parameters. The first is C, which is also an upper bound on the
maximum flow generated by a leaf. In previous sections we used C as an upper
bound on the flow a primed node is allowed to serve. Here, since gap is randomized,
we will allow some nodes to serve more than C units of flow. The second parameter
of gap is a fraction 0 ≤ µ ≤ 1. This fraction controls the average number of primed
nodes, which increases as µ decreases. As µ decreases, the probability that a node
will serve more than C units of flow also decreases.

Specifically, µ determines the expected amount of flow served by a primed node.
However, whatever this expectation is, the probability that we deviate from it de-
creases exponentially. For example, if µ = 1

∆ , then the expected amount of flow that

5We use here F (v) to distinguish it from f(v), which we used in the previous section to denote
the flow entering node v.
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a node will serve is no greater than C, and the probability that a node will have to
serve more than L ∗ C units of flow decreases exponentially with L.

Algorithm 4 (gap(C, µ) algorithm). At each node v, gap(C, µ) performs the
following.

1. If F (v) < µC, then v is not primed.
2. If F (v) ≥ µC, then

• if Fs(v) < µC, v is primed;
• otherwise, v is primed with probability min{1, (F (v) − Fs(v))/(µC)}.

3. If v is the root, it did not get primed in 2, and it has flow entering it, then
prime v.

In our subsequent analysis, we assume that only leaf nodes have flow below µC.
We do that without loss of generality since the operation of gap on an instance is
equivalent to gap operating on the same instance when maximal subtrees rooted at
a node v with F (v) < µC are contracted to a single leaf with flow F (v).

We first bound the expected size of the allocation produced by gap.
Lemma 6.1. The expected number of nodes primed by gap at step 2 is at most

2R/(µC) − 1, for R ≥ µC. (The actual expected number of primed nodes is at most
one larger because of priming the root, and it is one if R < µC.)

Proof. Let M(x) be the maximum, over flow trees with flow x, of the expected
number of primed nodes allocated by gap in step 2. By the definition of gap, M(x)
satisfies the following. If x < µC, then M(x) = 0. For x ≥ µC we have that

M(x) = max

(
{min{1, (x− S)/(µC)} + M(S) | S < x}

∪
{

1 + M(S1) + · · · + M(Si) |
i∑

j=1

Sj ≤ x and ∀j Sj ≥ µC and i ≥ 2

} )
.(6.1)

The first set over which we take the maximum takes into account all trees where
all children of the root except possibly the largest one get fewer than µC units of
flows. In this case there cannot be primed descendants of any child of the root except
the largest one. The second set takes into account trees where more than one child
of the root gets at least µC units of flow. In this case by the definition of gap we
always mark the root at step 2.

Using induction on the flow value x, and relation (6.1), it is easy to establish that
M(x) ≤ 2x/(µC) − 1.

Since gap is a randomized algorithm, there is a positive probability that nodes
are assigned flow that exceeds C. The following lemma gives probabilistic bounds on
the maximum flow entering a node when we apply gap. Notice that since each leaf
generates at most C units of flow, it is clear that a primed leaf never serves more than
C units of flow. So the lemma considers only the maximum flow entering a prime
internal node.

Lemma 6.2. The expected amount of flow serviced by a primed internal node is
at most ∆µC. Furthermore, the probability that the serviced flow exceeds L∆µC is at
most (1 − 1/e)L.

Proof. To simplify the calculations, we normalize the flow to be in units of µC.
In these units we first have to show that the expected amount of flow serviced by a
primed node is at most ∆.

Consider an internal node v0. Since v0 is internal, F (v0) ≥ 1. Consider a child v1

of v0. We claim that the expected value of flow that v0 receives from v1 is at most 1.
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Fig. 6.1. Illustration for the proof of Lemma 6.2. Thick lines represent edges to heaviest child.

Thus the total expected flow passed to v0 from all its children together is at most ∆.

We now prove the claim. We can assume without loss of generality that F (v1) > 1
(since otherwise the claim trivially follows). We may also assume that v1 is not a leaf,
since, if it was, then it is primed and therefore does not contribute any flow to v0. Let
v2 be the child of v1 with the largest amount of flow generated below it and in general
let vi+1 be the child of vi with the largest amount of flow generated below it, if vi is
not a leaf. We call v1, v2, . . . , v� the heavy path hanging from v1. (See Figure 6.1.)
Note that v� is a leaf. Let xi = F (vi) − Fs(vi) = F (vi) − F (vi+1) (i ≥ 1) be the flow
getting into vi from all its children but vi+1. We define a node on the heavy path
hanging from v1 to be always-primed if one of the following conditions holds.

1. xi ≥ 1. That is, the flow that enters vi from children other than vi+1 is at
least 1.

2. F (vi) ≥ 1 and i = �. That is, vi is the leaf at the end of the path and it
generates at least one unit of flow.

3. F (vi) ≥ 1, i < �, and F (vi+1) < 1. Note that this case can happen only if
i = �− 1 since we assume that only leaves can have F (v) < 1.

Note that by the definition of gap an always-primed node is primed with prob-
ability one. Furthermore, either v� or v�−1 must be always-primed, so in particular
we have at least one always-primed node on the path. If v1 is always-primed, then
the claim obviously holds; otherwise, let k ≥ 1 be the maximum such that vk is not
always-primed. Observe that we must have that xi < 1 for 1 ≤ i ≤ k.

Consider a run of gap, and let p ≤ k be the lowest index such that vp is primed;
define p = k+1 if there is no primed node before vk+1 on the path. By definition, the
maximum amount of flow that v0 gets from v1 is

∑
j≤k+1 xj . To estimate the expected

amount of flow that v0 gets from v1, we define Gi, 1 ≤ i ≤ k, to be a random variable
describing the flow value passed to vi−1 from vi. We also denote the expectation of
Gi by gi. Since gap leaves node vi unmarked with probability 1 − xi, we have that
gk = (1 − xk)xk, and for i < k

gi = (1 − xi)(xi + gi+1).
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So, in particular,

g1 = (1 − x1)(x1 + (1 − x2)(x2 + (1 − x3)(· · · + (1 − xk−1)(xk−1 + (1 − xk)xk) · · ·))).

We show by a backward induction on i that gi ≤ 1. It is easy to see that
gk = (1− xk)xk ≤ 1. Assume inductively that gi ≤ 1; then gi−1 = (1− xi)(xi + gi) ≤
(1 − xi)(xi + 1) ≤ 1. For i = 1 we obtain that g1 ≤ 1 and the claim follows.

We now prove the second part of the lemma. We start with the following claim.
Claim 6.1. The probability that the value of Gi exceeds L is at most (1 − 1/e)L

for all L ≥ 0.
We prove the claim by downward induction on i. The base of the induction is the

random variable Gk. The outcome is xk with probability 1−xk and 0 otherwise. The
likelihood that the outcome exceeds L > xk is 0. The likelihood that it exceeds L ≤ xk

is (1 − xk) ≤ (1 − 1/e)xk ≤ (1 − 1/e)L. (We use the tautology (1 − a) ≤ (1 − 1/e)a

for 0 ≤ a.)
For the random variable Gi and L ≤ xi we have

P [Gi ≥ L] = (1 − xi) ≤ (1 − 1/e)xi ≤ (1 − 1/e)L.

For L > xi we have the relation

P [Gi ≥ L] = (1 − xi)P [Gi+1 ≥ L− xi].

From the induction hypothesis we have P [Gi+1 ≥ L−xi] ≤ (1−1/e)L−xi . Substituting
the above, we obtain that

P [Gi ≥ L] ≤ (1 − xi)(1 − 1/e)L−xi ≤ (1 − 1/e)L.

(The last inequality follows again from the inequality (1 − a) ≤ (1 − 1/e)a for (0 <
a < 1).) This completes the proof of the claim.

Claim 6.1 shows that the probability that one child passes more than L units
of flow to its parent is at most (1 − 1/e)L. To complete the proof of the lemma we
need to show that when a node has ∆ children then the probability that it receives
∆L units of flow from all of them is still at most (1 − 1/e)L. This intuitively should
hold since priming decisions at nodes which are unrelated (neither is a descendant of
another) are independent. The following claim establishes this fact and finishes the
proof of the lemma.

Claim 6.2. Let Y1, . . . , Y∆ be independent random variables such that P (Yi ≥
L) ≤ (1 − 1/e)L for all L ≥ 0. Let Z = Y1 + Y2 + · · · + Y∆. Then P (Z ≥ ∆L) ≤
(1 − 1/e)L for all L ≥ 0.

We prove Claim 6.2 using the notion of stochastic domination between random
variables. We say that a random variable Z stochastically dominates a random vari-
able X if P (X ≥ a) ≤ P (Z ≥ a) for every a. It is known (see, e.g., [17, p. 52])
that if Z1, . . . , Zk are independent, X1, . . . , Xk are independent, and Zi stochastically
dominates Xi for every 1 ≤ i ≤ k, then

∑k
i=1 Zi stochastically dominates

∑k
i=1 Xi.

For completeness we prove this here.
Since Zk stochastically dominates Xk, we obtain that

P

(
k∑

i=1

Xi ≥ a

)

=

∫ ∞

x1=0

∫ ∞

x2=0

· · ·
∫ ∞

xk−1=0

P (X1 = x1) · · ·P (Xk−1 = xk−1)P (Xk ≥ a− x1 − · · ·xk−1)
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≤
∫ ∞

x1=0

∫ ∞

x2=0

· · ·
∫ ∞

xk−1=0

P (X1 = x1) · · ·P (Xk−1 = xk−1)P (Zk ≥ a− x1 − · · ·xk−1)

= P

(
k−1∑
i=1

Xi + Zk ≥ a

)
.

We can now apply the same argument to the variable X1, . . . , Xk−1 and Zk and
show that

P

(
k−1∑
i=1

Xi + Zk ≥ a

)
≤ P

(
k−2∑
i=1

Xi + Zk−1 + Zk ≥ a

)
.

For that we expand P (
∑k−1

i=1 Xi + Zk ≥ a) as a multiple integral whose variables
are the values of X1, . . . , Xk−2 and Zk, and we use the fact that the probability of a
tail of Xk−1 is dominated by the probability of the same tail of Zk−1. By repeating
this argument k times we finally obtain that

P

(
k∑

i=1

Xi ≥ a

)
≤ P

(
k∑

i=1

Zi ≥ a

)
.

To prove Claim 6.2, let D be an exponential random variable whose cumulative
distribution function is F (x) = P (D ≤ x) = 1 − e−λx for x ≥ 0, where λ = − ln(1 −
1/e). Notice that for every L ≥ 0, P (Yi ≥ L) ≤ P (D ≥ L), and so D stochastically
dominates Yi for every 1 ≤ i ≤ ∆. (For every a < 0, P (Yi ≥ a) = P (D ≥ a) = 0.) It

follows that if D1, . . . , D∆ are ∆ independent copies of D, then
∑∆

i=1 Di stochastically

dominates
∑∆

i=1 Yi. So

P

(
∆∑
i=1

Yi ≥ ∆L

)
≤ P

(
∆∑
i=1

Di ≥ ∆L

)
.

To finish the proof we observe [6] that the distribution of the sum of ∆ exponential
random variables with parameter λ is Gamma(∆, λ) whose density is

g(x) =
λe(−λx)(λx)(∆−1)

(∆ − 1)!
.

Next we show that g(a∆) ≤ f(a) for every a ≥ 0, where f(x) = λe−λx is the
density function of the exponential random variable D. Then the lemma follows since
P (

∑∆
i=1 Di > ∆L) ≤ P (D > L).

To see that g(a∆) ≤ f(a) we substitute a∆ and a into g(x) and f(x), respectively,
and obtain that we have to show that

λe(−λa∆)(λa∆)(∆−1)

(∆ − 1)!
≤ λe−λa .

Dividing both sides by λe−λae(−λa∆), we obtain the equivalent inequality

e(λa)(λa∆)(∆−1)

(∆ − 1)!
≤ eλa∆ .(6.2)
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Using the Taylor expansion of the exponential function, we obtain that (6.2) is equiv-
alent to(

1 + λa +
(λa)2

2!
+ · · ·

)
(λa∆)(∆−1)

(∆ − 1)!
≤

(
1 + λa∆ +

(λa∆)2

2!
+ · · ·

)
.(6.3)

Since

1

k!
≤ ∆k

∆(∆ + 1)(∆ + 2) · · · (∆ + (k − 1))
,

we obtain that (6.3) holds since term i of the series on the left-hand side is not larger
than term i + (∆ − 1) of the series on the right-hand side.

The analysis of gap implies that if we set µ = 1
c∆ log(R∆/C) for some small constant

c, then there is a constant probability that the load served by any primed node is
at most C. We next show how we can use µ = 1/(∆ + 1) together with iterative
application of gap in order to obtain better trade-off.

6.1. Applying GAP iteratively. gap can be applied iteratively as follows. We
apply the first iteration of gap as described before. After the iteration ends, if we
chop off primed nodes from their parents, we get a forest. We apply the next iteration
only to trees of the forest where the root serves more than C units of flow. When an
iteration ends we further partition the forest by chopping off primed nodes and apply
the next iteration only to trees where the root serves more than C units of flow. The
algorithm terminates when all primed nodes serve fewer than C units of flow. We
show that for an appropriate choice of µ the algorithm terminates, and we analyze
the expected number of iterations until it stops.

We can apply this algorithm distributively by passing messages between nodes as
follows. For each unprimed node v we define Fi(v) to be the amount of flow generated
in the subtree rooted by v at iteration i. For a node v which was primed at iteration
j < i we define Fi(v) = 0. Each unprimed node v locally waits until it knows Fi(v) for
increasing values of i. When v knows Fi(v) it runs gap locally and decides whether
it gets primed at iteration i.

Each node v can calculate Fi(v) if nodes report their Fi() values to their parents.
If v was primed at iteration j < i, then no flow travels from v to its parent at iteration
i. So in this case v reports to its parent that Fi(v) is 0. Otherwise, v waits for its
children to report their Fi() values. Once v gets all these values, then Fi(v) is

∑
Fi(u),

where the sum is over all children u of v. Node v then reports Fi(v) to its parent.
When we apply this distributed implementation, unprimed nodes continue to

apply gap in subsequent iterations although they may already have a primed ancestor
which serves fewer than C units of flow. Therefore, to make our distributed algorithm
complete, each node v which is primed at iteration i and Fi+1(v) ≤ C sends a message
downward to its descendants announcing that they may stop running gap. A node
v that receives a message that it has an ancestor that got primed at iteration i and
serves no more than C does the following.

1. Node v propagates the message further down to its descendants.
2. If v got primed at iteration j and i < j, then v unprimes itself.
3. Node v does not have to run gap or propagate Fj(v) in any iteration i < j.

Our key lemma below shows that if we apply gap with µ = 1
∆+1 , then on average

a constant fraction of the flow is served by primed nodes that serve fewer than C units
of flow. This lemma implies the following theorem about the performance of iterative
gap.
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Theorem 6.3. Iterative gap with µ = 1
∆+1 stops after O(log(R/C)) iterations

with probability at least 1 − (CR )c, where c is some constant. The expected size of the
allocation that iterative gap produces is O(R∆/C).

Proof. By Lemma 6.4, at each iteration of gap, the probability that a unit
flow is served by a primed node which serves fewer than C units of flow is at least
p = 1/e2. Each such unit of flow does not participate in subsequent iterations. So the
probability that a unit of flow participates at iteration i + 1 is at most (1 − p)i. For
i = 1

pa ln(R/C) this probability is at most (CR )a. Let X be a random variable which
equals the expected amount of flow participating at iteration i + 1. Multiplying our
bound on the probability that a unit of flow participates at iteration i+1 by the total
amount of flow, we obtain that E(X) = R∗(CR )a = C(CR )a−1. By Markov’s inequality
the probability that the amount of flow that participates at iteration i+ 1 exceeds C
is bounded by

Prob(X ≥ C) ≤ E(x)

C
=

C(CR )a−1

C
=

(
C

R

)a−1

.

Clearly if the total flow which participates at iteration i+ 1 is not larger than C,
then iteration i + 1 is the last. So we obtained that, for i = 1

pa ln(R/C), iteration

i+ 1 is the last, with probability at least 1−
(
C
R

)a−1
. If we define c = a− 1, the first

part of the theorem follows.
By Lemma 6.1, the expected number of primed nodes in each iteration is bounded

by (∆+1)/C times the expected flow value at that iteration. Since the expected flow
value decreases geometrically by a factor of at least 1 − p from one iteration to the
next, we obtain an allocation of expected size O(R∆/C).

We now prove our key lemma saying that a unit of flow does not go through to
the next iteration of gap with some constant probability.

Lemma 6.4. Consider a unit of flow generated at a leaf. When nodes are primed
according to gap, then with probability at least 1/e2 the primed node serving the flow
(the deepest primed node on the path from the leaf to the root) serves a total of at
most (∆ + 1)µC units of flow.

Proof. In the proof of Lemma 6.2 (using Claim 6.2) we proved that the probability
that the ∆ children of a node x transfer more than ∆LµC units of flow to x is at
most (1 − 1/e)L. It is easy to see that the same argument in fact shows that any set
of M independent nodes (that is, a set of nodes such that neither is an ancestor of the
other but they are not necessarily siblings) transfer to their parents MLµC units of
flow with probability at most (1− 1/e)L. We shall repeatedly invoke this observation
in the proof.

Consider a unit of flow generated at a leaf and its path to the root. Let v be the
deepest node on the path with F (v) ≥ µC. We split the rest of the proof into the
following cases.

Case 1. For every child u of v, F (u) < µC. In this case v is primed and therefore
serves our flow-unit. By the observation above the probability that v receives more
than ∆µC flow from its ∆ children is at most 1 − 1/e.

Case 2. Node v has a child u such that F (u) ≥ µC. Let w be the heaviest child
of v, and let v0 be the closest ancestor of v which is not a heaviest child of its parent,
or the root in case every ancestor of v is a heaviest child of its parent. (Note that
v0 = v in case v is not the heaviest child of its parent.) Denote by v0, v1, . . . , vi = w
the nodes on the path from v0 to w. Note that vi−1 = v. Let xj , 0 ≤ j < i, be the
flow generated at the children of vj other than vj+1. (See Figure 6.1.)
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Subcase 2a.
∑i−1

j=0 xj ≤ µC. Assume first that v0 is not the root and let p(v0) be
the parent of v0. Since F (v0) ≥ F (vi) ≥ µC and v0 is not the heaviest child of p(v0),
we obtain that F (p(v0))−Fs(p(v0)) ≥ µC, so p(v0) is primed by the definition of gap.
Therefore, our unit flow is served either by p(v0) or by some vj , where 0 ≤ j ≤ i− 1.

If our unit flow is served by vj , where 0 ≤ j ≤ i− 1, then the probability that vj
serves more than ∆µC units of flow is at most the probability that vi passes up more
than (∆ − 1)µC units of flow. That happens with probability at most (1 − 1/e)∆−1

by Claim 6.1.

If our unit flow is served by p(v0), then the probability that p(v0) serves more
than (∆ + 1)µC units of flow is at most the probability that its ∆− 1 children other
than v0 and the node vi = w transfer to their parents more than ∆µC units of flow.
By the observation above this probability is at most 1 − 1/e.

If v0 is the root, then clearly our unit of flow is served by vj for some 0 ≤ j ≤ i−1.
The probability that vj serves more than ∆µC units of flow is at most the probability
that vi passes up more than (∆− 1)µC units of flow. That happens with probability
at most (1 − 1/e)∆−1.

Subcase 2b.
∑i−1

j=0 xj > µC. Let k be the maximum such that
∑i−1

j=k xj > µC.
If vk is the root or xk > µC, then clearly one of vk, . . . , vi−1 serves our unit flow.
Otherwise, since by Claim 6.1 node vk−1, the parent of vk, receives from vk more
than µC flow with probability at most 1 − 1/e, it follows that with probability at
least 1/e one of vk, . . . , vi−1 is primed.

Let vj be the deepest primed node among vk, . . . , vi−1 given that one of these
nodes is primed. The probability that vj serves more than (∆ + 1)µC units of flow
is at most the probability that its ∆ − 1 children other than vj+1 and vi transfer to
their parents more than ∆µC units of flow. By the observation above this probability
is at most 1 − 1/e.

To summarize we obtained that with probability at least 1/e one of vk, . . . , vi−1

is primed, and assuming that one of vk, . . . , vi−1 is primed, the deepest node among
them which is primed served fewer than (∆ + 1)µC units of flow with probability at
least 1/e.
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MULTIEMBEDDING OF METRIC SPACES∗

YAIR BARTAL† AND MANOR MENDEL†

Abstract. Metric embedding has become a common technique in the design of algorithms. Its
applicability is often dependent on how large the embedding’s distortion is. For example, embedding
finite metric space into trees may require linear distortion as a function of the size of the metric.
Using probabilistic metric embeddings, the bound on the distortion reduces to logarithmic in the
size of the metric.

We make a step in the direction of bypassing the lower bound on the distortion in terms of the size
of the metric. We define “multiembeddings” of metric spaces, in which a point is mapped onto a set
of points, while keeping the target metric of polynomial size and preserving the distortion of paths.
The distortion obtained with such multiembeddings into ultrametrics is at most O(log ∆ log log ∆),
where ∆ is the aspect ratio of the metric. In particular, for expander graphs, we are able to obtain
constant distortion embeddings into trees, in contrast with the Ω(log n) lower bound for all previous
notions of embeddings.

We demonstrate the algorithmic application of the new embeddings for two optimization prob-
lems: group Steiner tree and metrical task systems.

Key words. metric embeddings, group Steiner tree, metrical task systems
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1. Introduction. Finite metric spaces and their analysis play a significant role
in the design of combinatorial algorithms. Many algorithmic techniques were in-
troduced in recent years concerning and using metric spaces and their approximate
embedding in other spaces; see the surveys [20, 21] for an overview of this topic.

Definition 1.1. An embedding of a metric space M = (VM , dM ) into a metric
space N = (VN , dN ) is a mapping φ : VM → VN . The embedding is called non-
contractive if for all u, v ∈ VM , dM (u, v) ≤ dN (φ(u), φ(v)) and has distortion at most
α if, in addition, for all u, v ∈ VM , dN (φ(u), φ(v)) ≤ α · dM (u, v). A noncontractive
embedding whose distortion is at most α is called an α-embedding.

The general framework for applying metric embeddings in optimization problems
is to embed a given metric space into a metric space from some “nice” family and
then apply an algorithm for that space. As a result, the approximation ratio increases
by a factor equal to the embedding’s distortion.

Among others, embeddings into low dimensional normed spaces [12, 24] as well as
probabilistic embeddings into trees [2, 3, 15, 4] have many algorithmic applications.
In both cases the distortions of the embeddings are logarithmic in the size of the
metric. Unfortunately, there is a matching lower bound on the distortion of these
embeddings as well, which sets a limit to their applicability. This paper presents a
partial remedy for this problem.
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Tree metrics, and in particular ultrametrics, seem a natural choice as a target class
of “simple” metric spaces. Unfortunately, standard embedding is not useful when the
target space is a tree metric. Embedding arbitrary metric spaces into trees requires
distortion linear in the size of the metric space [27]. Probabilistic embedding [2]
provides a way to bypass this problem.

Definition 1.2 (probabilistic embeddings). A metric space M = (VM , dM ) is
α-probabilistically embedded in a set of metric spaces S if there exists a distribution
D over S and, for every N ∈ S, a noncontractive embedding φN : VM → VN , such
that for all u, v ∈ VM , EN∈D[dN (φN (u), φN (v))] ≤ α · dM (u, v).

Using probabilistic embeddings, it is possible to obtain much better bounds on
the distortion [1, 2, 3, 15, 4]. The following bound is shown in [15, 4].

Theorem 1.3. Any metric space on n points can be O(log n) probabilistically
embedded in a set of n-point ultrametrics. Moreover, the distribution can be sampled
efficiently.

Theorem 1.3 found many algorithmic applications in approximation algorithms,
online algorithms, and distributed algorithms; see, for example, [2, 17, 16, 23, 7]. The
bound on the distortion in Theorem 1.3 is tight even for probabilistic embeddings into
tree metrics for which there is an Ω(log n) lower bound [2].

Theorem 1.3 was originally formulated for a class of metric spaces defined by the
following natural generalization of ultrametrics.

Definition 1.4 (after [2]). For k ≥ 1, a k-hierarchically well-separated tree (k-
HST) is a metric space defined on the leaves of a rooted tree T . To each vertex u ∈ T
there is associated a label ∆(u) ≥ 0 such that ∆(u) = 0 if and only if u is a leaf of T .
The labels are such that if a vertex v is a child of a vertex u, then ∆(v) ≤ ∆(u)/k.
The distance between two leaves x, y ∈ T is defined as ∆(lca(x, y)), where lca(x, y) is
the least common ancestor of x and y in T .

The definition of a finite ultrametric is the same as a 1-HST. Any k-HST is
therefore, in particular, an ultrametric, and any finite ultrametric can be k-embedded
in some k-HST [3]. We can therefore restrict our attention to ultrametrics, while all
results generalize to k-HSTs.

The main contribution of this paper is in offering a new type of metric embedding
that makes it possible to bypass lower bounds for the standard and even probabilistic
metric embeddings. There are two key observations that lead to this new type of
embedding. The first is that in some applications it is natural to match a point
onto a set of points in the target metric space. Motivated by two applications of
Theorem 1.3—the group Steiner tree problem (henceforth, GST) and the metrical
task systems problem (henceforth, MTS)—we propose the following definition.

Definition 1.5 (multi embedding). A multiembedding of M in N is a partial
surjective function f from N on M ; i.e., each point x ∈ M is embedded into a non-
empty set f−1(x). Points in f−1(x) are called representatives of x in N .

The role of f−1 in Definition 1.5 is analogous to the role of φ in the Definitions 1.1
and 1.2 of embedding and probabilistic embedding. Another way to define multiem-
bedding is by φ : M → 2N , in which φ(u)∩ φ(v) = ∅ for every u �= v. In our notation
we have φ(x) = f−1(x). Since the f notation will be more convenient, henceforth we
will use it exclusively.

The second observation is that for many applications, including those mentioned
above, there is no need to approximate the original distance for every pair of represen-
tatives. What is really needed is that every path in the original space be approximated
well by some path in the target space.
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A path in a metric space is an arbitrary finite sequence of points in the space. The
length of a simple path p = 〈u1, u2, . . ., um〉 in a metric space M = (V, d) is defined

as �(p) =
∑m−1

i=1 d(ui, ui+1).
Definition 1.6 (path distortion). A multiembedding f of M in N is called

noncontractive if for any u, v ∈ N , dN (u, v) ≥ dM (f(u), f(v)). The path-distortion of
a noncontractive multiembedding of M in N , f : N → M , is the infimum over α, for
which any path p = 〈u1, u2, . . ., um〉 in M has a path p′ = 〈u′

1, u
′
2, . . ., u

′
m〉 in N such

that f(u′
i) = ui and �(p′) ≤ α · �(p).

A multiembedding whose path-distortion is at most α is called an α-path embed-
ding.

A crucial parameter for multiembeddings is the size of the target space Γ. In
general, it will be desirable that Γ be polynomial in the size of the source space. In fact,
if Γ = ∞, then there is a simple 1-path embedding of any finite metric space by trees:
Take all finite paths, convert each path to a simple path (by duplicating points, if
necessary), and put them under a single root with an edge of length half the diameter.
This motivates a study of the trade-off between Γ and the path distortion of arbitrary
metric spaces by tree metrics. In section 4 we study path embedding of expander
graphs and the hypercube into tree metrics. We show, e.g., that n-point Ramanujan
graphs have 3-path embedding into tree metrics of size Γ(n) ≤ poly(n). This is in
sharp contrast to the status of expander graphs for previous notions of embeddings,
for which they are considered “worst case” examples with Ω(log n) distortion [24].
These results directly imply nearly tight results on the approximation ratio for GST
on expander graphs and hypercubes.

We consider multiembeddings when the class of target metric spaces are ultra-
metrics. First, we observe that probabilistic embedding into ultrametrics directly
implies a bound for path embedding by putting all the trees in S (the set used in
the probabilistic embedding) under a common new root. This results in an α-path
embedding into an ultrametric of size |S|n. Using the bound of [13] on the number of
ultrametrics needed in Theorem 1.3, we obtain an O(log n) path embedding into an
ultrametric of size O(n2 log n).1

An important parameter of the metric spaces appearing in practice is the aspect
ratio of the metric, which is the ratio between the diameter and minimum nonzero
distance in the metric space. It will be convenient for us to assume that the minimum
distance is 1, and so the aspect ratio becomes the diameter. It turns out that the
aspect ratio of the metric plays a significant role in the path distortion of multiem-
beddings. In section 3 we prove the following result.

Theorem 1.7. Fix β > 1. For any metric space M = (V, d) on |V | = n points
and aspect ratio ∆, there exists an efficiently constructible multiembedding into an
ultrametric of size nβ, whose path distortion is at most

Oβ(min{log n · log log n, log ∆ · log log ∆}).

Our construction beats the probabilistic embedding-based constructions on met-
rics with small aspect ratio. Expander graphs are examples where a lower bound of
Ω(∆) exists on probabilistic embedding using trees [24].

1In a preliminary version of this paper [10], we also introduced the notion of probabilistic multi-
embedding. Using that notion we were able to show probabilistic multiembedding into ultrametrics
of polynomial size and path distortion O(logn log log log n). Since an O(logn) bound now follows
from Theorem 1.3 [15, 4], we have decided to drop the probabilistic multiembedding result from this
version of the work.
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The constructions of multiembeddings are in a sense dual to Ramsey-type the-
orems for metric spaces [6, 8], where the goal is to find a large subset which is well
approximated by some ultrametric.

We also provide a simple example in which Theorem 1.7 is almost tight: Any
α-path embedding into ultrametrics of a simple unweighted path of length n has
α = Ω(log n). It follows, in particular, that any α-path embedding into ultrametrics
of the metric defined by an unweighted graph of diameter ∆ has α = Ω(log ∆). Path
embedding is motivated by two intensively studied algorithmic minimization prob-
lems: GST and MTS, mentioned above. For both, the best known algorithms use
probabilistic embedding into trees/ultrametrics. In section 2 we prove that in order
to reduce these problems to other metric spaces it is sufficient to use path embedding.
We therefore achieve improved algorithms for these problems whenever the path em-
bedding distortion beats that of probabilistic embedding, and in particular, when the
underlying metric is of small aspect ratio.

2. Applications. In this section we define MTS and GST and show that path
distortion of multiembeddings reduces these problems to similar problems with dif-
ferent underlying metrics.

MTS [11] was introduced as a framework for many online minimization problems.
An MTS on metric space M = (S, d), |S| = n, is defined as follows. A “system” has
a set of n possible internal states S. It receives a sequence of tasks σ = τ1τ2 · · · τm.
Each task τ is a vector τ : S → R

+ ∪ {∞} of nonnegative costs for serving τ in
each of the internal states of the system. The system may switch states (say, from
u to v), paying a cost equal to the distance d(u, v) in M , and then pays the service
cost τ(v) associated with the new state. The major limiting factor for the system is
the requirement to process the sequence in an online fashion, i.e., serving each task
without knowing the future tasks.

As is customary in the analysis of online algorithms, MTS is analyzed using the
notion of a competitive ratio. A randomized online algorithm A is called r-competitive
if there exists some constant c such that for any task sequence σ, E[costA(σ)] ≤
r · costOpt(σ) + c, where costA(σ) is the random variable of the cost for serving σ
by A, and costOpt(σ) is the optimal (offline) cost for serving σ. The current best
online algorithm for the MTS problem in n-point metric spaces is O(log2 n log log n)-
competitive [16, 15] (an improvement of [5, 3]). Both papers [5, 16] actually solve the
MTS problem for ultrametrics, and then reduce arbitrary metric spaces to ultrametrics
using Theorem 1.3. We next show that path embedding suffices, as follows.

Proposition 2.1. Assume that a metric space M is α-path embedded in N .
Assume also that N has an r-competitive MTS algorithm. Then there is an αr-
competitive algorithm for M .

Proof. We construct an online algorithm A for M as follows: Let AN be an r-
competitive online algorithm for N , and f : N → M an α path embedding of M in N .
The task sequence σ is translated to a task sequence σN for N task by task as follows.
A task τ for M is translated into a task τN for N such that τN (u′) = τ(f(u′)). A
maintains the invariant that if AN is in state v′, then A is in state f(v′).

It is easy to verify that costA(σ) ≤ costAN
(σN ), since the service costs are the

same, and the distances in N are larger. Consider Opt(σ); it defines a path p serving
σ in M . Thus there exists a path pN as in the statement of Definition 1.6. The
path pN is the way σN would be served in N . In this way, since f(pN ) = p, the
service costs in N are the same as the service costs in M , and �(pN ) ≤ α�(p). Thus
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costOptN
(σN ) ≤ α · costOpt(σ). Summarizing,

E[costA(σ)] ≤ E[costAN
(σN )] ≤ r · costOptN

(σN ) + c ≤ αr · costOpt(σ) + c.

Corollary 2.2. There is an O(log ∆ log log ∆ · log n log log n)-competitive ran-
domized MTS algorithm for MTS defined on metric spaces with diameter ∆.

Proof. Apply Theorem 1.7 on the original metric and obtain an O(log ∆ log log ∆)-
path embedding into an ultrametric of size Γ(n) = poly(n). This ultrametric has
O(log Γ(n) log log Γ(n)) competitive algorithm [16]. Now apply Proposition 2.1 to
obtain the claim.

The GST [29] can be stated as follows: Given a graph G = (V,E) on n vertices
with a weight function c : E → R+, and subsets of the vertices g1, . . ., gk ⊂ V (called
groups), the objective is to find a minimum weight subtree T of G that contains at
least one vertex from each gi, i ∈ [k]. Under certain standard complexity assumptions,
this is hard to approximate by a factor better than max{log2−ε k, log2−ε n} [19]. The
current best upper bound on the approximation factor is O(log2 n log k) [17, 15]. In
[17], an O(log n log k) approximation algorithm for tree metrics is given, and the
general case is reduced to tree metrics using Theorem 1.3. Again, we show that it is
actually sufficient to use multiembedding for this problem.

As a first step we observe that the problem can be easily cast in terms of metric
spaces instead of graphs: Given a graph G = (V,E) with weights w : E → R+, let
M = (V, d) be the shortest path metric induced by G and w on V . A tree T in M can
be transformed into a tree T̂ in G such that the total weight in T̂ is not larger than
the total weight in T , and T̂ contains all the vertices in T . This is done by replacing
each edge in T by the shortest path between its endpoints in G and taking a spanning
tree of the resulting subgraph. It therefore suffices to solve GST on metric spaces.

Proposition 2.3. Assume that a metric space M is α-path embedded in a
metric space N . Assume in addition that there is a [randomized] polynomial time
r-approximation algorithm for any GST instance with k groups defined on N . Then
there exists a [randomized] polynomial time 2αr-approximation algorithm for any GST
instance with k groups defined on M .

Proof. We construct an approximation algorithm A for the instance σ =
(M ; g1, . . ., gk) as follows. Denote by f : N → M the α-path embedding of M in
N . Consider the following instance of GST: σN = (N ; f−1(g1), . . . , f

−1(gk)). Let
AN be an r-approximation algorithm for σN . Let TN = AN (σN ) be the tree con-
structed by AN . Denote by f(TN ) the image graph of TN ; i.e., if TN = (VN , EN ),
then f(TN ) = (f(VN ), {f(u)f(v)| uv ∈ EN}). The graph f(TN ) is connected, and its
weight is at most the weight of TN . It also spans at least one representative from each
group. Algorithm A returns a spanning tree of f(TN ). This tree is a feasible solution
and it satisfies costA(σ) ≤ costAN

(σN ).
Consider the tree Opt(σ), double each edge in Opt(σ), and take an Euler tour

p of this graph. There exists a path in N , pN , as in the statement of Definition 1.6,
such that f(pN ) = p. The path pN is a connected graph and spans at least one
representative from each group f−1(gj). As the weight of p is twice the weight of
Opt(σ), we have

costOptN
(σN ) ≤ �(pN ) ≤ α�(p) ≤ 2αcostOpt(σ).

Summarizing,

E[costA(σ)] ≤ E[costAN
(σN )] ≤ r costOptN

(σN ) ≤ 2αr costOpt(σ).
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Corollary 2.4. There exists a polynomial time O(log ∆ log log ∆ log n log k)-
approximation algorithm for GST on metric spaces with diameter ∆.

3. Multiembedding into ultrametrics. The following theorem is a restate-
ment of Theorem 1.7 in a more general form.

Theorem 3.1. Given any metric space M = (V, d) on |V | = n points and diam-
eter ∆, for any t ∈ N, M is O(tmin{log ∆, log n})-path embedded into an efficiently
constructible ultrametric of size Γ ≤ nβ, where β = min{(log n)1/t, [t log(4∆)]2/t}.

Proof. The construction of the multiembedding is motivated by the construction
of subspaces approximating ultrametric in [6, 8], but instead of deleting points, we
duplicate them. We then prove the bounds on the path distortion.

Let ∆ be the diameter of M . Let x and x̄ be two points realizing the diameter
of M , and assume without loss of generality that |{y ∈ M : d(x, y) < ∆/4}| ≤ n/2
(otherwise, switch the roles of x and x̄). Define a series of sets A0 = {x}, and for
i ∈ {1, 2, . . ., t}, Ai = {y ∈ M | d(x, y) < i∆/4t}, and “shells” Si = Ai \ Ai−1. Let
|V | = n and let εi = |Ai|/n.

The algorithm for constructing the multiembedding works as follows: Choose a
shell Si, i ∈ [t]. Recursively, construct a multiembedding of the subspace Ai into an
ultrametric T1 and a multiembedding of the subspace V \ Ai−1 into an ultrametric
T2. To construct the multiembedding for M , we construct an ultrametric T with
root labelled with ∆ and two children, one being T1 and the other T2. This is a
multiembedding since the points in Si are essentially being “duplicated” at this stage.
Note that this is a noncontractive multiembedding.

Next we prove an upper bound on the size of the resulting ultrametric T , assuming
that the shell was chosen carefully enough. The bound we prove is nβ , where β =
min{(log n)1/t, [t log(4∆)]2/t}.

We begin with the first bound. Let β = β(n) = (logn)1/t. The proof proceeds

by induction on n (whereas t is fixed). There must exist i ∈ [t] such that εi−1 ≥ εβi .

Indeed, note that n−1 ≤ ε0 ≤ εt+1 ≤ 1/2. Assume on the contrary that εi−1 < εβi for
all i ∈ [t]; then

ε0 < εβ1 < · · · < εβ
t

t ≤
(

1

2

)log n

=
1

n
,

which is a contradiction. Therefore we can fix i such that εi−1 ≥ εβi . Inductively,
assume that the recursive process results in at most (εin)β(εin) ≤ (εin)β leaves in
T1 and at most ((1 − εi−1)n)β((1−εi−1)n) ≤ ((1 − εi−1)n)β leaves in T2. Thus |T | ≤
(εβi +(1−εi−1)

β)nβ . Since εi−1 ≥ εβi , we have εβi +(1−εi−1)
β ≤ εi−1+(1−εi−1) = 1,

and we are done.
We next prove the second bound. Let β = β(∆) = [t log(4∆)]2/t. The proof is by

induction on (the rounded value of) ∆. We claim that

∃i ∈ [t] such that εi−1 ≥ ε
β(∆/2)
i nβ(∆/2)−β(∆).(3.1)

Indeed, assume on the contrary that no such i exists. Set a = log(2∆) ≥ 1, so

that β(∆/2) = (ta)2/t and β(∆) = [t(a + 1)]2/t. Denote b = n(ta)2/t−[t(a+1)]2/t and
c = (ta)2/t. The opposite of (3.1) then becomes εi−1 < εcib for any i ∈ [t]. Iterating
this t times, we get

1

n
= ε0 < εc

t

t b1+c+c2+···+ct−1 ≤ εc
t

t bc
t−1 ≤ bc

t−1

.
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Thus

n(ta)2−2/t[[t(a+1)]2/t−(ta)2/t] < n,

but this is a contradiction, since an application of the mean value theorem implies
the existence of ξ ∈ [a, a + 1], for which

(ta)2−2/t
[
[t(a + 1)]2/t − (ta)2/t

]

= (ta)2−2/t[2t−1+2/tξ−1+2/t] = 2(ta)

(
a

ξ

)1−2/t

≥ ta ≥ 1.

Choose an index i ∈ {1, . . ., t} satisfying (3.1). Since i ≤ t, ∆(Ai) ≤ ∆/2. The
choice of the index i, and using the inductive hypothesis, gives the required lower
bound on the cardinality of T , since

|T | ≤ (εin)β(∆/2) + [(1 − εi−1)n]β(∆) ≤ εi−1n
β(∆) + (1 − εi−1)n

β(∆) ≤ nβ(∆).

We note that the running time of the algorithm above is O(n2) on each vertex
in the tree and therefore O(nβ+2) for the whole tree . A slight variation on this
algorithm (and a more careful analysis) has an O(nmax{β,2}) running time.

The multiembedding described above has the following properties:
1. The multiembedding is noncontractive.
2. The tree structure defining the ultrametric is a binary tree.2

Let u be an internal vertex in the binary tree defining the ultrametric, and T the
subtree rooted at u. We can rename the subtrees rooted with the children of u as T1

and T2 such that the following hold:
3. Let x and y be two points in M . If ∅ �= f−1(x)∩T ⊂ T1 and ∅ �= f−1(y)∩T ⊂

T2, then d(x, y) ≥ ∆(T )/4t.
4. |f(T1)| ≤ |f(T )|/2.
5. ∆(T1) ≤ ∆(T )/2.

We next show, using the properties above, that the path distortion of this mul-
tiembedding is at most 8t log min{n,∆}. Let p = 〈u1, u2, . . ., um〉 be a path in M
whose length is �(p). We construct a path p̄ on the leaves of T whose length satisfies
�(p̄) ≤ 8t log min{n,∆} · �(p). The proof proceeds by induction on the height of the
tree defining the ultrametric.

We partition p into subpaths as follows. Define a sequence of indices and a
sequence of subtrees of the root: Let j1 = 1, and let T̂1 ∈ {T1, T2} be the subtree of
the root that includes the longest prefix of p. Assume that inductively that we have
already defined ji−1 and T̂i−1 ∈ {T1, T2}. Define ji to be the minimum index such that
uji is the first point in p after uji−1 with no representative in T̂i−1. Let T̂i ∈ {T1, T2}
be the other subtree of the root. Assume that this process is finished with js, T̂s.
Next we define another sequence of indexes: ks = m; for i < m we define ki to be
the largest number, smaller than ji+1, such that uki does not have a representative
in T̂i+1. By the construction of T̂i, we have that ji ≤ ki and uki has a representative
in T̂i. See Figure 3.1 for an example of such partition. We have partitioned p into
subpaths (〈uji , . . ., uki〉)i and (〈uki , . . ., uji+1〉)i. Informally, a subpath 〈uji , . . ., uki〉
will be realized in T̂i, while subpath 〈uki , . . ., uji+1〉 will be realized in T1.

2Note that, more generally, any ultrametric can be defined by a binary tree.
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T1 T2

uj1 uk1 uj2

uj3
uk2

um

u1

uk3

Fig. 3.1. A partition of the path into subpaths.

More formally, let L = �(p), Li1,i2 = �(〈ui1 , ui1+1, . . ., ui2〉), n = |f(T )|, n1 =
|f(T1)|, n2 = |f(T2)|, and ∆ = ∆(T ), ∆1 = ∆(T1), and ∆2 = ∆(T2). We construct
by induction on the tree structure T a path p̄ in T whose length satisfies L̄ = �(p̄) ≤
8t log min{∆, n} · L.

By the induction hypothesis it is possible to construct, for any i, a path in T̂i of
representatives of 〈uji , . . ., uki

〉 whose length is

L̄ji,ki
≤ Lji,ki · 8t log min{n,∆}.

Next, for any i, we construct a path of representatives of 〈uki , . . ., uji+1〉. Note that

uki+1, . . ., uji+1−1 have representatives in both T̂i and T̂i+1. Therefore, we construct
inductively a path from a representative of uki+1 to a representative of uji+1−1 in T1, so
L̄ki,ji+1 ≤ Lki,ji+18t log min{n1,∆1}. We then connect the representative of uki

with
the representative of uki+1 and the representative of uji+1−1 with the representative
of uxi+1

; each such edge is of length at most the diameter of T , ∆. We have therefore
constructed a path of representatives of 〈uki , . . ., uji+1〉 whose length is L̄ki,ji+1 + 2∆.

Since uki
does not have a representative in T̂i+1 and uji+1

does not have repre-

sentative in T̂i, we conclude, using property 3 above, that dM (uki
, uji+1

) ≥ ∆/4t, and
so ∆ ≤ 4t · Lki,ji+1 . To summarize,

L̄ki,ji+1 ≤ Lki,ji+18t log min{n1,∆1} + 2∆

≤ Lki,ji+18t
(
log min{n/2,∆/2} + 1

)
= Lki,ji+18t log min{n,∆}.

We conclude

L̄ =

s∑
i=1

L̄ji,ki
+

s−1∑
i=1

L̄ki,ji+1

≤ 8t log min{n,∆} ·
(

s∑
i=1

Lji,ki +

s−1∑
i=1

Lki,ji+1

)

= 8t log min{n,∆}L.

We end the discussion on multiembedding into ultrametrics with the following
impossibility result.

Proposition 3.2. Consider the metric defined by a simple N -point path. Then
any α-path embedding of this metric in an ultrametric must have α = Ω(log n).
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Proof. Let M = {v1, v2, . . ., vn} be the metric space on n points such that
dM (vi, vj) = |i − j|. We prove that for any noncontractive multiembedding into
an ultrametric T , any path of representatives of 〈v1, v2, . . ., vn〉 is of length at least
g(n) = n

2 log n.
The proof proceeds by induction on n. For n = 1 the claim is trivial. For n > 1,

let 〈v′1, v′2, . . ., v′n〉 be a path of representatives in T . Let u = lcaT (v′1, v
′
n), ∆(u) =

dT (v′1, v
′
n) ≥ dM (v1, vn) = n− 1. Let T1 be the subtree of the child of u that contains

v′1. T1 does not contain v′n. Let i1 < n be the maximal i such that {v′1, . . ., v′i1} ⊂ T1.
As i1 + 1 is not contained in T1, it must be that dT (v′i1 , v

′
i1+1) ≥ ∆(u) ≥ n − 1. By

the induction hypothesis,

�T (〈v′1, . . ., v′i1〉) ≥ g(i1), �T (〈v′i1+1, . . ., v
′
n〉) ≥ g(n− i1).

Since g is a convex function, (g(i1) + g(n − i1))/2 ≥ g((i1 + (n − i1))/2) = g(n/2).
We conclude

�T (〈v′1, . . ., v′n〉) ≥ g(i1) + (n− 1) + g(n− i1)

≥ 2g
(n

2

)
+ n− 1 = 2

n

4
log

n

2
+ (n− 1) ≥ n

2
log n.

4. Multiembedding into trees. In this section we consider multiembeddings
into arbitrary tree metrics. We only have preliminary results. Specifically, we only
consider two important types of metric spaces: expander graphs and the discrete
cube with the Hamming metric, for which we obtain better results. For both of them
the preceding sections proved an upper bound of O(log log n log log log n) and a lower
bound of Ω(log logn) on the path distortion of multiembeddings into ultrametrics.
(The lower bound follows since both metrics contain a path of length Ω(logn).)

We begin with the observation that for Γ = ∞ it is easy to obtain 1-path embed-
ding of any finite metric space into trees. This is achieved by defining an infinite tree
metric as follows: joining all possible finite paths with a common root, where the first
node in the path is connected with an edge weight of ∆

2 to the root. Moreover, we
have the following result.

Proposition 4.1. Given a metric space M defined by an unweighted graph of
maximum degree d and diameter ∆, let s ∈ N. Then M can be (2+ ∆

s )-path embedded
into a tree metric of size nds.

Proof. Along the lines of the construction described above, we take all paths
of length s and join these with a common root, where the first node in the path is
connected with an edge weight of ∆

2 to the root. Obviously, there are at most nds such
paths. Notice that our choice of weights to the edges adjacent to the root guarantees
that distances in the resulting tree are no smaller than the original distances. We
next claim that the path distortion is at most (2 + ∆

s ). To see this, consider a path
p = 〈v1, . . ., v�〉 of length �. We partition p into subpaths of length s: p = p1p2 · · · pt,
where t = ��/s�, pj = 〈v(j−1)s+1, . . ., vjs〉 for j < t, and pt = 〈v(t−1)s+1, . . ., v�〉. Now
the subpath pj is mapped to the appropriate path in the tree. Note that the length
of the image path is 2� + (t− 1)∆.

This simple fact is particularly interesting for its implication for expander graphs.
Let G be an (n, d, γd) graph, i.e., a d-regular n-vertex graph whose second eigenvalue
in absolute value is at most γd. It is known [14] that such a graph has diameter at
most 1 + log1/γ n, and so we obtain the following.

Corollary 4.2. Any (n, d, γd)-graph has 3-path embedding in a tree of size
dn1+log1/γ d.
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We also note that, for the trees constructed in the proof of Proposition 4.1, it is
particularly easy to obtain a better approximation algorithm for GST.

Lemma 4.3. Consider a tree metric M = (V, d), where V = P1 ∪ P2 ∪ · · · ∪ P�,
Pi = 〈vi1, vi2, . . ., vis〉 is an unweighted simple path of length s, and d(vi1, v

j
1) = ∆ for

i �= j. Then an instance of the GST with k groups defined on M has a (1+ 2s
∆ )(1+ln k)

approximation algorithm.
Proof. Consider a GST instance g1, . . ., gk defined on M . We first check whether

there is a solution that is completely contained in one Pi. This can be checked in
polynomial time by noting that if an optimal solution is contained in one Pi, then it
is an interval. Thus we need to check only �

(
s+1
2

)
intervals.

Otherwise, the optimal solution intersects t > 1 of the paths P1, . . ., P�. Define a
hitting set instance whose ground set is {P1, . . . , P�} and whose subsets are g′1, . . ., g

′
k,

where g′i = {Pj ; Pj∩gi �= ∅}. It follows that the optimal cost of the hitting set problem
is at least t−1. The hitting set problem has a polynomial time 1+ln k-approximation
algorithm [22, 25]. Let S be the approximate solution for the hitting set. We define
a solution for the GST instance by taking a natural path over ∪{Pi; Pi ∈ S}. Note
that its length is at most (∆ + 2s)|S| ≤ (∆ + 2s)(t− 1)(1 + ln k). However, the cost
of the optimal GST algorithm is at least (t− 1)∆.

Corollary 4.4. For fixed d > λ there exist constants c = cd,λ, C = Cd,λ, and
polynomial p(t) = pd,λ(t) such that GST on (n, d, λ) graphs has p(n)-time (C log k)-
approximation algorithm, and it is NP-hard to approximate within a factor of c log k.

Proof. The approximation algorithm follows from Proposition 4.1 and Lemma 4.3,
by setting s = ∆. The hardness result follows since an (n, d, λ) graph contains a
subset of nΩd,λ(1) points that is Od,λ(1)-approximated by an equilateral space [8].
GST on equilateral space is equivalent to a standard hitting set problem, which is
NP-hard to approximate within a factor of c ln k [28, 26]. Usage of points not in this
subspace (“Steiner points”) can improve the approximation factor by at most a factor
of two [29, 18].

We next examine multiembedding of the h-dimensional hypercube with n = 2h

vertices. Using Proposition 4.1 with s = h/ log h, and using d = h and ∆ = h,
we obtain (log logn + 2)-path embedding into trees of size Γ(n) ≤ n2. By applying
Lemma 4.3 to that path-embedding, we obtain a polynomial time O(log k log log n)-
approximation algorithm to GST on the cube. Similarly to the expander graphs,
it is hard to approximate instances of GST on the cube to within a c log k factor,
for some constant c > 0, since the cube contains a subset of nΩ(1) points that is
O(1)-approximated by an equilateral space.

5. Discussion. An interesting open problem is to determine worst case bounds
for path distortion of multiembedding into trees of polynomial size. As indicated by
the case of expander graphs, such bounds may be better than those for ultrametrics.

Results on multiembedding into trees directly reflect on the approximability of
GST. As shown for expanders and hypercubes, it is possible that for special classes of
metric spaces, a combination of improved path embedding and a specialized solution
would yield (nearly) tight upper bounds. Our approach to showing the (near) tightness
of the results in those cases stems from metric Ramsey-type considerations (i.e., the
existence of large approximately equilateral subspace). Such considerations are, in
fact, more general and may lead to more results of this type.3

Multiembedding into ultrametrics also implies multiembedding into �dp, where

3In [8] it is shown that any metric space contains a “large” subspace which is approximately an
ultrametric, or a k-HST. Such trees were used in [19] to prove inapproximability results for GST. It
is plausible that these techniques can be combined to obtain tight bounds for GST in specific metric
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d = O(log n) with similar path distortion [9]. It is natural to ask whether better path
distortion is possible for multiembedding into �1 or �2. Further study of multiembed-
dings in other settings and their applications seems an attractive direction for future
research.
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Abstract. We prove a quasi-polynomial lower bound on the size of bounded-depth Frege proofs
of the pigeonhole principle PHPm

n where m = (1 + 1/polylog n)n. This lower bound qualitatively
matches the known quasi-polynomial-size bounded-depth Frege proofs for these principles. Our
technique, which uses a switching lemma argument like other lower bounds for bounded-depth Frege
proofs, is novel in that the tautology to which this switching lemma is applied remains random
throughout the argument.
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1. Introduction. The propositional pigeonhole principle asserts that m pigeons
cannot be placed in n holes with at most one pigeon per hole whenever m is larger than
n. It is an exceptionally simple fact that underlies many theorems in mathematics
and is the most extensively studied combinatorial principle in proof complexity. (See
[24] for an excellent survey on the proof complexity of pigeonhole principles.) It can
be formalized as a propositional formula, denoted PHPm

n , in a standard way.
Proving superpolynomial lower bounds on the length of propositional proofs of

the pigeonhole principle when m = n+1 has been a major achievement in proof com-
plexity. The principle can be made weaker (and hence easier to prove) by increasing
the number of pigeons relative to the number of holes, or by considering fewer of the
possible mappings of pigeons to holes. Two well-studied examples of the latter weak-
enings, the onto pigeonhole principle and the functional pigeonhole principle, only
rule out, respectively, surjective and functional mappings from pigeons to holes. In
this paper, we will prove lower bounds that apply to all of these variations of the basic
pigeonhole principle.

For all m > n, Buss [10] has given polynomial-size Frege proofs of PHPm
n . He uses

families of polynomial-size formulas that count the number of 1’s in an N -bit string
and Frege proofs of their properties to show that the number of pigeons successfully
mapped injectively can be at most the number of holes.

In weaker proof systems, where such formulas cannot be represented, the proof
complexity of the pigeonhole principle depends crucially on the number of pigeons,
m, as a function of the number of holes, n. As m increases, the principle becomes
weaker (easier to prove) and in turn the proof complexity question becomes more
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difficult. We review the basics of what is known for resolution and bounded-depth
Frege systems below. Generally, the weak pigeonhole principle has been used to refer
to PHPm

n whenever m is at least a constant factor larger than n. We will be primarily
concerned with forms of the pigeonhole principle that are significantly weaker than
the usual pigeonhole principle but somewhat stronger than these typical weak forms.

For the resolution proof system, the complexity of the pigeonhole principle is
essentially resolved. In 1985, Haken proved the first superpolynomial lower bounds
for unrestricted resolution proofs of PHPm

n for m = n+1 [13]. This lower bound was
generalized by Buss and Turán [11] for m < n2. For the next ten years, the resolution
complexity of PHPm

n for m ≥ n2 was completely open. A recent result due to
Raz [22] gives exponential resolution lower bounds for the weak pigeonhole principle,
and subsequently Razborov resolved the problem for most interesting variants of the
pigeonhole principle [25].

Substantially less is known about the complexity of the pigeonhole principle in
bounded-depth Frege systems, although strong lower bounds are known when the
number of pigeons m is close to the number of holes n. Ajtai proved superpolynomial
lower bounds for PHPn+1

n with an ingenious blend of combinatorics and nonstandard
model theory [2, 3]. This result was improved to exponential lower bounds in [7, 21,
17]. It was observed in [5] that the above lower bounds can in fact be applied to
PHPm

n for m ≤ n + nε for some ε that falls off exponentially in the depth of the
formulas involved in the proof.

For the case of larger m (the topic of this paper), the complexity of bounded-depth
Frege proofs of PHPm

n is slowly emerging, with surprising and interconnected results.
There are several deep connections between the complexity of the weak pigeonhole
principle and other important problems. First, lower bounds for bounded-depth Frege
proofs of the weak pigeonhole principles suffice to show unprovability results for the
P versus NP statement (see [24]). Second, the long-standing question of whether or
not the existence of infinitely many primes has an I∆0 proof is closely related to the
complexity of weak pigeonhole principle in bounded-depth Frege systems [20]. Third,
the question is closely related to the complexity of approximate counting [19].

In bounded-depth Frege systems more powerful than resolution, there are a few
significant prior results concerning the proof complexity of weak pigeonhole principles:
There are bounded-depth Frege proofs of PHPm

n for m as small as n + n/polylog n
of quasi-polynomial size [20, 16, 18]; thus exponential lower bounds for the weak
pigeonhole principle are out of the question. In fact, this upper bound is provable
in a very restricted form of bounded-depth Frege where all lines in the proof are
disjunctions of polylog n-sized conjunctions, a proof system known as Res(polylog n).
On the other hand, [26] shows exponential lower bounds for PHP 2n

n in Res(k), a proof
system which allows lines to be disjunctions of size-k conjunctions for k almost

√
log n.

In this paper we prove quasi-polynomial lower bounds for the weak pigeonhole
principle whenever m ≤ n + n/polylog n. More precisely, we show the following.

Main Result. For any integers a, h > 0, there exists an integer c such that any
depth-h proof of PHPm

n , where m ≤ n + n/ logc n, requires size 2loga n.

This is a substantial improvement over previous lower bounds. Furthermore, the
quantification of a, h, and c cannot be easily improved without running into the upper
bound of [4]. Our proof technique applies a switching lemma to a weaker tautology
based on certain bipartite graphs. This type of tautology was introduced in [9].
Although we rely heavily on the simplified switching lemma arguments presented in
[6, 27], one major difference from previous switching-lemma-based proofs is that both
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the tautologies themselves and the restrictions we consider remain random throughout
most of the argument.

2. Overview. The high-level schema of our proof is not new. Ignoring parame-
ters for a minute, we start with an alleged proof of PHPm

n of small size. We then show
that assigning values to some of the variables in the proof leaves us with a sequence
of formulas, each of which can be represented as a particular type of decision tree
of small height. This part of the argument is generally referred to as the switching
lemma. We then prove that the leaves of any such short tree corresponding to a for-
mula in the proof must all be labelled 1 if the proof is to be sound. Finally, we show
that the tree corresponding to PHPm

n has leaves labelled 0, which is a contradiction
since it must appear as a formula in the alleged proof. We now overview the lower
bound components in more detail.

The lower bounds for bounded-depth Frege proofs of PHPn+1
n [3, 7, 21, 17] used

restrictions, partial assignments of values to input variables, and iteratively applied
“switching lemmas” with respect to random choices of these restrictions. The first
switching lemmas [12, 1, 14] showed that after one applies a randomly chosen restric-
tion that assigns values to many, but far from all, of the input variables, with high
probability one can convert an arbitrary DNF formula with small terms into a CNF
formula with small clauses (hence the name). More generally, such switching lemmas
allow one to convert arbitrary DNF formulas with small terms into small height de-
cision trees (which implies the conversion to CNF formulas with small clauses). The
basic idea is that for each level of the formulas/circuits, one proves that a randomly
chosen restriction will succeed with positive probability for all subformulas/gates at
that level. One then fixes such a restriction for that level and continues to the next
level. To obtain a lower bound, one chooses a family of restrictions suited to the target
of the analysis. In the case of PHPm

n , the natural restrictions to consider correspond
to partial matchings between pigeons and holes.

The form of the argument by which switching lemmas are proven generally de-
pends on the property that the ratio of the probability that an input variable remains
unassigned to the probability that it is set to 0 (respectively, to 1) is sufficiently less
than 1. In the case of a random partial matching that contains (1−p)n edges applied
to the variables of PHPm

n , there are pn unmatched holes and at least pm unmatched
pigeons. Hence, the probability that any edge-variable remains unassigned (i.e., nei-
ther used nor ruled out by the partial matching) is at least p2. However, the partial
matching restrictions set less than a 1/m fraction of variables to 1. Thus the proofs
required that p2n < p2m < 1 and thus p < n−1/2. This compares with choices of
p = n−O(1/h) for depth-h circuit lower bounds in the best arguments for parity proven
in [14]. Hence, the best-known lower bound on the size of depth-h circuits computing

parity is of the form 2n
Ω(1/h)

, while the best-known lower bound on the size of depth-h

proofs of PHPn+1
n is of the form 2n

2−O(h)

.
A problem with extending the lower bounds to PHPm

n for larger m is that, after a
partial matching restriction is applied, the absolute difference between the number of
pigeons and holes does not change, but the number of holes is dramatically reduced.
This can qualitatively change the ratio between pigeons and holes. If this is too large,
then the probability that variables remain unassigned grows dramatically and, in the
next level, the above argument does not work at all. For example, with the above
argument, if the difference between the number of pigeons and holes is as large as
n3/4, then after only one round the above argument will fail. The extension in [5] to
lower bound proofs for PHPn+nεh

n for formulas of depth h relies on the fact that even
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after h rounds of restrictions the gap is small enough that there is no such qualitative
change; but this is the limit using the probabilities as above.

We are able to resolve the above difficulties for m as large as n+n/polylog n. In
particular, we increase the probability that variables are set to 1 to 1/polylog n from
1/m by restricting the matchings to be contained in bipartite graphs G of polylog n
degree. Thus we can keep as many as n/polylog n of the holes unmatched in each
round. Therefore, by choosing the exponents in the polylog n carefully as a function
of the depth of the formulas, we can tolerate gaps between the number of pigeons and
the number of holes that are also n/polylog n.

A difficulty with this outline is that one must be careful throughout the argument
that the restrictions one chooses do not remove all the neighbors of a node without
matching it, which would simplify the pigeonhole principle to a triviality. It is not at
all clear how one could explicitly construct low-degree graphs such that some simple
additional condition on the restrictions that we choose at each stage could enforce the
desired property. It is unclear even how one might do this nonconstructively because
it is not clear what property of the random graph would suffice.

Instead, unlike previous arguments, we do not fix the graph in advance; we keep
the input graph random throughout the argument and consider for each such graph
G its associated proof of the pigeonhole principle restricted to G. Since we do not
know what G is at each stage, we cannot simply fix the restriction as we deal with
each level; we must keep that random as well. Having done this, we can use simple
Chernoff bounds to show that, for almost all combinations of graphs and restrictions,
the degree at each level will not be much smaller than the expected degree, so the
pigeonhole principle will remain far from trivial. We adjust parameters to reduce the
probability that a restriction fails to simplify a given level so that it is much smaller
than the number of levels. Then we apply the probabilistic method to the whole
experiment involving the graph G as well as the sequence of restrictions.

There is one other technical point that is important in the argument. In order
for the probabilities in the switching lemma argument to work out, it is critical that
the degrees of vertices in the graph after each level of restriction is applied are de-
creased significantly at each step as well as being small in the original graph G. Using
another simple Chernoff bound we show that the degrees of vertices given almost all
combinations of graphs and restrictions will not be much larger than their expected
value, and this suffices to yield the decrease in degree.

Overall, our argument is expressed in much the same terms as those in [6, 27],
although we find it simpler to omit formally defining k-evaluations as separate entities.
One way of looking at our technique is that we apply two very different kinds of
random restrictions to a proof of PHPm

n : first, one that sets many variables to 0,
corresponding to the restriction of the problem to the graph G, and then one that
sets partial matchings for use with the switching lemma.

3. Frege proofs and PHP (G). A formula is a tree whose internal nodes are
labelled by either ∨ (fanin 2) or ¬ (fanin 1) and whose leaves are labelled by variables.
Given a node in this tree, the full tree rooted at that node is called a (not necessarily
proper) subformula of the original formula. If a formula contains no connectives, then
it has depth 0. Otherwise, the depth of a (sub)formula A is the maximum number of
alternations of connectives along any path from the root to leaf, plus one. The merged
form of a formula A is the tree such that all ∨’s labelling adjacent vertices of A are
identified into a single node of unbounded fanin, also labelled ∨.

A Frege proof system is specified by a finite set of sound and complete inference
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rules, rules for deriving new propositional formulas from existing ones by consistent
substitution of formulas for variables in the rule. A typical example is the following,
due to Schoenfield, in which p, q, r are variables that stand for formulas and p, q � r
denotes that p and q yield r in one step:

Excluded middle: � ¬p ∨ p. Expansion rule: p � q ∨ p.

Contraction rule: p ∨ p � p. Associative rule: p ∨ (q ∨ r) � (p ∨ q) ∨ r.

Cut rule: p ∨ q, ¬p ∨ r � q ∨ r.

We will say that the size of a Frege rule is the number of distinct subformulas
mentioned in the rule. For example, the size of the cut rule above is 7; the subformulas
mentioned are p, q, r,¬p, p ∨ q,¬p ∨ r, q ∨ r.

Definition 3.1. A proof of a formula A in Frege system F is a sequence of
formulas A1, . . . , Ar = A such that � A1 and for all i > 1 there is some (possibly
empty) subset A ⊂ {A1, . . . , Ai−1} such that A � Ai is a substitution instance of a
rule of F .

In what follows, let F be any fixed Frege system whose rules have size bounded
by f .

Definition 3.2. For an F-proof Π, let cl(Π) denote the closure of the set of
formulas in Π under subformulas. The size of a Frege proof Π is |cl(Π)|, the total
number of distinct subformulas that appear in the proof. The depth of a proof is the
maximum depth of the formulas in the proof.

Let G = (V1 ∪ V2, E) be a bipartite graph where |V2| = n and |V1| = m > n.
We use L(G) to denote the language built from the set of propositional variables
{Xe : e ∈ E}, the connectives {∨,¬}, and the constants 0 and 1.

The following is a formulation of the onto and functional weak pigeonhole principle
on the graph G. Note that if G is not the complete graph Km,n, then this principle
is weaker than the standard onto and functional weak pigeonhole principle.

Definition 3.3. PHP (G) is the OR of the following four (merged forms of)
formulas in L(G). In general, i, j, k represent vertices in G, and Γ(i) represents the
set of neighbors of i in G.

1.
∨

(e,e′)∈I ¬(¬Xe ∨ ¬Xe′) for I = {(e, e′) : e, e′ ∈ E; e = {i, k}, e′ = {j, k};
i, j ∈ V1; i 	= j; k ∈ V2}: two different pigeons go to the same hole.

2.
∨

(e,e′)∈I ¬(¬Xe ∨ ¬Xe′) for I = {(e, e′) : e, e′ ∈ E; e = {k, i}, e′ = {k, j};
i, j ∈ V2; i 	= j; k ∈ V1}: one pigeon goes to two different holes.

3.
∨

i∈V1
¬
∨

j∈Γ(i) X{i,j}: some pigeon has no hole.

4.
∨

j∈V2
¬
∨

i∈Γ(j) X{i,j}: some hole remains empty.

In fact, we consider an arbitrary orientation of the above formula whereby each ∨ is
binary.

4. Representing matchings by trees. In this section we make minor modi-
fications to standard definitions from [6, 27] to apply to the edge-variables given by
bipartite graphs and not just complete bipartite graphs.

Let G be a bipartite graph as in the last section and let D denote the set of
Boolean variables Xe in L(G). Assume there is an ordering on the nodes of G.

Definition 4.1. Two edges of G are said to be inconsistent if they share exactly
one endpoint. Two partial matchings ρ1, ρ2 on the graph G are said to be consistent if
no edge in ρ1 is inconsistent with an edge in ρ2. For a partial matching ρ, let Im(ρ)
denote the set of nodes of V2 that are matched by ρ.
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Definition 4.2. For ρ a partial matching on the graph G that matches nodes
V ′

1 ⊂ V1 to nodes V ′
2 ⊂ V2, we define G|ρ as the bipartite graph ((V1 \ V ′

1) ∪ (V2 \
V ′

2), E − (V ′
1 × V2 ∪ V1 × V ′

2)).

Definition 4.3. A matching decision tree T for G is a tree where each internal
node u is labelled by a node of G, v, and each edge from a node u is labelled by an
edge of G that touches v. Furthermore, given any path in the tree from the root to
a node u, the labels of the edges along the path constitute a partial matching on G,
called path(u). Let path(T ) = {path(u) : u is a leaf of T}. If v is a node of G that
appears as a label of some node in T , then T is said to mention v.

Furthermore, each leaf of T is labelled by 0 or 1 (if a tree satisfies the above condi-
tions but its leaves remain unlabelled, we will call it a leaf-unlabelled matching decision
tree). Let T c be the same as T except with the value of each leaf-label flipped. If U is
the set of leaves of T labelled 1, let disj(T ) be the DNF formula

∨
u∈U

∧
e∈path(u) Xe.

Definition 4.4. A complete (leaf-unlabelled) matching decision tree for G is one
in which, for each internal node u labelled v and each neighbor v′ of v in G|path(u),
there is an outgoing edge from u labelled by v′.

Definition 4.5. Let K be a subset of the nodes in G. The full matching tree
for K over G is a leaf-unlabelled matching decision tree for G defined inductively: If
K = {k}, then the root of the tree is labelled by k, and for each edge e in G that
touches k, there is an edge from the root of the tree labelled e. If there are no such
edges, then we say that the full matching tree is empty.

If K contains more than one node, let k be its first node under the ordering and
assume we have a full matching tree for k called T . If T is empty, then the entire tree
is empty. Otherwise, at each leaf u of T , attach the full matching tree for K \ {k}
over G|path(u). If this tree is empty, then remove the leaf u.

Note that the full matching tree for any subset K is complete. If the degree of
each node in K is at least |K|, then the full matching tree for K is guaranteed to
mention all nodes in K. Otherwise, it might not.

Lemma 4.6. Let T be a complete matching tree for G, and let ρ be any partial
matching on G. Let d be the minimal degree of any node in G mentioned by T . If
d > |ρ| + height(T ), then there is a matching in path(T ) that is consistent with ρ.

Proof. Assume we have found an internal node u in T labelled by v in G such
that path(u) is consistent with ρ. We will find a child u′ of u such that path(u′) is
still consistent with ρ. If ρ includes the edge {v, v′} for some v′, then there must be a
u′ that matches v with v′ in T , since path(u) is consistent with ρ (so v′ isn’t already
matched by path(u)) and since T is complete. If not, then there must be a neighbor
v′ of v in G that remains unmatched by ρ and path(u) because d > |ρ| + height(T ).
Again, since T is complete, there is a node u′ that matches v with v′.

Definition 4.7. We call F a matching disjunction if it is one of the constants 0
or 1, or it is a DNF formula with no negations over the variables D such that the edges
of G corresponding to the variables in any one term constitute a partial matching. In
the latter case, order the terms lexicographically based on the nodes they touch and
the order of the nodes in G.

Definition 4.8. For F a matching disjunction, the restriction F |ρ for ρ a par-
tial matching is another matching disjunction generated from F as follows: Set any
variable in F corresponding to an edge of ρ to 1 and set any variable corresponding
to an edge not in ρ but incident to one of ρ’s nodes to 0. If a variable in term t is
set to 0, remove t from F . Otherwise, if a variable in term t is set to 1, remove that
variable from t.
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The DNF disj(T ) for a matching decision tree T is always a matching disjunction.
Definition 4.9. A matching decision tree T is said to represent a matching

disjunction F if, for every leaf l of T , F |path(l) ≡ 1 when l is labelled 1 and F |path(l) ≡
0 when l is labelled 0.

A matching decision tree T always represents disj(T ). Furthermore, if ρ extends
some matching path(l) for l a leaf of T , then disj(T )|ρ ≡ 0 (1, respectively) if l is
labelled 0 (1).

Definition 4.10. Let F be a matching disjunction. We define a tree TreeG(F )
called the canonical decision tree for F over G: If F is constant, then TreeG(F ) is one
node labelled by that constant. Otherwise, let C be the first term of F . Let K be the
nodes of G touched by variables in C. The top of TreeG(F ) is the full matching tree on
K over G. We replace each leaf u of that tree with the tree TreeG|path(u)

(F |path(u)).
The tree TreeG(F ) will have all of its leaves labelled. It is designed to represent

F and to be complete.
Definition 4.11. For T a matching decision tree and ρ a matching, T restricted

by ρ, written T |ρ, is a matching decision tree obtained from T by first removing all
edges of T that are inconsistent with ρ and retaining only those nodes of T that remain
connected to the root of T . Each remaining edge that corresponds to an element of
ρ is then contracted (its endpoints are identified and labelled by the label of the lower
endpoint).

Lemma 4.12 (see [27, Lemma 4.8]). For T a matching decision tree and ρ a
matching,

(a) disj(T )|ρ ≡ disj(T |ρ);
(b) (T |ρ)c = T c|ρ;
(c) if T represents a matching disjunction F , then T |ρ represents F |ρ.
5. The lower bound. Let m = n+n/ logc n for some integer c > 0, and let h > 0

be an integer (all log’s are base 2). We generally assume that n is large compared to
the other parameters and that all subsequent expressions are integers. We will show
that for any a such that 8h(a + 3) < c, any proof of PHPm

n = PHP (Km,n) of depth
h is of size greater than 2loga n. To do this we do not work directly with proofs of
PHP (Km,n) but rather with proofs of PHP (G) for randomly chosen subgraphs G of
Km,n.

More precisely, let b = 8h(a + 3), define d = logb n, and observe that a < b < c.
Let G(m,n, d/n) be the uniform distribution on all bipartite graphs from m nodes

to n nodes where each edge is present independently with probability d/n.
Definition 5.1. Let H = (V1 ∪ V2, E) be a fixed bipartite graph. Define M �(H)

to be the set of all partial matchings of size � in H, and for I ⊆ V2 with |I| = �, let
M �

I (H) be the set of all ρ ∈ M �(H) with Im(ρ) = I. Define a partial distribution
M�(H) on M �(H) by first choosing a set I ∈ V2 uniformly at random among all
subsets of V2 of size �, then choosing a ρ ∈ M �

I (H) uniformly at random; if M �
I (H)

is empty, then no matching is chosen and the experiment fails.
We now define several sequences of parameters for a probabilistic experiment. The

meanings of these parameters will be explained after the definition of the experiment.
For initial values, let

m0 = m, n0 = n, b0 = b

and

k0 = 7b0/8, �0 = n0 − n0/ logk0 n.
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Then, for 1 ≤ i ≤ h, we define recursively

mi = mi−1 − �i−1, ni = ni−1 − �i−1, bi = bi−1 − ki−1

and

ki = 7bi/8, �i = ni − ni/ logki n.

In closed form,

ni = n/(log n)

∑i−1

j=0
kj = n/(log n)b−b/8i

, mi = ni+(m−n), bi = b−
i−1∑
j=0

kj = b/8i

and

ki = 7b/8i+1, �i = (1 − 1/ logki n)(n/(log n)b−b/8i

).

Now we are ready to define the experiment: Let G0 = G be a graph chosen
randomly from the distribution G(m,n, d/n). For 0 ≤ i ≤ h − 1, let ρi ∼ M�i(Gi)
and define Gi+1 = Gi|ρi . (We say that the experiment fails during stage i + 1 if the
partial distribution M�i(Gi) fails to return an element ρi.) Observing that the choice
of ρi depends only on the edges of Gi that are incident to Im(ρi), and that these are
among the edges of Gi that are removed to produce Gi+1, we have the following.

Proposition 5.2. If this experiment succeeds up to stage i, then the distribution
induced on Gi is G(mi, ni, d/n).

Thus, the expected degree of any pigeon in Gi is nid/n = logbi n. The expected
degree of any hole in Gi is mid/n, which is between logbi n and 2 logbi n since ni <

mi < 2ni (because c > b). Let ∆i
def
= 6 logbi n.

We make several observations about “bad” events in this experiment. Specifically,
we bound the probability that any of the following fail:

Ei: The experiment succeeds up to stage i.
Ai: Every node in Gi has degree at most ∆i.
Bi: Every node in Gi has degree at least (1/2) logbi n.
Lemma 5.3. For 0 ≤ i ≤ h, the probability, given Ei, of ¬Ai is at most (mi +

ni)2
− logbi n < 2− logbi−1 n.
Proof. The expected degree of any hole at stage i will be mid/n. The expected

degree of any pigeon will be nid/n. By the conditions on m and n, the former
quantity is at most twice the latter, which is equal to logbi n. Fix a node in the
graph and let X be the random variable that represents its degree. This is a sum
of Bernoulli trials since the edges occur independently with the same probability.
Chernoff’s bound tells us that Pr(X > 3µ(X)) < (e2/27)µ(X) < (1/2)µ(X). We know
that logbi n ≤ µ(X) ≤ 2 logbi n and bi ≥ 2, so we have the bound.

Lemma 5.4. For 0 ≤ i ≤ h, the probability, given Ei, of ¬Bi is at most (mi +

ni)2
− 1

16 logbi n < 2− logbi−1 n.
Proof. The expected degree of any particular node in Gi is at least logbi n. Ap-

plying a Chernoff bound in the form Pr(X < 1
2µ(X)) < exp(− 1

8µ(X)), we have the
result.

Lemma 5.5. For 0 ≤ i ≤ h − 1, the probability, given Ei, of ¬Ei+1 is at most

2− logbi−1 n.
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Proof. This is less than the probability that a random graph from G(mi, ni, d/n)
does not contain a perfect matching, which by Hall’s theorem is less than the probabil-
ity that there is a proper subset S of the holes that has at least ni−|S| nonneighbors
among the first ni pigeons. This is at most

ni−1∑
j=1

(
ni

j

)2

(1 − d/n)j(ni−j) ≤
∑

1≤j≤ni/2

(
ni

j

)2

(1 − d/n)j(ni−j)

+
∑

ni/2≤j≤ni−1

(
ni

ni − j

)2

(1 − d/n)j(ni−j)

≤ 2
∑

1≤j≤ni/2

[n2
i (1 − d/n)ni−j ]j

≤ 2
∑

1≤j≤ni/2

[n2
i e

−d(ni−j)/n]j

≤ 2
∑

1≤j≤ni/2

[n2
i e

−dni/(2n)]j .

By construction dni/(2n) = 1
2 logbi n and ni ≤ n, so the failure probability is at most

2− logbi−1 n.
We now develop the switching lemma argument. The overall structure uses the

simplified counting techniques of [23] and [6]; however, the statement and proof are
both complicated by the need to use probabilistic properties of the formulas themselves
as well as the relationship of those properties to the restrictions under consideration.
We first need some definitions.

Definition 5.6. For a bipartite graph H = (V1∪V2, E) and integers � and ∆, let
N �,∆(H) be the set of all ρ in M �(H) such that all nodes of H|ρ have degree at most

∆. For a set I ⊆ V2 with |I| = �, let N �,∆
I (H) be the set of elements ρ ∈ N �,∆(H)

with Im(ρ) = I.
For a particular i, the set N �i,∆i+1(Gi) represents in some sense the usable or

“good” portion of all the matchings in M �i(Gi). We therefore define the following
event:

Ci:
|N�i,∆i+1 (Gi)|

|M�i (Gi)| ≥ 1 − 2− logbi+1−2 n. Here i < h.

Lemma 5.7. For 0 ≤ i < h, the probability, given Ei+1, of ¬Ci is at most 1/n.
Proof. Observe that the expectation of

|N �i,∆i+1

Im(ρi)
(Gi)|

|M �i
Im(ρi)

(Gi)|
,

conditional on success up to stage i+1, is precisely the probability that ρi∈N �i,∆i+1(Gi),

conditional on success up to stage i + 1, which is > 1 − 2− logbi+1−1 n by Lemma 5.3.
Now, since

|N �i,∆i+1

Im(ρi)
(Gi)|

|M �i
Im(ρi)

(Gi)|

is bounded above by 1, we can apply Markov’s inequality to yield that the probability,
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conditional on success up to stage i + 1, that

|N �i,∆i+1

Im(ρi)
(Gi)|

|M �i
Im(ρi)

(Gi)|
≤ 1 − n · 2− logbi+1−1 n

is at most 1/n. The result follows by observing that n · 2− logbi+1−1 n ≤ 2− logbi+1−2 n,
which is less than 1 because bj ≥ 3 for all j.

We are now ready to state the switching lemma.
Lemma 5.8 (switching lemma). Let i, s, r be any integers such that 0 ≤ i < h,

0 < s ≤ ∆i+1/ log3 n, and r > 0. Suppose Ei+1 and Ai hold. Let F be any matching
disjunction with conjunctions of size ≤ r over the edge-variables of Gi. The probability
that TreeGi+1(F |ρi) has height ≥ s conditioned on the events (1) ρi ∈ N �i,∆i+1(Gi)

and (2) Ci is at most 2(720r/ logbi/2 n)s/2.
Definition 5.9. Let stars(r, j) be the set of all sequences β = (β1, . . . , βk) such

that for each i, βi ∈ {∗,−}r \ {−}r and the total number of ∗’s in β is j.
Lemma 5.10 (see [6]). |stars(r, j)| < (r/ ln 2)j.
Lemma 5.11. For H a fixed bipartite graph with an ordering on its nodes, let

F be a matching disjunction with conjunctions of size ≤ r over the edge-variables of
H, and let S be the set of matchings ρ ∈ N �,∆(H) such that TreeH|ρ(F |ρ) has height
≥ s. There is an injection from the set S to the set⋃

s/2≤j≤s

M �+j(H) × stars(r, j) × [∆]s.

Furthermore, the first component of the image of ρ ∈ S is an extension of ρ.
Proof. Let F = C1∨C2∨· · ·. If ρ ∈ S, then let π be the partial matching labelling

the first path in TreeH|ρ(F |ρ) of length ≥ s (actually, we consider only the first s
edges in π, starting from the root, and hence we assume |π| = s). Let Cγ1 be the first
term in F not set to 0 by ρ, and let K1 be the variables of Cγ1

not set by ρ. Let σ1

be the unique partial matching over K1 that satisfies Cγ1 |ρ, and let π1 be the portion
of π that touches K1.

Now define β1 ∈ {∗,−}r \ {−}r, so that the pth component of β1 is an ∗ if and
only if the pth variable in Cγ1 is set by σ1.

Continue this process to define πi, σi, Ki, etc. (replacing ρ with ρπ1 . . . πi−1 and
π with π \ π1 . . . πi−1) until some stage k when we’ve exhausted all of π. Let σ be
the matching σ1 . . . σk, and let β be the vector (β1, . . . , βk). Let j = |σ| be the
number of edges in σ. Note that s/2 ≤ j ≤ s. Observe that β ∈ stars(r, s) and that
ρσ ∈ M �+j(H) and is an extension of ρ.

We now encode the differences between all the corresponding πi and σi pairs in
a single vector δ consisting of |π| = s components, each in {1, . . . ,∆}. Let u1 be
the smallest numbered node in K1 and suppose that π (in particular π1) matches u1

with some node v1. Then the first component of δ is the natural number x such that
v1 is the xth neighbor (under the ordering of nodes) of u1 in the graph H|ρσ2σ3...σk

.
More generally, until the mates of all nodes in K1 under π1 have been determined,
we determine the pth component of δ by finding the smallest numbered node up of
K1 \ {u1, . . . , up−1, v1, . . . , vp−1} and then find its mate vp under π1 and encode the
position x of vp in the order of the neighbors of up in H|ρσ2σ3...σk

. Once K1 (and thus
π1) has been exhausted, the next component is based on the mates of the smallest
numbered nodes in K2 under π2, until that is exhausted, etc., where the ordering
about each vertex when dealing with Ki is with respect to the graph H|ρσi+1σi+2...σk

.
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Finally, we define the image of ρ ∈ S under the injection to be (ρσ, β, δ). To prove
that this is indeed an injection, we show how to invert it: Given ρσ1 . . . σk, we can
identify γ1 as the index of the first term of F that is not set to 0 by it. Then, using
β1, we can reconstruct σ1 and K1. Next, reading the components of δ and the graph
H|ρσ2...σk

, until all of K1 is matched, we can reconstruct π1. Then we can derive
ρπ1σ2 . . . σk.

At a general stage i of the inversion, we will know π1, . . . , πi−1 and σ1, . . . , σi−1

and K1, . . . ,Ki−1. We use ρπ1 . . . πi−1σi . . . σk to identify γi and, hence, σi and Ki

(using β). Then we get πi from δ, Ki, and ρσi+1 . . . σk. After k stages, we know all
of σ and can recover ρ.

Proof of Lemma 5.8. Let Ri be the set of ρi ∈ N �i,∆i+1(Gi) such that Ci holds.
By Lemma 5.7, the total probability of Ri under the distribution M�i(Gi) is at least

(1 − 1/n)(1 − 2− logbi+1−2 n) ≥ 1 − 2/n.

By Lemma 5.11 with H ← Gi, � ← �i, and ∆ ← ∆i+1, a bad ρi ∈ Ri, for which
TreeGi+1(F |ρi) has height at least s, can be mapped uniquely to a triple (ρ′i, β, δ) ∈
M �i+j(Gi) × stars(r, j) × [∆i+1]

s, where ρ′i extends ρi for some integer j ∈ [s/2, s].
We compute the probability of all such ρi ∈ Ri associated with a given j, sum up over
j, and then divide by the probability of Ri to get the probability of a bad restriction
conditioned on Ri. For fixed j, we can bound the probability of all bad ρi ∈ Ri by
bounding the ratio of the probability of each such ρi to the probability of its image,
(ρ′i, β, δ).

Let I = Im(ρi) and I ′ = Im(ρ′i). By definition, I ⊂ I ′. The ratio of the probability
of ρi under M�i(Gi) to that of ρ′i under M�i+j(Gi) is precisely

(
ni

�i+j

)
|M �i+j

I′ (Gi)|(
ni

�i

)
|M �i

I (Gi)|
.

Now any matching τ ′ ∈ M �i+j
I′ (Gi) is an extension of some unique matching τ ∈

M �i
I (Gi). If τ ∈ N

�i,∆i+1

I (Gi), then the degrees of all nodes in Gi|τ are at most

∆i+1, and so there are at most ∆j
i+1 matchings τ ′ ∈ M �i+j

I′ (Gi) extending τ . If τ /∈
N

�i,∆i+1

I (Gi), then the degrees of all nodes in Gi|τ are at most ∆i because that is true

of Gi itself by assumption. Therefore there are at most ∆j
i extensions τ ′ ∈ M �i+j

I′ (Gi)

of τ . Since ρi ∈ Ri, |N �i,∆i+1

I (Gi)|/|M �i
I (Gi)| is at least 1 − 2− logbi+1−2 n, so the

probability ratio is at most(
ni

�i+j

)
(
ni

�i

) [∆j
i+1 + 2− logbi+1−2 n∆j

i ] ≤
[
1 + 21−logbi+1−2 n

(
∆i

∆i+1

)j
](

∆i+1(ni − �i)

�i

)j

<

[
1 + 2

1− ∆i+1

6 log2 n (log n)kis

](
∆i+1ni

�i logki n

)j

(5.1)

<

[
1 + 2

1− ∆i+1

6 log2 n (log n)ki∆i+1/ log3 n

](
∆i+1ni

�i logki n

)j

(5.2)

<

(
2∆i+1

logki n

)j

(5.3)

=

(
12 logbi+1 n

logki n

)j

.
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Inequalities (5.1) and (5.2) follow from j ≤ s ≤ ∆i+1/ log3 n and the definitions of ∆i

and ∆i+1. Inequality (5.3) follows since 12ki log log n < log n for n sufficiently large
and the fact that ni/�i = 1/(1 − 1/ logki n), which is close to 1. Therefore the total
probability of bad ρi ∈ Ri associated with a given j is at most

(12 logbi+1−ki n)j × (r/ ln 2)j × ∆s
i+1 ≤ (20r logbi+1−ki n)j × (6 logbi+1 n)s.

Thus the total probability in question is at most

(1 − 2/n)−1(6 logbi+1 n)s ×
∑

s/2≤j≤s

(20r logbi+1−ki n)j .

Since bi+1 = bi−ki and without loss of generality 20r logbi−2ki n < 1/3 (otherwise the
probability bound in the lemma statement is meaningless), this quantity is at most

2(720r log3bi−4ki n)s/2 ≤ 2(720r/ logbi/2 n)s/2 since 3bi − 4ki = −bi/2.
The above switching lemma will be used to show that, with respect to most match-

ing restrictions, a depth-h formula A over G can be represented by a short decision
tree. We build these decision trees inductively on the subformulas of A. The tricky
part, then, is when we are considering a ∨-gate of A, all of whose children already
have short decision trees. This is exactly where we need to apply a restriction in order
to get a “switch.” The following definition formalizes this inductive representation by
decision trees.

Definition 5.12. For any graph G, let SG be a set of formulas of depth at most
h that is closed under subformulas and defined over G. For ρ = ρ0 . . . ρh−1 a matching
on G, we define, for every 0 ≤ i < h, Tρ0...ρi , a mapping from formulas with depth
≤ i + 1 in SG to matching decision trees. It is defined inductively as follows: For a
variable Xe, Tρ0

(Xe) is TreeG(Xe)|ρ0
. For 0 < i < h, for all formulas A of depth

< i + 1, Tρ0...ρi
(A) is Tρ0...ρi−1

(A)|ρi
. For 0 ≤ i < h, for all formulas A of depth

i + 1, if A = ¬B, then Tρ0...ρi(A) is (Tρ0...ρi(B))c, and otherwise, if the merged form
of A is

∨
j∈J Bj, let F be the matching disjunction

∨
j∈J disj(Tρ0...ρi−1(Bj)) and let

Tρ0...ρi
(A) be the canonical matching tree TreeGi+1

(F |ρi
).

From the definition of Tρ, we have that if ¬A is a formula in SG, then Tρ(¬A) =
(Tρ(A))c. Also, by Lemma 4.12, if

∨
i∈I Ai is the merged form of some formula A in

SG, then Tρ(A) represents
∨

i∈I disj(Tρ(Ai)).
We would like to bound the heights of the decision trees in the image of Tρ with

respect to our experiment. Accordingly, we define the following events (A is a formula
over the variables of G and SG is a set of such formulas):

Di(A): Tρ0...ρi−1
(A) has height at most loga n if A has depth at most i. Here

i ≥ 1.
Di(SG): Di(A) holds for all formulas A in SG. Again, i ≥ 1.
Lemma 5.13. Let a and h be positive integers. For each graph G, let SG be

a set of formulas closed under subformulas defined on the variables of G such that
|SG| ≤ 2loga n and each formula A ∈ SG has depth at most h. There exists a choice
of G and ρ = ρ0, . . . , ρh−1 such that the following conditions hold:

1. Tρ(A) has height at most loga n for all A ∈ SG, and
2. every node in G|ρ has degree at least loga+3 n.

Proof. We proceed using the probabilistic method and the experiment above. We
need to show that Eh ∩Bh ∩Dh(SG) has nonzero probability.

Now by Lemma 5.5, Pr[¬Ei+1 | Ei] < 2− logbi−1 n; by Lemma 5.3, Pr[¬Ai | Ei] <

2− logbi−1 n; and by Lemma 5.4, Pr[¬Bi | Ei] < 2− logbi−1 n. Furthermore, by Lemma 5.7,
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Pr[¬Ci | Ei+1] ≤ 1/n. Let A ∈ SG be of depth i < h with the merged form of A
equal to

∨
j∈J Qj , and let F be the matching disjunction

∨
j∈J disj(Tρ0...ρi−1(Qj)).

Observing that bh = b/8h = (a+3), by Lemma 5.8 applied to F with r = s = loga n ≤
∆h/ log3 n, we have

Pr[¬Di+1(A) | Ei+1 ∧Ai ∧Di ∧Ai+1 ∧ Ci] ≤ 2(720/ logbi/2−a n)(log
a n)/2

≤ 2(720/ logbh−1/2−a n)(log
a n)/2

≤ 2(720/ log3a+3 n)(log
a n)/2 < 2− loga n/n.

Therefore, Pr[¬Di+1 | Ei+1 ∧ Ai ∧Di ∧ Ai+1 ∧ Ci] ≤ 1/n since each SG contains at
most 2loga n disjunctions of depth i + 1.

Therefore the total probability that some Ei, Ai, Bi, Ci, or Di fails is at most

h−1∑
i=0

Pr[¬Ei+1 | Ei] +

h∑
i=0

Pr[¬Ai | Ei] +

h∑
i=0

Pr[¬Bi | Ei] +

h−1∑
i=0

Pr[¬Ci | Ei+1]

+ Pr[¬D1 | E1 ∧A0 ∧A1 ∧ C0]

+ Pr[¬D2 | E2 ∧A1 ∧D1 ∧A2 ∧ C1] + · · ·
+ Pr[¬Dh | Eh ∧Ah−1 ∧Dh−1 ∧Ah ∧ Ch−1].

In total there are 5h + 2 terms in this sum, each of which is at most 1/n, and thus
the whole probability is < 1.

The following three lemmas are adapted from [27].
Lemma 5.14. For any G, ρ = ρ0 . . . ρh−1, let ΠG be a depth-h F-proof of

PHP (G), and let Tρ be the mapping associated with cl(Π). Let C be a line in Π,
and let A be the immediate ancestors of C (if there are any), so that A � C. Let B be
the subformulas of A and C mentioned in the application of the rule which derives C
from A. Finally, let σ be a matching which extends soundly some σA ∈ path(Tρ(A))
for each A ∈ A, some σB ∈ path(Tρ(B)) for each B ∈ B, and some σC ∈ path(Tρ(C)).
If disj(Tρ(A))|σ ≡ 1 for all A ∈ A, then disj(Tρ(C))|σ ≡ 1.

Proof. Let Λ = A ∪ B ∪ {C}. First note the following facts, where α, β ∈ Λ and
D(α) is an abbreviation for disj(Tρ(α)):

• D(α)|σ ≡ 0 or D(α)|σ ≡ 1;
• if ¬α ∈ Λ, then D(¬α)|σ ≡ 1 if and only if D(α)|σ ≡ 0;
• if (α ∨ β) ∈ Λ, then D(α ∨ β)|σ ≡ 1 if and only if D(α)|σ ≡ 1 or D(β)|σ ≡ 1.

Now consider the rule R used to derive C formulated as in the examples from
section 3. The application of R substitutes subformulas Ap, Aq, Ar, . . . in Λ for each of
the atoms p, q, r, . . . in R, and there is a derived correspondence mapping subformulas
F appearing in R to formulas AF ∈ Λ. Define a function τ on the atoms of R by
τ(p) = D(Ap)|σ for each such atom p. By the first property, τ is a truth assignment
to these atoms. Furthermore, by the other two properties, the truth assignment τ
extends to all subformulas F in R so that τ(F ) = D(AF )|σ. Since R is sound, if τ
satisfies all formulas in A, it will satisfy C and thus D(C)|σ ≡ 1.

Lemma 5.15. Let a, h > 0. For each G, assume that ΠG is a proof in F of
PHP (G) of size at most 2loga n and depth at most h. There exists a choice of G and
ρ = ρ0, . . . , ρh−1 such that, for any line C in Π, all leaves of Tρ(C) are labelled by 1.

Proof. Let ρ and G be as defined in Lemma 5.13 applied with SG = cl(ΠG). We
proceed by (complete) induction on the lines in the proof. Assume every leaf of Tρ
for any line preceding C is labelled 1. Let A, B, Λ be as in Lemma 5.14. For any leaf



274 BURESH-OPPENHEIM, BEAME, PITASSI, RAZ, AND SABHARWAL

l of Tρ(C), we use Lemma 4.6 to find σ that extends path(l) and extends a matching
in each of the sets path(Tρ(A)) for all A ∈ A and path(Tρ(B)) for all B ∈ B. This is
possible since there are at most f trees to consider, and by Lemma 5.13 the sum of
their heights is at most f loga n < loga+1 n, which is less than the degree of Gh.

By assumption, disj(Tρ(A))|σ ≡ 1 for all A in A. Hence, by Lemma 5.14,
disj(Tρ(C))|σ ≡ 1, so l must be labelled 1.

Lemma 5.16. For any G and any ρ = ρ0, . . . , ρh−1, all leaves of Tρ(PHP (G))
have label 0.

Proof. It suffices to show that Tρ applied to each of the following types of formulas
has all leaves labelled 0:

1. ¬(¬Xe ∨ ¬Xe′) for e, e′ ∈ E; e = {i, k}, e′ = {j, k}; i, j ∈ V1; i 	= j; k ∈ V2.
2. ¬(¬Xe ∨ ¬Xe′) for e, e′ ∈ E; e = {k, i}, e′ = {k, j}; i, j ∈ V2; i 	= j; k ∈ V1.
3. ¬

∨
j∈Γ(i) X{i,j} for i ∈ V1.

4. ¬
∨

i∈Γ(j) X{i,j} for j ∈ V2.
In fact, we will show that Tρ applied to the complement of each of these formulas has
all leaves labelled 1.

For a formula of the first type, T = Tρ(¬Xe∨¬Xe′) must represent disj(Tρ(¬Xe))∨
disj(Tρ(¬Xe′)). If ρ sets the value of either Xe or Xe′ , then it must set one of ¬Xe or
¬Xe′ to 1, and thus all leaves of Tρ(¬Xe∨¬Xe′) are certainly labelled 1. Otherwise, for
l a leaf of T , path(l) cannot contain both e and e′. Without loss of generality, it does
not contain e. By Lemma 4.6 applied to graph Gh, we can find σ that extends path(l)
and is an extension of some matching in Tρ(¬Xe). But then disj(Tρ(¬Xe))|σ ≡ 1, so
l must be labelled 1. The argument is the same for formulas of the second type.

For a formula of the third type, T = Tρ(
∨

j∈Γ(i) X{i,j}) must represent∨
j∈Γ(i) disj(Tρ(X{i,j})). Hence, if ρ sets X{i,j} to 1 for some j ∈ Γ(i), then all

leaves of T are certainly labelled 1. Otherwise, for a leaf l of T , if path(l) touches
node i, then

∨
j∈Γ(i) disj(Tρ(X{i,j}))|path(l) ≡ 1. Finally, if path(l) does not touch

node i, extend it to σ = path(l) ∪ {i, j} for some j such that X{i,j} is not set by ρ.
Then disj(Tρ(X{i,j}))|σ ≡ 1, so l is labelled 1. Formulas of the fourth type follow in
the same way.

Theorem 5.17. For any a, h > 0, there exists a c such that there is a bipartite
graph G from m = n + n/ logc n pigeons to n holes that has no depth-h, 2loga n-size
F-proof of PHP (G)

Proof. Assume that for all such G, there is a proof ΠG of the required depth and
size. For the G in Lemma 5.15 there exists a ρ such that, for every line A in ΠG, Tρ(A)
has all leaves labelled 1. But Tρ(PHP (G)) has all leaves labelled 0 by Lemma 5.16.
If ΠG is to be a proof of PHP (G), then PHP (G) must appear in ΠG, so we have a
contradiction.

Corollary 5.18. For any a, h > 0, there exists a c such that there is no depth-
h, 2loga n-size F-proof of PHP = PHP (Km,n) from m = n + n/ logc n pigeons to n
holes.

6. Open questions. Among the many unresolved proof complexity questions
regarding the pigeonhole principle (see [24]) the most important open problem is
to resolve the complexity of the weak pigeonhole principle with 2n or more pigeons
and n holes. This would have many implications for the metamathematics of the
P versus NP statement, the complexity of approximate counting, and the proof-
theoretic strength underlying elementary number theory.

In the proof presented here, we derived a switching lemma using simple restric-
tions that limit the space of truth assignments to a subcube where certain variables
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are set to 0 or to 1. While this fails with 2n pigeons, a more general class of restric-
tions may suffice. Possible generalizations include the projections suggested in [28],
which also allow identification of variables, or restrictions given by linear equations.
Two important results [15, 8] for bounded-depth Frege systems already employ such
generalized switching lemmas in cases where direct restrictions fail (although the lat-
ter use is implicit). Bounded-depth Frege reductions, such as those in [8], may also
be useful for resolving the 2n to n case.

A potentially simpler problem that still gets to the heart of the matter is to
prove quasi-polynomial lower bounds for Res(polylog n) proofs of the weak pigeonhole
principle which would match the upper bounds in [18]. New techniques seem to
be required, however: it is interesting to note that our technique does not suffice
for proving a lower bound on PHP 2n

n even in Res(log n) (i.e., when m = 2n, our
experiment is not likely to succeed even in the first round). This is because a successful
switch is predicated on the restricted graph’s having low degree. In this case, it would
require a degree so low that the decision tree argument could not be carried out.
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[7] P. W. Beame, R. Impagliazzo, J. Kraj́ıček, T. Pitassi, P. Pudlák, and A. Woods, Expo-
nential lower bounds for the pigeonhole principle, in Proceedings of the 24th Annual ACM
Symposium on Theory of Computing, Victoria, BC, Canada, 1992, pp. 200–220.

[8] E. Ben-Sasson, Hard examples for bounded depth frege, in Proceedings of the 34th Annual
ACM Symposium on Theory of Computing, New York, 2002, pp. 563–572.

[9] E. Ben-Sasson and A. Wigderson, Short proofs are narrow—resolution made simple, in
Proceedings of the 31st Annual ACM Symposium on Theory of Computing, Atlanta, GA,
1999, pp. 517–526.

[10] S. Buss, Polynomial size proofs of the pigeonhole principle, J. Symbolic Logic, 57 (1987),
pp. 916–927.

[11] S. Buss and G. Turán, Resolution proofs of generalized pigeonhole principles, Theoret. Com-
put. Sci., 62 (1988), pp. 311–317.

[12] M. Furst, J. B. Saxe, and M. Sipser, Parity, circuits, and the polynomial-time hierarchy,
Math. Systems Theory, 17 (1984), pp. 13–27.

[13] A. Haken, The intractability of resolution, Theoret. Comput. Sci., 39 (1985), pp. 297–305.
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Abstract. Let R(A) denote the rank (also called bilinear complexity) of a finite dimensional
associative algebra A. A fundamental lower bound for R(A) is the so-called Alder–Strassen bound
R(A) ≥ 2 dimA− t, where t is the number of maximal twosided ideals of A. An algebra is called an
algebra of minimal rank if the Alder–Strassen bound is tight, i.e., R(A) = 2 dimA− t.

As the main contribution of this work, we characterize all algebras of minimal rank over arbi-
trary fields. This finally solves an open problem in algebraic complexity theory; see, for instance,
[V. Strassen, Handbook of Theoretical Computer Science, J. van Leeuwen, ed., Elsevier Science,
New York, 1990, Vol. A, pp. 634–672, section 12, Problem 4] or [P. Bürgisser, M. Clausen, and
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1. Introduction. One of the most important problems in algebraic complexity
theory is the question about the costs of multiplication, say of matrices, triangular
matrices, or polynomials (modulo a fixed polynomial). Let A be a finite dimensional
associative k-algebra with identity 1. By fixing a basis of A, say v1, . . . , vN , we
can define a set of bilinear forms corresponding to the multiplication in A. If vµvν =∑N

κ=1 α
(κ)
µ,νvκ for 1 ≤ µ, ν ≤ N with structural constants α

(κ)
µ,ν ∈ k, then these constants

and the equation (
N∑

µ=1

Xµvµ

)(
N∑

ν=1

Yνvν

)
=

N∑
κ=1

bκ(X,Y )vκ

define the desired bilinear forms b1, . . . , bN . The rank (also called bilinear complexity)
of b1, . . . , bN is the smallest number of essential bilinear multiplications necessary and
sufficient to compute b1, . . . , bN from the indeterminates X1, . . . , XN and Y1, . . . , YN .
More precisely, the bilinear complexity of b1, . . . , bN is the smallest number r of prod-
ucts pρ = fρ(X)·gρ(Y ) with linear forms fρ and gρ in the Xi and Yj , respectively, such
that b1, . . . , bN are contained in the linear span of p1, . . . , pr. From this definition, it
is obvious that the bilinear complexity of b1, . . . , bN is independent of the choice of
v1, . . . , vN ; thus we may speak about the rank R(A) (also called bilinear complexity)
of (the multiplication in) A. For a modern introduction to this topic and to algebraic
complexity theory in general, we recommend [9].

A fundamental lower bound for the rank of an associative algebra A is the so-
called Alder–Strassen bound [1]. It states that the rank of A is bounded by

R(A) ≥ 2 dimA− t,(1)
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where t is the number of maximal twosided ideals in A. This bound is tight in the sense
that there are algebras for which equality holds. Such algebras are called algebras of
minimal rank. These are the structures that allow the most efficient multiplication.
While the property that (1) is tight of course completely characterizes the algebras
of minimal rank, it is desirable to have an algebraic characterization, too, i.e., a
characterization in terms of their algebraic structure. A lot of effort has been spent to
achieve such an algebraic characterization. There has been some success for certain
classes of algebras, like division algebras, commutative algebras, etc., but up to now,
the general case is still unsolved. As the main contribution of the present work, we
determine all algebras of minimal rank over arbitrary fields, thus solving this problem
completely.

1.1. Previous results. One prominent algebra of minimal rank is k2×2, the
algebra of 2×2-matrices [20]. It has been a longstanding open problem whether k3×3

is of minimal rank or not; see [9, Problem 17.1]. The idea was that if one could
characterize all algebras of minimal rank in terms of their algebraic structure, then
one would simply have to verify whether k3×3 has this structure or not. Meanwhile,
we know that k3×3 is not of minimal rank [3]. Nevertheless, the characterization of the
algebras of minimal rank is an interesting and important topic in algebraic complexity
theory; see, e.g., [21, section 12, Problem 4] or [9, Problem 17.5].

De Groote [14] determined all division algebras D of minimal rank. Over infi-
nite fields, these are all simply generated extension fields of k. If k is finite, then D
has minimal rank if, in addition, #k ≥ 2 dimD − 2; the latter result follows from
the classification of the algorithm variety of polynomial multiplication modulo some
irreducible polynomial by Winograd [22]. De Groote and Heintz [16] characterize all
commutative algebras of minimal rank over infinite fields. Next Büchi and Clausen [8]
describe all local algebras of minimal rank over infinite fields. Then Heintz and Mor-
genstern [18] determine all basic algebras over algebraically closed fields. Finally, all
semisimple algebras of minimal rank over arbitrary fields and all algebras of minimal
rank over algebraically closed fields have been characterized [4]: Semisimple algebras
of minimal rank are isomorphic to a finite direct product of division algebras of mini-
mal rank (as described by de Groote and Winograd) and of copies of k2×2. Algebras
of minimal rank over algebraically closed fields are isomorphic to a direct product
of copies k2×2 and a basic algebra of minimal rank (as characterized by Heintz and
Morgenstern).

1.2. New results. As our main result, we characterize all algebras of minimal
rank over arbitrary fields (Theorem 35). After more than two decades, this completely
answers a major open problem in algebraic complexity theory.

An algebra A over an arbitrary field k is an algebra of minimal rank iff

A ∼= C1 × · · · × Cs × k2×2 × · · · × k2×2︸ ︷︷ ︸
u times

×B,(2)

where C1, . . . , Cs are local algebras of minimal rank with dim(Cσ/ radCσ) ≥ 2 (as
characterized by Büchi and Clausen) and B is a superbasic algebra of minimal rank.
Any of the integers s and u may be zero, and the factor B is optional. This decompo-
sition is unique (up to permutations and isomorphms), as there are essentially three
types of algebras involved and each of them has a different image modulo radA.

A local algebra Cσ with dim(Cσ/ radCσ) ≥ 2 is of minimal rank iff Cσ
∼=

k[X]/(pσ(X)dσ ) for some irreducible polynomial pσ with deg pσ ≥ 2, dσ ≥ 1 and
the ground field k fulfills #k ≥ 2 dimCσ − 2.
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An algebra B is called superbasic if B/ radB = kt for some t. A superbasic
algebra B is of minimal rank iff there exist w1, . . . , wm ∈ radB with w2

i �= 0 and
wiwj = 0 for i �= j such that

radB = LB + Bw1B + · · · + BwmB = RB + Bw1B + · · · + BwmB

and k fulfills #k ≥ 2N(B) − 2, where N(B) denotes the largest natural number s
such that (radB)s �= {0}. Here LB and RB denote the left and right annihilator of
radB (see section 2.1 for exact definitions). The integer m may be zero.

1.3. Algorithmic aspects. How can the characterization result be applied?
Given a particular algebra, one can of course check by hand whether it fulfills the
properties stated in our characterization result. An example for this is, for instance,
given by Heintz and Morgenstern [18].

One can also consider the algorithmic variant, that is, given the structural con-
stants with respect to some basis, decide algorithmically whether the corresponding
algebra A is an algebra of minimal rank. One possible route is the following. We only
give a sketch since a full algorithm would be beyond the scope of this paper. The
algorithm uses two black-boxes: computing a basis of the radical and computing a set
of orthogonal primitive idempotents. The efficiency of the algorithm depends on how
well these tasks can be performed for the class of algebras in consideration. Friedl
and Rónyai [13] are the first to deal with this problem. For the latest result, see [12]
and the references given there.

We first compute a basis of the radical. If we compute all possible products of two
elements from this basis, we get a set of generators for (radA)2. Any maximal subset
of the basis of the radical that is linearly independent modulo (radA)2 generates
(radA). Denote such a set by g1, . . . , gm. Any element in the radical can be expressed
as a polynomial in g1, . . . , gm.

Next we compute a set of orthogonal primitive idempotents w1, . . . , ws of A with
w1 + · · · + ws = 1. From this, it is possible to compute a central decomposition
e1, . . . , et of the identity in A/ radA such that each eτ is the identity of a simple com-
ponent of A/ radA. Using w1, . . . , ws, these elements can be lifted to a decomposition
f1, . . . , ft of the identity in A.

We first check whether eτ (A/ radA)eτ has dimension one (i.e., is isomorphic to
k) or dimension at least two.

In the second case, we first check whether eτ (A/ radA)eτ is simply generated,
i.e., it has only one primitive idempotent. In this case eτ (A/ radA)eτ is a division
algebra. Then we check whether fτAfτ is simply generated. Since everything is finite
dimensional, we just can choose a random element and check whether it generates the
radical, i.e., whether it generates a vector space whose dimension equals dim(fτAfτ ).
(Here a random element means that we choose the coefficients in the linear combi-
nation of basis vectors uniformly at random from some small subset of k. If fτAfτ
is simply generated, then this is a generator with high probability.) If fτAfτ is not
simply generated, we just check whether it is isomorphic to k2×2.

We are left with the first case. Let f denote the sum of the fτ corresponding
to all eτ in the first case. Then fAf = B. Since we know a set of generators for
radA, we can compute a set of generators for B ∩ radA by multiplying by f from
the left and the right. We now try to find a set of generators such that one of them
annihilates all the others. Once we achieve this, we can proceed inductively. We
replace our generators g1, . . . , gq by g1, g2 − α2g1, . . . , gq − αqg1 and check whether
there are choices of α such that g1 · (gi − αig1) is contained in the ideal generated
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by g2, . . . , gq. Let g′i = gi − αig2. Then we try to find scalars β2, . . . , βq such that
g1 − β2g

′
2 − · · · − βqg

′
q now annihilates all the g′i. (Everything is linear algebra here.)

Finally we take all the generators of radB whose square is nonzero, compute the left
and right annihilators of radB, and check whether radA can be written as in the
characterization result.

1.4. Organization of the paper. In section 2, we first recall some basic facts
about the structure of associative algebras. Then we describe the model of bilinear
complexity. Finally, we briefly mention some important lower bounds, most of them
due to Alder and Strassen, to which we will refer frequently in our proofs.

In section 3, we characterize superbasic algebras of minimal rank. We follow ideas
used by Heintz and Morgenstern over algebraically closed fields and give a smoothened
and simplified proof.

The proof of the preliminary characterization results over algebraically closed [4]
and perfect [5] fields made use of the existence of a subalgebra B of A with B⊕radA =
A and B ∼= A/ radA. Over perfect (and henceforth over algebraically closed) fields,
such an algebra always exists by the so-called Wedderburn–Malcev theorem. Over
a nonperfect field, there are examples for which such an algebra does not exist. In
section 4, we show that there always exists a subalgebra B′ ⊆ A that is sufficiently
“similar” to the algebra B. Using this algebra B′, we finally prove our main result in
section 5.

2. Preliminaries.

2.1. Structure of associative algebras. We collect some elementary prop-
erties of associative algebras. The term algebra always means a finite dimensional
associative algebra with identity 1 over some field k. The terms left module and right
module always mean a finitely generated left module and right module, respectively,
over some algebra A. By the embedding α 	→ α · 1, k becomes a subalgebra of A.
Hence, every A-left module and A-right module is also a finite dimensional k-vector
space. If we speak of a basis of an algebra or a module, we always mean a basis
of the underlying vector space. Further material as well as proofs of the mentioned
properties can be found in [19, 10, 11].

A left ideal I (and in the same way, a right ideal or twosided ideal) is called
nilpotent if In = {0} for some positive integer n.

Fact 1. For all finite dimensional algebras A the following hold:
1. The sum of all nilpotent left ideals of A is a nilpotent twosided ideal, which

contains every nilpotent right ideal of A. This twosided ideal is called the
radical of A and is denoted by radA.

2. The quotient algebra A/ radA contains no nilpotent ideals other than the zero
ideal.

3. The radical of A is contained in every maximal twosided ideal of A.
4. The algebras A and A/ radA have the same number of maximal twosided

ideals.
We call an algebra A semisimple if radA = {0}. By the above fact, A/ radA is

semisimple. An algebra A is called simple if there are no twosided ideals in A except
the zero ideal and A itself.

We now describe some of the most important ways to construct new algebras
from given ones: If A and B are k-algebras, then the direct product A × B with
componentwise addition and multiplication is again a k-algebra. The set of all n×n-
matrices with entries from A forms a k-algebra (with the usual definition of addition
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and multiplication of matrices). This algebra is denoted by An×n.

We denote the set of all units of an algebra A, that is, the set of all invertible
elements, by A×. An algebra D is called a division algebra if D× = D \ {0}. An
algebra A is called local if A/ radA is a division algebra, and A is called basic if
A/ radA is a direct product of division algebras. Since we do not know a better
name, we call A superbasic if A/ radA ∼= kt for some t.

For an algebra A, LA and RA denote the left and right annihilator of radA; that
is,

LA = {x ∈ radA | x(radA) = {0}} and

RA = {x ∈ radA | (radA)x = {0}}.

If x ∈ A, we denote by AxA the ideal generated by x. If A is commutative, we
will also write (x) for short. Furthermore, k[x] denotes the smallest subalgebra of A
that contains x. If x1, . . . , xm ∈ A mutually commute, then k[x1, . . . , xm] denotes the
smallest subalgebra of A that contains x1, . . . , xm. For elements v1, . . . , vn of some
vector space, lin{v1, . . . , vn} denotes their linear span. Occasionally, we will denote
this span also by kv1 + · · · + kvn.

The following fundamental theorem describes the structure of semisimple alge-
bras.

Theorem 2 (Wedderburn). Every finite dimensional semisimple algebra is iso-
morphic to a finite direct product of simple algebras. Every finite dimensional simple
k-algebra A is isomorphic to an algebra Dn×n for an integer n ≥ 1 and a k-division
algebra D. The integer n and the algebra D are uniquely determined by A (the latter
up to isomorphism).

Wedderburn’s theorem holds in a similar manner for modules over simple algebras.
If A is an algebra, let An×m denote the vector space of all n×m-matrices with entries
from A.

Theorem 3 (Wedderburn). Let A be a simple algebra with A ∼= Dn×n for some
division algebra D. For every A-left module M �= {0} there is a (unique) integer
m ≥ 1 such that M is isomorphic to Dn×m.

If C and D are algebras and M is a C-left module that is also a D-right module,
then the module M is called a (C,D)-bimodule if, in addition, (am)b = a(mb) for all
a ∈ C, m ∈ M , and b ∈ D. If C = D, M is also called a C-bimodule for short.

We will also need the following consequence of Nakayama’s lemma. It is a useful
criterion for checking whether an element in an algebra is invertible or not.

Lemma 4 (Nakayama). An element x of an associative algebra A is invertible iff
its image under the canonical projection in A/ radA is invertible.

This version of Nakayama’s lemma can be easily derived from the more general
version [11, Lemma, 3.1.4].

A/ radA is a semisimple algebra. It is an interesting question whether A/ radA
is also a subalgebra of A. This question is answered by the Wedderburn–Malcev
theorem. For its proof, see [11, Theorem 6.2.1].

Theorem 5 (Wedderburn–Malcev). If A/ radA is a separable algebra, then there
is a subalgebra S ⊆ A such that S ∼= A/ radA and S ⊕ radA = A.

It is not necessary to define precisely what a separable algebra is. We only need
the following two sufficient conditions: Every algebra over a perfect field is separable.
If an algebra is of the form kn1×n1 × · · · × knt×nt , then it is separable.
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2.2. Model of computation. We use a coordinate-free definition of rank, which
is appropriate when dealing with algebras of minimal rank; see [9, Chapter 14]. For a
vector space V , V ∗ denotes the dual space of V , that is, the vector space of all linear
forms on V .

Definition 6. Let k be a field; U , V , and W be finite dimensional vector spaces
over k; and φ : U × V → W be a bilinear map.

1. A sequence β = (f1, g1, w1, . . . , fr, gr, wr) such that fρ ∈ U∗, gρ ∈ V ∗, and
wρ ∈ W is called a bilinear computation of length r for φ if

φ(u, v) =

r∑
ρ=1

fρ(u)gρ(v)wρ for all u ∈ U, v ∈ V .

2. The length of a shortest bilinear computation for φ is called the bilinear com-
plexity or the rank of φ and is denoted by R(φ).

3. If A is a finite dimensional associative k-algebra, then the rank of A is de-
fined as the rank of the multiplication map of A, which is a bilinear map
A×A → A. The rank of A is denoted by R(A).

Let β = (f1, g1, w1, . . . , fr, gr, wr) be a bilinear computation for an algebra A.
Let a, b, c ∈ A×. We have

xy = a−1(axb−1)(byc−1)c =

r∑
ρ=1

fρ(axb
−1)gρ(byc

−1)a−1wρc

for all x, y ∈ A. Therefore β̃ = (f̃1, g̃1, w̃1, . . . , f̃r, g̃r, w̃r) is a bilinear computation
for A, where f̃ρ, g̃ρ, and w̃ρ are defined by f̃ρ(x) = fρ(axb

−1) for all x ∈ A, g̃ρ(y) =
gρ(byc

−1) for all y ∈ A, and w̃ρ = a−1wρc. This defines an equivalence relation on the

set of all computations of length r for A. This process of replacing β by β̃ is called
sandwiching.

We will mainly use sandwiching in the following situation: Assume that the lin-
ear forms f1, . . . , fN of β form a basis of A∗. Let x1, . . . , xN be the dual basis of
f1, . . . , fN . Now a−1x1b, . . . , a

−1xNb is the dual basis of the linear forms f̃1, . . . , f̃N
of β̃. Sandwiching allows us to replace x1, . . . , xN by a−1x1b, . . . , a

−1xNb.

2.3. Lower bound techniques. Next, we gather some of the lower bound tech-
niques utilized by Alder and Strassen. Beside the original paper [1], [15, Chapter IV.2]
and [9, Chapter 17] are excellent treatments of the results of Alder and Strassen. We
have taken the term separate and the extension lemma from those sources, but every-
thing is also contained in the work of Alder and Strassen [1].

Definition 7. Let U , V , and W be vector spaces over some field k, and let β =
(f1, g1, w1, . . . , fr, gr, wr) be a computation for a bilinear map φ : U × V → W . Let
U1 ⊆ U , V1 ⊆ V , and W1 ⊆ W be subspaces. The computation β separates (U1, V1,W1)
if there are disjoint sets of indices I, J ⊆ {ρ | wρ /∈ W1} such that

U1 ∩
⋂
i∈I

ker fi = {0} and V1 ∩
⋂
j∈J

ker gj = {0}.

The latter condition is equivalent to the condition that (fi|U1)i∈I and (gj |V1)j∈J

generate the dual spaces U∗
1 and V ∗

1 , respectively.
If φ : U × V → W is a bilinear map and U1 ⊆ U and V1 ⊆ V are subspaces, then

(u + U1, v + V1) 	→ φ(u, v) + W̃ defines a bilinear map U/U1 × V/V1 → W/W̃ , where
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W̃ := lin{φ(U1, V ) + φ(U, V1)}. We denote this map by φ/(U1 × V1). It is called the
quotient of φ by U1 and V1. The following lemma (see [9] for a proof) provides a lower
bound for the rank of a bilinear map in terms of the rank of a quotient of it.

Lemma 8. Let U , V , and W be vector spaces, and let β = (f1, g1, w1, . . . , fr, gr, wr)
be a bilinear computation for some bilinear map φ : U × V → W . Let U1 ⊆ U , V1 ⊆ V ,
and W1 ⊆ W be subspaces such that β separates (U1, V1,W1). Let π be an endomor-
phism of W such that W1 ⊆ kerπ. Then

r ≥ R (π ◦ φ/U1 × V1) + dimU1 + dimV1 + #{ρ | wρ ∈ W1}.

Corollary 9. Let A be an algebra and I ⊆ A a twosided ideal. Let β be a
bilinear computation for A of length r that separates (I, I, {0}). Then

r ≥ R (A/I) + 2 dim I.

Together with Corollary 9, the next lemma yields the first of the two important
bounds established by Alder and Strassen, namely, for any algebra A

R(A) ≥ R (A/radA) + 2 dimA.(3)

Lemma 10. Let β be a bilinear computation for an associative algebra A. Then
β separates (radA, radA, {0}).

Having dealt with the radical, Alder and Strassen turn to semisimple algebras.
Their second important result is subsumed in the following lemma.

Lemma 11. If A = B × B′, with B being a simple k-algebra and B′ being an
arbitrary k-algebra, then

R(A) ≥ 2 dimB − 1 + R(B′).

To achieve good lower bounds by means of Lemma 8, one has to find an optimal
bilinear computation that separates a “large” triple. An important tool for solving
this task is the following “extension lemma,” which is essentially due to Alder and
Strassen.

Lemma 12. Let U , V , W be vector spaces over a field k, and let β be a compu-
tation for a bilinear map φ : U × V → W . Let U1 ⊆ U2 ⊆ U , V1 ⊆ V , and W1 ⊆ W
be subspaces such that β separates the triple (U1, V1,W1). Then β separates also
(U2, V1,W1), or there is some u ∈ U2 \ U1 such that

φ(u, V ) ⊆ lin{φ(u, V1)} + W1.

3. Superbasic algebras of minimal rank. We characterize superbasic alge-
bras of minimal rank, thus generalizing the results of Heintz and Morgenstern [18].
(Note that, over algebraically closed fields, the notions of basic and superbasic coin-
cide, since there are no proper division algebras over algebraically closed fields.) Our
main result is Theorem 22. It turns out that, over infinite fields, superbasic algebras
of minimal rank have the same structure as (super)basic algebras over algebraically
closed fields. If the underlying field k is finite, then a superbasic algebra A of minimal
rank also fulfils #k ≥ 2N(A) − 2, where N(A) denotes the largest natural number s
such that (radA)s �= {0}. (Since A is finite dimensional, this is well defined.)

Inspired by Heintz and Morgenstern, we introduce the class Mk of superbasic
algebras as an intermediate concept. This class plays an important role in our proof.

Definition 13. Let A be a superbasic algebra over some field k with dimA = n
and dimA/ radA = t. The algebra A belongs to the class Mk if there are bases
x1, . . . , xn and y1, . . . , yn of A such that
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1. xµyν ∈ kxµ + kyν for t + 1 ≤ µ, ν ≤ n,
2. xτ = yτ for 1 ≤ τ ≤ t,
3. x2

τ = xτ and xσxτ = 0 for 1 ≤ σ, τ ≤ t, and τ �= σ,
4. x1 + · · · + xt = 1, and
5. xσyν ∈ kyν and xµyτ ∈ kxµ for 1 ≤ σ, τ ≤ t and t + 1 ≤ µ, ν ≤ n.

Such two bases are called an M-pair of bases for A.
Superbasic algebras of minimal rank are in Mk.
Lemma 14. If a superbasic algebra A has minimal rank, then A is in Mk.
Proof. Assume that dimA = n and dimA/ radA = t. Moreover, let β =

(f1, g1, w1, . . . , f2n−t, g2n−t, w2n−t) be an optimal computation for A. By permut-
ing the products, we can achieve that f1, . . . , fn form a basis of A∗. Furthermore,
we may assume that for S :=

⋂n−t
ν=1 ker fν , S + radA = A. S contains an invertible

element e of A by Nakayama’s lemma (Lemma 4).
Thus gn−t+1, . . . , g2n−t form a basis of A∗, because otherwise there would be some

nonzero a ∈
⋂n

ν=1 ker gn−t+ν . But then

e · a =
2n−t∑
ρ=1

fρ(e)gρ(a)wρ = 0,

which is a contradiction. By permuting the products n− t + 1, . . . , 2n− t, we can
achieve that for T :=

⋂2n−t
ν=n+1 ker gν , T +radA = A. This permutation affects neither

f1, . . . , fn−t nor S. In particular, we still have e ∈
⋂n−t

ν=1 ker fν . Again by Nakayama’s
lemma (Lemma 4), T contains an invertible element e′ of A. With e′ instead of e,
we can conclude that the new f1, . . . , fn still form a basis of A∗, in the same way we
have shown that gn−t+1, . . . , g2n−t is a basis.

By sandwiching with e−1 from the left and (e′)−1 from the right (see section 2.2),
we may assume that e = e′ = 1. Let xt+1, . . . , xn, x1, . . . , xt denote the dual basis of
f1, . . . , fn. (The odd numbering will become clear in a moment.) Furthermore, let
y1, . . . , yn be the dual basis of gn−t+1, . . . , g2n−t. By construction, x1, . . . , xt span S
and y1, . . . , yt span T . The properties of the f1, . . . , f2n−t, g1, . . . , g2n−1, and the dual
bases x1, . . . , xn as well as y1, . . . , yn, can be depicted as follows:

f1 . . . fn−t fn−t+1 . . . fn fn+1 . . . f2n−t

x1 . . . xn−t x1 . . . xt (dual basis)

g1 . . . gn−t gn−t+1 . . . gn gn+1 . . . g2n−t

y1 . . . yt yt+1 . . . yn (dual basis).

By appropriate scaling, we can achieve that 1 = δ1x1 + · · · + δtxt with δτ ∈ {0, 1}.
Since

1 · y =
t∑

τ=1

δτgn−t+τ (y)wn−t+τ +

n−t∑
ν=1

fn+ν(1)gn+ν(y)wn+ν

for any y ∈ A,

A = lin{δ1wn−t+1, . . . , δtwn, wn+1, . . . , w2n−t}.

Thus δτ = 1 for all 1 ≤ τ ≤ t by a dimension argument. The same reasoning shows
1 = y1 + · · · + yt. This establishes the fourth condition of the M-pair for x1, . . . , xn

and y1, . . . , yn.
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By the construction of S and T and the definition of dual basis,

xν = xν · 1 =

2n−t∑
ρ=1

fρ(xν)gρ(1)wρ = gν−t(1)︸ ︷︷ ︸
�=0

wν−t

and

yν = 1 · yν =

2n−t∑
ρ=1

fρ(1)gρ(yν)wρ = fn−t+ν(1)︸ ︷︷ ︸
�=0

wn−t+ν

for all t + 1 ≤ ν ≤ n. In other words, xν and wν−t as well as yν and wn−t+ν are
multiples of each other, respectively. This yields

xµyν =

2n−t∑
ρ=1

fρ(xµ)gρ(yν)wρ

= gµ−t(yν)wµ−t + fn−t+ν(xµ)wn−t+ν

∈ kxµ + kyν

for t + 1 ≤ µ, ν ≤ n, which shows that our bases fulfil the first condition.
The second condition follows from the fact that

xτ = xτ · 1 = wn−t+τ and yτ = 1 · yτ = wn−t+τ

for 1 ≤ τ ≤ t. (Note that since 1 = y1 + · · · + yt, gn−t+τ (1) = 1. fn−t+τ (1) = 1
follows similarly.)

This also establishes the third condition, as for τ �= σ,

x2
τ = xτyτ = wn−t+τ = xτ and xσxτ = xσyτ = 0.

It remains to show that the two bases meet the fifth condition: This is again
shown by exploiting the property of dual bases. We have

xσyν = fn−t+ν(xσ)wn−t+ν ∈ kyν

for 1 ≤ σ ≤ t and t + 1 ≤ ν ≤ n. The fact xµyτ ∈ kxµ follows in the same
manner.

The bases of an M-pair can be further normalized.
Definition 15. A superbasic algebra in Mk has a normalized M-pair of bases

x1, . . . , xn and y1, . . . , yn if, in addition to the conditions in Definition 13, the bases
x1, . . . , xn and y1, . . . , yn fulfil

1. xt+1, . . . , xn ∈ radA and yt+1, . . . , yn ∈ radA,
2. xn−d+1, . . . , xn and yn−d+1, . . . , yn are both bases of LA ∩ RA, where d =

dim LA ∩ RA, and
3. xn−�+1, . . . , xn is a basis of LA and yn−r+1, . . . , yn is a basis of RA, where


 = dim LA and r = dimRA.
Lemma 16. Every superbasic algebra A ∈ Mk has a normalized M-pair of bases.
Proof. Since A ∈ Mk, it has an M-pair of bases x1, . . . , xn and y1, . . . , yn. By

the third condition, x1, . . . , xt are a system of mutually orthogonal idempotents of A,
none of them being zero; thus their images x̄1, . . . , x̄t under the canonical projection
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A → A/ radA are linearly independent. Comparing dimensions shows that they even
form a basis. Thus for any t + 1 ≤ µ ≤ n there are scalars ξµ,τ such that

x′
µ := xµ −

t∑
τ=1

ξµ,τxτ ∈ radA.

We define scalars ην,τ and elements y′ν in the same manner. We claim that the bases
x1, . . . , xt, x

′
t+1, . . . , x

′
n and y1, . . . , yt, y

′
t+1, . . . , y

′
n are an M-pair. By construction, we

only have to verify the first and fifth condition in Definition 13. For the first, note
that

x′
µy

′
ν =

(
xµ −

t∑
τ=1

ξµ,τxτ

)(
yν −

t∑
τ=1

ην,τyτ

)

= ξxµ + ηyν +

t∑
τ=1

ατxτ

= ξx′
µ + ηy′ν +

t∑
τ=1

α′
τxτ(4)

for suitable scalars ξ, η, α1, . . . , αt, α
′
1, . . . , α

′
t. Since x′

µy
′
ν , x

′
µ, and x′

ν are contained
in radA but lin{x1, . . . , xt} ∩ radA = {0}, α′

1 = · · · = α′
t = 0 in (4).

In a similar manner, one can verify that xτy
′
ν ∈ ky′ν and x′

νyτ ∈ kx′
ν for 1 ≤ τ ≤ t

and t + 1 ≤ ν ≤ n: We have

xτy
′
ν = xτ

(
yν −

t∑
τ=1

ην,τyτ

)
= ηy′ν +

t∑
τ=1

α′
τxτ

for suitable η, α′
1, . . . , α

′
t. Again we conclude that α′

1 = · · · = α′
t = 0. The statement

x′
νyτ ∈ kx′

ν follows similarly. Thus x1, . . . , xt, x
′
t+1, . . . , x

′
n and y1, . . . , yt, y

′
t+1, . . . , y

′
n

are an M-pair. For convenience, we call these bases again x1, . . . , xn and y1, . . . , yn,
respectively.

Let a1, . . . , ad and b1, . . . , b�−d, a1, . . . , ad and c1, . . . , cr−d, a1, . . . , ad be bases of
LA ∩ RA and LA and RA, respectively. We can achieve that each aδ, bλ, and cρ is
contained in exactly one of the subspaces xσ(LA ∩ RA)xτ , LAxτ , and xσRA, respec-
tively. We show this for a1, . . . , ad, and the other two cases follow along the same
lines: We take any basis a1, . . . , ad. Since 1 = x1 + · · · + xt, the set of all xσaδxτ ,
1 ≤ σ, τ ≤ t, 1 ≤ δ ≤ d, generates the same space as a1, . . . , ad. Any maximally lin-
early independent set of the xσaδxτ is a basis such that each element is contained in
one of the subspaces xσ(LA ∩RA)xτ . To see that each element is contained in exactly
one such subspace, note that their pairwise intersections are the nullspace: Let V be
any subspace. Assume that there is an a in xσV xτ ∩ xσ′V xτ ′ with σ �= σ′, say. (The
case τ �= τ ′ is symmetric.) That means we can write a = xσv = xσ′v′. But then

a = xσv = x2
σv = xσxσ′v′ = 0,

which proves the claim.
By a suitable renumbering of xt+1, . . . , xn and yt+1, . . . , yn, we can achieve that

x1, . . . , xn−�, b1, . . . , b�−d, a1, . . . , ad and

y1, . . . , yn−r, c1, . . . , cr−d, a1, . . . , ad
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are bases of A. (We have only to renumber the xt+1, . . . , xn, since x1, . . . , xt /∈ radA
whereas xt+1, . . . , xn ∈ radA. We want to exchange with b1, . . . , b�−d, a1, . . . , ad,
which are all in radA by the definition of the left annihilator. Hence, x1, . . . , xt

cannot be exchanged. The same holds for y1, . . . , yt.) We assert that this is an M-pair
for A. To prove this, we have to check the first and fifth conditions in Definition 13.
The first is clearly fulfilled, since the xν and yν with t+1 ≤ ν are in radA (since they
were before) and LA and RA are the left and right annihilator, respectively, of radA.

The fifth condition is also true by construction: Each aδ can be written as xσa
′
δxτ

for some a′δ ∈ LA∩RA. Thus for 1 ≤ i ≤ t, xiaδ = xixσa
′
δxτ is either aδ or 0, depending

on whether i = σ or not. The same is true for aδxi, bλxi, and xicρ. This completes
the proof.

The next two lemmas describe the structure of the algebras in Mk.
Lemma 17. Let A ∈ Mk; let x1, . . . , xn and y1, . . . , yn be a normalized M-pair of

bases for A; and let 
 = dim LA and r = dimRA. Then xµyν = 0 or k[xµ] = k[yν ]
for all t + 1 ≤ µ, ν ≤ n. Moreover, x2

µ �= 0 and y2
ν �= 0 for all 1 ≤ µ ≤ n − 
 and

1 ≤ ν ≤ n− r.
Proof. If µ ≥ n−
+1 or ν ≥ n−r+1, the first statement of the lemma is true by

the definition of LA or RA, respectively. Thus assume that µ ≤ n− 
 and ν ≤ n− r.
If xµyν = 0, we are done. Otherwise, assume that

xµyν = ξxµ + ηyν .(5)

Let m be the largest integer ≥ 1 such that xµyν ∈ (radA)m. Since xµ, yν ∈ radA,
neither xµ ∈ (radA)m nor yν ∈ (radA)m. Thus ξ �= 0 and η �= 0 in (5). It follows
that (xµ − η)(yν − ξ) = ξη ∈ A×, and hence

k[xµ] = k[xµ − η] = k[yν − ξ] = k[yν ].

For the second statement, note that since xµ /∈ LA, there is an i with t+ 1 ≤ i ≤
n − r such that xµyi �= 0, particularly k[xµ] = k[yi]. As xµ, yi ∈ radA and therefore
are nilpotent, k[xµ] and k[yi] are both isomorphic to k[X]/(Xm) for the same m. The
isomorphism is given by xµ 	→ X and yi 	→ X. Since k[xµ] = k[yi], we can write xµ

as a polynomial in yi without constant term and nonvanishing linear term, i.e.,

xµ = α1yi + α2y
2
i + · · · + αmymi with α1 �= 0.(6)

Since both xµ, yi ∈ radA,

x2
µ = α1xµyi︸ ︷︷ ︸

�=0

+ higher order terms �= 0.

The result y2
ν �= 0 is proven identically.

Lemma 18. Let A ∈ Mk; let x1, . . . , xn and y1, . . . , yn be a normalized M-pair of
bases for A; and let 
 = dim LA and r = dimRA. Then either xµxν = xνxµ = 0 or
k[xµ] = k[xν ] for all t+ 1 ≤ µ, ν ≤ n− 
. Moreover, x1, . . . , xn−� mutually commute.
The same holds for y1, . . . , yn−r.

Proof. We start by proving the first statement. This also shows that xt+1, . . . , xn−�

mutually commute. Let xµ and xν with t+1 ≤ µ, ν ≤ n− 
 be given. By assumption,
there are t+1 ≤ i, j ≤ n−r such that xµyi �= 0 and xνyj �= 0. Thus k[xµ] = k[yi] and
k[xν ] = k[yj ], by Lemma 17. We distinguish two cases: k[xµ] �= k[yj ] or k[xµ] = k[yj ].
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In the first case, also k[xν ] �= k[yi], and hence xµyj = xνyi = 0 by Lemma 17. Since
k[xµ] = k[yi], we can write xµ as a polynomial in yi as in (6). Therefore,

xνxµ = xν(α1yi + α2y
2
i + · · · + αmymi ) = 0.

In the same way, xµxν = 0. In the second case, obviously k[xµ] = k[xν ]. We have to
show that xµxν �= 0. But xµxν = 0 would mean that xµ ∈ LA, since k[xµ] = k[xν ], a
contradiction.

To prove the second statement, it suffices to show that xτxν = xνxτ for 1 ≤ τ ≤ t
and t + 1 ≤ ν ≤ n− 
, since x1, . . . , xt mutually commute by the definition of an M-
pair. Because xτ = yτ , we have xνxτ = ξxν . Since xτ is idempotent, ξ ∈ {0, 1};
that is, xνxτ ∈ {0, xν}. On the other hand, as xν /∈ LA, there is some yi such that
xνyi �= 0. By Lemma 17, k[xν ] = k[yi]. As in (6), we can write xν as a polynomial
in yi without constant term. A similar argument as above shows that xτyi ∈ {0, yi}.
Together with (6), this implies xτxν ∈ {0, xν}.

From xτxν , xνxτ ∈ {0, xν}, we can conclude that xτ and xν commute. Assume on
the contrary that, say, xτxν = xν but xνxτ = 0. Then x2

ν = xν(xτxν) = (xνxτ )xν =
0, contradicting the second statement of Lemma 17.

In a similar fashion, one proves the statement for y1, . . . , yn−r.
Corollary 19. Let A ∈ Mk. Then there is a commutative subalgebra S ⊆ A

such that S + LA = S + RA = A. Moreover, radS = (w1) + · · ·+ (wm) with nilpotent
w1, . . . , wm such that w2

i �= 0 for all 1 ≤ i ≤ m and wiwj = 0 for i �= j.
Proof. Let x1, . . . , xn and y1, . . . , yn be a normalized M-pair of bases of A. By

Lemma 18, k[x1, . . . , xn−�] is a commutative algebra. By Lemma 17, k[y1, . . . , yn−r] =
k[x1, . . . , xn−�]. Hence, we set S := k[x1, . . . , xn−�]. By the definition of a normalized
M-pair, S + LA = S + RA = A.

We have radS = (xt+1, . . . , xn−�). We define an equivalence relation ≡ on the
elements xt+1, . . . , xn−� by

xµ ≡ xν iff xµxν �= 0.

By Lemma 18, k[xµ] = k[xν ] in this case. Take a set w1, . . . , wm of the representatives
for the ≡-classes. Then radS = (w1, . . . , wm) = (w1) + · · · + (wm). We also may
assume w2

i �= 0 because otherwise wi ∈ LA ∩ RA.
Corollary 20. If A ∈ Mk, then dim LA = dimRA.
Proof. By Corollary 19, A = S + LA = S + RA for a commutative subalgebra S

of A. As S is commutative and L2
A = R2

A = {0}, S ∩ LA = S ∩ RA. We have

dimS + dim LA − dimS ∩ LA = dimA = dimS + dimRA − dimS ∩ RA.

Thus dim LA = dimRA.
The next lemma basically states that if there is an algebra A ∈ Mk with N(A) = d,

then we can simulate univariate polynomial multiplication mod Xd+1 efficiently.
Lemma 21. Assume there is an A ∈ Mk with N(A) = d. Then k[X]/(Xd+1) has

minimal rank, where X denotes some indeterminate.
Proof. If d ≤ 1, then k[X]/(Xd+1) has minimal rank by using the trivial al-

gorithm. So we may assume d > 1. Let x1, . . . , xn and y1, . . . , yn be a normalized
M-pair of bases for A as asserted by Lemma 16. There is some index, say t + 1, such
that xd

t+1 �= 0. Furthermore xd
t+1 ∈ LA ∩ RA by the maximality of d. By Lemmas 17

and 18, there are indices i1 = t + 1, . . . , id−1 as well as indices j1, . . . , jd−1 such that

k[xt+1] = lin{1, xi1 , . . . , xid−1
, xd

t+1}
= lin{1, yj1 , . . . , yjd−1

, xd
t+1}.
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We claim that R(k[xt+1]) = 2d + 1: By the definition of an M-pair,

xµyν = ξµ,νxµ + ηµ,νyν(7)

for suitable scalars ξµ,ν and ηµ,ν .
Define a computation

(f1, g1, w1, . . . , f2d+1, g2d+1, w2d+1) for k[xt+1]

as follows: As the elements w1, . . . , w2d+1, we choose 1, xi1 , . . . , xid−1
, xd

t+1, yj1 , . . . ,
yjd−1

, xd
t+1. Let f1, . . . , fd+1 be the dual basis of 1, xi1 , . . . , xid−1

, xd
t+1 and let g1, gd+2,

. . . , g2d+1 be the dual basis of 1, yj1 , . . . , yjd−1
, xd

t+1. Next the fδ with d+ 2 ≤ δ ≤ 2d
are defined by fδ(xiτ ) = ηiτ ,jδ for 1 ≤ τ ≤ d − 1 and fδ(1) = fδ(x

d
t+1) = 0. The gδ

with 2 ≤ δ ≤ d are defined accordingly. Finally, f2d+1 is defined by f2d+1(x
d
t+1) = 0,

f2d+1(1) = 1, and f2d+1(xjτ ) = 0 for 1 ≤ τ ≤ d − 1. The linear form gd+1 is defined
in the same manner.

Exploiting (7), it is easy to see that this defines a computation for k[xt+1]. Noting
that k[xt+1] ∼= k[X]/(Xd+1) completes the proof.

Theorem 22. Let A be a superbasic algebra. Then the following statements are
equivalent:

1. A has minimal rank.
2. A ∈ Mk.
3. There exist w1, . . . , wm ∈ radA with w2

i �= 0 for all i and wiwj = 0 for i �= j
such that

radA = LA + Aw1A + · · · + AwmA

= RA + Aw1A + · · · + AwmA

and #k ≥ 2N(A) − 2.
Proof. 1. ⇒ 2.: This follows at once from Lemma 14.
2. ⇒ 3.: Corollary 19 implies the first part of 3. For the second part, let d = N(A).

By Lemma 21, the algebra k[X]/(Xd+1) has minimal rank. From the classification of
the algorithm variety of k[X]/(Xd+1) given by Averbuch, Galil, and Winograd [2], it
follows that this can be the case only if #k ≥ 2d− 2.

3. ⇒ 1.: Let Ā = A/ radA = kt and let ē1, . . . , ēt denote a decomposition of
the identity of A/ radA. By [11, Corollary 3.3.9], we can lift this decomposition to
a decomposition e1, . . . , et of the identity of A. In particular, lin{e1, . . . , et} forms
a subalgebra S of A. Consider LA and RA as S-right module and S-left module,
respectively. Since S is semisimple, LA and RA are semisimple modules, too. Hence
there are bases b1, . . . , b� and c1, . . . , cr of LA and RA, respectively, such that

bλA = kbλ for all 1 ≤ λ ≤ 
 and Acρ = kcρ for all 1 ≤ ρ ≤ r.(8)

By Corollary 20, 
 = r. Choose qi ≥ 2 such that wqi
i �= 0 and wqi+1

i = 0. Since each
w

qµ
µ ∈ LA ∩ RA,

e1, . . . , et, w1, . . . , w
q1−1
1 , . . . , wm, . . . , wqm−1

m , b1, . . . , b� and

e1, . . . , et, w1, . . . , w
q1−1
1 , . . . , wm, . . . , wqm−1

m , c1, . . . , c�

are bases of A. Call these bases x1, . . . , xn and y1, . . . , yn.
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Given two generic elements ξ1x1 + · · ·+ ξnxn and η1y1 + · · ·+ ηnyn, we now have
to show how to compute the coefficients (which are bilinear forms in the ξi and ηj) of
their product with 2n− t bilinear multiplications.

We first compute ξτητ for 1 ≤ τ ≤ t with t bilinear multiplication.
Since e1, . . . , et annihilate each other, for each λ there is exactly one τ such that

bλeτ �= 0 by (8). In the same way, for each λ there is exactly one τ such that eτ cλ �= 0.
Thus we compute the coefficients of b1, . . . , b� and c1, . . . , c� with 2
 bilinear products.

For each µ, there is exactly one τµ such that eτµwµ �= 0. As w1, . . . , wm annihilate
each other, we can consider the multiplication in lin{eτµ , wµ, . . . , w

qµ
µ } separately for

each µ. This is merely univariate polynomial multiplication. We have already com-
puted the product corresponding to eτµw

qµ
µ and w

qµ
µ eτµ , since w

qµ
µ ∈ LA ∩ RA. Thus

it is sufficient to compute the product of two elements in lin{eτµ , wµ, . . . , w
qµ−1
µ } up

to the term w
qµ
µ . This can be done with 2qµ − 1 multiplications via evaluation and

interpolation. However, we have already computed the product ξτµητµ . (This corre-
sponds to evaluation at zero.) Hence 2qµ − 2 multiplications suffice. The condition
#k ≥ 2N(A) − 2 ensures that there are enough scalars to perform evaluation and
interpolation.

The total number of multiplications is t + 2
 + 2(n − 
 − t) = 2 dimA − t. This
completes the proof.

4. Structural insights. In the proof of the preliminary characterization results
over algebraically closed [4] and perfect [5] fields, the existence of a subalgebra B
of A with B ⊕ radA = A and B ∼= A/ radA played a crucial role. Over perfect
(and henceforth over algebraically closed) fields, such an algebra always exists by the
Wedderburn–Malcev theorem (Theorem 5). Over nonperfect fields, such an algebra
need not exist; see [11, Chapter 6, Example 4] for an example.

Instead of the above algebra B, we use a slightly larger subalgebra of A. This
algebra will be induced by a lifting of the idempotents in A/ radA. Let .̄ : A →
A/ radA denote the canonical projection defined by a 	→ ā = a + radA. Let A1 ⊕
· · · ⊕ At be the decomposition of A/ radA into simple factors. We here write the
decomposition of A/ radA in an additive way; that is, we consider the Aτ as subspaces
of A/ radA. This is done to simplify notation, mainly to write Aτ instead of {0}×· · ·×
{0}×Aτ ×{0}×· · ·×{0}, which would be the corresponding subspace of A1×· · ·×At.
Let eτ denote the identity of Aτ for 1 ≤ τ ≤ t. Then e1 + · · · + et is a decomposition
of the identity of A/ radA; that is,

1. 1 = e1 + · · · + et,
2. the eτ are idempotents, i.e., e2

τ = eτ for all τ , and
3. the eτ annihilate each other, i.e., eσeτ = 0 for σ �= τ .

(It is actually more precise to call e1, . . . , et the decomposition of the identity, since
e1 + · · · + et is simply 1. We will, however, use the notation e1 + · · · + et.) Now the
crucial point is that this decomposition can be lifted to A: By [11, Corollary 3.3.9],
there is a corresponding decomposition of the identity f1 + · · ·+ft in A (i.e., f1, . . . , ft
fulfill the three conditions above, where 1 is the identity of A) such that

eτ = f̄τ = fτ + radA for all τ .(9)

We remark that the decomposition e1 + · · ·+ et is a central decomposition of the
identity in A/ radA; i.e., eτa = aeτ holds for all τ and for all a ∈ A/ radA.

The following theorem is useful in what follows. For a proof, see [11, Theorem
3.5.3].
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Theorem 23. Let e1 + · · · + et be a central decomposition of the identity in
A/ radA. Then fi(radA)fj = fiAfj for all i �= j and fi(radA)fi = rad(fiAfi) for
all i. (Here f1 + · · · + ft is the lifted decomposition in A defined above.)

The next lemma shows that B := f1Af1 + · · · + ftAft is a subalgebra of A such
that B/ radB ∼= A1 ⊕ · · · ⊕At. Note that the algebra B always exists; in particular,
its existence does not depend on the perfectness of the ground field. The important
point is that we have found an algebra with B/ radB ∼= A1 ⊕ · · · ⊕At = A/ radA for
which B ∩ fiAfj = {0} holds for all i �= j. This is needed in the proof of Lemma 31.

Lemma 24. Let A be an algebra over an arbitrary field and A1 ⊕ · · · ⊕At be its
decomposition into simple algebras. Let f1 + · · ·+ft be a decomposition of the identity
as in (9). Then the following hold:

1. B := f1Af1 + f2Af2 + · · · + ftAft is a subalgebra of A,
2. Bτ := fτAfτ is an algebra for all τ ,
3. Bσ ·Bτ = {0} for all σ �= τ ,
4. radBτ = fτ (radA)fτ for all τ , and
5. Bτ/ radBτ

∼= Aτ for all τ .
Proof.
1. B is clearly closed under addition and scalar multiplication. 1 ∈ B, too. It

remains to show that B is also closed under multiplication. This follows from
the fact that the fτ annihilate each other: We have

(10) (f1a1f1 + · · · + ftatft)(f1b1f1 + · · · + ftbtft)

= f1a1f1b1f1 + · · · + ftatftbtft ∈ B,

since fσfτ = 0 for σ �= τ .
2. Bτ is obviously closed under addition, scalar multiplication, and multiplica-

tion. Furthermore, fτ is the identity of Bτ .
3. We have fσafσ · fτ bfτ = 0 for all fσafσ ∈ Bσ and fτ bfτ ∈ Bτ , as fσ · fτ = 0.
4. Since e1 + · · · + et is a central decomposition, this follows from Theorem 23.
5. We have Aτ

∼= eτ (A/ radA)eτ , where e1 + · · · + et is a decomposition of the
identity of A/ radA as in (9). On the other hand, radBτ = fτAfτ/fτ (radA)fτ
by the second and fourth statements. We define a mapping i : Aτ →
Bτ/ radBτ by eτ (a + radA)eτ 	→ fτafτ + fτ (radA)fτ . We claim that i is
an isomorphism. First, i is well defined: Consider elements a and b fulfilling
eτ (a + radA)eτ = eτ (b + radA)eτ . Then by (9),

fτafτ + radA = (fτ + radA)(a + radA)(fτ + radA)

= (fτ + radA)(b + radA)(fτ + radA)

= fτ bfτ + radA.(11)

Thus i is well defined.
Obviously, i(αx) = αi(x) and i(x + y) = i(x) + i(y) for all x, y ∈ Aτ . For
x = eτ (a + radA)eτ and y = eτ (b + radA)eτ in Bτ , we have

xy = eτ (a + radA)eτ · eτ (b + radA)eτ = eτ (afτ b + radA)eτ .(12)

Hence,

i(xy) = fτafτ bfτ + fτ (radA)fτ

= (fτafτ + fτ (radA)fτ )(fτ bfτ + fτ (radA)fτ )

= i(x)i(y).
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Finally, since fτafτ ∈ fτ (radA)fτ iff eτ (a + radA)eτ ⊆ radA, i is also
bijective.

5. Main result. Throughout this section, A denotes a k-algebra of minimal
rank and A1 ⊕ · · · ⊕ At denotes the decomposition of A/ radA into simple algebras.
Again we write the decomposition in an additive way.

By Corollary 9 and Lemma 10, A/ radA is of minimal rank. By [4, Theorem 2],
either Aτ

∼= k or Aτ
∼= k2×2 or Aτ is a proper extension field of k for all τ . In the

latter case, #k ≥ 2 dimAτ − 2 also has to hold.
Let eτ be the identity of Aτ , and let f1 + · · · + ft be a decomposition of the

identity of A as in (9). Consider the Peirce decomposition (see [11, p. 26]) of A with
respect to f1, . . . , ft:

A =
⊕

1≤σ,τ≤t

fσAfτ and radA =
⊕

1≤σ,τ≤t

fσ(radA)fτ .

Since f1, . . . , ft are idempotents that annihilate each other, the pairwise intersections
of the fσAfτ equal in fact {0}.

Compared to the proof over perfect fields, the algebra f1Af1 ⊕ · · · ⊕ ftAft now
plays the role of the subalgebra S of A with S ∼= A/ radA = A1 ⊕ · · · ⊕ At in [5].
The proof in this section is almost the same as that of [5], since we need only the
following property (in the proof of Lemma 31): The intersection of each fτAfτ with
any fi(radA)fj with i �= j is the nullspace. Furthermore, the fτAfτ annihilate each
other like the Aτ do. The only thing which slightly complicates matters is that instead
of knowing that Aτ is simple, we here have only that fτAfτ/ rad fτAfτ is simple and
in fact equal to Aτ .

5.1. A first decomposition step. If an idempotent, say, f1 fulfils f1(radA)fj =
fj(radA)f1 = {0} for all j ≥ 2, then the characterization problem splits into two sub-
problems.

Lemma 25. If f1(radA)fj = fj(radA)f1 = {0} for all 2 ≤ j ≤ t, then

A ∼= f1Af1 × (f2 + · · · + ft)A(f2 + · · · + ft).

Proof. Let f ′ := f2+· · ·+ft. First note that f1Af1 is an algebra by Lemma 24(2).
Along the same lines, it is easy to see that f ′Af ′ is an algebra.

Since eτ = fτ + radA is the identity of Aτ for all τ , eτ is contained in the center
of A/ radA (i.e., eτa = aeτ for all a ∈ A/ radA). Thus by Theorem 23, we have
fσAfτ = fσ(radA)fτ for all σ �= τ . In particular, f1Afj = fjAf1 = {0} for all j ≥ 2.

Let a ∈ A be arbitrary. We can write a = a1 + a′ with unique a1 ∈ f1Af1 and
a′ ∈ f ′Af ′, since f1Af1 ⊕ f ′Af ′ = A. We define a mapping A → f1Af1 × f ′Af ′ by
a 	→ (a1, a

′). Exploiting the fact that f1Af ′ = f ′Af1 = {0}, it is easy to verify that
this is an isomorphism of algebras.

Next we show that if A has minimal rank, both f1Af1 and f ′Af ′ have minimal
rank. This follows directly from the work of Alder and Strassen.

Lemma 26. Let B1 and B2 be two algebras. The algebra B = B1 × B2 has
minimal rank iff both B1 and B2 have minimal rank.

Proof. Assume that B has minimal rank. Let t1, t2, and t be the number of
twosided maximal ideals of B1, B2, and B, respectively. We have t = t1 + t2. Note
that radB = radB1 × radB2. By Corollary 9 and Lemma 10, R(B) ≥ 2 dim radB1 +
R((B1/ radB1) × B2). If we now apply Lemma 11 repeatedly, we obtain R(B) ≥
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2 dimB1 − t1 + R(B2). Thus B2 has to have minimal rank. B1 is treated completely
the same way.

The other direction is trivial.
Now assume that, say, A1 is either an extension field of dimension at least two or

isomorphic to k2×2. Moreover, let f1(radA)fj = fj(radA)f1 = {0} for all 2 ≤ j ≤ t.
By Lemma 26, the algebra f1Af1 has to have minimal rank. By Lemma 24(5), we
obtain (f1Af1)/ rad(f1Af1) = e1(A/ radA)e1

∼= A1.
If A1 is an extension field, then f1Af1 is local and dim f1Af1/(rad f1Af1) ≥ 2.

Such algebras have been characterized by Büchi and Clausen [8]. They are isomorphic
to k[X]/(p(X)m) for some irreducible polynomial p with deg p ≥ 2 and some m ≥ 1
and #k ≥ 2mdeg p. The case that A1 is isomorphic to k2×2 is settled by the following
lemma. It turns out that, in this case, we necessarily have f1Af1

∼= k2×2.
Lemma 27. Let C be an algebra fulfilling C/ radC ∼= k2×2. Then R(C) ≥

5
2 dimC − 4. In particular, if radC �= {0}, then C is not of minimal rank.

Proof. Let β = (f1, g1, w1, . . . , fr, gr, wr) be a bilinear computation for C. We may
assume w.l.o.g. that f1, . . . , fN is a basis of C∗, where N = dimC. Let u1, . . . , uN be
its dual basis. Furthermore, assume that ūN−3, . . . , ūN is a basis of C/ radC ∼= k2×2,
where .̄ : C → C/ radC denotes the canonical projection. Choose α1, . . . , α4 such
that 1 = α1ūN−3 + · · · + α4ūN (in C/ radC). By Nakayama’s lemma (Lemma 4),
α1uN−3 + · · ·+ α4uN is invertible in C. Exploiting sandwiching (see section 2.2), we
can achieve that 1 = α1uN−3 + · · ·+α4uN in C. Choose ξ1, . . . , ξ4 and η1, . . . , η4 such
that for x = ξ1uN−3 + · · · + ξ4uN and y = η1uN−3 + · · · + η4uN ,

x̄ =

(
1 0
0 0

)
and ȳ =

(
0 1
1 0

)
.

An easy calculation shows that x̄ȳ − ȳx̄ is invertible in C/ radC. Once more by
Lemma 4, xy − yx is invertible in C. Now by [4, Lemma 3.8] (with m = N − 4),

r ≥ 5/2 dimC − 4.(13)

Since C/ radC ∼= k2×2, the algebra C/ radC is separable; that is, for any exten-
sion field K of k, (C/ radC)⊗K ∼= K2×2 is semisimple. By the Wedderburn–Malcev
theorem (Theorem 5), C contains a subalgebra C ′ ∼= k2×2 with C ′ ⊕ radC = C.
Hence radC is a k2×2-bimodule. By [4, Fact 8.5], radC �= {0} implies dim radC ≥ 4.
Now we can rewrite (13) as

r ≥ 5/2 dimC − 4 = 2 dimC + 1/2(4 + dim radC) − 4︸ ︷︷ ︸
≥ 0 if radC �= {0}

.

This proves the second statement.
By Theorem 23, rad(f ′Af ′) = f ′(radA)f ′ holds. From this, it follows that

(f ′Af ′)/ rad(f ′Af ′) = e′(A/ radA)e′ = A2⊕· · ·⊕At, as in the proof of Lemma 24(5),
where e′ = e2 + · · ·+ et. Hence we can proceed recursively with f ′Af ′. The following
lemma summarizes these considerations.

Lemma 28. Let A be an algebra of minimal rank over an arbitrary field k. Then

A ∼= C1 × · · · × Cs × k2×2 × · · · × k2×2︸ ︷︷ ︸
u times

×B,

where
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1. the Cσ are local algebras of minimal rank with dimCσ/ radCσ ≥ 2 and
2. B is an algebra of minimal rank.

Furthermore, if B1 ⊕ · · · ⊕Br is a decomposition of B/ radB into simple factors, eρ
denotes the identity of Bρ for 1 ≤ ρ ≤ r, and f1 + · · · + fr is a decomposition of
the identity of B as in (9), then for all Bρ such that Bρ is either isomorphic to k2×2

or a proper extension field of k there is a jρ �= ρ such that fρ(radB)fjρ �= {0} or
fjρ(radB)fρ �= {0}. Above, s and u may be zero and the factor B is optional.

5.2. B is superbasic. Next we show that the algebra B in Lemma 28 is always
superbasic; that is, all the Bρ in the decomposition of B/ radB into simple algebras
are isomorphic to k. Thereafter, we apply Theorem 22 and obtain our characterization
result.

To do so, under the assumption that one of the factors Bρ is not isomorphic
to k, we construct some algebras that have to have minimal rank because B has
minimal rank. Then we prove that none of the constructed algebras has minimal
rank, obtaining a contradiction.

The next lemma shows that it suffices to consider the problem modulo (radB)2 in
the sense that, modulo (radB)2, the algebra B/(radB)2 still has the same properties
as B in Lemma 28. For any algebra C, let .̃ : C → C/(radC)2 denote the canonical
projection defined by a 	→ ã = a + (radC)2.

Lemma 29. Let A be an algebra of minimal rank over an arbitrary field k. Let
A ∼= C1×· · ·×Cs×k2×2×· · ·×k2×2×B, as in Lemma 28, and let B̃ and B̃1, . . . , B̃r

be the images of B and B1, . . . , Br under the canonical projection B → B/(radB)2.
Then B̃ has minimal rank, and for all B̃ρ such that B̃ρ is either isomorphic to k2×2

or a proper extension field of k, there is a j′ρ �= ρ such that f̃ρ(rad B̃)f̃j′ρ �= {0} or

f̃j′ρ(rad B̃)f̃ρ �= {0}.
Proof. If B has minimal rank, so has B̃, by Corollary 9. Since for each Bρ that is

either isomorphic to k2×2 or a proper extension field of k, there is a jρ �= ρ such that
fρ(radB)fjρ �= {0} or fjρ(radB)fρ �= {0}, the next lemma shows the existence of the
index j′ρ.

Lemma 30. Let C be an algebra and C1⊕· · ·⊕Cr be the decomposition of C/ radC
into simple factors. Let eρ be the identity of Cρ for all ρ, and let f1 + · · · + fr be a
decomposition of the identity as in (9). For all indices i and j with i �= j such that
fi(radC)fj �= {0}, there is an index j′ with i �= j′ such that f̃i(rad C̃)f̃j′ �= {0}. In

the same way, there is an index i′ with i′ �= j such that f̃i′(rad C̃)f̃j �= {0}.
Proof. Let x be such that fixfj �= 0 and fixfj ∈ fi(radC)fj . Since fiCfj =

fi(radC)fj by Theorem 23, we may assume x ∈ radC. Let n ≥ 1 be the unique
number such that x ∈ (radC)n \ (radC)n+1. By definition, there are x1, . . . , xn ∈
radC \ (radC)2 such that x = x1 · · ·xn. Since 1 = f1 + · · · + fr,

fix1(f1 + · · · + fr)x2(f1 + · · · + fr) · · · (f1 + · · · + fr)xnfj = fixfj �= 0.

Thus there are indices h1, . . . , hn−1 such that

fix1fh1x2fh2 · · · fhn−1xnfj �= 0.

If all hν equal i, then fhn−1xnfj = fixnfj �= 0, and we set j′ = j. Since fixnfj′ ∈
radC \(radC)2, f̃ix̃nf̃j′ �= 0, and hence we are done. Otherwise let ν0 be the smallest
index such that hν0 �= i. Now we set j′ = hν0 and can conclude in the same way as
before that f̃i(rad C̃)f̃j′ �= {0}.
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The index i′ is constructed in the identical way.
W.l.o.g. we assume from now on that (radB)2 = {0}. B1 is either isomorphic to

k2×2 or a (not necessarily proper) extension field of k. We first construct two algebras,
which have to have minimal rank since B has minimal rank. Next we prove that these
algebras cannot have minimal rank if B1 is isomorphic to k2×2 or a proper extension
field of k. Hence B1

∼= k must hold. By symmetry, this has to hold for all B1, . . . , Br.
It follows that B is superbasic.

The next lemma shows how to construct these two algebras. By symmetry, the
lemma also holds for (radB)f1 �= {0}.

Lemma 31. If f1(radB) �= {0}, then there is an index 2 ≤ j ≤ s and a nonzero
(B1, Bj)-bimodule M such that the algebra B1 × Bj × M (as vector spaces) with
multiplication law (a, b, x) · (a′, b′, x′) = (aa′, bb′, ax′ + xb′) has minimal rank.

Proof. We decompose radB as

radB =
⊕

1≤ρ,η≤r

fρ(radB)fη.(14)

By Lemma 29, there is an index j ≥ 2 such that f1(radB)fj �= {0}. W.l.o.g. we may
assume that j = 2.

Consider C := f1Bf1 + f2Bf2. As in Lemma 24(1), it is easy to see that C is
a subalgebra of B. As in Lemma 24(4), radC = f1(radB)f1 + f2(radB)f2. Finally
C/ radC ∼= B1 ⊕ B2. Since the pairwise intersection of the fρ(radB)fη in (14) are
the nullspace, we also have C/ radB ∼= B1 ⊕B2.

Let

I =
⊕

(ρ,η) �=(1,2)

fρ(radB)fη.

I is a twosided ideal of B (see also [4, p. 105]). Since B is of minimal rank and
I ⊆ radB, B/I is also of minimal rank by Corollary 9 and Lemma 10. By [11,
Corollary 3.1.14], we have rad(B/I) = (radB)/I ∼= f1(radB)f2/I �= {0}. Let .̂ : B →
B/I denote the canonical projection defined by a 	→ â = a + I. Since I ⊆ radB,

f̂1, . . . , f̂r are idempotent elements that annihilate each other, because this also holds
for f1, . . . , fr. Let f̂ = f̂3 + · · ·+ f̂r. Then for all a ∈ f̂(B/I)f̂ , we have a(radB/I) =

(radB/I)a = {0}, since the f̂ρ annihilate each other. This means that the elements

in (f̂1 + f̂2)(B/I)(f̂1 + f̂2) annihilate the elements in f̂(B/I)f̂ and vice versa. Then
B/I is isomorphic to the product of these two algebras (see, e.g., [4, Lemma 8.3] for
a proof), i.e.,

B/I ∼= (f̂1 + f̂2) (B/I) (f̂1 + f̂2) × f̂ (B/I) f̂ .

By Lemma 26, B/I is of minimal rank only if D := (f̂1 + f̂2)(B/I)(f̂1 + f̂2) is of
minimal rank.

Because C := f1Bf1 +f2Bf2 is a subalgebra of (f1 + f2)B(f1 + f2), Ĉ is a subal-
gebra of D. This subalgebra Ĉ is isomorphic to B1 ⊕B2, since radC = f1(radB)f1 +
f2(radB)f2. Hence D has a subalgebra that is isomorphic to B1 ⊕ B2. The radical
of D is radD ∼= f1(radB)f2/I �= {0}.

Noting that radD is a (B1, B2)-bimodule that fulfills the multiplication law in
the lemma completes the proof.

The two lemmas below show that the algebras constructed in Lemma 31 cannot
have minimal rank. Hence we have obtained the following result.
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Lemma 32. The algebra B in Lemma 28 is superbasic.
We have two possible choices for B1 in Lemma 31, namely, B1

∼= k2×2 and B1 is a
proper extension field of k. We split them into several subcases depending on B2. The
cases B1

∼= k2×2 and B2 isomorphic to either k or to k2×2 are treated in [4, Lemmas
8.7, 8.8]. Lemma 33 below treats the case where B1 is a proper extension field of
k and B2 is either also a proper extension field of k or k itself. Finally, Lemma 34
settles the case where B1

∼= k2×2 and B2 is a proper extension field. By symmetry
this also settles the remaining case where the roles of B1 and B2 are interchanged.

Lemma 33. Let K be a proper extension field of k and L be a (not necessarily
proper) extension field of k. Let M be a nonzero (K,L)-bimodule, and define the
algebra A = K × L×M (as vector spaces) with multiplication law (a, b, x)·(a′, b′, x′) =
(aa′, bb′, ax′ + xb′). Then

R(A) ≥ 2 dimL + dimM + (2 dimK − 1)
dimM

dimK + 1
− 1.

In particular, A is not of minimal rank.
Proof. Let β = (f1, g1, w1, . . . , fr, gr, wr) be an optimal computation for A, and

let n = dimA. We can achieve that w1, . . . , wn form a basis of A. W.l.o.g. we
may assume that lin{w1, . . . , w�} + (K × {0} × M) = A, where 
 = dimL. Let
W1 = lin{w1, . . . , w�−1}. By definition, β separates the triple ({0}, {0},W1).

Next we show that the computation β also separates the triple ({0} × {0} ×
M, {0},W1). If this were not the case, then there would be a nonzero a ∈ {0}×{0}×M
by Lemma 12 such that

a ·A ⊆ ({0} × {0} ×M) · {0} + W1 = W1,

which cannot be the case, as W1 ∩ ({0} × {0} ×M) = {0}.
We claim that β even separates ({0} × L × M, {0},W1). Otherwise, Lemma 12

implies that there would be some a ∈ ({0} × L×M) \ ({0} × {0} ×M) such that

a ·A ⊆ ({0} × L×M) · {0} + W1 = W1.

As a ∈ ({0}×L×M)\ ({0}×{0}×M), we have dim a ·A ≥ dimL = 
, contradicting
dimW1 ≤ 
− 1.

Define β′ = (f1, g
′
1, w1, . . . , fr, g

′
r, wr) through g′ρ = g′ρ|K×{0}×M for all ρ. From

the definition of “separate,” it follows that β′ also separates ({0} × L×M, {0},W1).
Let φ be the multiplication map of A. Then β′ is a computation for the bilinear

map ψ := φ|A×(K×{0}×M), which we can view as the multiplication a · (a′, x′) 	→
(aa′, ax′) of the K-left module K ×M . Let π be a projection of A onto K ×{0}×M
with W1 ⊆ kerπ. Since imψ ⊆ K × {0} ×M , π ◦ ψ = ψ.

Now by Lemma 8

R(A) ≥ R
(
ψ/(({0} × L×M) × {0})

)
+ dimL + dimM + #W1

≥ R
(
ψ/(({0} × L×M) × {0})

)
+ 2 dimL + dimM − 1.(15)

Since we have ψ({0} × L×M,K × {0} ×M) = {0}, we can still view ψ/(({0}×L×
M) × {0}) as the multiplication of the K-left module K × M . By Wedderburn’s
theorem for modules [19], K ×M ∼= Km, where m = dim(K ×M)/dimK. (It also
follows that m is necessarily an integer strictly greater than one.) By Hartmann’s
lower bounds for the rank of modules [17, Theorem 2],

R
(
ψ/(({0} × L×M) × {0})

)
≥ (2 dimK − 1) · dimM

dimK + 1
.
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This proves the first claim of the lemma.
To see that the last bound implies that A is not of minimal rank, we rewrite the

bound as

R(A) ≥ 2 dimL + 3 dimM + 2 dimK − dimM

dimK
− 2.

Since A has two maximal ideals, the second claim of the lemma is proven if dimM −
dimM/dimK − 1 ≥ 0. But this is clearly true, because dimK ≥ 2 and dimM ≥
dimK ≥ 2.

Lemma 34. Let L be a proper extension field of k, and let M be a nonzero
(k2×2, L)-bimodule. Define the algebra A = k2×2 × L × M (as vector spaces) with
multiplication law (a, b, x) · (a′, b′, x′) = (aa′, bb′, ax′ + xb′). Then

R(A) ≥ 2 dimL +
5

2
dimM + 6.

In particular, A is not of minimal rank.
Proof. Let φ denote the multiplication of A, and define the bilinear map ψ :=

φ|A×(k2×2×{0}×M). The same reasoning as in Lemma 33 shows that

R(A) ≥ R
(
ψ/(({0} × L×M) × {0})

)
+ 2 dimL + dimM − 1,

since we did not make use of fact that K is an extension field in the proof of (15) in
Lemma 33.

Since ({0} × L × M) · (k2×2 × {0} × M) = {0}, ψ/(({0} × L × M) × {0}) is
the multiplication of the k2×2-module k2×2 × M . By Wedderburn’s theorem for
modules, this multiplication corresponds to the multiplication of 2 × 2-matrices with
2 ×m-matrices, where m = 1

2 (dim k2×2 ×M) = 2 + 1
2 dimM . Since the rank of the

multiplication of 2× 2-matrices with 2×m-matrices has the lower bound 3m+ 1 (see
[7]), we obtain

R(A) ≥ 2 dimL +
5

2
dimM + 6.

To see that this implies that the algebra A does not have minimal rank, note that
dimA = 4 + dimL + dimM , A has two maximal ideals, and 1

2 dimM > 0.

5.3. The final proof. By Lemma 28, A is isomorphic to

A ∼= C1 × · · · × Cs × k2×2 × · · · × k2×2︸ ︷︷ ︸
u times

×B,

where the Cσ are local algebras of minimal rank with dimCσ/ radCσ ≥ 2. By
Lemma 32, B is a superbasic algebra of minimal rank. By Theorem 22, we obtain the
desired characterization of algebras of minimal rank over arbitrary fields.

Theorem 35. An algebra A over an arbitrary field k is an algebra of minimal
rank iff

A ∼= C1 × · · · × Cs × k2×2 × · · · × k2×2︸ ︷︷ ︸
u times

×B,(16)

where C1, . . . , Cs are local algebras of minimal rank with dim(Cσ/ radCσ) ≥ 2, i.e.,
Cσ

∼= k[X]/(pσ(X)dσ ) for some irreducible polynomial pσ with deg pσ ≥ 2, dσ ≥ 1,
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and #k ≥ 2 dimCσ − 2, and B is a superbasic algebra of minimal rank; that is, there
exist w1, . . . , wm ∈ radB with w2

i �= 0 and wiwj = 0 for i �= j such that

radB = LB + Bw1B + · · · + BwmB = RB + Bw1B + · · · + BwmB

and #k ≥ 2N(B) − 2. Any of the integers s, u, or m may be zero, and the factor B
in (16) is optional.
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NONINDEPENDENT RANDOMIZED ROUNDING
AND AN APPLICATION TO DIGITAL HALFTONING∗
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Abstract. We investigate the problem of rounding a given [0, 1]-valued matrix to a 0, 1 matrix
such that the rounding error with respect to 2×2 boxes is small. Such roundings yield good solutions
for the digital halftoning problem, as shown by Asano et al. [Proceedings of the 13th Annual ACM-
SIAM Symposium on Discrete Algorithms, San Francisco, 2002, SIAM, Philadelphia, 2002, pp. 896–
904]. We present a randomized algorithm computing roundings with expected error at most 0.5463
per box, improving the 0.75 nonconstructive bound of Asano et al. Our algorithm is the first to solve
this problem fast enough for practical application, namely, in linear time.

Of broader interest might be our rounding scheme, which is a modification of randomized round-
ing. Instead of independently rounding the variables, we impose a number of suitable dependencies.
Thus, by equipping the rounding process with some of the problem information, we reduce the round-
ing error significantly compared to independent randomized rounding, which leads to an expected
error of 0.82944 per box. Finally, we give a characterization of realizable dependencies.

Key words. randomized rounding, discrepancy, digital halftoning
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1. Introduction. In this paper, we are concerned with rounding problems. In
their general form, these problems are of the following type: Given some numbers
x1, . . . , xn, one is looking for roundings y1, . . . , yn such that some given error measures
are small. By rounding we always mean that yi = �xi� or yi = �xi�. Since there are
2n possibilities, such rounding problems are good candidates for hard problems. In
fact, even several restricted versions like the discrepancy problem are known to be
NP-hard. An example related to the problems considered in this paper can be found
in Asano, Matsui, and Tokuyama [3, 4].

On the other hand, there are cases that can be solved optimally in polynomial
time. Knuth [17], for example, has shown that there exists a rounding such that

the errors |
∑k

i=1(yi −xi)| and |
∑k

i=1(yπ(i) −xπ(i))| for a fixed permutation π and all
1 ≤ k ≤ n are at most n

n+1 . Such roundings can be obtained by computing a maximum
flow in a network. A recent generalization [7] shows this bound for arbitrary totally
unimodular rounding problems.

1.1. The digital halftoning problem: A matrix rounding problem. The
rounding problem considered in this paper is motivated by an application from image
processing. The digital halftoning problem is to convert a continuous-tone intensity
image (each pixel may have an arbitrary “color” on the white-to-black scale) into a
binary image (only black and white dots are allowed). An intensity image can be
represented by a [0, 1]-valued m × n matrix A. Each entry aij corresponds to the
brightness level of the pixel with coordinates (i, j). Since many devices, e.g., laser
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printers, can output only white and black dots, we have to round A towards a 0, 1
matrix. Naturally, this has to be done in such a way that the resulting image looks
similar to the original.

This notion of similarity is a crucial point. From the viewpoint of application,
similarity is defined via the human visual system: A rounding is good if an average
human being can retrieve most of the original information from the rounded image.
Using this “criterion,” several algorithms turned out to be useful. Floyd and Stein-
berg [11] proposed the error diffusion algorithm, which rounds the entries one by one
and distributes the rounding error over neighboring not-yet-rounded entries. Lippel
and Kurland [21] and Bayer [5] investigated the ordered dither algorithm, which par-
titions the image into fixed size submatrices and rounds each submatrix by comparing
its entries with a threshold matrix of the same size. One advantage of this approach
is that it can be parallelized easily. Knuth [16] combined ideas from both approaches
to get an algorithm called dot diffusion.

Though some work has been done in this direction, less understanding seems to
be present on the theoretical side. In particular, a good mathematical formulation of
similarity seems hard to find. Such a similarity measure is desirable for two reasons.
First, it would allow us to compare algorithms without extensive experimental testing.
This is particularly interesting, since comparing different halftonings is a delicate issue.
For example, it makes a huge difference whether the images are viewed on a computer
screen or are printed on a laser printer. Different printers can also give different
impressions. Therefore, a more objective criterion would be very helpful. A second
reason is that, in attaining a good criterion, one would have a clearer indication of
how a digital halftoning algorithm should work. Thus developing good algorithms
would be easier.

So far, the most widely accepted criterion for a good halftoning algorithm is
that it has the “blue noise” property (first detected by Ulichney [34]; cf. also the
surveys Ulichney [33] and Lau and Arce [19]). This refers not to a similarity measure
comparing two images, but an analysis of how the algorithm performs on constant
grey level areas. Thus, on the other hand, it gives no information on how changing
intensities, in particular shapes, are reproduced. This work has been extended by
Sullivan, Ray, and Miller [32], who use a model based on the human visual system to
compute good halftoning patterns for constant intensity areas.

Significant research has been done on “global” (regarding the whole image) sim-
ilarity measures; see, e.g., Lieberman and Allebach [20] and the references therein.
However, in many cases the complexity of these measures makes a theoretical in-
vestigation almost impossible. Even computing approximations efficiently is often
difficult.

At the 2002 international ACM/SIAM Symposium on Discrete Algorithms, Asano
et al. [2] presented a structurally much simpler similarity measure, together with sev-
eral theoretical results. Their experimental studies indicate that good digital halfton-
ings have small error with respect to all 2 × 2 subregions. This yields the following
problem.

1.2. Problem statement and results. Let A ∈ [0, 1]m×n denote our input
matrix. The set Rij := {i, i+1}×{j, j+1} = {(i, j), (i+1, j), (i, j+1), (i+1, j+1)}
for some i ∈ [m−1], j ∈ [n−1], is called a 2×2 subregion (or box) in [m]×[n].1 Denote
by R the set of all these boxes. We write ARij for the 2 × 2 matrix

( ai,j ai,j+1
ai+1,j ai+1,j+1

)
1For an arbitrary number r we denote by [r] the set of positive integers not exceeding r.
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induced by Rij . For any matrix A set ΣA :=
∑

i,j aij , the sum of all its entries.

For a matrix B ∈ {0, 1}m×n—which is a rounding of A unless we have aij , bij ∈ Z

and aij �= bij for some i, j—we define the rounding error of A with respect to B by

dR(A,B) :=
∑
R∈R

|ΣAR − ΣBR| .

We usually omit the subscript R when there is no danger of confusion.
Asano et al. [2] demonstrated that roundings B such that d(A,B) is small yield

good digital halftonings. They showed that for any A an optimal rounding B∗ sat-
isfies d(A,B∗) ≤ 0.75|R|. They also gave a polynomial time algorithm computing a
rounding B such that d(A,B) − d(A,B∗) ≤ 0.5625|R|. It is easy to see that there
are matrices A such that all roundings (and in fact all integral matrices) B have
d(A,B) ≥ 0.5|R|.

A major drawback of the algorithm given in [2] is that it is not very practical, as it
requires the solution of an integer linear program with totally unimodular constraint
matrix. This leads to a run-time bound that is at least quadratic in the number nm
of pixels. As pointed out in [2], this is too slow for a real world application.

In this paper, we present a randomized algorithm that runs in linear time. It
may be implemented in parallel without problems. This divides the run-time by
the number of processors available. The roundings computed by our algorithm have
an expected error that exceeds the optimal one by at most 0.3125|R| (instead of
0.5625|R|). They also satisfy the absolute bound E(d(A,B)) ≤ 0.5463|R|, beating
the nonalgorithmic bound of 0.75|R| in [2].

The distribution of the rounding error resulting from this algorithm is highly
concentrated around the expected value. The probability that the error exceeds the
expected one by more than ε|R| is bounded by exp(−Ω(ε2

√
|R|)). Our algorithm can

also be derandomized. This yields a deterministic linear time algorithm computing
roundings with an error guarantee at most equal to that of the randomized version.

For an experimental study of how well our algorithm performs in practice, we
refer to Schnieder [25]. Some of these results are also contained in [9].

1.3. Nonindependent randomized rounding. The key idea of our algorithm
might also be of broader interest. We develop a randomized rounding scheme where
the individual roundings are not independent. The classical approach of randomized
rounding due to Raghavan and Thompson [23] and Raghavan [22] is to round each
variable independently with probability depending on the fractional part of its value.
This allows the use of Chernoff-type large deviation inequalities, showing that a sum
of independent random variables is highly concentrated around its expectation.

Randomized rounding has been applied to numerous combinatorial optimization
problems that can be formulated as integer linear programs (cf. Srinivasan [28]).
Though very effective in the general case, a known difficulty with randomized rounding
is how to use structural information about the underlying problem. Since only the
solution of the linear relaxation is used, further information about the underlying
problem cannot be exploited. One idea to overcome this is to use correlation among
the events in the analysis of randomized rounding. This allows us to strengthen the
classical bounds for packing and covering problems, as shown by Srinivasan [29].

In this paper, we try so use such structure in an earlier phase, namely, in the design
of the random experiment. This leads to randomized roundings where the variables
are not rounded independently. There have been few attempts to use nonindependent
roundings. A straightforward one already appeared in the work of Raghavan and
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Thompson and is highly motivated by the structure of the problem. In many cases,
the linear program under consideration contains constraints of the kind

xi1 + · · · + xik = 1.(1)

Typical examples are the vector selection problem (exactly one vector has to be chosen
from each of the given sets; cf. Raghavan [22]) or multicommodity flow problems
(exactly one path has to be chosen from a nonintegral mixture of paths adding up
to the flow; cf. Raghavan and Thompson [23]). In these cases, the probability that
an independent randomized rounding is feasible, i.e., that yi1 + · · · + yik = 1, can be
arbitrarily close to 1

e . If the number of equations of type (1) is large, this yields an
exponentially small success probability.

The solution is to pick one of the variables xi1 , . . . , xik with probability given by
its value in the relaxation, and set this variable to one and all others to zero. Thus
the rounding is not done independently, but subject to the constraint that exactly
one variable receives the value of one. A recent work of Srinivasan [30] extend this to
constraints where sums of variables are required to have a particular value other than
one.

Another paper on nonindependent roundings is Bertsimas, Teo, and Vohra [6].
They use dependent roundings to give alternative proofs of integrality for several
classical polyhedra. They also use “global” dependencies that impose restrictions on
the number of variables rounded up or down. For the integrality gap of MINSAT
with clauses having at most k literals, this reduces the trivial upper bound of 2 to the
sharp bound of 2(1 − 2−k).

Looking at these results on dependent randomized rounding, we feel that the
option of designing the random experiment in such a way that it reflects the structure
of the underlying problem has not been exploited sufficiently. In this paper we try to
move a step forward in this direction. We impose dependencies that are not necessary
in the sense of feasibility but that are helpful in minimizing our objective function
d(A,B). For the rounding problem studied in the present paper, this improves the
bound of 0.82944|R| obtained by independent randomized rounding to 0.5463|R|.

In addition to the randomized rounding condition for single variables, we impose
dependencies of the type

P

(∑
i∈Ik

yi =

⌊∑
i∈Ik

xi

⌋
+ 1

)
=

{∑
i∈Ik

xi

}
(2)

for some sets Ik (we write {r} := r−�r� to denote the fractional part of r). Hence our
roundings are randomized roundings not only concerning the single variables, but also
with respect to the sums

∑
i∈Ik

xi.
2 By choosing suitable dependencies, we obtain

the above mentioned result.
We also consider the question of what dependencies can be realized. More for-

mally, we ask how the sets Ik have to be chosen such that for all values of the input
variables a randomized rounding satisfying (2) exists. Surprisingly, there is a simple
characterization: Such roundings exist if and only if the hypergraph consisting of the
sets Ik is totally unimodular. Of course, with this characterization at hand, the search
for suitable dependency sets is much easier.

2The dependencies (1) used in [23] actually are a special case of this type where it is also required
that (in the notation of (2))

∑
i∈Ik

xi = 1 hold.
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2. Independent randomized rounding. For a number x we write �x� for
the largest integer not exceeding x; �x� for the smallest, being not less than x; and
{x} := x− �x� for the fractional part of x. We say that some random variable X is a
randomized rounding of x if Pr(X = �x� + 1) = {x} and Pr(X = �x�) = 1 − {x}. In
particular, if x ∈ [0, 1], we have Pr(X = 1) = x and Pr(X = 0) = 1 − x.

We first analyze what can be achieved with independent randomized rounding.
We say that B is an independent randomized rounding of A if each entry bij is a
randomized rounding of aij and all these roundings are mutually independent. Let
us remark that we do not expect this to be a competitive approach for the digital
halftoning problem. In fact, this idea was experimented with already in the 1950s by
Goodall [13] (see also Roberts [24]), long before the seminal work of Raghavan and
Thompson. At that time, this was known under the name thresholding with white
noise or random dither.

We use the result below both to estimate the effect of adding dependencies to the
rounding process and in the proofs of some of our later results. Note that the proof
is different from typical randomized rounding applications: Since the boxes are small,
using a large deviation bound makes no sense, and one has to compute the expected
error exactly.

Theorem 2.1. Let A ∈ [0, 1]m×n, B be an independent randomized rounding
of A, and B∗ be an optimal rounding of A (that is, d(A,B∗) is minimal among all
roundings of A). Then

E(d(A,B)) ≤ 0.82944|R|,

E(d(A,B)) ≤ 0.75|R| + d(A,B∗).

Proof. By linearity of expectation, E(d(A,B)) =
∑

R∈R E(d(AR, BR)) =
∑

R∈R
E(|ΣAR − ΣBR|). Hence our analysis is reduced to the rounding problem of a single
box R. The expected rounding error of a box

(
a1 a2

a3 a4

)
is

f(a1, a2, a3, a4) =
∑
S⊆[4]

∏
i∈S

ai
∏
i/∈S

(1 − ai)

∣∣∣∣∣∣|S| −
∑
i∈[4]

ai

∣∣∣∣∣∣ .
Let a1, . . . , a4 ∈ [0, 1] such that f(a1, a2, a3, a4) is maximal. Assume a1 < a2. Let

0 < ε ≤ 1
2 (a2 − a1). Then

f(a1, a2, a3, a4) < f(a1 + ε, a2 − ε, a3, a4)(3)

is easily computed, contradicting the maximality of f(a1, a2, a3, a4). Hence a1 ≥ a2.
We have f(a1, a2, a3, a4) = f(aσ(1), aσ(2), aσ(3), aσ(4)) for all a1, . . . , a4 ∈ [0, 1] and all
permutations σ ∈ S4. Thus we conclude that ai = aj for all i, j ∈ [4]. Finally, we only
need to check that f : [0, 1] → R; a 
→ f(a, a, a, a) never exceeds 0.82944 = f(0.4).
This is not hard to see, as f is piecewise a polynomial of degree 5.

For an arbitrary number x denote by d(x,Z) := min{x − �x� , �x� − x} its dis-
tance to the integers. Obviously,

∑
R∈R d(ΣAR,Z) is a lower bound for the opti-

mal error minB∗ d(A,B∗). Analyzing f̃ : [0, 1]4 → R defined by f̃(a1, a2, a3, a4) =
f(a1, a2, a3, a4) − d(a1 + a2 + a3 + a4,Z) in a similar manner as above yields that f̃
is bounded from above by 0.75. This shows the second bound of Theorem 2.1.

The two bounds of Theorem 2.1 are tight, as shown by matrices with all entries
0.4 and 0.5, respectively.
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3. Nonindependent randomized rounding. In this section we improve the
previous bounds by adding some dependencies to the rounding process. We start with
an elementary approach called joint randomized rounding, which reduces the chance
that neighboring matrix entries are both rounded in the wrong way. This leads to a
first improvement in Corollary 3.3. We then add further dependencies leading to our
final bound.

3.1. Joint randomized rounding.
Definition 3.1 (joint randomized rounding). Let a1, a2 ∈ [0, 1]. We say that

(b1, b2) is a joint randomized rounding of (a1, a2) if
(i) for all i ∈ [2], bi is a randomized rounding of ai;
(ii) b1 + b2 is a randomized rounding of a1 + a2.
It is clear that joint randomized roundings exist for all a1, a2 ∈ [0, 1]: Define

(b1, b2) through

Pr(b1 = 1 ∧ b2 = 0) = a1,

Pr(b1 = 0 ∧ b2 = 1) = a2,

Pr(b1 = 0 ∧ b2 = 0) = 1 − a1 − a2

in the case a1 + a2 ≤ 1, and

Pr(b1 = 1 ∧ b2 = 0) = 1 − a2,

Pr(b1 = 0 ∧ b2 = 1) = 1 − a1,

Pr(b1 = 1 ∧ b2 = 1) = a1 + a2 − 1

in the case a1 + a2 > 1. The next lemma shows that two joint randomized roundings
are superior to four independent randomized roundings in terms of the rounding error.

Lemma 3.2. Let A = (a11, a12, a21, a22) be a box. Let (b11, b12) be a joint ran-
domized rounding of (a11, a12), and (b21, b22) one of (a21, a22) independent of the first.
Set B = (b11, b12, b21, b22). Let B∗ be an optimal rounding of A. Then

E(d(A,B)) ≤ 16
27 ≤ 0.5926,

E(d(A,B)) ≤ 0.5 + d(A,B∗).

Proof. b11 + b12 is a randomized rounding of a11 +a12, and the same holds for the
second row. Hence all we have to do is to bound the expected deviation of a sum of
two independent randomized roundings from the sum of the original values. We show
that g : [0, 1]2 → R defined by

g(x, y) := xy(2 − x− y) + (x(1 − y) + (1 − x)y)|1 − x− y|
+ (1 − x)(1 − y)(x + y)

never exceeds 0.5926. As in the proof of Theorem 2.1, we find that g(x, y) is maximal
for x = y. Maximizing x 
→ g(x, x) is straightforward and yields maxima at (1

3 ,
1
3 )

and (2
3 ,

2
3 ), both having objective value 16

27 ≤ 0.5926. The second bound follows from
maximizing g̃ defined by g̃(x, y) := g(x, y) − d(x + y,Z).

The bounds in Lemma 3.2 are sharp, as shown by matrices having a11 + a12 =
a21 + a22 = 1

3 and a11 + a12 = a21 + a22 = 1
2 , respectively. Plastering the grid

with independent joint randomized roundings already yields a first improvement over
independent randomized rounding, as follows.
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Corollary 3.3. Let A ∈ [0, 1]m×n. Compute B ∈ {0, 1}m×n by indepen-
dently obtaining (bi,2j−1, bi,2j) from (ai,2j−1, ai,2j) by joint randomized rounding for
all i ∈ [m], j ∈ [n2 ], and also independently obtaining bin from ain, i ∈ [m], by usual
randomized rounding if n is odd. Then

E(d(A,B)) ≤ 0.7111|R|,
E(d(A,B)) ≤ 0.625|R| + d(A,B∗),

where B∗ shall be an optimal rounding of A.
Proof. At least half of the boxes, namely all Rij such that j is odd, are rounded in

the manner of Lemma 3.2. The remaining boxes contain four independent randomized
roundings. Thus

E(d(A,B)) ≤ 1
2

16
27 |R| + 1

20.82944|R| ≤ 0.7111|R|,
E(d(A,B)) − d(A,B∗) ≤ 1

20.5|R| + 1
20.75|R| ≤ 0.625|R|,

by Theorem 2.1 and Lemma 3.2.

3.2. Block randomized rounding.
Definition 3.4 (block randomized rounding). Let A = (a11, a12, a21, a22) be a

box. We call B = (b11, b12, b21, b22) a block randomized rounding of A if
(i) each single entry of B is a randomized rounding of the corresponding entry

of A; i.e., Pr(bij = 1) = aij and Pr(bij = 0) = 1 − aij for all i, j ∈ [2];
(ii) each pair of neighboring entries has the distribution of the corresponding joint

randomized rounding; i.e., in addition to (i) we have for all (i, j), (i′, j′) ∈
[2] × [2] such that either i �= i′ or j �= j′,

Pr(bij + bi′j′ = �aij + ai′j′� + 1) = {aij + ai′j′},
Pr(bij + bi′j′ = �aij + ai′j′�) = 1 − {aij + ai′j′};

(iii) the box in total behaves like a randomized rounding; i.e., we have

Pr(ΣB = �ΣA� + 1) = {ΣA},
Pr(ΣB = �ΣA�) = 1 − {ΣA}.

Lemma 3.5. Let B be a block randomized rounding of a 2 × 2 matrix A, and B∗

an optimal rounding of A. Then

E(d(A,B)) ≤ 0.5,

E(d(A,B)) ≤ 0.125 + d(A,B∗).

Proof. This follows as a direct consequence of item (iii) of the definition.
Both bounds are sharp, as demonstrated by matrices A such that {

∑
A} = 1

2 and
{
∑

A} = 1
4 , respectively. The interesting point is that block randomized roundings

always exist. In fact, even more complicated roundings exist, as shown by the following
definition and lemma.

Definition 3.6 (continuous block randomized rounding). Let A ∈ [0, 1]m×n.
We say that B is a continuous block randomized rounding of A if

(i) for all i ∈ [m2 ], j ∈ [n − 1], R := {2i − 1, 2i} × {j, j + 1}, B|R is a block
randomized rounding of A|R;

(ii) if m is odd, then for all j ∈ [n − 1], (bm,j , bm,j+1) is a joint randomized
rounding of (am,j , am,j+1) as in Definition 3.1;

(iii) bi,j is mutually independent of all bi′,j′ such that �i/2� �= �i′/2�.
Lemma 3.7. For any A ∈ [0, 1]m×n, a continuous block randomized rounding B

of A exists and can be computed in linear time.
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Proof. We may assume that m is even. If not, add an extra row to A with all
entries zero, compute B as a continuous block randomized rounding of this matrix,
and note that B without the last row—which will be all zero—is a continuous block
randomized rounding of A.

We propose the following randomized algorithm:
Input: A = (aij) ∈ [0, 1]m×n.
Output: B = (bij) ∈ {0, 1}m×n, a continuous block randomized rounding of A.
For all odd i ∈ [m] do {

Compute (bi,1, bi+1,1) as a joint randomized rounding of (ai,1, ai+1,1).
For all j ∈ [n− 1] use the fact that (bi,j , bi+1,j) is a joint randomized

rounding of (ai,j , ai+1,j) to compute (bi,j+1, bi+1,j+1) such that BRij

is a block randomized rounding of ARij}.
Clearly, the algorithm is correct if the roundings can be computed efficiently in the

inner loop. To simplify notation, we assume i = 1 and j = 1. Let a11, a12, a21, a22 ∈
[0, 1]. Assume that (b11, b21) is a joint randomized rounding of (a11, a21). In the
remainder of this proof we show that there is a rounding (b12, b22) of (a12, a22) such
that (b11, b12, b21, b22) is a block randomized rounding of (a11, a12, a21, a22).

Set s := a11 + a12 + a21 + a22. We first show that it is enough to consider
the case s ≤ 2. Assume s > 2. Let a′ij := 1 − aij for all i, j ∈ [2] as well as
b′11 = 1 − b11 and b′21 = 1 − b21. Then a′11 + a′12 + a′21 + a′22 < 2 and (b′11, b

′
21) is a

joint randomized rounding of (a′11, a
′
21). Let (b′12, b

′
22) be such that (b′11, b

′
12, b

′
21, b

′
22)

is a block randomized rounding of the corresponding a′ values. Set b12 := 1 − b′12
and b22 := 1 − b′22. Now (b11, b12, b21, b22) is easily shown to be a block randomized
rounding of (a11, a12, a21, a22).

Hence, from now on let s ≤ 2. We distinguish a number of cases.
Case 1. s ≤ 1. If b11 = 1 or b21 = 1, then set b12 := 0 and b22 = 0. Otherwise

choose b12 and b22 with probabilities

Pr(b12 = 1 ∧ b22 = 0) = a12

1−a11−a21
,

Pr(b12 = 0 ∧ b22 = 1) = a22

1−a11−a21
,

Pr(b12 = 0 ∧ b22 = 0) = 1 − a12+a22

1−a11−a21
.

We compute that (b11, b12, b21, b22) is a block randomized rounding. Note that the
“otherwise” case occurs only if b11 + b21 = 0. Since (b11, b21) is a joint randomized
rounding of (a11, a21), this happens with probability 1 − a11 − a21. Hence the prob-
ability that b12 becomes 1 is this probability of 1 − a11 − a21 times the probability
that b12 becomes 1 in the “otherwise” case, which is a12/(1 − a11 − a21). Hence
Pr(b12 = 1) = a12, as required. Similarly, the remaining probabilities are proven to
be correct.

Case 2. 1 < s ≤ 2 and aij + ai′j′ ≤ 1 for all i, i′, j, j′ ∈ [2] such that either i = i′

or j = j′. We compute b12 and b22 according to the rule

If b11 + b21 = 0

then set b12 := 1 with probability a12

(a12+a22)
;3 set b22 := 1 − b12

else if b11 = 1

then b12 := 0; set b22 := 1 with probability a22(s−1)
(a12+a22)a11

else if b21 = 1

then b22 := 0; set b12 := 1 with probability a12(s−1)
(a12+a22)a21

.

3We use the phrase “set y := 1 with probability p” to describe these actions: Generate a number
r ∈ [0, 1] uniformly at random. If r ≤ p, set y := 1; else set y := 0.
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Using the fact that (b11, b21) is a joint randomized rounding of (a11, a21), we
compute exemplary

Pr(b12 + b22 = 1) = Pr(b11 + b21 = 0) + Pr(b11 = 1) Pr(b22 = 1 | b11 = 1)

+ Pr(b21 = 1) Pr(b22 = 1 | b21 = 1)

= (1 − a11 − a21) + a11 ·
a22(s− 1)

(a12 + a22)a11
+ a21 ·

a12(s− 1)

(a12 + a22)a21

= a12 + a22.

Remaining cases. Let us call e = (i, j, i′, j′) ∈ [2]4 an edge if either i = i′ or
j = j′. We call e heavy if aij + ai′j′ > 1 holds. Exploiting symmetry, we continue
this case distinction, treating separately three cases such that there is one heavy edge
and two cases such that there are two (intersecting) heavy edges. None of these cases
is particularly difficult. In fact, the conditional probabilities arising are uniquely
determined; hence working them out is an easy exercise.

Unfortunately, we could not find a more concise way of computing these round-
ings. But this is more or less an aesthetic problem: Concerning computing times, a
division into many simple cases is rather preferable. Assuming the remaining cases
proven, we have given a linear time algorithm for computing continuous block ran-
domized roundings.

We shall first analyze the error of continuous block randomized roundings and
then turn to the computational aspects of this approach. We use the following variant
of the Chernoff inequality, which can be derived, for example, from Appendix A of
Alon and Spencer [1].

Lemma 3.8. Let X1, . . . , Xr be mutually independent random variables such that
each two values of a fixed Xi differ by no more than d. Let X =

∑
i∈[r] Xi. Then

Pr(X > E(X) + ε) < exp

(
−2ε2

d2r

)

holds for all ε ≥ 0.

Theorem 3.9. Let B be a continuous block randomized rounding of A ∈ [0, 1]m×n.
Then

(i) the expected rounding error satisfies E(d(A,B)) ≤ 0.5463|R|;
(ii) if B∗ is an optimal rounding, then E(d(A,B)) − d(A,B∗) ≤ 0.3125|R|;
(iii) for all ε > 0, Pr

(
d(A,B) > E(d(A,B)) + ε|R|

)
< 3 exp(− 1

6ε
2(m− 3)).

Proof. At least a half of all boxes (those Rij where i is odd) are block randomized
roundings. The remaining boxes contain two independent joint randomized roundings.
Thus Lemmas 3.2 and 3.5 yield the bounds (i) and (ii):

E(d(A,B)) ≤ 1

2
· 16

27
|R| + 1

2
· 1

2
|R| =

59

108
|R|,

E(d(A,B)) − d(A,B∗) ≤ 1

2
· 1

2
|R| + 1

2
· 1

8
|R| =

5

16
|R|.

To prove the large deviation bound, let Xi =
∑n−1

j=1 d(ARij , BRij ) for i ∈ [m− 1].
Then Xi is a nonnegative random variable bounded by Xi ≤ 2(n− 1). Note that Xi

is mutually independent of all Xi′ such that |i − i′| ≥ 3. For k ∈ [3] let Ik = {i ∈
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[m− 1] | i ≡ k (mod 3)} and Yk =
∑

i∈Ik
Xi. From Lemma 3.8 we conclude

Pr(d(A,B) > E(d(A,B)) + ε(n− 1)(m− 1))

≤ Pr(∃k ∈ [3] : Yk > E(Yk) + ε(n− 1)|Ik|)

<
∑
k∈[3]

exp

(
−2ε2(n− 1)2|Ik|2

4(n− 1)2|Ik|

)

≤ 3 exp

(
−1

6
ε2(m− 3)

)
.

In the proof we estimated the rounding error by the worst case rounding errors
for the two cases of joint and block randomized rounding. Both worst cases cannot
occur simultaneously in all corresponding 2 × 2 boxes. In his diploma thesis [25],

Schnieder shows that, for the matrix A with all entries 4−
√

10
6 ≈ 0.1396, a continuous

block randomized rounding B satisfies E(d(A,B)) = 40
√

10−112
27 |R| ≈ 0.536708|R|. In

fact, this is asymptotically the worst case, as a tedious analysis reveals.
For the same reason, the relative bound is not sharp. Again the loss is not

too large: Let A be such that aij = 0.4 if i ≡ 1, 2 (mod 4), and aij = 0.6 if i ≡
3, 4 (mod 4). Then E(d(A,B)) = 0.3|R|+d(A,B∗), where B∗ is an optimal rounding
of A.

The large deviation bound (iii) displays one disadvantage of nonindependent ran-
domized rounding. Due to the dependencies, the rounding error cannot be written as
the sum of Ω(|R|) independent random variables. One might think that this prob-
lem could be overcome by replacing the Chernoff bound by martingale inequalities.
The following example shows that the problem of the errors d(ARij

, BRij
) not being

independent is “real.”
Let A ∈ {0, 1

2}4×n such that aij = 0 if and only if i ∈ {2, 3} and j is even. Let B
be a continuous block randomized rounding of A. Then B is completely determined
by b11 and b41. In particular, we have d(A,B) = 2

3 |R| if b11 = b41, and d(A,B) = 1
3 |R|

if b11 �= b41. Note that both events occur with probability 1
2 each.

3.3. Algorithmic properties of continuous block randomized rounding.
Computing matrix roundings with the randomized approach above has some note-
worthy advantages.

First, it is fast. Computing (bi,j+1, bi+1,j+1) in Lemma 3.7 takes constant time.
Therefore the whole matrix rounding can be done in linear time. The problem of
computing time can be further addressed with parallel computing (and this is actu-
ally an issue when discussing digital halftoning algorithms). Since the roundings of
the 2 × n double-rows are independent, it is no problem to assign them to different
processors. From the viewpoint of application to digital halftoning, these points are
crucial improvements over the algorithm of [2], which has roughly quadratic time
complexity (ignoring a polylogarithmic factor). As stated in [2], this is too slow for
high-resolution images.

Our algorithm can be derandomized with the method of conditional probabilities.
Since the arising conditional probabilities can be computed efficiently, we do not
need pessimistic estimators. The computation of the conditional probabilities can be
arranged in such a way that the resulting algorithm has linear time complexity. We
refer to Srivastav [31] for a recent survey on derandomization issues.

Another advantage is diversity. Suppose that we do not want to find a good
rounding with respect to the 2× 2 boxes, but instead with respect to 3× 3 boxes (or
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with respect to both). We currently have no hint of whether the error with respect to
these sets is a better measure for the visual quality of the resulting digital halftoning,
but it seems plausible to try this experimentally. Hence we need an algorithm to
compute such roundings.

The algorithm of Asano et al. seems not to work very well for this problem. The
roundings computed by their algorithm may have error up to (1.5−9ε)|R| with respect
to the 3 × 3 boxes. This is shown by a matrix A with entries 1

6 − ε only, which may
be rounded to the all-zero matrix. We are also pessimistic that their approach, in
general, can be extended to 3 × 3 boxes or other larger structures.

In contrast to these difficulties, nonindependent rounding does very well: We may
even use a similar rounding as before: Assuming m,n even for simplicity, compute B
from A by letting BRij be a block randomized rounding of ARij independently for all
odd i ∈ [m−1] and odd j ∈ [n−1]. We call such an A an independent block randomized
rounding. Now each 3 × 3 box contains exactly one block randomized rounding, two
joint randomized roundings, and one single randomized rounding. Since the four
values of the block randomized rounding in total behave like a single randomized
rounding, as do the two values of each joint randomized rounding, the expected error
of a 3 × 3 box is just given by Theorem 2.1. We have the following result.

Theorem 3.10. With respect to the family R3 of 3 × 3 boxes, an independent
block randomized rounding B of A has expected error dR3

(A,B) ≤ 0.82944|R3|.
We presented Theorem 3.10 to demonstrate how easily the ideas of this section can

be applied to other rounding problems as well. There are different nonindependent
randomized roundings achieving slightly better bounds. The reader is encouraged to
try to find some on his own. The following characterization might be helpful for this
purpose.

4. Proof of the characterization. In this section we put the results presented
previously into a more general framework and prove the characterization proposed in
the introduction. As should be clear by now, we are looking for randomized roundings
that are also “good” with respect to some sets (i.e., sums) of variables. It is convenient
to describe such structures through hypergraphs: A hypergraph is a pair H = (V, E)
such that V is a finite set and E ⊆ 2V . The elements of V are called vertices, and
those of E hyperedges or edges for short. In our setting, V will always be some index
set for the variables, and E contains those sets of variables on which we want our
roundings to be “good.”

Definition 4.1. Let H = (I, E) be a hypergraph. Let xi ∈ R for i ∈ I. Let
yi, i ∈ I, be random variables. For E ⊆ I set xE :=

∑
i∈E xi and yE :=

∑
i∈E yi. We

call yE a randomized rounding of xE if

Pr(yE = �xE� + 1) = {xE},
Pr(yE = �xE�) = 1 − {xE}

holds. We say that (yi)i∈I is a randomized rounding of (xi)i∈I with respect to the de-
pendency hypergraph H (or a randomized H-rounding) if yE is a randomized rounding
of xE for all E ∈ E and yi is a randomized rounding of xi for all i ∈ I.

In this language, continuous block randomized roundings are randomized round-
ings with respect to the hypergraph H = ([m] × [n], E) and

E = {Rij | i ∈ [m− 1] odd, j ∈ [n− 1]}
∪ {{(i, j), (i, j + 1)} | i ∈ [m], j ∈ [n− 1]}
∪ {{(i, j), (i + 1, j)} | i ∈ [m− 1] odd, j ∈ [n]}.
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A hypergraph is said to be totally unimodular if its incidence matrix is totally
unimodular. Recall that a matrix is totally unimodular if each square submatrix has
determinant −1, 0, or 1. There is a rather complicated recursive characterization
for totally unimodular matrices and hypergraphs due to Seymour [26, 27]. For our
purposes, the following easier, though fundamental, result is sufficient.

Theorem 4.2 (see Ghouila-Houri [12]). A hypergraph H = (V, E) is totally
unimodular if and only if for each subset V0 of vertices there is a partition V1∪̇V2 = V0

such that any hyperedge E satisfies
∣∣|E ∩ V1| − |E ∩ V2|

∣∣ ≤ 1.
Let us give some intuition to this result. For V0 ⊆ V , H|V0

= (V0, {E ∩ V0 |E ∈
E}) is an induced subhypergraph of H. We call a hypergraph H = (V, E) perfectly
balanced if there is a partition V1∪̇V2 = V of its vertex set such that

∣∣|E ∩ V1| −
|E ∩ V2|

∣∣ ≤ 1 holds for all E ∈ E , i.e., apart from single vertices of odd cardinality
hyperedges, each hyperedge contains the same number of vertices in V1 and V2. In
this language, the Ghouila-Houri theorem states that H is totally unimodular if and
only if each induced subhypergraph is perfectly balanced. Both from the definition
and (easier) from Ghouila-Houri’s characterization, one can deduce that H is totally
unimodular if and only if (V, E ∪{{v} | v ∈ V }) is totally unimodular. A second result
we use is the following well-known theorem of Hoffman and Kruskal.

Theorem 4.3 (see Hoffman and Kruskal [14]). Let A ∈ R
m×n be a totally

unimodular matrix. Let b, b′ ∈ Z
m and c, c′ ∈ Z

n. Then

{x ∈ R
n | b ≤ Ax ≤ b′, c ≤ x ≤ c′}

is an integral polyhedron.
Hoffman and Kruskal also showed a converse result: An integral matrix A is

totally unimodular if the polyhedron {x ∈ R
n |x ≥ 0, Ax ≤ b} is integral for all

b ∈ Z
m. However, we shall not need that much understanding of integral polyhe-

dra. Basically, it suffices to know the above theorem and the fact that any bounded
polyhedron is the convex hull of its extremal points. Thus for any x ∈ P there are
k ≤ n + 1, w(1), . . . , w(k) ∈ ex(P ), λ1, . . . , λk ∈ [0, 1] such that

∑
�∈[k] λ� = 1 and

x =
∑

�∈[k] λ�w
(�). This is the well-known Carathéodory theorem (see Eckhoff [10]

for a survey).
Theorem 4.4. Let H = (I, E) be a hypergraph. The following two properties are

equivalent:
(i) for all (xi)i∈I there is a randomized H-rounding (yi)i∈I ;
(ii) H is totally unimodular.
Proof. Since the vertex set of H is not relevant, we may conveniently assume that

I = [n]. Let H be totally unimodular and x1, . . . , xn ∈ R. Without loss of generality
(cf. the remark following Theorem 4.2), we may assume that {j} ∈ E for all j ∈ [n].
Let A be an incidence matrix of H; i.e., fix an enumeration E = {E1, . . . , Em} of the
hyperedges and define A = (aij) by aij = 1 if j ∈ Ei, and aij = 0 otherwise. Set
P = {w ∈ R

n | �Ax� ≤ Aw ≤ �Ax�}. By definition, x ∈ P . Since the n × n identity
matrix is a submatrix of A, P is bounded.

Thus, x is a convex combination of the extremal point of P : There are w(1), . . . , w(k)

∈ ex(P ), λ1, . . . , λk ∈ [0, 1] such that
∑

�∈[k] λ� = 1 and x =
∑

�∈[k] λ�w
(�). By

Theorem 4.3, all w(�) are integral, and in our case we even have w
(�)
j ∈ {�xj� , �xj�}.

Define the random variables y1, . . . , yn by setting y = w(�) with probability λ�.
We compute that y1, . . . , yn is a randomized rounding of x1, . . . , xn with respect

to H: Let E = Ei ∈ E . If xE is integral, then (Aw(�))i = xE for all � ∈ [k] by definition
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(a) (b) (c) (d)

...

Fig. 1. Sample diagrams.

of P . Hence yE = (Ay)i is trivially a randomized rounding of xE . Assume that xE is
nonintegral. We have xE =

∑
�∈[k] λ�(Aw(l))i. Set L+

E = {� ∈ [k] | (Aw(�))i = �xE�}.
Since (Aw(�))i ∈ {�xE� , �xE�} for all � ∈ [k], we conclude that {xE} =

∑
�∈L+

E
λ�.

Thus Pr(yE = �xE�) =
∑

�∈L+
E
λ� = {xE}. As yE takes only the two values �xE�

and �xE�, we also have Pr(yE = �xE�) = 1 − {xE}. This shows that y1, . . . , yn is a
randomized H-rounding of x1, . . . , xn.

Now assume that H is not totally unimodular. By Theorem 4.2, some induced
subhypergraph of H has discrepancy at least two; i.e., there is a V0 ⊆ [n] such that
for any 2-partition V1∪̇V2 = V0 there is an E ∈ E such that

∣∣|E ∩ V1| − |E ∩ V2|
∣∣ ≥ 2.

Set xj = 0 for all j ∈ [n] \ V0 and xj = 1
2 for all j ∈ V0. Let y1, . . . , yn be a

randomized H-rounding of x1, . . . , xn. Then yj = 0 holds with probability one for
all j ∈ [n] \ V0 by the definition of randomized H-rounding. For j ∈ V0, yj may
take only the values 0 and 1. Let ỹ be a possible outcome of the underlying random
experiment, that is, an image of the random variable y having probability greater
than zero. Let V1 = {j ∈ V0 | ỹj = 0} and V2 = {j ∈ V0 | ỹj = 1}. Let E ∈ E such
that

∣∣|E ∩V1| − |E ∩V2|
∣∣ ≥ 2. Then ỹE = |E ∩V2|, whereas xE = 1

2 |E ∩V0|. Thus we
have |xE − ỹE | ≥ 1. Since |xE − yE | ≥ 1 holds with nonzero probability, yE is not a
randomized rounding of xE . This is a contradiction of our assumption that y1, . . . , yn
is a randomized H-rounding of x1, . . . , xn.

The use of linear programming ideas to deal with dependencies resembles the
work of Koller and Megiddo [18] and Karger and Koller [15]. However, these results
are of a completely different nature. There, the aim is to cope with dependencies,
since they can lead to smaller sample spaces, whereas we try to use dependencies.
There, linear programming ideas are used to transform a given sample space satisfying
some dependencies into a smaller one where the dependencies still hold, whereas we
construct a sample space directly from a set of given dependencies. Nevertheless,
all results indicate that linear programming is a useful framework when dealing with
probabilistic constraints.

5. Alternative randomized H-roundings. In this section we investigate what
can be achieved by using different randomized H-roundings for the approximation
problem of Asano et al. [2]. We omit the proofs for reasons of space, but let us stress
that these results depend heavily on Theorem 4.4: It allows us to decide whether a
randomized H-rounding exists or not by simply checking whether H is totally uni-
modular or not. Thus we may postpone the work of designing a rounding algorithm
(and the proof of Lemma 3.7 indicates that this might be quite tedious) until we have
found a dependency hypergraph H yielding suitable bounds.

We denote the hypergraphs considered through simple diagrams. We assume
that all variables are randomized roundings. If two variables form a joint randomized
rounding, we denote this by connecting the respective nodes by an edge (see Fig-
ure 1(a)). If four variables are rounded together (i.e., they form a hyperedge in H),
we connect them by a square (Figure 1(b)). Thus a single block randomized rounding
is depicted by the diagram in Figure 1(c).
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(a) (b)

(c) (d)

(e) (f) (g) (h) (i)

...

...

......

...

Fig. 2. Totally unimodular hypergraphs.

Table 1

Error bounds of the H-roundings depicted in Figure 2.

Absolute Relative

(a) 0.8295 0.75
(b) 0.7111 0.625
(c) 0.75 0.5926
(d) 0.5926 0.5
(e) 0.6518 0.5625
(f) 0.6287 0.4688
(g) 0.5695 0.4063
(h) 0.5493 0.3125
(i) 0.5617 0.4166

We shall always assume that the grid is plastered with the pattern, and further,
that nodes not connected through a series of hyperedges are rounded independently.
Hence Figure 1(c) also denotes the independent block randomized rounding inves-
tigated in Theorem 3.10. Repeated overlapping patterns will be indicated through
(ellipsis) dots. Figure 1(d) thus describes the hypergraph used in section 3.

In Figure 2 we show some totally unimodular hypergraphs. In Table 1 we give
upper bounds for the errors inflicted by applying the corresponding H-roundings to
Asano’s approximation problem. The middle column contains an upper bound for
the expected absolute error E(d(A,B)), and the right column an upper bound for
the expected loss E(d(A,B))−d(A,B∗) compared to an optimal rounding B∗. These
upper bounds are derived using the methods of section 3. They are either sharp or
close to the optimum.

Table 1 shows several interesting facts. We see that already simple dependen-
cies yield a significant improvement over the independent case (a). Nevertheless, the
right choice of dependencies is important: While (b) and (c) look almost identical—
plastering the grid with independent joint randomized roundings—the resulting error
bounds are not the same. Better bounds can be achieved by larger structures than
just independent joint randomized roundings. On the other hand, structures larger
than (h) either yield worse bounds, as in (i), or cannot be realized, since the corre-
sponding hypergraph is not totally unimodular. Some examples of the latter type are
shown in Figure 3. As Figure 3(c) shows, the dependencies that all boxes are already
randomized roundings are not realizable. Thus a nonindependent randomized round-
ing having E(d(A,B)) ≤ 1

2 |R| seems not to exist. Currently we cannot determine the
precise value between our upper bound of 0.5463|R| and the lower one of 1

2 |R|.
There is some caution necessary in viewing rows (e), (g), and (i). These three

patterns generate R-boxes that are not sums of independent randomized roundings.
In (e) the error inflicted in the box containing the four nodes connected in a cyclic
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(a)

(b)

(c)

Fig. 3. Hypergraphs that are not totally unimodular.

manner depends on the precise way that this rounding is generated. For our estimate
we assumed that the nonintersecting joint randomized roundings display neither a
positive nor a negative correlation. This is justified by the fact that a rounding exists
in which the errors are in fact likely to cancel (namely, (f)). An analogous statement
holds for (g) but not for (i). Here Figure 3 tells us that further restrictions on the
random process are not possible. Therefore our upper bound here assumes that we
have a bad correlation among the horizontally adjacent nodes that do not form a joint
randomized rounding.

Note that such negative correlation can indeed occur: Assume three nodes 1, 2,
and 3 such that 1 and 2 as well as 2 and 3 form a joint randomized rounding. Let
x1 = 1 − x2 = x3. Then any nonindependent randomized rounding with respect to
these dependencies has y1 = y3. Thus the error |(x1 + x3) − (y1 + y3)| does not have
the distribution of two independent randomized roundings, but a worse one, namely,
twice that of a single randomized rounding.

6. Summary and outlook. This paper describes a new approach in random-
ized rounding. By imposing suitable dependencies, we improve the expected rounding
error significantly. For a problem arising in digital halftoning, this improves previ-
ous algorithms with respect to both run-time and rounding error. In particular, we
presented the first algorithm that solves this problem fast enough for practical appli-
cation, namely, in linear time.

On the methodological side, this paper shows that nonindependent randomized
rounding can be very effective if one succeeds in finding the right dependencies. To
this end, we give a complete characterization of realizable dependencies.

From this work, some open questions arise:

• What is the true approximability of the matrix rounding problem suggested
by Asano et al., i.e., can we close the gap between the lower bound of 0.5|R|
and the upper bound stemming from our methods?

• For which further rounding problems is it possible to translate part of the
structure of the problem into suitable dependencies for the random experi-
ment?

• Engineering aspects: How do the roundings computed by our algorithm look
to the human eye? Asano et al. proposed the idea that low error roundings
with respect to 2 × 2 boxes look nice, but of course they could check this
only with their algorithm. Therefore, theoretically, our roundings might even
look worse. Coming from the other end, one might (and actually should)
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investigate other error measures. Using the ideas of this paper, one may also
design rounding algorithms that optimize different error measures stemming
from larger boxes or even completely different geometric structures. It could
well be that such error measures are better suited to distinguishing good
halftonings from poor ones.

Appendix. This paper is intended to be of a theoretical nature. Since one of the
referees felt that readers from a more applied background would severely miss images
and experimental data, we do our best to provide some in this appendix.

We applied the three classical algorithms mentioned in the introduction, together
with independent randomized rounding and our algorithm, to several images. All
image data used 1 byte per pixel, resulting in an integer value between 0 and 255.
We used two types of input data: Real-world images taken with a digital camera (not
shown in this paper) and artificial images produced with commercial imaging software.
Naturally, the first type is more suitable to estimating how well the algorithm performs
in real-world applications, whereas the second is better suited to demonstrating the
particular strengths and weaknesses of an algorithm.

The images displayed in Figure 4 are obtained from halftoning an artificially
generated image of size 160×160 pixels with the standard algorithms of error diffusion,
ordered dither, dot diffusion, random dither (independent randomized rounding), and
our nonindependent randomized rounding algorithm. In all cases, the standard form
of the algorithms has been used. It is known that some algorithms produce better
outputs if the inputs are subject to some preprocessing. Since such data is mainly
available for the algorithms of error diffusion and ordered dither, we believe that an
unbiased comparison might be easier without any preprocessings. As indicated in the
first paragraph, the intention of this appendix is merely to give the interested reader
an idea of how our ideas could work in practice rather than giving evidence that they
are competitive with previous algorithms.

Figure 4 shows that the randomized nature of our algorithm has a positive effect
on the generation of unwanted structures and grains. Unwanted structures include all
kinds of regular patterns like snakes, crosses, or labyrinths that attract objectionable
attention. In particular, the error diffusion and ordered dither algorithms tend to
produce those.

Grains emerge if in dark (respectively, light) parts of the picture two or more white
(respectively, black) pixels touch and thus build a recognizable block. Randomized
rounding is very vulnerable to this problem, which is why it is not used in practice for
digital halftoning. On the other end, we find error diffusion, which hardly produces
any grains. It seems that algorithms that are good concerning graininess tend to
produce unwanted structures and vice versa. In this sense, nonindependent random-
ized rounding could be a fair compromise: Being by far less grainy than independent
randomized rounding, it is unlikely to produce unwanted structures.

We also computed the actual errors generated by the algorithms on several input
images (on roughly 300,000 pixels). The averages values are given in Table A.1. The
error measures considered are the following:

Total error: The absolute difference in the average intensity of input and output
image 1

mn |
∑

i,j(aij − bij)|.
2 × 2 error: The average error in the 2 × 2 boxes, that is, 1

|R|d(A,B), where

d(A,B) is the error measure proposed by Asano et al.

3 × 3 error: The average error in the 3 × 3 boxes.
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(a) (b)

(c) (d)

(e)

Fig. 4. Halftoning results of different standard algorithms and our own: (a) error diffusion,
(b) ordered dither, (c) dot diffusion, (d) random dither (randomized rounding), (e) nonindependent
randomized rounding.
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Table A.1

Experimental average errors of the algorithms.

Method Total 3 × 3 2 × 2
Error diffusion 0.00027 0.45 0.35
Ordered dither 0.00052 0.65 0.34
Dot diffusion 0.00024 0.65 0.43

Randomized rounding 0.00056 0.96 0.64
Nonindependent RR 0.00034 0.60 0.40

As can be seen, all algorithms change the average intensity only minimally. Con-
cerning the errors in the 2× 2 and 3× 3 boxes, the case is more interesting. Whereas
for the 2×2 boxes error diffusion is slightly, and nonindependent randomized rounding
is significantly, worse than the best performer ordered dither, things change for 3× 3
boxes. Here error diffusion takes the lead, followed by nonindependent randomized
rounding. Together with the visual quality of the output images, this poses the ques-
tion of whether larger boxes might yield a better similarity measure. The fact that
error diffusion performs relatively well also asks for theoretical bounds for the errors
generated with respect to the 2 × 2 boxes. Here the inherently sequential nature of
this algorithm seems to impose some difficulties.
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INSTABILITY OF FIFO AT ARBITRARILY LOW RATES IN THE
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Abstract. We study the stability of the commonly used packet forwarding protocol, FIFO (first
in first out), in the adversarial queueing model. We prove that FIFO can become unstable, i.e., lead
to unbounded buffer-occupancies and queueing delays, at arbitrarily low injection rates. In order to
demonstrate instability at rate r, we use a network of size Õ(1/r).

Key words. FIFO, stability, adversarial queueing model

AMS subject classifications. 68M12, 68M20

DOI. 10.1137/S0097539703426805

1. Introduction. In traditional queueing theory, the source which generates
network traffic and the processing times are typically assumed to be stochastic. How-
ever, the growing complexity of network traffic makes it increasingly unrealistic to
model traffic as, say, a Poisson stream. Adversarial queueing theory is a robust and
elegant framework developed by Borodin et al. [9] to address this problem. In this
model, packets are injected into the network by an adversary rather than by a stochas-
tic process. To keep things simple, it is assumed that the route of each packet is given
along with the packet itself. Each edge in the network can forward at most one packet
in one time step. If there are multiple packets waiting to cross the same edge, then we
need a contention resolution protocol to decide which packet goes across and which
packets wait in the queue. The adversary is limited in the following way: over any
window of T consecutive time steps, the adversary can inject at most w+ rT packets
that need to traverse any edge in the network. The parameter r is called the injection
rate and must be less than 1. The parameter w is called the burst-size. Such an
adversary is called a (w, r)-adversary. Once injected, packets follow their routes one
edge at a time until they reach their destination.

Intuitively, the adversary is not allowed to introduce more traffic on average than
r times the capacity of any edge. Thus, there can be no identifiable “hot-spots” in the
system. This model finds the fine middle ground between stochastic arrivals on the
one hand (as in traditional queueing theory), where packet arrival is too predictable,
and completely unconstrained adversaries on the other (as in competitive analysis),
where the adversary is allowed to overload the system.

A packet forwarding protocol is said to be stable against a given adversary and for
a given network if the maximum queue size, as well as the maximum delay experienced

∗Received by the editors April 28, 2003; accepted for publication (in revised form) April 30, 2004;
published electronically December 1, 2004. The instability of FIFO at arbitrarily low rates using
polynomial sized networks was first obtained by [8] and the reduction in diameter was obtained
by [27]. This paper combines the two results.

http://www.siam.org/journals/sicomp/34-2/42680.html
†Department of Computer Science, Stanford University, Stanford CA 94305 (rajatb@stanford.

edu). This author’s research was supported in part by NSF Award 0133968.
‡Department of Management Science and Engineering and (by courtesy) Computer Science, Stan-

ford University, Terman 311, Stanford CA 94305 (ashishg@stanford.edu). This author’s research was
supported by NSF Career Award 0133968.

§Department of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel (zvilo@eng.
tau.ac.il).

318



INSTABILITY OF FIFO 319

by a packet, remain bounded. A packet forwarding protocol is said to be stable at rate
r (or, r-stable) if it is stable against all (w, r)-adversaries and for all networks. It is said
to be universally stable if it is r-stable for all r < 1. Studying the stability of protocols
was the main motivation behind the adversarial queueing theory model. In a seminal
paper, Andrews et al. [5] showed that several natural protocols are universally stable,
but surprisingly, FIFO (first in first out) is not. This is an important observation since
FIFO is by far the most widely used scheduling protocol. It also leaves the following
question open:

Is FIFO r-stable at some rate r > 0, or is FIFO unstable at arbitrarily
low rates?

This is an important question, given the prominence of FIFO as the packet forwarding
protocol for the Internet and other networks, and has been the subject of much study
over the last few years [12, 10, 11, 5, 4, 23, 25, 28]. For several natural protocols other
than FIFO, the corresponding question about the stability threshold in the adversarial
model has already been answered [31]. The problem for FIFO is particularly intriguing
since there is some intuitive evidence for both the existence and the nonexistence of
a stability threshold, due to Bramson [11, 12], arising from two somewhat unrelated
models (more details are given in the related work section). Diaz et al. [23] improved
the threshold of instability for FIFO to 0.83. (The original proof of Andrews et al. [5]
showed instability of FIFO at rate 0.85.) This was further improved by Koukopoulos,
Nikoletseas, and Spirakis [25] to 0.749, and recently Lotker, Patt-Shamir, and Rosen
[28] further improved it to 0.5.

In this paper, we will assume that packet paths are required to be simple.1

1.1. Our result. In this paper, we prove that FIFO can become unstable at
arbitrarily low rates in the adversarial model. This was one of the major remaining
open problems in the field of adversarial queueing theory. In particular, for an arbi-
trarily low injection rate r, we construct a network (with size polynomial in 1/r) and
determine adversarial injections so that FIFO becomes unstable. We then tighten
the size of the network to Õ(1/r). This is quite strong since it even excludes the
possibility that FIFO might be stable at rate O(1/ logc m), where m is the size of the
network and c is a constant.2

The main idea is the construction of a gadget which, assuming certain initial
conditions, allows only a small fraction of packets to pass through it for a long du-
ration. In particular, the fraction of packets which escape is bounded by k/(1 + r)k,
where k is a parameter of the gadget and can be increased arbitrarily. The network
is constructed using this gadget. The adversary works in phases. At the beginning of
a phase, we assume that there are some packets waiting to pass through a column of
gadgets. Using each gadget in the column, more packets are generated, which want
to ultimately traverse a second column. Additional copies of the gadget mentioned
above are used to delay and synchronize these new packets so that, at the end of
the phase, there are more packets waiting to traverse the second column than were
waiting at the first column at the beginning of the phase. Applying this inductively
leads to instability.

While the idea of concatenating gadgets to prove instability has been used before
(most recently by Lotker, Patt-Shamir, and Rosen [28], for example), our gadget and

1Since we will demonstrate the instability of FIFO, any restriction we place on the adversary can
only make our results stronger.

2It is trivial to see that FIFO (in fact, any greedy protocol) is stable at rate 1/m.
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network are quite different from those used in earlier works [11, 5, 31, 28] to prove
instability results. A review of related work is presented below.

1.2. Related work. Andrews et al. [5] proved that rings and DAGs (directed
acyclic graphs) are universally stable networks (i.e., networks for which all greedy
protocols are stable at all rates r < 1). They showed that longest in system (LIS) and
shortest in system (SIS) are universally stable protocols and that FIFO is not uni-
versally stable. In fact, they showed that FIFO can become unstable at rates greater
than 0.85. Several natural protocols such as NTG (nearest to go) and LIFO (last
in first out) have been shown to be unstable at arbitrarily low rates [31]. Goel [22],
Gamarnik [20], and Alvarez, Blesa, and Serna [3] gave a simple and complete charac-
terization of universally stable networks. Diaz et al. [23] improved the threshold of in-
stability for FIFO to 0.83, and Koukopoulos, Nikoletseas, and Spirakis [25] improved
it to 0.749. Lotker, Patt-Shamir, and Rosen [28] further improved the instability
threshold to all rates above 0.5. Like our construction, they used a network obtained
by concatenating parameterized gadgets; of course, their gadget and network are quite
different from ours. They also proved that a network with diameter d is stable at all
rates below 1/d.

For the case when routes are not given by the adversary, Aiello et al. [1] and
Andrews et al. [6] studied routing algorithms which ensure that no edge gets over-
loaded, assuming that the adversary injects packets for which this is feasible. Aiello et
al. [2] have recently initiated the study of stability in the presence of fixed size buffers.
Gamarnik [21] showed that it is undecidable whether a given protocol is universally
stable, for an interesting class of protocols. Feige [18] and Dumas [17] demonstrated
nonmonotonic phenomena in packet and queueing networks, respectively. Andrews [4]
demonstrated the instability of FIFO in session-oriented networks [13, 14].3

Stability of networks has also been studied from a more queueing theoretic view-
point in stochastic networks, where the packets are injected and serviced according
to a stochastic process. Instability in stochastic networks was first demonstrated by
Rybko and Stolyar [30], building on the work of Lu and Kumar [29] and Kumar and
Seidman [26]. The fluid model involves taking the fluid limit of a stochastic pro-
cess. Dai [15] related stability in the fluid model to that in the stochastic model.
Gamarnik [19] proved an analogue of Dai’s result for adversarial networks. Dai and
Prabhakar [16] studied the stability of a scheduling protocol for data switches with
speed-up in the fluid model. Bennett et al. [7] study the bounds on the worst case
delay in a network implementing aggregate scheduling, assuming stochastic arrivals.

Bramson studied the stability of FIFO in two different stochastic models. Building
on earlier work by Kelly [24] and others, Bramson showed that FIFO is stable at all
rates r < 1 under a large class of stationary arrival processes, assuming that the time
for a packet to traverse an edge is an i.i.d. (independently and identically distributed)
exponential random variable [12]. As pointed out in [12], the last assumption is not
critical, and the result also holds for generalized Kelly networks. Quite interestingly,
Bramson [11] also showed that FIFO can become unstable at arbitrarily low rates in
a job-shop scheduling model. Superficially, it would seem that a minor modification
of Bramson’s techniques could imply our result. However, in Bramson’s construction,
the same job can visit the same machine multiple times, and have a different mean
processing time on each visit. In trying to adapt his result to the networking case,

3Whether FIFO is unstable at arbitrarily low rates in the session-oriented model remains an
interesting open problem.
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we run into the problem that different packets queued up at the same link can have
different traversal times. Thus the same link appears to be of different length to
different packets in a queue. To implement this construction directly requires injecting
extra packets to make the link appear “long” to some packets; these extra packets
result in a violation of the rate threshold. Hence, a gadget that can delay packets for
arbitrarily long durations (like ours) seems inevitable. Even given our gadget, it is
not obvious to us how to use a network similar to Bramson’s.

Section 2 describes and analyzes our basic gadget. Section 3 gives the construction
of a network which is unstable at arbitrarily low injection rates. The adversarial
injection patterns are described in section 4. For ease of exposition, we present the
proof in two stages. First, we show a family of networks that can be made unstable at
all rates r > 0. The proof of instability for these networks is simpler to understand,
and is presented in section 5. However, in order to achieve instability at rate r, the
diameter of a network from this family must be Õ(1/r7). We then show (section 6)
another family of networks, which is more involved but which has a tighter diameter
of Õ(1/r).

2. The basic gadget. Section 2.1 describes the topology of the gadget. Section
2.2 talks about a special kind of flow. Finally, in section 2.3 an upper bound on the
number of packets that escape the gadget for this flow is proved.

2.1. The topology of the gadget. The gadget has a parameter k. A k-gadget
has 2k vertices: v1, . . . , vk, w1, . . . , wk. There are four groups of edges:

• input edges, g1, . . . , gk, pointing into v1, . . . , vk, respectively;
• output edges, h1, . . . , hk, pointing out from w1, . . . , wk, respectively;
• load edges, e1, . . . , ek, pointing from vi to wi;
• helper edges, f1, . . . , fk, pointing from wi to vi+1. The i’s wrap around k.

Note that the load and helper edges form a ring with the input and output edges
pointing in and out from alternate nodes. Figure 1 shows an example gadget.

helper edgesload edges

output edges

input edges

...

...

...

Fig. 1. A gadget.

2.2. A special flow. There are two kind of packets in this flow:

1. For each i ∈ 1, . . . , k, packets enter the gadget through gi at rate 1. The
route of a particular packet is

gi, ei, fi, ei+1, fi+1, ei+2, . . . , fi+k−2, ei+k−1, hi+k−1.
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Hence, each packet traverses all the load edges in the gadget. These packets
are referred to as the gadget-traversing packets.

2. For each load edge ei, single edge packets are introduced at a rate r. These
packets are referred to as the internal-gadget packets.

2.3. Upper bound on the leak. We are working here in the discrete model.
However, we will use the notion of the rate at which packets of a particular kind X
arrive at a node, which essentially comes from the fluid model. We can view the rate
as the average number of packets arriving at a node per unit time. Also, whenever we
use the notion of a rate, we clearly specify the time period on which it is applicable.
Rate of leak from a gadget, R, is the sum of the rates at which the gadget-traversing
packets arrive at the source node of an output edge. In the following, we prove an
upper bound for R, assuming the flows mentioned in section 2.2. For proving the
upper bound we use the following property of FIFO.

Remark 2.1. Let e be an edge in the network, and X1, X2, . . . , Xn be n differ-
ent types of packets which arrive at the source node of e at rates R1, R2, . . . , Rn,
respectively. Then the rate at which packets of type Xi traverse e is given by the
expression

min

{
Ri,

Ri∑n
j=1 Rj

}
.

Lemma 2.2. During the time when the special flow is maintained, R ≤ k
(1+r)k

.

Proof. By symmetry, the total rate of arrival of packets at the source node of the
load edges is the same. Let that rate be T :

T = 1 + r + r1 + · · · + rk−1,

where ri is the rate of arrival of packets which have traversed i of the k load edges.
Using Remark 2.1, we obtain r1 = 1/T . Similarly, for all 2 ≤ i ≤ k,

ri =
ri−1

T
=

1

T i
.

Since T ≥ 1 + r at all times, it follows that rk ≤ 1/(1 + r)k. Therefore at all
times,

R = krk ≤ k

(1 + r)k
.

Although the above lemma assumes the fluid model, the same bounds can be
achieved for the discrete model using slightly higher rates. Also the adversarial injec-
tion pattern in this paper is similar to that in the fluid model.

3. The network topology. The network contains three components; the
columns, the connectors, and the shortcuts. We describe each of these in turn, after
first describing the concept of concatenation of gadgets, which is required for each of
these components. In this section and all others, all gadgets would have the same
parameter, k.
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3.1. Concatenating gadgets. A gadget G2 is said to be concatenated to a
gadget G1 if

1. the output edges of G1 act as the load edges of G2, and
2. the load edges of G1 act as the input edges of G2.

Note that more than one gadget can be concatenated to a gadget, and also a
single gadget can be concatenated to more than one other gadget. A chain C =
〈H1, H2, . . . , Hn〉, of length n, is produced by the concatenation of the gadget Hi+1

to the gadget Hi, for 1 ≤ i < n. A bridge B of length l is said to exist between gadgets
G1 and G2 if there exists a chain 〈G1, H1, H2, . . . , Hl, G2〉.

3.2. Columns. The network has two separate columns, C1, C2. A column is a
chain of length α, where α is a parameter which will be specified later.

C1 = 〈C1,1, C1,2, . . . , C1,α〉,

C2 = 〈C2,1, C2,2, . . . , C2,α〉.

3.3. Connectors. There are two sets of connectors, one from C1 to C2 and the
other from C2 to C1. Connectors are bridges of length β between each gadget of a
column and the first gadget of the other column, where β is a parameter which will
be specified later. So, for each C1,i, we have the following bridge:

〈C1,i, D1,i,1, D1,i,2, . . . , D1,i,β , C2,1〉.

Similarly, for each C2,i, we have the following bridge:

〈C2,i, D2,i,1, D2,i,2, . . . , D2,i,β , C1,1〉.

3.4. Shortcuts. Shortcuts are bridges of length 1 from each connector gadget
D1,i,j to C2,1. We refer to the respective shortcut gadgets as E1,i,j . Similar short-
cuts exist between the other set of connector gadgets and C2,1. Figure 2 shows the
schematic of the network topology.

    C1
Column

    C2
Column

Fig. 2. Topology of the network; shortcuts are not shown.

4. The adversarial injection pattern. The adversary introduces two kinds of
flows of packets (in addition to the internal gadget packets): flow through the columns
and flow through the connectors. The description of both assumes the concept of
activation of a gadget and sequential activation of gadgets in a chain, which are
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Fig. 3. Route of a chain-traversing packet.

described next. We will assume that there is a chain 〈G1, G2, . . . , Gp〉. These gadgets
will be activated one after the other.

A packet is considered to be a chain-traversing packet for a chain 〈G1, G2, . . . , Gp〉
if the route of the packet is gadget-traversing for each Gi in the chain (see Figure 3
for an illustration).

4.1. Activation of a gadget.

Precondition. There are t gadget-traversing packets in the queue of each input
edge of the gadget Gi. Also, there is no other packet in any other gadget in the chain.
Moreover, the packets are chain-traversing for the chain 〈Gi, Gi+1, . . . , Gp〉. (We will
slightly modify this condition later.)

Activation. During the activation phase, the adversary introduces internal-gadget
packets at rate r in the gadget Gi. The activation phase lasts for t time steps. Note
that during this phase the internal-gadget packets and the gadget-traversing packets
compete with each other to traverse the load edges of the gadget.

Postcondition. There are t′ < t packets in the queue of each load edge of the
gadget Gi, and there are no other packets in any other gadget. Each packet is chain-
traversing for the chain 〈Gi+1, Gi+2, . . . , Gp〉. Later a lower bound for the quantity
t′ will be presented. In order to ensure that these conditions are met, we modify
the injection in the following way (we essentially use the fact that the routes of all
the packets are predetermined). (1) In order to get rid of internal-gadget packets
which might be interleaved with the chain-traversing packets in the queue (after t
time steps), we make sure that these particular internal-gadget packets are never
introduced. (2) To avoid the case when packets in the queue of the load edges have
other edges, within the gadget Gi, to traverse, we modify the routes of the packets
such that after t time steps, they are simply queued in one of the load edges of Gi,
and the next edge on their route is a load edge of gadget Gi+1. This can be done
since it amounts to merely taking away some of the edges from the path of the packets
and can only reduce the injection rate. (3) We will assume that the routes of all the
packets which escaped the gadget during the t time steps end at gadget Gi itself. This
ensures that there are no packets in the other gadgets. Note that these changes have
no effect on the number of packets queued on a load edge.
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Sequential activation of gadgets. In a chain of gadgets, the postcondition of the
activation of a gadget acts as the precondition for the activation of the concatenated
gadget. Sequential activation of gadgets is the cascading activation of gadgets starting
from some initial chain-traversing packets waiting in the queue of the input edges of
the first gadget.

4.2. Flow through the columns. Time steps are grouped into phases. It is
assumed that at the beginning of an even phase there are s chain-traversing (for
column C1) packets in the queue of each of the input edges of the gadget C1,1. We
show that at the end of the phase there are more than s chain-traversing (for column
C2) packets waiting on each of the input edges of the gadget, C2,1. Similarly, at the
beginning of an odd phase, there are s′ chain-traversing packets in the queue of each
of the input edges of the gadget, C2,1, and at the end of the phase there are more
than s′ chain-traversing packets in the queue of each of the input edges of the gadget,
C1,1. We show packet injections only for the even phases; packet injections for the
odd phases are similar. Applying the above repeatedly leads to instability.

Subphases. Each phase is divided into α subphases. During the ith subphase the
gadget C1,i is activated.

4.3. Flow through the connectors. At the end of subphase i, let there be si
packets in the queue of each of the input edges of C1,i+1. These packets are chain-
traversing for column C1. During the next si time steps (i.e., the subphase i + 1),
rsi/k packets each are introduced into the queue of each input edge of C1,i+1. These
packets are introduced behind the si packets mentioned above. The routes of these
packets are chosen such that they are chain-traversing for the chain

〈D1,i,1, D1,i,2, . . . , D1,i,j , E1,i,j , C2,1, C2,2, . . . , C2,α〉

for some j < β. After si time steps, these packets form the precondition for the
sequential activation of the gadgets in the chain mentioned above. This is because
there are si packets present in the queue of each input edge of C1,i ahead of the newly
injected packets. The routes of the packets are such that at the end of the phase, i.e.,
at time

∑α
i=1 si, they are all queued at the input edges of the the gadget, C2,1. This

can be achieved using the shortcut gadgets and the fact that the route of each packet
is determined in advance (j < β can be chosen arbitrarily). Observe that the routes
of the chain-traversing packets and the internal-gadget packets introduced during a
subphase are mutually exclusive. Moreover, the injection rate of each type of packet
is less than r for any edge.

5. Proof of instability. This section shows that at the end of a phase there
are more packets queued at the input edges of C2,1, than were queued at the input
edges of C1,1. To initially generate a constant number of packets to start phase 0, we
can attach large acyclic graphs to the input edges of C1,1, where the acyclic portion
is used to generate the initial packets (for details, please refer to [5]).

Analogously to our description of the flow, the analysis can be broken down into
two parts: flow through the columns and flow through the connectors.

5.1. Flow through the columns. First we set the values of the various pa-
rameters. Let k be such that (1 + r)k > 64k3/r2, α = 4k/r, β = 16k2/r2.

Lemma 5.1. Let si be the duration for which the gadget C1,i remains activated
during the ith subphase. For 1 ≤ i ≤ α, the number of packets in the queue of each
of the input edges of the gadget C1,i at time

∑i−1
j=1 sj, i.e., the beginning of the ith

subphase, is lower bounded by s/2.
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Proof. Recall that the duration for which a gadget remains activated is the same
as the number of packets waiting at each input edge when the gadget gets activated.
Observe that s1 = s. Lemma 2.2 implies that, for a gadget activated for si time steps,
the total number of packets which leak through in the si steps is at most⌈

sik

(1 + r)k

⌉
≤ 2si

k

(1 + r)k
.

By our choice of α and k, it follows that α k
(1+r)k

< αr2

64k2 = r
16k < 1

2 . We now have

si ≥ si−1

(
1 − 2k

(1 + r)k

)

≥ s

(
1 − 2k

(1 + r)k

)α

[since i ≤ α]

> s

(
1 − α

2k

(1 + r)k

)

≥ s

(
1 − 1

2

)

=
s

2
.

Hence, the lemma follows.

5.2. Flow through the connectors. Recall that, for each 1 ≤ i < α, a set of
rsi/k (for each edge) chain-traversing packets for the chain

〈C1,i, D1,i,1, D1,i,2, . . . , C2,1, . . . , C2,α〉

is introduced during the subphase i + 1.
Lemma 5.2. After the packets have activated j − 1 gadgets in a connector, the

number of packets queued at each input edge of the connector gadget D1,i,j is lower
bounded by rs/4k.

Proof. Using arguments similar to that used in Lemma 5.1, we can conclude that
the number of packets queued at each input edge of the gadget D1,i,j (after j − 1
gadgets have been activated) is at least

rsi
k

(
1 − 2k

(1 + r)k

)β

.

By the choice of β and k, β 2k
(1+r)k

< 1
2 , and since si >

s
2 , the number of packets is

more than

rs

2k

(
1 − β

2k

(1 + r)k

)
≥ rs

2k

(
1 − 1

2

)
=

rs

4k
.

Hence, the lemma follows.
Lemma 5.3. At time

∑α
i=1 si, i.e., at the end of all subphases, the number of

packets queued at the input edges of C2,1 is greater than s.
Proof. We first show that β is large enough to allow the different sets of chain-

traversing packets injected during each of the α subphases to simultaneously arrive
at the input edges of C2,1. This can be accomplished if the time step at which D1,i,β
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(for all 1 ≤ i ≤ α) is activated is greater than
∑

si. By Lemma 5.2, the time step at
which D1,i,β is activated is more than

rs

4k
β =

rs

4k
α2 = αs ≥

∑
si.

Using Lemma 5.2, the number of packets on the queue of each input edge is more
than

αrs

4k
= s.

Hence we obtain the lemma.
We now state the main theorem of our paper.
Theorem 5.4. FIFO is unstable for arbitrarily low injection rates.
Proof. In light of Lemma 5.3, we need to show only that the rate of injection is

always less than r. The latter is true because the gadget-traversing packets and the
internal-gadget packets are always injected for mutually exclusive sets of edges and
these packets themselves respect the injection rate r. (See section 4 for details.)

5.3. The size of the network. We show that the size of the network is polyno-
mial in 1

r . Let k be c 1
r log( 1

r ) for a large enough c. We use the fact that (1 + r)
1
r > 2

when r < 1, and obtain.

(1 + r)k > 2c log( 1
r ) ≥ 64k3

r2
.

Therefore, k = O( 1
r log( 1

r )). Now, the size of the network is O(αβk) = O(k
4

r3 ), which
is polynomial in 1

r . This is quite strong since it even excludes the possibility that
FIFO might be stable at rate O( 1

logc m ), where m is the size of the network and c is
a constant.

6. Reducing the diameter of the network to Õ(1
r
). In this section, we

present a variant of our construction in which we prove instability at an arbitrary
rate r > 0 in a graph of diameter Õ( 1

r ). (The graph used in the previous section

has diameter Õ( 1
r7 ).) The idea is to combine the gadget in the previous section with

results from [28].

6.1. The topology of the gadget. We add to our basic k-gadget k new edges;
we call those edges bypass edges, b1, b2, . . . , bk, pointing from the nodes vi to the nodes
wi, respectively. Note that edges bi, ei have the same source (the node vi) and the
same target (the node wi). Figure 4 shows two concatenating gadgets.

6.2. The adversary in two concatenating gadgets. We use a daisy chain
of many gadgets in our construction. However, we start by considering two chained
gadgets (Figure 4). We will construct an adversary that maintains the following gadget
invariant ; this condition is similar to Definition 5 in [28]. Let α = 2r

2k−r .

Definition 6.1. Let 1 ≤ j ≤ N . We say that condition S tate(S, 〈Hj , Hj+1,
. . . , HN+1〉) is true at a given time if the following hold at that time on the gadget
chain 〈Hj , Hj+1, . . . , HN+1〉:

1. Hj , Hj+1, . . . , HN+1 are k-gadgets.
2. For each i = 1, . . . , k, the number of packets in the buffer of gji is α · S, and

all those packets in gji have remaining routes gji , b
j , hj

i .
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j+1
H

j
H

Fig. 4. A chain of two connected gadgets glued together. The upper gadget is Hj+1, the lower
gadget is Hj . Both are Gk gadgets. The twisted dot arrows are the bypass edges bji , b

j+1
i ; the strong

twisted arrows are the load edges eji , e
j+1
i .

3. For each i = 1, . . . , k, the number of packets in the buffer of eji is S, and all

packets in eji have remaining routes eji , h
j
i .

4. There are no other packets in Hj , Hj+1, . . . , HN+1.
5. All the packets that are in Hj, Hj+1 can be rerouted in the gadgets Hj+2, Hj+3,

. . . , HN+1 arbitrarily.
The next lemma shows that if at a time τ condition S tate(S, 〈Hj , Hj+1, . . . , HN+1〉)

holds, then at time τ +(1+α)S condition S tate(S1, 〈Hj+1, . . . , HN+1〉) holds, where
S1

S > 1. Note that this lemma enables us to use the k-gadgets as amplifiers.
Lemma 6.1. Let r > 0. There exist numbers k and S0 that depend on r such that,

for any S > S0, if at some time τ all the S packets in the gadget Hj were injected after
certain time τ0, and S tate(S, 〈Hj , Hj+1, . . . , HN+1〉) holds at time τ , then there exists
a rate r adversary such that, at time τ + (1 + α)S, condition S tate(S1, 〈 Hj+1, . . . ,
HN+1〉) holds for some S1 = S(1 + r

2k ).
Proof. For sake of simplicity of presentation we make two facilitating assumptions:
1. τ = 0 and τ0 = −1

r . This assumption can lead to an additive error of one
packet in each load edge of the gadget Hj+1, and an additional packet from
among the packets injected in the load edge of the gadget Hj : all together,
we get (k + 1) fewer packets in the calculation of the number of packets.

2. We ignore floors and ceilings. This is a common assumption in proving in-
stability results (cf. [3, 23, 25]).

We remark that carrying these assumptions throughout the computations would add
only additive terms, which can be compensated for by using a larger S0 value (cf.
[3, 23, 25, 28]). We now specify the adversary that will create a situation where
S tate(S1, 〈Hj+1, . . . , HN+1〉) holds, as follows.

Definition 6.2. For each i = 1, . . . , k the adversary does the following:
1. extends the routes of all the packets that enter the gadget Hj+1 stored in the

buffers gji , e
j
i at time 0 by adding the path

ej+1
i , f j+1

i , ej+1
i+1 , f

j+1
i+1 , e

j+1
i+2 , . . . , f

j+1
i+k−2, e

j+1
i+k−1, h

j+1
i+k−1

to the path of those packets. Note that the routes of all those packets end in
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the edge hj
i , and therefore we get a legal path. We call these packets old long

packets.
2. injects packets at rate r in time steps 1, 2, . . . , t. The route of each of these

packets is the single edge ej+1
i ; we call those packets new short packets. We

set t to be the maximal number such that at time (1 +α)S there are no short
packets at the edges ej+1

i .

3. (a) injects packets at rate r
k in the time interval [1, S], with route eji , h

j
i ,

bj+1
i , hj+1

i , for all i = 1, . . . , k. We call those packets new long packets
of the first kind.

(b) injects packets at rate r
k in the time interval [S + 1, (1 + α)S], with

route hj
i , b

j+1
i , hj+1

i , for all i = 1, . . . , k. We call those packets new long
packets of the second kind.

First, note that this is a rate-r adversary: Definition 6.2.1 is justified by Defini-
tion 6.1.5. Edges ej+1

1 , . . . , ej+1
k are used only by Definition 6.2.2 at rate r. Edges

eji , h
j
i , b

j+1
i , hj+1

i are used only by parts 3(a) and 3(b) of Definition 6.2 at rate r
k . Since

the time intervals of Definition 6.2 parts 3(a) and 3(b) are disjoint, we get a legal r
adversary.

Next we prove that condition S tate(S1, 〈Hj+1, . . . , HN+1〉) holds.
1. Since condition S tate(S, 〈Hj , Hj+1, . . . , HN+1〉) holds at time τ , we get that

for every i, Hi is a Gk-gadget.
2. All the new long packets of the first kind leave the edge eji after the last old

long packets have left this edge. Since r
k < α, all the new long packets of the

first kind leave the edge eji by the time (1 + α)S. Since the number of old

long packets is S · (1+α) and all of them arrive at the edge hj
i before the first

new long packet arrives to this edge, no new long packets pass through the
edge hj

i in the time interval [0, S · (1 + α)]. From Definition 6.2, parts 3(a)
and 3(b), the number of new long packets is S · (1 + α) · r

k = S1 · α, and all

of them are in the edge hj
i . Therefore, Definition 6.1.2 holds.

3. We will see condition 3 of Definition 6.1 in the next subsection.
4. To see that condition 4 of Definition 6.1 holds, we use the idea from [28].

Briefly, this holds because packet routes are predetermined. We can define
the destination of long packets that depart from the gadget Hj to be the last
node in the gadget Hj . To get rid of the short packets at time (1 + α)S we
simply stop injecting short packets at the right time.

5. To see that Definition 6.1.5 holds, note that the total injection rate of the
new long packets is r. Therefore we can reroute the path of those packets
arbitrarily in the next gadgets. Since the old packets were injected to the
graph before time −1

r and the new packets were injected to the graph after
time 0, we can reroute the path of all the long packets arbitrarily in the next
gadgets.

6.3. Upper bound on the leak. Next we analyze the leak rate from a k-gadget
Gk in a manner similar to what we did in subsection 2.3. We use a strong version of

Lemma 2.2. Let φ = 1+
√

5
2 .

Lemma 6.2. Assume that we are using the adversary described in Definition 6.2.
Let k > 2; during the time 0 to (1 + α)S, R ≤ k

φk .
Proof. The proof is similar to the proof of Lemma 2.2 except that, using the fact

that k > 2 in this case, we can get that T ≥ 1 + r + 1
T at all times. Solving this

inequality, we get that T > φ. From this it follows that rk ≤ 1
(φ)k

. Therefore at all
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H1 H2
HN+1

HN

Fig. 5. The big picture. Every H1, H2, . . . , HN+1 is a Gk-gadget. In each Gk-gadget we have
2k nodes that don’t appear in this schematic diagram; for accurate description of Gk, see subsection
6.1. The marked arrows demonstrate the general direction of packet movement in the networks. The
last gadget HN+1 serves as a gluing component.

times, R = krk ≤ k
φk .

The next corollary states that if k > 4 logφ( 1
r ) and 1

2
√

2
> r > 0, we can use the

basic gadget Gk as an amplifier.
Lemma 6.3. Assume that we are using the adversary mentioned in Definition

6.2. Let 1
2
√

2
> r > 0 and k > 4 logφ( 1

r ); then the number of packets in ej+1
i at time

(1 + α)S is greater than or equal to S(1 + r
2k ).

Proof. Using Lemma 6.2, we get that the total number of packets in ej+1
i at time

(1 + α)S is S1 ≥ S · (1 + α) · (1− φ−k). Using 1
2
√

2
> r > 0 and k > 4 logφ( 1

r ), we get

that r
2k > 1

φk . Now using the definition of α, we get that S1 ≥ S · ( 2k+r
2k−r ) · ( 2k−r

2k ) =

S(1 + r
2k ).

6.4. The network topology. Our networks can be embedded in the torus (see
Figure 5). The network contains a chain of gadgets 〈H1, . . . , HN+1〉, and each of these
gadgets is a Gk-gadget. We use the H1, . . . , HN as amplifiers. We also concatenate
the last gadget HN+1 to the first gadget H1. We denote this graph by Tk. The last
gadget acts as gluing component. Now we can repeat exactly what is done in section
3.3 of [28]. Following similar steps, we concatenate a sequence of basic gadgets Hj ,
that is, 1, 2, . . . , N , each of which amplifies the number of packets by a multiplicative
factor (1 + r

2k ). After this we close the k cycles for each i = 1, . . . , k exactly as
described in Lemma 3.12 of [28]. For completeness we quote Lemma 3.12 from [28],
which describes how to close a single cycle. We use this construction for every cycle;
i.e., we close k cycles. We consider a path of three edges, called a0, a1, and a2; we can
think of gN+1

i as a0, e
N+1
i as a1, and hN+1

i as a2. The routes that will be traversed
by old packets will all end at a0, and the fresh packets all start at the tail of a2.

Lemma 6.4. Suppose that at time τ there are S packets stored in the buffer of a0

with remaining routes of length 1. Then for any r > 0 there exists a rate-r adversary
such that at time τ + S + rS + r2S there are r3S packets stored in the buffer of a2

and there are no other packets in the network. Moreover, all the packets stored in the
buffer of a2 were injected at the tail of a2 after time τ + S.

Since the above lemma needs a path of length 3, we can use one gadget Gk in
the end. We call this gadget a gluing component. By doing this we lose a fraction
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of r3 from the total number of packets. The outcome of these two mechanisms is
described in Theorem 3.13 of [28]. Finally we get that the total number of packets
after traversing all the gadgets (S1) is r

k(1+α) · S · ( r
k )3 · (1 + r

2k )N−1. We show that

S1 > 10S. Since α < 0.5 and 1
k > r, we get that S1 > 2

3S · r8 · (1 + r
2k )N−1.

If we take N = 4k
r log( 4

r4 ) + 1, we get that the number of packets in e1
i at time

t′ + S · ( r
k )3 · (1 + r

2k )N−1 is

S1 >
2

3
· S · r8 ·

(
1 +

r

2k

)N−1

=
2

3
· S · r8 ·

(
1 +

r

2k

) 4k
r log( 4

r4
)

≥ 2

3
· S · r8 · 4log( 4

r4
)

> 10S.

Let d be the diameter of the graph. It is easy to see that d = O(N · k) =
O( 1

r · log3( 1
r )). In section 4 of Theorem 4.1 in [28] it was proved that FIFO is stable

for an injection rate less than r = 1
d . In this construction we prove that FIFO is

unstable for rates bigger than d = O( 1
r log( 1

r )3). This leaves a gap of polylog factor.

Theorem 6.5. For every 1 > r > 0 there exists a graph Tk, a rate-r adversary,
and an initial configuration such that FIFO is unstable on Tk and the diameter of the
graph Tk is O(1/r log(1/r)3).
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Abstract. We study the consensus problem, which requires multiple processes with different
input values to agree on one of these values, in the context of asynchronous shared memory systems.
Prior research focussed either on t-resilient solutions of this problem (which must be correct even if
up to t processes crash) or on wait-free solutions (which must be correct despite the crash of any
number of processes). In this paper, we show that these two forms of solvability are closely related.
Specifically, for all n > t ≥ 2 and all sets S of shared object types (that include simple read/write
registers), there is a t-resilient solution to n-process consensus using objects of types in S if and only
if there is a wait-free solution to (t + 1)-process consensus using objects of types in S.

Our proof of this equivalence uses another result derived in this paper, which is of independent
interest. Roughly speaking, this result states that a wait-free solution to (n − 1)-process consensus
is never necessary in designing a wait-free solution to n-process consensus, regardless of the types of
objects available. More precisely, for all n ≥ 2 and all sets S of shared object types (that include
simple read/write registers), if there is a wait-free solution to n-process consensus that uses a wait-
free solution to (n− 1)-process consensus and objects of types in S, then there is a wait-free solution
to n-process consensus that uses only objects of types in S.

Key words. asynchronous distributed computation, consensus, wait-free algorithms, fault tol-
erant algorithms, impossibility results
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1. Introduction. We consider concurrent systems in which asynchronous pro-
cesses communicate via typed shared objects. Informally, an object’s type specifies
(i) the number of ports, which represents the maximum number of processes that
may access the object simultaneously ; (ii) the set of states of the object; (iii) the set
of operations that processes may apply to the object through its ports; and (iv) the
behavior of the object, described by the effect of each operation on the object’s state
and the value the operation returns, assuming no other operation is accessing the
object at that time. Every object is linearizable [14]: when operations are invoked
concurrently at different ports, the object behaves as if each operation had occurred
instantaneously, with no interference from other operations, at some point between
the time it was invoked and the time it returned its response. An object that belongs
to a type with n ports is called n-ported.

In such systems, some shared objects, such as registers and test&set objects, are
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supported in hardware, while other objects, such as queues and stacks, are imple-
mented in software. Objects used in the implementation of another object (registers
and test&set objects, in our example) are called base objects with respect to that
implementation. We consider two forms of implementations: wait-free and t-resilient.
An implementation is wait-free if every process can complete every operation on the
implemented object in a finite number of its own steps, regardless of whether other
processes are fast, slow, or have crashed [18, 28, 12]. Wait-free implementations pro-
vide an extreme degree of fault-tolerance. They assure that even if just one process
survives, it will be able to complete its operations on the implemented object. In
contrast, t-resilient implementations support a more modest degree of fault-tolerance
[11, 10, 24]. They guarantee that nonfaulty processes will complete their operations,
as long as no more than t processes fail, where t is a specified parameter. It is imme-
diate from the definitions that wait-freedom is equivalent to (n− 1)-resilience, where
n is the number of processes in the system.

This paper concerns t-resilient and wait-free implementations of a particular type
of object, known as n-consensus. Informally, an n-consensus object allows each of
n processes to access it by proposing a value; the object returns the same value to
all accesses, where the value returned is the value proposed by some process. The
following are two reasons why it is important to implement n-consensus objects:

• It is possible to design a wait-free implementation of an object of any type,
shared by n processes, using only n-consensus objects and registers [12].1

• In an asynchronous system, since processes progress at independent and ar-
bitrarily varying speeds, the view that a process holds of the global state of
the computation does not necessarily coincide either with the reality or with
the views of other processes. However, processes can reconcile their differ-
ences and arrive at a mutually acceptable common view if they have access
to consensus objects.

A lot of research was aimed at determining the feasibility of implementing n-
consensus objects from other types of objects. Some of this research studied the
feasibility of t-resilient implementations [11, 10, 24], while some studied the feasibility
of wait-free implementations [24, 12, 9]. To a large degree, the two questions, namely,
the feasibility of t-resilient implementations and the feasibility of wait-free implemen-
tations, were treated separately, as if they had no particular relationship with each
other (see section 1.1 for an exception). The main contribution of this paper is to
show that the two questions are closely related, as we explain below.

Consider the task of devising a t-resilient implementation of an n-consensus ob-
ject. As n decreases, the fraction of nonfaulty processes on which the implementation
can rely gets smaller, and the task therefore seems to become progressively more dif-
ficult. For example, a t-resilient implementation that works only when a majority of
processes are nonfaulty cannot be used when n becomes smaller than 2t + 1. In the
limit, when n becomes t+1, the task amounts to providing a wait-free implementation
of the object. Thus, prima faciae, it seems that the ability of objects belonging to

1A register is an object that allows processes to access it (only) through write operations, each of
which stores a new value into the register, and read operations, which return the current value of the
register. It is possible to implement k-ported registers, for any k, from just 2-ported registers. This is
a consequence of the well-known fact that arbitrary multireader, multiwriter atomic registers (hence,
k-ported registers, for any k) can be implemented from single-reader, single-writer (hence, 2-ported)
atomic registers. (For more information on register constructions see, for example, [19, 20, 15].)
Because of this, whenever we mention registers we do not bother to explicitly specify the number of
ports: it is understood that any number of ports greater than one suffices.
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a set S of types to support a t-resilient implementation of an n-consensus object is
greater than their ability to support a wait-free implementation of a (t+1)-consensus
object. We show that this is not the case. Specifically, our result is the following.

Equivalence theorem. For all n > t ≥ 2 and all sets S of types that include
register (S may include nondeterministic types), there is a t-resilient implemen-
tation of an n-consensus object from objects of types in S if and only if there is a
wait-free implementation of a (t + 1)-consensus object from objects of types in S.

One use of our theorem stems from the observation that proofs of impossibility of
t-resilient implementations of consensus tend to be generally much harder than proofs
of impossibility of wait-free implementations of consensus.2 Our theorem allows one
to conclude the impossibility of t-resilient implementations of n-consensus simply by
establishing the impossibility of wait-free implementations of (t + 1)-consensus. For
instance, since there is no wait-free implementation of 3-consensus from queues and
registers [12], our theorem implies that there is no 2-resilient implementation of n-
consensus from queues and registers (for all n ≥ 3). We present several other such
applications of our theorem.

A key ingredient in our proof of the equivalence theorem discussed above is an-
other result of this paper that is of interest in its own right. Roughly speaking, this
result states that (n − 1)-consensus objects are not necessary for a wait-free imple-
mentation of n-consensus, no matter what other base objects may be available for the
implementation. Specifically, our result is as follows.

Generalized irreducibility theorem for consensus. For all n ≥ 2 and all
sets S of types that include register (S may include nondeterministic types), if there
is a wait-free implementation of an n-consensus object from (n− 1)-consensus objects
and objects of types in S, then there is a wait-free implementation of an n-consensus
object from objects of types in S.

In other words, the (n − 1)-consensus base objects can be eliminated from the
implementation.

The above theorem is more general (and has a more complex proof) than the
well-known irreducibility of consensus, stated as follows: for all n ≥ 2, there is no
wait-free implementation of an n-consensus object from (n−1)-consensus objects and
registers [12, 17]. To illustrate the difference between the two results, we consider the
following question: Is there a wait-free implementation of a 4-consensus object from
3-consensus objects, 4-ported queues, and registers? The irreducibility of consensus
does not help answer this question, but our result does. Specifically, since there is no
wait-free implementation of a 4-consensus object from 4-ported queues and registers
[12], our result implies that the answer to the above question is no.

1.1. Related work. As stated earlier, this paper has two main results: the
generalized irreducibility theorem and the equivalence theorem. We discuss below
prior research related to each of these results.

Our generalized irreducibility theorem is related to the following robustness ques-
tion, posed in [16]: Suppose that (a) there is no wait-free implementation of an
n-consensus object from registers and objects of type T , and (b) there is no wait-free
implementation of an n-consensus object from registers and objects of type T ′. Does

2The difference in difficulty can be appreciated by comparing the proof that there is no wait-free
implementation of a 3-consensus object from registers and 1-bit read-modify-write objects to the
proof that there is no 2-resilient implementation of an n-consensus object from the same objects [24].
The latter proof is much longer (three pages versus one page) and the arguments are more involved.
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it then follow that there is no wait-free implementation of an n-consensus object from
registers, objects of type T , and objects of type T ′?

For the special case when one of T and T ′ is m-consensus, for any m, and the
other type is arbitrary (it may even be nondeterministic), our generalized irreducibility
theorem states that the answer to the robustness question is yes. For the case when
both T and T ′ are deterministic, Borowsky, Gafni, and Afek [5] and Peterson, Bazzi,
and Neiger [27] prove that the answer is yes. Neither result is strictly stronger than
the other: our result restricts one of the types to be m-consensus, while theirs
restricts both types to be deterministic. It is significant that our result applies to all
types, not just deterministic ones, because nondeterministic types sometimes exhibit
dramatically different properties. For instance, in sharp contrast to the results in
[5, 27] stated above, Lo and Hadzilacos prove that the answer to the robustness
question is no if types may be nondeterministic [21]. For different models, Chandra
et al. [7], Moran and Rappoport [26], and Schenk [30] also prove that the answer to
the robustness question is no.

We now describe prior work related to our equivalence theorem. To our knowl-
edge, Borowsky and Gafni are the first to relate t-resilient and wait-free implementa-
tions of tasks. To state their result, we need to introduce a new object type, called
n-ported k-set consensus. Informally, an object of this type allows each of n processes
to access it by proposing a value. Each access returns some value that has been pro-
posed to the object, subject to the requirement that the number of different values
returned by all the accesses does not exceed k. Thus, an n-consensus object is the
special case of this object where k = 1. Borowsky and Gafni’s result is that, for all
n > t, if there is a t-resilient implementation of n-ported t-set consensus from regis-
ters, then there is a wait-free implementation of (t + 1)-ported t-set consensus from
registers [3]. It was also shown (independently, in [3, 13, 29]) that there is no wait-free
implementation of (t + 1)-ported t-set consensus from registers. In conjunction with
this, Borowsky and Gafni’s result implies that, for all n > t, there is also no t-resilient
implementation of n-ported t-set consensus from registers.

Our equivalence theorem differs from Borowsky and Gafni’s result in fundamental
ways. First, our result concerns t-resilient implementations of consensus, while theirs
concerns t-resilient implementations of t-set consensus. Second, our result applies re-
gardless of the types of objects used in the implementation, while their result requires
the objects to be registers. The two results are independent in that neither implies
the other.

The proofs of both results are based on simulation techniques whereby a small
number of processes simulate a t-resilient algorithm originally designed for a larger
number of processes, in a manner that preserves the resilience of the original algo-
rithm. The two simulation techniques bear some superficial resemblance, but they
differ in substance, reflecting the differences between the results noted in the previous
paragraph. The simulation we use to obtain the generalized irreducibility theorem
(cf. proof of Lemma 5.1) applies only to consensus algorithms, while Borowsky and
Gafni’s simulation [3, 6] (as well as the simulation we use to obtain the equivalence
theorem—cf. proof of Lemma 6.2) applies to a wider class of algorithms that is formally
characterized in [6]. Also, the simulations we use to obtain the generalized irreducibil-
ity theorem and the equivalence theorem apply to algorithms that use arbitrary base
objects, while Borowsky and Gafni’s simulation applies only to algorithms that use
registers. There is a variant of Borowsky and Gafni’s simulation [4, 8] that applies
to algorithms that use registers and k-set consensus objects. This variant, however,
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cannot be used to obtain our equivalence theorem because the algorithm that results
from the simulation has lower resilience than the original, simulated algorithm.

Our equivalence theorem requires that t ≥ 2. A result by Lo, strengthened further
by Lo and Hadzilacos, proves that the “only if” direction of our theorem does not
hold for t = 1: There exist nondeterministic [23] and even deterministic [22] object
types which, together with registers, can provide a 1-resilient implementation of 3-
consensus, but cannot provide a wait-free implementation of 2-consensus.

1.2. Organization. In section 2, we describe the model. In sections 3 and
4, we present the intermediate results needed to prove the generalized irreducibility
theorem. This theorem and the equivalence theorem are then proved in sections 5
and 6, respectively.

2. Model and definitions. Our description of the model is somewhat informal.
Herlihy [12] has shown how to formalize a similar model using I/O automata [25]. We
use the following notation for sets of natural numbers: for any i, j ∈ N, [i..j] = {k ∈
N : i ≤ k ≤ j}.

2.1. Types. A type is a tuple T = (n,OP,RES, Q, δ), where n is a positive
integer denoting the number of ports, OP is a set of operations, RES is a set of
responses, Q is a set of states, and δ ⊆ Q×OP×[1..n]×Q×RES is the type’s sequential
specification. The number of ports corresponds to the maximum number of processes
that can concurrently access an object of this type. The sequential specification
describes the behavior of an object of this type in the absence of concurrency: If
operation op is applied to port i of an object of type T when the object is in state q, the
object can enter state q′ and return response res if and only if (q, op, i, q′, res) ∈ δ. If,
for each (q, op, i) ∈ Q×OP× [1..n], the set {(q′, res) : (q, op, i, q′, res) ∈ δ} has at most
one element, T is deterministic. In this paper we allow types to be nondeterministic,
but we require that they exhibit finite nondeterminism: each of the above sets must
be finite.

For example, the n-ported consensus type n-consensus3 informally described
in section 1 can be formally defined as the tuple (n,OP,RES, Q, δ), where OP =
{propose u : u ∈ N}, RES = N, Q = N ∪ {⊥}, and for each i ∈ [1..n] and u, v ∈ N, δ
contains exactly the following tuples: (⊥, propose u, i, u, u) and (v, propose u, i, v, v).
Clearly, this is a deterministic type.

2.2. Objects and linearizability. An object O is an instance of a type initial-
ized to a specified state. For each operation op and port i of its type, O provides an
access procedure Apply(op, i, O). This is the sole means by which operation op can be
applied to port i of O. As explained above, the sequential specification of O’s type de-
scribes the behavior of O when access procedures are applied sequentially. In general,
however, access procedures at different ports of an object can be applied concurrently.
Usually, the behavior of the object in this case is constrained by the assumption that
the object is linearizable [14]. This means that if there are no concurrent accesses to
the same port, then the object behaves as if it had been initialized to the specified
state and each access procedure occurred instantaneously at some point between its
invocation and its response.4 Occasionally it will be convenient to consider objects

3Throughout the paper we use the typewriter font for type names.
4We emphasize that the linearizability assumption constrains the behavior of an object only if

access procedures at the same port are applied sequentially. No assurances are given about what the
object does if access procedures are applied concurrently to one of its ports. The object may fail to
respond, or it may return arbitrary responses in that case.
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that are linearizable only if used in restricted ways. When discussing such objects we
will explicitly state the conditions under which they are linearizable.

In general, when we talk about an object we need to specify both its type and
its initial state. However, in the case of consensus objects (i.e., objects of type n-
consensus for some n) we will assume, without explicitly saying so, that the initial
state is ⊥. This is because a consensus object initialized to any state other than ⊥ is
trivial: it remains in that state forever, returning it to each invocation.

2.3. Implementation of consensus. We now explain what an implementation
of a target object O of type T from a set A of base objects is. The concept of
implementation can be defined in a general way for target objects of any type. In this
paper, however, we are concerned exclusively with implementations of n-consensus
objects. For simplicity and brevity we tailor our definitions specifically to such objects.

An implementation of an n-consensus object O from a set A of objects consists of a
specification of access procedures Apply(propose u, i,O) for each u ∈ N and i ∈ [1..n].
These access procedures can store and manipulate values in private variables using
ordinary programming language constructs; in addition they can apply operations
(only) to objects in A through the access procedures provided by those objects. To
apply operation op to port i of a base object O ∈ A, an access procedure of the target
object O invokes Apply(op, i, O); when this operation finishes it returns a response. A
step of the target object O’s access procedure refers to the invocation of an operation
at some port of a base object, the receipt of that operation’s response, and (if relevant)
the assignment of that response to a private variable of O’s access procedure. We do
not assume a step to be atomic: the invocation of an operation and its response may
be separated in time and, during this interval, steps may be performed at other ports
of the base object and/or at other base objects. We do, however, assume that a step
terminates or, equivalently, that base objects are responsive: once an operation is
invoked at a port of a base object, a response is eventually returned.

The implementation must satisfy certain safety properties (typically linearizabil-
ity) and liveness properties (typically wait-freedom or t-resilience). We will state the
properties that must be satisfied by (concurrent) executions of O’s access procedures.
Before doing so, we need to clarify certain points about such executions.

First, we assume that at most one operation is applied to each port of O. This
assumption can be made without loss of generality because O is a consensus object:
If multiple operations could be applied to a port, the response given by a port to
the first propose operation applied to it can be stored in a private variable associated
with the port and returned to any subsequent operation without involving accesses
to any other shared objects (recall that operations to the same port must be applied
sequentially).

Second, the concurrent executions we consider may contain one or more access
procedures of O that have not run to completion. Taking such executions into account
is necessary since we are interested in executions where some of the processes that
invoke access procedures may crash. Therefore, given an execution, there are four
mutually exclusive possibilities for an access procedure P (note that, in view of the
previous paragraph, there can be at most one instance of P in an execution):

(a) P does not appear in the execution. This could be because in this execution
no process had an interest in invoking P , or because the process that has an
interest in invoking P has not gotten around to it yet (and perhaps never will
because it has crashed).

(b) P is finite and incomplete in the execution, meaning that it has been invoked
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but has not returned a response. This could be because the process invoking
P has not had a chance to run long enough or because it has crashed.

(c) P is complete (and, of course, finite) in the execution, meaning that P has
returned a response.

(d) P is infinite (and, of course, incomplete). In this case the process invoking P
does not crash (since P has infinitely many steps in the execution), yet the
access procedure does not terminate. A typical reason for this behavior is that
processes that invoked other procedures crashed at inopportune moments,
making it impossible for P to terminate. In this case we will say that the
nonterminating access procedure is blocked in this execution.

With these comments in mind, consider a concurrent execution E of a consensus
object O’s access procedures. First we will define the safety properties that should
hold in E . We say that O

• satisfies validity in E if any value returned by any access procedure in E was
proposed by some access procedure in E ;

• satisfies agreement in E if no two values returned by access procedures in E
are different.

Recall that an n-consensus object O is linearizable in E if the values returned
by the access procedures in E are in accordance with the sequential specification of
n-consensus, when O is initialized to state ⊥ and each access procedure in E takes
effect atomically at some point after it is invoked and before it completes. It is easy
to see that O satisfies validity and agreement in E if and only if it is linearizable in
E . Thus, instead of proving that an implementation of n-consensus is linearizable, we
will prove that it satisfies validity and agreement.

Next we discuss the liveness properties of the implementation. Intuitively, wait-
freedom requires that if a process that invokes an access procedure of the target object
O does not crash, then it will receive a response, no matter how many processes
invoking access procedures at other ports of O crash. The property of t-resilience
requires that if a process that invokes an access procedure of the target object O
does not crash, then it will receive a response, as long as at most t processes invoking
access procedures at other ports of O crash. Actually, there are two slightly different
formulations of t-resilience. The weaker formulation assumes that all of O’s ports
must be accessed in an execution. Thus, if an access procedure does not appear in E ,
the process that was supposed to invoke it is considered to have crashed. The stronger
formulation of t-resilience does not make this assumption; here, an access procedure
may not appear in E just because no process had an interest in invoking it in this
execution. The difference between these two formulations lies in what counts as one of
the up to t crashes that the implementation is supposed to tolerate. With respect to
the four aforementioned possibilities (a)–(d) for an access procedure in an execution,
in the weaker formulation, access procedures in cases (a) and (b) count as crashes,
while in the stronger formulation, only access procedures in case (b) count as crashes.
It turns out that our equivalence theorem holds under both definitions of t-resilience.

We now state the liveness properties that should hold in E . We say that O
• is wait-free for port i in E if for every u ∈ N, Apply(propose u, i,O) is finite

in E ;
• is wait-free in E if it is wait-free for each port in E ;
• is weakly t-resilient in E if the access procedure at some port is infinite only

if the access procedures in more than t other ports do not appear or are finite
and incomplete in E ;
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• is strongly t-resilient in E if the access procedure at some port is infinite only
if the access procedures in more than t other ports are finite, nonempty, and
incomplete in E .

For each of the safety and liveness properties defined above, we omit the qualifier
“in E” if the property holds in every concurrent execution of the target object’s access
procedures in which the base objects are linearizable.

2.4. Binding schemes. The binding scheme of an implementation refers to the
rules that govern how each access procedure of the implementation’s target object
can apply operations to ports of the base objects—specifically, the number of ports of
a base object to which it can apply operations, and the length of time during which it
is permitted to apply operations to these ports. Under the most permissive binding
scheme, called softwired binding [5], an access procedure can apply operations to any
number of ports of a base object, and it “owns” the port only for the duration of each
operation. In this binding scheme, different access procedures of the target object may
apply (at different times) operations to the same port. Under the more restrictive
one-to-one static binding scheme, for each access procedure P and each base object
O there is at most one port of O to which P can apply operations, in all executions
of the implementation; moreover no other access procedure can apply operations to
that port of O. With one-to-one static binding, we can think of each port of a base
object as being “owned” by an access procedure of the target object, namely, the one
that is allowed to apply operations to that port.

Unless otherwise specified, in this paper we assume softwired binding.

2.5. A remark on composing implementations. An implementation I ′ may
depend on another implementation I. For instance, suppose that I ′ implements an
object O′ and this implementation uses, among others, an object O implemented
by I. In this case, an access procedure P ′ of O′ might include a call to an access
procedure P of O. We note that the execution of P should not be viewed as a single
step (because a step is required to terminate, but the termination of P may not be
necessarily guaranteed by the design of O). The correct view is that O is implemented
from base objects and, hence, the execution of P amounts to performing a sequence of
steps on these (responsive) base objects, as dictated by the implementation I. Thus,
O is not viewed as a base object of O′; instead, the base objects of O are viewed as
also belonging to the set of base objects of O′.

3. Achieving one-to-one static binding with base consensus objects. In
this section, we prove a result that we will later use in our proof of the generalized
irreducibility theorem (section 5). In general, the binding of a target object O with its
base objects is not one-to-one static. The main result of this section is that, if O has
some base consensus objects, then it is possible to transform the implementation so
that, in the new implementation, the binding of O with all its base consensus objects
is one-to-one static. We begin by describing an intermediate implementation needed
to prove this result.

For any m > n, we describe how to implement an m-consensus object O from
n-consensus objects. The binding of O with its base objects is one-to-one static, but
our implementation is only conditionally correct: It is always wait-free, and it satisfies
validity and agreement provided that no more than n of the m access procedures of
O take steps.

Consider the n-element subsets of [1..m]. Let S1, S2, . . . , S� be a listing of these
subsets, where � =

(
m
n

)
. For all i ∈ Sj , define pos(i, Sj) = k if i is the kth smallest

element in Sj .
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O1, O2, . . . , O�: n-consensus objects, initialized to ⊥

Apply(propose u, i,O); u ∈ N, i ∈ [1..m]

esti := u
for j := 1 to � do

if i ∈ Sj then
esti := Apply(propose esti, pos(i, Sj), Oj)

return esti

Fig. 1. Implementation of m-consensus object O from n-consensus objects.

Our implementation of an m-consensus object O, described in Figure 1, em-
ploys � base n-consensus objects, denoted O1, O2, . . . , O�. The access procedure
Apply(propose v, i,O) is implemented as follows. For brevity, let P denote this access
procedure. P keeps a running estimate of the eventual return value in a local variable
esti. Initially, this estimate is v, the value that P wants to propose. P considers the
base objects O1, . . . , O� in sequence and performs the following actions. For each base
object Oj , P checks whether i ∈ Sj . If i /∈ Sj , P does not access Oj . Otherwise, it
proposes its current estimate to Oj (at port pos(i, Sj) of Oj) and regards the return
value as its new estimate. After considering all base objects, P regards the estimate
as the response of O.

Lemma 3.1. The implementation of m-consensus object O in Figure 1 has the
following properties:

1. The binding of O (with all its base objects) is one-to-one static.
2. O is wait-free.
3. O satisfies validity and agreement in all executions in which at most n access

procedures take steps.

Proof. Part 1 follows from the observation that port i of O applies an operation
to port p of base object Oj if and only if i ∈ Sj and pos(i, Sj) = p. Part 2 follows
from the fact that the implementation has no unbounded loops.

For part 3, consider an execution E where i1, i2, . . . , in are all the ports of O at
which access procedures are invoked. (We may assume, without loss of generality, that
access procedures in exactly n ports are invoked: if there is an execution that violates
validity or agreement and involves access procedures in n′ ports, where n′ ≤ n, then
there is also an execution that violates validity or agreement, respectively, and involves
access procedures in exactly n ports.) Specifically, let Apply(propose uk, ik,O) be the
access procedure executed at port ik; for brevity, let Pik denote this access procedure.
We argue below that O satisfies validity and agreement in E .

O satisfies validity. Using the fact that the base objects O1, . . . , O� satisfy validity,
it follows by an easy induction that O satisfies validity.

O satisfies agreement. Consider the object Oj such that Sj = {i1, i2, . . . , in}. For
each k ∈ [1..n], Pik accesses Oj in its jth iteration of the for-loop. Since Oj returns
the same response u to every access procedure that applies a propose operation to
it, it follows that all access procedures have the same estimate u at the end of j
iterations of the for-loop. That is, for all k ∈ [1..n], estik = u just after Pik completes
the jth iteration of the for-loop. Since Oj+1, . . . , O� satisfy validity, it follows from
the implementation that the estimate of an access procedure never changes from the
(j + 1)th iteration onward. Thus, for every k ∈ [1..n], Pik returns u.
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This completes the proof of the lemma.

Lemma 3.2. Let m > n and S be any set of types. Consider a wait-free imple-
mentation of an m-consensus object O from objects belonging to types in S. Suppose
that O has an n-consensus base object O. If the binding of O with O is not one-
to-one static, it is possible to modify the implementation of O by replacing O with a
bounded number of n-consensus objects, in such a way that the new implementation
satisfies validity and agreement, is wait-free, and the binding of O with each of the
newly introduced n-consensus base objects is one-to-one static.

Proof. Suppose that the binding of O with O is not one-to-one static. Consider
the following modifications to the implementation of O:

1. The base objects of the new implementation are the same as in the original
implementation with one exception: The base object O is replaced with O′,
where O′ is implemented as in Figure 1. (Thus, O′ is an m-consensus object,
but it is implemented entirely from n-consensus objects.)

2. The access procedures of the new implementation are the same as in the
original implementation with one exception: Each time an access procedure
Apply(propose v, i,O) performs, in the original implementation, an operation
(say, propose u) at some port j of O, the new implementation requires the
access procedure to perform the same operation (namely, propose u) at port
i of O′.

It is obvious from the above modifications that, in the new implementation, port
i of O′ is used only by the access procedures for port i of O. This, together with
the fact that the binding between O′ and its base objects is one-to-one static (by
part 1 of Lemma 3.1), implies that the binding between O and the newly introduced
n-consensus base objects (i.e., the base objects of O′) is one-to-one static.

The fact that the new implementation satisfies validity and agreement follows
from two facts: (i) O, the base object of the old implementation, has only n ports,
and (ii) O′, which replaces O, satisfies validity and agreement if it is accessed at no
more than n of its m ports (by part 3 of Lemma 3.1).

That the new implementation is wait-free follows again from two facts: (i) the old
implementation is wait-free, and (ii) the implementation of O′ is wait-free (by part 2
of Lemma 3.1). This completes the proof of the lemma.

4. The building blocks. In this section we present three implementations of
n-consensus objects from (n− 1)-consensus objects. These implementations are only
conditionally correct: each ensures wait-freedom, validity, and agreement only in
executions that satisfy certain conditions. Yet they have certain nice properties that
make them useful in the proof of the generalized irreducibility theorem, presented in
the next section.

4.1. Nonconcurrent implementation. Figure 2 shows an implementation of
n-consensus object O from two (n−1)-consensus objects O and O′ and a register DEC.
This implementation is wait-free and, if the access procedures for ports n − 1 and n
are not executed concurrently, the implementation satisfies validity and agreement.

The implementation is informally described as follows. For i ∈ [1..n], let Pi denote
the access procedure Apply(propose ui, i,O), where ui ∈ N. P1, . . . , Pn−2 share O’s
base objects O and O′ with Pn−1 and Pn, respectively. For each i ∈ [1..n − 2], Pi

proposes its value ui to O, proposes the return value from O to O′, writes the return
value from O′ in register DEC (for “decision”), and returns it. Each of Pn−1 and Pn

first checks whether the return value is already available in DEC. If not, it proposes
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O,O′: (n− 1)-consensus objects, initialized to ⊥
DEC: register, initialized to ⊥

Apply(propose u, i,O); u ∈ N,

i ∈ [1..n− 2]

vi := Apply(propose u, i, O)
DEC := Apply(propose vi, i, O

′)
return DEC

Apply(propose u, n− 1,O); u ∈ N Apply(propose u, n,O); u ∈ N

if DEC = ⊥ then if DEC = ⊥ then
DEC := Apply(propose u, n− 1, O) DEC := Apply(propose u, n− 1, O′)

return DEC return DEC

Fig. 2. Nonconcurrent implementation of n-consensus object O from (n− 1)-consensus objects.

its value to the appropriate base consensus object (namely, O for Pn−1 and O′ for
Pn), writes the return value from the base consensus object in DEC, and returns it.

We now explain intuitively why this implementation works. Since the implemen-
tation needs to be correct only if the steps of Pn−1 and Pn do not overlap, there
are two cases: either Pn−1 is before Pn or Pn is before Pn−1. In the former case,
P1, . . . , Pn−2 and Pn−1 agree on a return value using the object O, and Pn learns
this value simply by reading DEC, where the value is made available by Pn−1. In the
latter case, O′ serves as the object that brings about agreement on the return value
among P1, . . . , Pn−2 and Pn, and Pn−1 learns this value by reading DEC.

Lemma 4.1. The implementation, shown in Figure 2, of the n-consensus object
O from (n− 1)-consensus objects and a register has the following properties:

1. O is wait-free.
2. O satisfies validity and agreement in all executions in which the access pro-

cedures at ports n− 1 and n of O are not concurrent.

Proof. Part 1 is obvious. For part 2, let E be any execution of the implementation;
for each i ∈ [1..n], let Pi be the access procedure at port i of O that appears in E . (We
may assume, without loss of generality, that access procedures at all ports appear in
E : If there is any execution that violates validity or agreement, then there is also one
that violates validity or agreement, respectively, and involves the access procedures
at all ports.)

O satisfies validity. This follows easily by induction and the fact that the base
objects O and O′ satisfy validity.

O satisfies agreement if Pn−1 and Pn are not concurrent. Suppose Pn−1 and Pn

are not concurrent in E . We observe that each of O and O′ satisfies agreement. Let
d and d′ denote the (unique) return values from O and O′, respectively, in E .

If the first of Pn−1 and Pn to read DEC finds that DEC �= ⊥, it is clear from the
implementation that some Pi, i ∈ [1..n−2], had previously written d into DEC. Since
O and O′ satisfy agreement, it is easy to see that, in this case, all access procedures
return d and so O satisfies agreement. If the first of Pn−1 and Pn to read DEC
finds that DEC = ⊥, we consider two cases, depending on which of the two access
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O,O′: (n− 1)-consensus objects, initialized to ⊥
GP,SP,DEC: registers, initialized to ⊥

Apply(propose u, i,O); u ∈ N, Apply(propose u, n,O); u ∈ N

i ∈ [1..n− 1]

1. GP := Apply(propose u, i, O) SP := u
2. if SP = ⊥ then if GP = ⊥ then
3. votei := GP DEC := u
4. else votei := SP else busy-wait until DEC �= ⊥
5. DEC := Apply(propose votei, i, O

′)
6. return DEC return DEC

Fig. 3. Group-solo implementation of n-consensus object O from (n− 1)-consensus objects.

procedures was executed first (recall that Pn−1 and Pn are not concurrent in E).
If Pn−1 was executed first, it is clear from the implementation that Pn−1 writes

d (the return value from O) in DEC and returns it. Pn, which begins after Pn−1

finishes, reads d from DEC and returns it. P1, . . . , Pn−2 propose d to O′. Since O′

satisfies validity, and d is the only value proposed to it, it returns d to all, and all of
P1, . . . , Pn−2 therefore return d. Thus, O satisfies agreement.

If Pn was executed first, it is clear from the implementation that P1, . . . , Pn−2 and
Pn return d′ (the return value from O′). Pn also writes d′ in DEC. Pn−1, which begins
after Pn finishes, reads d′ from DEC, and returns it. Thus, O satisfies agreement.

This completes the proof of the lemma.

4.2. Group-solo implementation. Figure 3 shows an implementation of an n-
consensus object O from two (n− 1)-consensus objects O and O′, and three registers
GP, SP, and DEC. This implementation is wait-free for all ports except port n. It is
also wait-free for port n unless both of the following hold: (i) an operation is invoked
on a port other than n, and (ii) no such operation completes. (Note that since ports
1, . . . , n− 1 are wait-free, an operation that has been invoked on these ports can fail
to complete only because of a crash.)

We now informally describe how this implementation works. For i ∈ [1..n], let
Pi denote the access procedure at port i of O. P1, . . . , Pn−1 act as one group, while
Pn acts as a solo outsider. P1, . . . , Pn−1 reach consensus on their initial proposals by
accessing O. Each Pi in the group regards the response of O as the group’s proposal
for consensus with Pn and writes this value into register GP (see line 1). (GP and
SP are acronyms for “group’s proposal” and “solo proposal,” respectively, and DEC
stands for “decision.”) Pi then reads SP to check whether the solo access procedure
Pn has published its proposal yet. If SP is blank, Pi attempts to promote the group’s
proposal as the consensus value between Pn and the group. Otherwise, Pi attempts to
promote the value in SP (which is the proposal of the solo access procedure Pn) as the
consensus value. Lines 2, 3, and 4, in which Pi sets the local variable votei to either GP
or SP, implement this strategy. It is possible, however, that some access procedures in
the group find SP blank and consequently promote the group’s proposal, while others
find in SP a nonblank value that they promote. To reconcile such differences, access
procedures in the group reach consensus on their votes by accessing O′. The response
of O′ is regarded as the final outcome of consensus between Pn and the group.

The solo access procedure Pn, on the other hand, begins by publishing its proposal
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in register SP. It then reads GP, the register where the group’s proposal is published.
If GP is blank, Pn concludes that it is ahead of all access procedures in the group
and that access procedures in the group will all vote for its (Pn’s) proposal. Thus,
Pn regards its proposal as the outcome of its consensus with the group. On the
other hand, if Pn finds GP nonblank, then Pn is uncertain of the views of the access
procedures in the group (because some members of the group might promote Pn’s
proposal, while the others promote the group’s proposal). Pn therefore blocks itself
until the consensus value is published in the register DEC by (some Pi in) the group.

Lemma 4.2. The implementation, shown in Figure 3, of the n-consensus object
O from (n− 1)-consensus objects and registers has the following properties:

1. O satisfies validity and agreement.
2. O is wait-free for all ports except port n.
3. O is wait-free for port n in every execution where either no operation is applied

to other ports or an operation applied to some port returns a response.
Proof. For part 1, let E be any execution of the implementation; for each i ∈ [1..n],

let Pi denote the access procedure at port i of O that appears in E . (As in the proof
of Lemma 4.1, we may assume, without loss of generality, that access procedures at
all ports appear in E .)

O satisfies validity. This follows easily by induction and the fact that the base
objects O and O′ satisfy validity.

O satisfies agreement. There are two cases, based on whether the if-condition in
line 2 of Pn evaluates to true or to false. Below we consider these cases in turn.

Suppose that the if-condition (in Pn’s access procedure) evaluates to true. Then
two facts are obvious from the implementation: (i) Pn finished writing its proposal u
in SP before any of P1, . . . , Pn−1 completed line 1 of its access procedure, and (ii) Pn

writes u in DEC and returns it. Fact (i) implies that, for each i ∈ [1..n − 1], the
if-condition on line 2 of Pi evaluates to false, thus causing Pi to set votei to u, the
value in SP. Thus, all of P1, . . . , Pn−1 propose u to O′; since O′ satisfies validity, O′

returns u to all. Thus, all of P1, . . . , Pn−1 return u. Since Pn also returns u, we have
agreement.

Suppose that the if-condition in Pn evaluates to false. Then two facts are obvious
from the implementation: (i) Pn waits until it reads a non-⊥ value in DEC and returns
it, and (ii) the only writes performed on DEC are by P1, . . . , Pn−1 in line 5, when
they write the return value of O′ in DEC. Since O′ satisfies validity and agreement, it
returns the same non-⊥ value, say d, to all of P1, . . . , Pn−1. Thus, each of P1, . . . , Pn−1

writes d in DEC and returns it. Pn eventually reads d in DEC and returns it. Hence
we have agreement.

Parts 2 and 3 are obvious from the implementation.

4.3. 1-blocking array implementation. We now use the group-solo imple-
mentation of n-consensus to implement, for any constant c, an array O[1..c] of n-
consensus objects from (n−1)-consensus objects and registers. To access the ith port
of the jth object in the array, where i ∈ [1..n] and j ∈ [1..c], the implementation pro-
vides the access procedure Apply(propose u, i,O[j]). The implementation guarantees
some nice properties, but only in certain restricted executions. The implementation
treats port n of the array elements differently from ports 1, . . . , n− 1 in two respects:
the restrictions it places on how the port may be used, and the wait-free properties
it guarantees for the port.

Specifically, the implementation imposes the following restriction for all ports
i ∈ [1..n−1]: port i of two different array elements must not be accessed concurrently.
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More precisely, the execution of access procedures at port i of any two array elements
O[j] and O[k] must not be concurrent. Concurrent execution of access procedures at
port n of distinct array elements is, however, permitted.

In executions that satisfy the above restriction, the implementation satisfies valid-
ity and agreement and, in addition, guarantees the following two properties: (i) All of
O[1], . . . ,O[c] are wait-free for ports 1, . . . , n− 1, and (ii) all but one of O[1], . . . ,O[c]
are wait-free for port n. By property (ii), if access procedures at port n of two dif-
ferent objects in the array are executing concurrently, they do not both block. This
property will be crucial to the proof of the generalized irreducibility theorem of the
next section.

Below we develop the ideas behind the implementation in two stages. In the first
stage, we propose an obvious implementation and point out its drawbacks. We fix
these drawbacks in the second stage.

Stage 1: Obvious implementation. Let GS1, . . . ,GSc be n-consensus objects imple-
mented using the group-solo implementation of Figure 3. Access procedure
Apply(propose u, i,O[j]) simply makes a call to Apply(propose u, i,GSj).

The drawback is that this implementation fails to satisfy property (ii), stated
above. To see this, consider an execution of Apply(propose v1, i1,O[1]), for some
v1 and i1 ∈ [1..n − 1], up to the point where register GP of GS1 has been written
but before register DEC of GS1 has been written (see lines 1 and 5 in Figure 3).
Thus, port n of GS1 is now blocked: an access procedure that invokes an operation
on port n of GS1 will have to wait until register DEC of GS1 is written (see the
busy-wait statement in Figure 3). Suppose that, at this point, the access procedure
Apply(propose v2, i2,O[2]), for some v2 and i2 ∈ [1..n − 1] such that i2 �= i1, is
executed, again up to the point where register GP of GS2 has been written but before
register DEC of GS2 has been written. Thus, port n of GS2 is now blocked as well.
If access procedures are now called at port n of O[1] and O[2], they will both have to
wait indefinitely, violating property (ii).

Stage 2: Refined implementation. We observe that the failure of the above imple-
mentation to satisfy property (ii) is due to the fact that it permits port n of more
than one GS object to become blocked. We now describe a mechanism which ensures
that, at all times, port n of at most one GS object can be blocked. The basic idea is
as follows: When an access procedure P wants to apply propose u at port i ∈ [1..n−1]
of O[j], as in the obvious implementation P applies propose u at port i of GSj , but it
does so only after completing any propose operations that have already been initiated
by other access procedures at ports 1, . . . , n−1 of GS1, . . . ,GSc. In this way, before P
accesses GSj to perform its own operation (thereby potentially causing port n of that
object to become blocked) it ensures that port n of every other object is not blocked.

This idea is implemented as follows. We use (n− 1)-consensus objects O1, . . . , Oc

(in addition to GS1, . . . ,GSc). When an access procedure P wants to apply an op-
eration propose u at a port i ∈ [1..n − 1] of O[j], P seeks to “obtain permission” to
apply propose u at port i of GSj . To obtain this permission, P accesses O1, . . . , Oc,
in that order, as described below. P proposes the tuple 〈j, u〉 to O1.

5 Let 〈k, v〉 be
O1’s response. There are two cases: j �= k or j = k. Below, we handle the two cases
in turn.

If j �= k, it means that some access procedure has already obtained permission

5Strictly speaking, it is natural numbers, and not pairs of natural numbers, that can be proposed
to consensus objects. It is well known, however, that pairs of natural number can be “coded” by
natural numbers, so this is not a problem.
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O1, . . . , Oc: (n− 1)-consensus objects, initialized to ⊥
GS1, . . . ,GSc: n-consensus objects, implemented from (n− 1)-consensus objects and

registers using the Group-Solo implementation in Figure 3

Apply(propose u, i,O[j]); u ∈ N, j ∈ [1..c] Apply(propose u, n,O[j]); u ∈ N,

i ∈ [1..n− 1] j ∈ [1..c]
� := 1 res := Apply(propose u, n,GSj)
repeat return res

〈k, v〉 := Apply(propose 〈j, u〉, i, O�)
res := Apply(propose v, i,GSk)
� := � + 1

until j = k
return res

Fig. 4. Implementation of 1-blocking array O[1..c] of n-consensus objects from (n−1)-consensus
objects.

(from O1) to apply propose v to GSk (at one of its first n− 1 ports). This operation
on GSk may not have completed, and thus it is possible that port n of GSk is blocked.
P therefore helps complete that operation by applying propose v on GSk. P then
accesses O2 for permission to apply propose u on GSj . It does this by proposing 〈j, u〉
to O2 and proceeds as above.

If j = k, it means that P has the permission to apply a propose operation to
GSj . At this point, P can propose either u or v (u is justified since it is P ’s proposal
to O[j], and v is justified since some access procedure wants to propose it to O[j]).
In our implementation, P proposes v to GSj , and regards the response of GSj as the
response of O[j] to its propose u operation.

Lemma 4.3. Consider the implementation of array O[1..c] of n-consensus objects,
shown in Figure 4. Let E be any execution of this implementation that satisfies the
following property:

(A) For all ports i ∈ [1..n − 1] and all j, j′ ∈ [1..c] such that j �= j′, the access
procedures at port i of O[j] and port i of O[j′] are not concurrent in E.

Then, the following hold in E:
1. All of O[1], . . . ,O[c] are wait-free for ports 1, . . . , n− 1.
2. All but one of O[1], . . . ,O[c] are wait-free for port n.
3. All of O[1], . . . ,O[c] satisfy validity and agreement.

Proof. We prove the lemma through a series of claims. The first two claims state
that the base objects are accessed as required to ensure they behave properly. As a
result, these objects satisfy their safety and liveness properties.

Claim 4.3.1. For each i ∈ [1..n − 1] and � ∈ [1..c] there are no concurrent
operations applied to port i of O� in E.

Proof of Claim 4.3.1. The claim follows immediately from the following two facts:
(i) port i of O� is accessed only by access procedures invoked at port i of O[1], . . . ,O[c],
and (ii) by (A), access procedures at port i of different objects O[j] and O[j′] are not
concurrent.

Claim 4.3.2. For each i ∈ [1..n] and k ∈ [1..c], there are no concurrent operations
applied to port i of GSk in E.

Proof of Claim 4.3.2. For i ∈ [1..n− 1], the claim is immediate from the following
two facts: (i) port i of GSk is accessed only by access procedures invoked at port
i of O[1], . . . ,O[c], and (ii) by (A), access procedures are not executed concurrently
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at port i of different objects O[j] and O[j′]. For i = n, the claim follows from the
observation that port n of GSk is accessed only by the access procedure at port n of
O[k].

Notice that each proposal to (and hence each response of) O� is of the form 〈j, u〉.
The next claim states that the first components of the responses returned by different
objects among O1, . . . , Oc are different.

Claim 4.3.3. Let 〈j, u〉 and 〈j′, u′〉 be the values returned by operations applied
to objects O� and O�′ . If � �= �′, then j �= j′.

Proof of Claim 4.3.3. Suppose � �= �′. Without loss of generality, we can assume
that �′ < �. By Claim 4.3.1, O� satisfies validity, and so some access procedure P
proposed 〈j, u〉 to O�. By the implementation it is clear that P is an access procedure
of the form Apply(propose u, ∗,O[j]).6 An inspection of this access procedure shows
that before P proposed 〈j, u〉 to O�, it proposed 〈j, u〉 to O�′ and received a response
〈k, v〉, where k �= j. By Claim 4.3.1, O�′ satisfies agreement, and so 〈k, v〉 = 〈j′, u′〉.
Therefore, j �= j′, as wanted.

Claim 4.3.4. For each i ∈ [1..n− 1] and j ∈ [1..c], O[j] is wait-free for port i in
E.

Proof of Claim 4.3.4. For each � ∈ [1..c], O� is wait-free for port i since, by
Claim 4.3.1, it is accessed properly. By part 2 of Lemma 4.2, GSj is wait-free for port
i. Thus, it remains to show that the repeat-loop of access procedure Apply(propose u,
i,O[j]) in Figure 4 terminates. If that loop does not terminate after � iterations, then
the propose operations applied to O1, . . . , O� return pairs whose first components are
different from each other (by Claim 4.3.3) and from j. Recall that the first components
of propose operations applied to O1, . . . , Oc are integers in [1..c], and that these objects
satisfy validity since, by Claim 4.3.1, they are accessed properly. Therefore, the loop
terminates after at most c iterations.

Claim 4.3.5. All but one of O[1], . . . ,O[c] are wait-free for port n in E.
Proof of Claim 4.3.5. Suppose, for contradiction, that there exist k, k′ ∈ [1..c]

such that k �= k′ and neither of O[k],O[k′] is wait-free for port n in E . It follows
that neither of GSk,GSk′ is wait-free for port n in E . By part 3 of Lemma 4.2, the
following holds for both GSk and GSk′ in E : An operation has been applied to some
port other than n and no operation applied to any port returns a response.

Let Pk and Pk′ denote access procedures that applied, respectively, an operation
to a port other than n of GSk and GSk′ . From the implementation, it is clear that
Pk obtained a response of 〈k, ∗〉 from some O� (otherwise Pk would not have applied
an operation to GSk). Similarly, Pk′ obtained a response of 〈k′, ∗〉 from some O�′ .
Since the responses of O� and O�′ to Pk and Pk′ , respectively, are different (recall that
k �= k′), and since each of O� and O�′ satisfies agreement (recall that, by Claim 4.3.1,
these objects are accessed properly), it follows that � �= �′. Without loss of generality,
assume �′ < �. From the implementation it is clear that Pk accessed O�′ before
accessing O�. Since O�′ satisfies agreement, its response to Pk was 〈k′, ∗〉. It is
again clear from the implementation that upon obtaining this response Pk invoked an
operation Apply(propose ∗, ∗,GSk′) and received the corresponding response before
proceeding to access O�′+1. But this contradicts the fact that no operation applied
to any port of GSk′ returns a response.

Claim 4.3.6. For each j ∈ [1..c], O[j] satisfies validity and agreement in E.
Proof of Claim 4.3.6. We observe that the value returned in E by any of O[j]’s

access procedures (namely, Apply(propose ∗, ∗,O[j])) is a response received from

6We use an ∗ to denote a quantity whose value is immaterial for the argument at hand.
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GSj . By Claim 4.3.2 and Lemma 4.2, GSj satisfies agreement in E . Therefore, O[j]
also satisfies agreement in E .

Consider any access procedure P of O[j] that returns v in E . To prove that O[j]
satisfies validity in E it suffices to show that some access procedure proposed v to
O[j]. Since P returns v, it is clear from the implementation that GSj returned v to
P . By Claim 4.3.2 and Lemma 4.2, GSj satisfies validity in E . Thus, v was proposed
to GSj by some access procedure P ′. By the implementation, this implies that one of
the following two cases applies:

(i) P ′ is the access procedure Apply(propose v, n,O[j]) and proposes v to GSj .
(ii) P ′ is an access procedure Apply(propose ∗, i′,O[j′]), for some i′ ∈ [1..n − 1]

and j′ ∈ [1..c], and proposes v to GSj after receiving 〈j, v〉 from some object O�.
This means that some access procedure P ′′ proposed 〈j, v〉 to O�, and so P ′′ is
an access procedure Apply(propose v, ∗,O[j]).

In either case, some access procedure proposed v to O[j], as wanted.
The three parts of Lemma 4.3 are immediate from Claims 4.3.4, 4.3.5, and 4.3.6,

respectively.

5. Generalized irreducibility theorem for consensus. In this section, we
prove the generalized irreducibility theorem for consensus, stated as follows. For all
n ≥ 2 and all sets S of types that include register, if there is a wait-free implementa-
tion of an n-consensus object from (n−1)-consensus objects and objects of types in S,
then there is a wait-free implementation of an n-consensus object just from objects of
types in S. In other words, the base (n−1)-consensus objects can be eliminated from
the implementation. Thus, (n− 1)-consensus objects are not necessary to implement
a wait-free n-consensus object, regardless of the base objects that are available for
such an implementation.

We obtain this result by repeated application of a lemma stating that if n-
consensus objects are helpful in implementing (n+1)-consensus objects, then (n−1)-
consensus objects are helpful in implementing n-consensus objects.

Lemma 5.1. For all n ≥ 2 and all sets S of types that include register, if there
is a wait-free implementation of an (n+1)-consensus object from n-consensus objects
and objects of types in S, then there is a wait-free implementation of an n-consensus
object from (n− 1)-consensus objects and objects of types in S.

Proof. Consider a wait-free implementation of an (n+1)-consensus object O from
n-consensus objects and objects of types in S. By König’s lemma, the number of base
objects of O is finite [2].7

Consider any n-consensus base object O of O. By Lemma 3.2, we can assume
that the binding of O with O is one-to-one static. Since O has n+ 1 ports and O has
n ports, some port of O, say p, does not use any port of O. Let i1, i2, . . . , in be the
remaining ports of O (i.e., the elements of [1..n + 1] − {p}) listed in ascending order.
We may assume without loss of generality (by renaming ports of O, if necessary) that
ports i1, i2, . . . , in of O are bound, respectively, to ports 1, 2, . . . , n of O. We may
therefore classify the base objects of O into four categories:

(a) A1, . . . , Aa are the n-consensus base objects that are not accessed by port
n+ 1 of O. Thus, ports n− 1 and n of A1, . . . , Aa are bound, respectively, to
ports n− 1 and n of O.

(b) B1, . . . , Bb are the n-consensus base objects that are not accessed by port n
of O. Thus, ports n− 1 and n of B1, . . . , Bb are bound, respectively, to ports

7It is here that we make use of the assumption that types exhibit finite nondeterminism.
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n− 1 and n + 1 of O.
(c) C1, . . . , Cc are the n-consensus base objects that are not accessed by one of

the first n− 1 ports of O. Thus, ports n− 1 and n of C1, . . . , Cc are bound,
respectively, to ports n and n + 1 of O.

(d) D1, . . . , Dd are the remaining base objects of O (these belong to the types in
S).

Modify the implementation of O as follows:

• Replace the base objects A1, . . . , Aa and B1, . . . , Bb with a 1-blocking array
O[1..a + b], implemented as in Figure 4. Objects O[1..a] of the array are
used in the place of A1, . . . , Aa and O[a + 1..a + b] are used in the place of
B1, . . . , Bb.

• Replace the base objects C1, . . . , Cc with NC1, . . . ,NCc, where each NCi is
implemented using the nonconcurrent implementation in Figure 2.

• The access procedures of the new implementation are the same as in the
original implementation with the following exception: Each time any access
procedure Apply(propose ∗, ∗,O) applies, in the original implementation, a
propose u operation to port i of Aj , Bj , or Cj , the new implementation
requires the access procedure instead to apply propose u to port i of O[j],
O[a + j], or NCj , respectively.

Claim 5.1.1. The (n+1)-consensus object O in the new implementation described
above has the following properties:

1. All base consensus objects of O are (n − 1)-consensus objects and all other
base objects of O belong to types in S.

2. O satisfies validity and agreement in all executions in which operations are
not executed concurrently at ports n− 1 and n of NCi for all i ∈ [1..c].

3. O is wait-free for ports 1, . . . , n− 1.
4. O is wait-free for one of ports n and n + 1.

Proof of Claim 5.1.1. Part 1 follows from the fact that O[1..a+b] and NC1, . . . ,NCc

are implemented from (n − 1)-consensus objects and registers, the latter being in S
by assumption.

To prove part 2, consider any execution E of the new implementation of O in
which operations are not executed concurrently at ports n − 1 and n of any NCi,
i ∈ [1..c]. The following three facts imply that O satisfies validity and agreement in
E :

• The original implementation of O satisfies validity and agreement in all exe-
cutions.

• By part 3 of Lemma 4.3, O[1], . . . , O[a + b] (which have replaced A1, . . . , Aa

and B1, . . . , Bb of the original implementation) satisfy validity and agreement
in all executions that satisfy the following proviso: there are no concurrent
invocations at the same port p ∈ [1..n − 1] of two distinct objects O[j] and
O[k], where j, k ∈ [1..a+ b]. This proviso is satisfied in E because (i) the first
n− 1 ports of each object O[1], . . . , O[a+ b] are bound to the first n− 1 ports
of O, respectively; and (ii) in the original implementation of O, no access
procedure invokes concurrent operations on distinct base objects—and, in
particular, on the n-consensus base objects A1, . . . , Aa and B1, . . . , Bb that
were replaced by O[1], . . . , O[a + b].

• By part 2 of Lemma 4.1, NC1, . . . ,NCc (which have replaced C1, . . . , Cc of
the original implementation) satisfy validity and agreement in E .

Part 3 follows from the following facts: (i) NC1, . . . ,NCc are wait-free (by part 1
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of Lemma 4.1), (ii) O[1], . . . , O[a + b] are wait-free for ports 1, . . . , n − 1 (by part 1
of Lemma 4.3), and (iii) none of the first n − 1 ports of O use port n of any of
O[1], . . . , O[a + b].

Part 4 follows from the following facts: (i) all but one of O[1], . . . , O[a + b] are
wait-free for port n (by part 2 of Lemma 4.3), and (ii) port n of each of O[1], . . . , O[a]
is used only by port n of O, and port n of each of O[a + 1], . . . , O[a + b] is used only
by port n+ 1 of O (thus, port n of each O[i] is used either by port n of O or by port
n + 1 of O, but not by both).

Next we describe how to transform the new implementation of O, the (n + 1)-
consensus object satisfying the properties in Claim 5.1.1, into an implementation of
an n-consensus object O′. Informally, the access procedure for each of the first n− 1
ports of O′ simply calls the access procedure at the corresponding port of O and
returns that procedure’s response. For port n, the access procedure of O′ executes
the access procedures of both ports n and n + 1 of O, alternating between the two in
such a manner that one of them is guaranteed to terminate and return a value; that
value then becomes the response of the access procedure of port n of O′.

To explain more precisely how O′ works, we need to make some observations and
introduce some terminology. Recall (see Figure 4) that to propose a value to port n
of an object O[j] in a 1-blocking array, we simply propose the same value to port n
of an object GSj in the group-solo implementation. If, in some execution, the latter
enters the busy-wait statement (see Figure 3), we say that object O[j] is blocked.

Here, now, is how the access procedure Apply(propose u, i,O′) works:

• For all i ∈ [1..n−1], Apply(propose u, i,O′) executes Apply(propose u, i,O).
• Apply(propose u, n,O′), the access procedure at port n of O′, interleaves

the execution of Apply(propose u, n,O) and Apply(propose u, n + 1,O),
using the rules below. For convenience, we let procn and procn+1 de-
note Apply(propose u, n,O) and Apply(propose u, n + 1,O), respectively.
Note that, by construction of O, procn applies operations to port n of
O[1], . . . , O[a] (as well as to port n − 1 of NC1, . . . ,NCc, and possibly to
ports of D1, . . . , Dd). Similarly, procn+1 applies operations to port n of
O[a + 1], . . . , O[a + b] (as well as to port n of NC1, . . . ,NCc, and possibly to
ports of D1, . . . , Dd).
(a) Begin by executing procn.
(b) Suspend procn and resume procn+1 if and only if procn accesses an

object O[j] that is blocked (for some j ∈ [1..a]). Similarly, suspend
procn+1 and resume procn if and only if procn+1 accesses an object
O[a + j] that is blocked (for some j ∈ [1..b]).

(c) As soon as either procn or procn+1 terminates and returns some value
v, terminate Apply(propose u, n,O′) and return v.

Claim 5.1.2. The n-consensus object O′, in the implementation described above,
has the following properties:

1. All base consensus objects of O′ are (n− 1)-consensus objects, and all other
base objects belong to types in S.

2. O′ satisfies validity and agreement.
3. O′ is wait-free.

Proof of Claim 5.1.2. Part 1 follows directly from part 1 of Claim 5.1.1.

Each access procedure of O′ merely returns the value of a corresponding access
procedure of O. By part 2 of Claim 5.1.1, O satisfies validity and agreement as long
as there are no concurrent operations at ports n− 1 and n of each NCi for i ∈ [1..c].
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Thus, to prove part 2 of the present claim, it suffices to prove that, for every i ∈ [1..c],
the access procedures of O′ do not apply concurrent operations to ports n− 1 and n
of NCi. To see why this is the case, recall that ports n − 1 and n of each NCi are
accessed only by procn and procn+1, respectively. By construction of O′, only the
access procedure of port n of O′ executes procn and procn+1. Furthermore, while
the access procedure of port n of O′ is executing one of procn or procn+1, it has
suspended execution of the other. Therefore, no concurrent operations are executed
at ports n− 1 and n of NCi, as wanted.

Part 3 of Claim 5.1.1 implies that O′ is wait-free for ports 1, . . . , n−1, and part 4
of Claim 5.1.1 implies that O′ is wait-free for port n. Thus, O′ is wait-free for all its
n ports.

This completes the proof of Lemma 5.1.
Theorem 5.2 (generalized irreducibility theorem for consensus). For all n ≥ 2

and all sets S of types that include register, if there is a wait-free implementation of
an n-consensus object from (n− 1)-consensus objects and objects of types in S, then
there is a wait-free implementation of an n-consensus object from objects of types in
S.

Proof. Suppose there is a wait-free implementation of an n-consensus object from
(n−1)-consensus objects and objects of types in S. By repeated application of Lemma
5.1 we have that for all k ∈ [2..n], there is a wait-free implementation of a k-consensus
object from (k− 1)-consensus objects and objects of types in S. Composing all these
implementations, we obtain a wait-free implementation of an n-consensus object from
1-consensus objects and objects of types in S. Since 1-consensus objects have a trivial
implementation,8 we have a wait-free implementation of an n-consensus object from
objects of types in S.

6. Equivalence of t-resilient and wait-free implementations of consen-
sus. In this section, we prove that the three versions of fault-tolerant consensus—
wait-free consensus, weak t-tolerant consensus, and strong t-tolerant consensus—are
equivalent: if any of them can be implemented from certain types of shared objects,
the other two can also be implemented from the same types of shared objects. More
precisely, we have the following.

Theorem 6.1 (equivalence of t-resilient and wait-free consensus). For all n >
t ≥ 2 and all sets S of types that include register, the following three statements are
equivalent:

S1. There is an implementation of a weakly t-resilient n-consensus object from
objects of types in S.

S2. There is a wait-free implementation of a (t+1)-consensus object from objects
of types in S.

S3. There is an implementation of a strongly t-resilient n-consensus object from
objects of types in S.

We prove the theorem by showing that S1 implies S2, S2 implies S3, and S3 implies
S1. As we will see, the generalized irreducibility theorem of the previous section is
used to prove the first of these three claims.

Lemma 6.2. S1 implies S2, where statements S1 and S2 are as in Theorem 6.1.
Proof. Let O be a t-resilient implementation of an n-consensus object from objects

of types in S. Using O (and a few other base objects) we implement a wait-free (t+1)-
consensus object O′. Roughly speaking, the access procedures of O′ coordinate with

8A propose u operation on a 1-consensus object simply returns u.



GENERALIZED IRREDUCIBILITY OF CONSENSUS 353

each other to simulate an execution of O. The simulation is done in such a way that
each access procedure of O′ that crashes can prevent at most one access procedure
of O in the simulated execution from making progress. Thus, if access procedures
in at most t ports of O′ crash, then access procedures of at most t ports of O will
stop making progress in the simulated execution. Since O is t-resilient, the access
procedures in the remaining n − t ports of O eventually terminate and return the
same value. This value is adopted as the return value of O′.

We implement the above idea as follows:

• We employ registers U1, . . . , Un and R1, . . . , Rn. For each i ∈ [1..n], Ui stores
the value proposed at port i of O, and Ri stores the current state of that
port’s access procedure. (The state of an access procedure consists of the
values of all its private variables and of its “program counter.”)

• We employ (t+1)-ported test&set objects TS1, . . . ,TSn. (The test&set object
type has two states—win and lose—and supports two operations: test&set
and reset . The test&set operation returns the current state of the object
and sets the state to lose. The reset sets the state to win and returns an
acknowledgment as a response.)
We use TSj to ensure that at any time at most one of O′’s access procedures
simulates steps of the access procedure at port j of O.

• For brevity, let Pi denote the access procedure Apply(propose u, i,O′) for
each i ∈ [1..t + 1]. Pi considers the n ports of O in round-robin fashion.
When Pi considers port j of O, it applies a test&set operation to TSj . If TSj

returns lose, Pi moves on to consider the next port of O,
(
(j+1) mod n

)
+1.

If TSj returns win, Pi advances the simulation of the access procedure at port
j of O by performing the following actions:
(1) Pi reads Rj to determine the current state of that procedure.
(2) If no step of port j has been simulated before, Pi writes its proposal u

into Uj and sets Rj to the initial state of Apply(propose Uj , j,O).
(3) Pi performs a single step of Apply(propose Uj , j,O) and writes the

resulting state of that procedure in Rj .
(4) Pi performs a reset operation on TSj (so that some Pi′ , i

′ ∈ [1..t + 1],
may execute the next step of the access procedure at O’s port j).

(5) If the step that Pi simulated caused the access procedure of port j of O
to terminate and return v, Pi writes v in a register DEC and terminates;
otherwise, Pi moves on to consider the next port of O.

The implementation of O′, described informally above, is shown in Figure 5. The
following claim states the desired properties of O′.

Claim 6.2.1. The (t+1)-consensus object O′, shown in Figure 5, satisfies validity
and agreement and is wait-free.

Proof of Claim 6.2.1. Let E ′ be an arbitrary concurrent execution of O′’s access
procedures, and let E be the subexecution of E ′ consisting of the operations applied to
O (see line 8 in Figure 5). Thus E is a concurrent execution of O’s access procedures.
To prove the claim it suffices to show that O′ satisfies validity and agreement and is
wait-free in E ′.

It is clear from the implementation that the values returned by access procedures
of O′ in E ′ are values returned by access procedures of O in E . In addition, any value
proposed by an access procedure of O in E is a value proposed by some access proce-
dure of O′ in E ′ (see line 6). From these two observations, and the fact that O satisfies
validity and agreement in E , it follows that O′ satisfies validity and agreement in E ′.
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O: t-resilient implementation of n-consensus object, initialized to ⊥
TS1, . . . ,TSn: (t + 1)-ported test&set objects, initialized to win
R1, . . . , Rn: registers, initialized to ⊥
U1, . . . , Un: registers, initialized arbitrarily
DEC : register, initialized to ⊥
Apply(propose u, i,O′); u ∈ N, i ∈ [1..t + 1]

1. j := 1
2. repeat
3. if Apply(test&set , i,TSj) = win then
4. read Rj to determine the state of procj

5. if Rj = ⊥ then
6. Uj := u
7. Rj := initial state of Apply(propose Uj , j,O)
8. execute one step of Apply(propose Uj , j,O)
9. write in Rj the new state of Apply(propose Uj , j,O)
10. if Apply(propose Uj , j,O) terminated and returned v then DEC := v
11. Apply(reset , i, TSj)
12. if DEC �= ⊥ then return DEC
13. j :=

(
(j + 1) mod n

)
+ 1

14. forever

Fig. 5. Wait-free implementation of a (t+ 1)-consensus object O′ from t-resilient implementa-
tion of n-consensus object O.

It remains to show that O′ is wait-free in E ′. Suppose, for contradiction, that
there is an access procedure, say P , of O′ that is infinite in E ′. For i ∈ [1..t+1] let Pi

denote the access procedure at port i of O′ in E ′, and for j ∈ [1..n] let Qj denote the
access procedure at port j of O in E . We make a subclaim that, for each finite Qj

in E (j ∈ [1..n]), there is a Pi (i ∈ [1..t + 1]) such that Pi applies only finitely many
operations to TSj in E ′, the last of which is a test&set that returns win. We prove
this subclaim by contradiction: suppose that every Pi that receives win from TSj at
line 3 subsequently resets it at line 11. Then, since P applies infinitely many test&set
operations to TSj in E ′, there would be infinitely many test&set operations to TSj

that return win in E ′. As a result, either infinitely many steps of Qj are performed
in E or Qj completes in E and returns some response v. The former case contradicts
the premise that Qj is finite in E . In the latter case, whichever Pk simulated the last
step of Qj would write v in DEC (at line 10) before resetting TSj . After this writing
in DEC, when P reads DEC at line 12, it finds v in DEC and therefore completes,
which contradicts the premise that P is infinite. This completes the proof of the
subclaim. It is clear from Figure 5 that if Qj and Qj′ are distinct access procedures
of O that are finite in E , then the corresponding access procedures of O′ that executed
the last test&set operation on TSj and TSj′ , respectively, are also distinct. Thus, it
is immediate from the subclaim that if at most m of P1, P2, . . . , Pt+1 are finite, then
at most m of Q1, . . . , Qn are finite. Since, by our supposition, P is infinite (and P is
one of P1, . . . , Pt+1), it follows that at most t of Q1, . . . , Qn are finite, which implies
that at least n− t of Q1, . . . , Qn are infinite. This conclusion contradicts the fact that
O is t-resilient. Hence, we conclude that O′ is wait-free in E ′.

Afek, Weisberger, and Weisman showed that there is a wait-free implementation
of a k-ported test&set object from 2-consensus objects and registers for all k ≥ 2 [1].
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This, together with Claim 6.2.1, implies the following.

Claim 6.2.2. There is a wait-free implementation of a (t + 1)-consensus object
from 2-consensus objects and objects of types in S.

We now have all the ingredients needed to complete the proof of Lemma 6.2. Since
t ≥ 2, Claim 6.2.2 implies that there is a wait-free implementation of a (t+1)-consensus
object from t-consensus objects and objects of types in S. This, together with Theo-
rem 5.2, implies that there is a wait-free implementation of a (t+1)-consensus object
from just objects of types in S. This completes the proof of Lemma 6.2.

The next lemma has a similar proof, so we provide only an informal sketch.

Lemma 6.3. S2 implies S3, where statements S2 and S3 are as in Theorem 6.1.

Proof. The proof is based on a simulation of a strong t-resilient n-consensus object
O′ using a wait-free (t + 1)-consensus object O. This simulation is similar to that in
the proof of Lemma 6.2 (see Figure 5). The only difference is that now a larger number
n of access procedures simulate the steps of a wait-free implementation for a smaller
number t + 1 of access procedures (in Figure 5 it is the other way around: a smaller
number t + 1 of access procedures simulate the steps of a t-resilient implementation
for a larger number n of access procedures). In this way, even if only a few access
procedures of the t-resilient implementation are active, they will nevertheless simulate
an execution of the wait-free implementation and reach a decision that satisfies validity
and agreement. As before, the simulation uses a register DEC (to publish the decision
value) and test&set objects to ensure that the simulation is done correctly. (One
test&set object is used at each port i of O to ensure that at most one access procedure
of O′ simulates port i of O at any time.)

The above argument shows that a strong t-resilient n-consensus object O′ can
be simulated using a wait-free (t + 1)-consensus object O, t + 1 n-ported test&set
objects, and the register DEC. We show next that the test&set objects can be elimi-
nated from the simulation. As mentioned earlier, an n-ported test&set object can be
implemented wait-free from 2-consensus objects and registers [1]. Since t ≥ 2, it fol-
lows that n-ported test&set objects used in the simulation can be substituted by their
implementations from (t+1)-consensus objects and registers. With this substitution,
we have a simulation of a strong t-resilient n-consensus object O from registers and a
set of wait-free (t+1)-consensus objects. By the premise of the lemma (i.e., statement
S2), we have that (1) a wait-free (t + 1)-consensus object can be implemented from
objects that belong to the types in S, and (2) S includes the register type. It follows
that a strong t-resilient n-consensus object can be simulated using only objects whose
types are in S.

The next lemma trivially holds since strong t-resilience implies weak t-resilience.

Lemma 6.4. S3 implies S1, where statements S3 and S1 are as in Theorem 6.1.

Theorem 6.1 is immediate from Lemmas 6.2, 6.3, and 6.4.

Notice that the equivalence of statements S1, S2, and S3 in the theorem is proved
for t ≥ 2. As shown by Lo and Hadzilacos, the implication S1 =⇒ S2 breaks
down for t = 1 [22]. The other implications, however, continue to hold for t = 1: S2
implies S3 (the proof is the same as in Lemma 6.3) and S3 implies both S1 and S2
(by definition).

Finally, we present some corollaries of the equivalence theorem. Herlihy proved
that there is no wait-free implementation of 3-consensus from objects belonging to
any of the following sets of types [12]: {queue, register}, {stack, register},
{fetch&add, register}, {swap, register}. (Here, the types register, queue,
stack, fetch&add, and swap can have any number of ports; the impossibility re-
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sult holds regardless.) This, together with Theorem 6.1, implies the following.
Corollary 6.5. For all n ≥ 3, there is no 2-resilient implementation of an n-

consensus object from objects belonging to any of the following sets of types:
{queue, register}, {stack, register}, {fetch&add, register}, {swap, register}.

Consider a mem(m) object that corresponds to Herlihy’s m-register assignment
memory [12]. Informally, mem(m) consists of an infinite array of cells; it supports the
read i operation, which returns the value in the ith cell, and the write(i1, v1, . . . , im, vm)
operation, which (atomically) writes vj in cell ij for all j ∈ [1..m]. For m ≥ 2, Herlihy
proved that there is no wait-free implementation of a (2m− 1)-consensus object from
mem(m) objects (regardless of the number of ports the mem(m) objects may have).
This, together with Theorem 6.1, implies the following.

Corollary 6.6. For all m ≥ 2 and n ≥ 2m − 1, there is no (2m − 2)-resilient
implementation of an n-consensus object from mem(m) objects.
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APPROXIMATION ALGORITHMS FOR THE 0-EXTENSION
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Abstract. In the 0-extension problem, we are given a weighted graph with some nodes marked
as terminals and a semimetric on the set of terminals. Our goal is to assign the rest of the nodes
to terminals so as to minimize the sum, over all edges, of the product of the edge’s weight and the
distance between the terminals to which its endpoints are assigned. This problem generalizes the
multiway cut problem of Dahlhaus et al. [SIAM J. Comput., 23 (1994), pp. 864–894] and is closely
related to the metric labeling problem introduced by Kleinberg and Tardos [Proceedings of the 40th
IEEE Annual Symposium on Foundations of Computer Science, New York, 1999, pp. 14–23].

We present approximation algorithms for 0-Extension. In arbitrary graphs, we present a
O(log k)-approximation algorithm, k being the number of terminals. We also give O(1)-approximation
guarantees for weighted planar graphs. Our results are based on a natural metric relaxation of the
problem previously considered by Karzanov [European J. Combin., 19 (1998), pp. 71–101]. It is
similar in flavor to the linear programming relaxation of Garg, Vazirani, and Yannakakis [SIAM
J. Comput., 25 (1996), pp. 235–251] for the multicut problem, and similar to relaxations for other
graph partitioning problems. We prove that the integrality ratio of the metric relaxation is at least

c
√

lg k for a positive c for infinitely many k. Our results improve some of the results of Kleinberg
and Tardos, and they further our understanding on how to use metric relaxations.

Key words. metric space, approximation algorithm, linear programming relaxation, graph
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1. Introduction. Let V be a finite set, let T ⊆ V , and let d be a semimetric
on T .1 Then a semimetric δ on V is an extension of d to V iff for every i, j ∈ T ,
δ(i, j) = d(i, j). If, in addition, for every i ∈ V there exists j ∈ T such that δ(i, j) = 0,
then δ is a 0-extension of d to V .

We consider the following optimization problem, denoted 0-Extension and posed
by Karzanov [13]: Given a clique V with a nonnegative edge weight c(e) for every
edge e, a subset T of the nodes, and a semimetric d on T , find a 0-extension δ of d to
V that minimizes

∑
uv∈E c(u, v)δ(u, v).

Before doing anything else, we give an alternate formulation of 0-Extension:
Given the input above, find a function f : V → T such that f(t) = t for all t ∈ T which
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1A function d : T × T → R is a semimetric on T iff for every i1, i2, i3 ∈ T , d(i1, i1) = 0,
d(i1, i2) ≥ 0, d(i1, i2) = d(i2, i1), and d(i1, i2) + d(i2, i3) ≥ d(i1, i3). If, in addition, d(i1, i2) = 0
implies i1 = i2, then d is a metric.
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minimizes
∑

uv∈E c(u, v)d(f(u), f(v)). It is easy to see that the two formulations are
equivalent. For given a feasible solution of the first kind, we can define f(u) to
be some terminal i such that δ(u, i) = 0, choosing f(u) = u if u ∈ T , and given
a feasible solution of the second kind, we can define δ(u, v) = d(f(u), f(v)) for all
u, v ∈ V ; the costs of the two solutions are identical because if u, v ∈ V , i, j ∈ T , and
δ(u, i) = δ(v, j) = 0, then δ(u, v) = δ(i, j) = d(i, j). Often, instead of defining the
edge weights on all edges of a clique on V , we will define c(u, v) for each edge uv in a
given graph G = (V,E), where c(u, v) = 0 for uv �∈ E is assumed. That way, we can
exploit the structure of G if, say, G is planar.

It helps to compare 0-Extension to the multiway cut problem of Dahlhaus et
al. [7, 8]. Multiway Cut is the following problem: Given a graph G = (V,E) with
nonnegative edge weights c : E → R, and a subset T ⊆ V of terminals, find a mapping
f : V → T , such that f(t) = t for all t ∈ T , so as to minimize∑

uv∈E,f(u) �=f(v)

c(u, v).

In other words, find a set of edges of minimum total weight whose removal disconnects
all terminal pairs. If we define d to be the uniform metric on T , i.e., d(i, j) = 1 if
i �= j and d(i, i) = 0, then Multiway Cut is exactly this problem: Find f : V → T ,
with f(t) = t for all t ∈ T , so as to minimize∑

uv∈E

c(u, v) · d(f(u), f(v)),

as d(f(u), f(v)) = 1 if f(u) �= f(v) and d(f(u), f(v)) = 0 otherwise. Now 0-

Extension is the natural generalization of Multiway Cut in which, instead of
being the uniform metric, d is an arbitrary semimetric on T . In other words, we must
find an f : V → T , with f(t) = t for all t ∈ V , so as to minimize∑

uv∈E

c(u, v) · d(f(u), f(v)).

Dahlhaus et al. [8] show that Multiway Cut (and therefore 0-Extension) is APX-
hard. Thus there exists a constant α > 1 such that no polynomial-time algorithm can
find a solution within a factor of α of the optimum, unless P=NP.

In this paper we develop approximation algorithms for the 0-extension problem.
We study what seems to us to be the most natural linear programming relaxation for
the 0-extension problem: Find a minimum weight extension of d to V ; specifically,
given the semimetric d on T , extend d to a semimetric δ on the larger set V so as to
minimize

∑
uv∈E c(u, v)δ(u, v). (We call this the metric relaxation.) Obviously, the

set of feasible extensions δ is defined by O(|V |3) linear constraints, and the objective
function is linear. Thus finding the best extension is a linear programming problem,
and thus it can be solved in polynomial time. We derive approximation algorithms
using the metric relaxation, thus bounding also the integrality ratio for the relaxation.
For arbitrary graphs we give a randomized O(log |T |)-approximation algorithm. We
show that the integrality ratio is at least a constant times

√
log |T | for infinitely many

|T |. We improve the upper bounds to O(1) for (weighted) planar graphs (or, in fact,
for any family of graphs that excludes a Kr,r-minor for some fixed r).

Karzanov [13] considers the metric relaxation for the 0-extension problem and
characterizes some of the cases in which the relaxation gives the optimal solution. For
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the multiway cut problem, it was known that the metric relaxation has integrality
ratio exactly 2 − 2/|T | [5, Theorem 3.1]. Indeed, this observation uses the same
idea underlying the combinatorial algorithm of Dahlhaus et al. [8] that has the same
performance guarantee. For the general case, the quality of the metric relaxation was
not known prior to our work. For multiway cut, a different relaxation gives better
approximations, with an asymptotic ratio significantly below 2 (see Calinescu, Karloff,
and Rabani [2] and the improved bounds of Cunningham and Tang [6] and of Karger
et al. [12]). It is not clear whether the Calinescu, Karloff, and Rabani relaxation can
be extended to handle the general case of 0-Extension.

In a recent paper, Kleinberg and Tardos [16] give approximation algorithms for
a similar problem of classification with pairwise relations, which they call Metric

Labeling. In their problem, the terminals are distinct from the vertices and are
called labels. There is a semimetric on the labels, and for each node of the graph
there is a vector of assignment costs to each of the labels. The goal is to minimize the
total assignment cost plus the sum of weighted edge lengths. More formally, given
a graph G = (V,E) with nonnegative edge weights c : E → R, a set T of labels, a
semimetric d on T , and a nonnegative assignment cost function a : V ×T → R∪{∞},
Metric Labeling is the problem of finding a mapping f : V → T so as to minimize

∑
u∈V

a(u, f(u)) +
∑
uv∈E

c(u, v) · d(f(u), f(v)).

For the case in which d is the uniform metric, Kleinberg and Tardos give a 2-
approximation algorithm, based on a relaxation similar to the Calinescu et al. relax-
ation for Multiway Cut. The integrality ratio for the relaxation here, as opposed
to the relaxation for the multiway cut problem, is at least 2 − 2/|T |. Chuzhoy [4]
improves their result for three and four labels (achieving a tight 4/3 bound for three
labels). Kleinberg and Tardos further give a constant approximation algorithm for
a class of tree metrics, the so-called hierarchically well-separated tree metrics (HST
metrics). Following Bartal’s small distortion embeddings of metrics into HST met-
rics [1], they use a constant-ratio approximation algorithm for HST metrics to give
an O(log |T | log log |T |)-approximation algorithm for arbitrary metrics. Gupta and
Tardos [11] later give a local search-based 4-approximation algorithm for the case
that d is a truncated linear metric (i.e., T = {1, 2, . . . , k} and for some value m,
d(i, j) = min{|i − j|,m}). Recently, Chekuri et al. [3] introduced a new linear pro-
gramming relaxation for the metric labeling problem, and using it, obtained another
O(log |T | log log |T |)-approximation algorithm for arbitrary metrics and a 2 +

√
2-

approximation algorithm for the truncated linear metric.

The authors of [16] and [11] motivate their work by several applications, mostly
concerning computer vision, such as image restoration and visual correspondence.
In these applications the nodes of the graph are pixels in a raster image, and the
edges model adjacency (in fact, the graph is a two-dimensional mesh). In image
restoration applications, the labels model pixel intensities or colors. Assigning a label
to a pixel amounts to determining the “true” intensity (or color) of the pixel from
the observed values. The assignment cost penalizes for the difference between the
observed and assigned intensity. In visual correspondence applications, the labels
model possible shifts between two images. Assigning a label to a pixel amounts to
determining the shift of that pixel between the two images. The assignment cost
penalizes for the difference between the values of the supposedly matching pixels. In
both types of applications, the structure of the graph arises from assuming that the a
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priori distribution of “true” labels is generated by a Markov random field (where the
distribution of a pixel depends only on the distribution of its neighbors).

Note that 0-Extension is a special case of Metric Labeling: Given an instance
of 0-Extension with T ⊆ V , define a : V × T → R ∪ {∞} by

• if u ∈ T , then a(u, u) = 0 and a(u, t) = ∞ for all t ∈ T \ {u};
• if u �∈ T , then a(u, t) = 0 for all t ∈ T .

The feasible solutions to Metric Labeling of finite cost then correspond to functions
f : V → T , which are arbitrary except for the constraint that f(t) = t for all terminals
t, and the objective function value corresponding to f is

∑
c(u, v)d(f(u), f(v)), the

value of the objective function of 0-Extension.

Thus, our results improve upon the results in [16] for this case. We note that the 0-
extension formulation seems appropriate for many of the computer vision applications
mentioned in [16, 11]. For example, if we connect each pixel by a weighted edge to the
label corresponding to its observed intensity, we get an assignment cost proportional
to the distance between the observed and assigned value. Our algorithm for weighted
planar graphs actually assumes only that V \T induces a planar graph. Thus we get a
constant-ratio approximation algorithm for some of these computer vision problems,
for an arbitrary metric on the labels T .

Another problem related to ours is the multicut problem, first considered in the
context of approximation algorithms in two papers by Garg, Vazirani, and Yan-
nakakis [9, 10] (and implicitly in Klein et al. [14]). In this problem, we are given
a (weighted) graph and k pairs of terminals (nodes in the graph), and the goal is to
find a minimum weight set of edges whose removal disconnects every pair of terminals.
This is a different generalization of multiway cut (the latter can be viewed as the mul-
ticut problem for all

(
k
2

)
pairs of terminals). It is not comparable to the 0-extension

problem, in the sense that neither problem is a special case of the other. In [10], Garg
et al. give an O(log |T |) approximation algorithm for the multicut problem, based on
a metric relaxation which assigns lengths to edges so that the distance between every
specified pair of terminals is at least 1. Their result is tight for the relaxation. The
example achieving (asymptotically) the integrality ratio is an expander. For their
upper bounds, they use a region-growing technique similar to that used by Leighton
and Rao [17] for approximating the minimum flux (edge expansion) of a graph. Klein,
Plotkin, and Rao [15] improve the Leighton and Rao technique for planar graphs (and
more generally for graphs that exclude a Kr,r-minor) to get a constant factor approxi-
mation for the minimum flux. Using their technique, Tardos and Vazirani [18] exhibit
a constant-factor approximation algorithm for the multicut problem on planar graphs
(and Kr,r-minor free graphs).

Our result can be seen as a counterpart to the Garg et al. and the Tardos and
Vazirani results. The region-growing technique does not give a good approximation in
the case of 0-extension. However, our results can be viewed as a form of (randomized)
region growing after the application of a scaling function to the distances. This is
implicit in the general case algorithm, and explicit in the planar graphs algorithm,
where we use the Klein et al. technique on the scaled distances. It is worth noting
that, in contrast with the situation of [10], expanders are not a particularly bad case
for our relaxation (see section 4).

The rest of the paper is organized as follows. In section 2 we present the algo-
rithm for the general case. Section 3 has the improved bounds for planar graphs. In
section 4 we discuss the quality of the linear programming relaxation underlying our
approximation algorithms. Throughout the rest of the paper we use k to denote the
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number |T | of terminals. We call the vertices in V \ T nonterminals.

2. An O(log k)-approximation algorithm. In this section we present the
randomized algorithm which finds a 0-extension of weight at most O(log k) times the
optimum. We begin by computing an optimal solution to the following natural linear
programming relaxation, which we denote by (MET):

Minimize
∑
uv∈E

c(u, v)δ(u, v) subject to

(V, δ) is a semimetric,(2.1)

δ(i, j) = d(i, j) ∀i, j ∈ T.(2.2)

If an assignment f : V → T defines an optimal solution to the 0-extension prob-
lem, then setting δ(u, v) = d(f(u), f(v)) defines a feasible solution of (MET) of the
same weight as the optimal solution. Therefore, the optimal value Z∗ of (MET) is a
lower bound on the minimum weight 0-extension. We exhibit a rounding procedure
that takes any feasible solution δ of (MET) of value Z and constructs a 0-extension
assignment f : V → T whose weight is O(Z log k).

Our rounding procedure works as follows. Pick uniformly at random a permuta-
tion σ of T and independently choose, uniformly at random in the interval [1, 2), a
real number α. The rounding algorithm iteratively assigns some nodes to terminal
σ1, then some of the remaining nodes to terminal σ2, and so on. For every u ∈ V , set
Au = mini∈T δ(u, i). The rounding procedure is given below.

Rounding Procedure.

Set f(t) = t for all terminals t.
Pick a random permutation σ = 〈σ1, σ2, . . . , σk〉 of the terminals.
Pick α uniformly at random in the interval [1, 2).
for j = 1 to k do

for all unassigned nonterminals u such that δ(u, σj) ≤ αAu, do
Set f(u) = σj (i.e., assign u to σj).

endfor
endfor

We first show that the rounding procedure produces a 0-extension, as follows.
Claim 2.1. The rounding procedure assigns every nonterminal to a terminal.
Proof. Consider a nonterminal v, and let t ∈ T be a terminal with δ(v, t) = Au.

Choose j such that t = σj . Then if v is not assigned to a terminal in iterations
1, 2, . . . , j − 1, it must be assigned to t in iteration j, because α ≥ 1.

For any pair of nodes u, v ∈ V , define a random variable s(u, v) = d(f(u), f(v)).
We say that u, v ∈ V are separated if f(u) �= f(v). Note that if u, v are not separated,
then s(u, v) = 0. Our goal is to bound the expectation E[s(u, v)]. We first state a
bound on the probability that u, v are separated.

Lemma 2.2. Fix u, v ∈ V and let δ = δ(u, v). If 0 < δ ≤ 1
4 min{Au, Av}, then

Pr[u, v are separated] ≤ 4Hk

(
δ

Au
+

δ

Av

)
,

where Hk = 1 + 1
2 + · · · + 1

k is the kth harmonic number.
Before we prove this bound, we state and prove its consequence, a bound for

E[s(u, v)], which is the core of the analysis of our algorithm.
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Lemma 2.3. For any pair of distinct vertices u, v ∈ V , E[s(u, v)] ≤ 38Hkδ(u, v).
2

Proof. Fix u �= v and set δ = δ(u, v). By the triangle inequality, Av ≤ Au + δ and
Au ≤ Av + δ. We have s(u, v) = d(f(u), f(v)) = δ(f(u), f(v)) ≤ δ(f(u), u)+ δ(u, v)+
δ(v, f(v)). As α ∈ [1, 2), we obtain

s(u, v) ≤ 2Au + δ + 2Av.(2.3)

If u is a terminal, then Au = 0 and Av ≤ δ. Therefore, by inequality (2.3),
s(u, v) ≤ 3δ, regardless of the choice of σ and α. If both u and v are nonterminals
and δ = 0, then by the triangle inequality, for any terminal j ∈ T , δ(u, j) = δ(v, j).
Therefore, u and v are assigned to the same terminal, regardless of the choice of σ
and α, so s(u, v) = 0 = δ.

Thus we may assume that both u and v are nonterminals, and that δ > 0. We
consider two cases, depending on whether or not δ is small compared to Au or Av.
If Au < 4δ, then Av < 5δ, and by inequality (2.3), s(u, v) < 2(4 + 5)δ + δ = 19δ.
Similarly, if Av < 4δ, then s(u, v) < 19δ. Therefore, if Au < 4δ or Av < 4δ, the
lemma holds.

Assume, therefore, that δ ≤ 1
4 min{Au, Av}. (Recall that we also assume that

δ > 0.) We have

E[s(u, v)] ≤ 4Hk

(
δ

Au
+

δ

Av

)
(2Au + 2Av + δ)

≤ 4Hkδ

(
4Au + 3δ

Au
+

4Av + 3δ

Av

)

≤ 4Hkδ

(
4 +

3

4
+ 4 +

3

4

)
= 38Hkδ,

where the first inequality follows from Lemma 2.2 and inequality (2.3).
We conclude with the following result.
Theorem 2.4. There is a randomized polynomial-time O(log k)-approximation

algorithm for 0-Extension.
Proof. Let δ∗ be an optimal solution of (MET) of cost Z∗. By Lemma 2.3, the ex-

pected weight of the 0-extension obtained by the rounding procedure is O(Z∗ log k).
Therefore, there exists a choice of σ and of α that produces a solution of weight
O(Z∗ log k). To obtain a polynomial-time algorithm, notice that for a given per-
mutation σ, two different values of α, α1 > α2, produce combinatorially distinct
solutions only if there is a terminal j and a node u such that δ∗(u, j) ≤ α1Au but
δ∗(u, j) > α2Au. Thus we can enumerate over at most k|V | “interesting” values of α.
We can determine these values by sorting the fractions δ∗(u, j)/Au, over all nodes u
with Au > 0 and over all j ∈ T .

Proof of Lemma 2.2. Let E(u, v) denote the event that there is a terminal j such
that when j is processed u is assigned to j whereas v remains unassigned; define
E(v, u) similarly. We will show that

Pr[E(u, v)] ≤ 4Hkδ

Au
.(2.4)

By symmetry, Pr[E(v, u)] ≤ 4Hkδ/Av. Therefore, the lemma follows from inequal-
ity (2.4).

2The constant 38 is somewhat arbitrary, and definitely could be improved.
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Label the k terminals so that δ(u, 1) ≤ δ(u, 2) ≤ · · · ≤ δ(u, k). For j = 1, 2, . . . , k,
let lj = δ(u, j)/Au; 1 = l1 ≤ l2 ≤ l3 ≤ · · · ≤ lk. Let rj = δ(v, j)/Av ≥ 1.

For γ ≥ 1, let

M(γ) = {j ∈ T | lj ≤ γ < rj},

and let

S(γ) = {j ∈ T | γ ≥ rj}.

Note that M(γ) and S(γ) are disjoint subsets of terminals. Set m(γ) = |M(γ)| and
s(γ) = |S(γ)|.

Let α ∈ [1, 2) be the value used by the rounding procedure. Then v must be as-
signed to a terminal in S(α), because δ(v, j) ≤ αAv is equivalent to rj ≤ α. Similarly,
u cannot be assigned to a terminal which is not in M(α)∪S(α). Indeed, u can only be
assigned to a terminal j with lj ≤ α, and based on whether rj ≤ α or not, j is either
in S(α) or in M(α). Moreover, E(u, v) happens iff the first terminal in M(α) ∪ S(α)
to be processed is in M(α). Indeed, if the first such terminal is j ∈ S(α), then v (and
possibly also u) will be assigned to j. Thus

Pr[E(u, v) | α] =
m(α)

m(α) + s(α)
.

(Note that there exists a j for which rj = 1, and thus S(α) is never empty.) As α is
distributed uniformly in [1, 2), we get

Pr[E(u, v)] =

∫ 2

1

m(α)

m(α) + s(α)
dα.(2.5)

We need the following claim.
Claim 2.5. Fix a positive integer k and a nonnegative real β. Let (〈l1, l2, . . . , lk〉,

〈r1, r2, . . . , rk〉) be a pair of real sequences such that 1 = l1 ≤ l2 ≤ l3 ≤ · · · ≤ lk,
rj ≥ 1 for all j, some rj = 1, and (either rj − lj ≤ β or lj > 2) for all j. Define
functions m : [1,∞) → Z and s : [1,∞) → Z as follows: m(α) = |{j| lj ≤ α < rj}|
and s(α) = |{j| α ≥ rj}|. Then

∫ 2

1

m(α)

m(α) + s(α)
dα ≤ Hkβ.

Proof. Note that s(α) ≥ 1 for all α (because some rj = 1), so the function we are
integrating is well defined. Let t be the largest index for which lt ≤ 2. We prove by
induction on t that the value of the integral is at most Htβ ≤ Hkβ. For t = 1 the
claim holds, because for α ∈ [r1, 2], m(α) = 0. As r1 − 1 = r1 − l1 ≤ β, we get

∫ 2

1

m(α)

m(α) + s(α)
dα ≤

∫ min{r1,2}

1

1dα ≤ r1 − 1 ≤ β = H1β.

Assume that the claim is true for the case in which exactly t− 1 j’s satisfy lj ≤ 2
for some t ≥ 2, and consider pairs (〈l1, l2, . . . , lk〉, 〈r1, r2, . . . , rk〉) in which exactly t
j’s are such that lj ≤ 2. We compare the value I of the integral in this case to the
value I ′ of the integral for the pair in which the tth coordinate of the first sequence
is replaced by lt+1, except that if t = k, the tth coordinate is replaced by 3. We use
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m′(α) and s′(α) for the latter pair, where clearly s′(α) = s(α) for all α. Note that
the latter pair satisfies the hypotheses of the claim, and, furthermore, only t − 1 j’s
are such that lj ≤ 2. Therefore, by the inductive hypothesis, I ′ ≤ Ht−1β.

If lt ≥ rt, then for every α ∈ (1, 2), m′(α) = m(α), and therefore I = I ′, thus
establishing the claim in this case. Thus we may assume that lt < rt. Clearly
m(α) ∈ {m′(α),m′(α) + 1} for any α. Therefore, for any α ∈ (1, 2),

m(α)

m(α) + s(α)
− m′(α)

m′(α) + s′(α)
≤ m′(α)+1

m′(α) + 1 + s′(α)
− m′(α)

m′(α) + s′(α)

≤ 1

m′(α) + s′(α) + 1
.

Now m(α) �= m′(α) implies α ∈ [lt, rt], and α ∈ [lt, rt] implies lj ≤ lt ≤ α for all
j ≤ t − 1. However, every j ≤ t − 1 satisfying lj ≤ α satisfies either lj ≤ α < rj or
α ≥ rj , and hence each such j contributes to at least one of m′(α) and s′(α). Hence
α ∈ [lt, rt] implies m′(α) + s′(α) ≥ t− 1 and 1/(m′(α) + s′(α) + 1) ≤ 1/t.

Therefore I−I ′ ≤ (rt−lt)(1/t). Because lt ≤ 2, rt−lt ≤ β. Hence, I ≤ I ′+β/t ≤
Ht−1β + β/t = Htβ. This completes the proof of Claim 2.5.

We now proceed with the proof of Lemma 2.2. Note that if lj ≤ 2, then δ(u, j) ≤
2Au. Using the assumption that δ ≤ 1

4Au, we have, for such j,

rj − lj ≤
δ(u, j) + δ

Av
− δ(u, j)

Au

≤ δ(u, j) + δ

Au − δ
− δ(u, j)

Au
=

δ(δ(u, j) + Au)

Au(Au − δ)

≤ 3δ

Au − δ

≤ 4δ

Au
.

Hence, using Claim 2.5 with β = 4δ/Au, we have∫ 2

1

m(α)

m(α) + s(α)
dα ≤ Hk · 4δ

Au
.(2.6)

Combining (2.5) and inequality (2.6), we get Pr[E(u, v)] ≤ 4Hkδ/Au, which proves
inequality (2.4) and thus the lemma.

3. An O(1)-approximation algorithm for planar graphs. In this section
we use the linear programming relaxation (MET) to get improved bounds for planar
graphs. To achieve the improved bounds, we present a different rounding proce-
dure. We show that if the input graph G = (V,E) does not have a Kr,r-minor,
then the rounding procedure presented in this section guarantees an O(r3) approx-
imation ratio. As planar graphs are K3,3-minor free, this gives a polynomial-time
O(1)-approximation algorithm for planar graphs (and, more generally, for Kr,r-minor
free graphs, for every fixed r).

The main tool that we use is the following theorem of Klein, Plotkin, and Rao [15]
(the extension to the weighted case was stated by Tardos and Vazirani [18]).

Theorem 3.1 (see Klein, Plotkin, and Rao). There are constants κ and λ and
a polynomial-time algorithm KPR(H, δ, c, γ, r) which takes as input a graph H =
(VH , EH) with nonnegative integral edge lengths δ : EH → Z and nonnegative edge
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costs c : EH → Q, a positive rational γ, and a positive integer r, and which finds either
(1) a Kr,r-minor in H or (2) a set of edges of total c-cost at most κ r

γ

∑
e∈EH

δ(e)c(e)
whose removal decomposes H into connected components called clusters such that
the shortest path (in H, using edge lengths δ) between any two nodes in the same
component is at most λr2γ.

Let r be a positive integer. Let δ : V × V → R be a feasible solution of (MET)
of weight Z. Using Theorem 3.1, we exhibit a deterministic rounding procedure that
obtains a 0-extension of weight O(Z), assuming that the input graph G is Kr,r-minor–
free.

The main idea of the rounding procedure is to partition the nonterminals into
clusters such that, for any two nodes u and v in the same cluster, Au is at most twice
Av. We then assign all the nodes in a cluster to a terminal closest to one of the
nodes in the cluster. More formally, the rounding procedure computes a 0-extension
f : V → T as follows.

Second Rounding Procedure.

Set f(t) = t for every terminal t.
for every nonterminal u ∈ V such that Au = 0, do

Set f(u) ← i for some i ∈ T with δ(u, i) = 0.
endfor
Let Ḡ = (V̄ , Ē) be the subgraph of G induced by the remaining nonterminals.
δ̄min←min{δ(u, v)/max{Au, Av}| uv ∈ Ē, δ(u, v) > 0}.
for every edge uv ∈ Ē, do

δ̃(uv) ← �δ(u, v)/(δ̄min · max{Au, Av})�,
c̃(uv) ← c(u, v) · max{Au, Av},

endfor

Execute KPR(Ḡ, δ̃, c̃, 1/(2λr2δ̄min), r).
for each resulting cluster C ⊆ V̄ , do

Choose x ∈ C to minimize Ax.
Choose i ∈ T such that δ(x, i) = Ax.
Set f(u) ← i for all u ∈ C.

endfor

We first establish a few simple facts about this rounding procedure. Let Z̃ =∑
uv∈Ē δ̃(uv)c̃(uv).

Claim 3.2. Z̃ ≤ 2Z/δ̄min.
Proof. Note that if δ(u, v) > 0, then δ(u, v)/(δ̄min · max{Au, Av}) ≥ 1; hence

δ̃(uv) = �δ(u, v)/(δ̄min · max{Au, Av})� ≤ 2δ(u, v)/(δ̄min · max{Au, Av}). We have

∑
uv∈Ē

δ̃(uv)c̃(uv) =
∑
uv∈Ē

⌈
δ(u, v)

δ̄min · max{Au, Av}

⌉
· (c(u, v) · max{Au, Av})

≤ 2

δ̄min

∑
uv∈Ē

δ(u, v)c(u, v)

≤ 2

δ̄min

∑
uv∈E

δ(u, v)c(u, v)

= 2Z/δ̄min.

Claim 3.3. The total c̃-cost of the edges removed by KPR(Ḡ, δ̃, c̃, 1/(2λr2δ̄min), r)
is at most 4κλr3Z, where κ and λ are the constants from Theorem 3.1. Moreover,
each of the resulting clusters C has δ̃-diameter at most 1/(2δ̄min).
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Proof. By Theorem 3.1, the sum of c̃(uv) over edges uv with u, v in different
clusters is at most (κr/γ)Z̃. By Claim 3.2, this is at most 4κλr3Z (since γ =
1/(2λr2δ̄min)). Also, by Theorem 3.1, the δ̃-diameter of each resulting cluster C
is at most 1/(2δ̄min).

We now relate the δ̃-distances to the original δ-distances.
Lemma 3.4. Let u, v ∈ V̄ . If the length of a shortest path in Ḡ between u and v

with respect to edge lengths δ̃ is at most 1/(2δ̄min), then δ(u, v) ≤ Au.
Proof. Let 〈u = x0, x1, . . . , xj = v〉 be a shortest path in Ḡ between u and v

with respect to the edge lengths δ̃. For 1 ≤ t ≤ j, let st =
∑t

i=1 δ(xi−1, xi). By

the triangle inequality, Axt
≤ Au +

∑t
i=1 δ(xi−1, xi) = Au + st. Note that s1 ≤

s2 ≤ · · · ≤ sj . Therefore, for i ≤ j, δ(xi−1, xi)/max{Axi−1
, Axi

} ≥ δ(xi−1, xi)/(Au +

si) ≥ δ(xi−1, xi)/(Au + sj). Also, δ̃(xi−1, xi) ≥ δ(xi−1, xi)/(max{Axi−1
, Axi

}δ̄min),

and therefore δ(xi−1, xi)/max{Axi−1
, Axi

} ≤ δ̄minδ̃(xi−1, xi). Using this, we have

sj/(Au + sj) =
∑j

i=1 δ(xi−1, xi)/(Au + sj) ≤ δ̄min

∑j
i=1 δ̃(xi−1, xi) ≤ δ̄min/(2δ̄min) =

1/2, where the last inequality follows from the hypothesis that the length of
〈x0, x1, . . . , xj〉 is at most 1/(2δ̄min). We conclude that sj ≤ Au. Finally, notice
that, by the triangle inequality, δ(u, v) ≤ sj .

We are ready to analyze the performance of the rounding procedure.
Lemma 3.5. Let r > 0 be an integer. Then for every input graph G which is

Kr,r-minor–free, for every feasible solution to (MET) of weight Z, the above rounding
procedure produces a 0-extension of weight at most (4 + 16κλr3)Z, where κ and λ are
the constants from Theorem 3.1.

Proof. Let uv ∈ E be an edge of G. If both endpoints u, v �∈ V̄ , then each
endpoint is either a terminal or a node at distance 0 from some terminal; hence
d(f(u), f(v)) = δ(u, v).

If u �∈ V̄ and v ∈ V̄ , then δ(f(u), u) = 0, and v, together with the cluster C
that contains it, is assigned to some terminal i. By the definition of the rounding
procedure, there is a node x ∈ C such that δ(x, i) = Ax ≤ Av. Combining Claim 3.3
and Lemma 3.4, we have δ(v, x) ≤ Av. Therefore, using the triangle inequality,
δ(v, i) ≤ 2Av. Using the triangle inequality again, d(f(u), f(v)) = δ(f(u), f(v)) ≤
δ(f(u), v)+δ(v, i) ≤ δ(f(u), v)+2Av. However, δ(u, v) = δ(f(u), v) ≥ Av. Therefore,
for any u �∈ V̄ and v ∈ V̄

d(f(u), f(v)) ≤ 3δ(u, v).(3.1)

We are left with the edges uv ∈ Ē. For u ∈ V̄ , let C(u) denote the cluster
containing u. Then∑

uv∈Ē

d(f(u), f(v))c(u, v) =
∑

uv∈Ē: C(u) �=C(v)

d(f(u), f(v))c(u, v).

However, d(f(u), f(v)) = δ(f(u), f(v)) ≤ δ(f(u), u) + δ(u, v) + δ(v, f(v)) ≤ δ(u, v) +
2Au + 2Av ≤ δ(u, v) + 4 max{Au, Av}. The second inequality follows from the fact
that, by the definition of the algorithm, for every nonterminal u, f(u) is a terminal
closest to some x ∈ C(u) with δ(f(u), x) = Ax ≤ Au. As argued in the previous case,
δ(x, u) ≤ Au. The inequality follows because, by the triangle inequality, δ(f(u), u) ≤
δ(f(u), x) + δ(x, u). Therefore,∑
uv∈Ē: C(u) �=C(v)

d(f(u), f(v))c(u, v) ≤
∑

uv∈Ē: C(u) �=C(v)

δ(u, v)c(u, v) + 4
∑

uv∈Ē: C(u) �=C(v)

c̃(uv)



368 G. CALINESCU, H. KARLOFF, AND Y. RABANI

≤ Z + 4
∑

uv∈Ē: C(u) �=C(v)

c̃(uv).

Now Claim 3.3 states that
∑

uv∈Ē: C(u) �=C(v) c̃(uv) ≤ 4κλr3Z, and using this

together with (3.1), we finish the proof of Lemma 3.5.

We conclude with the main result of this section.

Theorem 3.6. Let r > 0 be a fixed integer. There is a deterministic polynomial-
time (4 + 16κλr3)-approximation algorithm for 0-Extension in Kr,r-minor–free
weighted graphs, where κ and λ are the constants from Theorem 3.1.

Proof. Solve (MET) optimally and then use the rounding procedure from this
section, which clearly can be implemented in polynomial time. Lemma 3.5 establishes
the performance guarantee of this algorithm.

4. The integrality ratio. In this section we use the max flow-min cut theorem
to prove the following lower bound on the integrality ratio of the natural relaxation.

Theorem 4.1. There are c > 0 and infinitely many positive integers k such that
there is an instance of 0-Extension with k terminals for which the optimal value of
the objective function is at least c

√
lg k times the optimal value of the relaxation.

Proof. There are fixed positive ∆ and α such that there is an infinite family of
expanders of maximum degree at most ∆ having expansion at least α, i.e., graphs G
of maximum degree at most ∆ such that, for any subset S of at most |V (G)|/2 nodes,
there are at least α|S| nodes not in S which are adjacent to at least one node of S.
For any expander G with n = |V (G)| sufficiently large, define l = �

√
�lg n�� ≤ n and

k = �n/l�. Choose any k distinct nodes h1, h2, . . . , hk in V . For i = 1 to k, add l new
nodes and l new edges to the current graph, forming a new path Pi starting at hi and
ending at some new node; label that new node i. Let the new graph be G′ = (V ′, E′).
Now n′ = |V ′| = n + kl ≤ n + (1 + n/l) · l ≤ n + (n + l) ≤ n + 2n = 3n vertices.
|E′| = |E| + kl ≤ n(∆/2 + 2).

Now define an instance I of 0-Extension as follows. The vertex set is V ′. The
set T of terminals is {1, 2, 3, . . . , k}. Define d(i, j), for terminals 1 ≤ i, j ≤ k, to be
the distance in G′ between i and j. Define c(u, v) to be 1 if uv ∈ E′, and c(u, v) = 0
otherwise.

We now show that the integrality ratio for this instance I is large. First, we study
the relaxation. Define δ(u, v) to be the distance in G′ between u and v. It is clear
that δ(i, j) = d(i, j) if i, j in T . It is also clear that δ is a semimetric on G′. It follows
that

∑
u<v c(u, v)δ(u, v) = |E′| ≤ (∆/2 + 2)n (since adjacent vertices in G′ are at

distance 1).

Now we prove that there is a universal c > 0 such that any feasible solution
to I, i.e., any function f : V ′ → T with f(t) = t for all terminals t ∈ T , satisfies∑

u<v c(u, v)d(f(u), f(v)) ≥ cn
√

lg n. Note first of all that the minimum distance
between two distinct terminals i, j is at least 2l ≥ 2

√
lg n. We will see in Lemma 4.2,

however, that there are at least k/2 terminals for which the distance to terminal i∗ is
at least ε lg n, ε a fixed positive constant, not just

√
lg n, for any i∗ ∈ T .

Lemma 4.2. For any i∗ ∈ T , there are at least k/2 vertices hi in G whose distance
from hi∗ exceeds a = � lg k

2 lg ∆�.
Proof. For a contradiction, assume that there are more than k/2 vertices of G

at distance at most a from hi∗ . By the degree bound, the number of vertices in G
at distance at most a from hi∗ is at most 1 + ∆1 + ∆2 + · · · + ∆a < ∆a+1. Hence
k/2 < ∆a+1. Hence −1 + −1+lg k

lg ∆ < a, lg k < 2 + 4 lg ∆, and k < 4∆4. Require
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that n be large enough that k, which goes to ∞ with n, is at least 4∆4, giving us a
contradiction.

Let Ri = {v ∈ V ⊆ V ′|f(v) = i}. We have two cases.
Case 1. |Ri| ≤ n/2 for all i. If uv ∈ E, u ∈ Ri, v ∈ Rj , i �= j, then

d(f(u), f(v)) = d(i, j) = δ(i, j) ≥ 2
√

lg n. Because G is an expander and |Ri| ≤ n/2
for all i, for each i the number of edges uv, u ∈ Ri, v �∈ Ri, is at least α|Ri|. Hence∑

u<v,u,v∈V c(u, v)d(f(u), f(v)) ≥ (1/2) ×
∑k

i=1 α|Ri|(2
√

lg n) = α · n
√

lg n. (Each
“cross edge” is counted twice.)

Case 2. Some Ri, say R1, has size exceeding n/2. We will use expansion and the
max flow-min cut theorem to prove our theorem.

Choose any �k/2� terminals i such that the distance in G between hi and h1 is
at least a = � lg k

2 lg ∆�; by Lemma 4.2, such terminals exist. Let F be the set of chosen

terminals. Insist that n ≥ 16, so that a ≥ lgn
4 lg ∆ .

Let V ∗ = V ∪ (∪i∈FPi). Build a (directed) network N on V ∗ ∪ {s, t}, s, t being
new nodes, as follows. Start with the subgraph of G′ induced by V ∗, and replace each
edge by a pair of antiparallel arcs, each of capacity one. Add arcs (u, t) for all u ∈ R1,
each of capacity ∞. Add arcs (s, i) for all i ∈ F , each of capacity ∞. Because R1 ⊆ V
and, for all i ∈ F , i �∈ V , N has a finite capacity s → t cut defined by {s} ∪ F .

Now choose any finite capacity s → t cut C∗ = (S∗, S̄∗) in N , s ∈ S∗, t �∈ S∗.
S∗ ⊇ F and S∗ ∩ R1 = ∅. Let S = S∗ ∩ V (possibly S = ∅). Because |R1| ≥ n/2,
|S| ≤ n/2. Let C be the set of arcs (u, v) with u ∈ S, v ∈ V − S. By the expansion
of G, |C| ≥ α|S|. Let M = {i|i ∈ F, hi �∈ S}. Corresponding to each i ∈ F such that
hi �∈ S there is at least one an arc of Pi in C∗−C, |M | in total. Thus the total number
of arcs in C∗ is at least α|S| + |M | ≥ α(|S| + |M |) ≥ α|F | ≥ αk/2, the penultimate
inequality following from the fact that either hi ∈ S or i ∈ M , for all i ∈ F . It follows
that the minimum capacity of an s → t cut in N is at least αk/2.

By the max flow-min cut theorem, there are at least αk/2 arc-disjoint paths from
an i ∈ F to some vertex in R1. If Q = 〈i = vi0, vi1, vi2, vi3, . . . , vis ∈ R1〉 is such a path,

then, using f(i) = i, f(vis) = 1, we have
∑s−1

j=0 d(f(vij), f(vi,j+1)) ≥ d(f(i), f(vis)) =

d(i, 1) ≥ a, a being at least lgn
4 lg ∆ . Since the paths are arc-disjoint and there are at

least αk
2 of them, we infer that

∑
u<v:u,v∈V ′ c(u, v)d(f(u), f(v)) ≥ αk

2
lgn

4 lg ∆ .

Using the definition of k, this last sum is at least (α/(16 lg ∆)) · n
√

lg n. Since
we have a feasible solution to (MET) of value at most |E′| ≤ (∆/2 + 2)n, the ratio
between the two is at least

α

(8 lg ∆)(∆ + 4)

√
lg n ≥ α

(8 lg ∆)(∆ + 4)

√
lg k.

Choose c = α/((8 lg ∆)(∆ + 4)), and the proof of Theorem 4.1 is complete.
The following theorem shows that the above analysis is asymptotically tight. It

also suggests an alternative rounding procedure that for some instances performs
better than the results in section 2 (though in general it is far worse).

Theorem 4.3. There is a polynomial-time algorithm that takes as input a con-
nected graph G = (V,E) and a subset T ⊆ V of terminals and computes a function
f : V → T with f(i) = i for all i ∈ T such that∑

uv∈E

d(f(u), f(v)) ≤ 3
√
dmax|E|,

where d(u, v) is the minimum number of edges in a path between u and v and dmax =
maxuv d(u, v).
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Proof. Add a new vertex s to G and connect s to all the terminals. Run a
breadth-first search starting at s, computing for every node v ∈ V its distance l(v)
from s. Note that for every v ∈ V , 1 ≤ l(v) ≤ dmax + 1. Partition E into classes Ci,
for i = 1, 2, . . . , dmax+1: Place edge uv ∈ E in Ci for i = min{l(u), l(v)}. Let r be the
smallest positive integer such that |Cr| ≤ |E|/

√
dmax. As

∑
i |Ci| = |E|, r ≤

√
dmax.

We now define f . Let t be an arbitrary terminal. For every v ∈ V with l(v) > r, set
f(v) = t. For every v ∈ V with l(v) ≤ r, set f(v) = tv, where tv is a terminal closest
to v in G.

If uv ∈ Ci, then d(u, tu) ≤ i and d(v, tv) ≤ i, and at least one of the inequalities
is strict. Therefore d(tu, tv) ≤ d(tu, u) + 1 + d(v, tv) ≤ 2i. Consider an edge uv ∈ Ci.
If i ≤ r − 1, then both l(u), l(v) ≤ r, so d(f(u), f(v)) = d(tu, tv) ≤ 2i ≤ 2r − 2. If
i > r, then both l(u), l(v) > r, so d(f(u), f(v)) = d(t, t) = 0. For the remaining case
of i = r we use the trivial bound d(f(u), f(v)) ≤ dmax. Using the bounds on r and
on |Cr|, we have∑
uv∈E

d(f(u), f(v)) ≤
∑
i<r

∑
uv∈Ci

(2r − 2) +
∑

uv∈Cr

dmax +
∑
i>r

∑
uv∈Ci

0 < 3
√
dmax |E|.

It is interesting to note that for bounded degree expanders the bounds are much
better. Using arguments similar to those of the proofs of Theorems 4.1 and 4.3, we
can prove the following result.

Theorem 4.4.

1. There are a positive integer ∆ and a constant κ > 0 such that for infinitely
many k there is an expander G = (V,E) with maximum degree at most ∆, |V |
being O(k log k/ log log k), and a set T ⊆ V of size k, such that the integrality
ratio of (MET) on the 0-extension instance defined by G, T , and the G-path
metric on T is at least κ log log k.

2. For all positive constants ∆ and α, there is a λ such that if n is sufficiently
large, the optimal cost of 0-Extension on the 0-extension instance defined
by any n-node expander G of maximum degree at most ∆, with expansion
constant at least α, any set T ⊆ V of terminals, and the G-path metric on T ,
is at most λn lg lg n (and there is a polynomial-time algorithm which computes
a solution to the 0-extension problem of cost at most λn lg lg n).

Proof sketch. For the first part, choose a family of expanders of maximum degree
at most ∆. Given k, choose an n and an n-node expander from the family such that
k is approximately equal to n(lg lg n)/ lg n. Now we modify the proof of Theorem 4.1.
Instead of choosing h1, h2, . . . , hk to be any k nodes, choose k nodes with minimum
pairwise distance Ω(lg lg n), as follows. Choose the first node arbitrarily and choose
the jth node to be at distance Ω(lg lgn) from the j− 1 previously chosen nodes. The
iterative choices are possible since, for some suitable constant c, the number of nodes
within distance at most c lg lg n from j − 1 given points is at most j∆1+c lg lg n < n.
Call the k nodes 1, 2, . . . , k, and make them the terminals. The 0-extension instance
is now defined on this graph G, relative to its shortest path metric. It is clear that
the optimal value of (MET) is O(n).

Given any vertex v of G, arguing as in the proof of Lemma 4.2, there are at least
k/2 terminals in G whose distance from v is at least a, with a being Ω(logn).

Now we study Cases 1 and 2 from the proof of Theorem 4.1. In Case 1, we have
d(f(u), f(v)) = d(i, j), which is Ω(log logn), so the total cost is Ω(n log log n).

The argument of Case 2 applies as before: There are at least αk/2 (which
is Ω(n(log log n)/ log n)) paths, each contributing at least a (which is Ω(log n)), or
Ω(n log log n) in total.
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For the second part of Theorem 4.4, let ∆, α be positive and let G = (V,E) be
an n-node expander of maximum degree at most ∆ and expansion constant at least
α. Let T = {1, 2, . . . , k} ⊆ V be the set of terminals. Note that there is a constant
C = C(∆, α) such that C lg n bounds the diameter from above.

Consider the 0-extension instance defined by G, T , and the G-path metric on T .
There are two cases.

Case 1. If k ≤ n/ lg n, set f(v) = 1 for all v ∈ V −T . The number of edges {u, v}
that are cut is at most ∆ · k, and for each, d(f(u), f(v)) ≤ C lg n. Hence the total
cost is at most C∆k lg n ≤ C∆n.

Case 2. If k > n/ lg n, add a dummy source s which is adjacent to all (and only)
the terminals. Do a breadth-first search starting from s until there are no more than
n/ lg n unreached vertices. Since ∆, α are constant, the number of reached nodes
increases by a constant factor in each BFS step, until the number of reached nodes
exceeds n/2. Afterward, the number of unreached nodes drops by a constant factor
in each BFS step. Altogether, where d is the number of BFS steps needed, d is
O(lg lg n) (because ∆, α are constant). Now assign f(v) for nonterminals v as follows.
If v is unreached, set f(v) = 1. Otherwise, set f(v) equal to the terminal nearest
to v. Now consider

∑
c(u, v)d(f(u), f(v)). If u, v are both reached, the contribution

c(u, v)d(f(u), f(v)) ≤ d + 1 + d, which is O(lg lg n). If u, v are both unreached, the
contribution is 0. There are at most ∆n/ lg n edges {u, v} with u reached and v not,
and each contributes at most C lg n, or at most ∆Cn in total for these edges. Hence
the overall total is O(n lg lg n).
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AN OPTIMAL ALGORITHM FOR THE
MAXIMUM-DENSITY SEGMENT PROBLEM∗

KAI-MIN CHUNG† AND HSUEH-I LU‡

Abstract. We address a fundamental problem arising from analysis of biomolecular sequences.
The input consists of two numbers wmin and wmax and a sequence S of n number pairs (ai, wi)
with wi > 0. Let segment S(i, j) of S be the consecutive subsequence of S between indices i
and j. The density of S(i, j) is d(i, j) = (ai + ai+1 + · · · + aj)/(wi + wi+1 + · · · + wj). The
maximum-density segment problem is to find a maximum-density segment over all segments S(i, j)
with wmin ≤ wi + wi+1 + · · · + wj ≤ wmax. The best previously known algorithm for the problem,
due to Goldwasser, Kao, and Lu [Proceedings of the Second International Workshop on Algorithms
in Bioinformatics, R. Guigó and D. Gusfield, eds., Lecture Notes in Comput. Sci. 2452, Springer-
Verlag, New York, 2002, pp. 157–171], runs in O(n log(wmax−wmin +1)) time. In the present paper,
we solve the problem in O(n) time. Our approach bypasses the complicated right-skew decomposition,
introduced by Lin, Jiang, and Chao [J. Comput. System Sci., 65 (2002), pp. 570–586]. As a result,
our algorithm has the capability to process the input sequence in an online manner, which is an
important feature for dealing with genome-scale sequences. Moreover, for a type of input sequences
S representable in O(m) space, we show how to exploit the sparsity of S and solve the maximum-
density segment problem for S in O(m) time.

Key words. bioinformatics, biological sequence analysis, maximum-density segment, slope
selection, computational geometry, sequence algorithm, data structure
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1. Introduction. We address the following fundamental problem: The input
consists of two numbers wmin and wmax and a sequence S of number pairs (ai, wi)
with wi > 0 for i = 1, . . . , n. A segment S(i, j) is a consecutive subsequence of S
from position i to position j. The width w(i, j) of S(i, j) is wi +wi+1 + · · ·+wj . The
density d(i, j) of S(i, j) is (ai + ai+1 + · · · + aj)/w(i, j). It is not difficult to see that
with an O(n)-time preprocessing to compute all O(n) prefix sums a1 + a2 + · · · + aj
and w1 + w2 + · · · + wj , the density of any segment can be computed in O(1) time.
S(i, j) is feasible if wmin ≤ w(i, j) ≤ wmax. The maximum-density segment problem is
to find a maximum-density segment over all O(n(wmax−wmin +1)) feasible segments.

This problem arises from the investigation of the nonuniformity of nucleotide com-
position within genomic sequences, which was first revealed through thermal melting
and gradient centrifugation experiments [21, 28]. The GC content of the DNA se-
quences in all organisms varies from 25% to 75%. GC-ratios have the greatest vari-
ation among bacterial DNA sequences, while the typical GC-ratios of mammalian

∗Received by the editors February 3, 2004; accepted for publication (in revised form) July 7,
2004; published electronically December 1, 2004. A preliminary version of this paper appeared in
Proceedings of the 11th Annual European Symposium on Algorithms (Budapest, Hungary, 2003), G.
Di Battista and U. Zwick, eds., Lecture Notes in Comput. Sci. 2832, Springer-Verlag, New York,
2003, pp. 136–147.

http://www.siam.org/journals/sicomp/34-2/44043.html
†Institute of Information Science, Academia Sinica. Part of this work was done while this author

was an undergraduate student in the Department of Computer Science and Information Engineering,
National Taiwan University.

‡Corresponding author. Institute of Information Science, Academia Sinica, 128 Academia Road,
Section 2, Taipei 115, Taiwan, Republic of China (hil@iis.sinica.edu.tw, www.iis.sinica.edu.tw/∼hil/).
This author’s research was supported in part by NSC grants 91-2215-E-001-001 and 92-2218-E-001-
001.

373



374 KAI-MIN CHUNG AND HSUEH-I LU

genomes stay in the range 45–50%. Despite intensive research effort in the past
two decades, the underlying causes of the observed heterogeneity remain debatable
[2, 3, 5, 8, 9, 10, 11, 18, 40, 42]. Researchers [32, 39] observed that the extent of the com-
positional heterogeneity in a genomic sequence strongly correlates with its GC content
regardless of genome size. Other investigations showed that gene length [7], gene den-
sity [44], patterns of codon usage [37], distribution of different classes of repetitive
elements [7, 38], number of isochores [2], lengths of isochores [32], and recombina-
tion rate within chromosomes [12] are all correlated with GC content. More research
related to GC-rich segments can be found in [16, 17, 20, 23, 29, 31, 35, 41, 43] and ref-
erences therein.

In the most basic form of the maximum-density segment problem, the sequence S
corresponds to the given DNA sequence, where ai = 1 if the corresponding nucleotide
in the DNA sequence is a G or C, and ai = 0 otherwise. In the work of Huang [19],
sequence entries took on values of p and 1− p for some real number 0 ≤ p ≤ 1. More
generally, we can look for regions where a given set of patterns occurs very often. In
such applications, ai could be the relative frequency with which the corresponding
DNA segments appear in the given patterns. Further natural applications of this
problem can be designed for sophisticated sequence analysis such as mismatch den-
sity [36], ungapped local alignments [1], annotated multiple sequence alignments [39],
promoter mapping [22], and promoter recognition [33].

For the uniform case, i.e., wi = 1 for all indices i, Nekrutenko and Li [32] and
Rice, Longden, and Bleasby [34] employed algorithms for the case wmin = wmax, which
is trivially solvable in O(n) time. More generally, when wmin �= wmax, the problem is
also easily solvable in O(n(wmax − wmin + 1)) time, linear in the number of feasible
segments. Huang [19] studied the case where wmax = n, i.e., there is effectively no
upper bound on the width of the desired maximum-density segments. He observed
that an optimal segment exists with width at most 2wmin − 1. Therefore, this case is
equivalent to the case with wmax = 2wmin − 1 and can be solved in O(nwmin) time
in a straightforward manner. Lin, Jiang, and Chao [27] gave an O(n logwmin)-time
algorithm for this case based on right-skew decompositions of a sequence. (See [26] for
related software.) The case with general wmax was first investigated by Goldwasser,
Kao, and Lu [13, 14], who gave an O(n)-time algorithm for the uniform case. Recently,
Kim [25] showed an alternative algorithm based upon a geometric interpretation of
the problem, which basically relates the maximum-density segment problem to the
fundamental slope selection problem in computational geometry [4, 6, 24, 30]. Unfor-
tunately, Kim’s analysis of time complexity has a flaw which seems difficult to fix.1

For the general (i.e., nonuniform) case, Goldwasser, Kao, and Lu [13] also gave an
O(n log(wmax −wmin +1))-time algorithm. By bypassing the complicated preprocess-
ing step required in [13], we successfully reduce the time required for the general case
down to O(n). Our result is based upon the following set of equations, stating that
the order of d(x, y), d(y + 1, z), and d(x, z) with x ≤ y < z can be determined by the

1Kim claims that all the progressive updates of the lower convex hulls Lj ∪ Rj can be done in
overall linear time. The paper only sketches how to obtain Lj+1 ∪ Rj+1 from Lj ∪ Rj . (See the
fourth-to-last paragraph of p. 340 in [25].) Unfortunately, Kim seems to overlook the marginal cases
when the upper bound wmax forces the pz of Lj ∪Rj to be deleted from Lj+1 ∪Rj+1. As a result,
obtaining Lj+1 ∪ Rj+1 from Lj ∪ Rj could be much more complicated than Kim’s sketch. A naive
implementation of Kim’s algorithm still takes Ω(n(wmax − wmin + 1)) time in the worst case. We
believe that any correct implementation of Kim’s algorithm requires Ω(n log(wmax −wmin +1)) time
in the worse case.
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Fig. 1.1. An illustration for (1.1): There exist only two possibilities for the order among
d(x, y), d(x, z), d(y + 1, z).

order of any two of them:

d(x, y) ≤ d(y + 1, z) ⇔ d(x, y) ≤ d(x, z) ⇔ d(x, z) ≤ d(y + 1, z),
d(x, y) ≥ d(y + 1, z) ⇔ d(x, y) ≥ d(x, z) ⇔ d(x, z) ≥ d(y + 1, z).

(1.1)

(Both equations can be easily verified by observing the existence of some number ρ
with 0 < ρ < 1 and d(x, z) = ρ · d(x, y) + (1 − ρ) · d(y + 1, z). See Figure 1.1.) Our
algorithm is capable of processing the input sequence in an online manner, which is
an important feature for dealing with genome-scale sequences.

For bioinformatics applications, e.g., in [1, 22, 33, 36, 39], the input sequence S is
usually very sparse. That is, S can be represented by m = o(n) triples

(a′1, w
′
1, n1), (a

′
2, w

′
2, n2), . . . , (a

′
m, w′

m, nm)

with 0 = n0 < n1 < n2 < · · · < nm = n to signify that (ai, wi) = (a′j , w
′
j) holds for all

indices i and j with nj−1 < i ≤ nj and 1 ≤ j ≤ m. If w′
j = 1 holds for all 1 ≤ j ≤ m,

we show how to exploit the sparsity of S and solve the maximum-density problem for
S given in the above compact representation in O(m) time.

The remainder of the paper is organized as follows. Section 2 shows the main
algorithm. Section 3 explains how to cope with the simple case that the width upper
bound wmax is ineffective. Section 4 takes care of the more complicated case that
wmax is effective. Section 5 explains how to exploit the sparsity of the input sequence
for the uniform case.

2. The main algorithm. For any integers x and y, let [x, y] denote the set
{x, x + 1, . . . , y}. Without loss of generality, we may assume that w1+w2+ · · ·+wn ≥
wmin and wi ≤ wmax holds for each i = 1, 2, . . . , n. Throughout the paper, we need
the following definitions and notation with respect to the input length-n sequence S
and width bounds wmin and wmax. Define φ(x, y) to be the largest index z ∈ [x, y]
that minimizes d(x, z). That is, S(x, φ(x, y)) is the longest minimum-density prefix
of S(x, y). Let j0 be the smallest index with w(1, j0) ≥ wmin. Let J = [j0, n]. For
each j ∈ J , let �j be the smallest index i with w(i, j) ≤ wmax, and let rj be the
largest index i with w(i, j) ≥ wmin. That is, S(i, j) is feasible if and only if i ∈ [�j , rj ].
(Figure 2.1 is an illustration for the definitions of �j and rj .) Clearly, for the uniform
case, we have �i+1 = �i + 1 and ri+1 = ri + 1. As for the general case, we know only
that �j and rj are both (not necessarily strictly) increasing. One can easily compute
all �j and rj in O(n) time.

Let i∗j be the largest index k ∈ [�j , rj ] with d(k, j) = max{d(i, j) | i ∈ [�j , rj ]}.
There must be an index j∗ such that S(i∗j∗ , j

∗) is a maximum-density segment of
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j nrj1 �j

≥ wmin

≤ wmax

Fig. 2.1. An illustration for the definitions of �j and rj .

Algorithm main.

1 let ij0−1 = 1;
2 for j = j0 to n do {
3 let ij = best(max(ij−1, �j), rj , j);
4 output (ij , j);
5 }

Function best(�, r, j).
1 let i = �;
2 while i < r and d(i, φ(i, r − 1)) ≤ d(i, j) do
3 let i = φ(i, r − 1) + 1;
4 return i;

Fig. 2.2. Our main algorithm.

S. Therefore, a natural but seemingly difficult possibility for solving the maximum-
density segment problem would be to compute i∗j for all indices j ∈ J in O(n) time.
Instead, our approach is to compute a pair (ij , j) of indices with ij ∈ [�j , rj ] for each
index j ∈ J by the algorithm shown in Figure 2.2. More specifically, each iteration of
our algorithm, based upon (1.1), keeps chopping off the lowest-density prefix without
affecting the feasibility of the remaining segment until its density does not go any
higher. For brevity of presentation, each algorithm throughout the paper outputs
a linear number of index pairs (i, j). (See, e.g., step 4 of algorithm main shown in
Figure 2.2.) Clearly, it takes a linear-time postprocessing for the produced index pairs
to obtain one that maximizes d(i, j). The rest of the section ensures the correctness of
our algorithm by showing ij∗ = i∗j∗ , and thus reduces the maximum-density segment
problem to implementing our algorithm to run in O(n) time.

Lemma 2.1. The index returned by function call best(�, r, j) is the largest index
i ∈ [�, r] that maximizes d(i, j).

Proof. Let i∗ be the largest index in [�, r] that maximizes d(i, j), i.e., d(i∗, j) =
maxi∈[�,r] d(i, j). Let ij be the index returned by function call best(�, r, j). We show
ij = i∗ as follows. If ij < i∗, then ij < r. By the condition of the while-loop at step 2
of best, we know d(ij , φ(ij , r−1)) > d(ij , j). By d(ij , j) ≤ d(i∗, j) and (1.1), we have
d(ij , i

∗ − 1) ≤ d(ij , j). It follows that d(ij , i
∗ − 1) < d(ij , φ(ij , r − 1)), contradicting

the definition of φ(ij , r − 1).
On the other hand, suppose that ij > i∗. By definition of best, there must be

an index i ∈ [�, r] with i < r, d(i, φ(i, r − 1)) ≤ d(i, j), and i ≤ i∗ < φ(i, r − 1) + 1. If
i = i∗, by (1.1) we have d(i∗, φ(i∗, r− 1)) ≤ d(i∗, j) ≤ d(φ(i∗, r− 1) + 1, j), where the
last inequality contradicts the definition of i∗. Now that i < i∗, we have d(i∗, j) ≥
d(i, j) ≥ d(i, i∗−1) ≥ d(i, φ(i, r−1)) ≥ d(i∗, φ(i, r−1)), where (a) the first inequality is
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by definition of i∗, (b) the second inequality is by (1.1) and the first inequality, (c) the
third inequality is by i∗ ≤ φ(i, r− 1) and the definition of φ(i, r− 1), and (d) the last
inequality is by (1.1) and the third inequality. It follows from d(i∗, j) ≥ d(i∗, φ(i, r−1))
and (1.1) that d(φ(i, r − 1) + 1, j) ≥ d(i∗, j), contradicting the definition of i∗ by
i∗ < φ(i, r − 1) + 1.

Theorem 2.2. Algorithm main correctly solves the maximum-density segment
problem.

Proof. We prove the theorem by showing ij∗ = i∗j∗ . By �j0 = ij0−1 = 1 and
Lemma 2.1, the equality holds if j∗ = j0. The rest of the proof assumes j∗ > j0. By
Lemma 2.1 and �j∗ ≤ i∗j∗ , it suffices to ensure ij∗−1 ≤ i∗j∗ . Assume for contradiction
that there is an index j ∈ [j0, j

∗−1] with ij−1 ≤ i∗j∗ < ij . By j < j∗, we know �j ≤ i∗j∗ .
By Lemma 2.1 and max(�j , ij−1) ≤ i∗j∗ < ij ≤ rj , we have d(ij , j) ≥ d(i∗j∗ , j). It
follows from (1.1) and i∗j∗ < ij that d(i∗j∗ , j) ≥ d(i∗j∗ , ij − 1). By �j∗ ≤ i∗j∗ < ij ≤ rj∗

and the definition of j∗, we know d(i∗j∗ , j
∗) > d(ij , j

∗). It follows from i∗j∗ < ij and
(1.1) that d(i∗j∗ , ij − 1) > d(i∗j∗ , j

∗). Therefore, d(ij , j) ≥ d(i∗j∗ , j) ≥ d(i∗j∗ , ij − 1) >
d(i∗j∗ , j

∗), contradicting the definition of j∗.
One can verify that the value of i increases by at least 1 each time step 3 of best

is executed. Therefore, to implement the algorithm to run in O(n) time, it suffices
to maintain a data structure to support an O(1)-time query for each φ(i, rj − 1) in
step 2 of best.

3. Coping with ineffective width upper bound. When wmax is ineffective,
i.e., wmax ≥ w(1, n), we have �j = 1 for all j ∈ J . Therefore, the function call in
step 3 of main is exactly best(ij−1, rj , j). Moreover, during the execution of the
function call best(ij−1, rj , j), the value of i can only be ij−1, φ(ij−1, rj − 1) + 1,
φ(φ(ij−1, rj − 1) + 1, rj − 1) + 1, . . . , rj . Suppose that a subroutine call to update(j)
yields an array Φ of indices and two indices p and q of Φ with p ≤ q and Φ[p] = ij−1

such that the following condition holds.
Condition Cj : Φ[q] = rj and Φ[t] = φ(Φ[t − 1], rj − 1) + 1 holds for each index

t ∈ [p + 1, q]. (See Figure 3.1 for an illustration.)

Φ[p + 1] Φ[p + 2]

rjφ(Φ[p], rj − 1) φ(Φ[q − 1], rj − 1)φ(Φ[p + 1], rj − 1)

Φ[p] Φ[q]

ij−1

Fig. 3.1. An illustration for Condition Cj .

Then, the subroutine call to best(ij−1, rj , j) can clearly be replaced by lbest(j), as
defined in Figure 3.2. That is, lbest(j) can access the value of each φ(i, rj − 1) by
looking up Φ in O(1) time. It remains to show how to implement update(j) such
that all O(n) subroutine calls to update from step 3 of lmain run in overall O(n)
time. With the initialization of letting p = q = rj0−1 = Φ[1] = 1, as described at
step 1 of algorithm lmain, Condition Cj0−1 clearly holds before the subroutine call to
update(j0). The following lemma is crucial in ensuring the correctness and efficiency
of our implementation shown in Figure 3.2.

Lemma 3.1. For each index j ∈ J , the following statements hold:
1. If Condition Cj−1 holds right before calling update(j), then Condition Cj

holds right after the subroutine call.
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Algorithm lmain.
1 let p = q = rj0−1 = Φ[1] = 1;
2 for j = j0 to n do {
3 call update(j);
4 let ij = lbest(j);
5 output (ij , j);
6 }

Function lbest(j).
1 while p < q and d(Φ[p],Φ[p + 1] − 1) ≤ d(Φ[p], j) do
2 let p = p + 1;
3 return Φ[p];

Subroutine update(j).
1 for r = rj−1 + 1 to rj do {
2 while p < q and d(Φ[q − 1],Φ[q] − 1) ≥ d(Φ[q − 1], r − 1) do
3 let q = q − 1;
4 let q = q + 1;
5 let Φ[q] = r;
6 }

Fig. 3.2. An efficient implementation for the case that wmax is ineffective.

2. If Condition Cj holds right before calling lbest(j), then the index returned
by the function call is exactly that returned by best(Φ[p],Φ[q], j).

Proof. Statement 1. We need the following condition.
Condition Dr : Φ[q] = r and Φ[t] = φ(Φ[t − 1], r − 1) + 1 holds for each index

t ∈ [p + 1, q].
Clearly, Condition Cj is exactly Condition Drj . To prove the statement, we show
that if Condition Dr−1 holds, then Condition Dr holds right after executing steps 2–5
of update (i.e., an iteration of the for-loop of update), although the value of q may
change.

Consider the moment when step 4 of update is about to be executed. We first
show that if p < q, then Φ[t] = φ(Φ[t− 1], r − 1) + 1 holds for each t ∈ [p + 1, q]. By
the definition of φ, we have

φ(�, r − 1) =

{
r − 1 if d(�, φ(�, r − 2)) ≥ d(�, r − 1),
φ(�, r − 2) otherwise.

(3.1)

By Condition Dr−1, we know φ(Φ[q − 1], r − 2) = Φ[q] − 1. With � = Φ[q − 1]
plugged into (3.1), we know that if d(Φ[q − 1],Φ[q] − 1) < d(Φ[q − 1], r − 1), then
φ(Φ[q−1], r−1) = φ(Φ[q−1], r−2). It follows from the condition of step 2 of update

that φ(Φ[q − 1], r − 1) = φ(Φ[q − 1], r − 2). Furthermore, if φ(�, r − 2) < r − 2, then
one can prove as follows that φ(φ(�, r− 2)+1, r− 1) = φ(φ(�, r− 2)+1, r− 2) implies
φ(�, r − 1) = φ(�, r − 2).

Let m = φ(�, r − 2). By φ(m + 1, r − 1) = φ(m + 1, r − 2), we have
d(m+1, φ(m+1, r−1)) < d(m+1, r−1). By definition of φ and (1.1),
we have d(�,m) < d(�, φ(m + 1, r − 1)) < d(m + 1, φ(m + 1, r − 1)).
As a result, we have d(�,m) < d(m+1, r− 1), which by (1.1) implies
d(�,m) < d(�, r − 1). Thus φ(�, r − 1) = φ(�, r − 2).
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Therefore, φ(Φ[t], r−1) = φ(Φ[t], r−2) implies φ(Φ[t−1], r−1) = φ(Φ[t−1], r−2). As
a result, φ(Φ[t], r−1) = φ(Φ[t], r−2) holds for each t ∈ [p, q−1]. By Condition Dr−1,
we know Φ[t] = φ(Φ[t− 1], r − 1) + 1 holds for each t ∈ [p + 1, q].

Since the value of q will be incremented by 1 after executing step 4 of update and
Φ[q+1] will equal r after executing step 5 of update, it remains to show φ(Φ[q], r−1) =
r − 1. Clearly, the equality holds if Φ[q] = r − 1, i.e., step 3 was not executed. If
step 3 was executed at least once, then we know d(Φ[q],Φ[q + 1]− 1) ≥ d(Φ[q], r− 1),
i.e., d(Φ[q], φ(Φ[q], r − 2)) ≥ d(Φ[q], r − 1). By plugging � = Φ[q] into (3.1), we know
φ(Φ[q], r − 1) = r − 1.

Statement 2. By Condition Cj , one can easily verify that lbest(j) is a faithful
implementation of best(Φ[p],Φ[q], j). Therefore, the statement holds.

Lemma 3.2. The implementation lmain solves the maximum-density problem
for the case with ineffective wmax in O(n) time.

Proof. By Lemma 3.1(1) and the definitions of update and lbest, both Con-
dition Cj and Φ[p] = ij−1 hold right after the subroutine call to update(j). By Condi-
tion Cj and Lemma 3.1(2), lbest(j) is a faithful implementation of best(Φ[p],Φ[q], j).
Therefore, the correctness of lmain follows from Φ[p] = ij−1, Φ[q] = rj , and Theo-
rem 2.2.

As for the efficiency of lmain, observe that q − p ≥ 0 holds throughout the
execution of lmain. Note that each iteration of the while-loops of lbest and update

decreases the value of q − p by one. Since step 4 of update, which is the only place
that increases the value of q − p, increases the value of q − p by one for O(n) times,
the overall running time of lmain is O(n).

4. Coping with effective width upper bound. In contrast to the previous
simple case, when wmax is arbitrary, �j may not always be 1. Therefore, the first
argument of the function call in step 3 of main could be �j with �j > ij−1. It
seems quite difficult to update the corresponding data structure Φ in overall linear
time such that both Φ[p] = max(ij−1, �j) and Condition Cj hold throughout the
execution of our algorithm. To overcome this difficulty, our algorithm sticks with
Condition Cj but allows Φ[p] > max(ij−1, �j). As a result, maxj∈J d(ij , j) may be
less than maxj∈J d(i∗j , j). Fortunately, this potential problem can be resolved if we
simultaneously solve a series of variant versions of the maximum-density segment
problem.

≥ wmin

≤ wmax

≤ wmax

1 r y1y0 n� = �y0

Fig. 4.1. An illustration for the relation among �, r, y0, y1.

4.1. A variant version of the maximum-density segment problem. Sup-
pose that we are given two indices r and y0 with w(r, y0) ≥ wmin. Let X = [�, r]
and Y = [y0, y1] be two intervals such that � = �y0 and y1 is the largest index in J
with w(r, y1) ≤ wmax. See Figure 4.1 for an illustration. The variant version of the
maximum-density segment problem is to look for a maximum-density segment over
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Algorithm vmain(r, y0).
1 let � be the smallest index in [1, n] with w(�, y0) ≤ wmax;
2 let y1 be the largest index in [1, n] with w(r, y1) ≤ wmax;
3 let xy0−1 = �;
4 for y = y0 to y1 do {
5 let xy = best(max(xy−1, �y), r, y);
6 output (xy, y);
7 }

Fig. 4.2. Our algorithm for the variant version of the maximum-density segment problem,
where function best is as defined in Figure 2.2.

all feasible segments S(x, y) with x ∈ X, y ∈ Y , and wmin ≤ w(x, y) ≤ wmax such
that d(x, y) is maximized.

For each y ∈ Y , let x∗
y be the largest index x ∈ X with wmin ≤ w(x, y) ≤ wmax

that maximizes d(x, y). Let y∗ be an index in Y with d(x∗
y∗ , y∗) = maxy∈Y d(x∗

y, y).
Although solving the variant version can naturally be reduced to computing the index
x∗
y for each index y ∈ Y , the required running time is more than what we can afford.

Instead, we compute an index xy ∈ X with wmin ≤ w(xy, y) ≤ wmax for each index
y ∈ Y such that xy∗ = x∗

y∗ . By w(r, y0) ≥ wmin and w(r, y1) ≤ wmax, one can easily see
that, for each y ∈ Y , r is always the largest index x ∈ X with wmin ≤ w(x, y) ≤ wmax.
Our algorithm for solving the variant problem is as shown in Figure 4.2, presented in
a way to emphasize the analogy between vmain and main. For example, the index
xy in vmain is the counterpart of the index ij in main. Also, the index r in vmain

plays the role of the index rj in main. We have the following lemma whose proof is
very similar to that of Theorem 2.2.

Lemma 4.1. Algorithm vmain solves the variant version of the maximum-density
problem correctly.

Proof. We prove the theorem by showing xy∗ = x∗
y∗ . By �y0 = xy0−1 = � and

Lemma 2.1, the equality holds if y∗ = y0. The rest of the proof assumes y∗ > y0. By
Lemma 2.1 and �y∗ ≤ x∗

y∗ , it suffices to ensure xy∗−1 ≤ x∗
y∗ . Assume for contradiction

that there is an index y ∈ [y0, y
∗ − 1] with xy−1 ≤ x∗

y∗ < xy. By y < y∗, we know
�y ≤ x∗

y∗ . By Lemma 2.1 and max(�y, xy−1) ≤ x∗
y∗ < xy ≤ r, we have d(xy, y) ≥

d(x∗
y∗ , y). It follows from (1.1) and x∗

y∗ < xy that d(x∗
y∗ , y) ≥ d(x∗

y∗ , xy − 1). By
�y∗ ≤ x∗

y∗ < xy ≤ r and the definition of y∗, we know d(x∗
y∗ , y∗) > d(xy, y

∗). It
follows from x∗

y∗ < xy and (1.1) that d(x∗
y∗ , xy−1) > d(x∗

y∗ , y∗). Therefore, d(xy, y) ≥
d(x∗

y∗ , y) ≥ d(x∗
y∗ , xy − 1) > d(x∗

y∗ , y∗), contradicting the definition of y∗.

Again, the challenge lies in supporting each query to φ(i, r − 1) of best in O(1)
time during the execution of vmain. Fortunately, unlike during the execution of main,
where both parameters of φ(i, r − 1) may change, the second parameter r − 1 is now
fixed. Therefore, to support each query to φ(i, r − 1) in O(1) time, we can actually
afford O(r − � + 1) time to compute a data structure Ψ such that Ψ[i] = φ(i, r − 1)
for each i ∈ [�, r − 1]. As a result, the function best can be implemented as the
function vbest shown in Figure 4.3. The following lemma ensures the correctness
and efficiency of our implementation variant shown in Figure 4.3.

Lemma 4.2. The implementation variant correctly solves the variant version of
the maximum-density segment problem in O(r − � + y1 − y0 + 1) time.

Proof. One can easily verify that if Ψ[i] = φ(i, r − 1) holds for each index i ∈
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Algorithm variant(r, y0).
1 let � be the smallest index in [1, n] with w(�, y0) ≤ wmax;
2 let y1 be the largest index in [1, n] with w(r, y1) ≤ wmax;
3 call init(�, r − 1);
4 let xy0−1 = �;
5 for y = y0 to y1 do {
6 let xy = vbest(max(xy−1, �y), r, y);
7 output (xy, y);
8 }

Function vbest(�, r, y).
1 let x = �;
2 while x < r and d(x,Ψ[x]) ≤ d(x, y) do
3 let x = Ψ[x] + 1;
4 return x;

Subroutine init(�, r)
1 let Ψ[r] = r;
2 for s = r − 1 downto � do {
3 let t = s;
4 while t < r and d(s, t) ≥ d(s,Ψ[t + 1]) do
5 let t = Ψ[t + 1];
6 let Ψ[s] = t;
7 }

Fig. 4.3. An efficient implementation for the algorithm vmain.

[�, r− 1], then vbest is a faithful implementation of best. Therefore, by Lemma 4.1,
the correctness of variant can be ensured by showing that after calling init(�, r−1) at
step 3 of algorithm variant , Ψ[i] = φ(i, r−1) holds for each index i ∈ [�, r−1]. Note
that for brevity of the following proof, we slightly abuse the notation r in Figure 4.3.
That is, although the subroutine call at step 3 of algorithm variant is init(�, r− 1),
the second parameter in the definition of subroutine init in Figure 4.3 becomes r. Let
us make it clear that the rest of the proof (i) lets r denote the one in the definition of
subroutine init(�, r), and (ii) proves that Ψ[i] = φ(i, r) holds for each index i ∈ [�, r]
at the end of the subroutine call to subroutine init(�, r).

By step 1 of init, we have Ψ[r] = r = φ(r, r). Now suppose that Ψ[i] = φ(i, r)
holds for each index i ∈ [x + 1, r] right before init is about to execute the iteration
for index x ∈ [�, r]. It suffices to show Ψ[x] = φ(x, r) after the iteration. Let

Zx = {x,Ψ[x + 1],Ψ[Ψ[x + 1] + 1],Ψ[Ψ[Ψ[x + 1] + 1] + 1], . . . , r}.

Let |Zx| denote the cardinality of Zx. We first show φ(x, r) ∈ Zx as follows.
Assume for contradiction that φ(x, r) �∈ Zx, i.e., there is an index
z ∈ Zx with z < φ(x, r) < Ψ[z + 1] = φ(z + 1, r). By definition
of φ and (1.1), we have d(z + 1, φ(x, r)) > d(z + 1, φ(z + 1, r)) >
d(φ(x, r) + 1, φ(z + 1, r)) and d(φ(x, r) + 1, φ(z + 1, r)) ≥ d(x, φ(z +
1, r)) ≥ d(x, φ(x, r)). By d(z + 1, φ(x, r)) > d(x, φ(x, r)) and (1.1),
we have d(x, φ(x, r)) > d(x, z), contradicting the definition of φ(x, r).

For any index z ∈ Zx with z < φ(x, r), we know z < r and φ(z + 1, r) = Ψ[z + 1] ≤



382 KAI-MIN CHUNG AND HSUEH-I LU

Algorithm general.
1 let p = q = rj0−1 = Φ[1] = 1;
2 for j = j0 to n do {
3 call update(j);
4 while Φ[p] < �j do
5 let p = p + 1;
6 if ij−1 < Φ[p] then
7 call variant(Φ[p], j);
8 let ij = lbest(j);
9 output (ij , j);
10 }

Fig. 4.4. Our algorithm for the general case, where update and lbest are defined in Figure 3.2
and variant is defined in Figure 4.3.

φ(x, r). By φ(z + 1, r) ≤ φ(x, r) ≤ r and the definition of φ(z + 1, r), we have
d(z + 1, φ(x, r)) ≥ d(z + 1, φ(z + 1, r)). By definition of φ(x, r) and (1.1), we have
d(x, z) ≥ d(x, φ(x, r)) ≥ d(z + 1, φ(x, r)). By d(x, z) ≥ d(z + 1, φ(z + 1, r)) and (1.1),
we have d(x, z) ≥ d(x, φ(z + 1, r)). Therefore, if z < φ(x, r), then step 5 of init will
be executed to increase the value of z. Observe that φ(x, r) = z < r and Ψ[z + 1] > z
imply d(x, z) < d(x,Φ[z + 1]). It follows that as soon as z = φ(x, r) holds, whether
φ(x, r) = r or not, the value of Ψ[x] will immediately be set to z at step 6 of init.

As for the time complexity, we first observe that � and y1 can be found from r
and y0 in O(r − � + y1 − y0 + 1) time:

• Let � = r, and then repeatedly decrease � by 1 as long as w(�− 1, y0) ≤ wmax

holds.
• Let y1 = y0, and then repeatedly increase y1 by 1 as long as w(r, y1 + 1) ≤

wmax holds.

Secondly, one can see that the rest of the implementation also runs in O(r− �+ y1 −
y0 +1) time by verifying that throughout the execution of the implementation (a) the
while-loop of vbest runs for O(r−�+y1−y0 +1) iterations, and (b) the while-loop of
init runs for O(r− �+1) iterations. To see statement (a), just observe that the value
of index x (i) never decreases, (ii) stays in [�, r], and (iii) increases by at least one
each time step 3 of vbest is executed. As for statement (b), consider the iteration
with index s of the for-loop of init. Note that if step 6 of init executes ts times in
this iteration, then |Zs| = |Zs+1| − ts + 1. Since |Zs| ≥ 1 holds for each s ∈ X, we
have

∑
s∈X ts = O(r − � + 1), and thus statement (b) holds.

4.2. Our algorithm for the general case. With the help of variant, we have
a linear-time algorithm for solving the original maximum-density segment problem as
shown in Figure 4.4. Algorithm general is obtained by inserting four lines of code
(i.e., steps 4–7 of general) between steps 3 and 4 of lmain in order to handle the
case ij−1 < �j . Specifically, when ij−1 < �j , we cannot afford to appropriately update
the data structure Φ. Therefore, instead of moving i to �j , steps 4 and 5 move i to
Φ[p], where p is the smallest index with �j ≤ Φ[p]. Of course, these two steps may
cause our algorithm to overlook the possibility of ij ∈ [ij−1,Φ[p]− 1], as illustrated in
Figure 4.5. This is when the variant version comes in: As shown in the next theorem,
we can remedy the problem by calling variant(Φ[p], j).
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ij−1 ij Φ[p] rj�j

Fig. 4.5. An illustration for the situation when Steps 6 and 7 of general are needed.

k

�′j�j r′j

�′k�k

j

r′k1 n

Fig. 4.6. An illustration showing that the overall running time of all subroutine calls to
variant(�′j , j) in general is O(n).

Theorem 4.3. Algorithm general solves the maximum-density segment prob-
lem in an online manner in linear time.

Proof. We prove the correctness of general by showing that i∗j∗ �= ij∗ implies
i∗j∗ = xj∗ . By Lemma 3.1(1), Condition Cj holds after the subroutine call update(j)
at step 3 of general. Observe that steps 4 and 5 of general, which may increase
the value of p, do not affect the validity of Condition Cj . Also, steps 6 and 7 do
not modify p, q, and Φ. Let �′j be the value of Φ[p] right before executing step 8 of
general. By Lemma 3.1(2), the index ij returned by lbest(j) is the largest index in
[�′j , rj ] that maximizes d(ij , j). Clearly, ij∗ = i∗j∗ implies the correctness of general.
If ij∗ �= i∗j∗ , there must be an index j ∈ [j0, j

∗] with ij−1 ≤ i∗j∗ < ij . It can be proved
as follows that i∗j∗ ≤ �′j − 1.

Assume �′j ≤ i∗j∗ for contradiction. It follows from Lemma 3.1(2) and
(1.1) that d(ij , j) ≥ d(i∗j∗ , j) ≥ d(i∗j∗ , ij − 1). By the definition of j∗,
we have d(i∗j∗ , j

∗) > d(ij , j
∗), which by (1.1) implies d(i∗j∗ , ij − 1) >

d(i∗j∗ , j
∗). Therefore, d(ij , j) > d(i∗j∗ , j

∗), contradicting the definition
of j∗.

Since ij−1 ≤ i∗j∗ ≤ �′j − 1, we know w(�′j − 1, j∗) ≤ w(i∗j∗ , j
∗) ≤ wmax. Thus, S(i∗j∗ , j

∗)
is a feasible segment in the variant version of the maximum-density segment problem
for S with respect to indices r = �′j and y0 = j. By Lemma 4.2, the subroutine call
variant(�′j , j) at step 7 of algorithm general has to output an index pair (x, y)
with wmin ≤ w(x, y) ≤ wmax and d(x, y) = d(i∗j∗ , j

∗).

As for the running time, observe that q − p ≥ 0 holds throughout the execution
of general. Step 4 of update, which is the only place that increases the value of
q − p, increases the value of q − p by 1 for O(n) times. Note that each iteration of
the while-loops of general, lbest, and update decreases the value of q − p by 1.
Therefore, to show that the overall running time of general is O(n), it remains to
ensure that all those subroutine calls to variant at step 7 of general take overall
O(n) time. Suppose that j and k are two arbitrary indices with k < j such that
general makes subroutine calls to variant(�′k, k) and variant(�′j , j). Let r′k be
the largest index in [1, n] with w(�′k, r

′
k) ≤ wmax. By Lemma 4.2, it suffices to show

�′k < �j and r′k < j as follows. (See Figure 4.6.) By the definition of general, we
know that ij−1 < �j , which is ensured by the situation illustrated in Figure 4.5. By
k < j, we have �′k ≤ ij−1, implying �′k < �j . Moreover, by the definitions of �j and
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r′k, one can easily verify that �′k < �j implies r′k < j.
It is not difficult to see that our algorithm shown in Figure 4.4 is already capable

of processing the input sequence in an online manner, since the only preprocessing
required is to obtain �j , rj , and the prefix sums of a1, a2, . . . , aj and w1, w2, . . . , wj

(for the purpose of evaluating the density of any segment in O(1) time), which can
easily be computed on the fly.

5. Exploiting sparsity for the uniform case. In this section, we assume that
the input sequence S = (a1, w1), (a2, w2), . . . , (an, wn) is run-length encoded [15], i.e.,
represented by m pairs (a′1, n1), (a

′
2, n2), . . . , (a

′
m, nm) with 0 = n0 < n1 < n2 < · · · <

nm = n to signify that w1 = w2 = · · · = wn = 1 and that ai = a′j holds for all
indices i and j with nj−1 < i ≤ nj and 1 ≤ j ≤ m. Our algorithm for solving the
maximum-density problem for the O(m)-space representable sequence S is shown in
Figure 5.1.

Algorithm sparse.
1 for k = 1 to m do
2 let n′

k = nk − nk−1;
3 let S′ be the length-m sequence (n′

1a
′
1, n

′
1), (n

′
2a

′
2, n

′
2), . . . , (n

′
ma′

m, n′
m);

4 let (i′, j′) be an optimal output of general(wmin, wmax, S
′);

5 output (ni′−1 + 1, nj′);
6 for k = 1 to m do {
7 if nk ≥ wmin then
8 output (�nk , nk) and (rnk , nk);
9 if nk−1 + wmin ≤ n then
10 output (nk−1 + 1, nk−1 + wmin) and (nk−1 + 1,min(n, nk−1 + wmax));
11 }

Fig. 5.1. Our algorithm that handles sparse input sequence for the uniform case, where general

is defined in Figure 4.4.

Theorem 5.1. Algorithm sparse solves the maximum-density problem for the
above O(m)-space representable sequence in O(m) time.

Proof. By Theorem 4.3, sparse runs in O(m) time. Let S(i∗, j∗) be a feasible
segment with maximum density. We first show that without loss of generality i∗−1 ∈
{n0, n1, . . . , nm−1} or j∗ ∈ {n1, n2, . . . , nm} holds. More specifically, we show as
follows that if i∗ − 1 �∈ {n0, n1, . . . , nm−1} and j∗ �∈ {n1, n2, . . . , nm}, then S(i∗ +
1, j∗ + 1) is also a feasible segment with maximum density.

By i∗ − 1 �∈ {n0, n1, . . . , nm−1}, we know ai∗−1 = ai∗ . By j∗ �∈
{n1, n2, . . . , nm}, we know aj∗ = aj∗+1. It follows from the optimality
of S(i∗, j∗) that ai∗ ≥ aj∗+1 and ai∗−1 ≤ aj∗ , implying ai∗−1 = ai∗ =
aj∗ = aj∗+1. Therefore, S(i∗ + 1, j∗ + 1) is also a maximum-density
segment.

It remains to show that our algorithm works correctly for each possible case.
• Case 1: i∗ − 1 ∈ {n0, n1, . . . , nm−1} and j∗ ∈ {n1, n2, . . . , nm}. Clearly,

steps 1–5 of sparse take care of this case.
• Case 2: i∗ − 1 �∈ {n0, n1, . . . , nm−1} and j∗ ∈ {n1, n2, . . . , nm}. Clearly, if
i∗ ∈ {�j∗ , rj∗}, S(i∗, j∗) can be discovered by steps 7 and 8 of sparse. Since
i∗ − 1 �∈ {n0, n1, . . . , nm−1}, we have ai∗−1 = ai∗ . If ai∗−1 = ai∗ �= d(i∗, j∗),
then by (1.1) we have either d(i∗−1, j∗) > d(i∗, j∗) or d(i∗+1, j∗) > d(i∗, j∗),
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which implies that either S(i∗ − 1, j∗) or S(i∗ + 1, j∗) is infeasible, and thus
i∗ ∈ {�j∗ , rj∗}. On the other hand, if ai∗−1 = ai∗ = d(i∗, j∗) and i∗ �= �∗j , then
S(i∗−1, j∗) is also a feasible segment with maximum density. We can continue
the same argument until we have a maximum-density segment S(i, j∗) such
that either i− 1 ∈ {n0, n1, . . . , nm−1}, which is handled in Case 1, or i = �j∗ ,
which is handled by steps 7 and 8 of sparse.

• Case 3: i∗ − 1 ∈ {n0, n1, . . . , nm−1} and j∗ �∈ {n1, n2, . . . , nm}. The proof of
this case, omitted for brevity, is very similar to that of Case 2.

The theorem is proved.
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Abstract. We describe logarithmic approximation algorithms for the NP-hard graph optimiza-
tion problems of minimum linear arrangement, minimum containing interval graph, and minimum
storage–time product. This improves upon the best previous approximation bounds of Even, Naor,
Rao, and Schieber [J. ACM, 47 (2000), pp. 585–616] for these problems by a factor of Ω(log log n).

We use the lower bound provided by the volume W of a spreading metric for each of the ordering
problems above (as defined by Even et al.) in order to find a solution with cost at most a logarithmic
factor times W for these problems. We develop a divide-and-conquer strategy where the cost of a
solution to a problem at a recursive level is C plus the cost of a solution to the subproblems at this
level, and where the spreading metric volume on the subproblems is less than the original volume
by Ω(C/ logn), ensuring that the resulting solution has cost O(logn) times the original spreading
metric volume. We note that this is an existentially tight bound on the relationship between the
spreading metric volume and the true optimal values for these problems.

For planar graphs, we combine a structural theorem of Klein, Plotkin, and Rao [Proceedings
of the 25th ACM Symposium on Theory of Computing, 1993, pp. 682–690] with our new recursion
technique to show that the spreading metric cost volumes are within an O(log logn) factor of the cost
of an optimal solution for the minimum linear arrangement, and the minimum containing interval
graph problems.

Key words. minimum linear arrangement, interval graph completion, storage–time product,
spreading metrics, approximation algorithms
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1. Introduction. We describe the approximation algorithms that apply to the
NP-hard graph optimization problems of finding a minimum linear arrangement, a
minimum containing interval graph, and a minimum storage–time product [5]. All
these problems can be viewed as linear ordering problems. In a linear ordering problem
on a graph G, the nodes of G need to be ordered linearly—i.e., from 1, . . . , n—so as
to minimize (or maximize) some given function of the ordering. An α-approximation
algorithm is an algorithm that finds a solution to the respective problem whose cost
is at most α times the cost of an optimal solution to the problem.

All the ideas that we use for approximating the minimum containing interval
graph and the minimum storage–time product problems can be illustrated by the
algorithms for the minimum linear arrangement problem. Thus, we restrict our ex-
position primarily to the minimum linear arrangement problem, which we define as
follows: Let G be a graph with associated edge weights. Informally, a minimum linear
arrangement (MLA) of G is an embedding1 of G in the linear array such that (i) we
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1An embedding of a graph G into a graph H maps nodes of G to nodes of H, and edges of G to
paths in H. Typically, a guest network G is emulated by a host network H by embedding G into H.
(For a more complete discussion of emulations and embeddings, see [9].)
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Fig. 1. A graph G and an MLA σ of G.

have a one-to-one mapping from the nodes of G to the nodes of the linear array, and
(ii) the weighted sum of the lengths of the edges of G—that is, the cost of the linear
arrangement—is minimum. The length of an edge of G in the embedding is given by
the distance between its two endpoints on the linear array. In Figure 1, we show a
linear arrangement σ for the graph G with cost 28 (in fact this linear arrangement is
an MLA of G).

Finding an MLA is NP-hard, even for the case when all the edges have unit weight.
We present a polynomial time O(log n)-approximation algorithm for the MLA problem
on a graph with n nodes. This improves the best previous approximation bound of
Even, Naor, Rao, and Schieber [3] for this problem by a factor of O(log log n).

We extend our approximation techniques (and bounds) to two other problems
that involve finding a linear ordering of the nodes of a graph: the minimum contain-
ing interval graph and the minimum storage–time product problems. Using techniques
from [14], we can view the minimum containing interval graph problem as a “node
version” of the MLA (see [3]). Thus, we also obtain an O(log n)-approximation al-
gorithm for the minimum containing interval graph problem on general graphs. This
improves on the previous best-known bound of O(log n log log n) [3].

We can also use techniques from [14] to extend our ideas to produce an O(log T )-
approximation for the minimum storage–time product problem (where T is the sum
of the processing times of all tasks), improving on a previous approximation bound of
O(log T log log T ) in [3]. The minimum storage–time product problem can be viewed
as a generalization of the MLA, as explained in section 4.

If the graph is planar (or, more generally, if it excludes Kr,r as a minor, for
fixed r, where Kr,r is the r × r complete bipartite graph), we obtain an O(log log n)-
approximation factor for the MLA problem—improving upon the best-known bound
of O(log n) for these graphs—using a variation of the algorithm presented for the
general case. We obtain this improvement by combining the techniques used for the
general case with the algorithm presented by Klein, Plotkin, and Rao [8] for finding
separators in graphs that exclude fixed Kr,r-minors.

Since we view the minimum containing interval graph problem as a “node vari-
ation” of the MLA problem, we are also able to obtain the same improved approxi-
mation bound of O(log log n) for the minimum containing interval graph problem for
graphs that exclude fixed Kr,r-minors, improving on the previous bound of O(log n).
Note that the decomposition techniques of Klein, Plotkin, and Rao do not apply for
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directed graphs, and therefore do not yield a better approximation factor for the
minimum storage–time product when restricted to the class of Kr,r-excluded minor
graphs.

A small variation of our algorithm (as presented in [1]) can match the best-known
existing approximation algorithms for two other related problems: Namely, a small
variation of the algorithms presented in section 3 provides O(log2 n)-approximation
for the minimum-cut linear arrangement and the minimum pathwidth problems.

Our approximation techniques rely on a lower bound W on the cost of an optimal
solution provided by a spreading metric (to be defined soon) for each of the prob-
lems considered: We find a solution to the general problem that has cost O(W log n)
(O(W log T ) for the minimum storage–time product problem). In [15], Seymour cred-
its Alon with proving that there exists a logarithmic gap between the spreading metric
cost volume and the true optimal cost for certain instances of the problem of finding
a minimum feedback arc set. Alon’s proof can be translated to prove analogous log-
arithmic gap bounds for the problems of MLA, minimum containing interval graph,
and minimum storage–time product. Thus we provide an existentially tight bound
on the relationship between the spreading metric cost volumes and the true optimal
values for these problems. We briefly describe the approach for obtaining this lower
bound in section 2.

1.1. Previous work. Leighton and Rao [10] presented an O(log n)-approxima-
tion algorithm for balanced partitions of graphs. Among other applications, this
provided O(log2 n)-approximation algorithms for the minimum feedback arc set and
for the minimum-cut linear arrangement problem. Hansen [6] used the ideas in [10]
to present O(log2 n)-approximation algorithms for the minimum linear arrangement
problem and for the more general problem of graph embeddings in d-dimensional
meshes. Ravi, Agrawal, and Klein [14] presented polynomial time approximation al-
gorithms that deliver a solution with cost within an O(log n log T ) factor from optimal
for the minimum storage–time product problem, where T is the sum of the process-
ing times of all tasks, and within an O(log2 n) factor from optimal for the minimum
containing interval graph.

Seymour [15] was the first to present a directed graph decomposition divide-and-
conquer approach that does not rely on balanced cuts. He presented a polynomial
time O(log n log log n)-approximation algorithm for the minimum feedback arc set
problem. Even et al. [3] extended the recursive decomposition technique used by Sey-
mour to obtain polynomial time O(log n log log n)-approximation algorithms for the
MLA and the minimum containing interval graph problems, and an O(log T log log T )-
approximation algorithm for the minimum storage–time product problem. Even et al.
actually showed similar approximation results for a broader class of graph optimiza-
tion problems, namely, the ones that satisfy their “approximation paradigm”: A graph
optimization problem where their divide-and-conquer approach is applicable, and for
which a spreading metric exists, satisfies this paradigm. They presented polyno-
mial time O(min{logW log logW, log k log log k})-approximation algorithms for these
problems, where k denotes the number of “interesting” nodes in the problem instance
(clearly k ≤ n), and W is a lower bound on the cost of an optimal solution for the
optimization problem provided by a spreading metric. Examples of such problems,
besides the ones already mentioned, are graph embeddings in d-dimensional meshes,
symmetric multicuts in directed networks, and multiway separators and ρ-separators
(for small values of ρ) in directed graphs. For a detailed description of each of those
problems, see [3].
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Even et al. [2] extended the spreading metric techniques to graph partitioning
problems. They used simpler recursions that yield a logarithmic approximation factor
for balanced cuts and multiway separators. However, they were not able to extend
this simpler technique to obtain a logarithmic approximation bound for the other
problems considered in [3].

Recently, Bornstein and Vempala [1] proposed an alternative unified approach
for obtaining lower bounds for the problems considered in this work. They present a
unified linear program framework which defines “flow metrics” for each of the prob-
lems considered. Flow metrics are approximately equivalent to spreading metrics, in
the sense that the spreading polyhedron is a projection of the flow distance polyhe-
dron. While spreading metrics have exponentially many constraints, the definition of
flow metrics uses more variables but only polynomially many constraints. By sim-
ply varying the objective function of the linear program, they obtain lower bounds
for each of the problems, which they use in conjunction with the divide-and-conquer
algorithm presented in this work (and its preliminary version in [13]) to match our
approximation factors for the three problems considered. They also present a minor
variation of our algorithm which can be used to obtain O(log2 n)-approximations for
the minimum-cut linear arrangement and minimum pathwidth problems.

1.2. Spreading metrics and our recursion. Our algorithms use an ap-
proach that relies on spreading metrics. Spreading metrics have been used in recent
divide-and-conquer techniques to obtain improved approximation algorithms for sev-
eral graph optimization problems that are NP-hard [3]. These techniques perform the
divide step according to the cost of a solution to the subproblems generated, rather
than according to the size of such subproblems.

A spreading metric on a graph is an assignment of lengths to the edges or nodes
of the graph that has the property of “spreading apart” (with respect to the metric
lengths) all the nontrivial connected subgraphs. The volume of the spreading metric
is the sum, taken over all edges (resp., nodes), of the length of each edge (resp., node)
multiplied by its weight. For each of the optimization problems considered in this
paper, Even et al. [3] showed how to find a spreading metric of volume W such that
W is a lower bound on the cost of a solution to the problem. Our techniques are based
on showing that a spreading metric of volume W can be used to find a solution to the
respective problem with cost O(W log n) (O(W log T ) for the minimum storage–time
product problem).

All of the spreading metrics used in this paper can be viewed as one-dimensional
spreadings metrics. The main idea of a one-dimensional spreading metric is that the
sum of the pairwise distances of any subset of k nodes in the graph is at least the sum
of the pairwise distances in a linear metric for k uniformly spaced points on the line.

In this paper, we develop a recursion where at each level we identify cost which,
if incurred, yields subproblems with reduced spreading metric volume. Specifically,
we present a divide-and-conquer strategy where the cost of a solution to a problem
at a recursive level is C plus the cost of a solution to the subproblems, and where the
spreading metric volume on the subproblems generated is less than the original volume
by Ω(C/ log n) (resp., Ω(C/ log T ) for the minimum storage–time product problem).
We will show that this ensures that the resulting solution has cost O(log n) (resp.,
O(log T )) times the original spreading metric volume.

The recursion is based on divide-and-conquer—that is, we find an edge or node
set whose removal divides the graphs into subgraphs, and then recursively order the
subgraphs. The cost of a recursive level is the cost associated with the edges (or
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nodes) in the cut selected at this level. Previous recursive methods and analyses
proceeded by finding a small cutset where the maximum spreading metric volumes of
the subproblems were quickly reduced. We proceed by finding a sequence of cutsets
whose total cost can be upper bounded, say by a quantity C, and whose total spreading
metric volume is Ω(C/ log n) (resp., Ω(C/ log T )), as stated above. The crux of the
argument is that the cost associated with an edge (or node) in a cutset can be bounded
by the number of nodes between the previous and the next cutset in the sequence.

We point out that the methods in [3] applied to more problems, including the
d-dimensional graph embedding problem and the minimum feedback arc set prob-
lem [15]. We could not extend our methods to these other problems, since we were
unable to find a suitable bound on the cost of a sequence of cutsets associated with
any of these problems.

Finally, for planar graphs and other undirected graphs that exclude some fixed
minors, we combine a structural theorem of Klein, Plotkin, and Rao [8] with our new
recursion techniques to show that the spreading metric cost volumes are within an
O(log log n) factor of the cost of the optimal solution for the MLA and the minimum
containing interval graph problems.

1.3. Overview. In section 2, we present a formal definition of the MLA problem
and define the spreading metric used for this problem. In section 3, we present
a polynomial time O(log n)-approximation algorithm for the MLA problem on an
arbitrary graph with n nodes and nonnegative edge weights. In sections 4 and 5, we
define and briefly discuss the algorithms for approximating the minimum storage–time
product problem and minimum containing interval graph problem, respectively. In
section 6, we show how to improve the approximation factor for the MLA and the
minimum containing interval problems to O(log log n), in case the graph has no fixed
Kr,r-minors—e.g., the graph is planar.

2. The MLA problem. The minimum linear arrangement (MLA) problem is
defined as follows: Given an undirected graph G(V,E), with n nodes, and nonnegative
edge weights w(e), for all e in E, we would like to find a linear arrangement of the
nodes σ : V → {1, . . . , n} that minimizes the sum, over all (i, j) ∈ E, of the weighted
edge lengths |σ(i) − σ(j)|. In other words, we would like to minimize the cost∑

(i,j)∈E

w(i, j) |σ(i) − σ(j)|

of a linear arrangement σ. In the context of VLSI layout, |σ(i)− σ(j)| represents the
length of the interconnection between i and j.

We now define the spreading metric used in the algorithms for the MLA problem
presented in sections 3 and 6. Analogous functions are used when approximating the
minimum storage–time product problem (as presented in section 4) and the minimum
containing interval graph problem (see section 5). Here we present the concept of
spreading metrics in the context of the MLA problem (see [3] for a more general
definition).

A spreading metric is a function � : E → Q that assigns rational lengths to every
edge in E and that can be computed in polynomial time. It also satisfies the two
properties below. The volume of a spreading metric � is given by

∑
e∈E w(e)�(e).

1. Diameter guarantee. Let the distances be measured with respect to the
lengths �(e). The distances induced by the spreading metric “spread” the
graph and all its nontrivial subgraphs. In this application, this translates to,
“The diameter of every nontrivial connected subgraph U of V is Ω(|U |).”
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Fig. 2. An assignment of lengths to the edges of G.

2. Lower bound. The minimum volume of a spreading metric is a lower bound
on the cost of an MLA of G.

A solution � to (1)–(3) is a spreading metric for the MLA problem (see [3]). Let
V denote the set of all nontrivial connected subgraphs of V .

W = min
e∈E

w(e)�′(e)(1)

s.t.
(
∑

u∈U dist (u, v))

|U | ≥ |U |
4

∀v ∈ U, ∀U ∈ V,(2)

�′(e) ≥ 0 ∀e ∈ E,(3)

where dist (u, v) is the length of a shortest path from u to v according to the lengths
�′(e). The metric � can be computed in polynomial time (see [3]) using, e.g., the
ellipsoid method (there may be an exponential number of constraints in (2)). Note
that (2) actually implies that �(e) ≥ 1 for all e in E—simply consider the subsets U
that consist of a single edge and its endpoints.

A solution � to (1)–(3) is a lower bound on the cost of an MLA, since for any linear
ordering σ of the nodes of G, the assignment of lengths to the edges of G given by
�′(i, j) = |σ(i) − σ(j)| satisfies (2)–(3). The volume of such an assignment is exactly
the cost of σ. In particular this is true for an MLA σ. Hence W =

∑
e∈E w(e)�(e) is

less than or equal to the cost of an MLA. (Note that this lower bound is existentially
tight, since there exist instances of this problem such that �(i, j) = |σ(i) − σ(j)|,
where σ is an MLA of G, as, for example, when G is a linear array.) We will use this
fact later, when proving Theorems 3.2 and 6.3. Figure 2 illustrates an assignment of
lengths for the linear arrangement σ given by the ordering of the nodes of G from left
to right (the lengths �′(i, j) are the numbers associated with the edges in that picture;
w.l.o.g.,2 assume that all the edge weights are 1).

Let � be a spreading metric of volume W =
∑

e∈E w(e)�(e) that satisfies (1)–(3).
In the remainder of this paper, all the distances in G are measured with respect to �.

In [15], Seymour presents a lower bound (which he attributes to Noga Alon) on
the gap between the volume of a spreading metric and an optimal integral solution
for the minimum feedback arc set problem. In a nutshell, we can describe this lower
bound when translated to the MLA problem as follows. Consider a bounded degree
expander on n nodes. An optimal solution of the spreading metric on this expander
graph will assign a length of O(n/ log n) to each edge (since, for any node u in the

2Without loss of generality.



394 SATISH RAO AND ANDRÉA W. RICHA

graph, there are roughly n/2 nodes at distance Θ(log n) from u), incurring a volume
of O(n2/ log n). Any integral solution to the minimum linear arrangement problem
must stretch Ω(n) edges by Ω(n), leading to a lower bound of Ω(logn) on the gap.

3. The algorithm. We now present our O(log n)-approximation algorithm for
the MLA problem on general graphs. Let G(V,E) be a graph with nonnegative edge
weights w(e). Assume w.l.o.g. that G is connected (otherwise consider each connected
component of G separately), and that all the edge weights w(e) are greater than or
equal to 1.

In this paragraph, we introduce the notion of a level according to �. Fix a node v
in V . An edge (x, y) belongs to level i with respect to v if and only if dist (v, x) ≤ i
and dist (v, y) > i for any i ∈ N . Note that an edge may belong to more than one
level, and that there may be edges that do not belong to any level. Let the weight of
level i, denoted by ρi, be the sum of the weights of the edges at level i.

We will partition the levels according to their weights. For ease of notation,
we assume that logW is an integer (otherwise, simply use �logW � instead of logW
below). We partition the levels into logW groups, according to the indices assigned
to the levels. Let αk = 2k for all k in [(logW )+1].3 Level i has index k, k in [logW ],
if and only if ρi belongs to the interval Ik = (αk, αk+1].

It follows from (2) that we must have at least n/4 distinct levels with nonzero
weight. Note that since w(e) ≥ 1 and �(e) ≥ 1 for all e, any level with nonzero weight
must have weight at least 1. Since there are logW distinct level indices, there must be
at least n/(4 logW ) levels with same index k, for some k. Let κ be the exact number
of levels of index k.

In a recursive step of the algorithm, we cut along the sequence of κ levels of index
k—i.e., we remove all of the edges that belong to at least one of these levels, even if
they also belong to some other levels of an index different from k. A more detailed,
stepwise description of the algorithm follows:

1. Select any node v in the graph.
2. Assign edges to levels. An edge (x, y) belongs to level i with respect to v if

and only if dist (v, x) ≤ i and dist (v, y) > i for any i ∈ N .
3. Partition levels according to their indices. Level i has index k, k in [logW ], if

and only if the weight of level i (given by the sum of the weights of the edges
at this level), ρi, belongs to the interval Ik = (αk, αk+1], where αk = 2k for
all k in [(logW ) + 1]. Select an index k such that there are κ ≥ n/(4 logW )
levels with this index.

4. Cut along selected levels. For all i, let level ai be the ith level of index k, in
increasing order of distances to v. Let Hi be the subgraph induced by the
nodes that are at distance greater than ai and at most ai+1 from v; let H0

(resp., Hκ) be the subgraph induced by the nodes that are at distance at
most a1 (resp., greater than aκ) from v. Let ni denote the number of nodes
in Hi.

5. Recursive step. Recursively call the algorithm on each Hi, obtaining a linear
arrangement σi for the ni nodes in this subgraph.

6. Combine. Combine the linear arrangements obtained for the Hi’s, obtaining
a linear arrangement σ for G, as follows:

(σ(1), . . . , σ(n)) = (σ0(1), . . . , σ0(n0), σ1(1), . . . , σ1(n1), . . . , σκ(1), . . . , σκ(nκ)).

3For integer x we use the notation [x] to denote the set {0, . . . , x− 1}.
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Fig. 3. The algorithm and charging scheme.

Each recursive step runs in polynomial time; at each recursive step, we decompose
a connected component into at least two connected components. Hence the algorithm
runs in polynomial time.

We use a charging scheme to account for the length of an edge e in the linear
arrangement for G obtained by our algorithm (note that we will account for the length
of the edge in the linear arrangement , rather than for the spreading metric length of
the edge). If some edge e in level ai belongs to some other level of index k, say level
aj , then this edge also belongs to every level of index k between ai and aj . W.l.o.g.
assume that i < j. Edge e will be “stretched over” all the nodes in Hi∪· · ·∪Hj−1 and
may be “stretched over” some of the nodes in Hi−1 and Hj in the linear arrangement
produced by our algorithm. Hence the length of such an edge in the final linear
arrangement will be at most ni−1 + · · · + nj . Suppose we charge np−1 + np for the
portion of the edge that is stretched over the nodes in Hp−1 ∪Hp, when considering
level ap, for all i ≤ p ≤ j. Then the total charge associated with edge e is equal to
ni−1 + 2(ni + · · ·+ nj−1) + nj—that is, edge e will be charged at least as much as its
length in a final linear arrangement.

Figure 3 illustrates the algorithm and charging scheme described above. On the
left, we illustrate the selected levels ai along which we cut, resulting in the subgraphs
Hi. After recursively calling the algorithm on these subgraphs, we obtain linear
arrangements σi for each Hi, which are concatenated—according to the distances
from v to each Hi—to form a linear arrangement of the original graph (illustrated on
the right). The figure on the right also illustrates the charging scheme for one edge
of the graph, which belongs to levels a1, a2, and a3 in this example.

We will now compute an upper bound on the cost of a linear arrangement obtained
by our algorithm. Let C(Z) be the maximum cost of a linear arrangement obtained
by our algorithm for a subgraph of G whose volume of the spreading metric � is at
most Z. Since the sum of the weights of all edges in level ai is ρai , and since the
quantity w(e)�(e) for an edge e which belongs to levels ai, . . . , aj , i ≤ j, satisfies
w(e)�(e) ≥ w(e)(j − i + 1)/2, we have that the sum of the weights of all edges
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that belong to some level of index k is at least
∑κ

i=1 ρai
/2. Note that this lower

bound on the total sum of the weights of the edges removed in this cut step is tight:
Suppose there are two consecutive levels i and i + 1 of index k, and suppose there
is an edge e which belongs to both of these levels such that �(e) = 1 + ε for some
arbitrarily small ε > 0; the quantity w(e)�(e) is equal to w(e)(1 + ε), which tends
to w(e)[(i + 1) − i + 1]/2 = w(e) as ε tends to zero. We charge for the length of an
edge as described in the preceding paragraph, and thus derive the following recurrence
relation for C(W ):

C(W ) ≤ C

(
W −

κ∑
i=1

ρai

2

)
+

κ∑
i=1

[ρai
(ni−1 + ni)].

We now show that C(W ) = O(W log n). We first prove the following lemma.4

Lemma 3.1. C(W ) ≤ 32W log(W + 1).
Proof. We will use induction on W . The base case W = 0 corresponds to a totally

disconnected graph (a graph with no edges), and therefore C(W ) = 0 in this case.
We can use induction on W here since, for any subgraph of G on x nodes whose

volume of the spreading metric � is at most Z (Z ≤ W ),

κ∑
i=1

ρai

2
≥ αkx

8 logZ
≥ αkx

8 logW
≥ 1

8 logW

since ρai > αk and κ ≥ x/(4 logW ). Thus, the recurrence relation above will converge
to the base case in at most 8W logW steps.

Combining the recurrence relation for C(W ) with αk < ρai
≤ αk+1 for all i, we

obtain

C(W ) ≤ C

(
W − αkn

8 logW

)
+ αk+1

∑
i

(ni−1 + ni)

≤ 32

[
W − αkn

8 logW

]
log

[
W − αkn

8 logW
+ 1

]
+ 2αk+1n

≤ 32

[
W − αkn

8 logW

]
log(W + 1) + 2αk+1n

≤ 32W log(W + 1) + αk+1n

[
2 − 32

16

]
≤ 32W log(W + 1).

The second inequality follows from the induction hypothesis; the fourth inequality
follows since αk+1 = 2αk.

We still need to show how to bring the approximation factor down from O(logW )
to O(log n). We will do this by using standard techniques of rescaling and rounding
down the edge weights (as in [4]).

Our goal will be to reduce, by rescaling and rounding down weights, our original
input graph G to an “equivalent” input graph G′ whose spreading metric volume is a
polynomial in n. Consider the set E′ of edges e such that w(e) ≤ W/(mn). Since an
edge has length at most n in any linear arrangement for G, the contribution of the

4All the logarithms in this paper are base 2.
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edges in E′ to an MLA of G is at most W . Suppose we delete all those edges and
apply a ρ-approximation algorithm to the resulting graph.

We now round down each weight w(e), for all e in E \E′, to its nearest multiple
of W/(mn). The error incurred by this rounding procedure is again at most W .
Furthermore, we scale the rounded weights by W/(mn), obtaining new weights for
the edges that are all integers in the interval [0,mn]. Note that we have only changed
the units in which the weights are expressed.

The volume W ′ of the spreading metric for solving the MLA problem on G′ =
G\E′ with integral weights that belong to [0,mn] is at most a polynomial on n (since
W ′ ≤ m2n2). By Lemma 3.1, we have C(W ′) ≤ cW ′ log(W ′) = c′W ′ log n for some
constant c′. Rescaling the edge weights back by multiplying C(W ′) by W/(mn), we
obtain a linear arrangement for the original weights on G′ with cost at most c′W log n.
Putting back the edges in E′ into the linear arrangement obtained for G′, we obtain
a linear arrangement for G with cost at most (c′ log n + 1)W .

Since W = w(e)�(e) is a lower bound on the cost of an MLA, by Lemma 3.1 and
the considerations above, we have proved the following theorem.

Theorem 3.2. The cost of a solution to the MLA problem, obtained by our
algorithm, is within an O(log n) factor of the cost of an MLA of G.

4. Storage–time product. In this section, we sketch our approach for ap-
proximating the minimum storage–time product problem on a directed acyclic graph
G(V,E). The minimum storage–time product problem arises in a manufacturing or
computational process, in which the goal is to minimize the total storage–time product
of the process: We want to minimize the use of storage over time, assuming storage
is an expensive resource. Let G(V,E) be an acyclic directed graph on n nodes with
edge weights w(e) for all e ∈ E and node weights τ(v) for all v ∈ V . The nodes of G
represent tasks to be scheduled on a single processor. The time required to process
task v is given by τ(v). The weight on edge (u, v), w(u, v) represents the number
of units of storage required to save intermediate results generated by task u until
they are consumed at task v. The minimum storage–time product problem consists of
finding a topological ordering5 of the nodes σ : V → {1, . . . , n} that minimizes

∑
(i,j)∈E,σ(i)<σ(j)

⎧⎨
⎩w(i, j)

⎡
⎣ ∑
k : σ(i)≤σ(k)≤σ(j)

τ(σ(k))

⎤
⎦
⎫⎬
⎭ .

Figure 4 illustrates a topological ordering of the nodes of G (given from left to right
on the rightmost representation of the graph) with minimum storage–time product of
177.

This problem generalizes the MLA problem: When all tasks have unit execution
time, it becomes a directed version of the MLA problem. It is also a generalization
of the single-processor scheduling problem, if we are minimizing the weighted sum of
completion times (this problem is NP-complete [5, problem SS13, p. 240]).

For the storage–time product problem, we use a spreading metric � defined as
follows. Let ER = {(u, v)|(v, u) ∈ E}. We define G′ = (V,E ∪ER). Let V denote the
set of all nontrivial strongly connected subgraphs of G′. The spreading metric � is a

5An ordering σ of the nodes of G (where G is an acyclic directed graph) is said to be topological
if and only if for every (i, j) ∈ E, σ(i) < σ(j).
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solution to

W = minw(e)�′(e)

s.t.

∑
u∈U τ(u)δ(u, v)

|U | ≥
∑

u∈U τ(u)

4
∀U ∈ V, ∀v ∈ U,

�′(i, j) ≥ τ(i) + τ(j) ∀(i, j) ∈ E,

�′(i, j) = 0 ∀(i, j) ∈ ER,

where δ(u, v) is equal to (dist (u, v) + dist (v, u)). Here we define dist (u, v) to be
the length of a shortest path from u to v in G′ according to the lengths �′(e) for
e ∈ E ∪ ER. (Note that each e ∈ ER has length zero.)

For any linear ordering σ of V , the assignment of lengths to the edges given by
�′(i, j) =

∑
k : σ(i)≤σ(k)≤σ(j) τ(σ(k)), for all (i, j) in E, satisfies the constraints above.

Thus the volume W of the spreading metric � is a lower bound on the optimal cost
of a solution to the storage–time product problem.

We can adapt the algorithm of section 3 to this problem as follows. Let T =∑
v∈V τ(v). There is a node v such that the out-tree rooted at v or the in-tree rooted

at v has depth Ω(T ). Thus, we can find a sequence a1, . . . , aκ of κ = Ω(T/ logW ) levels
whose weights ρa1

, . . . , ρaκ
are within a factor of two of each other (as in section 3).

Laying out the resulting pieces successively, we obtain a solution where the cost
is bounded by

C(W ) ≤ C

(
W −

κ∑
i=1

ρai

2

)
+

κ∑
i=1

[ρai(τi−1 + τi)],

where τi is the sum of τ(v) over all nodes v that lie between levels ai−1 and ai (τ0
and τκ are defined accordingly).

This recursion can be upper bounded by O(W logW ), as in section 3. This
cost can be reduced to O(W log T ) using the standard techniques that were used in
section 3 to reduce O(logW ) to O(log n).

5. Minimum containing interval graph. In this section, we sketch our ap-
proach to approximating the cost of a minimum containing interval graph of a graph
G(V,E).

We first introduce interval graphs. An interval graph is a graph whose nodes
can be mapped to distinct intervals in the real line such that two nodes in the graph
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have an edge between them if and only if their corresponding intervals overlap. A
completion of a graph G into an interval graph results in an interval graph with the
same node set as G that contains G as a subgraph.

We use the following characterization of interval graphs, due to [12]. An undi-
rected graph G(V,E) on n nodes is an interval graph if and only if there exists a linear
ordering σ : V → {1, . . . , n} of the nodes in V such that if an edge (u, v) ∈ E, where
σ(u) < σ(v), then every edge (u,w), for w such that σ(u) < σ(w) < σ(v), also belongs
to E. This characterization implies that, for any given ordering σ of the nodes in G,
there exists a unique way of completing G into an interval graph G by adding as few
edges to G as possible.

The minimum containing interval graph problem seeks a completion of a graph G
into an interval graph G with minimum total number of edges. Thus, in this problem,
the cost of a completed graph is given by the total number of edges in the graph.
This cost can be viewed as the sum over nodes of the maximum backward stretch
of the node—i.e., of the distance to the farthest lower-numbered node to which the
node is connected. This is very similar to the MLA problem, except that the nodes
are stretched along the order rather than the edges (see [3]). Thus, our techniques in
sections 3 and 6 also apply to this problem. The containing interval graph problem
arises in several areas, from computer science, to biology (see [11]), to archaeology
(e.g., when finding a consistent chronological model for tool use while making as few
assumptions as possible [7]).

The spreading metric � that we use (due to [3]) assigns lengths to the nodes of
the graph, rather than to its edges, as in the minimum linear arrangement and in
the minimum storage–time product problems. Let V denote the set of all nontrivial
connected subgraphs of G. The metric � is a solution to

W = min
1

2

(∑
v∈V

�′(v)

)

s.t.
∑
v∈U

dist (u, v) ≥ 1

4
(|U |2 − 1) ∀u ∈ U, ∀U ∈ V,

�′(v) ≥ 0 ∀v ∈ V,

where dist (u, v) is the shortest length—given by [�′(u) +
∑p

i=0 �
′(xi) + �′(v)]—of a

path u, x0, . . . , xp, v, xi ∈ V , from u to v in G.
Let G(V,E) be a completion of G into an interval graph. If we let �′(v) be the

degree of node v in G, the cost (
∑

v∈V �′(v))/2 clearly gives the number of edges in

E. Also this assignment of lengths to the nodes satisfies the constraints above. Hence
the volume W of the metric � is a lower bound on the number of edges in a minimum
containing interval graph of G.

The recurrence relations that bound the cost of a solution obtained for the mini-
mum containing interval graph problem are analogous to the ones for the MLA prob-
lem, both for the general case and for the excluded Kr,r-minors case (to be addressed
in section 6).

A closely related problem to the minimum containing interval graph problem is
that of the minimum interval graph completion problem. In this problem, the cost of
a completion of a graph G into an interval graph G is given by the number of edges in
G−G. While an optimal solution to the minimum containing interval graph problem
on a graph G is also an optimal solution to the minimum interval graph completion
problem on G, an α-approximate solution G to the minimum containing interval graph
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completion problem on G is not enough to guarantee the existence of a solution to the
minimum interval graph completion problem on G with an α-approximation factor.

6. Graphs with excluded minors. In this section we show how to obtain, in
polynomial time, an O(log log n)-approximation for the MLA problem on a graph G
with no fixed Kr,r-minors—e.g., on a planar graph G. We denote the r × r complete
bipartite graph by Kr,r.

Definition 6.1. Let H and G be graphs. Suppose that (i) G contains disjoint
connected subgraphs Av for each node v of H; and (ii) for every edge (u, v) in H,
there is a path P(u,v) in G with endpoints in Au and Av, such that any node in P(u,v)

other than its endpoints does not belong to any Aw, w in H, nor to any P(i,j), (i, j)
in H \ (u, v). Then ∪vAv is said to be an H-minor of G.

Klein, Plotkin, and Rao [8] showed how to decompose (in polynomial time) an
undirected graph with no Kr,r-minors into connected components of small diameter.
In our application, this implies that each connected component has at most a constant
fraction of the nodes in G, as shown below.

The algorithm presented in this section also implies an O(log log n)-approximation
for the minimum containing interval problem in excluded Kr,r-minor graphs, since this
problem can be viewed as a “node version” of the MLA problem. Since the minimum
storage–time problem is defined on a directed graph G, the decomposition techniques
from Klein, Plotkin, and Rao [8] cannot be applied to G. Thus the results in this
section do not translate into a better approximation factor for the minimum storage–
time problem on graphs with no Kr,r-minors.

6.1. The algorithm. We recursively solve the problem, as we do in the general
case. We combine the partial solutions returned by each recursive step, and we charge
for each edge removed at a cut step in the same way as in the algorithm of section 3.
It is in the way we decompose the graph before a recursive step (steps 2–4) that
the algorithm of section 3 differs considerably from the one presented in this section.
Before each recursive step, we will perform a series of shortest path levelings, to be
defined soon, on each induced connected subgraph, until we can guarantee that the
original graph has been decomposed into subgraphs that contain at most a fixed
fraction (strictly less than one) of the nodes each. In the algorithm of section 3, we
perform only one shortest path leveling before each recursive step.

The algorithm proceeds in rounds. In each round we have a cut step, which
corresponds to the series of cuts performed during the round, and a recursive step,
which consists of recursively calling the algorithm on the connected components that
result from the cut step. Let G(V,E) be a graph on n nodes that excludes Kr,r as
a minor for some fixed r > 0. Let � be a spreading metric for G of volume W that
satisfies constraints (2)–(3).

A single cut step in G will produce a series of subgraphs of G, G = G0, . . . , Gt,
t ≤ r, where each Gi+1 results from cutting according to a shortest path leveling of
Gi. Fix a node v in Gi. A shortest path leveling (SPL) of Gi rooted at v consists of
an assignment of levels to the edges of Gi as follows: An edge (x, y) is at level j of
this SPL if and only if dist (v, x) (in Gi) is at most j and dist (v, y) (in Gi) is greater
than j, for all j ∈ N . (An edge may be at more than one level.)

We group the levels of this SPL into bands of 2s consecutive levels as follows: Band
i, for i ∈ N , of the SPL consists of levels 2si through 2s(i + 1) − 1, where s = n/b,
and b is a constant. Let n(Gi) denote the number of nodes in Gi. The spreading
metric diameter guarantee implies that this SPL has at least n(Gi)/4 levels. We will
see later that n(Gi) = Θ(n), and that we can choose b such that n(Gi)/4 ≥ 2s (we
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need b ≥ 8). Alternate coloring the bands “blue” and “red” in increasing order of the
levels.

We will cut along a sequence of levels of the SPL; one of the connected components
resulting from this cutting procedure will be Gi+1. W.l.o.g., assume that the subgraph
induced by the blue bands has at least n(Gi)/2 nodes. We have 2s cuts of the following
type: For 0 ≤ j ≤ 2s−1, a leveled cut j consists of all the edges in the jth level (with
respect to distance from v) of every red band. For example, if the band consisting
of the first 2s levels is colored blue, then the leveled cut j consists of the levels
2s + j, 6s + j, . . . for all j.

We group the leveled cuts according to their indices, which we define below (the
definition of an index in this context is slightly different from that in section 3). We
will see that there must exist at least an Ω(1/ log log n) fraction of the leveled cuts
with the same index ki. Let βk = W2k/(s log n) for all k in [1, 2 log log n]. Let β0 = 0
and β(2 log log n) = W . The weight of leveled cut j is the sum of the weights of the
levels in the cut (the weight of a level being the sum of the weights of the edges at
that level). Leveled cut j has index k, k in [2 log logn], if and only if the weight of
leveled cut j belongs to the interval Ik = (βk, βk+1]. Thus there must exist at least
s/ log log n leveled cuts in Gi with same index ki, since there are at least 2s distinct
leveled cuts.

We summarize the steps above and conclude the description of the algorithm in
the stepwise format below.

1. Let i = 0 and let G0 = G.
2. Select a node v in Gi.
3. Assign edges to the leveled cuts of an SPL. Assign the edges of Gi to levels

(we use the same definition of a level as in section 3), forming an SPL of
Gi. We group the levels of the SPL into bands of 2s consecutive levels as
described above. Alternate coloring the bands “blue” and “red” in increasing
order of the levels. Assume, w.l.o.g., that the subgraph induced by the blue
bands has at least n(Gi)/2 nodes. For 0 ≤ j ≤ 2s − 1, the jth leveled cut
consists of all the edges in the jth level (with respect to distance from v) of
every red band.

4. Partition the leveled cuts of the SPL according to their indices. Leveled cut
j has index k, k in [2 log logn], if and only if the weight of leveled cut j
belongs to the interval Ik = (βk, βk+1], where βk = W2k/(s log n) for all k in
[1, 2 log log n], β0 = 0, and β(2 log log n) = W . Choose ki to be the index k such
that there exists at least s/ log log n leveled cuts in Gi with same index k.

5. Cut along selected leveled cuts. If i = r − 1, we let t = i and go to step 6. If
i < r − 1, we proceed as described below.
If ki > 0, then we cut along these at least s/ log log n leveled cuts of index
ki and weight at least W/(s log n). We recursively call the algorithm on the
resulting connected components. In this case, we let t = i and go to step 6.
Otherwise, we first cut along only one of the leveled cuts of index ki = 0 (cho-
sen arbitrarily). Then we check whether there exists a resulting connected
component Gi+1 of Gi with at least n(Gi)/2 nodes. In case no such compo-
nent exists, we let t = i and go to step 6. If a component Gi+1 with at least
n(Gi)/2 nodes exist, we proceed by going back to step 2 with i = i + 1, thus
performing an SPL on Gi+1.

6. Recursive step. The cut step is complete and we recursively call the algorithm
on each of the resulting connected components H0, . . . , Hp of G. Let ni be
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the number of nodes on component Hi, and let σi be the linear arrangement
obtained for Hi for all i.

7. Combine. Assume the connected components Hi’s are ordered in nondecreas-
ing order of distances from v (i.e., v is no closer to the nodes in Hi+1 than
to the nodes in Hi). Combine the linear arrangements obtained for the Hi’s,
obtaining a linear arrangement σ for G, as follows:

(σ(1), . . . , σ(n)) = (σ0(1), . . . , σ0(n0), σ1(1), . . . , σ1(n1), . . . , σp(1), . . . , σp(np)).

The number of nodes in Gi, n(Gi), is proportional to n for all i in [t]. This follows
since n(Gi+1) ≥ n(Gi)/2, by the choice of Gi+1, and since t (≤ r) is a constant.

Suppose we just performed a series of t SPLs and corresponding cut procedures.
The last cut performed, on Gt−1, generated a collection of connected components of
Gt−1. Klein, Plotkin, and Rao [8] proved that the distance in G between any pair
of nodes in any such component is O(s) (where the constant in the O(·) notation
depends only on r). Thus, for a large enough constant b, b ≥ 8, we can ensure that
the distance between any pair of nodes is at most n/6 in any such component.

We now show that it follows from the result by Klein, Plotkin, and Rao that any
connected component that results from this cut step has at most 2n/3 nodes. Fix
any node u in G. It follows from (2) that any subgraph of G on (n − x) nodes that
contains u has a node at distance at least (n−x)/4 from u. Suppose we start with the
graph G and proceed by removing one node at a time, choosing always a node that
has maximum distance to u among the remaining nodes. Thus, we need to remove at
least one-third of the nodes before we are left only with nodes that are within distance
n/6 from u in G. This implies that any resulting connected component of Gt−1 has
at most 2n/3 nodes. Any other resulting connected component (of G \Gt−1) has at
most n/2 nodes, by the choice of the Gi’s.

We distinguish between two types of cut steps: If kt−1 is equal to 0, then we have
a cut step of type I in this round; otherwise kt−1 is not zero, and the cut step in this
round is of type II . Note that in either type of cut step, kj = 0 for all j in [t− 1].

Let C(Z, x) denote the maximum cost of a linear arrangement obtained by our
algorithm for a subgraph of G with x nodes, whose volume of the spreading metric
� is at most Z. Any graph with less than two nodes has no edges. Thus the cost of
an MLA obtained by our algorithm and the volume of the corresponding spreading
metric for a graph with n < 2 are both equal to zero. Hence it is sufficient to prove
the claim below for n ≥ 2 (note that log logn is undefined for n < 2).

Lemma 6.2. C(W,n) ≤ cW log log n for n ≥ 2 and some constant c.
Proof. We use induction on W and n (a similar argument to that in Lemma 3.1

shows that induction converges to the base case here in a finite number of steps). The
base cases for W = 0 or n = 2 are trivial. Suppose we perform a cut step of type I.
Thus, we perform a sequence of at most r cuts along a single leveled cut of each SPL
in this step, and each of these leveled cuts has weight at most 2W/(s log n). Let the
connected components resulting from this cut step be H0, . . . , Hp. Then

C(W,n) ≤
p∑

i=0

C(Wi, ni) + r
2W

s log n
n

≤
∑
i

cWi log log(2n/3) +
2brW

log n

≤ cW log log n− cW

3 log n
+

2brW

log n

≤ cW log log n,
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where Wi and ni are the volume and number of nodes, respectively, associated with
component Hi. We have shown that every ni is at most 2n/3. The second inequality
above follows by induction. Note that log log(2n/3) ≤ log log n−1/(3 log n): Thus the
third inequality follows. The last inequality follows for a sufficiently large constant c
(c ≥ 6br).

If the cut step performed was of type II, then we performed a series of t ≤ r
SPLs and respective cut procedures. The last term on the right-hand side of the first
inequality below accounts for the first (t − 1)th leveled cuts of index ki = 0 used,
one for each Gi, 0 ≤ i < t − 1. The second term on the right-hand side of that
inequality accounts for the tth group of leveled cuts of index kt−1 > 0 used for Gt−1.
The charging scheme for the edges removed in the tth set of leveled cuts used in this
cut step and the lower bound on how much those edges contributed to the spreading
metric volume W are analogous to the ones used in section 3.

C(W,n) ≤ C

(
W − βk

2

s

log log n
, n

)
+ 2βk+1n

+(r − 1)
2W

s log n
n

≤ C

(
W − βks

2 log log n
, n

)
+ (r + 3)βkn

≤ c

(
W − βks

2 log log n

)
log log n + (r + 3)βkn

≤ cW log log n + βkn
(
r + 3 − c

2b

)
≤ cW log log n

when c ≥ 2b(r + 3). The second inequality above follows from βk ≥ 2W/(s log n),
and from βk+1 = 2βk, 0 < k < 2 log log n − 1; the fourth inequality follows since
s = n/b.

Since the volume W of the spreading metric � is a lower bound on the cost of an
MLA, by Lemma 6.2, we obtain the following theorem.

Theorem 6.3. Given a graph G on n nodes that excludes fixed Kr,r-minors, the
cost of a solution to the MLA problem obtained by the algorithm presented in this
section is within an O(log log n) factor of the cost of an MLA of G.

7. Conclusion. We provided an existentially tight bound on the relationship be-
tween the spreading metric cost volumes and the true optimal values for the problems
of minimum linear arrangement, minimum containing interval graph, and minimum
storage–time product.

It would be interesting to extend the techniques presented in this paper to ob-
tain O(log n)-approximation algorithms for other problems. In particular, it seems
natural to extend our techniques to improve the best-known approximation factors
for other problems that satisfy the “approximation paradigm” of [3], including the
d-dimensional graph embedding problem and the minimum feedback arc set problem
[15]. We would then provide an existentially tight bound—on the ratio between the
value of an optimal solution and the spreading metric volume—for any such problem.

However, it is unclear whether the techniques presented in this paper could be
directly extended to other problems in [3], since we heavily rely on the linear ordering
properties of the solutions for the problems considered when finding a suitable bound
on the cost of the sequence of cutsets used. It is unclear how to find a sequence of
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cutsets whose cost is O(log n) times the corresponding spreading metric volume due
to the edges in the sequence of cutsets for the other problems in [3].

Another interesting problem would be to extend the ideas used for approximat-
ing the minimum containing interval graph problem to obtain better approximations
for the minimum containing chordal graph problem (interval graphs are a particular
subclass of chordal graphs). The minimum containing chordal graph problem has not
been addressed in [3].
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Abstract. We present Õ(m) time and space constant factor approximation algorithms for the k-
median, k-center, and facility location problems with assignment costs being shortest path distances
in a weighted undirected graph with n vertices and m edges.

For all of these location problems, Õ(n2) time and space algorithms were already known, but here
we are addressing large sparse graphs. An application could be placement of content distributing
servers on the Internet. The Internet is large and changes so frequently that an Õ(n2) time solution
would likely be outdated long before completion.

Key words. efficient approximation algorithms, shortest paths, location problems, k-median,
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1. Introduction. We present efficient algorithms for several classical location
problems defined in terms of a metric (P,dist), |P | = n. We want to pick a set
S ⊆ P of facilities subject to different objectives. By dist(x, S) we mean the distance
from x to the nearest facility in S, that is, dist(x, S) = minf∈S dist(x, f). In the
k-median and k-center problems we require |S| = k, and our goal is to minimize∑

x∈P dist(x, S) and maxx∈P dist(x, S), respectively. In the facility location problem,
there is no limit k on the number of facilities, but we are further given a facility cost
function f-cost, P → N0, and our goal is to minimize

∑
a∈S f-cost(a)+

∑
x∈P dist(x, S).

Often one is really interested in an augmentation version of the problems, where one
is given a set of existing facilities for free. For simplicity, we do not touch this issue,
but it is straightforward to generalize the presented algorithms to deal with such
augmentations.

In this paper, we are interested in the graph setting where the metric is the
shortest path metric of a weighted undirected graph G = (V,E, � : E → N), |V | = n,
|E| = m; that is, dist(x, y) is the length of the shortest path from x to y in G.
This setting is the basis for many of the classical applications of facility location.
For example, a 1983 survey [26] describes applications of the k-median and k-center
problems in mostly sparse networks using shortest path distances as cost metric (as
in this paper) and mentions about 100 related references. A typical example is the
placement of shopping centers on a road network with driving distance to the nearest
shopping center being the consumer cost. A more contemporary example could be
the placement of content distribution servers on the Internet (see [20, 21, 25] for more
details on Internet-related applications). Both examples may concern large sparse
graphs. Also, in both cases k may be large; e.g., McDonald’s has more than 28,000
fast-food restaurants on the US road network which has millions of road intersections.

∗Received by the editors May 3, 2001; accepted for publication (in revised form) August 24, 2004;
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http://www.siam.org/journals/sicomp/34-2/38888.html
†AT&T Labs—Research, 180 Park Avenue, Florham Park, NJ 07932 (mthorup@research.att.

com).

405



406 MIKKEL THORUP

Similarly, Akamai has thousands of servers on the Internet which is heading towards
a million routers. For Internet-related applications, we further note that the Internet
changes frequently, and thus an algorithm has to be fast in order to produce up-to-date
answers.

For all of the above location problems, we present Õ(m) time and space constant
factor approximation algorithms. Here ˜ means that we ignore log-factors, including a
log in the maximal edge weight. The concrete approximation factors are 12+ o(1) for
k-median, 2 for k-center, and 3 + o(1) for facility location. The approximation factor
for the k-median problem may be reduced to around 9, but this is complicated and
beyond the scope of the current paper. Also, using much more complicated techniques,
the author has recently shown that the approximation factor for facility location can
be reduced to 1.62 while preserving the near-linear time and space [28]. We note that
a constant factor approximation is the best we can hope for in polynomial time for
each of these location problems. More precisely, for k-median a factor of 1.36 is the
best possible unless NP = P [10]; for k-center, a factor of 2 is the best possible unless
NP = P [14]; and for facility location, a factor of 1.46 is the best possible unless
NP ⊆ DTIME(nlog log n) [11]. Our focus here, however, is on reasonable running
times rather than on the concrete constant in the approximation factor.

Most previous theoretical work on the above location problems has been focused
on finding the best approximation factors in polynomial time (see, e.g., [2] and ref-
erences therein). A notable exception is the work of Jain and Vazirani [19]. They
considered a distance oracle setting where, given any pair of points (x, y) ∈ P 2, one
can compute dist(x, y) in constant time. The distance oracle setting is interesting in
its own right, e.g., interpreting the location problems as clustering problems for large
data bases [12]. For the k-median and facility location problems, Jain and Vazirani
achieved approximation factors of 6 and 3, respectively, in Õ(n2) time,1 improving
for the k-median the LP-based factor 6 2

3 from [2]. They noted, “The distinguishing
feature of our algorithms is their low running time.” In their final discussion they ask
whether improved running times can be obtained for the graph setting in the case of
sparse graphs. To run their distance oracle algorithm on a graph, one would first have
to compute all pairs of shortest paths in Õ(mn) time. (Some other alternatives will
be discussed in section 1.3.) Our positive answer to Jain and Vazirani’s question is
that constant factor approximations can be achieved with high probablility (w.h.p.) in
Õ(m) time.

The central result of this paper is the near-linear time solution to the k-median
problem, the difficulty being the sharp bound on the number of facilities. Facility
location is comparatively easy because we can use approximate facility costs; it is
considered here for completeness because it was part of Jain and Vazirani’s open
problem. The k-center solution comes in for free as a warm-up for our solution to the
facility location problem. Also, by covering k-median, k-center, and facility location,
we develop a quite general toolbox for basic location problems in networks [26].

1.1. Efficient algorithms for NP-hard problems. For this paper, we have
adopted the standard target in the algorithms field of minimizing the asymptotic time
and space efficiency [6]. We make this point because within approximation algorithms
there has been a tendency towards putting more emphasis on whether a polynomial
time algorithm is “combinatorial,” “primal-dual,” “greedy,” or “local search.”

1Actually, they get Õ(fn) time if only f points are potential facilities, but here we generally
assume that all points are potential facilities.
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Obviously efficient algorithms are as important for NP-hard problems as for prob-
lems in P, especially since most important combinatorial optimization problems are
NP-hard [7]. Of course, the design of efficient algorithms for NP-hard problems has to
await an understanding of approximability of such problems in polynomial time. For-
tunately, this understanding is emerging for many NP-hard optimization problems,
thus opening many new challenges for the design of efficient algorithms. As the design
of efficient approximation algorithms for NP-hard problems blossoms, it is expected
that many new ideas will emerge due to the difference in nature between NP-hard
problems and problems in P. In particular, it is very natural to trade approximation
for efficiency, as approximation has already been traded for polynomial time. Some
recent examples of this line of research may be found in [5, 15]. One way of thinking
about the trade-off between time and approximation factor is that one should go for
the best approximation factor that can be obtained within the time available. Thus,
if one has O(mn) time available for solving the k-median problem in a network, Jain
and Vazirani’s algorithm is superior to ours. However, with o(mn) time available, our
Õ(m) time solution is the right choice.

To appreciate our improved running time, consider placing shopping centers on a
U.S. map with several million intersections/vertices. Computing all pairwise shortest
paths for a distance oracle algorithm would take several months, if not years. Of
course, one might be able to reduce the problem by hand, but our goal here is to
construct algorithms not relying on human preprocessing. An even worse problem
would be the placement of servers on the full Internet graph, which is changing so
rapidly that the input graph would be outdated long before an all-pairs shortest path
computation finished. For contrast, our algorithm runs in time close to that of a
single source shortest path algorithm. In addition to speed problems, even if we
don’t count the space needed to represent the pair-wise distances, it is not obvious
how to implement Jain and Vazirani’s algorithm in subquadratic space, unless we
substantially increase the running time. Our algorithm needs only Õ(m) space, which
could be crucial in avoiding external memory problems. We note that we cannot
expect future faster computers to solve our problems, for as computers grow faster,
the problems grow bigger, and hence so does the need for near-linear time algorithms.

1.2. The distance oracle version. Our work was strongly inspired by In-
dyk’s [15] work on finding “sublinear” o(n2) time algorithms in the distance oracle
setting, saving time by only querying o(n2) distances. Our basic question was whether
similar savings were possible in the graph setting, where individual distance queries
take linear time.

For the k-median problem, Indyk [15] presented a randomized reduction that, to-
gether with the Õ(fn) time factor 6 approximation algorithm of Jain and Vazirani [19],
implies a Õ(k3n) time factor (3 + o(1))(2 + 6) = 24 + o(1) bicriteria approximation
using 2k facilities. Thus Indyk’s solution may use up to 2k facilities, and it has a cost
that is at most a factor 24 + o(1) from the optimal solution using only k facilities.
Later, based on Indyk’s construction [15], Guha et al. [12] presented a Õ(kn) time
factor 6 × 2 × (24 + o(1) + 1) = 300 + o(1) approximation algorithm using only k
facilities, as required for the k-median problem. Their algorithm works for a special
streaming version of the problem that we shall return to later in section 5.3. Their
approximation factor can be reduced to 80 + o(1) if k = Õ(

√
n) [Guha, personal

communication]. An Õ(kn) time constant factor approximation is also announced
by Mettu and Plaxton [23], but with no specification of the constant. They also
pointed out that Ω(kn) time is necessary for any approximation guarantee even for
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randomized algorithms.

Some of our initial developments actually imply an Õ(kn) time factor 12 + o(1)
approximation for the distance oracle version of the k-median problem, thus doing
25 times better than the previous Õ(kn) time algorithm for unbounded k. Clearly
some of the previous approximation factors could have been improved somewhat, but
our vast improvement is due to some new simple and powerful sampling techniques.

For the k-center algorithm, the standard factor 2 approximation [9, 13] uses only
Õ(kn) distance queries, and Ω(kn) queries are needed for any approximation guaran-
tee. For facility location, Ω(n2) distance queries are needed, and that is matched by
Mettu and Plaxton’s O(n2) time factor 3 approximation [23].

1.3. The graph version. The problem in the graph setting is that a single
distance query is answered by a single source shortest path computation, computing
the distance from a source to all other points. Thus, answering just n distance queries
independently is as slow computing all pairwise shortest paths.

Nevertheless, the previous work on the distance oracle version does have some
applications for the graph version. Taking the k-median problem as the main example,
first we can apply the all pairs small-stretch path algorithm of Cohen and Zwick [4].
In Õ(n2) time, this gives us all distances in the graph within a factor 3. Next, we
can apply Jain and Vazirani’s algorithm [19] in Õ(n2) time to get a factor 3× 6 = 18
approximation algorithm. In order to exploit the Õ(kn) time distance oracle algorithm
of Guha et al. [12], we can first apply Thorup and Zwick’s [29] approximate distance
oracle algorithm: for any positive integer t, after O(tmn1/t) preprocessing time, we
can answer distance queries within a factor 2t − 1 in O(t) time. Setting t = 2 and
combining it with [12], we get an Õ(m

√
n + nk) time algorithm with approximation

factor 3(300 + o(1)) = 900 + o(1), or 3(80 + o(1)) = 240 + o(1) if k = O(
√
n).

Our Õ(m) time bound is near-optimal and breaks the Ω(kn) lower bound for
distance oracles if k � m/n. Further, our approximation factor is only 12 + o(1),
which is better than that of any previous o(nm) algorithm.

Our algorithm is easily generalized to work for weighted points. One application
of this arises if only a subset of the points are potential facilities. Then we first assign
each point to its nearest potential facility. Second we solve the k-median problem over
the potential facilities, each weighted by the number of assigned original points. The
resulting solution can be seen to be a factor 2(12+o(1))+1 = 25+o(1) approximation.

1.4. All points nearest marked neighbor. What makes fast location algo-
rithms possible for graphs is that we can quickly find the nearest facility of each
point. More abstractly, the all points nearest marked neighbor problem concerns a
metric (P,dist) with a set S ⊆ P of marked points. The task is for each x ∈ P to
find a nearest marked point xS ∈ S as well as its distance dist(x, xS) = dist(x, S)
from x. If S is a set of facilities, having solved the all points nearest marked neighbor
problem, we can easily compute the k-median, k-center, or facility location cost of S
in O(n) time.

With a distance oracle, we need Θ(n|S|) time to find all points nearest neighbor in
S. However, when P is the vertex set of a graph and dist the shortest path distances,
we can find all points nearest neighbor in S in near-linear time with a single source
shortest path computation, no matter the size of S. More precisely, we have the
following.

Observation 1. In a weighted connected graph with m edges, we can solve the
all points nearest marked neighbor problem in Õ(m) time.
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Proof. Introduce a source s with zero length edges to all a ∈ S, and compute the
shortest path tree to all vertices in Õ(m) time. For each x, dist(x, S) is the found
distance from s. Also, for each x in the subtree of a ∈ S, we set xS = a. We note
that the same construction works for directed graphs if we first reverse the direction
of all edges.

All our results are achieved by a polylogarithmic number of all points nearest
marked neighbor computations, hence by a polylogarithmic number of single source
shortest paths computations.

Our solution to the k-median problem via a small number of all points nearest
marked neighbor computations is also useful in Hamming space, where it gives a
constant factor approximation in Õ(nkε) time for ε > 0, thus beating that Ω(kn)

lower bound for general distance oracles if k = logω(1) n.

1.5. Contents. After some preliminaries in section 2, we present our solutions
to the k-center, facility location, and k-median problem in sections 3, 4, and 5. Our
solution to the k-median problem is by far the hardest result in the paper, taking up
most of the space.

2. Preliminaries. Unless otherwise stated, logarithms are base 2; e.g., log n =
log2 n.

When we say w.h.p., we mean with probability ≥ 1 − 1/nω(1). The advantage of
an error probability of 1/nω(1) is that even if we multiply it by n, it remains 1/nω(1).

Let S be a set of facilities. We will generally use xS to denote the facility that
a point x is assigned to. Typically xS is the nearest point in S as found by an all
points nearest marked neighbor computation. By the S-cluster of a ∈ S we mean the
set {x ∈ P : xS = a}, denoted cluster(a, S).

Generally, we will use a subscript to indicate that measurements are done in a
metric different from the one currently understood. For example, if H is a graph,
distH(x, y) is the distance from x to y in H.

In our stated running times for graphs, we will assume that there are no isolated
vertices, and hence that m + n = O(m). Isolated vertices are trivially dealt with, in
that each of them has to be a facility; otherwise the cost is ∞.

The results presented here are not intended to be of immediate practical value.
The focus is on running times and approximation factors for arbitrary input instances,
and for the running times we will be sloppy with log-factors in order to facilitate the
simplest possible analysis.

3. k-center. We want to pick S ⊆ V , |S| = k minimizing maxv∈V dist(v, S).
A factor 2 approximation is classical [9, 13] and best possible [14], but the natural
algorithm takes Õ(km) time. We get down to Õ(m) expected time, and our methods
will be reused for facility location. Here, for the k-center problem, the Õ-notation
includes a log-factor in the maximal edge weight.

The classical factor 2 approximation is the following greedy algorithm: Guess the
optimal distance d∗, and then return any maximal dist-2d∗ independent set. Here,
for any d, a subset U ⊆ V is dist-d independent if no two vertices of U are within
distance d of each other. We know we have an adequate value of d if it gives rise to
≤ k facilities whereas d−1 gives rise to > k facilities, so d may be found with a binary
search. If N is the maximal edge weight, the maximal distance is less than nN , so
the depth of the binary search is less than log2 nN .

The obvious greedy way of finding a maximal dist-d independent set U is as
follows: set U = ∅ and W = V . While W 
= ∅, add an arbitrary vertex v ∈ W to U
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and remove all vertices within distance d from W . The complexity of this algorithm is
Õ(|U |m). Here we show how to find a maximal dist-d independent set in near-linear
time. Including the binary search for d, this will give us a near-linear time solution
to the k-center problem.

Let Γ≤d(v) denote the neighborhood of vertices within distance d of v. We shall
use the following result of Cohen [3].

Lemma 2 (Cohen). Let ε > 0. For any W ⊆ V , after preprocessing in Õ(m/ε)
time and space, w.h.p, for every vertex v and d, in O(log log n − log ε) time, we can
estimate the size of Γ≤d(v) ∩W within a factor 1 ± ε.

In applications, we will typically use ε = 1/ log n so that Õ(m/ε) = Õ(m),
O(log log n − log ε) = O(log log n), and 1 ± ε = 1 ± o(1). We now have the following
maximal dist-d independent set algorithm.

Algorithm A. Finds a maximal dist-d independent set U ⊆ W for a given
W ⊆ V .
A.1. set U = ∅
A.2. while W 
= ∅,
A.2.1. using Lemma 2, compute δ = (1 ± o(1)) maxv∈W |Γ≤d(v) ∩W |
A.2.2. pick a random subset R of W of size |W |/δ
A.2.3. let T = {v ∈ R|Γ≤d(v)∩R = {v}}—see implementation comments below
A.2.4. add T to U
A.2.5. using Observation 1, find dist(v, U) for each v ∈ W , removing those with

dist(v, U) ≤ d
To identify the set T in step A.2.3, we construct a family {Ri}i≤2 log2 |R| of subsets

of R such that for all v, w ∈ R there is a set Ri containing v but not w. These
sets may be constructed by associating different log2 |R| bit vectors to the vertices
in R and then characterizing each set by the value of a certain bit position. Now,
Γ≤d(v)∩R = {v} if and only if dist(v,Ri) > d for each Ri not containing v. For each
Ri, using Observation 1, we find dist(v,Ri) for all v in near-linear time. Hence, we
can implement step A.2.3 in near-linear time.

Proposition 3. Algorithm A finds a maximal dist-d independent subset of a
given set W ⊆ V in Õ(m) expected time.

Proof. It follows directly from the construction that we get a maximal dist-d
independent subset U ⊆ W . Also, it is clear that each iteration of the while-loop
takes near-linear time. We want to show that we expect

δ∗ = max
v∈W

|Γ≤d(v) ∩W |

to be reduced by a constant factor within O(log n) iterations. This will imply that
the total expected number of iterations is O(log2 n).

Consider a specific iteration. We assume that δ = (1 ± o(1))δ∗, as is the case
w.h.p. Consider any vertex v ∈ W with |Γ≤d(v) ∩ W | ≥ 0.6 δ∗ ≥ δ/2. We will
show that the iteration eliminates v from W with constant probability. The condition
|Γ≤d(v) ∩ W | ≥ δ/2 implies that some vertex u ∈ Γ≤d(v) ∩ W is picked for R with
constant probability. On the other hand, |Γ≤d(u) ∩W | ≤ δ∗ ≤ (1 + o(1))δ, and thus
with constant probability no other vertex from Γ≤d(u) is picked for R. By definition,
this means that u ends in T , and since u ∈ Γ≤d(v), this eliminates v from W . Thus
we conclude that if a vertex v has |Γ≤d(v)∩W | ≥ 0.6 δ∗, then the iteration eliminates
v with constant probability.

Consider a specific value of δ∗. There are at most n vertices v with |Γ≤d(v)∩W | ≥
0.6 δ∗, and each such v is eliminated with constant probability in each of the following
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iterations. Thus, we expect all of them to be eliminated within O(log n) iterations,
thereby reducing δ∗ by a factor 0.6. We can have only O(log n) such reductions of
δ∗, and so we conclude that the total expected number of iterations is O(log2 n), and
hence that the total expected running time of Algorithm A is near-linear.

We note that the above proof has some similarities to the randomized parallel
independent set algorithm in [22]. However, the algorithm in [22] accesses all edges,
whereas we do not want to consider the O(n2) pairs of distance ≤ d.

Theorem 4. In Õ(m) expected time, we can find a factor 2 approximation to
the k-center problem.

Proof. As discussed earlier, we make a binary search over {1, . . . , nN} for a value
of d such that the set Ud returned by Algorithm A has at most k elements, whereas
the set Ud−1 returned for d − 1 has more than k elements. Then Ud is our factor 2
approximate solution to the k-center problem.

In [13] several similar problems are mentioned that can be improved with similar
methods.

We note that the above algorithms, including those of Cohen [3], are based on a
polylogarithmic number of all points nearest marked neighbor computations plus an
Õ(n) time overhead.

4. Facility location. In the facility location problem for a metric (P,dist), there
is a facility cost f-cost(x) associated with each x ∈ P , and then the cost of S ⊆ P is∑

f∈S f-cost(f)+
∑

x∈P dist(x, S). First we note that in the distance oracle version of
the facility location problem, even if all facility costs are uniform, no constant factor
approximation is possible with o(n2) queries, not even if we allow randomization. For
a negative example, divide into clusters of size t with intra- and inter-cluster distance
0 and ∞, respectively. Then we expect to need Ω(n2/t) queries for an approximation
factor substantially below t. It follows that Mettu and Plaxton’s [23] O(n2) time
bound is optimal for facility location with distance oracles, even with uniform facility
costs.

However, in [8] (see also [16, p. 73]), it is shown that Jain and Vazirani’s facil-
ity location algorithm [19] can be implemented with Õ(n) nearest neighbor queries,
leading to a more efficient solution in Hamming space [17]. We note that [8] does not
give anything for the k-median problem, as it is based on approximate counting and
hence approximate payment of facilities, and then Jain and Vazirani’s rounding trick
[19, section 3.2] from facility location to k-medians does not work.

In a graph, we have no efficient way of supporting individual nearest neighbor
queries, but we can solve them efficiently for all points together as the all points
nearest marked neighbor problem. Essentially, we show below that facility location
can be solved within a factor 3 from optimality with a polylogarithmic number of
solutions to the all points nearest neighbor problem. We note that whereas “phase 2”
of Jain and Vazirani’s algorithm [19] is trivial to implement with efficient individual
nearest neighbor queries [8], it needs something like Proposition 3 for graphs.

Instead of using Jain and Vazirani’s algorithm [19], we use the one of Mettu and
Plaxton [23]. The factor 3 approximation algorithm of Mettu and Plaxton for facility
location is very simple and elegant. As for the algorithm in [19], it has two phases.

Phase 1. For each x ∈ P , we find rx such that value(x, rx) = f-cost(x), where
value(x, r) =

∑
y∈P,dist(x,y)≤r(r − dist(x, y)).

Phase 2. Starting with S = ∅, we visit x ∈ P in order of increasing rx, adding x
to S if dist(x, S) > 2rx.
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Lemma 5 (see Mettu and Plaxton [23]). The above set S is at most a factor 3
from the optimal solution to the facility location problem.

For an efficient implementation of the above algorithm, let ε = Θ(1/ log n) be such
that 2 is an integral power of (1 + ε) for some integer i. Increasing assignment costs
just a little, we will view all distances as rounded up to the nearest integral power
of (1 + ε). We use dist↑ to denote this distance function, and let value↑ denote the
corresponding change in value, that is, value↑(x, r) =

∑
y∈P,dist↑(x,y)≤r(r−dist↑(x, y)).

Note that when we use rx in Phase 2, all we care about is which vertices are
within distance 2rx from x. Let i be such that (1 + ε)i ≤ rx < (1 + ε)i+1. Since 2
is an integral power of (1 + ε), there are no rounded distances between 2(1 + ε)i and
2(1 + ε)i+1. Thus, we can round rx down to the nearest power of (1 + ε), even if this
implies value↑(x, rx) � f-cost(x). The rounded down value of rx is denoted r↓x.

Algorithm B. Implements an approximate version of Phase 1, finding an r↓v for
each v ∈ V .
B.1. for all v ∈ V , set fv = 0
B.2. set U = V
B.3. for i = 1, 2, . . . while U 
= ∅,
B.3.1. using Lemma 2 with W = V , estimate for each u ∈ U the number qu of

vertices v within distance (1 + ε)i from u, that is, dist(u, v) ≤ (1 + ε)i,
or equivalently, dist↑(u, v) ≤ (1 + ε)i.

B.3.2. for each u ∈ U ,
B.3.2.1. fu = fu + ((1 + ε)i − (1 + ε)i−1)qu
B.3.2.2. if fu > f-cost(u),
B.3.2.2.1. set r↓u = (1 + ε)i−1

B.3.2.2.2. remove u from U
The following lemma states that Algorithm B performs an approximate imple-

mentation of Phase 1.
Lemma 6. For each v, there is an f-cost≈(v) = f-cost(v)/(1± ε) and an r≈v with

value↑(v, r≈v ) = f-cost≈(v) such that r↓v is r≈v rounded down to the nearest power of
(1 + ε).

Proof. First, suppose that the numbers qu counted the number of vertices within
distance (1 + ε)i exactly. Then, after step B.3.2.1, we would have fu = value↑(v, (1 +
ε)i). However, each qu may be off by a factor (1 ± ε), and hence so is ((1 + ε)i −
(1 + ε)i)qu. Since fu is a sum of such approximate terms, we conclude that fu =
(1 ± ε)value↑(v, (1 + ε)i).

Suppose we set r↓u = (1 + ε)i−1 in step B.3.2.2.1. In the last iteration i − 1,
we had fu ≤ f-cost(u), and hence (1 − ε)value↑(v, (1 + ε)i−1) ≤ f-cost(u). However,
in the current iteration i, we have fu > f-cost(u), and hence (1 + ε)value↑(u, (1 +
ε)i) > f-cost(u). It follows that there is a value f-cost≈(u) = (1 ± ε)f-cost(u) and an
r≈u ∈ [(1 + ε)i−1, (1 + ε)i) such that value↑(v, r≈u ) = f-cost≈(u).

For any solution T , using the r≈v from Lemma 6, we define

cost↑≈(T ) =
∑
v∈V

dist↑(v, T ) +
∑
f∈T

f-cost≈(f).

Since ε = Θ(1/ log n), we get the following.
Observation 7. For any solution T , we have cost↑≈(T ) = (1 ±O(ε))cost(T ) =

(1 ± o(1))cost(T ).
Algorithm C. Implements an approximate version of Phase 2, constructing the

solution S.
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C.1. set S = ∅
C.2. for i = 0, 1, 2 . . . ,
C.2.1. let W be the set of vertices w ∈ V with r↓w = (1 + ε)i

C.2.2. remove from W all vertices w within distance 2(1 + ε)i from S, that is,
with dist↑(w, S) ≤ 2(1 + ε)i

C.2.3. using Proposition 3, construct a maximal dist-2(1 + ε)i independent set
I from W

C.2.4. add I to S
C.3. return S

The following lemma states that Algorithm C implements Phase 2 but using r↓v
instead of rv or r≈v .

Lemma 8. There exists a total ordering ≺ of the vertices in V such that u ≺ v ⇒
r↓v ≥ r↓u and such that v is added to S if and only if there is no previous u ≺ v in S
with dist(u, v) ≤ 2r↓v.

Proof. The ordering is obtained if each iteration first lists the vertices in I that
we pick for S and second lists the rest of the vertices in W .

Using Lemmas 6 and 8, we will argue that Algorithms B and C are good approxi-
mations of Mettu and Plaxton’s Phases 1 and 2. Unfortunately, we cannot just apply
Lemma 5 in conjunction with Observation 7. We have two basic problems. One is
that the algorithms use r↓v instead of r≈v , and we may have value↑(v, rv) � f-cost≈(v).
The other problem is that dist↑ does not satisfy the triangle inequality. To deal with
these problems, we have to redo the analysis from [23] so as to prove the following
claim.

Theorem 9. In near-linear expected time, w.h.p., Algorithms B and C find a
factor 3 + o(1) approximate solution S to the facility location problem.

Proof. Recall that ε = θ(1/ log n). First, there are at most log1+1/ε nN =
O((log n)(log nN)) possible values of i, and hence at most that many iterations in
each algorithm. Since each iteration takes near-linear expected time, we conclude
that the overall expected running time is near-linear.

The rest of the proof is a modified version of the one of Lemma 5 in [23]. The
proof is divided into several local claims. In the proof, we will carefully switch between
dist↑ and dist, where only the latter supports triangle inequality. In particular, this
concerns the proof of Claim 9.5 below.

From Lemma 8, we immediately get our first local claim.
Claim 9.1. For any vertex v ∈ V , there is a vertex u ∈ S such that u � v and

dist(u, v) ≤ 2r↓v.
Claim 9.2. For any distinct vertices u, v ∈ S, we have dist(u, v) > 2 max{r↓u, r↓v}.
Proof. By symmetry, we may assume that u ≺ v. By Lemma 8, we have

dist(u, v) > 2r↓v ≥ 2r↓u.
For any solution T and vertex v ∈ V , we define

charge(v, T ) = dist↑(v, T ) +
∑
u∈T

max{0, r≈u − dist↑(u, v)}.

Claim 9.3. For any solution T ,
∑

v∈V charge(v, T ) = cost↑≈(T ).
Proof. We have

∑
v∈V

charge(v, T ) =
∑
v∈V

dist↑(v, T ) +
∑
u∈T

⎛
⎝ ∑

v∈V,dist↑(u,v)≤r≈u

(r≈u − dist↑(u, v))

⎞
⎠
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=
∑
v∈V

dist↑(v, T ) +
∑
u∈T

value↑(u, r≈u ),

which equals cost↑≈(T ) since value↑(u, r≈u ) = f-cost≈(u) by Lemma 6.
Claim 9.4. Let v be a vertex and u be nearest to v in a solution T . Then

charge(v, T ) ≥ max{r≈u ,dist↑(u, v)}.
Proof. Since charge(v, T ) ≥ dist↑(v, T ) = dist↑(u, v), the statement is trivial if

dist↑(u, v) ≥ r≈u . Otherwise, charge(x, T ) ≥ dist↑(u, v) + (r≈u − dist↑(u, v)) = r≈u ≥
dist↑(u, v).

Claim 9.5. If v ∈ V and u ∈ S, we have charge(v, S) ≤ max{r≈u ,dist↑(v, u)}.
Proof. If there is no vertex u′ ∈ S with dist↑(v, u′) ≤ r≈u′ , then charge(v, S) =

dist↑(v, S) ≤ dist↑(v, u). Hence, we may assume that there is a u′ ∈ S with dist↑(v, u′)

≤ r≈u′ , or equivalently, with dist(v, u′) ≤ r↓u′ .
Consider a vertex w ∈ S which is different from u′. By Claim 9.2, we have

that dist(u′, w) > 2 max{r↓u′ , r↓w}. Hence dist(v, w) ≥ dist(u′, w) − dist(v, u′) >

2 max{r↓u′ , r↓w}−r↓u′ ≥ max{r↓u′ , r↓w}, but this implies that dist↑(v, w) > max{r≈u′ , r≈w}.
We conclude that charge(v, S) = dist↑(v, S) + r≈u′ − dist↑(v, u′) ≤ r≈u′ and that

u = u′ if dist↑(v, u) ≤ r≈u′ .
Claim 9.6. For any v ∈ V and solution T , charge(v, S) ≤ 3(1 + ε)charge(v, T ).
Proof. Let u ∈ T be such that dist↑(x, u) = dist↑(x, T ). By Claim 9.1, there

exists a vertex u′ ∈ S with u′ � u and dist(u, u′) ≤ 2r↓u.
If dist↑(v, u′) ≤ r≈u′ , then charge(v, S) ≤ r≈u′ , by Claim 9.5. The statement now

follows, since u′ � u implies r↓u′ ≤ r↓u and Claim 9.4 implies that charge(v, T ) ≥ r≈u .

Suppose instead that dist↑(v, u′) > r≈u′ . By Claim 9.5, we have charge(v, S) ≤
dist↑(v, u′) < (1 + ε)dist(v, u′). Moreover, dist(v, u′) ≤ dist(v, u) + dist(u, u′) ≤
dist(v, u)+2r↓u. The result now follows from Claim 9.4 since the ratio of dist(v, u)+2r↓u
over max{r≈u ,dist↑(x, u)} is at most 3.

Now Theorem 9 follows from Observation 7 in conjunction with Claims 9.3 and
9.6.

Currently our solutions to the k-center or facility location problem are found in
near-linear expected time (cf. Theorems 4 and 9). To get a solution in worst-case near-
linear time, we can search Θ(log2 n) solutions in parallel, returning the first solution
found, and give up if no search terminates within twice the expected time. Since the
solutions of the original searches were “good” w.h.p., our parallel search finds a good
solution w.h.p. in near-linear worst-case time.

5. k-median. In the k-median problem for a metric (P,dist), we want to find a
set S ⊆ P of k facilities minimizing

∑
x∈P dist(x, S). The main result of this paper

is that we can get a constant factor approximation in Õ(m) time when the metric is
the shortest path metric for a graph with m edges (and n vertices).

Our Õ(m) solution to the k-median problem in graphs is rather complicated and
hence unlikely to be of direct practical relevance. However, in our developments we
present some theoretically weaker algorithms that are simple and easy to implement,
yet provide stronger bounds than were previously known.

First, in section 5.2, we present a simple fast randomized algorithm for selecting
a set of Õ(k) potential facilities, guaranteed to contain a solution with k facilities
with at most twice the cost of the optimal solution. Using this as a preprocessing
step for Jain and Vazirani’s algorithm, we find a factor 12 + o(1) approximation in
Õ(kn) time for distance oracles, with efficient implementations for external memory
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and the streaming model, and in Õ(km) time for graphs. This part is considered very
practical, “perfect” for distance oracles, and good for graphs if k is not too large.

Next, in section 5.4, we show that it can be meaningful to apply the algorithm
from [19] to a sparse graph whose weights do not satisfy the triangle inequality, and
construct a graph for which this makes sense. In Õ(m) time, this process leads to a
factor 12+o(1) approximation to the k-median problem but cheating using k+k/ log2 n
facilities. This part is still simple enough to be of practical use, and good enough if
the bound on the number of facilities is not sharp.

The true difficulty in the k-median problem is the sharp bound on the facilities.
In section 5.5, we present a rather convoluted recursion for getting rid of the last
k/ log2 n extra facilities. It is based on structural theorems showing that if we cannot
easily get rid of the k/ log2 n extra facilities, it is because our current solution is very
similar to any optimal solution. This similarity allows us to fix most of the facilities
and recurse on a o(k)-median problem. As described, this last step is considered
too complicated to be of practical interest, but it takes us to our theoretical goal: a
near-linear time constant factor approximation to the k-median problem.

5.1. Notation and terminology. For S ⊆ P , define cost(S) =
∑

x∈P dist(x, S).
Then the k-median problem is the problem of finding S ⊆ P , |S| ≤ k, minimizing
cost(S). Define k-mediancost⊆F = min{cost(S) : S ⊆ F, |S| = k} and k-mediancost =
k-mediancost⊆P . By a factor c approximation to the k-median problem, we mean a
solution S ⊆ P , |S| = k, with cost(S) ≤ c× k-mediancost.

5.2. Sampling k logO(1) n facilities. In this section, we will show how to sam-
ple a set F of k logO(1) n facilities, which we expect to contain a factor 2 + o(1) ap-
proximation to the k-median problem. The set F is found by the following simple
algorithm.

Algorithm D. Given a metric (P,dist) and a parameter ε, 0 < ε < 0.5, with
probability at least 1/2, the algorithm constructs a set F of O(k log2 n/ε) facilities
which contains a factor 2 + ε approximation to the k-median problem.

D.1. R := P ; F := ∅;
D.2. while R 
= ∅ but for at most 3 logn iterations, do
D.2.1. add 21k(log n)/ε random points from R to F , or the rest of R if |R| ≤

21k(log n)/ε
D.2.2. for each point x ∈ R, compute the distance dist(x, F ) to the nearest

neighbor in F
D.2.3. pick a random t ∈ R, and remove from R all those x with dist(x, F ) ≤

dist(t, F ).
D.3. return F

The following theorem states the significant properties of Algorithm D.

Theorem 10. Algorithm D computes a set F of size O(k(log2 n)/ε) by computing
all points nearest neighbors in O(log n) subsets of P , each of size O(k(log n)/ε). With
probability at least 1/2, we get k-mediancost⊆F ≤ (2+ε)×k-mediancost, and the 2+ε
approximation factor holds even if the optimal solution is allowed to place facilities
outside P .

Note here that when comparing our solution with an optimal solution using fa-
cilities outside P , we may lose a factor of 2 just by restricting ourselves to P . For a
concrete worst-case example, just take the 1-median problem where all points in P
are at distance 2 from each other, whereas the optimal solution is allowed to use an
extra center of distance 1 to all points in P . It follows that our factor 2+ ε is close to
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the best possible. Allowing the optimal solution to use facilities outside P is crucial
to a later reduction in the proof of Lemma 13.

Proof of Theorem 10. The statements concerning the size of F and the all points
nearest neighbor computations follow directly from the description of Algorithm D as
it performs at most 3 log n iterations of the while loop D.2. The hard part is to prove
that with probability at least 1/2, k-mediancost⊆F ≤ (2 + ε) × k-mediancost.

For the analysis, we define R0 and F0 to be the initial values of R and F . Also,
we let Ri and Fi be the values after the ith iteration. Finally, we let Pi be the points
removed from R = Ri−1 in the ith iteration, that is, Ri = Ri−1 \ Pi. Let � be the
final iteration. Then F� is the final set returned by the algorithm.

First we will argue that we expect R = R� to be empty when done with the while
loop. In this case, all points in P end in some Pi, so the Pi partition P .

Claim 10.1. The probability that R� 
= ∅ is o(1).

Proof. In proving this claim, we think of Algorithm D as always performing
�∗ = 3 log n iterations. However, pseudoiterations i > � with Ri−1 = ∅ have no effect.
For a real iteration i ≤ t, there is a probability of at least 1/2 that the iteration
removes half the points in R. Also, all pseudoiterations reduce the size of R by a
factor 2 since 0/2 = 0. Hence, for each iteration i ≤ �∗, there is a probability of at
least 1/2 that |Ri| ≤ |Ri−1|/2. Consequently, the expected number of such iterations
is at least 1.5 log n.

On the other hand, if R� 
= ∅, we have �∗ = � and |R�∗ | ≥ 1. Hence there
can be at most log |R0| = log n iterations i with |Ri| ≤ |Ri−1|/2, that is, only
2/3 of the expected number of such iterations. Using a standard Chernoff bound
(see, e.g., [24, Theorem 4.2]), we get that the probability of this event is at most
exp(−(1.5 log n)(1/3)2/2) = exp(−(log n)/12) < n−0.12.

Let OPT be an optimal solution to the k-median problem. Our claimed good
solution inside F will be OPTF denoting {aF }a∈OPT . Recall there that aF is a facility
f ∈ F which is nearest to a. Trivially |OPTF | ≤ |OPT | ≤ k. For our analysis, we
will assign each x ∈ P to (xOPT )F . The cost assigned to x will be

dist(x, xOPT ) + dist(xOPT , (xOPT )F ).

We refer to dist(xOPT , (xOPT )F ) as the “extra cost” of x. This extra cost can only
decrease as F grows. Our goal is to show that, with probability at least 1/2,

∑
x∈P

dist(xOPT , (xOPT )F ) ≤
∑
x∈P

((1 + ε)dist(x, xOPT )) = (1 + ε)cost(OPT ).(1)

All points in P start off “unhappy.” A point x ∈ P will be defined as “happy” from
the moment that a point a with dist(a, xOPT ) ≤ dist(x, xOPT ) is picked for F . From
that moment, dist(xOPT , (xOPT )F ) ≤ dist(xOPT , a) ≤ dist(x, xOPT ). Hence, if all
points ended up happy, we would get (1) satisfied with ε = 0. Unfortunately, we
cannot hope to make all points happy, but we will find a way to pay for the unhappy
ones.

Consider an unhappy point x. The extra cost of x is dist(xOPT , (xOPT )F ) ≤
dist(xOPT , xF ) ≤ dist(xOPT , x) + dist(x, xF ) ≤ dist(x,OPT ) + dist(x, F ). Thus, to
prove (1) it suffices to show that the sum over dist(x, F ) over all unhappy x is bounded
by ε cost(OPT ).

We say an iteration i “ends well” if the following equation is satisfied at the end
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of iteration i:

∑
unhappy x∈Pi

dist(x, Fi) ≤ ε
∑

happy x∈Pi

dist(x, Fi)

2
.(2)

As part of our proof of Theorem 10, we will prove a series of local claims concerning
individual iterations. The first states that if an iteration i ends well, the extra cost
of points in Pi satisfies (1). Later we will argue that we expect all iterations to end
well.

Claim 10.2. If iteration i ends well,
∑

x∈Pi
dist(xOPT , (xOPT )Fi) ≤

∑
x∈Pi

((1+
ε)dist(x,OPT )).

Proof. Following our discussion of happy and unhappy points, it suffices to show
that ∑

unhappy x∈Pi

dist(x, Fi) ≤ ε
∑
x∈Pi

dist(x,OPT ).

However, if x is happy, we have

dist(x, Fi) ≤ dist(x, xOPT ) + dist(xOPT , (xOPT )F ) ≤ 2 dist(x,OPT ).

Thus from (2) we get

∑
unhappy x∈Pi

dist(x, Fi) ≤ ε
∑

happy x∈Pi

dist(x, Fi)

2

≤ ε
∑

happy x∈Pi

dist(x,OPT )

≤ ε
∑
x∈Pi

dist(x,OPT ),

as desired.
The next two claims concern the probability that an iteration i ends well.
Claim 10.3. The expected fraction of unhappy points in Ri−1 after step D.2.1 is

≤ ε/(21 log n).
Proof. Consider a point x ∈ Ri−1 which was not happy before step D.2.1,

and let C be the remaining part of the OPT -cluster containing x; that is, C =
cluster(xOPT , OPT ) ∩Ri−1.

Suppose there are q points in C, including x, that are as close to xOPT as x. Now,
the probability that x is not turned happy by step D.2.1 is (1 − q/|Ri|)21k(log n)/ε <
e−q21k(log n)/(ε|Ri−1|). Thus, no matter the size of C, the expected number of un-
happy points in C is at most

∑∞
q=1 e

−q21k(log n)/(ε|R|) <
∫∞
x=0

e−x21k(log n)/(ε|Ri−1|)dx <
ε|Ri−1|/(21k(log n)), so with k clusters, the expected fraction of unhappy elements in
Ri−1 is at most ε/(21 log n).

Claim 10.4. Let u be the fraction of unhappy points in Ri−1 after step D.2.1.
Then the probability that iteration i does not end well is at most u(2 + 2/ε).

Proof. Let the points in Ri−1 be sorted in order of increasing distance to F ,
resolving ties so that unhappy points come before happy points. Traverse Ri−1 and
let each unhappy point grab the next �2/ε� happy points, if any, that are not grabbed
yet. Now, if point t from step D.2.3 is neither unhappy nor grabbed, then each
unhappy point in Pi has all its �2/ε� grabbed points in Pi, and hence (2) is satisfied.
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The fraction of points that are unhappy or grabbed by an unhappy point is at most
u(�2/ε� + 1).

Claim 10.5. The probability that iteration i does not end well is at most 1/(7 log n).
Proof. By Claim 10.4, the probability that iteration i does not end well is at most

the sum over each possible fraction u of unhappy points in Ri of u(2 + 2/ε) times the
probability of the fraction u, but this equals E[u](2 + 2/ε). Moreover, by Claim 10.3,
E[u] ≤ ε/(21 log n), so we conclude that the probability of not ending well is bounded
by (ε/(21 log n))(2+2/ε) ≤ (2+2ε)/(21 log n) < 1/(7 log n). The last inequality used
the fact that ε < 0.5.

We have at most 3 log n iterations, and so by Claim 10.5, the probability that all
iterations end well is at least

1 − (3 log n)

(7 log n)
=

4

7
.

Combining this with Claim 10.1, we conclude that the probability that all iterations
end well and that we finish with R = R� = ∅ is at least 4/7 − o(1) > 1/2. We now
assume this combination of events.

Since we finish with R = R� = ∅, the Pi partition P . Then (1) follows directly
from Claim 10.2. This completes the proof of Theorem 10.

Often we prefer a high probability result, as obtained by the following algorithm.
Algorithm E. Given a metric (P,dist), the algorithm constructs a set F of

O(k log4 n) facilities which, w.h.p., contains a factor 2 + o(1) approximation to the
k-median problem.
E.1. for i = 1, . . . , �log3/2 n�,
E.1.1. with ε = 1/

√
log n, apply Algorithm D to (P,dist), obtaining a set Fi

E.2. return F =
⋃

i Fi

Theorem 11. Algorithm E involves O(log2.5 n) computations of nearest neigh-
bors in sets of size O(k log1.5 n), and the final set F has size O(k log4 n). Moreover,
w.h.p., k-mediancost⊆F ≤ (2 + o(1)) × k-mediancost. The 2 + o(1) approximation
factor holds even if the optimal solution is allowed to place facilities outside P .

Proof. By Theorem 10, with probability at least 1 − 1/2log3/2 n = 1 − 1/nω(1),
there is some set Fi with k-mediancost⊆Fi ≤ (2+1/

√
log n)×k-mediancost. Now the

result follows because k-mediancost⊆F ≤ k-mediancost⊆Fi for all i.

5.3. Distance oracles, external memory, and the streaming model. The
simple sampling above has several interesting consequences for distance oracles, with
or without memory restrictions.

Proposition 12. For a metric (P,dist), w.h.p. we can find a factor (12 + o(1))
approximation to the k-median problem, using Õ(kn) distance queries and compu-
tation time, and Õ(n) space. The 12 + o(1) approximation factor holds even if the
optimal solution is allowed to place facilities outside P .

Proof. By Theorem 11, we spend Õ(kn) distance queries on finding a set of Õ(k)
relevant facility locations, and then the algorithm from [19] allows us to solve the
k-median problem in Õ(kn) time and space. To get the Õ(n) space, we actually need
the full power of the techniques presented in this paper, as stated in Theorem 32.

The previous Õ(kn) algorithm by Guha et al. [12] had an approximation factor
of 300 + o(1) for unbounded k and 80 + o(1) if k = O(

√
n).

We will now demonstrate that our techniques give interesting results for various
kinds of restricted memory, including the streaming model which was the target of [12].
We will use the following generic algorithm.
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Algorithm F. Generic k-median algorithm for metric (P,dist), which provides
a factor 38 + o(1) approximation w.h.p.

F.1. Compute the set F using Algorithm E.
F.2. Construct the multiset PF = {xF }x∈P .
F.3. Apply Proposition 12 to PF and return the found solution S.

Above PF is the set F , but where each f ∈ F has a multiplicity or weight equal
to the number of points x ∈ P with xF = f . We do not remember which points in P
gave rise to the multiplicities, so PF is stored in O(|F |) = Õ(k) space. The set F will
be computed using some variant of Algorithm D. We place F in internal memory, and
then we compute PF by a linear scan of P , taking each point x ∈ P , an identifying
xF in O(|F |) = Õ(k) time. Hence, given F , the construction of PF takes Õ(kn) time
and Õ(k) space. Finally Proposition 12 computes S for PF internally in Õ(k2) time
and Õ(k) space.

Lemma 13. Algorithm F is a factor 38 + o(1) approximation to the k-median
problem for P .

Proof. Let OPT be the optimal solution to the original k-median problem
over P . Now, considering OPT as a solution for PF , the cost is costPF (OPT ) ≤∑

x∈P dist(xF , xOPT ) ≤
∑

x∈P dist(xF , x)+
∑

x∈P dist(x, xOPT ) ≤ k-mediancost⊆F
P +

costP (OPT ) ≤ (3 + o(1))costP (OPT ). We now apply Proposition 12 to PF , getting
a solution S with costPF (S) ≤ (12 + o(1))costPF (OPT ) ≤ (36 + o(1))cost(OPT ). Fi-
nally, costP (S) ≤

∑
x∈P dist(x, xF )+

∑
x∈P dist(xF , (xF )S) = costP (F )+costPF (S) ≤

(38 + o(1))cost(OPT ).

Note even if OPT ⊆ P , we may have OPT 
⊆ F , and hence it is important that
Proposition 12 does not require that OPT be a subset of the point set.

Our first restricted memory model is external memory which is divided into blocks.
Instead of counting individual accesses to external memory cells, we count the number
of read and writes of blocks.

Proposition 14. W.h.p., in the external memory model with block-size B and
access to a distance oracle, if n points are stored in n/B blocks, we can find a factor
38 + o(1) approximation to the k-median problem using Õ(kn) time and distance
queries, Õ(k) internal space, and Õ(n/B) blocks and block operations.

Proof. We simply note that Algorithm D fits perfectly with external memory. In
each iteration, we first scan the current set R, picking out the new points for S and
the point t. Both S and t are stored in internal memory. We now make another scan
creating the new set R′ with the points from R further from S than t. Here both
R and R′ are packed in blocks, so the iteration takes O(|R|/B) block operations. In
expectation R decreases by a constant factor in each iteration, and w.h.p., the total
number of blocks and block operations is O(n/B).

Next, we consider a model where we can modify only our internal space, but
where we have arbitrary access to the input. This is the model in which log-space is
defined as having logarithmic internal space.

Proposition 15. In Proposition 12, the internal space can be reduced to Õ(k)
at the expense of increasing the approximation factor to 38 + o(1).

Proof. First, we assume that we have access to a random permutation of the
points in P . We can then implement Algorithm D in a single scan of P . From each
iteration j, we will store the set Tj of new points picked for S, the threshold point
tj , and the distance δj from tj to Sj =

⋃
i≤j Ti. Now, iteration j is implemented

as follows. We continue our scanning of the points from P from where we stopped
in the last iteration. A point x is distant if for each i < j, dist(x, Si) ≤ δi. We
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now build Tj from the next k/ε log2 n distant points, and the following distant point
is our new threshold point tj . Finally, we compute δj = dist(tj , Sj). The distant
points are exactly the points removed from R by Algorithm D, so this is just a new
implementation.

To check whether a point x is distant, we do as follows. First we set d := 0. Then,
for : i = 1, . . . , j − 1, we set d := min{d, dist(x, Ti)}, and if d ≤ δi, we conclude that
x is not distant.

In case we do not have access to a random permutation, then we pick O(n log n)
points randomly from P , thus making sure that all points are picked eventually. We
note that a point will not be distant the second time it is picked, so we do not need
to worry about the repetitions.

In [12], the focus was on the streaming model, where points are stored in a read-
only stream that can only be read sequentially from one end to the other, having
only limited internal memory. The stream could, for example, be a tape. The main
performance measure is the number of times we read over the tape. The main result
of [12] is that with Õ(kn1/�) internal memory, we can find a 2O(�) approximation for the
k-median problem reading the stream once using Õ(kn) distance queries and internal
computation time. Our sampling can directly improve and simplify the techniques
from [12]. Their essential step is that they take a set X ⊆ P , |X| � k, points
and find a set F of roughly k facilities such that if OPT is the optimal k-median
solution, the cost of assigning the points in X to F is a constant factor from the
cost of assigning the points in X to OPT . For this step they use a combination of
techniques from [1, 15, 19], and the exact approximation factor is unclear but appears
to be large. However, the sampling technique of Theorem 11 does this job directly,
with a near-optimal approximation factor of 2 + o(1).

More interestingly, we can replace the exponential factor 2O(�) with a constant,
and instead just pay a linear factor O(�) in time.

Proposition 16. W.h.p., in the distance oracle streaming model, with O(kn1/�)
internal memory, we can find a 38 + o(1) approximation for the k-median problem
reading the stream O(�) times using Õ(kn) distance queries and internal computation
time.

Proof. We are going to emulate the proof of Proposition 15. Each “streaming
round” will correspond to a number of iterations of Algorithm D. In each streaming
round we first pick a random set X of O(kn1/�) points from P that are still distant. To
do this, we first make one scan to count the number of distant points. We then select
O(kn1/�) random indices of distant points, and finally, we scan P again, picking out
the indexed points. We now continue with the iterations of Algorithm D, as described
in the proof of Proposition 15 but taking the random points from X. Since we know
that we end up picking only Õ(k) facilities for S, in order to run out of points in
X, we must be skipping all but a fraction Õ(k)/O(kn1/�) = Õ(1/n�) of the points.
Since X is randomly chosen from points distant at the start of the streaming round,
we conclude w.h.p. that the fraction of distant points has dropped by a factor Ω̃(n�).
Hence there are only O(�) streaming rounds.

5.4. Reducing to k+k/ log2 n facilities. In this section, we will show that we

can get down from the k logO(1) n potential facilities from Theorem 11 to a solution S
with k+k/ log2 n facilities. We wish to apply the techniques of Jain and Vazirani [19],
but these techniques are quoted only as working with graphs satisfying the triangle
inequality. More precisely, let F be the set of potential facilities. They assume all
edges in F × P , and that each edge (a, x) ∈ F × P has length �(a, x) = dist(a, x). If
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|F | = logω(1) n, this is too much for our time bounds.
We will now consider what happens when the algorithm from [19] is applied when

G does not satisfy the triangle inequality. Define �-cost(S) =
∑

x∈P �(x, xS). Here
�(x, xS) = ∞ if (x, xS) is not an edge in G. What the algorithm from [19] really finds
is a k-median S ⊆ F with cost(S) ≤ 6 × k-median-�-cost⊆F . The point is that the
dual variables providing the lower bound in [19] do not require the triangle inequality.
The triangle inequality is used only in bounding the gap between the primal solution
and the dual variables.

Concerning speed, the algorithm in [19] works in Õ(m) time. Here we use the
randomized rounding from [19, section 3.2]. For that rounding, we have two sets A
and B of facilities, and for each a ∈ A, we need to find a nearest facility aB ∈ B, but
by Observation 1, this is done in Õ(m) time. Because of the randomization, the cost
is only expected.

Theorem 17. In Õ(m) time, we can find S ⊆ F , |S| = k, with an expected cost
of cost(S) ≤ 6 × k-median-�-cost⊆F .

To apply this theorem, we construct a graph G� with Õ(n) edges (v, w), each

with �(v, w) = dist(v, w), and with k�-median-�-cost
⊆F
G� = O(k-mediancost⊆F ), where

k� = k + k log2 n. Applying Theorem 17 then gives us a k�-median S ⊆ F with
cost(S) ≤ costG�(S) = O(k-mediancost⊆F ).

The construction of G� based on F is rather simple. Set d = log3 n|F |/k =

logO(1) n. For each point x ∈ P , we include an edge to each of the d nearest neighbors
in F .

Lemma 18. The graph G� has (k + k/ log2 n)-median S ⊆ F with �-cost(S) ≤
k-mediancost⊆F .

Proof. All we need is to show the existence of a set D ⊆ F of size k/ log2 n which
dominates in the sense that each x, xD is one of its d nearest neighbors. We then set
S = OPT ∪D, where OPT is the optimal solution. If xOPT is one of the d nearest
neighbors in F , xS = xOPT . Otherwise, xS = xD and then �(x, xD) ≤ dist(x,OPT ),
so �-cost(S) ≤ cost(OPT ).

To show the existence of D, we just pick D randomly. For each x ∈ P , the prob-
ability that none of its d nearest neighbors are picked is ≤ (1− |D|/|F |)d < e− logn <
1/n, so there is a positive probability that this does not happen for any x.

For the construction of G, we need the following result.
Lemma 19. W.h.p., using O(d log n) all points nearest marked neighbor compu-

tations, we can find the d nearest neighbors in F to each point x.
Proof. We pick each a ∈ F with probability 1/(2d) for a set Q of marked neigh-

bors. For each x ∈ P and each i ≤ d, the probability that xQ is the ith nearest
neighbor in F is ≥ (1 − 1/(2d))i−1/2d ≥ 1/(4d). Hence, in O(d log n) all points
nearest marked neighbor computations, we can find the d nearest neighbors of all x
w.h.p.

Theorem 20. With probability 1 − O(1/n), in Õ(m) time, we can construct a
k + k/ log2 n-median S with cost(S) ≤ (12 + o(1)) × k-mediancost.

Proof. First using Theorem 11, with probability at least 1/2, we identify a set F of

size k logO(1) n with k-mediancost⊆F ≤ (2+o(1))k-mediancost. Then, using the above
lemmas, we construct G� with (k + k/ log2 n)-median-�-costG� ≤ k-mediancost⊆F and
finally, we apply Theorem 17 to G� to get a set S, |S| = k+k/ log2 n, with an expected
cost of (12 + o(1)) × k-mediancost.

5.5. Recursing down to k facilities. Let OPT denote some optimal solution
to the k-median problem. Our starting point is a solution S, as from Theorem 20, of
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satisfactory cost, that is, cost(S) = O(OPT ), but which uses q = k/ log2 n too many
facilities. We will then first try greedily to remove q facilities from S. If this cannot
be done at cost o(cost(S)), we will be able to fix many universally good facilities and
then recurse.

5.6. Some basic definitions. We will use α = ω(1) ∪ logo(1)(n) to denote a
value that grows slowly with n, e.g., like an inverse of Ackermann’s function.

For our presentation, it is useful for each a ∈ S to define clustercost(a, S) =∑
x∈cluster(a,S) dist(x, a). Thus, cost(S) =

∑
a∈S clustercost(a, S). Also, we define

δa,S = dist(a, S \ {a}) and shiftcost(a, S) = |cluster(a, S)| × δa,S . Note that if b
is nearest to a in S, shiftcost(a, S) is a trivial upper-bound on the increase in cost
encountered by reassigning all x ∈ cluster(x, S) to b; that is, for x ∈ cluster(a, S),
dist(x, b) − dist(x, a) ≤ dist(a, b) = δa,S .

Let a1, . . . , a|S| be an enumeration of the facilities in S in order of nondecreasing
shiftcost(·, S).

5.7. Greedy elimination of facilities. We will now present the following rou-
tine.

Greedy(q, S) eliminates q terminals from S, increasing the cost by greedycost(q, S)
≤

∑
i≤2q shiftcost(ai, S).

We consider Greedy successful if greedycost(q, S) ≤ cost(S)/α. Then
cost(Greedy(q, S)) = (1 + o(1))cost(S), and we return Greedy(q, S).

To implement Greedy, we will use the following claim.
Lemma 21. Suppose that each element a in A has at most one successor s(a) ∈ A.

Then, in O(|A|) time, we can mark at least |A|/2 elements so that if a is marked,
s(a) is unmarked.

Proof. Let P (a) = {b ∈ A : s(b) = a}. First, we mark all a with P (a) = ∅. Next,
repeatedly, we mark facilities a ∈ A such that |P (a)| = 1, protecting |P (a)| from being
marked in a later round. To see that we do not run out of elements, note that on the
average, |P (a)| ≤ 1. Thus, if there are i elements with P (a) = ∅, there are at most i
elements with |P (a)| > 1. Each marking of an element a with |P (a)| = 1 protects one
element from being marked, so we will mark at least half of these elements, leading
to a total marking of at least i + (|A| − 2i)/2 = |A|/2 elements.

To implement Greedy, we apply Lemma 21 with A = {a1, . . . , a2q} and s(a)
denoting the facility in A nearest to a. We can then eliminate any q marked facilities.

5.8. When Greedy does not work. We will now start studying properties of
our solution when Greedy does not report success, that is, when greedycost(q, S) >
cost(S)/α. We say that a ∈ S is concentrated if clustercost(a, S) ≤ shiftcost(a, S)/α.

Lemma 22. If there are 2α2q facilities in S that are not concentrated, Greedy(q, S)
reports success.

Proof. Let A be the set of facilities in S that are not concentrated. Then
greedycost(q, S) ≤

∑
i≤2q shiftcost(ai, S) ≤ 2q

|A|
∑

a∈A shiftcost(a, S) <

α−2
∑

a∈A(αclustercost(a, S)) ≤ cost(S)/α.
Note that if y ∈ P \ cluster(a, S), dist(y, a) ≥ 0.5 δa,S . Define ∆(a, S) = {x ∈

P : dist(x, a) ≤ (0.25 − 1/α)δa,S}. It is easy to see that if a is concentrated, most
facilities in cluster(a, S) are inside ∆(a, S).

We say that a solution T hits a ∈ S if T ∩ ∆(a, S) 
= ∅; otherwise T misses a.
Observation 23. If T misses a ∈ S, then

∑
x∈cluster(a,S) dist(x, T ) ≥∑

x∈cluster(a,S)(dist(a, T )−dist(x, a)) ≥ (0.25−1/α) shiftcost(a, S)−clustercost(a, S),

which is ≥ (0.25 − 2/α)shiftcost(a, S) if a is concentrated.
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As a consequence of Observation 23, if a is concentrated but missed by T and we
add a to T , we reduce the cost by (0.25 − 3/α) shiftcost(a, S).

Lemma 24. If T is a solution with cost(T ) = O(cost(OPT )) and T misses 3α2q
facilities in S, Greedy(q, S) reports success.

Proof. Among the 3α2q misses, we may assume that there are ≥ α2q concentrated
facilities, for otherwise Greedy(S) reports success by Lemma 22.

Let M ⊆ S be the set of ≥ α2q concentrated facilities missed by T . By Observa-
tion 23, cost(T ) ≥

∑
a∈M

∑
x∈cluster(a,S) dist(x, T ) =

∑
a∈M (0.25−2/α) shiftcost(a, S)

≥ (0.25−2/α)|M |
2q

∑
i≤2q shiftcost(ai, S) ≥ Ω(α2)greedycost(q, S). Now, cost(OPT ) ≤

cost(S)+greedycost(q, S) = cost(S)+ o(cost(T )/α) = cost(S)+ o(OPT/α), and thus
greedycost(q, S) = o(cost(S)/α).

5.9. The basic recursion. As hinted at by Lemma 24, if Greedy(q, S) is not
successful, no good solution can be too far away from our current solution S. We will
exploit this recursively by fixing most of the facilities with high shiftcost.

In order to code the fixing of facilities, we introduce the notion of a free facility,
which is a facility which is automatically included in any k-median solution, but which
does not count as one of the k medians. In addition, we want to encode a penalty for
not using a fixed facility anyway. This is done by introducing a single point s whose
only link is to a free facility f . Thus the assignment cost of s is �(s, f) if s is not
picked as a facility, and 0 otherwise.

We are now ready to describe the basic mechanics of our general recursion, but
ignoring that we may have free facilities and singles in our own input.

Algorithm G. Solves k-median problem assuming no free facilities or singles in
input.

G.1. Construct S ⊆ P , |S| ≤ k + q, q = k/ log2 n with cost(S) = O(k-mediancost)
(cf. sections 5.2 and 5.4).

G.2. Let a1, . . . , a|S| be the facilities in S in order of increasing shiftcost (cf. sec-
tion 5.7).

G.3. If greedycost(q, S) ≤ cost(S)/α (cf. section 5.7), return Greedy(q, S) and exit
the recursion.

G.4. Produce a modified graph G′, fixing more than half the facilities as follows.
G.4.1. Set U = S \ (NOTCONC ∪ SMALLSHIFT ∪ LARGE), where

NOTCONC is the set of nonconcentrated facilities, SMALLSHIFT =
{a1, . . . , ar} with r = α4q log n, and LARGE = {a ∈ S : clustercost(a, S)

≥ cost(S)
(α3q logn)}.

Define smallshiftcost = shiftcost(ar, S).
G.4.2. Using the technique from [18] (cf. the appendix), for each a ∈ U find a

factor (1 + 1/α) approximate 1-median a′ for ∆(a, S). If a is a better
1-median for ∆(a, S) than a′, set a′ := a. We are going to use a′ in our
final solution.
Note that for distances over ∆(a, S) we need to consider only paths
inside cluster(a, S). Hence our approximate 1-medians are found based
on disjoint induced subgraphs, so the total running time is Õ(m).

G.4.3. Create a free facility f with a zero length edge to each a′, a ∈ U . Reduce
all distances from f by a factor 2; that is, first compute all shortest paths
from f , and second add an edge to each vertex of length half the found
distance.

G.4.4. Introduce a set AUX of pmax = 3α2q singles, each connected to f by an
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edge of length (0.25 − 2.5/α)smallshiftcost.
G.4.5. Set k′ := k − |U | + pmax. Since q = k/ log2 n, k′ = qαO(1) log n = o(k).

In section 5.10 it will be shown that the modified graph G′ admits a k′-median
at cost (1 + o(1/ log n)) times the minimal cost of a k-median for G.

G.5. Recursively, find a k′-median S′ for the modified graph.
G.6. Using the knowledge of S, we modify S′ into a k-median solution S∗ for the

original graph G, as follows.
G.6.1. Set S′′ = (S′ ∪ {a′}a∈U ) \ ({f} ∪ AUX). All points that were assigned

to f are now assigned to their nearest facility a′.
Then S′′ ⊆ P and |S′′| = k + p, where p = |AUX \ S′|.

G.6.2. Reduce S′′ to S∗ by removal of p facilities from
⋃

a∈SMALLSHIFT ∆(a, S)
as described in section 5.11, at cost p(2.5 − 2/α) smallshiftcost+
o(cost(S)/ log n).

G.7. Return S∗.
To understand the basics of the above algorithm, first note that we lose a factor

(1+o(1/ log n)) both in step G.4 and in step G.6.2. However, the recursion has depth
o(log k), so the total loss due to these factors is (1 + o(1/ log n))o(log k) = (1 + o(1)).

Now, since we end up using all the facilities a′, the reader may wonder why we
even bother introducing the singles in AUX that we eliminate anyway. The direct
reason is that if we did not have any singles in AUX and just sought a k−|U | median
recursively, then an optimal solution for the modified solution could be a constant
factor worse than that of the original optimal solution, and hence we would lose a
constant factor in each recursive step. Another obstacle is that for step G.6.2 we
actually use the knowledge of S to deal with the singles, and there is no obvious way
of including this knowledge recursively.

As the recursion stands, our main loss is when we return from the recursion and
modify S′ into S∗. In step G.6.1, each x previously assigned to f gets assigned to a
facility a′ that is twice as far away. However, for each point x, such a reassignment
will happen only once throughout the recursion. Similarly, for the singles, we lose a
factor φ = (2.5 − 2/α)/(0.25 − 2.5/α) = 10 + o(1) in cost when they get eliminated,
and again this happens only once for each single.

5.10. Cheap fixing of facilities. In this section, we will show the following.
Theorem 25. For step G.4, there is a k′-median OPT ′ for G′ with costG′(OPT ′)

≤ (1 + o(1/(α log n)))cost(OPT ), where OPT is an optimal k-median for G.
Proof. Let p be the number of facilities in S not hit by OPT . By Lemma 24

with T = OPT , OPT misses at most 3α2q = pmax facilities. We then obtain OPT ′

from OPT by first deleting all facilities in
⋃

a∈U ∆(a, S), thus deleting at least |U |−p
facilities from OPT ′. Second we add |AUX| − p facilities from AUX. As a result,
OPT ′ gets at most k − (|U | − p) + |AUX| − p = k′ nonfree facilities, as desired.

We will now reassign points from OPT to OPT ′, attributing the reassignments,
and their costs, to the different a ∈ U :

• If a is not hit by OPT , we reassign each x ∈ ∆(a, S) to f . Further, we assign
one point as in AUX \OPT ′ to f , at cost (0.25 − 2.5/α)smallshiftcost.

• If a is hit by OPT , all points x with xOPT ∈ ∆(a, S) or x ∈ ∆(a, S) are
reassigned to f .

Before analyzing the cost of the reassignments, we need some simple observations.
(This is all part of our proof of Theorem 25.) First, as a general strengthening of
Observation 23, we have the next claim.

Claim 25.1. If dist(a, T ) ≥ β δa,S and β ≤ 0.25 − 1/α,
∑

x∈∆(a,S) dist(x, T ) ≥
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β shiftcost(a, S) − clustercost(a, S).
Proof. We see

∑
x∈∆(a,S) dist(x, T ) ≥

∑
x∈∆(a,S)(dist(a, T ) − dist(a, x)) ≥∑

x∈∆(a,S)(β δa,S−dist(a, x)) ≥
∑

x∈cluster(a,S)(β δa,S−dist(a, x)) ≥ β shiftcost(a, S)−
clustercost(a, S). In the third inequality above we used that β δa,S −dist(a, x) is neg-
ative for x 
∈ ∆(a, S).

Claim 25.2. dist(a, a′) ≤ 2δa,S/α.
Proof. If dist(a, a′) > 2δa,S/α, by Claim 25.1, with β = 2

α ,
∑

x∈∆(a,S) dist(x, a′) >

2 shiftcost(a, S)/α − clustercost(a, S) ≥ clustercost(a, S) ≥
∑

x∈∆(a,S) dist(x, a),

contradicting that a′ is at least as good a median for ∆(a, S) as a.
Claim 25.3.

∑
x∈cluster(a,S) distG′(x, f) ≤ clustercost(a, S)/(2 − o(1)).

Proof. First note that
∑

x∈∆(a,S) distG′(x, f) =
∑

x∈∆(a,S) dist(x, a′)/2 ≤∑
x∈∆(a,S) dist(x, a)/2. However, if x ∈ cluster(a, S) \ ∆(a, S), using Claim 25.2,

dist(x, a′) ≤ dist(x, a)+dist(a, a′) ≤ dist(x, a)+2δa,S/α ≤ (1+o(1))dist(x, a). Hence
distG′(x, f) ≤ dist(x, a′)/2 ≤ dist(x, a)/(2 − o(1)).

We are now ready to account for the change in cost due to the reassignments in
connection with each a ∈ U .

Suppose that OPT did not hit a. First we have an added increase of
(0.25 − 2.5/α) smallshiftcost for assigning as to f . The only other points that get
reassigned are points in ∆(a, S). By Claim 25.1 with β = 0.25 − 1/α, OPT paid∑

x∈∆(a,S) dist(x,OPT ) ≥ (0.25−1/α) shiftcost(a, S)−clustercost(a, S). However, we

only pay
∑

x∈∆(a,S) distG′(x, f) ≤
∑

x∈∆(a,S) dist(x, a)/2 ≤ clustercost(a, S)/2, so the

reassignments to f buys us at least (0.25−1/α) shiftcost(a, S)−1.5clustercost(a, S) ≥
(0.25−2.5/α) shiftcost(a, S) ≥ (0.25−2.5/α) smallshiftcost, matching the new assign-
ment cost for as.

Suppose that OPT did hit a. First, we argue that if x 
∈ cluster(a, S), the as-
signment cost for x can only go down. We are reassigning x 
∈ cluster(a, S) only if
xOPT ∈ ∆(a, S).

Claim 25.4. If x 
∈ cluster(a, S) and xOPT ∈ ∆(a, S), distG′(x, f) ≤ dist(x,OPT ).
Proof. Define γ ≥ 0 by dist(x, a) = (0.5+γ)δa,S . Then dist(x,OPT ) ≥ dist(x, a)−

dist(a, xOPT ) ≥ (0.25 + γ + 1/α)δa,S , and using Claim 25.2, dist(x, a′) ≤ dist(x, a) +
dist(a, a′) ≤ (0.5 + γ + 2/α)δa,S . Hence dist(x, f) = dist(x, a′)/2 ≤ dist(x, a).

Thus we do well on all x 
∈ cluster(a, S). To complete the proof, we further divide
in cases depending on whether or not OPT has exactly one facility in cluster(a, S).

Suppose that OPT has one facility in cluster(a, S). Since OPT hits a, this facility
is aOPT ∈ ∆(a, S). Having dealt with x 
∈ cluster(a, S), it suffices to demonstrate an
improvement over x ∈ cluster(a, S). First we show we are done if aOPT is not close
to a.

Claim 25.5. If dist(a, aOPT ) > 2δa,S/α, then
∑

x∈cluster(a,S) distG′(x, f) <∑
x∈cluster(a,S) dist(x,OPT ).

Proof. By Claim 25.1 with β = 2/α, we have
∑

x∈cluster(a,S) dist(x,OPT ) ≥∑
x∈∆(a,S) dist(x,OPT ) > 2 shiftcost(a, S)/α− clustercost(a, S). However, by Claim

25.3, our cost is
∑

x∈cluster(a,S) distG′(x,OPT ) < clustercost(a, S), and since a is

concentrated, shiftcost(a, S)/α ≥ clustercost(a, S).
Claim 25.6. If dist(a, aOPT ) ≤ 2δa,S/α, x 
∈ ∆(a, S), and xOPT = aOPT , then

distG′((x, f) ≤ dist(x, aOPT )/(2 − o(1)).
Proof. dist(x, aOPT ) ≥ dist(x, a) − dist(a, aOPT ) ≥ dist(x, a) − 2δa,S/α. On the

other hand, by Claim 25.2, distG′(x, f) ≤ (dist(x, a) + dist(a, a′))/2 ≤ dist(x, a)/2 +
δa,S/α. Since dist(x, a) = Ω(δa,S), the claim follows.
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In order to deal with x ∈ ∆(a, S), we first prove the next claim.

Claim 25.7. If dist(a, aOPT ) ≤ 2δa,S/α and x ∈ ∆(a, S), then dist(x,OPT ) ≥
dist(x, aOPT ).

Proof. If xOPT 
= aOPT , xOPT 
∈ cluster(a, S), so dist(x,OPT ) ≥ (0.25+1/α)δa,S .
On the other hand, dist(x, aOPT ) ≤ dist(x, a) + dist(a, aOPT ) ≤ (0.25 − 1/α +
2/α)δa,S .

Claim 25.8. If dist(a, aOPT ) ≤ 2δa,S/α, then
∑

x∈∆(a,S) distG′(x, f) ≤∑
x∈∆(a,S) dist(x,OPT ).

Proof. By Claim 25.7,
∑

x∈∆(a,S) dist(x,OPT ) ≥
∑

x∈∆(a,S) dist(x, aOPT ) ≥
1-mediancost∆(a,S) ≥ (

∑
x∈∆(a,S) dist(x, a′))/(1 + 1/α) ≥ (2 − o(1))·∑

x∈∆(a,S) distG′(x, f).

Thus, if |OPT ∩ ∆(a, S)| = 1, the reassignments decrease the cost, by Claims
25.4, 25.5, 25.6, and 25.8.

Finally, suppose that |OPT ∩ cluster(a, S)| > 1. By Claim 25.4 we can restrict
our attention to x ∈ cluster(a, S). By Claim 25.3,

∑
x∈cluster(a,S) distG′(x, f) <

clustercost(a, S). Since a 
∈ LARGE, this cost is bounded by cost(S)/(qα3 log n).
However, by Lemma 24, OPT misses ≤ 3α2q facilities in S, and hence OPT can
make multiple hits of at most (3α2q − q) facilities in S, so our total cost encoun-
tered in this case is o(cost(S)/(α log n)), as claimed. This completes the proof of
Theorem 25.

5.11. Eliminating facilities with small shiftcost.

Theorem 26. Assume that Greedy(q, S) is not successful and that we are given
a k-median with cost(T ) = O(k-mediancost). We can then free p ≤ pmax facili-
ties from T ∩

⋃
a∈SMALLSHIFT ∆(a, S), increasing the cost of T by at most (2.5 −

2/α)p smallshiftcost + o(cost(T )/(α log n)).

Proof. We will identify a set D ⊆ SMALLSHIFT , |D| = p, of facilities from
S that are all hit by T , and let the modified set be T ′ = T \

⋃
a∈D ∆(a, S). Then

|T ′| ≤ |T | − p, as desired.

For the analysis of the cost increase, for each a ∈ D, we will reassign all x
with xT ∈ ∆(a, S) to xT ′

= bT , where b is the nearest facility in S to a. Hence
D needs to be selected so that bT 
∈ ∆(c, S) for any c ∈ D. We will then prove
Theorem 26 by showing that the reassignment cost over all x with xT ∈ ∆(a, S) is
(2.5 − 2/α)shiftcost(a, S) + o(cost(T )/(αp log n)).

More precisely, the set D will be selected subject to the following conditions:

(i) c 
∈ D if there is a b ∈ S not hit by T with bT ∈ ∆(c, S). By Lemma 24,
there are ≤ 3α2q facilities b ∈ S not hit by T , so this prevents only ≤ 3α2q
facilities from entering D.

(ii) a 
∈ D if
∑

xT∈∆(a,S),x �∈cluster(b,x) dist(x, T ) ≥ 4 cost(T )/(α2p log n). For each

x, there is at most one a ∈ S with xT ∈ ∆(a, S), and thus∑
a∈S

∑
xT∈∆(a,S),x �∈cluster(a,S) dist(x, T ) ≤ cost(T ). This prevents at most

α2p log n/4 ≤ 3
4α

4q log n facilities from entering D.
(iii) b 
∈ D if b is hit by T and b is nearest in S to some a ∈ D.

Consider some a ∈ D with b nearest to a in S. We want to argue that bT ∈ T ′, and
hence that bT 
∈ ∆(c, S) for any c ∈ D. If b is not hit by T , this follows immediately
from (i). However, if b is hit, bT ∈ ∆(b, S), and by (iii), b 
∈ D.

As mentioned above, we are going to reassign all x with xT ∈ ∆(a, S) to bT . Then
the cost increase for x is bounded by dist(xT , bT ) ≤ 2 dist(xT , b) ≤ 2 (dist(xT , a) +
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dist(a, b)) ≤ (2.5 − 2/α) δa,S . Hence, the cost increase over all x ∈ cluster(a, S) is at
most

∑
x∈cluster(a,S)((2.5 − 2/α) δa,S) ≤ (2.5 − 2/α) shiftcost(a, S).

Now, consider x 
∈ cluster(a, S). Then dist(x, xT ) ≥ δa,S/4, so the cost increase
is ≥ (2.5− 2/α) δa,S > 10 dist(x, xT ). Hence by (ii), for each a ∈ D, the cost increase
over all x with xT ∈ ∆(a, S) and x 
∈ cluster(a, x) is at most 40 cost(T )/(α2p log n) =
o(cost(T )/(αp log n).

Thus, the total reassignment cost over all x with xT ∈ ∆(a, S) is at most (2.5 −
2/α) shiftcost(a, S) + o(cost(T )/(αp log n)), as desired.

Our last problem is to construct the set D. As mentioned above, (i) and (ii)
rule out at most 3α2q+ 3

4α
4 log n facilities. Since |SMALLSHIFT | = α4q log n, this

leaves us with a subset A ⊆ SMALLSHIFT of Ω(α4q log n) facilities satisfying (i)
and (ii). By Lemma 21, we can mark at least half the facilities in A so that a is not
marked if it is nearest in S to some marked facility b. Then (iii) is trivially satisfied
by picking D as any set of p ≤ pmax = 3α2q = o(α4q log n) marked facilities from
A.

5.12. The true recursion. In order to deal formally with the loss factors men-
tioned at the end of section 5.9, we need to consider graphs of the type Gc(d), denoting
the graph obtained from G by multiplying the lengths of edges from free facilities by
c if they are to nonsingles and by d if they are to singles. Also, define Gc = Gc(c).

Our recursive solution S to the k-median problem for G with free facilities and
singles will, with probability (1 −O(1/n)), satisfy

costG2(φ)(S) ≤
(

1 +
1

(α log n)

)log k

(1 + ε)12 × k-mediancost,(3)

where φ = (2.5 − 2/α)/(0.25 − 2.5/α) = 10 + o(1) and ε = o(1) is to be deter-
mined. Then the right-hand side reduces to (12+o(1))k-mediancost, and by definition,
cost(S) ≤ costG2(φ)(S), so (3) implies cost(S) ≤ (12 + o(1))k-mediancost.

We now have to modify our basic recursion (cf. Algorithm G) so as to deal with
free facilities and singletons so that we can formally prove (3).

As a very first preliminary step, if there are several free facilities in our input
graph, we contract them into a single free facility fin, where �(fin, x) is the shortest
length of an edge from a free facility to x, and ∞ otherwise.

To implement step G.1, we modify the material from sections 5.2 and 5.4 to prove
the next result.

Theorem 27. In Õ(m) time, with probability 1 − O(1/n), we can construct a
k + k/ log2 n-median S with costG2(φ)(S) ≤ (12 + o(1)) × k-mediancost.

Proof. Concerning the sampling in section 5.2, we simply start Algorithm D
by setting S := {fin}. The algorithm is then run as before except that distances are
computed in G2. For the analysis, we consider all points assigned fin to be happy from
the beginning. We then preserve that distG2(x, S) ≤ 2dist(x,OPT ) for all happy x.

Consequently, the final sampled F will satisfy k-mediancost⊆F
G2 ≤ (2+o(1))cost(OPT ),

as in Theorem 11.
Taking H = G2 as starting point for the techniques in section 5.4, the first step

is to include all links from fin in the graph H� to which we apply the algorithm
from [19]. For the facility location in [19, section 2], we set the cost of fin to 0,
whereas the cost is z for all other points. To prove Theorem 27, we need to show
that singles can be included optimally. For a given z it is optimal to include a single
s linked to free facility f if and only if z ≥ dist(s, f). Hence, we do not pay the
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factor 3 from [19, Lemma 6]. Also, we avoid paying the factor 2 for rounding in
[19, sections 3.3–5] if we make sure that A and B pick the same free facilities. To
achieve this with z1 ≥ z2 as in [19, section 3.3], we note that we can freely choose
whether to include s if dist(ap, f) ∈ [z2, z1], and hence we just need to make the
same choices for A and B. Thus we avoid any penalty for singles. Consequently,
with k� = k + k/ log2 n, we end up with a k�-median S for H with costH1(φ/2)(S) =

(1 + o(1)) max{6, φ/2}k-mediancost⊆F
H = (6 + o(1))k-mediancost⊆F

H . Since H1(φ/2) =
G2(φ), we get costG2(φ)(S) = (2 + o(1))costH1(φ/2)(S) ≤ (12 + o(1))k-mediancost, as
desired.

Concerning shiftcost, we define shiftcost(fin, S) = ∞, coding that fin may not be
eliminated. For each input single facility s, we define shiftcost(s, S) = dist(s, fin)/(0.25−
2.5/α), thus reversing the effect of step G.4.4 from when s was created. Step G.2 uses
this definition of shiftcost for the ordering.

The application of Greedy(q, S) in step G.3 is unchanged, and our success criterion
is still that the cost increase is bounded by cost(S)/α. Then costG2(φ)(Greedy(q, S)) ≤
(1+φ/α)costG2(φ)(S) ≤ (12+ε)k-mediancost with ε = o(1). This defines the ε in (3),
which is hence satisfied if Greedy is successful.

If Greedy was not successful, we need to argue that the analysis from section 5.8
is still valid. All measures are still done in G. The free facility fin does not cause any
problems. For a single facility s, we have cluster(s, S) = ∆(s, S) = {s}, cost(s, S) =
0, and shiftcost(s, S) = dist(s, fin)/(0.25 − 2.5/α), so s is concentrated. The cost
of eliminating s is dist(s, fin). Observation 23 still holds for nonsingles, and for a
single s, we note that if T misses s,

∑
x∈cluster(s,S) dist(x, T ) = dist(s, fin) = (0.25 −

2.5/α)shiftcost(s, S). This bound suffices for our application of Observation 23 in
Lemma 24, giving us our 3α2q bound on the maximal number of missed facilities.

In step G.4.1 we remove fin from U , and in step G.4.3 we only set �(x, f) =
dist(x, a′)/2 if fin is not on all shortest paths from x to a′. Our purpose here is
to avoid reducing previously reduced distances. To see what happens with a single
s ∈ U , first note that step G.4.2 sets s′ = s. Also, since fin is the only neighbor
s, step G.4.3 has no effect. Finally, a new single t ∈ AUX from step G.4.4 has
distG′(t, f) = (0.25 − 2.5/α)smallshiftcost ≤ dist(s, fin).

For step G.4, we need to establish that Theorem 25 remains true, that is there is
a k′-median OPT ′ for G′ with costG′(OPT ′) ≤ (1 + o(1/(α log n)))cost(OPT ). The
construction of OPT ′ is unchanged. Our reasoning above about singles implies that
the cost over cluster(s, S) = {s} goes down from dist(s, fin) to dist(ss, f) ≤ dist(s, fin)
if s 
∈ OPT , and otherwise it stays 0.

For a nonsingle a ∈ U , we need to argue that our analysis is preserved despite the
constraint that we do not set �(x, f) ≤ dist(x, a′)/2 if all shortest paths from x to a′

go through fin. However, a point x is only affected by changes around a if x ∈ ∆(a, S)
or xOPT ∈ ∆(a, S). Hence our analysis is preserved if we can prove the next results.

Lemma 28. If x ∈ ∆(a, S) or xOPT ∈ ∆(a, S), no shortest path from x to a′

passes fin.

Proof. By Claim 25.2, dist(a, a′) ≤ 2δa,S/α.

Now, if x ∈ ∆(a, S), dist(x, a′) ≤ (0.25 − 1/α)δa,S + 2δa,S/α = (0.25 + o(1))δa,S ,
whereas dist(x, fin) ≥ 0.75 δa, so clearly fin cannot be on a shortest path from x to a′.

Suppose xOPT ∈ ∆(a, S) and that a shortest path from x to a′ passs fin. Then
dist(x, xOPT ) ≥ dist(x, a′) − (dist(a′, a) + dist(a, xOPT ) ≥ dist(x, a′) − (2/α + 0.25 −
1/α)δa,S = dist(x, a′) − (0.25 + o(1))δa,S . However, dist(x, fin) ≤ dist(x, a′) −
dist(a′, fin) ≤ dist(x, a′) − (dist(a, fin) − dist(a, a′)) ≤ dist(x, a′) − (1 − 2/α)δa,S .
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Since fin ∈ OPT , this contradicts xOPT nearest to x in OPT .

Thus Theorem 25 remains true, and k′-mediancost(G′) ≤ (1 + o(1/(α log n))) ×
k-mediancost(G).

We now apply the recursive step G.5. Using (3) inductively, we get a k′-median
S′ for G′ with costG′2(φ)(S′) ≤ (1 + 1/(α log n))log k′

(1 + ε)12 × k-mediancost(G′),
which since k′ = o(k) < k/4, is bounded by (1 + 1/(α log n))(log k)−1(1 + ε)12 ×
k-mediancost(G).

Concerning step G.6.1, we want to argue as follows.

Lemma 29. costG2(φ)(S′′) ≤ costG′2(φ)(S′) − p(2.5 − 2/α) smallshiftcost.

Proof. First note that when we delete AUX from G′ and S′, for each of the p fa-
cilities in S′\AUX, we save φ(0.25−2.5/α)smallshiftcost > (2.5−2/α) smallshiftcost,
as desired.

It remains to show that the deletion of fin with incident edges and the inclusion
of {a′}a∈U does not increase our cost. Consider any x. The assignment cost of x
is affected only if either (a) xS′

= f or (b) a shortest path from x to xS′
uses an

edge incident to f . However, the two cases coincide, for clearly (a) implies (b), and
(b) implies that f is as near to x as xS′

, and hence we can assume (a).

By (a), x is not a single, since all singles linked to f have been deleted. On a
shortest path from x to f in G′ it is only the last edge (y, f) that is incident to f .
Then the assignment cost for x was distG′2(φ)(x, y) + 2�(y, f), and distG′2(φ)(x, y) =
distG2(φ)(x, y). If x is now assigned to a′, we know that �(y, f) = dist(y, f)/2. Fur-
ther, the edge (y, f) was created only because a shortest path from x to a′ did not
contain f , and hence dist(y, f) = distG2(φ)(y, f). Thus, the assignment cost for x is
unchanged.

For the final step G.6.2, we want to prove the following version of Theorem 26
dealing with free facilities and singles.

Theorem 30. Assume that Greedy(q, S) is not successful and that we are given
a k-median with cost(T ) = O(k-mediancost). We can then free p ≤ pmax facilities
from T ∩

⋃
a∈SMALLSHIFT ∆(a, S), increasing the cost of T in G2(φ) by at most

(2.5 − 2/α)p smallshiftcost + o(cost(T )/(α log n)).

Proof. Our proof consists of small modifications to the proof of Theorem 26. In
particular, we will try to avoid the high cost of reassigning points to fin in G2(φ).

As in Theorem 26, we will identify a set D ⊆ SMALLSHIFT , |D| = p, of facil-
ities from S that are all hit by T , and let the modified set be T ′ = T \

⋃
a∈D ∆(a, S).

Let a ∈ D, and let b be the nearest facility to a in S. If b = fin, we will reassign
all x with xT ∈ ∆(a, S) to bT = fin, as in Theorem 26. However, if b 
= fin, we will
reassign all x with xT ∈ ∆(a, S) to bT\{fin}. For the latter case, we need to make
sure that bT\{fin} is not deleted. This is done simply by changing (i) to

(i)′ c 
∈ D if there is a b ∈ S not hit by T with bT\{fin}.

Consider some a ∈ D with b nearest to a in S. If b 
= fin, we need to argue that
bT\{fin} ∈ T ′, and hence that bT\{fin} 
∈ ∆(c, S) for any c ∈ D. If b is not hit by T ,
this follows immediately from (i)′. However, if b is hit, then bT\{fin} ∈ ∆(b, S), and
by (iii), b 
∈ D.

Concerning the reassignment costs for points x with xT ∈ ∆(a, S), if a ∈ D
is single, the only such point is a itself, and a will be reassigned to aT

′
= fin

at cost distG2(φ)(a, fin) = φdist(a, fin) = φ(0.25 − 2.5/α) shiftcost(a, S) = (2.5 −
2/α) smallshiftcost.

Now consider a nonsingle a ∈ D, and let x ∈ ∆(a, S). As in the analysis from The-
orem 26, we want to argue that the reassignment cost is at most 2 dist(xT , b), where
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b is nearest to a in S. If b = fin, x is reassigned to b at cost ≤ distG2(φ)dist(xT , b) ≤
2 dist(xT , b), as desired. However, if b 
= fin, dist(b, bT\{fin}) ≤ dist(b, xT ) since xT 
=
fin. Hence the reassignment cost for b 
= fin is ≤ dist(xT , bT\{fin}) ≤ 2 dist(xT , b).

Having established that the reassignment cost is at most 2 dist(xT , b), we can
directly apply the rest of the analysis from Theorem 26, thus showing that our
total cost increase over all x with xT ∈ ∆(a, S) is ≤ (2.5 − 2/α) shiftcost(a, S) +
o(cost(T )/(αp log n), as desired.

The set D is picked as in Theorem 26, noting that singles can always be added
to D since they are never nearest to any other facility than fin.

By Lemma 29 and Theorem 30—with T = S′′ and S∗ the result of the modification—
costG2(φ)(S∗) ≤ o(cost(S′′)/(α log n))+costG′2(φ)(S′), where cost(S′′) < costG′2(φ)(S′).
Further we saw that costG′2(φ)(S′) ≤ (1+1/(α log n))(log k)−1(1+ε)12×k-mediancost(G),
so we conclude that costG2(φ)(S∗) ≤ (1+1/(α log n))log k(1+ ε)12×k-mediancost(G),
thus establishing (3).

As mentioned just below the introduction of (3), it directly implies our main
result, which is the following.

Theorem 31. W.h.p., in Õ(m) time and space, we can find a k-median solution
S with cost(S) ≤ (12 + o(1))k-mediancost.

5.13. The k-median for other metrics. So far, we have considered solving
the k-median problem only for graphs, but our technique is really much more general.
The only way we use the input graph is to compute all points nearest point in sets F
of potential facilities; otherwise, we work internally on auxiliary graphs of size Õ(n).
Thus, we have really proved the following more general result.

Theorem 32. W.h.p., using a polylogarithmic number of all points nearest point
in sets of facilities F ⊆ P of size Õ(k) as well as Õ(n) internal computation time and
space, we can find a k-median solution S with cost(S) ≤ (12 + o(1))k-mediancost.

Clearly Theorem 32 implies Theorem 31 since an all points nearest marked neigh-
bor computation on a graph can be done in linear time using a single source shortest
path computation (cf. Observation 1). However, with a distance oracle, the marked
neighbor computation is trivially done by comparing the distances from each x ∈ P
to each f ∈ F , hence with Õ(kn) distance queries total. Thus Theorem 32 implies
our Õ(kn) time bound with linear space for general distance oracles, as stated ear-
lier in Proposition 12. However, in, say, Hamming space, we can do better using
approximate nearest neighbor queries.

Corollary 33. For points in Hamming space of arbitrary dimension, for 0 <
ε ≤ 1, w.h.p., we can solve the k-median problem within a factor (12 + o(1))/ε in
Õ(nkε) time.

Proof. For 0 < ε ≤ 1, Indyk and Motwani [17], [16, p. 22] have shown that we
can in Õ(|F |1+ε) time and space build a data structure that for an arbitrary point
finds its 1/ε-approximate nearest neighbor in Õ(F |ε) time with constant probability.
The dimension of the space does not matter, as long as we can access each coordinate
of a point in constant time. Using O(log n) such structures, all points in P will find
an (1/ε)-approximate nearest neighbor xF in F w.h.p. Our total running time is
then Õ(nkε). With these (1/ε)-approximate nearest neighbors, we can perform at
least as well as with exact neighbors with all distances multiplied by (1/ε), so our
approximation factor becomes (12 + o(1))/ε.

Since ε = Θ(1), our Hamming space approximation factor is constant, and for
ε < 1, we beat Ω(kn) lower-bound on the time needed for any approximation factor
in the general distance oracle model.
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Appendix. 1-median. We need a result from [18] on approximating 1-medians.
Since [18] may never be published, we present here the relevant result. We prove that
we can find a factor (1 + ε) approximate 1-median by computing all distances from
O((log n)/ε2) random points as follows.

Theorem 34. Let ε ≤ 1. Let Q be a random multisubset of P . Let a ∈ P mini-
mize

∑
x∈Q dist(a, x). Then Pr (cost({a}) ≥ (1 + ε) × 1-mediancost) ≤ ne−ε2|Q|/16.

Proof. Let opt be the optimal 1-median for P , and let b be an arbitrary point in
P with cost({b}) > (1 + ε)cost({opt}). There are at most n− 1 such choices of b, and
thus the theorem follows if

Pr

⎛
⎝∑

x∈Q

dist(opt, x) ≥
∑
x∈Q

dist(b, x)

⎞
⎠<e−ε2|Q|/64.(4)

To prove (4), we study the random variable X =
∑

x∈Q
dist(b,x)−dist(opt,x)+dist(opt,b)

2dist(opt,b) .

By the triangle inequality, this is the sum of random variables between 0 and 1. Our
bad event is that X ≤ |Q|/2. On the other hand,

E(X) =
|Q|
|P |

∑
x∈P

dist(b, x) − dist(opt, x) + dist(opt, b)

2dist(opt, b)
.

Since dist(b, x)+dist(opt, x) ≥ dist(opt, b) and
∑

x∈P dist(x, b) > (1+ε)
∑

x∈P dist(x, opt),∑
x∈P (dist(b, x) − dist(opt, x)) ≥

∑
x∈P

ε
2+ε dist(opt, b), so E(X) ≥ |Q|(1 + ε

2+ε )/2.
Consequently, |Q|/2 ≤ (1−δ)E(X) with δ = ε

2+ε/(1+ ε
2+ε ) ≥ ε/4 for ε ≤ 1. Applying

a Chernoff bound from [24, Theorem 4.2], Pr(X ≤ |Q/2|) ≤ Pr(X ≤ (1 − δ)E(X)) <

e−δ2E(X)/2 < e−ε2|Q|/64. This completes the proof of (4).
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Abstract. We consider the classical problem of online job scheduling on uniprocessor and
multiprocessor machines. For a given job, we measure the quality of service provided by an algorithm
by the stretch of the job, which is defined as the ratio of the amount of time that the job spends in the
system to the processing time of the job. For a given sequence of jobs, we measure the performance
of an algorithm by the average stretch achieved by the algorithm over all the jobs in the sequence.
The average stretch metric has been used to evaluate the performance of scheduling algorithms in
many applications arising in databases, networks, and systems.

The main contribution of this paper is to show that the shortest remaining processing time
(SRPT) algorithm is O(1)-competitive with respect to average stretch for both uniprocessors and
multiprocessors. For uniprocessors, we prove that SRPT is 2-competitive; we also establish an
essentially matching lower bound on the competitive ratio of SRPT. For multiprocessors, we show
that the competitive ratio of SRPT is at most 9 + 2

√
6 ≤ 14. Furthermore, we establish constant-

factor lower bounds on the competitive ratio of any online algorithm for both uniprocessors and
multiprocessors.

Key words. scheduling, online algorithms, competitive ratio, shortest remaining processing
time (SRPT), stretch, slowdown
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1. Introduction. Many servers, such as web and database servers, receive a
continuous stream of requests with processing times that vary over several orders
of magnitude. The main challenge in such a scenario is to schedule the stream of
requests so as to provide various service guarantees such as response time, throughput,
and fairness. In the combinatorial scheduling literature, this problem is typically
abstracted as one of optimizing a suitably defined performance measure. Two classical
performance measures are the makespan, which is the maximum completion time of
any job, and the total completion time, which is the sum of the completion times of
all the jobs; these are suitable for applications where the jobs are executed in batches.
For jobs arriving continuously, a relevant parameter is the time that a job spends in
the system, namely, the response time (also sometimes referred to as the flow time)
of the job, which can be defined as the difference between the completion time and
release time of the job. For over two decades, the average response time has been a
popular performance measure in online scheduling research.

Recently, alternative performance measures have been considered. The premise
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underlying these studies is that an important parameter of performance for a job
is the factor by which it is slowed down relative to the time it takes on a unloaded
system. Formally, the stretch (also known as the slowdown) of a job is the ratio
of the response time of the job to the processing time of the job. Intuitively, the
stretch measure relates the users’ waiting times to their demands, since it measures
the quality of service provided to a job in proportion to its demand. It may also reflect
users’ psychological expectation that, in a system with highly variable job sizes, users
are willing to wait longer for larger requests. Thus it is a reasonably fair measure of
the service that an individual job gets in the system.

The stretch measure, more precisely, the average stretch (or equivalently, the total
stretch), has been used to empirically study the performance of several applications,
e.g., in databases [19], operating systems [15], and parallel systems [13]. Average
stretch is used for measuring the performance of scheduling algorithms in the context
of web servers or clusters thereof [14, 23], which process requests for downloading files
of different sizes and types. The average stretch is also a good indicator of the total
load of the system. A schedule with large average stretch is likely to have a majority
of jobs waiting in queue for large periods of time, while a schedule may have small
average queue size and yet a large average response time simply because one of the
jobs has a large processing time.

To summarize, average stretch is a natural measure that fits many applications,
and is a better indicator of system performance than the traditional average response
time measure. Surprisingly, very little is known about scheduling algorithms that
optimize (minimize) average stretch; in fact, the rather basic problem of minimizing
average stretch on a single processor has not been studied.

In this paper, we study the problem of online scheduling to minimize average
stretch on both single and multiprocessor systems. We focus on the preemptive clair-
voyant version of the scheduling problem: by preemptive, we mean that jobs may be
stopped before their completion and resumed later after processing other jobs in the
interim; by clairvoyant, we mean that the processing time of each job is known at
the time of its arrival. The aforementioned application of web server scheduling is an
important example where preemptive clairvoyant schedules are useful.

Our main contribution is to show that the shortest remaining processing time
(SRPT) heuristic is O(1)-competitive with respect to average stretch for both unipro-
cessors and multiprocessors. Our results show that the problem of optimizing the av-
erage stretch is fundamentally different from that of optimizing the average response
time in the uniprocessor as well as in the multiprocessor case, although, interest-
ingly, the difference is contrasting. (See section 1.2.) Our results, taken together with
previous work on analyzing average response time [3, 18], imply that SRPT simul-
taneously optimizes the average response time and average stretch measures, up to
constant factors, for both uniprocessors and multiprocessors.

1.1. Problem and definitions. We consider the following online scheduling
scenario. A sequence of jobs arrives online, and the processing time of each job is
known at the time of its arrival. Our goal is to produce a schedule to process the
continuously arriving stream of such jobs. The quality of service we consider is the
stretch of a job, which is defined as the ratio of the amount of time that the job spends
in the system to the processing time of the job. Thus, if a job j with processing time
p(j) arrives at time r(j) and is completed at time C(j), then the stretch of the job is
given by s(j) = (C(j)− r(j))/p(j). We seek to minimize the total stretch of the jobs
in a given instance.
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We study the problem of minimizing total stretch for both uniprocessor as well
as multiprocessor scheduling. In the case of multiprocessor scheduling, we assume
that all of the processors are identical. Thus, in the standard 3-field scheduling
notation [17], the problems that we study may be listed as 1 | pmtn, rj |

∑
j(Cj−rj)/pj

and Pm | pmtn, rj |
∑

j(Cj − rj)/pj , respectively.

Since our focus is on online algorithms, we perform a competitive analysis [22]
of the algorithms under consideration. An online algorithm A is r-competitive if for
every instance J , S(J ) is at most rS∗(J ), where S(J ) and S∗(J ) represent the
total stretch achieved by A and an optimal offline algorithm, respectively, on instance
J . The competitive ratio of an algorithm A is the infimum over all r such that A is
r-competitive.

Much of our work concerns the analysis of the well-known SRPT algorithm. For
uniprocessors, SRPT is simply defined as follows: In each time step, process a job
with the shortest remaining processing time among all the unfinished jobs. For an
m-processor machine each time step consists of the following operation: If there are at
least m unfinished jobs, a set of m jobs that have the m shortest remaining processing
times are processed, where we break ties arbitrarily; otherwise, every unfinished job is
processed. (Since the processors are assumed to be identical, the particular assignment
of an unfinished job to a processor at any step is irrelevant.1)

1.2. Our results. Our main results are threefold:

• Uniprocessor SRPT. We show that for any instance J on a uniprocessor
machine, the total stretch S(J ) achieved by SRPT is at most S∗(J ) + |J |;
since S∗(J ) ≥ |J |, this implies that SRPT is 2-competitive. We also estab-
lish an essentially matching lower bound on SRPT for uniprocessors. These
results appear in section 2.
Our upper bound for SRPT makes it an attractive algorithm for uniprocessor
scheduling since it is nearly optimal with respect to total stretch while it is
known to be truly optimal with respect to average response time. Indeed,
recent experimental and analytical studies on scheduling algorithms for web
servers [4, 14] have shown that SRPT outperforms several other scheduling
policies currently used in web servers on real-world workloads; the analyses
in the preceding studies adopt a Poisson model for the job arrival process,
and general as well as heavy-tailed distributions for job service times.

• Multiprocessor SRPT. For multiprocessors, we show that for any instance J
the total stretch S(J ) achieved by SRPT is at most 3S∗(J )+ (6+2

√
6)|J |,

which implies an upper bound of 9 + 2
√

6 ≤ 14 on the competitive ratio,
independent of the number of processors m ≥ 2. These results appear in
section 3.
Our constant-factor competitiveness result for multiprocessors provides a sur-
prising contrast to the recent lower bound established on the competitive ratio
of any online algorithm with respect to average response time. It is shown
in [18] that the best competitive ratio achievable for average response time
on an m-processor machine is Ω(max{logP, log(n/m)}), where P is the ratio
of the maximum to the minimum processing time of any job and n is the
number of jobs. In [18], it is also shown that the competitive ratio of SRPT

with respect to average response time on multiprocessors is optimal to within
a constant factor. This indicates that SRPT is a compelling algorithm for

1A job may be preempted at one processor and later resumed at a different processor.
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multiprocessor scheduling as well since it matches the best competitive ratio
up to constant factors for both total stretch as well as average response time.

• Lower bounds. We show that there exists no online algorithm that minimizes
average stretch for every instance; specifically, we show that the competitive
ratio of every online algorithm is at least 1.04. We also show a lower bound
of at least 7/6 on the competitive ratio for minimizing total stretch on any
2m-processor machine, for any positive integer m. These results appear in
section 4.

The average response time and total stretch metrics have the following interesting
contrasting characteristics. For uniprocessors, while average response time can be op-
timized by an on-line algorithm, the best competitive ratio achievable for total stretch
is strictly greater than 1. On the other hand, for multiprocessors, while a constant-
factor competitive online algorithm exists for total stretch, the best competitive ratio
for average response time grows logarithmically with the number of jobs.

1.3. Related work. While average response time has been studied extensively
in the literature [3, 16, 21], the analytical study of stretch as a performance measure
was initiated only recently [6]. All of the results presented in [6], however, concern the
metric of maximum stretch (that is, maxi Si) and do not yield any useful bounds for
total stretch. Recently, max-stretch was also studied in the context of performing file
transfers over a network with given bandwidth constraints on the underlying links [11].

Two measures closely related to total stretch are weighted completion time and
weighted flow time, each of which associate a weight with each job i. If we set the
weight of job i to the reciprocal of flow time, completion time also optimizes total
stretch. From the point of view of approximation, however, the two metrics are
different. A randomized online algorithm that achieves a competitive ratio of 4/3
with respect to weighted completion time is given in [20]; this result, however, does
not directly yield any useful upper bound on the competitive ratio for total stretch.
In fact, it is easy to construct schedules that have a constant-factor approximation
ratio with respect to weighted completion time, with wi = 1/pi, and yet have a linear
approximation ratio with respect to total stretch. For other results on the online and
offline complexity of weighted completion time, see [12].

The weighted flow time with weights given by the reciprocal of processing times
is identical to the total stretch metric. The best known approximation result for
weighted flow time is the recent approximation scheme of [8], which takes time super-
polynomial, but subexponential, in the input size. In a subsequent study [9], it has
been shown that a quasi-polynomial approximation scheme (quasi-PTAS) is achiev-
able for weighted flow time when ∆ and the ratio of the maximum weight to minimum
weight are both polynomially bounded. When applied to the special case of the total
stretch metric, the techniques of [9] yield a PTAS. A PTAS for total stretch is also
given in [7].

For multiprocessors, the work most closely related to our study is that of [18],
which is discussed in section 1.2. In recent work [1], a polynomial-time approximation
scheme is derived for the weighted completion time problem on multiprocessors.

1.4. Overview of our analyses. Our analysis of SRPT relies on a careful
comparison of the queue of unfinished jobs in SRPT with the corresponding queue
associated with any other scheduling algorithm at every time step. For the case of
uniprocessors, we derive a tight bound on the total stretch of SRPT by placing a
separate bound, for every unfinished job at every time step, on the contribution of
the job to the total stretch of SRPT. A key component behind this approach is
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to appropriately map the jobs in SRPT’s queue to the jobs in the queue associated
with an arbitrary scheduling algorithm at every time step. The particular mapping
enables us to analyze the total stretch of SRPT time step by time step. The relevant
property of this mapping is illustrated in Figure 1 of section 2 and formally established
in Lemma 2.8.

Our analysis for multiprocessors is more involved. The difficulty in the analy-
sis arises due to the following observation made in [18]: there exist multiprocessor
scheduling instances that may force SRPT to have many more unfinished jobs at
certain time steps than an alternative schedule has at that time. As a result, the
contribution to the total stretch corresponding to such time steps may be dispropor-
tionately larger for SRPT than for the other schedule. We overcome this hurdle by
showing the existence of an appropriate partial mapping from the jobs in SRPT’s
queue to the jobs in the queue associated with the other schedule. In addition to
placing an upper bound on the contribution of the mapped jobs in each step, the
particular mapping enables us to place an upper bound on the exact or amortized
contribution of the unmapped jobs in SRPT’s queue at each time step. The mapping
is illustrated in Figure 2 of section 3 and formally established in Lemma 3.5.

2. Analysis of SRPT for uniprocessor scheduling. In this section, we ana-
lyze the competitiveness of SRPT on uniprocessors with respect to total stretch. An
instance J of our scheduling problem consists of a set of jobs with arbitrary release
times and processing times. For job j ∈ J , let r(j) and p(j) denote the release time
and processing time, respectively, of j. The performance of a schedule is measured
by the total stretch achieved. Recall that the total stretch of a schedule for a given
instance is the sum, taken over all jobs j ∈ J , of the stretch of j under the schedule,
where the stretch of a job is the ratio of the response time of the job to the processing
time of the job. Let S(J ) and S∗(J ) denote the total stretch of SRPT and the
optimal total stretch, respectively, for instance J . The main result of this section is
the following theorem that places an upper bound on the total stretch achieved by
SRPT.

Theorem 2.1. For any instance J , S(J ) is at most S∗(J ) + |J |.
The proof of Theorem 2.1 is given in section 2.1. In terms of competitive ratio,

Theorem 2.1 implies the following result.
Corollary 2.2. SRPT is 2-competitive with respect to average stretch.
Proof. For any scheduling algorithm, the stretch of any job is at least 1. Therefore

S∗(J ) is at least |J |. It thus follows from Theorem 2.1 that S(J ) ≤ 2S∗(J ).
We also show an essentially matching lower bound in Theorem 2.3, which is proved

in section 2.2.
Theorem 2.3. For any real ε > 0 and any positive integer n ≥ 3, there exists an

instance J with n jobs such that S(J ) is at least S∗(J ) + n− 1 − ε.

2.1. Upper bound. In this section, we prove Theorem 2.1. We begin by intro-
ducing some notation to characterize the execution of SRPT on a given instance J .
For any job j in J and time t ≥ r(j), let ρt(j) denote the remaining processing time of
job j at time t under SRPT. For any time t, let Qt denote the set of all jobs in J that
have been released at some time less than or equal to t and have not been completed
by SRPT; that is, Qt is the set of all jobs j for which r(j) ≤ t and ρt(j) > 0. We
rank all of the jobs in Qt in nondecreasing order of their remaining processing times,
breaking ties according to an arbitrary ordering of the job IDs whenever necessary.
For i ≥ 1, let qt,i denote the job of rank i in Qt; if the job of rank i is not defined, we
set qt,i to be a job with processing time ∞. We refer to a job as active (resp., waiting)
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at time t if the rank of the job is equal to 1 (resp., greater than 1). Note that in time
step t, SRPT processes one unit of the job that is active at that time. Let Ut denote
the set of waiting jobs at time t.

We now express the total stretch S(J ) in SRPT as a sum, taken over all time
steps t and over all jobs in Qt, of the reciprocal of the processing time of the job:

S(J ) =
∑
j∈J

∑
t:j∈Qt

1

p(j)
=

∑
t

∑
j∈Qt

1

p(j)
.

We now introduce two new variables for notational convenience. Let αt denote the
sum of the reciprocals of the processing times of the jobs in Qt. Thus, the total
stretch S(J ) is simply

∑
t αt. Finally, let βt denote the sum of the reciprocals of the

remaining processing times of the jobs in Qt. Since the remaining processing time of
a job at any time is at most its processing time, we obtain that αt ≤ βt for all t.

We split the total stretch S(J ) into two parts S1(J ) and S2(J ), which represent
the total contribution of the active jobs and the waiting jobs, respectively, in SRPT:

S1(J ) =
∑
t

1

p(qt,1)
and

S2(J ) =
∑
t

∑
j∈Ut

1

p(j)
.

The total contribution of the active jobs can be calculated easily. Whenever a
job j is active, it contributes 1/p(j) to the term S1(J ). Since an active job is always
processed by SRPT, there are exactly p(j) time steps when j is active. Thus, j
contributes p(j)/p(j) = 1 to S1(J ). We thus obtain the following lemma.

Lemma 2.4. For any instance J , S1(J ) = |J |.
We place an upper bound on the contribution of the waiting jobs by means of a

careful comparison of SRPT’s queue Qt with the corresponding queue of an arbitrary
scheduling algorithm A. Just as we have characterized the execution of SRPT for a
given instance J using the variables ρt, Qt, and qt, we can characterize the execution
of A for J . Let Q̃t, ρ̃t, α̃t, and β̃t denote the equivalent of Qt, ρt, αt, and βt,
respectively, for the execution of A. Furthermore, whenever we henceforth introduce
a new notation for a variable associated with SRPT, it is implicit that the “tilde”
version of the notation denotes the corresponding variable for A.

We obtain the desired upper bound on S2(J ) by showing the following key lemma
that relates βt and α̃t.

Lemma 2.5. For any time t, we have βt ≤ α̃t + 1
ρt(qt,1)

.

Corollary 2.6. For any instance J , S2(J ) ≤ S∗(J ).
Proof. Since 1/p(j) is at most 1/ρt(j) for any job j, it follows that

S2(J ) ≤
∑
t

(
βt −

1

ρt(qt,1)

)

≤
∑
t

α̃t ≤ S̃(J ),

where the last step is obtained by invoking Lemma 2.5. Since the above inequality
holds for every scheduling algorithm A, the desired claim follows.

Theorem 2.1 follows directly from Lemma 2.4 and Corollary 2.6. Thus all that
remains to prove is Lemma 2.5. A crucial component of our proof of Lemma 2.5 is
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Fig. 1. The remaining processing times of the jobs in the queues of SRPT and A at time t.

The shaded jobs belong to A’s queue Q̃t, while the unshaded jobs belong to SRPT’s queue Qt. The
arrows indicate that for any i > 1 the remaining processing time of the job of rank i in Qt is at least

that of the job of rank i− 1 in Q̃t.

to establish the following relationship between the queues of SRPT and A: for any
i > 1, the remaining processing time of the job of rank i in Qt is at least the remaining
processing time of the job of rank i− 1 in Q̃t. The preceding claim is formally stated
in Lemma 2.8 and illustrated in Figure 1.

We establish Lemma 2.8 by relating appropriately defined “prefixes” of the two
queues Qt and Q̃t. For any time t and positive integer i, let Pt(i) denote the set of
jobs in Qt with remaining processing time at most i. For any time t and positive
integer i, let Vt(i) denote the sum of the remaining processing times of all jobs in
Pt(i). We call Vt(i) the volume of jobs in Qt with remaining processing time at most
i.

Lemma 2.7. For any time t and any positive integer i, Vt(i) is at most Ṽt(i)+ i.
Proof. The proof is by induction on t. The induction basis holds trivially since

for all i, V0(i) = Ṽ0(i). For the induction hypothesis, we assume that the claim is true
at the end of step t− 1. We now establish the induction step for time step t. Let i be
any positive integer. We first note that the release of new jobs at the start of step t
does not change Vt(i)− Ṽt(i) for any i. Now let X denote the union of the set Pt−1(i)
and the set of jobs with processing time at most i that are released at time t.

We consider two cases, depending on whether X is empty. In the case where X
is nonempty, SRPT executes one job from X. Since A performs at most one unit of
work, we can invoke the induction hypothesis and obtain that Vt(i) ≤ Ṽt(i) + i. We
now consider the case where X is empty. In this case, at most one job in Qt can have
remaining processing time at most i at the end of step t; this happens when a job
with remaining processing time i + 1 gets processed and enters Pt(i). Therefore, we

have Vt(i) ≤ i ≤ Ṽt(i) + i. This completes the proof of the desired claim.
Lemma 2.8. For any time t and any integer k > 1, we have ρt(qt,k) ≥ ρ̃t(q̃t,k−1).
Proof. We first prove that for all k > 1, ρt(qt,k) ≥ ρ̃t(q̃t,k−1). The proof is by

contradiction. Let, if possible, k > 1 be the smallest integer such that ρt(qt,k) <

ρ̃t(q̃t,k−1). Let b denote ρt(qt,k). It follows that |Pt(b)| ≥ k, while |P̃t(b)| = k− 2. We
thus have the following inequality:

Vt(b) ≥
∑

1≤i≤k

ρt(qt,i)

= ρt(qt,1) + ρt(qt,k) +
∑

2≤i<k

ρt(qt,i)
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≥ ρt(qt,1) + b +
∑

1≤i<k−1

ρ̃t(q̃t,i)

= ρt(qt,1) + b + Ṽt(b)

> b + Ṽt(b),

thus contradicting Lemma 2.7. (In the third step, we use the assumption that for
1 < i < k, ρt(qt,i) ≥ ρ̃t(q̃t,i−1). In the final step, we use the fact that ρt(qt,1) is
positive.)

Corollary 2.9. For any time t, we have βt ≤ β̃t + 1
ρt(qt,1)

.

Proof. The desired claim follows from Lemma 2.8:

βt − β̃t =
∑
k≥1

(
1

ρt(qt,k)
− 1

ρ̃t(q̃t,k)

)

≤ 1

ρt(qt,1)
+

∑
k≥2

(
1

ρt(qt,k)
− 1

ρ̃t(q̃t,k−1)

)

≤ 1

ρt(qt,1)
,

since ρt(qt,k) ≥ ρ̃t(q̃t,k−1) for all k ≥ 2.
We are now ready to prove Lemma 2.5.
Proof of Lemma 2.5. Consider an arbitrary time step t. Let B be a scheduling

algorithm that minimizes the sum of the reciprocals of the processing times of the
jobs in the queue at time t. Let α′

t denote the sum of the reciprocals of the processing
times of the jobs in B’s queue at time t.

We now argue that B can be chosen such that for every job j in B’s queue, the
remaining processing time at time t is the same as the processing time p(j). If not,
we can define a schedule C that mimics B except that C never processes any of the
jobs that remain in B’s queue at time t. Clearly, C’s queue at time t contains exactly
the same jobs as B’s. Moreover, none of the jobs in C’s queue at time t have been
processed prior to time t. Since the remaining processing time of every job in C’s
queue is the same as the actual processing time, we obtain the desired inequality from
Corollary 2.9:

βt ≤ α′
t +

1

ρt(qt,1)
≤ α̃t +

1

ρt(qt,1)
.

2.2. Lower bound. In this section, we prove Theorem 2.3. Consider an instance
in which a job of size �1 arrives in time step 0 and a job of size �2 � �1 arrives in
time steps �1 + �2(i − 1) + 1 for 0 ≤ i < n − 1. An SRPT schedule will process the
large job until time �1 − �2 + 1 when the first small job arrives. Since the remaining
processing time of the large job (�2 − 1) is smaller than the size of the small job,
SRPT continues processing the large job until it is finished. Thereafter, the n − 1
small jobs are processed one after another. The total stretch of the SRPT schedule
is n + (n− 1)(�2 − 1)/�2 = 2n− 1 − (n− 1)/�2. Given ε > 0, we set �2 > 2(n− 1)/ε
so that the total stretch of SRPT is at least 2n− 1 − ε/2.

An alternative schedule is to complete the small jobs immediately upon their
arrival, and complete the large job at time �1 + (n− 1)�2. This yields a total stretch
of n+(n− 1)�2/�1. We set �1 > 2(n− 1)�2/ε so that the preceding schedule has total
stretch at most n + ε/2.

Thus, we have S(J ) ≥ S∗(J )+n−1−ε. This completes the proof of Theorem 2.3.
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3. Analysis of SRPT for multiprocessor scheduling. This section analyzes
the competitiveness of SRPT on an m-processor machine, where m is any integer
greater than 1. For any instance J , let S(J ) and S∗(J ) denote the total stretch of
SRPT and an optimal schedule, respectively. The main result of this section is the
following upper bound on the total stretch achieved by SRPT, which is proved in
section 3.1.

Theorem 3.1. For any instance J on multiprocessors, S(J ) is at most 3S∗(J )+
(6 + 2

√
6)|J |. Thus, the competitive ratio of SRPT for multiprocessors is at most

9 + 2
√

6 ≤ 14.

We can also show a constant-factor lower bound on the competitive ratio of SRPT

for multiprocessors. The lower bound is proved in section 3.2.

Theorem 3.2. For any even integer m > 1 and any positive real ε, there exists
a scheduling instance J for an m-processor machine such that S(J ) is at least (2.5−
ε)S∗(J ).

3.1. Upper bound. A crucial component of our upper bound proof for unipro-
cessors in section 2 is the property of SRPT’s queue established in Lemma 2.8.
Lemma 2.8 implies that, given any scheduling algorithm A and any time t, we can map
each job j in SRPT’s queue except the one with the smallest remaining processing
time to a unique job in A’s queue at time t that has remaining processing time at most
that of j. For multiprocessors, however, a similar claim does not hold. In fact, even
for a two-processor system, one can construct an instance for every positive integer
k such that the following claim holds: there exists a time step t when the number of
jobs in SRPT’s queue at time t is k while the queue in the optimal schedule at time
t is empty. A nice example of such an instance is presented in [18], where it is used
to derive a lower bound on the competitive ratio of SRPT with respect to total flow
time.

While establishing an upper bound on the total flow time of SRPT, [18] provides
a characterization of the queue of SRPT that implies an upper bound on the number
of jobs in the queue of SRPT at each step. We note that the total flow time of a
schedule is the sum, taken over every time step t, of the number of jobs in the queue
at time t. The analysis of [18] does not suffice for our purposes, however, because
the total stretch takes into account the sum of the reciprocals of the processing times
of the jobs in the queue at any time step. In our analysis of SRPT that follows, we
perform a more careful comparison between SRPT and an optimal schedule in terms
of the relative distribution of the remaining processing times of the jobs in the two
queues at each time step. We are able to establish a partial mapping from the jobs
in SRPT’s queue to the jobs in another schedule such that the following property of
the mapping holds: the remaining processing time of a mapped job in SRPT’s queue
is at least that of the job to which it is mapped. This mapping, together with an
appropriate characterization of the unmapped jobs in SRPT’s queue, then enables us
to place an upper bound on the exact or “amortized” contribution of the jobs in the
queue at each time step.

As in the case of uniprocessor scheduling, we rank all of the jobs in Qt in non-
decreasing order of their remaining processing times, breaking ties according to an
arbitrary ordering of the job IDs whenever necessary. Let Ft denote the set of jobs in
Qt ranked at most m. Let Ut denote the set Qt \ Ft.

Analogous to the uniprocessor case, we split the sum S(J ) into two parts S1(J )
and S2(J ):
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S1(J ) =
∑
t

∑
j∈Ft

1

p(j)
and

S2(J ) =
∑
t

∑
j∈Ut

1

p(j)
.

By invoking the same argument used in proving Lemma 2.4, we show that S1(J )
equals |J |.

Lemma 3.3. For any instance J , S1(J ) = |J |.
Proof. Since each job in Ft is processed at time t, a job j is in Ft for exactly p(j)

steps. The desired claim follows.

We now consider the jobs in Ut. For any time t and positive integer i, let Pt(i)
denote the set of jobs in Qt with remaining processing time at most i. We define the
volume of any subset X of Qt as the sum of the remaining processing time of the jobs
in X at time t. For any time t and positive integer i, let Vt(i) denote the volume of
Pt(i).

The following lemma is an easy generalization of Lemma 2.7. (As in section 2,
we follow the notational convention that the “tilde” version of a variable defined for
SRPT denotes the corresponding variable for A.)

Lemma 3.4. For any time t and any positive integer i, Vt(i) is at most Ṽt(i)+mi.

Proof. The proof is by induction on t. The induction basis holds trivially since,
for all i, V0(i) = Ṽ0(i). For the induction hypothesis, we assume that the claim is true
at the end of step t− 1. We now establish the induction step for time step t. Let i be
any positive integer. We first note that the release of new jobs at the start of a step
does not change Vt(i)− Ṽt(i) for any i. Let X denote the union of the set Pt−1(i) and
the set of jobs with processing time at most i that are released at time t.

We consider two cases, depending on whether |X| is at least m. In the case
where |X| is at least m, all of the jobs processed by SRPT are in X. Since A can
perform at most m units of work, we invoke the induction hypothesis and obtain that
Vt(i) ≤ Ṽt(i) + mi. We now consider the case where |X| is less than m. In this case,
the number of jobs not in X that are processed in step t is at most m−|X|. Therefore,
at most m−|X| jobs outside of X may have remaining processing time at most i after

time step t. We thus obtain that Vt(i) ≤ mi ≤ Ṽt(i) + mi.

Given any schedule A and any time t, we define a partial mapping ft from Ut to
Q̃t that satisfies properties (P1) and (P2) defined below. Let mpdt (resp., umpdt)
denote the set of jobs in Ut that are mapped (resp., unmapped) by ft.

(P1) For each job j in mpdt, ρ̃t(ft(j)) ≤ ρt(j).
(P2) For any i > 0, the total volume of the jobs in umpdt ∩ Pt(i) is at most mi.

Lemma 3.5 (partial mapping). For any schedule A and any time t, there exists

an injective mapping ft from Ut to Q̃t that satisfies properties (P1) and (P2).

Proof. We describe a procedure for defining the mapping ft. This procedure runs
in phases, starting from phase 1. Let X denote the set of jobs in Ut ∩ Pt(i) with

remaining processing time equal to i. Let Y denote the set of jobs in P̃t(i) to which
no job in Ut has been mapped at the start of phase i. (At the start of phase 1, Y is
∅.) In phase i, we map as many jobs as possible in X to jobs in Y . The mapping is
illustrated in Figure 2.

We now argue that for every i the following two properties hold at the start of
phase i: (i) for each job j in Ut that has been mapped, ρ̃t(ft(j)) ≤ ρt(j); (ii) for
0 < k < i, the total volume of the unmapped jobs in Ut ∩ Pt(k) is at most mk.
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Fig. 2. The remaining processing times of the jobs in the queues of SRPT and A at time t.
The arrows depict the mapping ft. The darkly shaded jobs belong to A’s queue, while the lightly
shaded and unshaded jobs belong to SRPT’s queue. The lightly shaded jobs are the mapped jobs in
SRPT’s queue.

Clearly, if the two properties hold at the end of the procedure when all of the jobs in
Ut have been considered, then the desired claim follows.

By the definition of the mapping, it is evident that property (i) holds at the start
of every phase. We now prove property (ii). The proof is by induction on i. For
the induction basis, i = 1 and property (ii) holds vacuously. We now assume that
property (ii) holds at the start of phase i and consider the effect of phase i.

By property (ii) of the induction hypothesis, it follows that for 0 < k < i the total
volume of the unmapped jobs in Ut ∩ Pt(k) is at most mk. Thus, it suffices to prove
that at the start of phase i + 1, the total volume of the unmapped jobs in Ut ∩ Pt(i)

is at most mi. We consider two cases. The first case is when every job in P̃t(i) is the
image of some job after phase i. By property (i), each job in mpdt is mapped to a job

in Q̃t with no larger remaining processing time. Therefore, it follows from Lemma 3.4
that the volume of unmapped jobs in Ut ∩ Pt(i) is at most mi. The second case is

when there exists a job in P̃t(i) to which no job is mapped at the end of phase i. In
this case, we note that every job in Ut with remaining processing time equal to i is
mapped in phase i. Therefore, we invoke property (ii) of the induction hypothesis to
obtain that the total volume of the jobs in Ut ∩ Pt(i) that are unmapped at the end
of phase i is at most m(i− 1) ≤ mi. This completes the induction step and the proof
of the lemma.

Properties (P1) and (P2) help in placing upper bounds on the contribution of the
mapped jobs and unmapped jobs, respectively, to S2(J ). While Lemma 3.5 holds
for any schedule A, the particular mapping ft that we employ for the remainder of
this proof is with respect to a schedule B that minimizes the sum of the reciprocals
of the processing times of the jobs in the queue at time t. Let α′

t denote the sum
of the reciprocals of the processing times of the jobs in B’s queue at time t. As in
Lemma 2.5, we can assume without loss of generality that none of the jobs that belong
to B’s queue at time t have been processed until time t. Therefore, for each job j
in B’s queue at time t, the remaining processing time equals p(j). By property (P1)
of Lemma 3.5, we know that ρt(j) ≥ p(ft(j)). Since f is injective, we obtain the
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following lemma about the mapped jobs in Qt.
Lemma 3.6 (mapped jobs). For any time t, we have

∑
j∈mpdt

1
ρt(j)

≤ α′
t.

We now consider the unmapped jobs. We begin by establishing a technical lemma
that is helpful in placing an upper bound on the contribution of the unmapped jobs.
(The reader may choose to skip the proof of this lemma on their first pass through
this section.)

Lemma 3.7. Let m be a positive integer. Let X be a multiset of positive reals
that satisfies the following condition.

(C) For any positive real x the sum of the elements in X with value at most x is
at most mx.

Then the following inequality holds true for any positive real z:∑
x∈X,x≥z

1

x
≤ 2m− 1

z
.

Proof. We first consider the case m = 1. By condition (C), this case implies that
X has at most one element. Therefore, the desired inequality follows trivially.

In the remainder of the proof, we assume that m > 1. Let v(X) denote the term∑
x∈X,x≥z

1
x . Consider the following greedy algorithm for constructing X with the

goal of maximizing v(X). Initially set X to ∅. Iteratively, add to X the smallest
element greater than or equal to z that can be added without violating the condition
on X as stated in the lemma. Let xi be the ith element added to X. We claim that
xi may be defined as follows:

xi =

{
z if 1 ≤ i ≤ m,∑

1≤j<i
xj

m−1 otherwise.

We first prove the following two claims by induction on i: (i) xi ≥ xj for 1 ≤ j < i,
and (ii) the multiset {xj : 1 ≤ j ≤ i} is a valid solution for X. For the base case,
we consider 1 ≤ i ≤ m. Since xi = z, the desired claim holds trivially for the base
case. We now assume that the desired claim holds for i−1. Consider iteration i. The
element xi equals (

∑
1≤j<i xj)/(m− 1), which is at least (

∑
1≤j<i−1 xj)/(m− 1) and

hence at least xi−1, thus establishing part (i) of the induction step. For part (ii) of
the induction step, we note that part (i) implies that we only need to check whether∑

1≤j≤i xj ≤ mxi. By the definition of xi it follows that
∑

1≤j≤i xj = mxi, thus
ensuring that the multiset {xj : 1 ≤ j ≤ i} is a valid solution for X. This completes
the proofs of claims (i) and (ii).

We next show that X∗ = {xj : j ≥ 1} is an optimal choice for X. If possible,
let Y be a different optimal solution. Let yi denote the ith smallest element of Y ,
where we break ties arbitrarily. Let i be the smallest integer such that yi 	= xi. We
now derive a contradiction in each of the following two cases: yi > xi and yi < xi.
If yi > xi, we can replace the element yi in Y by the element xi and obtain a valid
solution yielding a value strictly larger than v(Y ), thus contradicting the assumption
that v(Y ) is optimal. If yi < xi, then since Y is a valid solution, so is the multiset
{yj : 1 ≤ j ≤ i}. This implies the following inequality:∑

1≤j≤i

yj = yi +
∑

1≤j<i

xj

= yi + (m− 1)xi

> yi + (m− 1)yi

= myi,



ONLINE SCHEDULING TO MINIMIZE AVERAGE STRETCH 445

thus violating the condition stated in the lemma. (The argument for the second step
is the following: since all of the elements in Y are at least z, we have i > m, implying
that (m− 1)xi =

∑
1≤j<i xj .)

To complete the proof of the lemma, we now compute v(X∗). We first note that
for i > m, xi is equal to z(m/m−1)i−m. Therefore, we can calculate v(X∗) as follows:

v(X∗) =
m

z
+

∑
i>m

1

z

(
m− 1

m

)i−m

=
m

z
+
∑
j>0

1

z

(
m− 1

m

)j

=
2m− 1

z
.

In the following lemma, we invoke the inequality established above to place an
upper bound on the sum of the reciprocals of the remaining processing times of certain
subsets of unmapped jobs.

Lemma 3.8. For any positive integer i and any step t, we have

∑
j∈umpdt,ρt(j)≥i

1

ρt(j)
≤ 2m− 1

i
.

Proof. We invoke Lemma 3.7, with X equal to the set {j ∈ umpdt : ρt(j) ≥ i},
to prove the desired claim. We note that condition (C) of Lemma 3.7 holds due to
property (P2) of Lemma 3.4. The claim of Lemma 3.7 is the desired inequality.

Lemma 3.8 indicates that if the rank of every unmapped job exceeds the rank
of Ω(m) mapped jobs at any time step t, then the total stretch contribution of the
unmapped jobs at t can be upper bounded by a constant factor times the sum of the
reciprocals of the remaining processing times of the mapped jobs, which in turn is
bounded by Lemma 3.6. This suggests classifying the unmapped jobs at any time t
into two groups as follows. A job j is marked at time t if j ∈ umpdt and the number
of mapped jobs in Pt(ρt(j)) is at most m. Note that whether a job is marked depends
on the particular time t; thus, for instance, a job may be marked at one time step
and may be unmarked at a subsequent step. We call the first time when a job gets
marked the marking time of the job; the marking time of a job that is never marked
may be set to ∞. Let mkdt and umkdt denote the sets of marked and unmarked
jobs, respectively, at time t. We first account for the contribution of unmarked jobs
by relating it to the contribution of mapped jobs of lesser rank.

Lemma 3.9 (unmarked jobs). For any time t, we have

∑
j∈umkdt

1

p(j)
≤

∑
j∈mpdt

2

ρt(j)
.

Proof. For any mapped job j in Qt, let X(j) denote the set of unmarked jobs in
Qt that have rank greater than that of j. Since each job in X(j) is unmapped, the
following inequality follows from Lemma 3.8:

∑
j1∈X(j)

1

ρt(j1)
≤ 2m− 1

ρt(j)
.(3.1)
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By definition, for each unmarked job j1, there exist at least m jobs j such that j1 is
in X(j). Therefore, we obtain the following inequality:

∑
j1∈umkdt

1

p(j1)
≤

∑
j1∈umkdt

1

ρt(j1)

≤ 1

m

∑
j∈mpdt

∑
j1∈X(j)

1

ρt(j1)

≤ 1

m

∑
j∈mpdt

2m− 1

ρt(j)

≤
∑

j∈mpdt

2

ρt(j)
.

(The third inequality is derived by adding (3.1) over all the mapped jobs.)
We now consider the marked jobs. We call a marked job j dependent at time t if

the number of jobs in Ft with release time of at least the marking time of j is greater
than γm, where γ is a constant in (0, 1) to be specified later. A marked job that
is not dependent at time t is said to be independent. Let dept and indt denote the
set of dependent and independent jobs, respectively, at time t. We account for the
contributions of the jobs in indt and dept in the following manner. In Lemma 3.10,
we show that any job j is independent during O(p(j)) steps only. This implies that the
total contribution of the independent jobs during the execution of SRPT is O(|J |).
Next, in Lemma 3.11, we show that the total contribution of the marked dependent
jobs is within a constant factor of the contribution of the jobs in Ft, which we have
already shown in Lemma 3.3 to be equal to |J |.

Lemma 3.10 (independent jobs). Any job j is independent during at most
2p(j)/(1 − γ) time steps.

Proof. Since any job j is independent only when it is marked, we only need to
consider time steps beginning from the marking time of j. Let t denote the marking
time of j. Let X denote the set of jobs in Qt that have rank less than that of j. Since
j is marked at time t, it follows that the number of mapped jobs in X is at most m.
Moreover, by property (P2) of Lemma 3.5, the volume of all of the unmapped jobs in
X at time t is at most mρt(j) ≤ mp(j). Therefore, the volume of all the jobs in X is
at most 2mp(j).

Consider any time step t′ ≥ t when j is independent. It follows from the definition
of independence that there are at most γm jobs in Ft′ with release time at least t.
Since j is not in Ft′ , it follows that there are at least (1 − γ)m jobs in X that are in
Ft′ . Thus, the volume of the jobs in X decreases by at least (1− γ)m in time step t1.
Once all of the jobs in X are completed, j can be never be independent. Since the
total volume of X at time t is at most 2mp(j), the number of time steps when j is
independent is at most 2p(j)/(1 − γ).

We next consider the dependent jobs.
Lemma 3.11 (dependent jobs). For any time t, we have

∑
j∈dept

1

p(j)
≤ 3

γ

∑
j∈Ft

1

p(j)
.

Proof. Consider a job j in Ft. Let X(j) be the set of jobs in dept whose marking
time is at most the release time of j. Since every job in X(j) has rank greater than
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m and hence greater than that of j, it follows that at the time of the release of j the
remaining processing time of every job in X(j) is at least p(j); that is, for any j1 in
X(j), we have ρr(j)(j1) ≥ p(j). Moreover, if Y (j) denotes the set of jobs in X(j) that
have been processed at any time during the time interval [r(j), t], then |Y (j)| is at
most m− 1 because every job in X(j) has rank greater than that of j.

Consider the jobs in X(j) \ Y (j). For every job j1 in X(j) \ Y (j), we have
ρt(j1) = ρr(j)(j1) ≥ p(j). Moreover, since every job in X(j) is unmapped, we obtain
the following inequality from Lemma 3.8:

∑
j1∈X(j)\Y (j)

1

p(j1)
≤ 2m

p(j)
.(3.2)

We now consider the jobs in Y (j). Since there are at most m− 1 jobs in Y (j), each
with processing time at least p(j), we have the following inequality:

∑
j1∈Y (j)

1

p(j1)
≤ m− 1

p(j)
.(3.3)

Equations 3.2 and 3.3 together yield the following inequality for each job j in Ft:∑
j1∈X(j)

1

p(j1)
≤ 3m

p(j)
.(3.4)

Now consider a job j1 in dept. Since j1 is dependent, there are more than γm jobs j
in Ft such that j1 is in X(j). Thus, if we add up both the left-hand and right-hand
sides of (3.4) over all jobs in Ft, j1 appears at least 
γm� times on the left-hand side.
Therefore, we obtain the following inequality, that establishes the desired claim:

∑
j1∈dept

1

p(j1)
≤ 3

γ

∑
j∈Ft

1

p(j)
.

Putting Lemmas 3.6, 3.9, 3.10, and 3.11 together, we obtain the following main
lemma.

Lemma 3.12. For any instance J , we have

∑
t

∑
j∈Ut

1

p(j)
≤ 3S∗(J ) +

(
2

1 − γ
+

3

γ

)
|J |.

Proof. We establish the desired inequality as follows:

∑
t

∑
j∈Ut

1

p(j)
=

∑
t

⎛
⎝ ∑

j∈mpdt

1

p(j)
+

∑
j∈indt

1

p(j)
+

∑
j∈dept

1

p(j)
+

∑
j∈umkdt

1

p(j)

⎞
⎠

≤
∑
t

∑
j∈mpdt

3

ρt(j)
+
∑
j

∑
t:j∈indt

1

p(j)
+

3

γ

∑
t

∑
j∈Ft

1

p(j)

≤
∑
t

3α′
t +

2|J |
1 − γ

+
3

γ

∑
t

∑
j∈Ft

1

p(j)

≤ 3S∗(J ) +

(
2

1 − γ
+

3

γ

)
|J |.
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(In the second step, we invoke Lemmas 3.9 and 3.11. In the third step, we invoke
Lemmas 3.6 and 3.10. The final step follows from Lemma 3.3.)

The term 2/(1−γ)+3/γ attains a minimum value of 5+2
√

6 ≤ 10 when γ = 3−
√

6.
The main theorem now directly follows from Lemmas 3.3 and 3.12.

3.2. Lower bound. We now prove Theorem 3.2. We consider the case of two
processors only; the argument can be easily extended to the case of 2m processors for
any positive integer m. The main idea in the argument is similar to that used in [18].
Consider an instance that starts with three jobs, one of size 2n and two of size 2n−1,
all of which arrive at time 0. At time 2n, one job of size 2n−1 and two jobs of size
2n−2 are released. In general, for 1 ≤ i ≤ n, at time

∑
i<j≤n 2j , one job of size 2i

and two jobs of size 2i−1 are released. Finally, at each of the p steps of the interval
[2n+1 − 2, 2n+1 + p − 3], a pair of unit-size jobs are released. (Here p is an integer
that is specified below.) The optimal total stretch equals 4n + 2p. The total stretch
achieved by SRPT is at least 3n + 4p + p(1/2n−2 + 1/2n−1 + · · · + 1/2), which is
3n + (5 − 1/2n−2)p. For any constant ε > 0, we can choose p sufficiently larger than
n so as to make the competitive ratio at least 2.5 − ε.

4. Lower bounds. This section contains lower bounds on the competitive ratio
of arbitrary online algorithms for uniprocessor and multiprocessor scheduling. Sec-
tion 4.1 concerns uniprocessor scheduling, while section 4.2 concerns multiprocessor
scheduling.

4.1. Uniprocessor scheduling. Our main result for lower bounds on online
uniprocessor scheduling is the following.

Theorem 4.1. If there are only two distinct job sizes, there exists an optimal
online algorithm for minimizing average stretch. If there are three or more distinct
job sizes, the competitive ratio of any online algorithm is at least 1.04.

Proof. Consider the case when there are only two distinct job sizes. We first
observe that there is an optimal schedule in which all large (resp., small) jobs are
processed in first-in-first-out (FIFO) order. Thus, at any time t, there is at most one
partially processed job in each category, and that is the job at the head of the FIFO
order in that category at that time; let � and s denote the job at the head of the
FIFO order in the large and small categories, respectively. We need to decide which
one of these two jobs must be processed. Suppose we complete the large job � first,
and follow it by processing the small job s; then the total stretch contributed by the
two jobs is

t + ρt(�) − r(�)

p(�)
+

t + ρt(�) + ρt(s) − r(s)

p(s)
.

On the other hand, if we complete the small job first, followed by the the large job,
then the stretch contributed by the two jobs is

t + ρt(s) − r(s)

p(s)
+

t + ρt(�) + ρt(s) − r(�)

p(�)
.

The former is desirable when ρt(�)/p(s) ≤ ρt(s)/p(�), that is, when ρt(�)p(�) ≤
ρt(s)p(s).

We now argue that the following online algorithm is optimal: at each time step
t, process a job i with the smallest ρt(i)p(i). The proof is by contradiction. Suppose
that there exists an optimal schedule in which there is a time step t at which a job i
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with the smallest ρt(i)p(i) is not processed. Let t be the earliest such time step. Let s
and � denote the jobs at the head of the FIFO order in the small and large categories,
respectively, at time t. Let us consider the case that ρt(�)p(�) < ρt(s)p(s), yet job s
is processed at time t. Let t′ denote the completion time of job � in the schedule. It
then follows that the set of jobs that complete during the interval [t, t′) are all small
jobs (this set is nonempty since s belongs to it). Let j denote the last small job to
complete in the interval [t, t′). Consider the schedule in which we swap the order of
jobs j and � and complete � before j; thus, the completion time of � is decreased by
at least ρt(s), and the completion time of j is increased by at most ρt(�). As a result,
the decrease in total stretch is at least

ρt(s)

p(�)
− ρt(�)

p(s)
> 0,

which contradicts the assumption that the given schedule is optimal. The analysis
for the other case is symmetric, thus completing the proof of the first claim of the
theorem.

We next consider the lower bound when there are three or more distinct job sizes.
We give the proof of a weaker lower bound first. Consider three jobs j1, j2, and
j3, with release times 0, 4, and 5, respectively, and processing times 5, 2, and 1,
respectively. Let instance J1 be the set {j1, j2} and instance J2 be the set {j1, j2, j3}.
For J1, the optimal solution is to process j1 for 4 steps, then process j2 for 2 steps
and then complete j1. The optimal total stretch is 1+7/5 = 2.4. For J2, the optimal
solution is to process j1 for 5 steps and thus complete it, then process j3 for 1 step,
and finally, process j2. The optimal stretch value for this instance is 4. For instance
J1, if the given online algorithm completes j1 before j2, then its stretch is at least
2.5, implying a competitive ratio of at least 1.04. If, on the other hand, the algorithm
preempts j1 at time 4 (i.e., at the start of the fifth step), then the best scenario for
the algorithm with regard to instance J2 is to finish the jobs in one of the following
orders: (i) j2, j3, j1 or (ii) j3, j2, j1. The stretch for case (i) is 4.6 and for case (ii) is
4.1. Therefore, the competitive ratio is at least 1.025.

We can generalize the above example as follows. Let �, m, and s be the jobs
with processing times p(�), p(m), and p(s), respectively, where p(�) > p(m) > p(s).
Consider the instance in which � arrives at time 0 and m arrives at the end of time step
p(�) − k, where k ≤ p(m). If the algorithm does not preempt the first job when the
second job arrives, the competitive ratio is at least (2 + (k/p(m)))/(2 + (p(m)/p(�))).
Otherwise, job s is presented at the end of time step p(�). Then we can argue as above
that any such algorithm has average stretch at least min{3 + p(s)/p(m) + (p(m) +
p(s))/p(�), 3 + (p(m) + p(s))/p(�) + (p(m) − k)/p(s)}, while the optimum average
stretch is at most 3 + (k + p(s))/pm. The lower bound on the competitive ratio, thus
obtained, is nearly maximized by setting p(s) = 54, p(m) = 100, p(�) = 200, and
k = 60; this setting of parameters yields that the average stretch is at least 1.04.

4.2. Multiprocessor scheduling. For multiprocessors, we can establish a slightly
stronger lower bound on the competitive ratio of any online algorithm.

Theorem 4.2. For any positive integer m, the competitive ratio of any online
algorithm for any 2m-processor machine is at least 7/6.

Proof. We first consider the case of a 2-processor machine. We consider two
instances of the scheduling problem. One instance consists of three jobs, two of size
1 and one of size � > 1, all of which are released at time 0. The parameter � is an
integer, whose value is specified below. The optimal schedule for this instance is to
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schedule the two size-1 jobs in parallel and then schedule the size-� job, thus yielding
a total stretch of 3 + 1/�. If the given online algorithm schedules the two unit-size
jobs in sequential order on one of the processors, then it achieves a total stretch of 4,
thus yielding a competitive ratio of 4�/(3� + 1).

If the online algorithm instead schedules the above instance optimally, then we
consider its performance on another scheduling instance which consists of the same
set of three jobs as above, together with a sequence of unit-size jobs, arriving in pairs
at times �, �+1, . . . , �+n−1. Since the incomplete size-� job has at least one unit of
processing time remaining, the online algorithm will be forced to delay the size-� job
until all of the size-1 jobs complete, thus leading to a total stretch of 2n+3+(n+1)/�.
(Note that we are making use of our assumption that time is discrete; thus, job arrivals
and preemptions occur at integer time steps.) An alternative schedule for this instance
is to schedule the first two unit-size jobs in sequence on one of the processors and the
size-� job on the other processor so that the sequence of pairs of unit-size jobs that
are released from time � onwards can be scheduled immediately upon arrival without
delaying the size-� job. The total stretch of this schedule is 2n + 4. Therefore, the
competitive ratio of the given online algorithm is at least (2n�+3�+n+1)/(2n�+4�),
which tends to (2� + 1)/(2�) as n tends to infinity.

We now choose integer � so as to maximize the minimum of 4�/(3� + 1) and
(2� + 1)/(2�). A maximum of 7/6 is achieved at � = 3.

We next generalize the above proof to 2m-processor machines, for m > 1. Again,
we consider two instances of the scheduling problem. One instance consists of 3m
jobs, 2m jobs of size 1 and m jobs of size � > 1, all of which are released at time 0.
The parameter � is an integer, whose value is specified below. The optimal schedule
for this instance is to schedule the 2m unit-size jobs in parallel on each of the 2m
processors and then schedule the size-� jobs on any m of the processors, thus yielding
a total stretch of 3m + m/�. Let k denote the number of size-� jobs that the given
online algorithm completes by time �. It follows that at least k of the 2m unit-size
jobs are delayed by a time unit and incur a stretch of 2. Furthermore, at least m− k
size-� jobs are delayed by unit time. Thus the total stretch of the online algorithm is
at least 3m + k + (m− k)/�.

The second instance for which we evaluate the given online algorithm consists of
the same set of 3m jobs as in the first instance, together with a sequence of 2nm unit-
size jobs, arriving in groups of 2m jobs at each of the steps �, �+1, . . . , �+n−1. For this
instance, the total stretch objective forces the given online algorithm to schedule all of
the 2nm jobs ahead of the m−k size-� incomplete jobs at time �. The total stretch of
the online algorithm for the second instance is at least 2nm+3m+k+n(m−k)/�. On
the other hand, an alternative (optimal) schedule completes the first set of 3m jobs
(that arrive at time 0) within time � and then schedules the remaining 2nm unit-size
jobs as they arrive. This schedule has a total stretch of 2nm + 4m. As n tends to
infinity, the ratio (2nm+3m+k+n(m−k)/�)/(2nm+4m) tends to 1+(m−k)/(2m�).

The competitive ratio of the online algorithm is thus at least

min
k

max

{
3m + k + (m− k)/�

3m + m/�
, 1 +

m− k

2m�

}

= min
k

max

{
1 +

k − k/�

3m + m/�
, 1 +

m− k

2m�

}

= 1 + min
k

max

{
k − k/�

3m + m/�
,
m− k

2m�

}
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≥ 1 +
1

2
min
k

[
1

2�
+

k

m

(
�− 1

3� + 1
− 1

2�

)]

≥ 1 +
�− 1

6� + 2
.

(The penultimate step holds since the maximum of two numbers is at least the average
of the two. The last step uses the inequality (� − 1)/(3� + 1) ≤ 1/2�.) The term
1 + (�− 1)/(6� + 2) tends to 7/6 as � tends to infinity.

5. Discussion. We have studied the online complexity of minimizing average
stretch. Our results show that SRPT is attractive for both uniprocessor and multi-
processor cases since it simultaneously achieves optimal performance (up to constant
factors) for average response time as well as average stretch. In general, any algo-
rithm aimed at optimizing average response time or average stretch, and SRPT in
particular, may starve jobs on worst case inputs. However, for certain applications
such as serving web traffic, it appears that the adverse effect of starvations in SRPT

is limited [4, 14]. In multiprocessors, a potential drawback of SRPT is the overhead
it incurs due to migrations. Recall that SRPT may preempt a job at one processor
and later resume the job at a different processor. A natural variant of SRPT that
does not perform any migrations has been proposed in [2]. In recent work [5], it
has been shown that the “migrationless” scheduling algorithm of [2] also achieves a
constant-factor competitive ratio with respect to average stretch.

Many interesting problems remain open. In particular, the lower bounds may
quite possibly be strengthened. Also, it will be of interest to analyze the algorithm
that schedules the job i with the smallest p(i)ρt(i) at time t; for the special case of
two job sizes, this algorithm is optimal, as we showed (see section 4). The average
stretch metric may also be studied in other models, such as when preemption is not
allowed.

In this paper, we have focused on online scheduling. The complexity of optimiz-
ing average stretch offline is open for both uniprocessors and multiprocessors. For
uniprocessors, a PTAS is achievable, as shown recently in [7, 9]. For multiprocessors,
the online constant-factor upper bounds that we have shown yield the best known
approximations offline. Whether the offline problem is NP-hard is open, even for the
multiprocessor case. The reduction used in the NP-completeness proof for minimizing
average response time on 2-processors [10] may be helpful in this regard.
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Abstract. A new packet routing model proposed by the Internet Engineering Task Force is
MultiProtocol Label Switching, or MPLS [B. Davie and Y. Rekhter, MPLS: Technology and Appli-
cations, Morgan Kaufmann (Elsevier), New York, 2000]. Instead of each router’s parsing the packet
network layer header and doing its lookups based on that analysis (as in much of conventional packet
routing), MPLS ensures that the analysis of the header is performed just once. The packet is then
assigned a stack of labels, where the labels are usually much smaller than the packet headers them-
selves. When a router receives a packet, it examines the label at the top of the label stack and makes
the decision of where the packet is forwarded based solely on that label. It can pop the top label off
the stack if it so desires, and can also push some new labels onto the stack, before forwarding the
packet. This scheme has several advantages over conventional routing protocols, the two primary
ones being (a) reduced amount of header analysis at intermediate routers, which allows for faster
switching times, and (b) better traffic engineering capabilities and hence easier handling of quality
of service issues. However, essentially nothing is known at a theoretical level about the performance
one can achieve with this protocol, or about the intrinsic trade-offs in its use of resources.

This paper initiates a theoretical study of MPLS protocols, and routing algorithms and lower
bounds are given for a variety of situations. We first study the routing problem on the line, a case
which is already nontrivial, and give routing protocols whose trade-offs are close to optimality. We
then extend our results for paths to trees, and thence onto more general graphs. These routing
algorithms on general graphs are obtained by finding a tree cover of a graph, i.e., a small family
of subtrees of the graph such that, for each pair of vertices, one of the trees in the family contains
an (almost-)shortest path between them. Our results show tree covers of logarithmic size for planar
graphs and graphs with bounded separators, which may be of independent interest.
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1. Introduction. In most conventional network routing protocols, a packet
makes its way from source to destination in essentially the following way: when a
packet reaches the router, the router analyzes the packet’s header (which contains
the destination address) and uses the results of this analysis to decide the next hop
for the packet. These routing decisions are made locally and independently of other
routers, based solely on the identity of the incoming edge and the analysis of the
packet header. For example, routers using conventional IP forwarding typically look
for a longest-prefix match between the destination address and the entries in the
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routing table to decide the next hop for the packet. In general, each router has to
extract the information relevant to it from the (much longer) packet header. Further-
more, conventional routers are not designed to use information about the source of
the packets from these headers.

An alternative to this routing model was proposed by the Internet Engineering
Task Force (IETF) and is called MultiProtocol Label Switching (MPLS) [11, 20]. In
MPLS, the analysis of the packet’s network layer header is performed just once; this
is done by the first router that receives the packet, called the ingress router. This
analysis causes the packet to be assigned a stack of labels, where these labels are
usually much smaller than the packet headers themselves [31, 30]. Each subsequent
router now examines only the label at the top of the label stack, and makes its routing
decision (i.e., the next hop) based solely on that label. It can then pop this label off
the stack, if it so desires, and push some labels (maybe none) onto the stack, before
sending the packet on its merry way. Note that, apart from looking at the top label,
none of the subsequent routers perform any further analysis of the network layer
header.

There are a number of advantages of MPLS over conventional network layer for-
warding protocols. The first one, already alluded to above, is the elimination of header
analysis at each hop. This allows the replacement of routers by simpler and faster
switches, which merely perform the basic operations of label lookup and replacement.
Furthermore, since the packet headers are analyzed by the ingress router when pack-
ets enter the system, the ingress router can possibly use additional information about
packets to route different packets along different paths. This enables the routing of
packets according to their desired quality of service. For example, packets correspond-
ing to time-sensitive applications may be sent along different channels from regular
data, which may be faster but more expensive. The ingress router may also use in-
formation about the source of the data, in addition to the destination address; this
is something that is not possible in conventional routing protocols. In addition to
these factors, traffic engineering and network control are important reasons for using
MPLS rather than conventional routing schemes [3, 24, 12]. This is for two reasons:
first, the time savings achieved by one-time analyses of packet headers allows us to
perform fine-grained routing of packets; second, this fine-grained routing allows the
entire route for the packet to be encoded very naturally on the stack. These features
have made MPLS very popular among network providers and router designers, and
companies like Cisco, Juniper, Lucent, and Nortel have been producing routers which
support MPLS protocols [9, 25].

However, despite this popularity of MPLS, and the fact that it is becoming more
widespread on the Internet, essentially nothing is known at a theoretical level about
the performance achievable by MPLS, or about the intrinsic trade-offs in its use of
resources. The basic question that this paper addresses is the following: what is the
depth of the stack that is sufficient for routing in an n-node network, and how does
this stack depth interact with the label size?

Note that a small number of labels is desirable, since the bandwidth reservation in
networks is often done by creating a (virtual) channel for each label; a small number
of labels thus ensures that traffic is not split too much, which usually implies a better
bandwidth utilization. Furthermore, having a small set of labels causes the forwarding
tables to be small, and makes the forwarding procedures simpler and faster. On the
other hand, the size of the label stack translates directly to the size of the packet
header, and hence small stacks are desirable as well. These goals naturally oppose
each other, and the trade-offs between these resources are nontrivial. If the label size
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is L and the stack depth is s, a simple counting argument indicates that Ls ≥ n, the
size of the network; it is not clear whether MPLS routing protocols can get close to
this information theoretic bound.

Previous papers on distributed routing do not address such questions. Indeed,
the idea of using a stack of labels is novel to MPLS, as is the all-important restriction
that the routers can look only at the top of the stack when deciding the next hop
for a packet. As a simple example, consider the question of routing on a path with
2 labels; with each intermediate router getting only one bit of information from the
stack (instead of the entire logn bit destination address), is it possible to achieve a
stack depth of O(log n)? While we show in section 2 that this is indeed possible, the
solution is not trivial and illustrates the issues that arise from this restricted model
of access to the network header.

This paper initiates a theoretical study of the MPLS protocol. We give routing
algorithms and lower bounds in a variety of situations. We first study the routing
problem on a path, and give near-optimal protocols for this basic case. When com-
bined with a suitable decomposition of trees into paths, these protocols then yield
routing algorithms for trees. These results are then extended to more general classes
of graphs by the use of tree covers. A tree cover is a set of subtrees of the graph such
that for each pair of vertices one of the trees in the cover contains an (almost-)shortest
path between the two vertices.

1.1. The model. The header of each packet consists of a stack S of labels.
The labels are drawn from a set Σ of size L, which is usually identified with the set
{1, 2, . . . , L}. The two quantities of interest are (a) the number of labels L and (b) the
maximum stack depths required for routing between any two vertices.

The network is represented by an undirected graph G = (V,E), each node rep-
resenting a router and running some routing protocol. A routing protocol A has two
components: a suite of stack-making functions {gv}v∈V and a suite of forwarding
functions {fv}, one each for every node v in the network.

Let Ev be the set of edges adjacent to the node v. The stack-making function
gv : V → (Ev × Σ∗) is evaluated at each ingress router v: it takes the destination
address u of the packet and outputs the outgoing edge e = (v, w) ∈ Ev to which v
should send the packet. Further, it outputs a stack gv(u) that subsequently would
take the packet from w to u. The forwarding function fv : Ev × Σ → (Ev × Σ∗),
where Ev is the set of edges incident to v, prescribes the behavior of the router. On
obtaining a packet with stack S, the router v performs the following actions:

• The router first pops the top label off the top of the stack; this label is denoted
by �. A correct protocol must ensure that if the stack is empty, then v is the
packet’s destination.

• If the packet arrived on edge e, let fv(e, �) = (e′, σ) for e′ ∈ Ev, σ ∈ Σ∗.
The router now pushes σ on top of the stack and sends the packet out on the
edge e′.

If there is a single function f such that fv = f for all v, the protocol A is called
uniform; otherwise it is nonuniform. A protocol A is an (L, s)-protocol for a graph
G if it uses L labels and has a maximum stack depth of s. We will mostly consider
protocols that route on shortest paths, and this is implicitly assumed in our results.
We will explicitly specify the cases in which packets may travel on nonshortest paths;
a routing protocol has stretch D if, given any pair u, v ∈ V , the protocol routes from
u to v on a path with length at most D times the length of the shortest path between
u and v.
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fv(left, 0) = (right, 〈 〉)

Fig. 1.1. An example of MPLS routing.

A simple example is given in Figure 1.1 with Σ = {0, 1}. All functions fv are the
same, and only the relevant subset of the actions is shown here. The packet in the
example is destined for the vertex labeled 10. Each node bases its decision on the top
(shaded) label and the incoming edge.

1.2. Our results. The first routing problem that we consider is on the path
Pn; here we show a substantial gap between uniform and nonuniform protocols. In
particular, we show that while uniform protocols on the line with L labels require
a stack depth of s = Θ(Ln1/L), there are nonuniform protocols using L labels that
require a stack depth of just O(logL n). Recall that there is an information-theoretic
lower bound of logL n on the stack depth, and hence the latter result is within a
constant factor of the optimum.

The protocol for the path serves as our basic building-block when we consider ar-
bitrary trees; we use it in conjunction with the so-called caterpillar decomposition [23]

of trees into paths to get a (∆ + k, kn1/k log n) uniform protocol and a
(
∆ + k, log2 n

log k

)
nonuniform protocol. (The additive ∆ in the number of labels is unavoidable while
routing on trees; if the maximum degree of a tree is ∆, then we require at least ∆− 1
distinct labels to achieve shortest path routing.) We also show that our uniform pro-
tocol is close to the best uniform protocol by give an almost matching lower bound
when k is O(log n). Furthermore, note that setting k = log n in the above nonuniform
protocol gives a stack depth of O(log2 n/ log log n) with ∆+O(log n) labels; we go on
to refine the protocol and give a nonuniform (∆ + log logn, log n) protocol as well.

The protocols developed for trees are then used to give routing protocols for
general graphs. To this end, a tree cover of a graph G = (V,E) is defined to be a
family of subtrees F of the graph such that for each pair of vertices u, v ∈ V there
exists a tree T ∈ F which contains an (almost-)shortest path between u and v. (See
Definition 4.1 for a formal definition.) If the network has a tree cover with t trees
and we want to route a packet from u to v, we can identify the appropriate tree for
this pair of vertices and use the tree routing protocol to route on it; note that this
causes the number of labels to increase by a factor of t, since the label has to encode
the identity of the tree.

A simple argument can show that general graphs do not have (logn)-sized tree
covers unless the trees are allowed to stretch distances by Ω(log n). Since a non-
constant stretch is often inadmissible in routing applications, we restrict our attention
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to important special classes of graphs. Our first result in this realm shows that graph
families with r(n)-sized balanced vertex separators have O(r(n) log n)-sized tree covers
(without any stretch); using the same idea and the fact that planar graphs have bal-
anced separators of size O(

√
n), we can get O(

√
n)-sized tree covers for planar graphs.

We then show a matching lower bound of Ω(
√
n) for tree covers of planar graphs.

Though these matching results seem disheartening, we show that allowing tree
covers to have a small stretch (of 3) makes them very powerful: we show that all
planar graphs have O(log n)-sized tree covers with stretch 3. The proof of this result
uses the planar separator theorem of Lipton and Tarjan [21] in a novel way.

As the above discussion indicates, our protocols are extremely modular in nature;
hence improvements in MPLS routing strategies for (say) trees will result in improve-
ments for trees and graphs (see the paper of Gupta, Kumar, and Thorup [19] for such
an improvement). Finally, we would like to emphasize that the constants involved in
our protocols are small (and perhaps can be improved), which makes these useful in
practice.

1.3. Previous work.
Distributed packet routing protocols. These protocols have been widely studied in

the theoretical computer science community; see, e.g., [13, 14, 29, 28, 10] or the survey
by Gavoille [15] on some of the issues and techniques. The results in these works are
incomparable to our results, since the objectives of the two lines of research are quite
different. Much of the conventional packet routing literature focuses on reducing the
sizes of the routing tables and the sizes of the packet headers while performing near-
shortest path routing. On the other hand, our work on MPLS routing may require
more memory for setting up the initial stack than conventional routing protocols;
however, once the stack is set up, the memory needed by each router just to forward
the packets is very small. As a concrete example, the best result known for minimizing
the total memory (i.e., summed over all the routers) on planar networks in traditional
routing is Õ(n4/3) due to Frederickson and Janardan [14]; in contrast, setting up
the stack in our protocols requires more memory, but the total memory required for
implementing the packet forwarding functions fv is Õ(n).

Another difference with previous packet routing results is that our algorithms
are name-independent; while many of the previous results require that the routing
protocol be allowed to assign the names to the nodes in some convenient fashion,
we do not make any such assumptions. (See the papers [4] and [2] for two other
conventional routing schemes which are name-independent.)

Spanners. There is considerable literature on finding sparse spanners of graphs
[1, 8]; these are sparse subgraphs that preserve distances well. However, results about
spanners are interesting only when the original graph is not sparse, whereas the routing
problems we address are nontrivial even for bounded degree graphs.

Distance labeling schemes. Another related corpus of work studies the problem
of distance labeling of graphs [34, 26, 16]. The distance labeling problem requires
assigning “short” labels to vertices so that the distance between two vertices can be
inferred from their labels alone, without any additional information about the graph.
The techniques used in many papers on distance labeling problems are similar to those
we use, and involve finding good separators of graphs. However, the scope of the two
problems are quite different. Indeed, the distance labeling problem precludes any
knowledge of the global structure of the graph, and hence the label sizes are usually
in the range of Θ(logn). In contrast, MPLS routing schemes assume that the graph
structure is known; the challenge in this case is in devising routing algorithms that
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base their routing decisions on a sublogarithmic (even possibly a constant) number
of bits. As an example, MPLS routing for the path graph is quite nontrivial, whereas
the distance labeling problem is trivial for the path. On the other hand, the similarity
in the techniques allows us to use some of the results on MPLS routing to improve
known results on distance labeling schemes. In section 5.2, we exhibit stretch-3 dis-
tance labeling schemes for planar graphs that use labels with O(log2 n) bits; previous
labeling schemes for planar graphs used a polynomial number of bits, even when a
constant stretch was allowed [16].

Tree covers. The notion of tree covers was introduced in the papers of Awerbuch
and Peleg [6] and Awerbuch, Kutten, and Peleg [5], though it had a slightly different
definition. In those papers, the trees were not required to be spanning trees, and
there was no explicit bound placed on the number of trees in the cover; however, the
number of trees that contained any particular vertex had to be small. The objective
was the same as in this paper: to construct a family of trees such that for every pair
of vertices there was a tree containing an almost-shortest path between them. The
best known constructions are due to Thorup and Zwick [33]; their algorithms find
stretch 2k − 1 tree covers for general graphs, where each vertex lies in Õ(n1/k) trees.
This can be used to give stretch 2k − 1 MPLS routing schemes for arbitrary graphs
with Õ(n1/k) labels and polylogarithmic stack depth. In contrast to these results, the
focus of our paper is on cases where constant stretch routing can be achieved with
both stack depth and labels being (logn)O(1).

1.4. Organization. The organization of the rest of the paper follows the above
discussions: in section 2, we give MPLS routing protocols for the line, which highlight
the difference in power between uniform and nonuniform routing. Section 3 gives the
routing protocols for trees using the results for the line. Constructions of tree covers
for graphs with small separators are given in section 4, which imply routing protocols
for these graphs. Finally, constructions of stretch-3 tree covers for planar graphs, as
well as their application to distance labeling schemes, appear in section 5.

2. Routing on the line. In this section, we give uniform and nonuniform short-
est path MPLS routing schemes for the path graph Pn; these will be used as basic
building blocks for tree routing schemes in the next section. For our uniform scheme,
we show that the maximum stack depth is O(Ln1/L) when L labels are used; our
nonuniform scheme uses a maximum stack depth of s = O(logL n). We also show
that both these bounds on the stack depth are within constant factors of optimum.

2.1. Uniform protocols. The upper bound of O(Ln1/L) is achieved by the
following simple strategy. Suppose we wish to send a packet from a node v to a node
u which is at distance D from it. Suppose that D− 1 can be written as dLdL−1 . . . d1

in base n1/L. We push di copies of i onto the stack for i going down from L to 1.
Now the forwarding function is trivial: nothing is pushed onto the stack when a 1 is
seen; seeing an i > 1 causes n1/L copies of (i− 1) to be pushed onto the stack. In all
cases, the outgoing edge is the one opposite the incoming edge.

A simple inductive argument can be used to prove that this forwarding function
maintains the following invariant—when the packet is at a vertex w at distance D′

from the destination u, the stack encodes D′ in the fashion described above. This
immediately implies that the maximum stack depth is at most Ln1/L; it also proves
the correctness of the protocol, since the stack being empty implies D′ = 0 and that
the packet is indeed at the destination u. The following theorem follows from the
discussions above.
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Theorem 2.1. There is a uniform routing protocol for the n-vertex path with a
maximum stack depth of Ln1/L.

This construction is indeed tight up to constant factors, as the following theorem
shows.

Theorem 2.2. Any uniform routing protocol for the n-vertex path requires a
stack depth of Ω(Ln1/L).

Proof. We will show the above lower bound for the special case where all packets
are forwarded on the path from left to right. Consider a directed auxiliary graph H
with the L labels as its vertices, with an arc (j, i) in the graph if the function f , on
seeing i on top of the stack, causes j (among others) to be pushed on the stack. Note
that any label that lies on a directed cycle in H can never be used in the routing
protocol, since the stack can never empty if this label appears on the stack. Hence
we can assume that H is a directed acyclic graph, and hence defines a partial order
on the nodes.

Consider a total order consistent with the partial order implied by H; w.l.o.g., this
is the order 1, 2, . . . , L. Hence each label i just corresponds to placing some number
of labels 1, . . . , i − 1 on the stack. Therefore, the ordering of the labels on the stack
does not matter—two stacks which have the same number of copies of label i for all
possible values of i will reach the same destination.

Let ki be the number of copies of label i on the stack, and hence k1+k2+· · ·+kL ≤
s. The number of solutions to this equation (and hence the number of distinct stacks)
is
(
s+L
L

)
, which must be at least n, the number of possible destinations. Some simple

algebra implies that s = Ω(Ln1/L), completing the proof.

2.2. Nonuniform protocols. Interestingly, in the case for nonuniform proto-
cols, the relationship between s and L almost achieves the information-theoretic bound
of s ≥ logL n. Since the direction of travel of the packet is decided by the edge at
which it enters the vertex, it suffices to give a procedure to send packets from left to
right.

For simplicity, consider the case when L = 2. Let the vertices on the path Pn

be numbered 0, 1, . . . , n− 1; this is only for ease of exposition, and the protocol does
not depend on this labeling. We direct all edges in Pn from left to right, and assign
label 1 to these edges. We then add some (virtual) arcs E′ to this graph, also directed
from left to right, and assign label 2 to these edges. It can be shown that these edges
can be added so that the following properties are satisfied:

• Single outgoing edge property : Each vertex v has at most one edge in E′ out
of it.

• Low-diameter property : For any two vertices u < v, there is a directed path
in Pn ∪ E′ from u to v of length at most 3 logn.

• Nesting property : Let u < u′ < u′′ be three distinct vertices on the line. If
(u, u′′) and (u′, v′) are two directed edges in E′, then v′ does not lie to the
right of u′′; i.e., v′ ≤ u′′. Essentially, no two edges in E′ cross each other;
either they span disjoint portions of the line, or the span of one is contained
within the span of the other.

One way to get such graphs is recursive: to build a graph G2k on 2k nodes, we
take 2 copies of G2k−1 on 2k−1 nodes and attach them in series, giving a graph on
2k − 1 vertices. (A graph on 2 nodes is just a single arc.) A new vertex is now
attached to the leftmost vertex by an arc labeled 1, and to the rightmost vertex by an
arc labeled 2. This new vertex becomes vertex 0 in the new graph G2k , and the other
vertices get suitably renumbered. In general, a graph Gn on n nodes is obtained by
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Fig. 2.1. Specifying the routing protocol for the path P16.

taking a graph on 2�log2 n� nodes and retaining only the leftmost n nodes. An example
for n = 16 is shown in Figure 2.1, where the solid edges are labeled 1 and the dotted
edges are labeled 2.

The nesting property implies the following property for shortest paths in Pn ∪E′

(measured in terms of the number of hops).
Lemma 2.3. Let u < u′ < v′ < v be four distinct nodes on the line Pn. If the

shortest path P from u to v in Pn ∪ E′ contains v′, then the shortest path from u′ to
v contains v′.

Proof. Suppose that the shortest path P ′ from u′ to v does not contain v′. Let
e = (w,w′) be an edge in P ′ such that w < v′ < w′; clearly, such an edge must exist.
We claim that P must contain w. If not, since u < w < v, P must contain an edge
e′ = (x, x′) such that x < w < x′; furthermore, x′ < v′ since P contains v′. But now
e and e′ violate the nesting property, a contradiction; hence w ∈ P .

Also, the portion of P from w to v must be the shortest path from w to v. Since
we know that P ′ contains w, replacing the portion of P ′ after w by the corresponding
portion of P , we again get a shortest path P ′′ from u′ to v which contains v′. Noting
that there is a unique shortest path between any two vertices in P ∪ E′ gives us a
contradiction and proves the lemma.

We can now describe the routing protocol. Given a node u and a stack of labels
l0, . . . , lr (l0 being on the top), we define the path defined by the stack to be the
sequence of edges obtained by starting from u and following the edges labeled l0, . . . , lr
in Pn ∪ E′. If u wants to send a packet to node v (u < v), the stack is initialized
so that the path defined by the stack is the shortest path from u + 1 to v, and the
packet is sent to u+ 1. The protocol will maintain the invariant that when a node u′

receives the packet, the path defined by the stack at that point is the shortest path
from u′ to v. The low-diameter property thus ensures that the stack depth is at most
3 log n.

Let us see how to maintain the invariant. Let the packet be at u′, and let the
edges labeled 1 and 2 originating from u′ be e1 = (u′, u1) ∈ Pn and e2 = (u′, u2) ∈ E′,
respectively. (If there is no label 2 edge from u′, the argument gets even simpler.)
Since the edges in E′ do not exist, a packet can be forwarded along e1 but not along
e2. If the top of the stack contains label 1, then u′ simply pops this label and sends
the packet to u1, the next vertex on Pn. Since the path defined by the stack was
inductively the shortest path from u′ to v and contained u1, the new stack must
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define the shortest path from u1 to v.
In the other case, the top of the stack has a 2: in this case, u′ pops it and pushes

a set of labels which encode a shortest path from u1 to u2. Lemma 2.3 ensures that
the shortest path from u1 to v contains u2 as an intermediate node, and hence the
path defined by the stack when it reaches u1 is also a shortest path from u1 to v,
maintaining the invariant.

For the graph Gn defined above, implementing the above protocol is extremely
simple. As mentioned above, each router pops off a 1 if it sees one on top of the stack;
the difference is in the handling of the 2’s. If the router has outdegree 1, it just pops
off the 2 (in fact, such a vertex will never see a 2); if it has outdegree 2, it replaces
the 2 by two 2’s. The following theorem follows from the above discussion.

Theorem 2.4. There is a nonuniform protocol for routing on the n-vertex path
which uses 2 labels and stack depth at most 3 log n.

It is trivial to encode O(logL) successive labels on the stack in a single label of
size L, and hence we can use the above protocol to get the following theorem.

Theorem 2.5. There is a nonuniform protocol for routing on the n-vertex path
which uses L labels and stack depth at most O(logL n). This is within a constant
factor of the information-theoretic bound.

3. An algorithm for trees. In this section, we consider the problem of routing
on trees. Since we already have developed protocols for the line that are within
constants of the best possible, we first show how to use them in a modular way to get
protocols for trees; these are then refined to get better trade-offs.

Let the tree be T , and let it be rooted at r. All the algorithms use the so-
called caterpillar decomposition of a tree into edge-disjoint paths. The caterpillar
dimension [23] of a rooted tree T , henceforth denoted by κ(T ), is defined thus: for a
tree with a single vertex, κ(T ) = 0. Else, κ(T ) ≤ k+1 if there exist paths P1, P2, . . . , Pt

beginning at the root and pairwise edge-disjoint such that each component Tj of
T −E(P1)−E(P2)−· · ·−E(Pt) has κ(Tj) ≤ k, where T −E(P1)−E(P2)−· · ·−E(Pt)
denotes the tree T with the edges of the Pi’s removed, and the components Tj are
rooted at the unique vertex lying on some Pi. The collection of edge-disjoint paths
in the above recursive definition form a partition of E, and are called the caterpillar
decomposition of T .

By the very definition of caterpillar decompositions, it follows that the unique
path between any two vertices of T intersects no more than 2κ(T ) of the paths in the
decomposition. It can also be shown that κ(T ) is at most log n (see, e.g., [23]).

Now given a packet that has to traverse k ≤ 2 log n paths, the stack just specifies
the k different stacks for routing on these paths, with each consecutive pair of stacks
separated by one of ∆ − 1 special labels that specify the path to switch to. Hence,
given an (L, s) routing protocol for the line, we get a (∆(T ) + L − 1, s × 2κ(T ))
protocol for the tree. Plugging in the values from the Theorems 2.1 and 2.5, we get
the following result.

Theorem 3.1. Given a tree T with maximum degree ∆, there exists a (∆ + k −
1, 2 k n1/k κ(T )) uniform routing protocol and a (∆+k−1, 6 logk nκ(T )) nonuniform
routing protocol for T .

Note that for k = 2 we have a (∆ + 1, 6 log2 n) nonuniform protocol, and for
k = log n and constant ∆ the worst-case guarantees for both these algorithms are
approximately (logn + O(1), O(log2 n)). The results of section 3.2 will show how to
improve on this result in the nonuniform case. But before that, let us prove some
lower bounds on uniform protocols for trees.
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3.1. A lower bound for uniform protocols on trees. Before proving the
lower bound, let us pin down what uniform protocols mean in the context of trees;
since vertices may have varying degrees, they cannot have exactly the same actions.
Hence, let us assume that there are ∆ special labels belonging to the set Σ∆ ⊆ Σ,
which are used only to travel a distance of one hop from a vertex, essentially by
specifying which of the outgoing edges to take. Let Σ′ = Σ \ Σ∆ be the remaining
labels. For each edge e = {u, v}, the vertex v specifies another edge e′ = {v, w}, called
the exit edge for v along edge e, such that any packet arriving at v on edge e having a
label from Σ′ on top of the stack is forwarded only along e′. Furthermore, the action
of all vertices on seeing a label from Σ′ is identical: i.e., an identical sequence of labels
is placed on top of the stack, and then the packet is sent along the exit edge for the
current vertex.

For such protocols, we now prove a lower bound that almost matches the result
of Theorem 3.1 for the case of k = log n.

Theorem 3.2. There exists a binary tree T̂ for which any uniform routing pro-
tocol that routes along shortest paths with L = O(log n) labels requires a stack depth
of Ω(log2 n/ log log n).

Proof. Let us study some of the properties of uniform routing protocols on binary
trees before we give the concrete instance for the lower bound. Look at any binary
tree T ; since each vertex has degree at most 3, it is easy to see that Σ∆ needs to only
contain a single label {l∆}. Indeed, when a node v receives a packet along an edge e,
it can only send it on one of the other two edges, or else the routing would not be
along a shortest path. One of these edges is the exit edge for v along edge e, and
hence we need only one label in Σ∆.

Two vertices u, v in T are said to be connected by a straight path if all the
internal vertices in the unique path connecting u and v have degree 2. Given two
nodes u, v ∈ T , let S[u, v] denote the stack depth needed to route a packet from u to
v. Given a label l, define Sl[u, v] as the stack depth needed to route a packet from u
to v such that when the packet reaches v, the top of the stack contains the label l.
Since we may refer to several different protocols, we will use the notation Sl[u, v](A)
and S[u, v](A) when talking about the protocol A. The following lemma follows from
the definition of a uniform protocol.

Lemma 3.3. Let v ∈ T be a node of degree 3 and let C1, C2, C3 be the components
of T \ {v}. Let vi be the neighbor of v in Ci. Then there exists a j ∈ {2, 3} such that
given any x1 ∈ C1 and xj ∈ Cj, S[x1, xj ] ≥ Sl∆ [x1, v] + S[v, xj ] − 1.

Proof. Consider the edge e = {v1, v}. Suppose the exit edge for the vertex v
along edge e is the edge {v, v2}. Now if we want to send a packet from x1 to x3,
it must contain l∆ on top of stack when it reaches v. Hence the part of this stack
which takes the packet from x1 to v contributes to Sl∆ [x1, v]. The part of the stack
below l∆ can actually route from v3 to x3, and hence S[v, x3] ≤ S[v3, x3] + 1. Since
S[x1, x3] = Sl∆ [x1, v] + S[v3, x3], the lemma follows.

Given two protocols A′′ and A′, we say that A′ strictly dominates A′′ if for
every pair of vertices u, v and label l ∈ Σ, the following hold true: (i) Sl[u, v](A′) ≤
Sl[u, v](A′′), (ii) S[u, v](A′) ≤ S[u, v](A′′), and (iii) there is a pair u, v of vertices, and
some label l such that Sl[u, v](A′) < Sl[u, v](A′′). Fix a uniform routing protocol A
that is not strictly dominated by any other A′.

Lemma 3.4. Let T contain a straight path of length n′ joining vertices u and v.
There exists a value x with n′/2 ≤ x ≤ n′, such that if u′, v′ are any two vertices in
T connected by a straight path of length x, then Sl∆ [u′, v′] is Ω (log n′/ log log n′).
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Proof. Let P be the path joining u and v, and let V ′ be the vertices in P whose
distance from u lies between n′/2 and n′. We claim that there is a vertex w ∈ V ′ such
that Sl∆ [u,w] is s′ = Ω (log n′/ log log n). Indeed, if we are allowed a stack depth of
s′, the number of different stacks possible is Ls′ . Since this must be at least n′/2, it
follows that s′ is at least Ω(logL n′) = Ω (logn′/ log log n).

Let the distance between u and w be x, suppose that u′ and v′ are two vertices
with a straight path of length x between them, and suppose Sl∆ [u′, v′] < s′. Then the
uniformity of A implies that, keeping other things the same, we can make Sl∆ [u,w] <
s′ and get a protocol that strictly dominates A, a contradiction. This proves the
lemma.

For each integer x = n1/3, . . . , 2n1/3, let Tx denote the complete binary tree of
depth 1/6 log n and having x subdivisions on each edge. Let F̂ = ∪Tx be the forest
formed by the union of all these trees; this is the lower bound instance. (We can

extend F̂ to a single binary tree T̂ by adding suitable edges; the bound clearly holds
for T̂ as well.) Let us define a branching node in Tx to be a node of degree 3.

Note that F̂ (and thus T̂ ) has a straight path of length 2n1/3 between two vertices.
Hence, by Lemma 3.4, there is a value x satisfying n1/3 ≤ x ≤ 2n1/3 such that
if u, v are two branching nodes in Tx joined by a straight path, then Sl∆ [u, v] is
Ω (log n′/ log log n) = Ω (logn/ log log n). Now, using Lemma 3.3 repeatedly, we can
demonstrate a path from the root to a leaf y of Tx such that routing from the root of
Tx to y requires stack depth Ω(log2 n/ log log n).

3.2. Improved nonuniform protocols. In this section, we show how to obtain
nonuniform routing protocols which require a stack depth of only O(log n) (as in the
case of the path graph), but with ∆ + O(log log n) labels.

Theorem 3.5. There exists a (∆ + 2 log log n, 21 log n) nonuniform routing pro-
tocol for trees.

Proof. For any vertex w ∈ T , let Tw be the subtree rooted at w. To prove the
theorem, we will need the following claim, which will be proved by induction on |Tw|.

Claim 3.6. There exists a nonuniform protocol to route a packet from any vertex
w to a descendant x in Tw using 2 log k + (∆− 1) labels and a stack of depth at most
18 k, where k = 
log2 |Tw|�.

To use this protocol to route packets from any vertex u to any other vertex x, we
first route it to w, the least common ancestor of u and x, and then use the protocol
from Claim 3.6 to route from w to x. Sending the packet from u to w is very simple;
indeed, the problem of routing a packet from a vertex to some ancestor in a tree is
isomorphic to the problem of routing on the line. This can be done by the protocol in
Theorem 2.5 with 2 labels and a stack depth of 3 logn; Claim 3.6 then ensures that
the stack depth to route from w to x is at most 18 log2 n.

Proof of Claim 3.6. Let P ′
1, . . . , P

′
t be the paths in the caterpillar decomposition

that contain the vertex w, and let Pi be the subpath of P ′
i that contains w and its

descendants; i.e., Pi = P ′
i ∩ Tw.

We make an additional requirement on the caterpillar decomposition for the tree
T , which is the following halving property: we demand that for a vertex v ∈ Pi,
any connected component of Tw − {v} not containing a node of Pi has at most
|Tw|/2� nodes. It can be shown that such a caterpillar decomposition exists (see,
e.g., [23]).

The basic idea is similar to the one used in section 3; we will route on a series
of paths, using the protocol for the line given in Theorem 2.5 as the basic building
block. As before, when we switch between paths, a special subset of ∆ − 1 of the
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Fig. 3.1. The tree Tw in the proof of Claim 3.6. Vertices marked by squares belong to V ′.

labels will be used to indicate which of the new paths to continue on. The rest of the
proof indicates how the other 2 log k labels can be used for the rest of the routing.

The base case of |Tw| = 1 is trivial. We now show how to route a packet from w
to x, where x is a descendant of some node in Pi − {w}; the lemma follows from the
fact that the paths P1, . . . , Pt intersect only at the origin node w.

Consider a vertex v ∈ Pi − {w}, and let V ′ be the immediate children of v which
do not lie on Pi itself (for an illustration, see Figure 3.1). Define T (v) be a subtree
rooted at v containing v, the subset of v’s children V ′ that do not lie on Pi, and all the
descendants of V ′. Observe that if v1 �= v2 ∈ Pi, then T (v1) and T (v2) are disjoint.
We define t(v), the index of a node v, to be 
log2 |T (v)|�. Let the group I(j) be the
set of nodes in Pi−{w} with index j. Note that if t(v) = j, then |T (v)| ≥ 2j−1; since
all the trees T (v) are disjoint and their union contains at most |Tw| ≤ 2k nodes, there
can be at most 2k−j+1 nodes in I(j).

We now define log k supergroups, with each supergroup being the union of several
groups I(j). For each p = 0, . . . , log k, define

I(p) =
2p+1−1⋃
q=2p

I(k − q + 1).

Since the size of I(p) is maximized when all nodes in it come from the group I(k −
2p+1 + 2), the supergroup I(p) can contain at most 22p+1−1 nodes. We divide the
2 log k labels we have into log k sets L1, . . . , Llog k, with each Li containing two labels.
The labels in Lp are used to route from w to nodes that lie in I(p). If a node in Pi

that does not belong the supergroup I(p) sees a label in Lp on top of the stack, it
merely forwards the packet on to its unique child lying in Pi. Theorem 2.5 implies
that we can use the labels in Lp to route from w to all nodes in I(p) using a stack
depth of at most 3(2p+1 − 1).

Suppose that w wants to send a packet to x ∈ T (v), with v ∈ I(j) and I(j) ⊆ I(p).
The top of the stack contains the labels (belonging to Lp) which specify how to send
the packet from w to v; this requires a depth of at most 3(2p+1 − 1). Let v′ ∈ V ′

be the child of v such that x ∈ Tv′ ; hence, the next label on the stack is one of the
∆−1 labels and causes v to forward the packet to v′. The remaining part of the stack
specifies how to route the packet from v′ to u; by induction, this part has depth at
most 18 
log |Tv′ |�.
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By the facts that v ∈ I(p) and |Tv′ | ≤ |T (v)|, it must be the case that 
log |Tv′ |� ≤
k−2p+1. Furthermore, the halving property of the caterpillar decomposition ensures
that |Tv′ | ≤ |Tw|/2 ≤ 2k−1. Hence the total stack depth to route from w to x is at most

3 (2p+1 − 1) + 1 + 18 
log Tv′�
≤ 3 (2p+1 − 1) + 1 + 6 (k − 2p + 1) + 12 (k − 1)

≤ 18 k.

This shows that we can achieve a stack depth of at most 18 k using only ∆ + 2 k − 1
labels, proving the claim.

4. Covering graphs by trees. Several problems arise in trying to extend the
approach of decomposing arbitrary graphs into paths, and then using the path routing
schemes on them: the shortest paths between vertices in general graphs are not unique,
and they intersect in nontrivial ways, making it difficult to arrive at a useful notion of
a path decomposition. On the other hand, if we find a family of t subtrees, such that
for each pair of vertices there was a tree in this family that maintained the shortest
path distance between them, we could use this for routing. Indeed, we could use the
tree routing scheme of the previous section, with the labels also specifying which of
these t trees we were routing on; this would cause the number of labels to increase by
a factor of t. We could, in fact, relax the distance preservation condition and allow
distances to be stretched by a small factor even in the best tree. Motivated by this,
we define a tree cover of a graph, as follows.

Definition 4.1. Given a graph G = (V,E), a tree cover (with stretch D) of G
is a family F of subtrees {T1, T2, . . . , Tk} of G such that for every u, v ∈ V there is a
tree Ti ∈ F such that dTi(u, v) ≤ DdG(u, v).

Note that, since the trees Ti are subtrees of G, it immediately follows that
dTi

(u, v) ≥ dG(u, v) for all u, v ∈ V and Ti ∈ F . The following theorem formal-
izes the discussion above.

Theorem 4.2. Given an (L, s) protocol for routing on trees, and a tree cover F
of G with stretch D, there exists an (L |F|, s) protocol (with stretch D) for G.

Tree covers have been previously defined and used for conventional routing appli-
cations in [6, 5] (see also [27, Chapter 15]). Note that our tree covers, as defined in
Definition 4.1, are slightly different from those in the previous literature; we do not
place a restriction on the number of trees in which a vertex appears, instead placing
a uniform restriction on the number of trees in the family.

4.1. Some lower bounds. It is easy to see that the size of a tree cover may
necessarily be large: if we require a stretch-1 tree cover for the complete graph Kn,
the union of the trees Ti in the cover must cover every edge, and hence Ω(n) trees are
required in this case.

Even allowing stretch-D tree covers does not help much: there are constructions
of n-vertex graphs with Ω(n1+4/(3g−6)) edges which have girth g [22]. For such a
graph, desiring a stretch of at most g− 2 forces the union of Ti to contain every edge
of the graph. This gives a lower bound of Ω(n4/3D) on the size of tree covers having
stretch D. For the special case of stretch 3, note that any stretch-3 tree cover for the
complete bipartite graph must also require Ω(n) trees.

While the graphs considered above are not sparse, these lower bounds can be
strengthened to obtain the following theorem.

Theorem 4.3. There are n-vertex graphs with maximum degree 3 for which any
stretch-D tree cover must contain nΩ(1/D) trees.
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Fig. 4.1. Mapping an edge of G into an edge of H. The dotted edges have length 0.

Proof. Let us consider an n̂-vertex graph G = (V,E) with girth D + 2 and
m̂ = |E| = Ω(n̂1+4/3D) edges given by Margulis [22], and create an n-vertex degree-3
graph H = (V ′, E′) from it as follows. Initially V ′ = E′ = ∅. For each vertex v ∈ V
of degree δ(v), we create a path Pv with δ(v) vertices, with v as one of its endpoints,
and consisting of δ(v)−1 other (new) vertices. We set the length of all these edges to
be 0 and add all these vertices and edges to H. We now add some more edges to E′:
for an edge (u, v) ∈ E, we add an edge (of length 1) between some vertex of Pu and
some vertex of Pv such that the degree of all vertices stays at most 3. (Since there
are δ(v) vertices in Pv and δ(v) such edges are added, this is trivially possible.) It is
easy to check that n = |V ′| = 2|E| and |E′| ≤ 3

2 |V ′| = 3|E′|. Furthermore, since G is
the minor of H obtained by contracting all the 0-length edges, and the 0-length edges
themselves induce a forest in H, it can be verified that each cycle on H contains at
least (D + 2) edges of unit length.

Let FH = {T ′
1, T

′
2, . . . , T

′
t} be a stretch-D tree cover for H; we want to infer that

t = nΩ(1/D). To this end, we will use FH to define a family FG of t forests in G such
that every edge in G must be contained in some forest in FG. This would imply that
t ≥ n̂4/3D ≤ nΩ(1/D).

Given a tree T ′
i ∈ FH , let us define the forest Fi of G as follows: consider an

edge (u, v) ∈ E. Due to the construction above, this edge corresponds to an edge
(ui, vj) ∈ E′ with ui ∈ Pu and vj ∈ Pv. (See Figure 4.1 for an illustration.) We add
(u, v) to Fi if the entire path 〈u, u1, u2, . . . , ui, vj , vj−1, . . . , v1, v〉 lies in T ′

i . It is easily
verified that Fi is a forest.

Let us now prove that every edge in G must be contained by some forest Fj ∈ FG

if FH is a stretch-D tree cover. Consider an (u, v) ∈ E as above; we claim that one of
these trees T ′

i ∈ FH must contain the entire path 〈u, u1, u2, . . . , ui, vj , vj−1, . . . , v1, v〉.
Indeed, since every cycle in H contains (D + 2) edges of unit length, the absence of
this path in T ′

i would imply that the alternative path between u and v in T ′
i would

incur a stretch of at least D + 1. Let T ′
j contain this path; by the mapping above, Fj

now contains the edge (u, v) ∈ E. Hence each edge in E is contained in some forest
in FG, implying that t ≥ n4/(4+3D) and proving the theorem.

In view of these negative results, we will focus our attention on some natural
important families of graphs, like planar graphs and those with small separators. In
this section, we consider tree covers with stretch 1 and show that graphs which have
small separators (and whose subgraphs also have this property) have good tree covers.
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This result also shows that planar graphs have O(
√
n)-sized tree covers; we then show

that this bound is tight.

4.2. Unit-weighted grid. To warm up, let us give the following simple result,
which illustrates some of the ideas used later in the section.

Proposition 4.4. The unit-weighted n-vertex grid G has tree covers of size
O(log n).

Proof. Let the vertex set of G be V = {(i, j) | 1 ≤ i, j ≤
√
n}. Consider the tree

T defined by taking the center vertical path P = {(
√
n/2, j)|1 ≤ j ≤

√
n)} and the

horizontal paths Pj = {(i, j)|1 ≤ i ≤
√
n)} for all j. It is easy to check that, for any

two vertices that lie in different halves of the grid defined by the vertical path P , the
shortest path lies in T .

To maintain distances between vertices which lie on the same side of the vertical
path, we can recurse on both the smaller grids GL and GR induced by {(i, j) ∈
V | i <

√
n/2} and {(i, j) | i >

√
n/2}, respectively. (A construction identical to the

one for the square grid works for rectangular grids as well, and so the recursion is well
defined.) Inductively, we get two families of at most t = log(n/2) forests, one for each
subgrid GL and GR; let them be FL = {F ′

1, F
′
2, . . . , F

′
t} and FR = {F ′′

1 , F
′′
2 , . . . , F

′′
t },

respectively. Note that defining Fi = F ′
i ∪F ′′

i gives us t forests of the original graph G
(since F ′

i and F ′′
i are vertex disjoint), and each of these can be extended to a spanning

tree by adding some more edges. Finally, adding the tree T to these log n − 1 trees
gives us the desired log n-sized tree cover.

Combining this result for the grid with Theorems 4.2 and 3.5 gives us an
(O(log n log log n), O(log n)) routing protocol. While it is not clear how to improve
the tree cover of Proposition 4.4, it is indeed possible to get a better routing scheme
for the unweighted grid. Given two vertices u = (i, j) and v = (i′, j′), there is a
shortest path between them that goes from u to w = (i, j′) and then from w to v.
The protocol specifies how much distance to go without changing the first coordinate,
and then how far to go without changing the second coordinate; this gives us an
(O(1), O(log n)) routing scheme for the grid.

4.3. Graphs with small separators. We say that a graph G on n vertices
admits r(n)-sized hierarchical separators if it can be separated into pieces of size at
most 2n/3 by removing at most r(n) vertices, and any connected component Gi thus
obtained has a separator of size r(|Gi|), and so on. Using some of the ideas from
the construction above, we give tree covers of size O(r(n) log n) for families of graphs
which admit r(n)-sized hierarchical separators. It is well known that for planar graphs,
r(n) = O(

√
n) [21], and for treewidth-k graphs, r(n) = k (see, e.g., [7]). (We shall

assume that r(n) is a monotonically increasing function of n.)
The basic idea is simple: we first find a separator S of G of size at most r(n). For

each of the vertices s ∈ S, we take the shortest-path tree Ts rooted at S. Lemma 4.5
now shows that the distance between a vertex in any component C of G − S and
another vertex in G− C is maintained by the tree Ts for some s ∈ S.

Lemma 4.5. For any pair of vertices u, v ∈ T for which the shortest path P con-
necting them intersects S, there is a tree Ts which contains the shortest path between
u and v.

Proof. Let us assume, for the sake of convenience, that P is the unique short-
est path between u and v. Let P ∩ S contain the vertex s. Then P must be the
concatenation of the shortest path from s to u and that from s to v. Since both these
paths lie in Ts, the claim is proved.
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We now have to maintain distances between vertices lying in some component of
G−S. However, each of these components has size at most 2n/3; recursively, for each
component, we can find a tree cover of size r(2n/3) log3/2(2n/3) ≤ r(n)(log3/2 n− 1).
Finally, pairing them up and adding the set of r(n) trees created at the top level, we
get a tree cover with r(n) log3/2 n subtrees, proving the following theorem.

Theorem 4.6. Given a graph which admits r(n)-sized hierarchical separators,
we can find a tree cover of size O(r(n) log n).

4.4. Lower bounds. For planar graphs, we can obtain tree covers of size O(
√
n);

this requires using the existence of separators of size r(n) = O(
√
n) and being slightly

more careful in the above analysis. We now show that this result for planar graphs is
tight.

The lower bound is achieved on a reweighted grid: let G = (V,E) be the n = t× t
square grid, where the vertices are V = {(i, j) | 1 ≤ i, j ≤ t}. Since there may
be several shortest paths between two vertices, let us break the symmetry. Define a
partial order on the edges by declaring all vertical edges in the grid to be less than the
horizontal edges; the lexicographically least shortest path between two vertices in the
grid is now defined to be the (unique) shortest path between them. (It can be verified
that there is a setting of edge weights that achieves this as well; e.g., set the length of
an edge e joining vertices (i, j) and (i′, j′) to be 1 + ε (min(i, i′) + (1 + ε) min(j, j′))
for ε = 1/n.) Defining this total order ensures that the lexicographically least path
between two vertices consists of all the vertical edges followed by the horizontal edges.
The following lemma then follows immediately.

Lemma 4.7. Given any two vertices in G, there is a unique shortest path between
them. Furthermore, this shortest path has at most one bend.

Let T be any spanning tree of G, and let ST be the set of pairs of vertices
(u, v) ∈ V × V such that T contains a shortest path between u and v as defined
above. The following key lemma shows that ST cannot be too large.

Lemma 4.8. For any spanning tree T of G, the number of vertex pairs whose
shortest paths lie in T is O(t3); i.e., |ST | = O(t3).

Before we prove the lemma, let us see what it implies: since there are
(
n
2

)
= Ω(t4)

pairs of vertices, this shows that we need Ω(t) = Ω(
√
n) trees in the cover, proving

the following theorem.
Theorem 4.9 (lower bound theorem). There exist length assignments to the

edges of the n-vertex grid so that any tree cover (with stretch 1) is of size Ω(
√
n).

Proof of Lemma 4.8. A connected path P ⊆ T is called straight if it does not
have any bends and is of maximal length; i.e., adding any other edge of T to P results
in a bend. Let {P1, . . . , Pk} be the set of all straight paths in T , and let Vi = V (Pi).
Clearly, each straight path has at most t vertices, i.e., |Vi| ≤ t. Furthermore, the
paths must cover the entire tree, and hence ∪k

i=1Vi = V . The maximality of these
straight paths ensures that for any i �= j, |Vi ∩ Vj | ≤ 1.

Construct the intersection graph T ′ = (V ′, E′) for these paths, where V ′ has a
vertex pi for each path Pi and E′ contains an edge joining pi and pj if and only if
Vi ∩ Vj �= ∅. Since a cycle in T ′ would imply a cycle in T , it follows that T ′ is a tree.

Claim 4.10. Let u ∈ Vi, v ∈ Vj be two vertices. The tree T preserves the shortest
path between u and v only if either i = j or (pi, pj) is an edge in T ′.

Proof. By Lemma 4.7, the shortest path P between u and v has at most one
bend. Suppose E(P ) ⊆ E(T ); then P either lies within some straight path Pl (and
hence i = j = l), or lies in the union of two straight paths which intersect (and hence
(pi, pj) ∈ E′).
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Let ti = |Vi| ≤ t, and define the weight of the tree T ′ to be

f(T ′) =
∑

pi∈V ′

t2i +
∑

(pi,pj)∈E′

(ti − 1)(tj − 1).(4.1)

Claim 4.10 implies that |ST | ≤ f(T ′), and hence it suffices to show that f(T ′) is O(t3).
For the rest of the proof, we will not look at the semantics of the sets again.

Instead we will consider an arbitrary set system on t2 vertices satisfying the following
properties: (a) each set Vi has size ti ≤ t, (b) two sets intersect in at most one element,
and (c) the intersection graph of the subsets is a tree. For such an intersection tree T ′,
we assign weight t2i to each node and (ti − 1)(tj − 1) to each edge (pi, pj) in T ′; hence
f(T ′) is the total weight of vertices and edges in T ′. The following claim now suffices.

Claim 4.11. For an intersection tree T ′ satisfying conditions (a)–(c) above, the
total weight f(T ′) of vertices and edges is O(t3).

Proof. Let us root T ′ at any vertex, and record the following useful lemma.
Lemma 4.12. Suppose (pi, pj) ∈ E′ with ti + tj ≤ t. Then deleting the two sets

Vi and Vj and adding Vi ∪ Vj to the set system maintains properties (a)–(c) and does
not cause the weight to decrease.

Proof. Clearly, the size of the new set |Vi ∪ Vj | = ti + tj − 1 ≤ t, satisfying
property (a). Furthermore, since the intersection graph was initially a tree, no Vl (for
l �∈ {i, j}) can intersect both of Vi and Vj , and hence |Vl∩(Vi∪Vj)| ≤ 1, satisfying (b).
Also, the new intersection graph is obtained by contracting the edge (pi, pj) in T ′.
Finally, the increase in weight of the tree is at least

(ti + tj − 1)2 − t2i − t2j − (ti − 1)(tj − 1) = 2titj − 2ti − 2tj − titj + ti + tj

= (ti − 1)(tj − 1) − 1 ≥ 0,

hence proving the lemma.
We can perform the above operation on the tree T ′ up to the point at which every

edge (pi, pj) ∈ E′ has ti + tj ≥ t + 1. We call a leaf pi in the resulting tree T ′ bad if
ti < t/2, and we delete all these leaves from T ′ to get a new tree T ′′. Since the parent
vertices of the deleted leaves must be of size at least t/2, all leaves in T ′′ (which are
either surviving leaves of T ′ or parents of leaves deleted from T ′) have size at least t/2.

We claim that T ′′ has 4t nodes. Indeed, let us root T ′′ at some vertex and greedily
match nodes in T ′′: we start at the root, which we match to one of its children. At the
ith step, we look at the unmatched nodes at depth i in T ′′, and match them to one of
their children. At the end of the process, all nodes except some leaves of T ′′ would be
matched. Note that, for each edge (pi, pj) in the matching, ti + tj ≥ t+ 1, and hence
there are at most 2 · t2/(t+ 1) < 2t matched nodes. Furthermore each leaf of T ′′ that
is unmatched has at least t/2 nodes, and hence T ′′ has at most 2t unmatched nodes;
this proves the claim.

Let us now bound f(T ′). The contribution of the edges of T ′′ is at most t2(4t−1),
since each edge can contribute only t2. The edges connecting the deleted bad nodes
to their parents contribute O(t3); this is because the bad leaves are all disjoint, and
hence

∑
ti (summed over the bad leaves) is at most t2. For the vertex contributions,

note that T ′′ has 4t nodes, each having at most t elements, and hence the contribution
of these nodes is at most O(t3). Finally, the bad leaves are all disjoint with

∑
ti ≤ t2,

and maxi ti ≤ t; hence
∑

i t
2
i ≤ (

∑
i ti) × (maxi ti) ≤ t3. Summing up all these terms

shows that f(T ′) = O(t3).
Since f(T ′) gave a bound on the number of pairs of vertices in the grid whose

distances could be maintained by a single tree, we need at least Ω(t) = Ω(
√
n) trees

in the cover, thus proving the theorem.
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Fig. 5.1. Path between u and v in the proof of Theorem 5.1.

5. Tree covers for planar graphs. In the previous section, we saw that planar
graphs may require polynomially sized tree covers if we allow no stretch. The results
of this section show that all planar graphs have stretch-3 tree covers of size O(log n).
For this result, we use the planar separator theorem of Lipton and Tarjan [21] in an
unusual way.

5.1. Isometric separators. We can refine the ideas in section 4.3 to get an
O(log n)-sized stretch-3 tree cover for all planar graphs. Given a graph G = (V,E), de-
fine a k-part isometric separator to be a family S of k subtrees S1 = (V1, E1), . . . , Sk =
(Vk, Ek) of G such that the following two conditions hold:

• S = ∪iVi is a 1
3– 2

3 separator of G; i.e., each component in G \ S has at most
2n
3 vertices, where n is the number of vertices in G.

• For each i and each pair of vertices u, v ∈ Si, dSi(u, v) = dG(u, v); i.e., each of
the subtrees Si contains the shortest paths between its constituent vertices,
and hence the tree metric on Si is isometric to the restriction of the shortest
path metric of G to Vi.

Note that the parameter of interest is not the total number of vertices in S, but
only the number of isometric subtrees. Trivially, any graph having a 1

3– 2
3 separator

of size r(n) has an r(n)-part isometric separator, with each Si having just a single
vertex. Isometric separators can also be used to give small-stretch routing; a simple
extension of the ideas in the previous sections demonstrates the following theorem.

Theorem 5.1. Given a graph G = (V,E) with r(n)-part isometric separators,
there exists a stretch-3 tree cover with O(r(n) log n) trees.

Proof. The algorithm is very similar to that of Theorem 4.6. Let S1, S2, . . . , Sr(n)

be the subtrees for G. For each i, we construct a tree Ti as follows: we contract the
edges of Si to a new node si and find a shortest-path tree from si in the resulting
graph. We then expand back the contracted edges in this tree, and call the resulting
tree Ti. Note that Ti contains Si, as well as a shortest path from every vertex in V −Vi

to the subtree Si. We claim that if the shortest path between any two vertices in V
intersects the separator vertices ∪iVi, then one of these trees approximately maintains
the distance between them.

Indeed, consider vertices u, v such that the shortest path P between u and v
intersects some Si (at point b, say). The path P ′ between u and v in Ti can be
divided into three sections P ′

1, P
′
2, P

′
3, where P ′

1 is the shortest path from u to Si, P
′
3

is the shortest path from v to Si, and P ′
2 is the unique path in Si connecting the points

a and c at which P ′
1 and P ′

3 meet Si. (See Figure 5.1 for an illustration.) For nodes
x, y, let [x, y] denote the shortest path between x and y in G. Now since [u, a] and [v, b]
are the shortest paths to Si, dG(u, a) ≤ dG(u, b) and dG(v, c) ≤ dG(v, b). Furthermore,
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by the fact that [a, c] is the shortest path, dG(a, c) ≤ dG(a, u) + dG(u, v) + dG(v, c).
However, the length of the path

dTi(u, v) = dG(u, a) + dG(a, c) + dG(c, v)

≤ dG(u, a) + (dG(a, u) + dG(u, v) + dG(v, c)) + dG(c, v)

≤ 2(dG(u, b) + dG(v, b)) + dG(u, v) = 3dG(u, v),

which proves the claim.
This gives us r(n) trees {Ti}; it now remains to maintain distances lying within

the connected components of G − ∪iSi, and hence we build tree covers for these
subgraphs recursively. Since the components have size at most 2n

3 , we would again
get at most r(n)(log3/2 n−1) trees from each component; pairing them up and adding
the r(n) trees from the top level would give us the desired tree cover with at most
r(n) log3/2 n trees.

A close examination of the proof of the planar separator theorem of Lipton and
Tarjan [21] shows us that all planar graphs have 2-part isometric separators. Indeed,
their proof first fixes an arbitrary tree T in the planar graph G and triangulates the
graph while maintaining the planarity; it then considers cycles formed by a nontree
edge (u, v) and the path between u and v in the tree, and shows that the vertices of
one such cycle form a good balanced separator.

Let us take T to be the shortest-path tree from some (arbitrary) vertex x, and let
the separator be the vertices of the fundamental cycle formed by adding the nontree
E = {u, v} to T . Since T is a shortest-path tree rooted at x, there is a natural
relationship between vertices in G, and let lca(u, v) be the least common ancestor of
u and v in T . The claimed 2-part isometric separator consists of the two paths from
lca(u, v) to u and v.

Using this fact that planar graphs have 2-part isometric separators in conjunction
with Theorem 5.1 gives us the following theorem.

Theorem 5.2. There exists a stretch-3 tree cover of size O(log n) for all planar
graphs.

Combining this result with Theorems 4.2 and 3.5, we immediately obtain good
routing schemes for planar graphs.

Corollary 5.3. There is an (∆ + O(log n log log n), O(log n)) routing scheme
for planar graphs with stretch at most 3.

Proving such a result for broader classes of graphs, say for graphs with bounded
treewidth or other graphs with small excluded minors, still remains an open problem.

5.2. An application to small distance labelings. In this section, we give
another application of isometric separators. A distance labeling scheme specifies a
way to label each vertex v of an input graph G with a label l(v) drawn from a set
of labels Σ, and also a uniform function f : Σ × Σ → R

+ (independent of the input)
which takes two labels and outputs a distance value. A stretch-D distance labeling
scheme ensures that, given a graph G, the estimate given by f is within a factor D
of the actual distance; i.e., 1 ≤ f(l(u), l(v))/dG(u, v) ≤ D for all pairs of vertices
u, v ∈ G. These labeling schemes have been well studied (see, e.g., [34, 26, 16]).

Theorem 5.4. For any planar graph G = (V,E) with diameter diam(G), there
is a stretch-3 distance labeling scheme with labels of size O(log n log diam(G)) bits.

The result of Theorem 5.4 should be contrasted with the result of Gavoille et al.
[16], which says that planar graphs require labels of length Ω(n1/3) bits if no stretch is
allowed. We should point out that it is possible to get a simpler O(log3 n) bit result,



472 ANUPAM GUPTA, AMIT KUMAR, AND RAJEEV RASTOGI

by taking the O(log n) tree cover of Theorem 5.2 and using the distance labeling
scheme of Peleg [26] to embed each tree with O(log2 n) bits.

Proof of Theorem 5.4. For each vertex v, we generate 5 log n coordinates φi(v),
with each of these coordinates using log diam(G) bits; these coordinates are gener-
ated in groups of five. Let us fix a hierarchical decomposition of G using isometric
separators.

To generate the first group for v, consider the 2-part isometric separator S0 of
G0 = G. This has two shortest paths, say P0 and P ′

0, and let a0 and a′0 be arbitrary
endpoints of P0 and P ′

0, respectively. The first two coordinates encode distances
from these paths; i.e., φ1(v) = dG0(v, P0) and φ2(v) = dG0(v, P

′
0). For the next

two coordinates, let v0 and v′0 be the closest vertices from v on P0 and P ′
0, and set

φ3(v) = dG0
(v, a0) and φ4(v) = dG0(v, a

′
0). Finally, look at the graph G \ S0, and

record in the fifth coordinate the connected component in which v lies, where we
have numbered the components by some consistent canonical order. Set G1 to be
the component of G \ S0 containing v, and recurse on G1 to create the next set of
coordinates. Note that if v was in the separator, the rest of the labels would be set
to ∞.

For the decoding function f(u, v), we find the highest level of recursion k in which
the two vertices lie in different components (which is indicated by a difference in their
values in the corresponding fifth coordinate φ5k+k). For each level of recursion i till
that level k, let the graph containing u and v be denoted by Gi. Now we obtain an
estimate of the distance between u and v in G by summing dGi(v, Pi) and dGi(v, P

′
i ),

and then adding |dGi(v, ai)− dGi
(v, a′i)| to it. (All these values can be obtained from

the coordinates φ5i+j for 1 ≤ j ≤ 4.) Finally, we take the minimum among all these
estimates 0 ≤ i ≤ k.

Using an argument similar to the one used in Theorem 5.2, it can be shown that
if the shortest path between u and v intersected Si, then the estimate for level i would
be within a factor of 3 of dG(u, v); all other estimates would be at least as large as
dG(u, v). This proves the theorem.

6. Conclusions. Let us conclude by mentioning some of the results that have
appeared since the announcement of these results. Simultaneously and independent
of our work, Thorup has used the planar separator theorem of Lipton and Tarjan in
a manner similar to an approach in section 5.1 to obtain compact distance oracles
for planar digraphs [32]. In fact, he uses these techniques to give a stretch-(1 + ε)
distance labeling scheme of size O(log2 n) for planar graphs.

Subsequently, the paper of Gupta, Kumar, and Thorup [19] has given asymptot-
ically optimal (∆ + k,O(logk n)) MPLS routing schemes for trees, combining these
with the results of [32] to obtain (1+ε) stretch (∆+O(log n), O(log n)) MPLS routing
schemes for planar graphs. Some experimental results have been given by the authors
in [18], where the question of approximating the minimum label size for a given stack
depth is also considered.
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Abstract. We investigate the worst-case behavior of the simplex algorithm on linear programs
with three variables, that is, on 3-dimensional simple polytopes. Among the pivot rules that we
consider, the “random edge” rule yields the best asymptotic behavior as well as the most complicated
analysis. All other rules turn out to be much easier to study, but also produce worse results: Most of
them show essentially worst-possible behavior; this includes both Kalai’s “random-facet” rule, which
without dimension restriction is known to be subexponential, and Zadeh’s deterministic history-
dependent rule, for which no nonpolynomial instances in general dimensions have been found so
far.
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1. Introduction. The simplex algorithm is a fascinating method for at least
three reasons: For computational purposes it is still the most efficient general tool
for solving linear programs; from a complexity point of view it is the most promising
candidate for a strongly polynomial time linear programming algorithm; and last
but not least, geometers are pleased by its inherent use of the structure of convex
polytopes.

The essence of the method can be described geometrically: Given a convex poly-
tope P by means of inequalities, a linear functional ϕ “in general position,” and some
vertex vstart, the simplex algorithm chooses an edge to a neighboring vertex along
which ϕ decreases strictly. Iterating this yields a ϕ-monotone edge-path. Such a path
can never get stuck, and will end at the unique ϕ-minimal (“optimal”) vertex of P .

Besides implementational challenges, a crucial question with respect to efficiency
asks for a suitable pivot rule that prescribes how to proceed with the monotone path at
any vertex. Since Dantzig invented the simplex algorithm in the late 1940’s [4], a great
variety of pivot rules have been proposed. Most of them (including Dantzig’s original
“largest coefficient rule”) have subsequently been shown to lead to exponentially long
paths in the worst case. (See [1] for a survey.) Prominent exceptions are Zadeh’s
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history-dependent “least entered” rule and several randomized pivot rules. Particu-
larly remarkable is the “random facet” rule proposed by Kalai [9]; its expected path
length for all instances is bounded subexponentially in the number of facets. See also
Matoušek, Sharir, and Welzl [14].

In this paper, we analyze the worst-case behavior of the simplex method on 3-
dimensional simple polytopes for some well-known pivot rules. At first glance, the
3-dimensional case may seem trivial, since by Euler’s formula a 3-polytope with n
facets has at most 2n−4 vertices (with equality if and only if the polytope is simple),
and there are examples where n − 3 steps are needed for any monotone path to the
optimum (see, e.g., Figure 2.1). Therefore, for any pivot rule the simplex algorithm
is linear, with at least n− 3 and at most 2n− 5 steps in the worst case. However, no
pivot rule is known that would work with at most n− 3 steps.

In order to summarize our results, we define the following measure of quality.
Fix a pivot rule R. For every 3-dimensional polytope P ⊂ R

3 and for every linear
functional ϕ : R

3 −→ R in general position with respect to P (i.e., no two vertices
of P have the same ϕ-value), denote by λR(P, vstart) the path length (expected path
length, if R is randomized) produced by the simplex algorithm with the pivot rule R,
when started at vertex vstart. The linearity coefficient of R is

Λ(R) := lim sup
n(P )→∞

{
λR(P, vstart)

n(P )
: P,ϕ, vstart as above

}
,

where n(P ) is the number of facets of P . With the usual simplifications for a geometric
analysis (cf. [13], [20, Lecture 3], [1]), we may restrict our attention to simple 3-
dimensional polytopes P (where each vertex is contained in precisely three facets).
Thus we consider only 3-dimensional polytopes P , with n = n(P ) facets, 3n − 6
edges, and 2n− 4 vertices. By the discussion above, the linearity coefficient satisfies
1 ≤ Λ(R) ≤ 2 for every pivot rule R.

The most remarkable aspect of the picture that we obtain, in section 3, is that
the “random edge” rule (“RE” for short) performs quite well (as it is conjectured for
general dimensions), but it is quite tedious to analyze (as has already been observed
for general dimensions). The following bounds for the random edge rule,

1.3473 ≤ Λ(RE) ≤ 1.4943,

are our main results. Thus we manage to separate Λ(RE) from the rather easily
achieved lower bound of 4

3 , as well as from the already nontrivial upper bound of 3
2 .

On the other hand, in section 4 we prove that the linearity coefficient for the
“greatest decrease” pivot rule is Λ(GD) = 3

2 , while many other well-known rules
have linearity coefficient Λ = 2, including the largest coefficient, least index, steepest
decrease, and the shadow vertex rules, as well as Zadeh’s history-dependent least
entered rule (not known to be superpolynomial in general), and Kalai’s random facet
rule (known to be subexponential in general).

2. Basics. Klee [12] proved in 1965 that the “monotone Hirsch conjecture” is
true for 3-dimensional polytopes; that is, whenever the graph of a 3-dimensional
polytope P with n facets is oriented by means of a linear functional in general position,
there is a monotone path of length at most n−3 from any vertex to the sink vmin. (See
Klee and Kleinschmidt [13] for a survey of the Hirsch conjecture and its ramifications.)
Unfortunately, Klee’s proof is not based on a pivot rule.
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Theorem 2.1 (Klee [12]). For any simple 3-polytope P ⊂ R
3, a linear functional

ϕ : R
3 −→ R in general position for P , and any vertex vstart of P , there is a ϕ-

monotone path from vstart to the ϕ-minimal vertex vmin of P that does not revisit any
facet.

In particular, there is a ϕ-monotone path from vstart to vmin of length at most
n− 3.

It is not too hard to come up with examples showing that the bound provided
by Theorem 2.1 is best possible. One of the constructions will be important for our
treatment later on, so we describe it below in Figure 2.1.

A particularly useful tool for constructing LP-oriented 3-polytopes is the following
result due to Mihalisin and Klee. It is stated in a slightly weaker version in their paper,
but their proof actually shows the following.

Theorem 2.2 (Mihalisin and Klee [17]). Let G = (V,E) be a planar 3-connected

graph, f : V −→ R any injective function, and denote by �G the acyclic oriented graph
obtained from G by directing each edge to its endnode with the smaller f-value. Then
the following are equivalent:

1. There exist a polytope P ⊂ R
3 and a linear functional ϕ : R

3 −→ R in
general position for P such that G is isomorphic to the graph of P and, for
every v ∈ V , f(v) agrees with the ϕ-value of the vertex of P corresponding
to v.

2. Both (a) and (b) hold:

(a) �G has a unique sink in every facet (induced nonseparating cycle) of G,
and

(b) there are three node-disjoint monotone paths joining the (unique) source

to the (unique) sink of �G.

Here the fact that the source and the sink of �G are unique (referred to in condi-
tion (b)) follows from (a); cf. Joswig, Kaibel, and Körner [8]. Equipped with Theo-
rem 2.2, one readily verifies that the family of directed graphs indicated in Figure 2.1
(n ≥ 4) can be realized as convex 3-polytopes, with associated linear functionals,
demonstrating that Klee’s bound of n− 3 on the length of a shortest monotone path
cannot be improved.

v0 = vmin

...

v2n−7

v2n−8

vn−2 vn−4

v2

v1

f

vmax = v2n−5

vn−3

v2n−6

Fig. 2.1. A worst case example for Klee’s theorem, starting at vn−3 (and for Bland’s rule,
starting at v2n−6; see section 4.1). All edges are oriented from left to right.

3. The random edge rule. At any nonoptimal vertex, the random edge pivot
rule takes a step to one of its improving neighbors, chosen uniformly at random. Thus
the expected number E(v) of steps that the random edge rule would take from a given
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vertex v to the optimal one vmin may be computed recursively as

E(v) = 1 +
1

| δout(v)|
∑

u:(v,u)∈δout(v)

E(u),(3.1)

where δout(v) denotes the set of edges that leave v (that is, lead to better vertices), so
that | δout(v)| is the number of neighbors of v whose ϕ-value is smaller than that of v.

Despite its simplicity and its (deceptively) simple recursion, this rule has by now
resisted several attempts to analyze its worst-case behavior, with a few exceptions for
special cases, namely linear assignment problems (Tovey [19]), the Klee–Minty cubes
(Kelly [11] and Gärtner, Henk, and Ziegler [6]), and d-dimensional linear programs
with at most d + 2 inequalities (Gärtner et al. [7]). All known results leave open the
possibility that the expected number of steps taken by the random edge rule on a
d-dimensional linear program with n inequalities could be bounded by a polynomial,
perhaps even by O(n2) or O(dn), where n is the number of facets.

However, Matoušek and Szabó [15] recently showed that the random edge rule
does not have a polynomially bounded running time on the larger class of acyclic
unique sink orientations (AUSO ’s), i.e., acyclic orientations of the graph of a polytope
that induce unique sinks in all nonempty faces (cf. condition 2(a) in Theorem 2.2).
They exhibited particular AUSO’s on d-dimensional cubes for which random edge

needs at least const · 2const·d1/3

steps.

3.1. Lower bounds. The lower bound calculations appear to be much simpler
if we do not use the recursion given above but instead use a “flow model.” For this,
fix a starting vertex vstart, and denote by p(v) the probability that the vertex v will be
visited by a random edge path from vstart to vmin, and similarly by p(e) the probability
that a directed edge e will be traversed. Then the probability that a vertex v is visited
is the sum of the probabilities that the edges leading into v are traversed,

p(v) =
∑

e∈δin(v)

p(e),

if v is not the starting vertex. (Here δin(v) denotes the set of edges that enter v.)
Furthermore, by definition of the random edge rule we have

p(e) =
1

| δout(v)|
p(v) for all e ∈ δout(v)(3.2)

at each nonoptimal vertex. The random edge rule thus induces a flow (p(e))e∈E of
value 1 from vstart to vmin. The expected path length E(vstart) is then given by

E(vstart) =
∑
e∈E

p(e),(3.3)

and we refer to it as the cost of the flow (p(e))e∈E .
Theorem 3.1. The linearity coefficient of the random edge rule satisfies

Λ(RE) ≥ 1897

1408
> 1.3473.

Proof. We describe a family of linear programs (LPs) which show the above lower
bound on the linearity coefficient. We start with the graph of the dual-cyclic polytope
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· · ·

v2k−7 v2k−9 v2k−11

v2k−10v2k−8v2k−6

v2k−5 = vmax v0 = vmin
v3

v4 v2

v1

Fig. 3.1. Lower bound construction for the random edge rule: the backbone polytope. All edges
are oriented from left to right.

C3(k)∆ with the orientation depicted in Figure 3.1, and refer to this as the backbone
of the construction.

Starting at the vertex v2k−7, the simplex algorithm will take the path along the
k− 2 vertices v2k−7, v2k−9, . . . , v3, v1, v0. Replacing each vertex in the path by a copy
of the digraph depicted in Figure 3.2—called a configuration in the following—yields
the desired LP. The corresponding feasible polytope can be constructed explicitly
by applying ten suitable successive vertex cuts at each vertex vi of the backbone.
Alternatively, one can check that the orientations we get satisfy the conditions of
Theorem 2.2.

64 32 16

8

64 96 112 56 64

56

120 60 90 90 120

60

60
90 98

49

79 128

4932 8 30
30

30

16

30

60

Fig. 3.2. Lower bound construction for the random edge rule: the configuration. All edges are
oriented from left to right. The target of the rightmost edge (not shown) is the starting node of the
next configuration. The middle dotted edge enters the configuration from the corresponding vertex
of the top backbone row. The actual flow at each edge is 1/128 times the number written next to
the edge.

The maximal and minimal vertex of each configuration is visited with proba-
bility 1. We send 128 units of flow (each of value 1

128 ) through each configuration
according to (3.2); see Figure 3.2. This yields the flow-cost of 1897

128 for each of the
k− 2 configurations. (The last configuration produces a flow-cost of 1897

128 − 1 only, as
it does not have a leaving edge.)

We take the maximal vertex of the configuration at v2k−7 as the starting vertex
vstart. Using (3.3), we obtain for the expected cost E(vstart)

E(vstart) = (k − 2)
1897

128
− 1.

With n = k + 10(k − 2), this yields

E(vstart) =
n− 2

11
· 1897

128
− 1 =

1897

1408
n− 5202

1408
,

which proves the lower bound.
The configuration depicted in Figure 3.2 was found by complete enumeration

of the acyclic orientations satisfying condition (a) of Theorem 2.2 (AUSOs) on 3-
polytopes with n ≤ 12 facets. In particular, our proof of Theorem 3.1 includes a
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worst-possible example for n = 12. We refer to Mechtel [16] for more details of the
search procedure, as well as for a detailed analysis of the properties of worst-case
examples for the random edge rule.

3.2. Upper bounds.
Theorem 3.2. The linearity coefficient of the random edge rule satisfies

Λ(RE) ≤ 130

87
< 1.4943.

Proof. Consider any linear program on a simple 3-polytope with n facets, with
a linear objective function ϕ in general position. We will refer to the ϕ-value of a
vertex as its “height.” A 1-vertex will denote a vertex with exactly one neighbor
that is lower with respect to ϕ. Similarly, a 2-vertex has exactly two lower neighbors.
Consequently, from any 1-vertex the random edge rule proceeds deterministically to
the unique improving neighbor, and from any 2-vertex it proceeds to one of the two
improving neighbors, each with probability 1

2 .
Basic counting yields that our LP has exactly (n − 3) 1-vertices and (n − 3)

2-vertices in addition to the unique maximal vertex vmax and the unique minimal
vertex vmin, which have 3 and 0 lower neighbors, respectively. For the following, we
also assume that the vertices are sorted and labelled v2n−5, . . . , v1, v0 in decreasing
order of their objective function values, with vmax = v2n−5 and vmin = v0.

For any vertex v, let N1(v) (resp., N2(v)) denote the number of 1-vertices (resp.,
2-vertices) that are not higher than v (including v itself). Set N(v) = N1(v) +N2(v).
For all vertices v other than the maximal one, this is the number of vertices lower
than v; that is, N(vi) = i for all i �= 2n− 5.

We will establish the following generic inequality for all v �= vmax by induction on
N(v):

E(v) ≤ αN1(v) + βN(v) + γ.(3.4)

Here, α and β are constants whose values will be fixed later in the induction step, and
γ is a constant whose value will be fixed in the induction base case. The inductive step
will be subdivided into 24 distinct cases. Each case depends on a linear inequality on
α and β that, when satisfied, justifies the induction step in that case. Since our case
analysis is complete, we have a proof of (3.4) for any pair (α, β) that satisfies all the
24 inequalities.

Because we always have N1(v), N2(v) ≤ n− 3, we obtain

E(v) ≤ αN1(v) + β(N1(v) + N2(v)) + γ = (α + β)N1(v) + βN2(v) + γ

≤ (α + 2β)(n− 3) + γ

for v �= vmax. The single vertex vmax is irrelevant for the asymptotic considerations.
Thus we minimize α+2β subject to the linear constraints posed by the various cases;
this leads to an LP in two variables with 24 constraints, whose optimal solution is
(α, β) = (46

87 ,
42
87 ), of value 130

87 < 1.4943. This yields the upper bound on Λ(RE) stated
in the theorem.

Before starting the inductive proof, we modify the original polytope to a new one
P ′ (with v′min being the new sink) by cutting off the sink of the given simple 3-polytope
ten times in succession, in the following way: (1) For all original vertices v �= vmin,
the expected number of vertices on a path to v′min is larger than the expected number
of vertices on a path to vmin in P ; (2) every original vertex lies at distance at least



THE SIMPLEX ALGORITHM IN DIMENSION THREE 481

five from v′min; (3) the newly generated 20 vertices, together with the sink, are the 21
lowest vertices of P ′.

By choosing the constant γ sufficiently large, we ensure that E(v) ≤ γ holds for
all vertices v of P ′ with N(v) ≤ 20.

We prove Theorem 3.2 for the new polytope P ′. Since the expected path lengths
only increase, this also implies the theorem for the original polytope. The preceding
analysis implies that (3.4) holds for all v satisfying N(v) ≤ 20, which establishes the
base case of the induction.

Suppose now that (3.4) holds for all vertices lower than some vertex v with N(v) >
20. By an appropriate unwinding of the recursion (3.1), we express E(v) in terms of
the expected cost E(wi) of certain vertices wi that are reachable from v via a few
downward edges. The general form of such a recursive expression will be

E(v) = c +
k∑

i=1

λiE(wi),

where λi > 0 for i = 1, . . . , k, and
∑

i λi = 1.
Since we assume by induction that E(wi) ≤ αN1(wi) + βN(wi) + γ, for each i, it

suffices to show that

k∑
i=1

αλi (N1(v) −N1(wi)) +

k∑
i=1

βλi (N(v) −N(wi)) ≥ c.

In our analysis, we will need to classify some of the vertices wi as being either
1-vertices or 2-vertices, for which we need to make sure that they are not the sink.
By inspecting all 24 cases, we see that this will be the case if v lies at distance at least
five from v′min. Since we assume that N(v) > 20, the vertex v must be an original
one; thus it has distance at least five from v′min.

Write

∆1(wi) := N1(v) −N1(wi), ∆(wi) := N(v) −N(wi),

for i = 1, . . . , k. (These terms are defined with respect to the vertex v that is currently
considered.) Here ∆(wi) is the distance between v and wi, that is, one plus the number
of vertices between v and wi in the numbering of the vertices (v2n−5, . . . , v0) detailed
above. Clearly ∆(wi) ≥ ∆1(wi).

We thus need to show that for each vertex v,

α
k∑

i=1

λi∆1(wi) + β

k∑
i=1

λi∆(wi) ≥ c.(3.5)

At this point we start our case analysis.
Case 1: v is a 1-vertex. Let w1 denote the target of the unique downward edge

emanating from v, as in the following figure, where (here and in all subsequent figures)
each edge is labelled by the probability of reaching it from v.

v w11

In this case, E(v) = 1 + E(w1). In the setup presented above, we have λ1 = 1, c = 1,
∆1(w1) ≥ 1, and ∆(w1) ≥ 1; thus (3.5) is implied by

α + β ≥ 1.(3.6)
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Case 2: v is a 2-vertex. Let w1 and w2 denote the targets of the two downward
edges emanating from v, where w2 is lower than w1.

v w1 w2

1/2

1/2

We have

E(v) = 1 +
1

2
E(w1) +

1

2
E(w2),

and hence we need to require that

α

2
∆1(w1) +

α

2
∆1(w2) +

β

2
∆(w1) +

β

2
∆(w2) ≥ 1.

Note that ∆(w2) > ∆(w1) ≥ 1.
Case 2.a: ∆(w2) ≥ 4 (as in the preceding figure). Ignoring the effect of the

∆1(wj)’s, it suffices to require that

β

2
∆(w1) +

β

2
∆(w2) ≥ 1,

which will follow if

β ≥ 2

5
.(3.7)

Case 2.b.i: ∆(w2) = 3 and one of the two vertices above w2 and below v is a
1-vertex. In this case ∆1(w2) ≥ 1 and ∆(w1) + ∆(w2) ≥ 4, so (3.5) is implied by

1

2
α + 2β ≥ 1.(3.8)

Case 2.b.ii: ∆(w2) = 3 and the two vertices between v and w2 are 2-vertices.
Denote the second intermediate vertex as v′. We may assume that v′ is reachable
from v (that is, from w1); otherwise we can ignore it and reduce the situation to
Case 2.c treated below (by choosing another ordering of the vertices producing the
same oriented graph). Three subcases can arise.

First, assume that none of the three edges that emanate from w1 and v′ further
down reaches w2. Denote by x, y the two downward neighbors of v′, and by z the
downward neighbor of w1 other than v′. The vertices x, y, z need not be distinct
(except that x �= y), but none of them coincides with w2.

v

x

y

z

1/2

1/2 1/4

1/4

1/8
1/8

c = 7/4

v′w1
w2
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We have here c = 7/4.
To make the analysis simpler to follow visually, we present it in a table. Each

row denotes one of the target vertices w2, x, y, z, “multiplied” by the probability of
reaching it from v. The left (resp., right) column denotes a lower bound on the
corresponding quantities ∆1(·) (resp., ∆(·)). To obtain an inequality that implies
(3.5), one has to multiply each entry in the left (resp., right) column by the row
probability times α (resp., times β), and require that the sum of all these terms be
≥ c.

α∆1 β∆
1/2w2 0 3
1/8x 0 4
1/8y 0 5
1/4z 0 4

Note the following: (a) We do not assume that the rows represent distinct vertices (in
fact, x = z is implicit in the table); this does not cause any problem in applying the
rule for deriving an inequality from the table. (b) We have to squeeze the vertices so
as to make the resulting inequality as sharp (and difficult to satisfy) as possible; thus
we made one of x, y the farthest vertex, because making z the farthest vertex would
have made the inequality easier to satisfy.

We thus obtain (
3

2
+

4

8
+

5

8
+

4

4

)
β ≥ 7

4
,

or

β ≥ 14

29
.(3.9)

Next, assume that w2 is connected to v′. In this case w2 is a 1-vertex, and we
extend the configuration to include its unique downward neighbor w3.

v

1/2

1/2 1/4

1/4

1/8

1/8 5/8

y

x

c = 19/8

v′w1
w2

w3

Let x denote the other downward neighbor of v′, and let y denote the other downward
neighbor of w1. In the following table, the “worst” case is to make w3 and y coincide,
and make x the farthest vertex.

α∆1 β∆
5/8w3 1 4
1/8x 1 5
1/4y 1 4

We then obtain

α +

(
20

8
+

5

8
+

4

4

)
β ≥ 19

8
,



484 V. KAIBEL, R. MECHTEL, M. SHARIR, AND G. M. ZIEGLER

or

α +
33

8
β ≥ 19

8
.(3.10)

Finally, assume that w2 is connected to w1. Here too w2 is a 1-vertex, and we
extend the configuration to include its unique downward neighbor w3.

v

1/2 1/4

y

x

1/2

1/8
3/4

1/4

1/8c = 5/2

v′w1 w2
w3

Denoting by x, y the two downward neighbors of v′, our table and resulting inequality
become

α∆1 β∆
3/4w3 1 4
1/8x 1 4
1/8y 1 5

α +
33

8
β ≥ 5

2
,(3.11)

which, by the way, is stronger than (3.10).
Case 2.c: ∆(w2) = 2. Hence, the only remaining case is that w1 and w2 are the

two vertices immediately following v.
Case 2.c.i: w1 is a 1-vertex (whose other upward neighbor lies above v). Its

unique downward edge ends at some vertex which is either w2 or lies below w2.
Assume first that this vertex coincides with w2, which makes w2 a 1-vertex, whose

unique downward neighbor is denoted as v′. The local structure, table, and inequality
are

v

1/2

1/2

1/2 1

c = 5/2

v′w1 w2

α∆1 β∆
v′ 2 3

2α + 3β ≥ 5

2
.

(3.12)

Suppose next that the downward neighbor w3 of w1 lies below w2. We get

α∆1 β∆
1/2w2 1 2
1/2w3 1 3

α +
5

2
β ≥ 3

2
.

(3.13)
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Case 2.c.ii: w1 is a 2-vertex, both of whose downward neighbors lie strictly below
w2. Denote these neighbors as w3, w4, with w3 lying above w4.

v

1/2

1/2

c = 3/2
1/4

1/4

w1 w2 w3 w4

We may assume that ∆(w3) = 3 (i.e., there is no vertex between w2 and w3),
since the case ∆(w3) ≥ 4 is already covered by (3.9).

Case 2.c.ii.1: w2 is a 1-vertex. Then the table and inequality become

α∆1 β∆
1/2w2 0 2
1/4w3 1 3
1/4w4 1 4

1

2
α +

11

4
β ≥ 3

2
.(3.14)

Case 2.c.ii.2: w2 is a 2-vertex but w3 is a 1-vertex. Then w3 (which satisfies
∆(w3) = 3) is connected either to w2 or to a vertex above v. In the former case, let
x denote the other downward neighbor of w2, and let y denote the unique downward
neighbor of w3. The local structure looks like this (with x, y, w4 not necessarily
distinct but all below w3 due to ∆(w3) = 3):

v

1/2

1/2

c = 5/2

1/4

1/4

1/4

1/4

1/2

x

y
w1

w3 w4w2

The (worst) table and inequality are

α∆1 β∆
1/4x 1 4
1/2y 1 4
1/4w4 1 5

α +
17

4
β ≥ 5

2
.(3.15)

The next case is where the other upward neighbor of w3 lies above v. Let x, y
denote the two downward neighbors of w2, and let z denote the unique downward
neighbor of w3. (Again, x, y, z, w4 need not be distinct, but x �= y and they are all
below w3 due to ∆(w3) = 3.) The local structure is

v

1/2

1/2

1/4

1/4

1/4

1/4

x

y

z1/4

c = 9/4

w1
w2 w3 w4
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The (worst) table and inequality become

α∆1 β∆
1/4x 1 4
1/4y 1 5
1/4z 1 4
1/4w4 1 5

α +
9

2
β ≥ 9

4
.(3.16)

Case 2.c.ii.3: Both w2 and w3 are 2-vertices. We have to consider the following
type of configuration (where x, y, z, t, w4 need not all be distinct, but x �= y and z �= t,
and we may assume x �= t, y �= z; also, because ∆(w3) = 3, both x and y are lower
than w3):

v

1/2

1/2

1/4

1/4

1/4 1/4

1/8

1/8

x

y

z

t

c = 9/4

w1
w2

w3
w4

Intuitively, a worst table is obtained by “squeezing” x, y, z, t, and w4 as much to
the left as possible, placing two of them at distance 4 from v, two at distance 5, and
one at distance 6. However, squeezing them this way will make some pairs of them
coincide and form 1-vertices, which will affect the resulting tables and inequalities.

Suppose first that among the three “heavier” targets x, y, w4, at most one lies
at distance 4 from v. The worst table and the associated inequality are (recall that
x �= y):

α∆1 β∆
1/4x 0 4
1/4y 0 5
1/8z 0 4
1/8t 0 6
1/4w4 0 5

19

4
β ≥ 9

4
.(3.17)

Suppose then that among {w4, x, y}, two are at distance 4 from v, say w4 and y.
Then w4 = y is a 1-vertex, and we denote by w its unique downward neighbor. The
local structure is

v

1/2

1/2

1/4

1/4

1/8

1/8

x

z

t

c = 11/4

w

1/41/4

1/2w1
w2

w3 w4
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Two equally worst tables, and the resulting common inequality, are

α∆1 β∆
1/4x 1 5
1/8z 1 6
1/8t 1 7
1/2w 1 5

α∆1 β∆
1/4x 1 6
1/8z 1 6
1/8t 1 5
1/2w 1 5

α +
43

8
β ≥ 11

4
.

(3.18)

Case 2.c.iii: w1 is a 2-vertex that reaches w2; that is, one of its downward neigh-
bors, say w3, coincides with w2. Then w2 is a 1-vertex, and we denote by x its unique
downward neighbor.

v

1/2

1/2

1/4

c = 9/4

x

1/4

3/4
w1

w4
w2

A crucial observation is that x cannot be equal to w4. Indeed, if they were equal,
then w4 would be a 1-vertex.

v w1 w2

w4

In this case, cutting the edge graph G of P at the downward edge emanating from w4

and at the edge entering v would have disconnected G, contradicting the fact that G
is 3-connected.

We first dispose of the case where x lies lower than w4. The table and inequality
are

α∆1 β∆
3/4x 1 4
1/4w4 1 3

α +
15

4
β ≥ 9

4
.(3.19)

In what follows we thus assume that x lies above w4.

Case 2.c.iii.1: x is a 1-vertex that precedes w4. Suppose first that w4 is the unique
downward neighbor of x. Then w4 is a 1-vertex, and we denote its unique downward
neighbor by z. The local structure, table, and inequality are

v

1/2

x

1/4

1/4

3/4 3/4 1

1/2

z

c = 4

w1 w2 w4

α∆1 β∆
z 3 5

3α + 5β ≥ 4.

(3.20)
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Suppose next that the unique downward neighbor y of x is not w4. The local
structure, table, and inequality look like this (y is drawn above w4 because this yields
a sharper inequality):

v

1/2

x

1/4 3/4 3/4

1/2

y

1/4

c = 3

w1 w2 w4

2α +
17

4
β ≥ 3.

α∆1 β∆
3/4y 2 4
1/4w4 2 5

(3.21)

Case 2.c.iii.2: x is a 2-vertex that precedes w4. This subcase splits into several
subcases, where we assume, respectively, that ∆(w4) ≥ 6, ∆(w4) = 4, and ∆(w4) = 5.

Case 2.c.iii.2(a): Suppose first that ∆(w4) ≥ 6. The configuration looks like this:

v

1/2

x

1/4 3/4

1/2

1/4

c = 9/4

w1 w2 w4

The table and inequality are

α∆1 β∆
3/4x 1 3
1/4w4 1 6

α +
15

4
β ≥ 9

4
.(3.22)

Note that this is the same inequality as in (3.19).
Case 2.c.iii.2(b): Suppose next that ∆(w4) = 4, and that one of the downward

neighbors of x is w4. Let z denote the other downward neighbor. w4 is a 1-vertex,
and we denote by w its unique downward neighbor.

v

1/2 1/4 3/4

1/2

x
w

z

c = 29/8

1/4

3/8

3/8

5/8
w1 w2

w4

The 3-connectivity of the edge graph of P implies, as above, that w �= z. Since we
assume that ∆(w4) = 4, z also lies below w4, and the table and inequality are

α∆1 β∆
5/8w 2 5
3/8z 2 6

2α +
43

8
β ≥ 29

8
.(3.23)
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Suppose next that ∆(w4) = 4 and w4 is not a downward neighbor of x. Denote
those two neighbors as w and z, both of which lie lower than w4, by assumption, and
are clearly distinct. The configuration, table, and inequality look like this:

v

1/2 1/4 3/4

1/2

1/4

z

w

x

3/8

3/8

c = 3

w1 w2

w4

α∆1 β∆
1/4w4 1 4
3/8w 1 5
3/8z 1 6

α+
41

8
β ≥ 3.

(3.24)

Case 2.c.iii.2(c): It remains to consider the case ∆(w4) = 5. Let z denote the
unique vertex lying between x and w4. We may assume that z is connected to x, for
otherwise z is not reachable from v, and we might as well reduce this case to the case
∆(w4) = 4 just treated.

Consider first the subcase where the other downward neighbor of x is w4 itself.
Then w4 is a 1-vertex, and we denote by w its unique downward neighbor. This
subcase splits further into two subcases: First, assume that z is a 1-vertex, and let y
denote its unique downward neighbor. Clearly, y must lie below w4 (it may coincide
with or precede w). The configuration looks like this:

v

1/2 1/4 3/4

1/2

x

wz

y

3/8

3/8 3/8

1/4

5/8

c = 4

w1 w2

w4

The table and inequality are

α∆1 β∆
3/8y 3 6
5/8w 3 6

3α + 6β ≥ 4.(3.25)

In the other subcase, z is a 2-vertex; we denote its two downward neighbors as
y and t. The vertices w, y, t all lie below w4 and may appear there in any order (except
that w �= t). The configuration looks like this:

v

1/2 1/4 3/4

1/2

x

wz

y

3/8

1/4

5/8

c = 4

t

3/8

3/16

3/16

w1 w2

w4
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The table and inequality are

α∆1 β∆
3/16y 2 6
3/16t 2 7
5/8w 2 6

2α +
99

16
β ≥ 4.(3.26)

Consider next the subcase where w4 is not a downward neighbor of x. Denote
the other downward neighbor of x as y, which lies strictly below w4. This subcase
splits into three subcases. First, assume that z is a 1-vertex, and denote its unique
downward neighbor as w. The configuration looks like this:

v

1/2 1/4 3/4

1/2

x

z3/8

1/4

3/8

3/8 y

w

c = 27/8

w1 w2

w4

The table and inequality are

α∆1 β∆
1/4w4 2 5
3/8y 2 6
3/8w 2 5

2α +
43

8
β ≥ 27

8
.(3.27)

Second, assume that z is a 2-vertex, so that none of its two downward neighbors
is w4. Denote these neighbors as w and t. All three vertices y, t, w lie strictly below
w4, and w �= t. The configuration looks like this:

v

1/2 1/4 3/4

1/2

x

z3/8

1/4
c = 27/8

y

w

t

3/8

3/16

3/16

w1 w2

w4

The table and inequality are

α∆1 β∆
1/4w4 1 5
3/8y 1 6
3/16w 1 6
3/16t 1 7

α +
95

16
β ≥ 27

8
.(3.28)

Finally, assume that z is a 2-vertex, so that one of its two downward neighbors is
w4. Denote the other neighbor as w. In this case w4 is a 1-vertex, and we denote its
unique downward neighbor as t. All three vertices y, t, w lie strictly below w4. The
configuration looks like this:
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v

1/2 1/4 3/4

1/2

x

z3/8

1/4

w

t

y

7/163/16

3/16
3/8

c = 61/16

w1 w2

w4

The table and inequality are

α∆1 β∆
3/8y 2 6
3/16w 2 7
7/16t 2 6

2α +
99

16
β ≥ 61

16
,(3.29)

which, by the way, is weaker than (3.26).
This completes the case distinction. Thus (3.4) holds for every pair (α, β)

that satisfies (3.6)–(3.29). In particular, it holds for the pair (α, β) = (46
87 ,

42
87 ),

which (as discussed at the beginning of the proof) yields the upper bound 130
87 < 1.4943

on the linearity coefficient of random edge.

3.3. Discussion. (1) The analysis has used (twice) the fact that G is a 3-
connected graph. Without this assumption, the linearity coefficient becomes 13/8:
A lower bound construction can be derived from the figure shown in Case 2.c.iii, and
an upper bound can be obtained along the same lines of the preceding proof, using
a much shorter case analysis. It is interesting that the proof did not use at all the
planarity of the polytope graph G.

(2) In an earlier phase of our work, we obtained the upper bound of 3/2 on the
linearity coefficient, using a similar but considerably shorter case analysis. Unfor-
tunately, the lengthier case distinction presented in the proof above is not just a
refinement of that shorter one (which is the reason for presenting only the lengthier
proof). The proof indicates that the problem probably is far from admitting a clean
and simple solution—at least using this approach. Of course, it would be interesting
to find an alternative simpler way of attacking the problem.

(3) The solution (α, β) = (46
87 ,

42
87 ) satisfies (3.9) and (3.20) with equality. If we

examine the configuration corresponding to (3.9) and expand it further, we can replace
(3.9) by better inequalities, which result in a (slightly) improved bound on the linearity
coefficient, at the cost of lengthening further our case analysis. This refinement process
can continue for a few more steps, as we have verified. We have no idea whether
this iterative refinement process ever converges to some critical configuration, whose
further expansion does not improve the bound, and which is then likely to yield a
tight bound on the linearity coefficient.

4. Other pivot rules.

4.1. Bland’s rule. For Bland’s least index pivot rule [2] the facets (inequalities)
are numbered. At every nonminimal vertex the rule then dictates choosing the edge
that leaves the facet with the smallest number. (A special feature of Bland’s rule
is that it does not admit cycling even on degenerate programs/nonsimple polytopes,
when our geometric description of the rule is, however, not applicable.)

Proposition 4.1. The linearity coefficient of Bland’s rule is 2.
Proof. Figure 2.1 illustrates a family of 3-dimensional LPs on which Bland’s rule,

started at vstart = v2n−6, visits all but one of the vertices. (As we have already
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· · ·

v2n−12
v2n−7 v2n−11 v2n−13

v2n−14

v2n−8 v2n−9
v2n−10

v2n−17v2n−15
v2n−16 v2n−18

v2n−19
v2n−20

v1

v5 v4

v3 v2

v2n−5 = vmax

v0 = vmin
v2n−6 = vstart

Fig. 4.1. Lower bound for the greatest decrease rule. All edges are oriented from left to right.

noted, the directed graph in the figure is readily verified to satisfy the conditions of
Theorem 2.2.) Specifically, choose an initial numbering of the facets, where the largest
index is assigned to facet f . When starting at the vertex vstart = v2n−6, the simplex
algorithm with Bland’s rule visits the 2n− 5 vertices v2n−6, . . . , v0.

4.2. Dantzig’s rule. Dantzig’s rule is the original rule proposed by Dantzig
when he invented the simplex algorithm. In his setting of a maximization problem
formulated in the language of simplex tableaus, the rule requires pivoting into the
basis the variable that has the largest reduced cost coefficient (if no variable has
positive reduced cost, the current tableau is optimal).

By suitably scaling the inequalities of the LP, Dantzig’s rule follows the same
path as Bland’s rule; see Amenta and Ziegler [1, Observation 2.6]. Thus Dantzig’s
rule cannot be faster than Bland’s rule, and Proposition 4.1 thus implies the following.

Proposition 4.2. The linearity coefficient of Dantzig’s rule is 2.

4.3. Greatest decrease rule. The greatest decrease rule moves from any non-
optimal vertex to the neighbor with the smallest objective function value. We assume
that the objective function is generic, so the vertex is unique. However, the greatest
decrease rule may compare nonadjacent neighbors, so the information given by the
directed graph is not sufficient to implement it; we rather need explicit objective
function values.

Proposition 4.3. The linearity coefficient of the greatest decrease rule is 3
2 .

Proof. First we show that Λ(GD) ≥ 3
2 . Figure 4.1 indicates a family of 3-

dimensional LPs. By Theorem 2.2, there is a realization of these LPs with the objec-
tive function linear ordering on the vertices given by the left-to-right ordering in our
figure. Started at vstart = v2n−6, the greatest decrease rule visits all 1-vertices, the
global sink, and half of the 2-vertices. Thus it needs 3

2 (n − 3) pivot steps to reach
vmin = v0.

For the proof of Λ(GD) ≤ 3
2 , we consider an arbitrary instance with n, P , ϕ,

and vstart as above. Denote by n1 and n2 the number of visited 1- and 2-vertices,
respectively. Thus there are n−3−n1 and n−3−n2 unvisited 1-vertices and 2-vertices,
respectively. For every visited 2-vertex v only one of the two direct successors v′ and
v′′ is visited. Assuming that ϕ(v′) > ϕ(v′′), the greatest decrease rule will proceed
directly from v to v′′ and thus skip v′, whose objective function value satisfies ϕ(v) >
ϕ(v′) > ϕ(v′′). Thus there is an unvisited vertex uniquely associated with every
visited 2-vertex. Thus n2 ≤ 2n−6−n1−n2, which is equivalent to n1 +2n2 ≤ 2n−6.
We get

n1 + n2 =
1

2
n1 +

1

2
(n1 + 2n2) ≤ 1

2
(n− 3) +

1

2
(2n− 6) ≤ 3

2
(n− 3).
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v2n−6
v2n−7

vn−3

vn−2

vn−1

vn−4

v2

v1

v0 = vmin

x1

x2

vstart = v2n−5

Fig. 4.2. Lower bounds for the steepest decrease and shadow vertex rules. Planar projection of
the polytope: The objective function is x1; it directs all edges from left to right.

This yields Λ(GD) ≤ 3
2 and completes the proof.

4.4. Steepest decrease rule. At any nonminimal vertex v the steepest decrease
pivot rule moves to the neighbor w with vw being the steepest decreasing edge, that

is, such that 〈c,w−v〉
‖w−v‖ ‖c‖ is minimal (where 〈c, x〉 is the objective function).

Proposition 4.4. The linearity coefficient of the steepest decrease rule is 2.

Proof. Figure 4.2 depicts a planar projection onto the (x1, x2)-plane of an LP
that is easily constructed either “by hand” or as a deformed product (see Amenta
and Ziegler [1]). If the polytope is scaled to be very flat in the x3-direction, then
steepest decrease tells the simplex algorithm to use the edge that in the projection
has the smallest slope (in absolute value). Thus starting at vstart = v2n−5, the steepest
decrease rule visits all the vertices.

4.5. Shadow vertex rule. The shadow vertex pivot rule chooses a sequence of
edges that lie on the boundary of the 2-dimensional projection of the polytope given
by x 	→ (〈c, x〉, 〈d, x〉), where 〈c, x〉 is the given objective function and 〈d, x〉 is an
objective function that is constructed to be optimal at the starting vertex vstart. The
vertices that are visited on the path from vstart to vmin are then optimal for objective
functions that interpolate between 〈d, x〉 and 〈c, x〉. (This pivot rule is known to
be polynomial on “random linear programs” in specific models; cf. Borgwardt [3],
Ziegler [21], and Spielman and Teng [18].)

Proposition 4.5. The linearity coefficient of the shadow vertex rule is 2.

Proof. We reuse the LPs of Proposition 4.4/Figure 4.2. Here v2n−5 = vmax

is optimal for the starting objective function 〈d, x〉 = x2, while v0 is optimal for
〈c, x〉 = x1. On the way from v2n−5 to vmin = v0 the shadow vertex rule visits all the
vertices.

4.6. Random facet. The random facet pivot rule, due to Kalai [10, p. 228], is
as follows:
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vstart=
v2n−7

...

v0 = vmin

v2

va−1

va

va+1

v2a−2

v2a−1

vmax = v2n−5

. . .

· · ·
v2a+3

v1

v2a+1

v2a

f

v2n−9

Fig. 4.3. Lower bound for the random facet rule (RF). All edges are oriented from left to right.

(RF) At any nonoptimal vertex v choose one facet f containing v uniformly at
random, and solve the problem restricted to f by applying (RF) recursively.
The recursion will eventually restrict to a 1-dimensional subproblem (that is,
an edge), which is solved by following the edge.

The 1-dimensional base case singled out here is only implicit in Kalai’s work. This
is probably the reason why there are different versions of this rule in the literature,
which unfortunately were not distinguished. They all differ in the way that 1-vertices
are treated. Since the (unique) out-edge of a 1-vertex is always taken with probability
one (regardless of which facets we restrict to) we could use the following alternative
formulations of the random facet rule:
(RF1) At each nonoptimal vertex v follow the (unique) outgoing edge if v is a 1-

vertex. Otherwise choose one facet f uniformly at random containing v, and
solve the problem restricted to f by applying (RF1) recursively.

(RF2) At any nonoptimal vertex v choose one facet f containing v uniformly at
random, and solve the problem restricted to f by applying (RF2) recursively.
The minimal vertex opt(f) of f is a 1-vertex, and we follow the (unique)
outgoing edge of the vertex opt(f).

The variant (RF1) appears in Gärtner, Henk, and Ziegler [6, p. 350], while the version
(RF2) is from Gärtner [5], who, however, formulated this variant of the random facet
rule for combinatorial cubes, where the formulations above are equivalent.

Note that (RF) uses randomness at every vertex, and (RF1) would follow a path
of 1-vertices deterministically, while (RF2) takes at most one deterministic step in a
row. This results in distinct pivot rules, with different worst case examples.

Proposition 4.6. For each version (RF), (RF1), and (RF2) of the random facet
rule, the linearity coefficient is 2.

Proof. Figure 4.3 depicts a family of LPs with 2n− 4 = 2a + 2b + 2 vertices and
n = a + b + 3 facets. For each of the b 1-vertices vstart = v2n−7, v2n−9, . . . , v2a+1,
the probability of leaving it via choosing facet f is 1

2 . After choosing facet f , (RF)
“sticks” to facet f until va is reached.

Choosing a = k2 and b = k, we obtain a family of LPs with n = k2 + k+3 facets.
Then (RF) sticks to facet f with probability p ≥ 1− ( 1

2 )k. Thus the expected number
of visited vertices is at least(

1 −
(

1

2

)k
)

(2a + b) ≥ 2k2 − 2k2

2k
.

Since there are n = k2 + k + 3 facets, the linearity coefficient is 2.
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vmin

...

f

vmax vstart
∆b

v1

v2

va

va−1va+1

v2a−2

v2a−1

∆1 ∆2

. . .

· · · ∆b−1

v2a

Fig. 4.4. Lower bounds for the (RF1) and (RF2) variants of the random facet rule, and for
the least entered rule with random edge as the tie-breaking rule. All edges are oriented from left to
right.

...

v0 = vmin

v1

v2

vn−8

vn−9

v2n−13

v2n−14

v2n−12

vn−10

f

vstart
vmax = v2n−5

Fig. 4.5. Lower bound for the least entered rule with greatest decrease as the tie-breaking rule.
All edges are oriented from left to right.

The version (RF1) of the random facet rule follows the path of 1-vertices vstart =
v2n−7, v2n−9, . . . , v2a+1 deterministically. We can cut off each of these vertices. This
yields the graphs depicted in Figure 4.4. At each source of the new facets ∆1, . . . ,∆b,
the facet f is chosen with probability 1

3 . If any of the other two facets is chosen, we
end up at the sink vertex of the respective facet ∆i. Thus the linearity coefficient
remains 2, and only the rate of convergence decreases. The same works for (RF2) as
well.

4.7. Least entered rule. At any nonoptimal vertex, the least entered pivot rule
chooses the decreasing edge that leaves the facet that has been left least often in the
previous moves. In case of ties, a tie-breaking rule is used to determine the decreasing
edge to be taken. Any other pivot rule can be used as a tie-breaking rule.

The least entered rule was first formulated by Norman Zadeh around 1980 (see
[13] and [21]). It has still not been determined whether Zadeh’s rule is polynomial if
the dimension is part of the input. Zadeh has offered $1000 for solving this problem.

Proposition 4.7. The linearity coefficient of the least entered rule with greatest
decrease as tie-breaking rule is 2.

Proof. Figure 4.5 describes a family of 3-dimensional LPs, where the left-to-
right ordering of the vertices suggested by the figure can be realized, according to
the Mihalisin–Klee theorem (Theorem 2.2). Starting at vstart = v2n−6, the greatest
decrease rule decides to leave the facet f . Following two 1-vertices, the facet f is
entered again. All upcoming facets have not been visited before. Thus the least
entered rule “sticks” to the facet f , and 2n − 7 vertices (that is, all but 3 vertices)
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are visited.

Proposition 4.8. The linearity coefficient of the least entered rule with random
edge as the tie-breaking rule is 2.

Proof. Figure 4.4 describes LPs with 2n−4 = 2a+4b+2 vertices and n = a+2b+3
facets. At the sources of the facets, ∆i, the random edge rule leaves the facet f with
probability 1

2 . As soon as f is left once, it will be revisited, and the least entered rule
will “stick” to the facet f . (Thus the only way not to “stick” to f is that the random
edge rule chooses to continue along f until it reaches the vertex v2a.) When the least
entered rule “sticks” to the facet f , all of the 2a vertices v2a−1, v2a−2, . . . , v1, v0 are
visited.

Now the analysis is exactly the same as in the proof of Proposition 4.6. Thus
choosing a = k2 and b = k yields that the linearity coefficient is 2.
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Abstract. This paper discusses temporal reasoning with respect to constraints on two concur-
rent sequences of events. If two given sequences of events can be mapped into one sequence that
satisfies a given constraint, then the constraint is said to be consistent. First, we mention that the
consistency of such constraints is NP-complete. Then we introduce the notion of graph representa-
tions of constraints. If a graph representation of a given constraint c can be constructed in polynomial
time, then the consistency of c is decidable in polynomial time. However, it is shown that the graph
representability of a given c is coNP-complete. Next, we propose a subclass CDC �= of constraints
such that for each constraint c in CDC �=, a graph representation of c can be constructed in polyno-
mial time. The expressive power of CDC �= is incomparable to any other subclasses of constraints for
which the consistency problem is known to be tractable.
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1. Introduction. In many practical information systems, each fragment of data
has temporal information. For example, in relational databases, relations are often
augmented by temporal attributes (such databases are called temporal databases [1]).
It is often desirable for information systems to manage such temporal information in
an intelligent way. For example, suppose that a knowledge base system has the
following information:

• Last night, the people in the restaurant heard two shots.
• The electricity was off at least between the first and second shots.
• After the electric power resumed, the people found all the money in the

restaurant had been stolen.
We want the knowledge base system to infer that the people found all the money stolen
after the second shot. This is a trivial but typical example of temporal reasoning.

In this paper, temporal reasoning about two concurrent sequences of events is
considered. Two sets of time variables S = {s0, s1, . . . , sm} and T = {t0, t1, . . . , tn}
are used for describing temporal constraints, where s0, s1, . . . , sm represent time points
of one local clock and t0, t1, . . . , tn represent time points of the other clock. A temporal
constraint consists of expressions of the forms si < tj , si > tj , si ≤ tj , si ≥ tj , si = tj ,
and si �= tj , and Boolean operators ¬, ∨, and ∧. One of the applications of temporal
reasoning about such constraints is belief revision [4] in a multiagent environment, as
shown in the next example. As far as we know, no paper has focused on the class of
constraints such that the number of local clocks is fixed.

Example 1.1. Consider the following multiagent environment: Each agent has
its own local clock and records its observations, each of which is a pair consisting
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global time

s0 s1 s2 s3

t0 t2 t4t1 t3

p1
p2

?
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local time of aS

local time of aT

is true
is true

p1

p2

is false

is false

Fig. 1. Example of temporal reasoning about two concurrent sequences of events.

of a proposition and an observation time. The agents sometimes meet together and
exchange their observations in order to revise and refine their information on the
observation times.

See Figure 1. s0, . . . , s3 represent local time points of agent aS with s0 < · · · < s3,
and t0, . . . , t4 represent local time points of agent aT with t0 < · · · < t4. The agents
met together at s0 = t0 and s3 = t4. Suppose that aS observed that a proposition
p1 was true during its local time interval [s1, s2]. Also suppose that aT observed that
p1 was false during [t2, t3]. Then the agents can conclude that intervals [s1, s2] and
[t2, t3] are disjoint, i.e., (s1 ≥ t3) ∨ (s2 ≤ t2). In this paper, a constraint of this form
is called a disjointness constraint and is denoted by [s1, s2] � ∩ [t2, t3]. The agents also
obtain [s0, s1] � ∩ [t1, t3] from the observations of p2.

Now, several facts can be inferred from the obtained constraint c = ([s1, s2] � ∩
[t2, t3])∧ ([s0, s1] � ∩ [t1, t3]). For example, s1 ≤ t1 can be concluded since c∧ (s1 > t1)
is inconsistent (i.e., unsatisfiable). On the other hand, the order between s2 and t1
cannot be determined since all of c ∧ (s2 < t1), c ∧ (s2 = t1), and c ∧ (s2 > t1) are
consistent.

Another possible application is job scheduling for two processors, where each job
is denoted by a time interval and each pair of mutually exclusive jobs is specified by
a disjointness constraint.

The contribution of this paper is as follows. We first mention that the consis-
tency of constraints on two local clocks is NP-complete when both conjunction and
disjunction are freely used. Next, we introduce the notion of graph representations
of constraints. A graph representation of a constraint c is a directed graph repre-
senting all the valuations that satisfy c. If c has a graph representation Gc, and Gc

can be constructed in polynomial time, then the consistency of c is also decidable in
polynomial time. However, it is shown that the graph representability of a given c
is coNP-complete (and therefore constructing Gc is coNP-hard). Next, we propose a
new tractable subclass CDC �= of constraints. CDC�= stands for conjunctive disjoint-
ness constraints with inequalities, and it can express conjunctions of constraints in the
form of [si, si′ ] � ∩ [tj , tj′ ] or si Θ tj , where Θ ∈ {<,>,≤,≥,=, �=}. All the constraints
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appearing in Example 1.1 are expressible in CDC�=. We show that for each constraint
c in CDC�=, a graph representation of c can be constructed in polynomial time. Let m
be the number of time variables of one of the two local clocks, and n the other clock.
The consistency of c ∈ CDC �= is decidable in O(|c|mn) time, where |c| is the size of c.
Lastly, we show the intractability of constraints generated by disjointness constraints
and conjunction and disjunction operators. For such general disjointness constraints,
the consistency is NP-complete and the graph representability is coNP-complete.

The rest of the paper is organized as follows. Constraints on two clocks are
formulated in section 2. In section 3, graph representations are introduced. It is
also shown that the graph representability of a given constraint is coNP-complete.
In section 4, a tractable subclass CDC �= of constraints is proposed. In section 5, the
intractability of general disjointness constraints is shown. Section 6 compares the
expressive powers of the classes of constraints. Section 7 summarizes the paper.

2. Constraints on two clocks. Let R be an infinite set of global time points.
Suppose that a total order ≤ is defined on R. r ≤ r′ means that point r precedes or
is equal to r′. When r ≤ r′ and r �= r′, we write r < r′.

Let S = {s0, s1, . . . , sm} and T = {t0, t1, . . . , tn} (m, n ≥ 1) be sets of variables.
We write si ≤S sj and ti ≤T tj if i ≤ j, and we write si <S sj and ti <T tj if i < j.
Intuitively, S and T are sets of local time points.

Let ΣST be the family of all the valuations σ : S∪T → R satisfying the following
conditions:

• σ(s0) = σ(t0);
• σ(sm) = σ(tn);
• if s <S s′, then σ(s) < σ(s′);
• if t <T t′, then σ(t) < σ(t′).

The first two conditions are introduced merely for theoretical simplicity. Namely,
instead of the first condition, we can put dummy variables s−∞ and t−∞ such that
s−∞ <S s0, t−∞ <T t0, and σ(s−∞) = σ(t−∞). On the other hand, the last two
conditions are essential. σ must preserve the temporal orders of local time points.

Hereafter, we do not distinguish isomorphic valuations with respect to < and =.
In other words, we are interested in only the quotient sets of ΣST under < and =.
Therefore, σ will be regarded as a permutation of S ∪T which is consistent with both
<S and <T (although it may hold that σ(s) = σ(t) for some s ∈ S and t ∈ T ), and
ΣST will be regarded as the family of such permutations.

An atomic constraint is an expression with one of the following forms: s < t,
s > t, s ≤ t, s ≥ t, s = t, and s �= t. A constraint is generated from atomic
constraints and Boolean operators ¬, ∨, and ∧. For readability, we may use notation
such as t < s < t′ to mean (s > t)∧ (s < t′). The satisfaction relation is defined in an
ordinary way, and we write σ |= c (read as σ satisfies c) if c is true under valuation
σ. If σ |= c for some σ, then c is consistent (or satisfiable). By c |= c′, we mean that
every valuation σ ∈ ΣST satisfying c also satisfies c′. We say that c is equivalent to
c′, denoted c ≡ c′, if both c |= c′ and c′ |= c hold.

The consistency problem is to determine whether, given sets S and T of variables
and constraint c, c is consistent or not. The implication problem is to determine
whether c |= c′ holds or not for given sets S and T of variables and constraints c and
c′. Since c |= c′ if and only if ¬c∧c′ is inconsistent, we mainly focus on the consistency
problem in this paper.

Define the size of S and T as m and n, respectively. Also define the size of c as
the number of atomic constraints in c.
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Theorem 2.1. The consistency of an arbitrary constraint is in NP. The consis-
tency of a constraint in conjunctive normal form (CNF) is NP-hard.

Proof. The consistency problem is obviously in NP. The NP-hardness is shown
by reducing the satisfiability problem of CNF logical formulas to this problem. In the
reduction, each logical variable xi in a given logical formula is replaced with an atomic
constraint si < ti. Whether si < ti holds or not can be determined independently of
other atomic constraints sj < tj . Thus, the obtained constraint is consistent if and
only if the original logical formula is satisfiable.

6t 7t5t

5s

4t

4s

3t

3s

2t

2s

1t

1s

0t
0s

Fig. 2. GST .

3. Consistency and graph representability.

3.1. Graph representations of constraints. First, we define the graph GST .
Definition 3.1. Let S = {s0, . . . , sm} and T = {t0, . . . , tn}. Define GST as a

directed acyclic graph consisting of mn nodes arranged in m rows and n columns, with
each node having outgoing arcs to the right, lower, and lower-right nodes (if existing).
The node at the ith row of the jth column is denoted by (i, j).

GST for S = {s0, . . . , s5} and T = {t0, . . . , t7} is shown in Figure 2. The m + 1
dotted horizontal lines (labeled s0, . . . , sm) and n + 1 dotted vertical lines (labeled
t0, . . . , tn) are auxiliary lines explained below.

A complete path on GST is a path from (1, 1) to (m,n). Let WST denote the set
of all the complete paths on GST . There is a one-to-one correspondence between WST

and ΣST . To see this, define a mapping ρ : WST → ΣST as follows. Let w ∈ WST .
• ρ(w)(s0) = ρ(w)(t0) and ρ(w)(sm) = ρ(w)(tn).
• If w crosses line si before line tj , then ρ(w)(si) < ρ(w)(tj).
• If w crosses line tj before line si, then ρ(w)(si) > ρ(w)(tj).
• If w crosses lines si and tj at the same time, then ρ(w)(si) = ρ(w)(tj).

It can be shown that ρ is a bijection. Let ρ−1 denote the inverse of ρ.
If G is a subgraph of G′, we write G ⊆ G′. The union ∪ (resp., intersection ∩) of

subgraphs of GST is defined as the least upper bound (resp., greatest lower bound)
of the subgraphs with respect to ⊆.

The notion of complete paths is extended to subgraphs of GST . That is, for a
subgraph G of GST , if there is a path from (1, 1) to (m,n) on G, then the path is
called a complete path on G.

Definition 3.2. Let c be a constraint and let G be a subgraph of GST . If the
following two conditions hold, then G is a graph representation of c:

• ρ(w) |= c for every complete path w on G; and
• ρ−1(σ) is a complete path on G for every valuation σ such that σ |= c.
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Fig. 3. Minimum graph representation of s2 ≤ t4.
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Fig. 4. Another graph representation of s2 ≤ t4.

If c has a graph representation, then c is graph representable.

Some constraints have more than one graph representation, while some constraints
have no graph representation. For example, both Figures 3 and 4 are graph represen-
tations of s2 ≤ t4. On the other hand, as will be shown later, (s2 ≤ t4)∨ (s4 ≤ t6) has
no graph representation. Note that false has a graph representation (e.g., the empty
graph).

For a graph-representable constraint c, let Gc denote an arbitrary graph repre-
sentation of c.

Lemma 3.3. Let c and c′ be graph-representable constraints. Then Gc ∩Gc′ is a
graph representation of c ∧ c′.

Proof. Any complete path w on Gc ∩ Gc′ is contained in both Gc and Gc′ .
Therefore ρ(w) |= c ∧ c′. Conversely, consider any valuation σ such that σ |= c ∧ c′.
Then ρ−1(σ) must be contained in both Gc and Gc′ . Therefore, ρ−1(σ) is contained
in Gc ∩Gc′ .

Suppose that c has a graph representation Gc. By Definition 3.2, c is consistent
if and only if (m,n) is reachable from (1, 1) on Gc. Since the reachability is decidable
in O(mn) time, we obtain the following lemma.

Lemma 3.4. Let c = c1∨· · ·∨cl be a disjunction of graph-representable constraints
c1, . . . , cl. Suppose that each Gci can be constructed in O(f(ci,m, n)) time. Then the
consistency of c is decidable in O(f(c1,m, n) + · · · + f(cl,m, n) + lmn) time.

Proof. c is consistent if and only if some ci is consistent. For each i, the consistency
of ci is decidable in O(f(ci,m, n) + mn) time. Therefore, the consistency of c is
decidable in O(f(c1,m, n) + · · · + f(cl,m, n) + lmn) time.
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3.2. Minimum graph representations. A graph representation may contain
redundant nodes and arcs. The following lemma states the existence of the simplest
graph representation.

Lemma 3.5. Among all the graph representations of c, there is a unique minimum
graph representation G∗

c with respect to ⊆.
Proof. The number of all the graph representations of c is finite since GST is a

finite graph. Therefore, the intersection of all the graph representations of c can be
defined. We show that the intersection G∗

c is the unique minimum graph representa-
tion of c. By Lemma 3.3, G∗

c is a graph representation of c (= c∧ c∧ · · · ∧ c). Clearly,
G∗

c ⊆ Gc for any graph representation Gc of c. Hence, G∗
c satisfies the lemma.

Lemma 3.6. Let c be a graph-representable constraint. The minimum graph
representation G∗

c of c can be constructed in O(f(c,m, n)+mn) time, where f(c,m, n)
is the time complexity of constructing some graph representation of c.

Proof. Suppose that a graph representation Gc of c is obtained. Then G∗
c can be

constructed by the following algorithm:
1. Mark all the nodes and arcs that are reachable from (1, 1) in Gc. This can

be done in O(mn) time by performing depth first search from (1, 1).
2. Mark all the nodes and arcs from which (m,n) is reachable in Gc. This can be

done in O(mn) time by performing depth first search from (m,n), exploring
the arcs in the opposite direction.

3. Excepting the nodes and arcs which are marked both in steps 1 and 2 above,
remove the other nodes and arcs.

This algorithm is correct since the resultant graph contains only the nodes and arcs
that are contained by a complete path on Gc.

By Lemma 3.3, Gc ∩ Gc′ is a graph representation of c ∧ c′. However, G∗
c ∩ G∗

c′

is not necessarily the minimum graph representation of c ∧ c′. For example, consider
G∗

c and G∗
c′ which have no common complete paths. Then G∗

c∧c′ is the empty graph,
but G∗

c ∩G∗
c′ is not necessarily empty.

3.3. Complexity of deciding graph representability. We are interested in
the complexity f(c,m, n) of constructing Gc. Unfortunately, the graph representabil-
ity of a given c with disjunction is coNP-complete (and therefore constructing Gc is
coNP-hard), even if c is in disjunctive normal form (DNF). First, we characterize the
graph representability.

Lemma 3.7. The following properties are equivalent:
1. c has no graph representation.
2. There is a complete path w on GST such that

• ρ(w) �|= c, and
• for every arc a contained in w, there is another complete path wa on

GST containing the arc a such that ρ(wa) |= c.
Proof. Suppose that c has no graph representation. Let G be the minimum graph

that contains all the complete paths satisfying c. Since c has no graph representation,
there is a complete path w on G such that ρ(w) �|= c. By the definition of G, for every
arc a contained in w, there is another complete path wa containing the arc a such
that ρ(wa) |= c. Thus the second property holds.

Conversely, suppose that the second property holds. Also assume that c has a
graph representation Gc. Then Gc does not contain w of the second property, since
Gc contains only the complete paths w′ such that ρ(w′) |= c. However, by the second
property, for every arc a in w, there is wa containing the arc a such that ρ(wa) |= c.
By definition, Gc contains wa. This implies that all the arcs in w must be contained
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Fig. 5. Minimum graph representation of s4 ≤ t6.
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Fig. 6. A complete path not satisfying (s2 ≤ t4) ∨ (s4 ≤ t6).

in Gc, and contradicts the assumption that w is not a complete path on Gc. Thus,
the second property implies the first one.

We show that c = (s2 ≤ t4)∨(s4 ≤ t6) has no graph representation. The minimum
graph representation of s4 ≤ t6 is shown in Figure 5. Consider the complete path w
shown in Figure 6. w does not satisfy c since w crosses line t4 before line s2, and
crosses line t6 before line s4. However, for each arc a in w, there is another complete
path wa containing a such that ρ(wa) |= c (see Figures 3 and 5). By Lemma 3.7, c
has no graph representation.

Before showing the coNP-completeness of the graph representability, we introduce
a coNP-complete problem. Let F be a logical formula in DNF such that both νtrue and
νfalse satisfy F , where νtrue (resp., νfalse) is the interpretation that maps every logical
variable to true (resp., false). The modified tautology problem is to decide whether such
a given logical formula F is a tautology (i.e., F is satisfied by all the interpretations).
It is easily shown that the modified tautology problem is coNP-complete.

Theorem 3.8. The graph representability of an arbitrary constraint is in coNP.
The graph representability of a constraint c with disjunction is coNP-hard, even if c
is in DNF.

Proof. The second property of Lemma 3.7 is decidable by an NP algorithm as
follows. First, guess a complete path w and verify that ρ(w) �|= c. Then, for every arc
a contained in w, guess a complete path wa containing a and verify that ρ(wa) |= c.

To see the coNP-hardness, we reduce the modified tautology problem to the graph
representability problem. Let F = F1 ∨ · · · ∨ Fk be a DNF formula with n variables
x1, . . . , xn such that both νtrue and νfalse satisfy F . Let

S = {s0, . . . , sn+1}, T = {t0, . . . , tn+1}.
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Fig. 7. Graph representation of c′ (n = 6).

Let F ′
l be the constraint obtained by replacing xi in Fl by si > ti, and ¬xi by si < ti.

Define cl = F ′
l ∧ c′, where

c′ =

n∧
i=1

((ti−1 < si < ti+1) ∧ (si �= ti)).

The minimum graph representation G∗
c′ of c′ is shown in Figure 7. Lastly, define

c = c1 ∨ · · · ∨ ck. Note that only the complete paths on G∗
c′ can satisfy c.

First, we show that F is a tautology if and only if all the complete paths on G∗
c′

satisfy c. With each interpretation ν of F , associate the following complete path wν

on G∗
c′ (see Figure 7 again):

• wν contains ((i, i), (i, i + 1)) if ν(xi) = true;
• wν contains ((i, i), (i + 1, i)) if ν(xi) = false.

It is not difficult to see that ν satisfies F if and only if ρ(wν) |= c. Note that
ρ(wνtrue) |= c and ρ(wνfalse

) |= c since both νtrue and νfalse satisfy F .

To complete the proof, we show that all the complete paths on G∗
c′ satisfy c if

and only if c has a graph representation. For the only if part, suppose that all the
complete paths on G∗

c′ satisfy c. Then, immediately from Definition 3.2, G∗
c′ is a graph

representation of c. For the if part, suppose that ρ(w) �|= c, where w is a complete
path on G∗

c′ . Then, for every arc a contained in w, there is another complete path wa

(namely, wνtrue or wνfalse
; see Figure 8) that contains a and ρ(wa) |= c. Therefore, by

Lemma 3.7, c has no graph representation.

4. A tractable subclass of graph-representable constraints. We define
a subclass CDC �= of constraints such that for each constraint c in CDC�=, a graph
representation of c can be constructed in O(|c|mn) time.

Definition 4.1. A constraint in CDC �= is a conjunction such that each conjunct
is in the form of either s �= t or (s ≥ t′) ∨ (s′ ≤ t), where s <S s′ and t <T t′.

CDC �= can express any constraints in the form of si Θ tj , where Θ ∈ {<,>,≤,≥,
=, �=}. For example,

(si ≤ tj) ≡ (s0 ≥ tn) ∨ (si ≤ tj),

(si < tj) ≡ ((s0 ≥ tn) ∨ (si ≤ tj)) ∧ (si �= tj).
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Fig. 8. wνtrue (thick arcs) and wνfalse (thin arcs) in Theorem 3.8 (n = 6).

Also, constraints in the form of (s > t′)∨(s′ ≤ t), (s ≥ t′)∨(s′ < t), or (s > t′)∨(s′ < t)
are expressible in CDC �=. For example,

(s > t′) ∨ (s′ ≤ t) ≡ ((s ≥ t′) ∨ (s′ ≤ t)) ∧ (s �= t′).

As stated in section 1, constraint (s ≥ t′)∨(s′ ≤ t) (s <S s′ and t <T t′) represents
that time intervals [s, s′] and [t, t′] are disjoint. Therefore, we call the constraint a
disjointness constraint, and we write [s, s′] � ∩ [t, t′] to mean (s ≥ t′) ∨ (s′ ≤ t). The
class of conjunctive disjointness constraints is denoted by CDC.

Now we show that constructing a graph representation of every constraint in
CDC �= is tractable. By Lemma 3.3, it suffices to show that each of the two forms in
Definition 4.1 has a graph representation.

Lemma 4.2. The following two properties hold:

1. Let c = (si �= tj). A graph representation of c is obtained by removing the
arc ((i, j), (i + 1, j + 1)) from GST . See Figure 9, for example.

2. Let c = ([si, si′ ] � ∩ [tj , tj′ ]). Let N = {(i′′, j′′) | i + 1 ≤ i′′ ≤ i′ and
j + 1 ≤ j′′ ≤ j′}. A graph representation of c is obtained by removing N and
the adjacent arcs from GST . See Figure 10, for example.

Proof. Since the first property is obvious, we consider only the case that c =
([si, si′ ] � ∩ [tj , tj′ ]). Let G be the graph obtained by this lemma. We show that G is
a graph representation of c. That is, σ |= c if and only if ρ−1(σ) is a complete path
on G.

Suppose that σ �|= c. Then σ |= (si < tj′) ∧ (si′ > tj). This means that ρ−1(σ)
contains some (i′′, j′′) such that i+ 1 ≤ i′′ ≤ i′ and j + 1 ≤ j′′ ≤ j′. Since G does not
contain (i′′, j′′) by definition, ρ−1(σ) is not a complete path on G.

Conversely, consider a complete path ρ−1(σ) on GST which is not contained in G.
Then there is a node (i′′, j′′) (i + 1 ≤ i′′ ≤ i′ and j + 1 ≤ j′′ ≤ j′) in ρ−1(σ) which is
contained in GST but not in G. Therefore, we conclude that σ |= (si < tj′)∧(si′ > tj).
That is, σ �|= c.

Theorem 4.3. Let c ∈ CDC �=. A graph representation of c can be constructed
in O(|c|mn) time. The minimum graph representation can also be constructed in
O(|c|mn) time.

Proof. The proof is immediate from Lemmas 3.3, 3.6, and 4.2.
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Fig. 9. Minimum graph representation of s2 �= t4.
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Fig. 10. Minimum graph representation of [s2, s4] � ∩ [t4, t6].

Theorem 4.4. Let c be a disjunction of constraints in CDC �=. The consistency
of c is decidable in O(|c|mn) time.

Proof. The proof is immediate from Theorem 4.3 and Lemma 3.4.

5. Intractability of general disjointness constraints. Recall the explana-
tion of disjointness constraints in Example 1.1. Now we consider the case in which
observations may contain uncertainty. For example, suppose that aS observed that
p or p′ was true during time interval [s, s′]. Also suppose that aT observed that
p was false during [t, t′], and p′ was false during [u, u′]. Then we obtain ([s, s′] � ∩
[t, t′]) ∨ ([s, s′] � ∩ [u, u′]).

As stated above, observations with uncertainty bring disjunction into disjoint-
ness constraints. In this section, we show that both the consistency and the graph
representability for disjointness constraints with disjunction are intractable.

5.1. Consistency of general disjointness constraints. We show that the
consistency of general disjointness constraints is NP-complete.

Theorem 5.1. Let d be a constraint in CNF with respect to disjointness con-
straints; i.e., d is in the form of d1 ∧ · · · ∧ dn, where each di is a disjunction of
disjointness constraints. Then the consistency of d is NP-complete.

Proof. By Theorem 2.1, the problem is in NP. To see the NP-hardness, we reduce
the satisfiability of CNF logical formulas to the consistency problem.

Let F be a CNF formula with n variables x1, . . . , xn. Let

S = {s0, . . . , s2n+1}, T = {t0, . . . , t2n+1},

and let F ′ be the constraint obtained by replacing xi in F by [s2i, s2i+1] � ∩ [t2i−1, t2i],
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Fig. 11. Graph representation of d′ (n = 3).

and ¬xi by [s2i−1, s2i] � ∩ [t2i, t2i+1]. Also define

d′ =

n∧
i=1

([s2i−1, s2i] � ∩ [t2i−1, t2i])

∧
2n−1∧
j=1

([sj−1, sj ] � ∩ [tj+1, tj+2])

∧
2n−1∧
j=1

([sj+1, sj+2] � ∩ [tj−1, tj ]).

The minimum graph representation G∗
d′ of d′ is shown in Figure 11. Last, define

d = F ′ ∧ d′. Note that only the complete paths on G∗
d′ can satisfy d.

We show that d is consistent if and only if F is satisfiable. With each interpreta-
tion ν of F , associate a complete path wν on G∗

d′ satisfying the following conditions
(see Figure 11 again):

• wν contains ((2i− 1, 2i), (2i, 2i + 1)) if ν(xi) = true; and
• wν contains ((2i, 2i− 1), (2i + 1, 2i)) if ν(xi) = false.

Such wν always exists. On the other hand, for every complete path w on G∗
d′ , there

is ν such that w = wν .
Suppose that ν(xi) = true. Then wν contains ((2i − 1, 2i), (2i, 2i + 1)), and

therefore ρ(wν)(s2i−1) = ρ(wν)(t2i). This means that ρ(wν) satisfies [s2i, s2i+1] � ∩
[t2i−1, t2i] but not [s2i−1, s2i] � ∩ [t2i, t2i+1]. Similarly, suppose that ν(xi) = false. Then
wν contains ((2i, 2i − 1), (2i + 1, 2i)), and therefore ρ(wν)(s2i) = ρ(wν)(t2i−1). This
means that ρ(wν) satisfies [s2i−1, s2i] � ∩ [t2i, t2i+1] but not [s2i, s2i+1] � ∩ [t2i−1, t2i].
Thus ν satisfies F if and only if ρ(wν) |= d.

5.2. Graph representability of general disjointness constraints. We show
that the graph representability of general disjointness constraints is coNP-complete.

Theorem 5.2. Let d be a constraint in DNF with respect to disjointness con-
straints; i.e., d is in the form of d1 ∨ · · · ∨ dn, where each di is a conjunction of
disjointness constraints. Then the graph representability of d is coNP-complete.

Proof. By Theorem 3.8, the problem is in coNP. To see the coNP-hardness, we
reduce the modified tautology problem to the graph representability problem.
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Fig. 12. wνtrue (thick arcs) and wνfalse (thin arcs) in Theorem 5.2 (n = 3).

Let F = F1 ∨ · · · ∨ Fk be a DNF formula with n variables x1, . . . , xn such that
both νtrue and νfalse satisfy F . Let

S = {s0, . . . , s2n+1}, T = {t0, . . . , t2n+1}.

Let F ′
l be the constraint obtained by replacing xi in Fl by [s2i, s2i+1] � ∩ [t2i−1, t2i],

and ¬xi by [s2i−1, s2i] � ∩ [t2i, t2i+1]. Then define dl = F ′
l ∧ d′, where d′ is the same as

the proof of Theorem 5.1. Last, define d = d1 ∨ · · · ∨ dk.
In the same way as Theorem 5.1, associate a complete path wν on G∗

d′ with each
interpretation ν of F . Then ν satisfies F if and only if ρ(wν) |= d. Therefore, F is a
tautology if and only if all the complete paths on G∗

d′ satisfy d. Note that ρ(wνtrue
) |= d

and ρ(wνfalse
) |= d since both νtrue and νfalse satisfy F .

To complete the proof, we show that all the complete paths on G∗
d′ satisfy d if

and only if d has a graph representation. For the only if part, suppose that all the
complete paths on G∗

d′ satisfy d. Then, immediately from Definition 3.2, G∗
d′ is a graph

representation of d. For the if part, suppose that ρ(w) �|= d, where w is a complete
path on G∗

d′ . Then, for every arc a contained in w, there is another complete path wa

(namely, wνtrue or wνfalse
; see Figure 12) that contains a and ρ(wa) |= d. Therefore,

by Lemma 3.7, d has no graph representation.

6. Comparison to the related works.

6.1. Related works. Temporal reasoning has been extensively studied mainly
in the field of artificial intelligence. Allen [2] proposed the interval algebra, which
can express the conjunction of any relation between two time intervals. Table 1
shows the 13 basic operators of the interval algebra. Every relation between two
time intervals is represented by a disjunctive combination of some of these basic
operators. For example, the disjointness of two intervals I and J is represented
by I(pp−1mm−1)J , i.e., either I precedes J , I is preceded by J , I meets J , or I
is met by J . Unfortunately, many of the basic problems including the consistency
(i.e., satisfiability) for the interval algebra are NP-hard [12]. Therefore, most of the
researches aim to find tractable classes of temporal constraints.

One of the research directions is to weaken the expressive power of the interval
algebra. Vilain and Kautz [12] proposed the point algebra, which can express the
conjunction of any relationship between two time points. The point algebra is strictly



510 Y. ISHIHARA, S. ISHII, H. SEKI, AND M. ITO

Table 1

Basic interval-interval operators.

I precedes J p III

J preceded by I p−1 JJJ

I meets J m IIII

J met by I m−1 JJJJ

I overlaps J o IIII

J overlapped by I o−1 JJJJ

I during J d III

J includes by I d−1 JJJJJJJ

I starts J s III

J started by I s−1 JJJJJJJ

I finishes J f III

J finished by I f−1 JJJJJJJ

I equals J ≡ IIII

JJJJ

less expressive than the interval algebra, and the consistency of a given constraint
c is decidable in O(|c|2) time [13]. Golumbic and Shamir [3] investigated several
subalgebras of the interval algebra for which the consistency is decidable in polynomial
time. Nebel and Bürckert [9] proposed a subalgebra of the interval algebra called
ORD-Horn, which contains the point algebra. They showed that ORD-Horn is a
maximal tractable subalgebra. More precisely, the consistency of a given ORD-Horn
constraint c is decidable in O(|c|3) time, while the consistency for any subalgebra of
the interval algebra which strictly contains ORD-Horn is NP-complete. Recently, all
the tractable subalgebras of the interval algebra were discovered by Krokhin, Jeavons,
and Jonsson [6].

On the other hand, some researches focus on classes incomparable to the interval
algebra. Jonsson and Bäckström [5] proposed a class of temporal constraints called
Horn DLRs. The class of Horn DLRs is a superclass of ORD-Horn and includes
quantitative constraints (and therefore Horn DLRs are incomparable to the interval
algebra). The consistency of Horn DLRs is decidable in polynomial time using a fast
algorithm for the linear programming problem. Van der Meyden [11] studied the
complexity of determining whether a conjunction of given constraints in the form of
s ≤ t or s′ < t implies a given negation-free existentially quantified constraint.

6.2. Comparison of the expressive power. The relationship among classes
of constraints is shown in Figure 13.

First of all, note that ORD-Horn and CDC�= are incomparable. In a constraint
of ORD-Horn, every relation between intervals must be expressed by a conjunction
of ORD-Horn clauses. An ORD-Horn clause is a disjunction of at most one positive
atomic constraint (i.e., s ≤ t or s = t) and an arbitrary number of negative atomic
constraints (i.e., s �= t). Since a disjointness constraint c1 = [s1, s2] � ∩ [t1, t2] is a
disjunction of two positive atomic constraints, it is not in ORD-Horn. Also, c2 =
(s1 �= t1) ∧ ([s1, s2] � ∩ [t1, t2]) is in CDC�=, but in neither CDC nor ORD-Horn. On
the other hand, ORD-Horn includes constraints that are not in CDC�=. For example,
c3 = (s1 �= t1) ∨ (s2 �= t2) is in ORD-Horn but not in CDC�=. Also, ORD-Horn
includes some of the constraints on more than two clocks, but CDC�= never includes
them.

Next, note that CDC�= ∩ “ORD-Horn” = CDC�= ∩ “point algebra”. Any clause
of a constraint in CDC�= consists of one atomic constraint or two positive atomic
constraints. Therefore, any clause of a constraint in CDC�= ∩ “ORD-Horn” consists
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Fig. 13. Comparison of the expressive power of the classes of constraints.

of one atomic constraint, and hence is expressible in the point algebra.
Class CDC and the point algebra have a nonempty intersection since it contains

c4 = ([s0, si] � ∩ [tj , tn]) ≡ (si ≤ tj) as stated in section 4. On the other hand,
c5 = (s2 �= t4) is not in CDC because the minimum graph representation of c5 (Fig-
ure 9) cannot be a subgraph of an intersection of graph representations of disjointness
constraints (Figure 10).

Let c6 = ([s0, s2] � ∩ [t4, t5]) ∨ ([s0, s4] � ∩ [t6, t7]). Then

c6 ≡ (s0 ≥ t5) ∨ (s2 ≤ t4) ∨ (s0 ≥ t7) ∨ (s4 ≤ t6)

≡ (s2 ≤ t4) ∨ (s4 ≤ t6).

This is not in CDC�= because c6 has no graph representation as shown in section 3. On
the other hand, c6 is in the interval algebra, i.e., c6 ≡ [s2, s4](pmodd−1ss−1ff−1≡)[t4, t6].

Last, c7 = ([s1, s2] � ∩ [t1, t2])∨ ([s3, s4] � ∩ [t3, t4]) is a constraint on two clocks but
not in the interval algebra, because in the interval algebra, disjunction of relations of
distinct pairs of intervals is not expressible.

After the first submission of this paper, all the maximal tractable subalgebras
of the interval algebra were identified by Krokhin, Jeavons, and Jonsson [6]. CDC�=

is incomparable to any of the tractable subalgebras. The outline of the proof is
as follows. Let A be a subalgebra of the interval algebra that can express all the
constraints in CDC�=. A must contain (pp−1mm−1) in order to express � ∩. Also A
must contain (m) or (m−1) in order to express adjacency of intervals (e.g., [s0, s1]
and [s1, s2] in Example 1.1). Then, from the definitions of the discovered tractable
subalgebras (Table 3 of [6]), it is immediate that A is not contained in any of the
tractable subalgebras.

Recently, Krokhin and Jonsson [7] also found maximal tractable subclasses of
Meiri’s qualitative algebra [8]. The qualitative algebra contains all the relational
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Table 2

Basic point-interval operators.

p before I b p

III

p starts I s p

III

p during I d p

III

p finishes I f p

III

p after I a p

III

operators between points, between intervals, and between a point and an interval (see
Table 2). CDC �= is also incomparable with any of the known tractable subclasses of
the qualitative algebra. The outline of the proof is as follows. Let A′ be a subclass
of the qualitative algebra that can express all the constraints in CDC�=. First, it
can be shown that � ∩ is not expressible by using only point-point and point-interval
operators. Therefore, A′ must contain (pp−1mm−1). Next, we can conclude that in
order to express adjacency of intervals, either (1) A′ must contain either (m) or (m−1);
or (2) A′ must contain both (s) and (f). Then it is not difficult to see that A′ is not
contained in any of the known tractable subclasses.

7. Conclusions. In this paper, we have studied temporal reasoning with respect
to constraints on two concurrent sequences of events. We have introduced the notion
of graph representations of constraints. If a graph representation of a given constraint
c can be constructed in polynomial time, then the consistency of c is also decidable
in polynomial time. We have proposed a subclass CDC�= of constraints such that a
graph representation of a constraint in CDC�= can be constructed in polynomial time.

We have considered only the case in which the number of local clocks is two.
However, this assumption is for simplicity. If the number of local clocks is an arbitrary
constant, then the idea of graph representability is applicable and the consistency is
decidable in polynomial time.

As future work, constraints on durations [10] and/or quantitative constraints on
two concurrent sequences of events should be studied. First-order constraints on two
concurrent sequences of events also remain to be investigated.
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Abstract. We present a new analysis of the worst-case cost of path compression, which is an
operation that is used in various well-known “union-find” algorithms. In contrast to previous anal-
yses which are essentially based on bottom-up approaches, our method proceeds top-down, yielding
recurrence relations from which the various bounds arise naturally. In particular the famous quasi-
linear bound involving the inverse Ackermann function can be derived without having to introduce
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1. Introduction. Path compression is used in a number of algorithms, most
notably in various very natural solutions to the so-called union-find problem. This
problem is basic enough to be covered in most introductory texts on algorithms;
however, the performance analysis of the solutions is more often than not at best
incomplete, if not omitted altogether. Already the definition of the function α, the
interesting constituent of the time bound, as a quasi inverse of the Ackermann function
is complicated.

Let us briefly recall the union-find problem. It asks for the maintenance of a
partition of a finite set X and a representative element ρ(A) ∈ A for each set A par-
ticipating in the partition. There are two operations: For x ∈ X the query Find(x)
is to determine the representative element ρ(Ax), where Ax is the set in the parti-
tion that contains x. For two sets A and B in the current partition the operation
Union(ρ(A), ρ(B)) is to change the partition, replacing A and B by their union and
providing the new representative element ρ(A ∪B).

A very natural solution of this union-find problem is to represent the partition
as a forest of rooted trees on the node set X, where each tree represents a set of
the partition and its root is the representative element of that set. The operation
Find(x) is realized by traversing the path from x to the root ρ of its containing tree
(just follow parent pointers) and reporting ρ. The operation Union(ρ(A), ρ(B)) is
realized by making ρ(A) the parent of ρ(B), or vice versa, thus combining the two
trees. Note that a single parent pointer per node suffices to implement such forests.

The time thus necessary for a Union-operation is constant, whereas for a Find-
operation it is proportional to the length of the path traversed. Thus it is advantageous
to keep paths short. To this end it makes sense to be judicious in the Union-operation
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when deciding which of the two involved roots to make the new root. Choosing the one
whose tree has the larger number of nodes is known as the linking-by-weight strategy;
choosing the one with larger rank is known as the linking-by-rank strategy. Here
“rank” is an integer associated with node x that is initially 0 and that is increased by
1 whenever x is made a parent to a node of equal rank.1 In both strategies ties are
broken arbitrarily.

Both strategies produce trees of at most logarithmic height. Thus a sequence of
Union- and m Find-operations takes at most O(n+m log n) time. Here n = |X| and
the initial partition consists of all singleton subsets of X. Note that at most n − 1
Union-operations can occur.

Another way of producing short find-paths is by so-called path compression: When
performing a Find-operation, make all nodes of the traversed path children of the root.
This increases the running time of the Find-operation only by a constant factor but
may make the find-paths of subsequent operations shorter.

Analyzing the performance of algorithms employing path compression in combi-
nation with various linking strategies has a long history.

Fischer [2] showed a bound of O(m log log n). Hopcroft and Ullman [5] proved
an O(m log∗ n) bound. Their approach was refined by Tarjan [7] to the so-called
“multiple partition method” leading to a bound of O(mαT (m,n)), where

αT (m,n) = min{i ≥ 1 |A(i, �m/n�) > �log2 n�}

and A is the “Ackermann function” defined by

A(1, j) = 2j for j ≥ 1,
A(i, 1) = A(i− 1, 2) for i ≥ 2,
A(i, j) = A(i− 1, A(i, j − 1)) for i, j ≥ 2.

Tarjan [8] also showed that this slightly superlinear bound was best possible for a
reasonable, pointer-based model of computation. Later Fredman and Saks [3] proved
the optimality of this bound also for the so-called cell probe model of computation.
Kozen [6] simplified Tarjan’s analysis of the upper bound. Later Tarjan [10] and also
Harfst and Reingold [4] cast the existing analyses in terms of potential functions,
a standard tool for the amortized analysis of algorithm performance. This type of
analysis was taken into [1].

All the analyses so far have proceeded by low-level accounting and charging in-
dividual parent pointer changes to operations or nodes and bounding the grand total
of those charges. In this paper we present an analysis that is based on a radically
different approach. We proceed top-down and employ divide-and-conquer to derive
recurrence relations from which the bounds follow. Our analysis yields rather precise
bounds. For example, if n = |X| < 266 and linking-by-rank and path compression are
used, then any sequence of m Find-operations causes at most min{m+ 4n, 2m+ 2n}
parent pointer changes.

2. The main lemma. Let F be a forest of disjoint rooted trees on a finite node
set X. Here we consider only paths p in F that lead from some node x to some
ancestor y of x. If y is a root in F , we refer to p as a rootpath; otherwise we call it a
nonrootpath and denote the parent of y by a(p).

1In other words the rank of x is nothing but the height (number of edges on longest leaf-root
path) of the tree rooted at x if no path compression had occurred.
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Compressing a nonrootpath p means minimally changing F so that every node on
p has a(p) as its parent. Compressing a rootpath p means minimally changing F so
that every node on p becomes a root. We define the cost of such an operation to be
the number of nodes that get a new parent; i.e., if p is a nonrootpath with d nodes,
the cost is d − 1, and if p is a rootpath, the cost is 0. It is also convenient to allow
empty paths involving no nodes. We classify them as rootpaths, and “compressing”
them has cost 0.

Let C =
(
p(i)

)
1≤i≤M

be a sequence of paths along which compressions are per-

formed starting with the initial forest F ; i.e., F0 = F and for 1 ≤ i ≤ M the path pi
is in Fi−1 and Fi is obtained from Fi−1 by compressing pi. Let cost(C) denote the
cumulative cost of C, i.e., the total number of times that some node gets a new parent.
Finally we define the length of sequence C, |C| for short, in a somewhat unorthodox
way: We define |C| to be the number of nonrootpaths in C.

Compared to the path compressions that arise in Find-operations, the notion of
path compression that we just defined is more general in two ways: First, we allow
rootpath compressions. They make the presentation of our proofs simpler and play
no other role. Second, we allow compressions of paths p where a(p) is not a root.
This makes the union-find problem more static in the sense that the forest changes
caused by Union-operations can be ignored. This was already noted in [5] and [7]
and is captured in the following lemma.

Lemma 2.1. Let S be some sequence of Union- and m Find-operations on an
initial partition of an n-element set X into singletons. Let T be the time necessary to
execute S.

There is a forest F on X and a sequence C of m path compressions, all involving
nonrootpaths, so that T = O(m + n + cost(C)).

Proof. (Sketch) For F consider the forest that is generated by performing just
the Union-operations of the sequence. The sequence of Find-operations then defines
a sequence of nonrootpaths in the corresponding forest.

Thus we are interested in upper bounds for cost(C) measured in terms of |X| and
|C|, the number of nonrootpath compressions in C.

Let us create a setup for divide-and-conquer. Consider a partition of the node
set X of F into a “bottom set” Xb and a “top set” Xt. We call the pair (Xb, Xt) a
dissection for F iff Xt is upwards closed in F ; i.e., if some node x is in Xt, then every
ancestor of x in F must be in Xt also. Note that a dissection (Xb, Xt) cuts every path
into two contiguous subpaths pb and pt consisting of the nodes on p that are in Xb and
Xt, respectively. Either subpath may be empty. Also note that upward-closedness
and hence also dissections are preserved under path compression. Let F(Xb) and
F(Xt) be the subforests of F induced by the sets Xb and Xt.

All our analyses hinge on the following main lemma.
Lemma 2.2. Let C be a sequence of |C| compress operations in a forest F with

node set X. Let (Xb, Xt) be an arbitrary dissection for F .
There are sequences Cb and Ct of compress operations for F(Xb) and F(Xt),

respectively, with |Cb| + |Ct| ≤ |C| and

cost(C) ≤ cost(Cb) + cost(Ct) + |Xb| + |Ct| .

Proof. Let C =
(
p(i)

)
1≤i≤M

be the sequence of paths to be compressed and let(
F (i)

)
0≤i≤M

be the resulting sequence of forests.

Let (Xb, Xt) be a dissection of F = F (0) and let Fb = F(Xb) and Ft = F(Xt) be
the induced bottom and top forests.
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First, we define the postulated path sequences Cb and Ct. Intuitively they are
what one gets when recording the compression sequence C executed with the nodes in

Xt (resp., Xb) hidden. More formally, define Cb =
(
p
(i)
b

)
1≤i≤M

and Ct =
(
p
(i)
t

)
1≤i≤M

.

It is easy to check inductively that for each 1 ≤ i ≤ M the path p
(i)
b occurs in

F (i−1)(Xb), and compressing it produces F (i)(Xb). Thus Cb is a compression sequence
for Fb. Analogously Ct is a compression sequence for Ft.

Next we establish the required bound |Cb|+ |Ct| ≤ |C|. If p(i) is a nonrootpath in

F (i−1), then at most one of p
(i)
b and p

(i)
t is a nonrootpath in its respective forest. If p(i)

is a rootpath in F (i−1), then both p
(i)
b and p

(i)
t are rootpaths. Thus |Cb|+ |Ct| ≤ |C|.

Note that here it is crucial that only nonrootpaths contribute to the length of a
sequence.

Finally we show the postulated cost inequality. If a node from Xt gets a new
parent (necessarily from Xt) when compressing path p(i), then exactly the same thing

happens when compressing p
(i)
t . Thus the number of those types of parent changes

is given by cost(Ct). Likewise the number of times that a node from Xb gets a new
parent from Xb is given by cost(Cb).

A node from Xb getting a new parent which is in Xt can happen only when

compressing a nonrootpath p(i) for which p
(i)
b is a nonempty rootpath in the bottom

forest. In this case all but the topmost node on p
(i)
b get a parent from Xt for the first

time, which can happen to each node in Xb at most once. The topmost node gets a

new parent again from Xt only if p
(i)
t is nonempty, which means p

(i)
t is a nonrootpath

(since p(i) is a nonrootpath). So this type of event can happen at most |Ct| times.
(Here it is crucial that only nonrootpaths contribute to the length of a sequence.)
Since Xt is upwards closed, no node in Xt can get a parent from Xb, and thus the
total number of parent changes, i.e., cost(C), is bounded by

cost(Cb) + cost(Ct) + |Xb| + |Ct| .

3. Arbitrary linking. Let f(m,n) denote the maximum possible cost for a
path compression sequence of length m in a forest of n nodes. By Lemma 2.1 the
value f(m,n) yields an asymptotic upper bound for the running time of m union-find
operations in a universe of n elements if path compression and arbitrary linking is
used.

Using our main lemma it is straightforward to give a rough argument that some-
thing like f(m,n) ≤ (m + n/2) log2 n must hold: For a given compression sequence
C of length m, choose a dissection (Xb, Xt), where both Xb and Xt have size about
n/2. Using induction, the inequality of the main lemma then yields

cost(C) ≤ (|Cb| + n/4) log2(n/2) + (|Ct| + n/4) log2(n/2) + n/2 + |Ct|
≤ (m + n/2) log2(n/2) + n/2 + m

≤ (m + n/2) log2 n .

This argument ignores rounding issues. It can be made precise by setting |Xb| =
�n/2� and |Xt| = �n/2�, replacing log2() by �log2()�, and noting that �log2 �n/2�� ≤
�log2 n� − 1 for integers n > 1.

For large m this bound can be improved to

f(m,n) ≤ (2m + n) log�m/n�+1 n ,

which is achieved by setting k = �m/n� + 1 in the following claim.
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Claim 3.1. For any integer k > 1 we have f(m,n) ≤ (m + (k − 1)n)�logk n�.
Proof. The bound clearly holds if n ≤ k, since each node can get a new parent

at most n − 2 times. So assume n > k and let C be some sequence of m compress
operations in a forest with n nodes. Let (Xb, Xt) be a dissection with nt = |Xt| =
�n/k� and nb = |Xb|. Let Ct and Cb be the compression sequences asserted in the
main lemma and let mt and mb be their respective sizes. Then, using induction, the
inequality of the main lemma implies

cost(C) ≤ (mb + (k − 1)nb) �logk nb�︸ ︷︷ ︸
≤�logk n�

+(mt + (k − 1)nt) �logk nt�︸ ︷︷ ︸
=�logk n�−1

+nb + mt

= (mt + mb + (k − 1)(nt + nb))�logk n� −mt − (k − 1)nt + nb + mt

≤ (m + (k − 1)n)�logk n� ,

where the last inequality follows from the fact that nb ≤ (k − 1)nt by construc-
tion.

A bound of this form was first proved by Tarjan and van Leeuwen in [9].

4. Linking by rank. For every node x in a forest F , define its rank rank(x)
to be the height of the subtree rooted at x, where the height of a one-node tree is 0.
We call F a rank-balanced forest, or simply rank forest, if for each node x in F the
following property holds: For each i with 0 ≤ i < rank(x) node x has at least one
child yi with rank(yi) = i.

Rank forests arise in union-find algorithms that employ the linking-by-rank strat-
egy. It is easy to prove by induction that in such a forest every node of rank k must
be the root of a subtree of size at least 2k. Thus the maximum rank that occurs is at
most �log2 n�, where n is the number of nodes. The following inheritance lemma is
important for our purposes. Its straightforward proof is left to the reader.

Lemma 4.1. Let F be a rank forest with node set X and maximum rank r. Let s
be some integer, let X≤s be the set of nodes with rank at most s, and let X>s be the
set of nodes with rank exceeding s. Then

(i) (X≤s, X>s) is a dissection;
(ii) F(X≤s) is a rank forest with maximum rank at most s;
(iii) F(X>s) is a rank forest with maximum rank at most r − s− 1;
(iv) |X>s| ≤ |X|/2s+1.

Let f(m,n, r) be the maximum cost for a sequence of path compressions of length
m in a rank forest with n nodes and maximum rank r. By Lemma 2.1 f(m,n, �log2 n�)
yields an asymptotic upper bound for the running time of m union-find operations in
a universe of n elements if path compression and linking-by-rank are used.

Before we prove the best possible bound for f(m,n, r), let us first show how even
very simple applications of our main lemma already yield surprisingly good bounds.
We mainly want to convey some intuition here, so for the sake of clarity we will be
imprecise and ignore rounding issues. The formal proofs in the second part of this
section will be precise.

First of all note that trivially the bound f(m,n, r) ≤ (r − 1)n < rn =: P (r, n)
holds, since every node can get a new parent at most r − 1 times, as the new parent
has larger rank than the previous parent.

Now consider a compression sequence C of length m in a rank forest with n nodes
and maximum rank r. Apply the main lemma to the dissection (X≤s, X>s) with
s = log2 r. With this choice of s the top forest contains so few nodes that the trivial
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P (r, n) bound already yields that the cost of the top sequence Ct is at most n:

cost(Ct) ≤ f(|Ct|, |X>s|, r − s− 1) ≤ P (r − s− 1, |X>s|)
= (r − s− 1) · |X>s| ≤ r · n/2s+1 ≤ r · n/2log2 r = n .

From the main lemma we now get

cost(C) ≤ cost(Cb) + cost(Ct)︸ ︷︷ ︸
≤n

+ |Xb|︸︷︷︸
≤n

+ |Ct|︸︷︷︸
≤|C|−|Cb|

,

yielding

cost(C) ≤ cost(Cb) − |Cb| + 2n + |C| ,(∗)

where Cb is a compression sequence in a rank forest with fewer than n nodes and of
maximum rank s = log2 r.

Using the trivial bound P (n, s) = n · s = n log2 r to bound cost(Cb) in (*) then
yields that cost(C) ≤ m + 2n + n log2 r.

Note that since r ≤ log2 n this already implies an O(m + n log log n) bound for
union-find with path compression and linking-by-rank. But of course the natural and
better thing to do is to apply the inequality (*) itself to bound cost(Cb), which yields

cost(C) ≤ (cost(Cbb) − |Cbb| + 2n + |Cb|) − |Cb| + 2n + |C|
= cost(Cbb) − |Cbb| + 4n + |C| ,

where Cbb is now a compression sequence in a rank forest with fewer than n nodes and
of maximum rank log2 s = log2 log2 r. Of course inequality (*) can now be used to
bound cost(Cbb), and this can be done again and again, yielding bounds of the form

cost(C) ≤ cost(C ′) − |C ′| + 2jn + |C| ,

where C ′ is a compression sequence in a rank forest with fewer than n nodes and of
maximum rank

log · · · log︸ ︷︷ ︸
j times

r = log(j) r.

By definition, for j = log∗ r we have log(j) r ≤ 1 and we are dealing with a rank
forest of maximum rank 1. In such a forest any compression sequence has cost 0, and
thus we get

cost(C) ≤ 2n log∗ r + |C| ,

which already implies an O(m+n log∗ n) bound for union-find with path compression
and linking-by-rank.

But this is not the end of the story. We now know the bound f(m,n, r) ≤
m + 2n log∗ r. Knowing this bound, we can start over to bound the cost of C and
apply the main lemma to the dissection (X≤s, X>s) with s = log log∗ r. Again with
this choice of s the top forest contains so few nodes that the bound already yields
that the cost of the top sequence Ct is at most n + |Ct|, yielding a bound analogous
to (*) of the form

cost(C) ≤ cost(Cb) − 2|Cb| + 2n + 2|C| ,(∗∗)
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where Cb is a compression sequence in a rank forest with fewer than n nodes and of
maximum rank s = log log∗ r. Inequality (**) can then be iterated again, yielding the
bound

cost(C) ≤ 2nL(r) + 2|C| ,

where L(r) counts how often log log∗ can be applied to r until it is reduced to at
most 1. This gives a new bound for f(m,n, r) and the whole process can be repeated
again and again.

To formalize this we need two definitions involving integer functions, the first of
which is standard. Let g : N → N be a function with g(n) < n for n > 0. Define the
functions g∗ : N → N and g� : N → N as follows:

g∗(r) =

{
0 if r ≤ 1,
1 + g∗(g(r)) if r > 1,

g�(r) =

{
g(r) if g(r) ≤ 1,
1 + g�(�log2 g(r)�) if g(r) > 1.

Note that g� is essentially (log ◦g)∗.
With these definitions we can state and prove the following shifting lemma.
Lemma 4.2. Assume there is some k ≥ 0 and some nondecreasing function

g : N → N with g(r) < r for r > 0 so that

f(m,n, r) ≤ km + 2ng(r)

holds for all m,n, r. Then the following bound also holds for all m,n, r:

f(m,n, r) ≤ (k + 1)m + 2ng�(r) .

Proof. We proceed by induction on r. The statement clearly holds if g(r) ≤ 1,
since in these cases we have g�(r) = g(r) = 0.

So assume r is such that g(r) > 1 and let C be some compression sequence of
length m in a rank forest F with n nodes and maximum rank r. Let s = �log2 g(r)�
and let (X≤s, X>s) be the dissection described in Lemma 4.1. Note that s < r since
g(r) < r. Put nb = |X≤s| and nt = |X>s|. Let Cb and Ct be the compression
sequences asserted in the main lemma and put mb = |Cb| and mt = |Ct|. By the main
lemma we have

cost(C) ≤ cost(Cb) + cost(Ct) + nb + mt .

The bottom forest F(X≤s) is a rank forest of maximum rank s < r. Using the
inductive assumption we get

cost(Cb) ≤ (k + 1)mb + 2nbg
�(s)

≤ (k + 1)mb + 2n g�(�log2 g(r)�)︸ ︷︷ ︸
g�(r)−1

= (k + 1)mb + 2ng�(r) − 2n .

The top forest F(X>s) is a rank forest of maximum rank r − s− 1 with

nt ≤ n/2s+1 = n/21+�log2 g(r)� ≤ n/(2g(r))



522 RAIMUND SEIDEL AND MICHA SHARIR

nodes. Using the assumption of the lemma and the fact that g is nondecreasing, we
therefore get

cost(Ct) ≤ kmt + 2ntg(r − s− 1) ≤ kmt + n .

Putting things together, we get

cost(C) ≤
(
(k + 1)mb + 2ng�(r) − 2n

)
+
(
kmt + n

)
+ nb + mt

≤ (k + 1)(mb + mt) + 2ng�(r)

= (k + 1)m + 2ng�(r) .

Since this is true for any sequence C of length m in a rank forest with n nodes and
maximum rank r, we get the desired bound

f(m,n, r) ≤ (k + 1)m + 2ng�(r) .

The shifting lemma makes it possible to take a simple but loose bound for
f(m,n, r) and derive from it a whole sequence of valid bounds. From these bounds
we then choose a particularly good one.

Corollary 4.3. Let the integer functions Jk with k ∈ N be defined as

J0(r) = �(r − 1)/2� and Jk(r) = J�
k−1(r) for k > 0.

Then for each k ∈ N we have

f(m,n, r) ≤ km + 2nJk(r) .

Proof. It is easy to show by induction that for each k the function Jk is nonde-
creasing and satisfies Jk(r) < r for all r > 0.

Since a node in a rank forest of maximum rank r has at most r ancestors (one of
which is its initial parent) it can get a new parent at most r − 1 times. Therefore

f(m,n, r) ≤ n · (r − 1) ≤ 2nJ0(r)

holds. For k > 0 the stated bound now follows by induction using the shifting
lemma.

The Jk’s are very slowly growing functions even for small k’s. The reader may
check that J1(r) ≤ 2 and J2(r) ≤ 1 for r ≤ 65. Since in a rank forest with n nodes
and of maximum rank r we have r ≤ �log2 n�, we therefore get for n < 266 a bound
of

f(m,n, r) ≤ min{m + 4n, 2m + 2n} .

For general m and n we now want to choose from the infinitely many bounds provided
by the Jk’s one that is particularly good. To this end define

αS(m,n) = min{k ∈ N|Jk(�log2 n�) ≤ 1 + m/n} .

Using the corollary we then get the following.
Theorem 4.4. For all m,n, r we have f(m,n, r) ≤ (αS(m,n) + 2)m + 2n.
Invoking Lemma 2.1 we immediately get the following.
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Theorem 4.5. Performing a sequence of Union-operations and m Find-oper-
ations on a set of size n using union-by-rank and path compression requires at most
O(n + mαS(m,n)) time.

The reader may wonder how the function αS(m,n) defined here relates to Tarjan’s
initial definition of the inverse Ackermann function αT (m,n). In analogy to the
formalism used in this paper, αT can be defined as follows:

αT (m,n) = min{k ≥ 1 |Tk(�log2 n�) < m/n},

where

T1(r) = �log2 r� and Tk(r) = T •
k−1(r) for k > 1,

and

g•(r) =

{
0 if r ≤ 2 (in contrast to 1 in the definition of g∗),
1 + g•(g(r)) if r > 2.

One can see that the differences between αS and αT are minor, and one can show
that asymptotically they are equivalent.

5. Linking by weight. Besides linking-by-rank, the method of linking-by-weight
is another standard strategy in union-find algorithms. Applying our top-down ap-
proach to its analysis is a bit less straightforward than in the case of linking by rank
that we just saw. The main technical issue is to create a setting where some analogue
of Lemma 4.1 holds.

Let F be a forest, and for each node x in F let Tx be the subtree rooted at x,
let hx be the height of Tx, and let w(x) be some positive integer weight function on
the nodes x of F . For each node x define W (x) =

∑
y node in Tx

w(y). We call F a
weight-balanced forest iff for every node x in F with parent y we have W (y) ≥ 2W (x).
We say such a forest is of type (µ, h,W ) iff

(i) w(x) ≥ 2µ for every leaf x,
(ii) hx ≤ h for each node x,
(iii)

∑
y node in F w(y) ≤ W .

Note that any forest created by linking-by-weight with n initial nodes, each of weight 1,
is a weight-balanced forest of type (0, �log2 n�, n).

Lemma 5.1. Let F be a weight-balanced forest with node set X and node weight
function w and let F be of type (µ, h,W ). Let s be some integer, let X≤s be the set
of the nodes x with hx ≤ s, and let X>s be the set of nodes with hx > s. Define a
new weight function

w′(x) =

{
w(x) if x ∈ X≤s,
w(x) +

∑
y∈X≤s child of x W (y) if x ∈ X>s.

The following hold:
(i) (X≤s, X>s) is a dissection.
(ii) F(X≤s) with weight function w′ is a weight-balanced forest of type (µ, s,W ).
(iii) F(X>s) with weight function w′ is a weight-balanced forest of type (µ+s+1,

h− s− 1,W ).
(iv) |X≤s| ≤ |X| < 2W/2µ and |X>s| < 2W/2µ+s+1.
Proof. Points (i) and (ii) are trivial. Point (iii) follows from the property

W (parent(x)) ≥ 2W (x) and from the fact that the definition of the new weights
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w′() implies that for each node x ∈ Xt the value W ′(x), defined with respect to
F(X>s), coincides with W (x) defined with respect to F .

For point (iv) it suffices to show that the number of nodes in a weight-balanced for-
est F of type (µ, h,W ) is less than 2W/2µ. For each i ∈ N let Ni = {x node in F|hx = i}
and let Wi =

∑
x∈Ni

W (x). Note that Wi ≤ W for each i. Since for each x ∈ Ni we

have W (x) ≥ 2µ+i (a consequence of the property W (parent(x)) ≥ 2W (x)), we get

|Ni| ≤ Wi/2
µ+i ≤ W/2µ+i .

Summing over all i yields the desired bound on the number of nodes in F .
Let f(m,µ, h,W ) denote the maximum cost for a sequence of m path compressions

in a weight-balanced forest of type (µ, h,W ). Again a shifting lemma holds.
Lemma 5.2. Assume there is some k ≥ 0 and some nondecreasing function

g : N → N with g(h) < h for h > 0 so that

f(m,µ, h,W ) ≤ km + 4(W/2µ)g(h)

holds for all m,µ, h,W . Then also the following bound holds for all m,µ, h,W :

f(m,µ, h,W ) ≤ (k + 1)m + 4(W/2µ)g�(h) .

The proof proceeds in the same way as the proof of Lemma 4.2, using the dissec-
tion properties described in Lemma 5.1 instead of the ones described in Lemma 4.1,
and with h playing the role of r.

We can now conclude that

f(m,µ, h,W ) ≤ km + 4(W/2µ)Jk(h)

for every k ∈ N.
As already noted, in forests as they arise in union-find algorithms with linking-

by-weight, we have w(x) = 1 for each of the n nodes, and hence µ = 0, W = n, and
h ≤ log2 n. Thus we get the following.

Theorem 5.3. A sequence of m path compressions in a forest of n nodes as it
arises in union-find algorithms with linking-by-weight has cost at most

(αS(m,n) + 4)m + 4n .

Again invoking Lemma 2.1 we immediately get the following.
Theorem 5.4. Performing a sequence of Union-operations and m Find-opera-

tions on a set of size n using union-by-weight and path compression requires at most
O(n + mαS(m,n)) time.

6. Open problems. Can this top-down analysis method be made to work also
for variants of path compression such as path compaction (see [9])? Most likely this
will require some additional ideas, because, in contrast to compression, the compaction
of rootpaths is nontrivial and can incur costs.

Another question is whether such a top-down approach be used to prove lower
bounds involving the inverse Ackermann function.
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PSEUDO-LINE ARRANGEMENTS:
DUALITY, ALGORITHMS, AND APPLICATIONS∗
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Abstract. A finite collection of x-monotone unbounded Jordan curves in the plane is called
a family of pseudo-lines if every pair of curves intersect in at most one point, and the two curves
cross each other there. Let L be such a collection of n pseudo-lines, and let P be a set of m points
in R

2. Extending a result of Goodman [Discrete Math., 32 (1980), pp. 27–35], we define a duality
transform that maps L to a set L∗ of points in R

2 and P to a set P ∗ of (x-monotone) pseudo-lines in
R

2, so that the incidence and the “above-below” relations between the points and the pseudo-lines
are preserved. We present an efficient algorithm for computing the dual arrangement A(P ∗) under
an appropriate model of computation.

We also present a dynamic data structure for reporting, in O(mε +k) time, all k points of P that
lie below a query arc, which is either a circular arc or a portion of the graph of a polynomial of fixed
degree. This result is needed for computing the dual arrangement for certain classes of pseudo-lines
arising in several applications, but is also interesting in its own right. We present a few applications
of our dual arrangement algorithm, such as computing incidences between points and pseudo-lines
and computing a subset of faces in a pseudo-line arrangement.

Next, we present an efficient algorithm for cutting a set of circles into arcs so that every pair of
arcs intersect in at most one point, i.e., the resulting arcs constitute a collection of pseudo-segments.
By combining this algorithm with our algorithm for computing the dual arrangement of pseudo-lines,
we obtain efficient algorithms for several problems involving arrangements of circles or circular arcs,
such as reporting or counting incidences between points and circles and computing a set of marked
faces in arrangements of circles.
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1. Introduction. The arrangement of a finite collection Γ of geometric curves
or surfaces in R

d, denoted as A(Γ), is the decomposition of the space into relatively
open connected cells of dimensions 0, . . . , d induced by Γ, where each cell is a maximal
connected set of points lying in the intersection of a fixed subset of Γ and avoiding
all other elements of Γ. Besides being interesting in their own right due to the rich
geometric, combinatorial, algebraic, and topological structures that they possess, ar-
rangements also lie at the heart of numerous geometric problems arising in a wide
range of applications, including robotics, computer graphics, molecular modeling, and
computer vision. The study of arrangements of lines and hyperplanes has a long, rich
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history. A summary of early work on arrangements can be found in [27, 28]. Al-
though hyperplane arrangements already possess a rich structure, many applications
(e.g., motion-planning in robotics and molecular modeling) call for a systematic study
of arrangements of curved arcs in the plane and of curved surface patches in higher
dimensions. There has been considerable progress in this area in the last two decades;
see [10] for a review of recent results.

A collection L of n unbounded Jordan curves is called a family of pseudo-lines if
every pair of curves intersect in at most one point and the two curves cross each other
there. Arrangements of pseudo-lines were probably first studied by Levi [32]; see [23,
26, 28] for known results on pseudo-line arrangements. The work by Goodman and
Pollack on allowable sequences [26] shows that any arrangement of pseudo-lines can be
transformed into an arrangement of x-monotone pseudo-lines that is isomorphic to the
original one. Such a transformation, however, is not efficient for the algorithms that
we seek to develop, and we will thus confine our analysis to a priori given x-monotone
pseudo-lines. For such pseudo-lines, the above-below relation between points and
pseudo-lines, which will be used a lot in our analysis, is naturally defined. Many of
the combinatorial results related to arrangements of lines (e.g., complexity of a single
face, complexity of many faces, complexity of a level, incidences with a given set of
points, etc.) hold for arrangements of pseudo-lines as well.

It has been shown [9, 11, 15, 16, 42] that various families of arcs (e.g., circular,
parabolic, or graphs of polynomials of fixed degree) can be converted into a family of
pseudo-segments, that is, subarcs with the property that each pair intersect at most
once, by cutting the original arcs into a subquadratic number of pieces. Achieving this
property with a quadratic number of cuts is trivial. Chan [15] has also shown that
a collection of N x-monotone pseudo-segments can be cut further into O(N logN)
subarcs, each of which can be extended into an unbounded x-monotone curve, so that
these curves constitute a family of pseudo-lines; the resulting subarcs are referred to
as extendible pseudo-segments. One can then use the close relationship between line
and pseudo-line arrangements to solve a variety of problems involving arrangements
of arcs; see [2, 9, 11, 15, 42].

In this paper, we focus on algorithmic problems involving arrangements of pseudo-
lines in the plane. These problems are much less studied than the corresponding
combinatorial problems. Of course, one has to assume a reasonable representation of
the given pseudo-lines in order to develop efficient algorithms for their manipulation.
We therefore assume, for example, that the given pseudo-lines are algebraic (or semi-
algebraic) curves of fixed maximum degree, and that our model of computation allows
us to perform, in constant time, exact computations involving any constant number
of such curves, such as computing the intersection point of a pair of pseudo-lines.
However, even with these assumptions, several algorithms for line arrangements do
not extend routinely to pseudo-line arrangements. A stumbling block in many of these
algorithms, when we try to extend them to the case of pseudo-lines, is that they rely
on some kind of a duality transform that maps lines to points and points to lines.
Typically, one uses the duality that maps a line � : y = ax + b to a point �∗ = (a, b)
and a point p = (α, β) to the line p∗ : y = −αx + β [20]. Note that � passes above
(resp., below, through) p if and only if �∗ lies above (resp., below, on) p∗.

Burr, Grünbaum, and Sloane [14] had raised the question of whether a similar
dual transform exists for pseudo-lines. Goodman [22], based on his work with Pollack
on allowable sequences [24, 25, 26], defined a dual transform for (not necessarily x-
monotone) pseudo-lines in the projective plane that preserves the incidence relation.
That is, given a set L of n pseudo-lines and a set P of m points in R

2, the transform
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yields a set L∗ of n points and a set P ∗ of m pseudo-lines, so that a point p of P lies
on a pseudo-line � ∈ L if and only if the dual point �∗ lies on the dual pseudo-line
p∗. Goodman’s construction has several disadvantages from an algorithmic point of
view. First, his construction is defined in the projective plane, and, consequently, it
does not (and cannot, without considerable modifications) handle the above-below
relation. A more significant problem, from the algorithmic point of view, is that his
construction requires that for each pair of the given points, there exists an input
pseudo-line passing through this pair. Although the existence of such a pseudo-line
follows from the classical result of Levi [32], known as the Levi enlargement lemma,
computing all these connecting pseudo-lines seems to be a highly nontrivial (and
certainly inefficient) task.

We define a different dual transform, which may be regarded as an extension
of Goodman’s construction, and which overcomes the technical problems mentioned
above. Suppose we have a data structure for storing the m points of P that supports
the following operations, each in at most f(m) (amortized) time: (i) determining
whether any point of P lies below (or above) a query pseudo-line �, and (ii) inserting
a point into P or deleting a point from P . Using this data structure as a “black box,”
we present a sweep-line algorithm for constructing the dual arrangement A(P ∗) that
runs in time O((n + χ)f(m) logm), where χ is the number of vertices in A(P ∗). We
note that if f(m) is small, say polylogarithmic in m or of the form O(mε), for any
ε > 0, then this bound is nearly optimal. It is a bound of this kind that was missing
so far in the algorithmic applications alluded to above.

Next, we describe a data structure for preprocessing a set P of m points in the
plane so that all k points of P lying below the graph of a query fixed-degree polynomial
can be reported in O(mε + k) time.1 It can also determine, in O(mε) time, whether
any point of P lies below a query curve. A point can be inserted into or deleted from
P in O(log2 m) time. Although our approach is closely based on Matoušek’s algorithm
[34] for reporting points that lie below a query line, a few technical difficulties must be
overcome to extend this algorithm to the case of graphs of fixed-degree polynomials.
A similar data structure also works for circular arcs.

Using our dual-arrangement algorithm, we show that all incidences between a set
P of m points and a set L of n pseudo-lines can be reported in time O(m2/3−εn2/3+2ε+
n1+ε+m1+ε), provided the pseudo-lines in L are extensions of bounded-degree polyno-
mial arcs or of circular arcs, or for any other family of arcs for which a data structure
with the above properties can be constructed. More precisely, we assume that all of
our arcs have the same x-projection, and that they can be extended to pseudo-lines in
some simple manner, e.g., by horizontal rays. If the arcs in L intersect at χ points, the
running time of the algorithm is O(m2/3−εχ1/3+ε + n1+ε + m1+ε). We also describe
an algorithm, with the same running time, for computing the faces of A(L) that have
a nonempty intersection with a set P of m “marking points,” none of which lies on
any arc of L. It has been shown in [18, 41] that the maximum number of incidences
between m points and n pseudo-lines is Θ(m2/3n2/3+m+n), and that the same holds
for the complexity of m marked faces in an arrangement of n pseudo-lines. Hence both
of our algorithms are nearly optimal in the worst case.

Let L be a family of n pseudo-circles in the plane, which is a collection of
closed Jordan curves, each pair intersecting at most twice. Recently, considerable
progress has been made on the problem of splitting the curves in such a family L into

1We follow the convention that an upper bound of the form O(g(n, ε)) means that for each ε > 0
there is a constant cε such that the actual bound is cεg(n, ε).
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pseudo-segment arcs. This work started with the paper of Tamaki and Tokuyama
[42], and has continued with recent papers of Aronov and Sharir [11], Chan [15, 16],
Agarwal et al. [9], and Marcus and Tardos [33]. Since the resulting set of arcs is
a collection of pseudo-segments, one can obtain bounds on the complexity of vari-
ous substructures in arrangements of pseudo-circles by applying the known results
for pseudo-segment arrangements. This approach has recently been used to obtain,
among other results, nontrivial upper bounds on the complexity of a level in an
arrangement of pseudo-circles [9, 15, 16, 33, 42], on the number of incidences be-
tween points and circles or parabolas [9, 11, 33], and on the complexity of many
faces in an arrangement of circles or parabolas [2, 9, 33]. Specifically, the cited pa-
pers show that the number of incidences between m points and n circles or parabo-
las is O(m2/3n2/3 + m6/11n9/11 log2/11(m3/n) + m + n) (see [9, 11, 33]), and that
the complexity of m marked faces in an arrangement of n circles or parabolas is
O(m2/3n2/3 + m6/11n9/11 log6/11(m3/n) + n log n) (see [2, 9, 33]). However, none of
the preceding results were algorithmic. The only exception is an efficient algorithm for
computing incidences between points and congruent circles. By adapting Matoušek’s
algorithm [35] for reporting point-line incidences, the incidences between m points and
n unit circles can be computed in time O(m2/3n2/32O(log∗ n) + (m + n) log(m + n)).
Moreover, if there are only χ intersecting pairs among the circles, the running time
reduces to O(m2/3χ1/3 log n + m log n + n1+ε(m/χ)2ε/3).

In this paper we present an O(n3/2+ε)-time algorithm for splitting n circles into
O(n3/2+ε) pseudo-segment arcs. The recent algorithms of Solan [40] and of Har-Peled
and Sharir [30] can also be used or adapted for this task, but the running time of
the resulting solutions would be close to O(n7/4). Our algorithm follows the general
approach of these algorithms, but it uses additional tools and a more refined analysis
to obtain the bound stated above. Combining this algorithm with our new algorithms
for handling arrangements of pseudo-lines, we obtain algorithms that report (or count)
all incidences between m points and n circles in time

O(m2/3−εn2/3+2ε + m6/11+3εn9/11−ε + m1+ε + n1+ε).(1.1)

One can also refine the bound so that it depends on the number χ of intersecting
pairs among the given circles. The bound then becomes

O(m2/3−εχ1/3+ε + m6/11+3εχ4/11+2εn1/11−5ε + m1+ε + n1+ε),(1.2)

where χ is the number of intersecting pairs of circles.
We also describe an algorithm for computing the faces in an arrangement of n

circles that contain at least one of m given points, whose running time is

O(m2/3−εn2/3+2ε + m6/11+3εn9/11−ε + m1+ε + n1+ε).

Moreover, as in the case of incidences, we can also adapt the algorithm so that its
running time is sensitive to χ, the number of intersecting pairs of circles. If all circles
have the same radius, then the running time can be improved to O(m2/3−εχ1/3+ε +
m1+ε + n1+ε). These bounds are therefore close to the best known upper bounds for
the corresponding combinatorial problems (as provided in [2, 9, 11, 33] and reviewed
above). The previously best known algorithm for computing m distinct faces in an ar-
rangement of n circles (even for congruent circles) required O(n

√
m log n) randomized

expected time [38].
Finally, another application of our duality is found in [39], where it is shown

that graphs drawn in the plane with their edges drawn as a collection of extendible
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pseudo-segments are equivalent to pseudo-line graphs, whose vertex set is a family L
of pseudo-lines, and whose edge set corresponds to some subset of the vertices of A(L)
(where each vertex represents the edge that connects the two incident pseudo-lines).
The equivalence means that two edges in the original graph cross each other if and
only if the two corresponding arrangement vertices form a diamond (each lying be-
tween the two pseudo-lines incident to the other vertex). This property was originally
observed by Tamaki and Tokuyama [43]. Many applications of this correspondence
are presented in [39].

2. Duality between points and pseudo-lines. Let L be a set of n x-monotone
pseudo-lines and P a set of m points in the plane. Let W be a vertical strip that
contains P and all vertices of A(L). Let λ and ρ be, respectively, the left and right
boundary lines of W . We clip the pseudo-lines of L to within W and thus assume
that L is a set of x-monotone arcs whose left and right endpoints lie on λ and on ρ,
respectively; see Figure 1 (i). Given such a family of arcs, we can apply an inverse
transformation that extends each arc � in L to an unbounded x-monotone Jordan
curve �̄ by drawing leftward and rightward horizontal rays from its left and right
endpoints, respectively; the resulting curves form a family of x-monotone pseudo-
lines. We refer to �̄ as the extension of �. An x-monotone Jordan arc that crosses
W completely splits W into two regions. We will refer to each of these regions as a
pseudo-halfplane. See Figure 1 (ii).

Fig. 1. (i) A family of pseudo-lines and a set of points. (ii) Clipped pseudo-lines within a
vertical strip W , extensions of the clipped arcs to Jordan curves, and two pseudo-halfplanes within
W , bounded by a clipped pseudo-line �.

We now present a duality transform that maps L to a set L∗ of n points and
P to a set P ∗ of m x-monotone pseudo-lines so that the incidences and the above-
below relations between the points and pseudo-lines are preserved. We first describe
the duality in a manner that, albeit being constructive, is not concerned with real
algorithmic efficiency. We then show how to implement the construction in an efficient
manner.

We sort the pseudo-lines of L in increasing order of their intercepts with λ. Map
each pseudo-line � ∈ L to the point �∗ = (i�, 0), where i� is the rank of the intercept
� ∩ λ along λ. We refer to i� as the index of �. In other words, the dual points all
lie on the x-axis and appear there from left to right in the same order as the y-order
of the intercepts of the corresponding curves with λ. Since we are dealing with (x-
monotone unbounded) pseudo-lines, the y-coordinates of the dual points, as well as
the exact spacings between their x-coordinates, are not important. One can always
move any dual point up or down (arbitrarily) or left or right (without passing over
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another dual point) and deform the dual pseudo-lines (that we will define shortly)
accordingly, so that the incidences, the above-below relations, the x-monotonicity,
and the pseudo-line property are all preserved. See Figure 2 for an illustration.

Fig. 2. The duality transform: (i) The primal setting. (ii) The dual representation.

Each point p ∈ P is mapped to an x-monotone curve p∗ that is constructed so
as to obey the following (necessary) rule: For each pseudo-line � ∈ L, if p lies above
(resp., below, on) �, draw p∗ to pass above (resp., below, through) the point �∗. This
rule does not fully specify the curves p∗, but as we will see next, with some additional
care, it yields a drawing of these curves as a collection of pseudo-lines. In order to
fully specify the curves we first need to define the ordering of the dual curves p∗, for
p ∈ P , at x = −∞. Let us first assume that no pair of points of P lie in the same edge
or face of A(L). In the present course of analysis, we have no way of distinguishing
between any two points that lie in the same face, and we simply regard such a pair
as identical. For two points p, q ∈ P , we say that p ≺ q if either x(p) < x(q) or
x(p) = x(q) and y(p) < y(q). For two lines �1, �2 ∈ L, we say that �1 ≺ �2 if the left
endpoint of �1 (on λ) lies below that of �2.

We sort the dual curves by the order ≺ on the original points, and draw them
at x = −∞ in this order from top to bottom, i.e., if p ≺ q, then p∗ lies above q∗ at
x = −∞. (For example, e∗ lies above d∗ at x = −∞ in Figure 2 because e ≺ d.) We
draw the curves from left to right as horizontal, parallel curves until we are about
to sweep past a dual point �∗. We compute the sets P+(�∗) (resp., P−(�∗), P ◦(�∗))
consisting of those points that lie above (resp., below, on) �. This allows us to find
all inversions enforced by �∗, namely, all pairs (p, q), such that p∗ passes above q∗ to
the left of �∗, but p∗ has to pass below or through �∗ whereas q∗ has to pass above or
through �∗, forcing their order to reverse before we reach �∗ or at �∗ itself. We then
draw the curves past �∗ so that exactly those inverted pairs cross each other just to
the left of, or at �∗. To achieve this, we take all the curves in P+(�∗) (that have to
pass above �∗) and bend them simultaneously upward, keeping them parallel to each
other, so that they do not intersect among themselves, and pass above �∗. We apply
a symmetric deformation downward to the curves in P−(�∗). Finally, we bend all
curves of P ◦(�∗) into straight segments that pass through �∗, so that their ordering
reverses after passing through �∗. (For example, P ◦(�∗3) = {c∗, e∗}, so the ordering
of c∗ and e∗ reverses after they pass through �∗3.) All these bends start at the same
x-coordinate slightly to the left of �∗, end at the same x-coordinate slightly to its right
(where all dual curves turn to become horizontal), and continue in this direction in
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parallel. In this way, it is clear that intersections in the vicinity of �∗ arise exactly
between the inverted pairs. See Figure 2(ii); for simplicity we have added only those
bends to the dual curves which were necessary and have omitted the others. We now
prove that this procedure does indeed produce an arrangement of pseudo-lines.

Lemma 2.1. There do not exist two points p, q ∈ P and two pseudo-lines �1, �2 ∈
L such that

(C1) p ≺ q,
(C2) �∗1 lies to the left of �∗2,
(C3) �∗1 lies above (or on) p∗ and below (or on) q∗, and
(C4) �∗2 lies below (or on) p∗ and above (or on) q∗.

Fig. 3. Two points p, q and two curves �1, �2, satisfying (C1)–(C4), in the dual and primal
settings.

Proof. Suppose to the contrary that there exist p1, p2 ∈ P and �1, �2 ∈ L that
satisfy (C1)–(C4). Let hp (resp., hq) be the vertical line passing through p (resp., q).
We first claim that x(p) < x(q). Indeed, if p ≺ q and x(p) ≮ x(q), then x(p) = x(q)
and y(p) < y(q). Since �2 is x-monotone, it intersects the vertical line hp = hq at a
single point. Therefore �2 cannot pass through both p and q if x(p) = x(q). Assume
that q �∈ �2. Then condition (C4) in conjunction with our construction implies that
�2 lies above q but does not lie above p. However, both of these conditions cannot be
satisfied simultaneously since y(p) < y(q). The case p /∈ �2 is handled symmetrically.
Hence, we can assume that x(p) < x(q).

It is impossible for both p∗ and q∗ to pass through both �∗1 and �∗2, as this would
imply that �1 and �2 cross twice, contradicting the fact that they are pseudo-lines. So
assume that �∗1 �∈ q∗; any of the symmetric cases �∗1 �∈ p∗, �∗2 �∈ q∗, or �∗2 �∈ p∗ is handled
in exactly the same manner. This in turn implies that q �∈ �1. We will consider the
ordering of �1 and �2 along the lines λ, hp, and hq. Since �∗1 lies to the left of �∗2, �1
lies below �2 along λ. If p ∈ �1 ∩ �2, then by the definition of pseudo-lines, p is the
only point at which �1 and �2 cross and �1 lies above �2 to the right of hp. Otherwise,
suppose p �∈ �1. Then by (C3) and (C4), �1 lies above p and �2 does not lie above p, so
�1 lies above �2 at hp and they cross at a point between λ and hp. See Figure 3. Once
again, by (C3) and (C4) and the assumption that q �∈ �1, we can argue that �2 lies
above �1 at the line hq. Hence, �1 and �2 cross again between the lines hp and hq. But
this contradicts the assumption that �1 and �2 are pseudo-lines. This contradiction
completes the proof of the lemma.

Corollary 2.2. P ∗ is a family of pseudo-lines.

Proof. If P ∗ were not a family of pseudo-lines, then there would exist two dual
curves p∗ and q∗ that cross at least twice, say, at points σ1 and σ2, with σ1 lying to



PSEUDO-LINE ARRANGEMENTS 533

the left of σ2. Without loss of generality, assume that p ≺ q. Then p∗ lies above q∗ at
x = −∞. Since p∗ and q∗ cross at σ1, then by construction, there is an �1 ∈ L such
that p∗ passes below or through �∗1, q

∗ passes above or through �∗1, and �∗1 lies slightly
to the right of σ1 or is equal to σ1, but in either case it lies to the left of σ2. The
pseudo-line p∗ lies below q∗ to the right of σ1 until their second intersection point σ2.
Again, our construction forces p∗ and q∗ to cross at σ2 only if there is another �2 ∈ L
such that �∗2 lies to the right of �∗1, q

∗ passes below or through �∗2, and p∗ passes above
or through �∗2. These conditions, however, yield a configuration satisfying (C1)–(C4),
which contradicts Lemma 2.1.

We thus obtain the first main result of the paper.
Theorem 2.3. For a finite set P of points and a finite set L of x-monotone

pseudo-lines in the plane, there is a duality transformation that maps L into a set
of points and P into a set of x-monotone pseudo-lines so that the incidence and the
above-below relations between P and L and between their duals are the same, i.e.,
p ∈ P lies above (resp., below, on) � ∈ L if and only if the pseudo-line dual to p passes
above (resp., below, through) the point dual to �.

3. Constructing the dual arrangement. Let L∗ denote the set of points dual
to the pseudo-lines of L, and let P ∗ denote the set of pseudo-lines dual to the points
of P , as defined in the preceding section. We describe an efficient algorithm for
computing the arrangement A(P ∗). The output consists of a representation of A(P ∗)
as a planar map, using, e.g., the standard DCEL structure [19], which records the
adjacencies between vertices and edges and between edges and faces of A(P ∗), as well
as the order of incident edges and faces about a vertex, the order of incident vertices
and edges along the boundary of a face, and the order of vertices and edges along
each curve of P ∗. Moreover, the output also records, for each �∗ ∈ L∗, the vertex,
edge, or 2-face of A(P ∗) that contains �∗.

We construct A(P ∗) by sweeping a vertical line from left to right that stops at
every point of L∗. We maintain the following two structures during the sweep:

(i) the ordering of curves in P ∗ along the sweep line;
(ii) the planar map representation of A(P ∗) restricted to the (closed) halfplane

lying to the left of the sweep line.
Let Πi be the ordering of P ∗ (from bottom to top) along any vertical line Λi lying

immediately to the right of �∗i (and to the left of the portion of the plane where we bend
pseudo-lines of P ∗ toward their interaction around �∗i+1), let Ai be the arrangement of
P ∗ restricted to the (closed) halfplane lying to the left of Λi, and let Gi be the DCEL
representation of Ai. Π0 is the ordering of P ∗ at x = −∞, as defined in section 2.
Π0 can be computed in O(m logm) time by sorting the points in P in lexicographical
order. A0, the arrangement of P ∗ lying to the left of the “bending region” preceding
�∗1, is a planar subdivision induced by a family of m horizontal segments. After having
computed Π0, G0 can be computed in O(m) time.

When the sweep line stops at �∗i , we compute Πi and Gi from Πi−1 and Gi−1. In
order to expedite the computation, we maintain Πi in a minimum-height balanced
tree T whose jth leftmost leaf stores the jth lowest curve in Πi. For each node v ∈ T,
let Pv ⊆ P denote the set of points stored at the leaves of the subtree rooted at v; if
v is a leaf, we denote the singleton point of p stored at v by pv. At each node v ∈ T,
we maintain a data structure Dv = D(Pv) that supports the following operations on
Pv:
Empty(�, v): For a pseudo-line � ∈ L, which of the (open) pseudo-halfplanes bounded

by �, if any, contains a point of Pv? If neither pseudo-halfplane contains a
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point of Pv, then Pv ⊂ �.
Insert(p, v): Insert a point p into Pv.
Delete(p, v): Delete a point p from Pv.

We describe in the next section a data structure that supports these operations
efficiently for certain classes of pseudo-lines. For now, assume that each of these
operations can be performed in O(f(m)) (amortized) time.

Using this data structure, the algorithm computes Πi and Gi from Πi−1 and
Gi−1, respectively, as follows. We visit T in a top-down manner. Suppose we are at
a node v ∈ T. We execute Empty(�i, v). If neither pseudo-halfplane bounded by
�i contains a point of Pv, we mark v by “◦.” If the pseudo-halfplane lying below
(resp., above) �i does not contain a point of Pv (but the complementary halfplane
contains such a point), then we mark v by “+” (resp., “−”). If points of Pv lie on
both sides of �i, then we recursively visit the two children of v. Let V − = 〈α1, . . . , αa〉,
V ◦ = 〈β1, . . . , βb〉, and V + = 〈γ1, . . . , γg〉 be the combined sequences of leaves, sorted
from left to right, lying in the subtrees rooted at the nodes marked by −, ◦, and +,
respectively. Let Π−

i = 〈p∗α1
, . . . , p∗αa

〉, Π◦
i = 〈p∗β1

, . . . , p∗βb
〉, and Π+

i = 〈p∗γ1
, . . . , p∗γg

〉.
We do not compute V −, V ◦, V +, Π−

i ,Π
+
i ,Π

◦
i explicitly. Instead we represent them

implicitly, using the roots of the subtrees where our search terminates (the nodes of
T that were marked).

We rearrange the curves stored at the leaves of T so that their resulting ordering
becomes Πi = Π−

i ‖ rev(Π◦
i )‖Π+

i , where ‖ denotes concatenation and rev(·) reverses
the ordering of a list. We accomplish this in three stages, by repeatedly swapping
pairs of curves stored in adjacent leaves (strictly speaking, the leaves store points of
P , but we will not distinguish between points and their dual curves), so that:

• After the first stage all curves in Π−
i appear to the left of those in Π◦

i ∪ Π+
i .

• After the second stage all curves in Π+
i appear to the right of Π◦

i .
• After the third stage the ordering of curves in Π◦

i is reversed.

Fig. 4. Processing �∗2 in the dual arrangement of Figure 2. Π2 is computed from Π1 by
performing the swaps (b, c), (a, c), and (a, b). Nodes are marked +, −, and ◦ by the algorithm;
secondary structures at the shaded interior nodes are updated.

See Figure 4. At the end of the third stage, the curves are stored in the desired
order. Whenever we swap two adjacent curves, their ordering along the sweep line
gets reversed and a new vertex, along with some new faces and edges in A(P ∗), gets
created; some of the existing edges terminate at this new vertex. We update Ai−1,Gi−1

accordingly. Conceptually, while rearranging the leaves of T, we are sweeping the
vertical line from (slightly to the right of) �∗i−1 to (slightly to the right of) �∗i , swapping
two curves and creating a new vertex at each step, and updating the arrangement and
its planar map representation as we sweep. It is important to verify (as will be done
below) that the order in which we swap the curves is topologically valid: Every pair of
curves is vertically adjacent just before the curves get swapped. We call a (0-, 1-, or
2-dimensional) face of Ai active if it intersects the sweep line. At least one boundary
subface of each active face lies to the right of the sweep line.

We now describe the first stage in detail. Let αt be the leftmost leaf in V − that
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lies to the right of a leaf in Π◦
i ∪ Π+

i . Then p∗α1
, . . . , p∗αt−1

are in correct positions,
and we move p∗αt

, . . . , p∗αa
, one by one, in increasing order of their indices, to their

correct positions. Suppose we have already moved p∗α1
, . . . , p∗αt−1

, p∗αt
, . . . , p∗αk−1

to
their correct positions and we now wish to bring p∗αk

to its correct position. We repeat
the following steps until p∗αk

becomes adjacent to p∗αk−1
: Suppose p∗αk

is currently
stored at a leaf w of T, and p∗h is the left predecessor of p∗αk

, stored at a leaf z. Let
u be the nearest common ancestor of w and z. We first swap the two curves stored
at w and z, that is, w now stores p∗h and z stores p∗αk

. Next, we delete p∗αk
(resp.,

p∗h) from the secondary structures Dv at each of the nodes v on the path from u to
w (resp., to z), excluding u, and insert p∗h (resp., p∗αk

) at v, using the Delete and
Insert operations mentioned above. See Figure 5 (i).

Fig. 5. (i) Swapping two adjacent leaves w and z of T. (ii) Swapping two curves p∗αk
and p∗h

and creating a new vertex σ, two new edges, and a 2-face; two edges and a face terminate at σ.

Next, we create a new vertex σ = p∗αk
∩ p∗h, move the sweep line over σ, and

update the arrangement of P ∗. That is, the current active edges of p∗h and p∗αk
end

at σ, with σ being their right endpoint, and we create a new edge on each of p∗h and
p∗αk

, with σ as their left endpoint. The 2-face f lying between p∗h and p∗αk
also ends at

σ, and a new 2-face f ′ is created, with σh as its leftmost endpoint and p∗h (resp., p∗αk
)

as its top (resp., bottom) edge. Moreover, p∗h (resp., p∗αk
) becomes the new bottom

(resp., top) edge of the 2-face f+ (resp., f−) that lies above p∗αk
(resp., below p∗h) to

the left of σ. See Figure 5 (ii). We now update the DCEL structure to reflect these
changes. Since we perform insertions and deletions in O(logm) different secondary
structures, the total time spent in swapping p∗h and p∗αk

is O(f(m) logm). The local
update of A(P ∗) and its DCEL representation take only O(1) time.

After we have performed the above steps for p∗αt
, . . . , p∗αa

, all curves in Π−
i appear

to the left of Π◦
i ∪Π+

i . Note also that all the swaps that we perform are topologically
valid: They process the curves p∗αt

, . . . , p∗αa
in increasing height, effectively “bending

downward” each in turn and forcing it to intersect exactly those curves that lie below
it but have to pass through �∗i or above it, and these intersections occur in the right
order. Next, we perform the same procedure on the curves in Π+

i that appear to
the left of a curve in Π◦

i , in decreasing order of their indices, so that all curves in
Π+

i appear to the right of those in Π◦
i . Finally, we reverse the ordering of the curves

in Π◦
i , by once again performing swaps and updating the arrangement. Unlike the

previous two stages, in which each swap created a new vertex, we create only one new
vertex, namely, �∗i , and all curves in Π◦

i pass through �∗i . Again, all the changes in
A(P ∗) that correspond to these swaps occur in a topologically valid manner.

If the algorithm performs µi swaps while processing �∗i , we spend O(µif(m) logm)
time in rearranging the leaves of T and constructing Gi from Gi−1. If Πi−1 consists of
νi maximal contiguous subsequences such that all curves within the same subsequence
lie in Π−

i (or Π+
i ,Π

◦
i ), then the algorithm marks O(νi logm) nodes—O(logm) nodes
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for each such subsequence—and spends O(f(m)) time at each such node. Moreover,
if any of Π−

i ,Π
+
i ,Π

◦
i is composed of more than one contiguous subsequence in Πi−1,

then the curves in all subsequences, or in all but one such subsequence, are swapped,
so νi ≤ µi+3. Hence, the total time spent by the algorithm in processing �∗i is O((µi+
3)f(m) logm). However, each swap introduces a new crossing between a pair of curves
in P ∗; therefore the overall running time of the algorithm is O((n + χ)f(m) logm),
where χ = O(m2) is the number of pairs of curves in P ∗ that cross each other.

If many curves of P ∗ pass through a single point of L∗, then the number of crossing
pairs could be much larger than the number of vertices in A(P ∗). The algorithm can
be modified so that χ is the number of vertices instead of the number of crossing
pairs. Roughly speaking, we do not explicitly swap the curves of Π◦

i in the third
stage. Instead at each node v of T, we store a bit that is 0 (resp., 1) if the curves in
the subtree rooted at v are ordered from bottom to top (resp., top to bottom). If a
node v is marked ◦, we flip this bit at v. This information is needed to determine the
order in which the swaps are performed. We skip the straightforward details, which
are very similar to the standard sweep-line algorithm for computing the intersection
points in a family of segments [12]. In summary, we have shown the following.

Theorem 3.1. Let L be a set of n x-monotone pseudo-lines in R
2 and P a set

of m points in R
2. Suppose we have a data structure that supports each of the three

operations Empty, Insert, and Delete described above, in f(m) amortized time.
Then we can construct A(P ∗) (in the sense prescribed in the beginning of this section)
in O((n + χ)f(m) logm) time, where χ is the number of vertices in A(P ∗).

We show in the next section that if L is a set of circular arcs or bounded-degree
polynomial arcs (with a common x-projection), then f(m) = O(mε), for any ε > 0,
so we obtain the following corollary. The last statement in the corollary is an easy
consequence of the way the algorithm is implemented.

Corollary 3.2. Let L be a set of n circular arcs or bounded-degree polynomial
arcs in R

2 with a common x-projection, each pair of which intersects at most once,
and let P be a set of m points in R

2. Then we can construct A(P ∗) (with respect to
an extension of the arcs of L into pseudo-lines) in O((n+χ)mε) time, where χ is the
number of vertices in A(P ∗) and ε > 0 is an arbitrarily small constant. Moreover,
for each point p ∈ P , the above algorithm can also return, within the same overall
asymptotic time bound, the set of arcs in L that contain p, as well as the arcs that lie
immediately above and below p.

4. Pseudo-halfplane range reporting. Let W be a vertical strip, and let Γ be
a (possibly infinite) collection of x-monotone arcs whose endpoints lie on the left and
right boundaries of W . Each arc γ ∈ Γ splits W into two (closed) regions. As above,
we call each of these regions a pseudo-halfplane bounded by γ. Let P be a set of m
points lying inside the strip W . We wish to preprocess P into a data structure that
efficiently supports the three operations described in the previous section—Empty,

Insert, and Delete—with respect to arcs γ ∈ Γ. We present such a data structure
for two special cases: (i) Γ is a set of circular arcs, and (ii) Γ is a set of (portions of
the) graphs of polynomials of bounded degree.

4.1. Querying with circular arcs. Let Γ be the set of x-monotone circular
arcs whose endpoints lie on the left and right boundaries of W . Let P be a set of m
points lying inside W . We construct a weight-balanced binary tree T on the points
in P , sorted by their y-coordinates [37]. For a node v ∈ T, let Pv ⊆ P be the set of
points whose y-coordinates are stored at the leaves of the subtree rooted at v, and
put mv = |Pv|. We map each point p = (xp, yp) ∈ Pv to the point p̄ = (xp, yp, x

2
p +y2

p)
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Fig. 6. Querying with a pseudo-halfplane lying below a query arc: (i) The case where the arc
lies in the upper semi-circle, (ii) The case where the arc lies in the lower semicircle.

in R
3. As is well known [20], if we map any circle C, centered at (a, b) and having

radius r, to the plane

C̄ : z = 2ax + 2by + (r2 − a2 − b2),

then a point p lies inside (resp., on, outside) a circle C if and only if the point p̄
lies below (resp., on, above) the plane C̄. Let P̄v = {p̄ | p ∈ Pv}. We preprocess
each of the sets P̄v into a dynamic halfspace-emptiness data structure of size O(mv)
that supports halfspace-emptiness queries (in R

3) in time O(mε
v) and insert/delete

operations in O(logmv) (amortized) time. See [8] for details.
Consider the halfplane-emptiness query associated with the region g lying below

an arc γ ∈ Γ. First, let us assume that γ lies in the upper semicircle of its circle,
denoted Cγ ; let α denote the y-coordinate of the center of Cγ . We first test in
O(logm) time, by checking the y-coordinate of the point stored in the leftmost leaf of
T, whether there exists a point of P whose y-coordinate is at most α. If the answer
is yes, then g ∩ P �= ∅, and we terminate the query. If no such point exists, then
g∩P �= ∅ if and only if there exists a point of P inside the circle Cγ (see Figure 6 (i)),
which is equivalent to the existence of a point of P̄ below the plane C̄γ . Using the
halfspace-emptiness data structure stored at the root of T, we determine in O(mε)
time whether any point of P lies inside Cγ .

Next, assume that γ lies on the lower semicircle of its circle Cγ . Then a point
p ∈ P lies in g if and only if the y-coordinate of p is less than α and p lies outside
the circle Cγ . We first identify in O(logm) time the O(logm) nodes v1, . . . , vs of T

such that
⋃s

i=1 Pvi is the set of points in P whose y-coordinates are at most α. For
each vi, we check in O(mε

vi
) time whether any point of Pvi lies outside the circle Cγ .

If the answer is yes for any i, then g ∩ P �= ∅; otherwise we conclude that g ∩ P = ∅.
The case in which g is the pseudo-halfplane lying above the arc γ ∈ Γ can be

handled in a fully symmetric manner. Using the standard partial-rebuilding tech-
nique [37], a point can be inserted into or deleted from the overall structure in
O(log2 m) amortized time. Hence, we obtain the following result (in which amor-
tization is needed only for insertions and deletions).
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Theorem 4.1. Let Γ and P be as above. Then each of the operations Empty,

Insert, and Delete can be performed in O(mε) amortized time for any ε > 0.

4.2. Querying with fixed-degree polynomial arcs. Let Γ be the set of all
arcs that are intersections with a fixed vertical strip W of graphs of polynomials of
degree at most d. We describe a dynamic data structure that determines whether any
point of P lies below an arc in Γ. The case of points lying above an arc is handled
in a fully symmetric manner. The data structure is similar to the one proposed by
Matoušek for answering halfspace-reporting queries [34]. However, we need to adapt
his structure, using the results by Agarwal, Efrat, and Sharir [4] and Agarwal and
Matoušek [7], to extend it to pseudo-halfplanes bounded by polynomial arcs.

We call an arc γ ∈ Γ k-shallow if at most k points of P lie below γ. We call
a simply connected region with at most four edges a pseudo-trapezoid if its top and
bottom edges are portions of arcs in Γ and its left and right edges are vertical segments.
We allow pseudo-trapezoids to be degenerate, i.e., they can be unbounded or lower
dimensional. A 1-dimensional pseudo-trapezoid is a portion of a curve in Γ or a
vertical segment, and a 0-dimensional pseudo-trapezoid is a point. An elementary
partition of P is a family Π = {(P1,�1), . . . , (Pu,�u)}, where P1, . . . , Pu form a
partition of P , and, for each i ≤ u, �i is a pseudo-trapezoid, and Pi ⊆ �i. The
pseudo-trapezoids ∆i may intersect each other, and ∆i may contain a point of Pj for
some j �= i. We say that an arc γ ∈ Γ crosses a cell �i of Π if γ∩�i �= ∅ and �i �⊆ γ.
Let χ(Π, γ) be the number of cells of Π that γ crosses, and for any subset Q ⊆ Γ, let
χ(Π, Q) = maxγ∈Q χ(Π, γ).

Lemma 4.2. Let P be a set of m points in R
2, and let r > 1 be a parameter.

There exists a set Q ⊆ Γ of O(r�d/2�) (2m/r)-shallow curves (with respect to P ) such
that for any elementary partition Π in which each class has at least �m/r� points,
χ(Π,Γ) ≤ (d + 2)χ(Π, Q).

Proof. Let ϕ : R → R
d be the map ϕ(x) = (x, x2, . . . , xd). Then any univariate

polynomial γ : y = a0+a1x+ · · ·+adx
d of degree d maps to a d-variate linear function

hγ : xd+1 = a0 + a1x1 + · · · + adxd, in the sense that γ(x) = hγ(ϕ(x)) for all x ∈ R.

Conversely, for any d-variate linear function h : xd+1 = α0 +
∑d

i=1 αixi, let γh be the

polynomial y =
∑d

i=0 αix
i. Let P ∗ = {(ϕ(x), y) | (x, y) ∈ P} ⊂ R

d+1. The notion of
k-shallowness is extended naturally to hyperplanes in R

d+1: Such a hyperplane h is
k-shallow with respect to P ∗ if at most k points of P ∗ lie below h.

Let H be a finite set of hyperplanes in R
d+1. The zone of a hyperplane h �∈ H

with respect to H, denoted as Z(H,h), is (the closure of) the set of points that can
be reached from h without intersecting any hyperplane in H (it is the closure of the
union of all cells crossed by h). We call H a t-guarding set of h (with respect to
P ∗) if |Z(H,h) ∩ P ∗| < t. Matoušek [34, Lemma 3.3] has shown that, given a set
P ∗ of m points in R

d+1 and a parameter r > 1, there exists a family H of O(r�d/2�)
(2m/r)-shallow hyperplanes in R

d+1 such that for any (m/r)-shallow hyperplane in
R

d+1, there is an (m/r)-guarding set G ⊆ H of size at most d + 2.
We claim that Q = {γh | h ∈ H} is the desired set of polynomial curves. Indeed, a

point p lies below a curve γ ∈ Γ if and only if ϕ(p) lies below the hyperplane hγ , so Q
is a set of (2m/r)-shallow curves. Let Π = {(P1,�1), . . . , (Pu,�u)} be an elementary
partition such that |Pi| ≥ �n/r�, for any 1 ≤ i ≤ u, and let η ∈ Γ be a polynomial
curve. If η ∈ Q, then obviously χ(Π, η) ≤ χ(Π, Q). Otherwise, let Gη ⊆ G be the
guarding set of size at most d+2 for the hyperplane hη. Suppose η crosses a cell �i of
Π. Then hη crosses ϕ(�i). If �i is not crossed by any curve of Qη = {γh | h ∈ Gη},
then ϕ(�i) does not intersect any hyperplane of Gη and thus lies in a single cell
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of A(Gη). On the other hand, η crosses �i, so hη crosses ϕ(�i), thereby implying
that Z(Gη, hη) ⊃ ϕ(�i) ⊃ ϕ(Pi). However, Gη is an (m/r)-guarding set of hη, so
|Z(Gη, hη) ∩ ϕ(P )| < m/r, which contradicts the fact that ϕ(Pi) ⊂ Z(Gη, hη), as
|Pi| ≥ m/r. Hence, �i is crossed by one of the curves in Qη. Since |Qη| ≤ d + 2, the
lemma follows.

The next lemma follows from a result of Matoušek [34, Lemma 3.2]. The only
difference is that we use the result by Agarwal, Efrat, and Sharir [4] on “shallow-
cuttings” for algebraic arcs. We omit the proof, which can be trivially adapted from
the proof in the original paper.

Lemma 4.3. Let P and Γ be as defined above, let Q ⊂ Γ be a set of rO(1) (2m/r)-
shallow curves, and let r be a parameter. Then there exists an elementary partition
Π = {(P1,�1), . . . , (Pu,�u)} of P such that m/r ≤ |Pi| ≤ 2m/r, for each i (so
u ≤ r), and χ(Π, Q) = O(log r). If r is a constant, then Π can be computed in O(m)
time.

The following is an immediate corollary of Lemmas 4.2 and 4.3.
Lemma 4.4. Let P and Γ be as defined above, and let r be a parameter. Then

there exists an elementary partition Π = {(P1,�1), . . . , (Pu,�u)} of P such that
m/r ≤ |Pi| ≤ 2m/r, for each i (so u ≤ r), and χ(Π,Γ) = O(log r). If r is a constant,
Π can be computed in O(m) time.

As in [7, 34], choosing r to be a sufficiently large constant and applying Lemma 4.4
recursively, we can construct, in O(m logm) time, a “partition tree” of size O(m). This
tree can be used for answering pseudo-halfplane-emptiness queries in O(mε) time;
see [34] for details. A point can be inserted or deleted in O(log2 m) amortized time
using the standard partial-rebuilding technique [37]. Hence, we obtain the following
result.

Theorem 4.5. Let P be a set of m points in some vertical strip W, and let Γ
be a set of fixed-degree polynomial arcs clipped to W . Then each of the operations
Empty, Insert, and Delete can be performed in O(mε) amortized time.

Remark 4.6. As in [34], by combining the above data structure with the data
structure in [7], we can report, in O(mε + k) time, all k points lying in a pseudo-
halfplane bounded by a query arc in Γ. The asymptotic running time of the insertion
and deletion operations remains the same.

5. Incidences in pseudo-line arrangements. Let P be a set of m points in a
fixed vertical strip W ⊆ R

2, let L be a set of n pseudo-lines in R
2 that are extensions

of circular or fixed-degree polynomial arcs that traverse W , and let I(L,P ) denote the
set of pairs (�, p) ∈ L× P such that p lies on �. We wish to report I(L,P ), compute
|I(L,P )|, or just determine whether I(L,P ) is nonempty. The latter problem is an
extension of Hopcroft’s problem to the case of pseudo-lines. For simplicity, we focus
on the first subproblem. We follow the same approach as in [6, 17]. Corollary 3.2,
combined with the analysis in section 4, implies that I(L,P ) can be computed in
O((m2 + n)mε) time. By partitioning P into �m/

√
n � subsets P1, . . . , Ps, each of

size at most
√
n, and computing I(L,Pi) for each subset separately, I(L,P ) can be

reported in O(mn1/2+ε + n1+ε) time, which is near optimal for m ≤
√
n. We now

describe an algorithm that is efficient for all values of m and n.

Cuttings. We first need to introduce the notion of (1/r)-cuttings. Since we will
be using (1/r)-cuttings in the subsequent sections as well, we define them in a more
general setting than needed here. Let H be a set of m hyperplanes in R

d, 1 ≤ r ≤ m a
parameter, and ∆ a simplex. A simplicial subdivision Ξ of ∆ is called a (1/r)-cutting
of H (with respect to, or within, ∆) if at most m/r hyperplanes of H cross any
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simplex of Ξ. We will use Chazelle’s hierarchical cuttings [17] to construct a (1/r)-
cutting Ξ of H. In this approach, one chooses a sufficiently large constant r0 and sets
ν =

⌈
logr0 r

⌉
. One then constructs a sequence of cuttings Ξ0,Ξ1, . . . ,Ξν = Ξ, where

Ξi is a (1/ri0)-cutting of H within ∆. The initial cutting Ξ0 is simply ∆ itself. The
cutting Ξi is obtained from Ξi−1 by computing, for each τ ∈ Ξi−1, a (1/r0)-cutting Ξτ

i

of Hτ within τ . It is shown in [17] that this can be done so that |Ξi| ≤ crdi0 for each i
and for some common constant c > 0 that depends only on d. Hence, |Ξ| = O(rd). If
we are also given a set P of n points, then we can guarantee, by further partitioning
simplices if needed, that each simplex in Ξi contains at most n/rdi0 points of P . The
reasons for using hierarchical cuttings will become clearer in the later sections. One
such reason is that it facilitates an efficient construction of (1/r)-cuttings in optimal
O(nrd−1) time. Chazelle’s technique is presented only for the case of hyperplanes, but
it admits several extensions. In the planar case, for example, it also applies to many
other families of curves. In particular, we can compute in O(mr) time a (1/r)-cutting
of size O(r2) for a family Γ of m pseudo-lines (or circular arcs), in an appropriate
model of computation. The only technical difference is that, instead of simplices
(i.e., triangles), one needs to use vertical pseudo-trapezoids (see, e.g., [1] for details).
Finally, the cutting produced by Chazelle’s method can be fine-tuned, so that its size
depends on the actual complexity of the arrangement of the given hyperplanes or
curves. For example, in the planar case, if there are χ intersecting pairs of curves
in Γ, then the size of the cutting is O(r1+ε + χr2/n2), for any ε > 0, and it can be
computed in time O(n1+ε + χr/n).

Returning to the computation of I(L,P ), we choose a parameter r < n and
construct a (1/r)-cutting Ξ of L of size O(r2). For a cell τ ∈ Ξ, let Lτ ⊆ L be the
set of pseudo-lines that intersect the interior of τ , and let Pτ ⊆ P be the set of points
that either lie in the interior of τ or lie on (the relative interior of) an edge of τ . Set
nτ = |Lτ | and mτ = |Pτ |. Then

∑
τ mτ ≤ 2m and nτ ≤ n/r. At most one pseudo-

line �e of L can contain an edge e of Ξ. If there is such a pseudo-line, we report all
incidences between e and the points that lie on e, over all edges e, in a total time of

O(r2 + m). We compute I(Lτ , Pτ ) in time O(mτn
1/2+ε
τ + n1+ε

τ ) using the algorithm
outlined above and repeat this for each cell τ of Ξ. The remaining incidences, between
the pseudo-lines of L and those points of P that lie at the vertices of Ξ, are reported
as follows: If an input point p lies on a vertex of a cell τ ∈ Ξ, we report in O(n/r)
time, using brute force, all curves of Lτ that pass through p. Since there are O(r2)
cells in Ξ, the total time spent in this step is O(nr). Hence, the overall running time
is ∑

τ

O
(
mτ (n/r)

1/2+ε + (n/r)1+ε
)

+ O(nr) = O
(
m(n/r)1/2+ε + n1+εr1−ε

)
.

Choosing r =
⌈
m2/3/n1/3

⌉
and replacing ε by an appropriate constant multiple of ε,

we obtain the following theorem.
Theorem 5.1. The incidences between m points in a vertical strip W and n

pseudo-lines that are extensions of circular or fixed-degree polynomial arcs that tra-
verse W can be detected, counted, or reported in time O(m2/3−εn2/3+2ε+m1+ε+n1+ε)
for any ε > 0.

If A(L) has χ vertices, then, using a (1/r)-cutting whose size depends on χ (see
above) and choosing r =

⌈
m2/3n/χ2/3

⌉
, we obtain the following theorem.

Theorem 5.2. The incidences between m points in a vertical strip W and n
pseudo-lines with χ crossing pairs that are extensions of circular or fixed-degree polyno-
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mial arcs that traverse Wcan be detected, counted, or reported in time O(m2/3−εχ1/3+ε+
m1+ε + n1+ε) for any ε > 0.

6. Many faces in pseudo-line arrangements. Let L be a set of n pseudo-
lines in R

2 that are extensions of circular or polynomial arcs, and let P be a set of m
points in the plane, none lying on any pseudo-line of L. Let F(L,P ) denote the set
of faces in A(L) that contain at least one point of P . We can compute F(L,P ) by
following an approach similar to the one for computing I(L,P ). We first describe an
O((m2 + n)nε) algorithm for computing F(L,P ).

We compute the arrangement A(P ∗) of the pseudo-lines dual to the points of P

(with respect to L) and then construct its vertical decomposition A
||
(P ∗). For each

face ϕ ∈ A
||
(P ∗), we compute the subset Lϕ ⊆ L of pseudo-lines whose dual points

lie inside ϕ. This step takes O((m2 +n)nε) time. Next, we compute an Eulerian tour

Π of the planar graph dual to A
||
(P ∗) so that each face of A

||
(P ∗) is visited O(1)

times; see [3]. If an edge e of Π crosses two adjacent faces of A(P ∗), we set π(e) to be
the point of P whose dual pseudo-line separates these two faces (it is the dual of the

curve of P ∗ that e crosses). Otherwise, e connects two faces of A
||
(P ∗) separated by

a vertical line, and we set π(e) = ∅. Next, we construct a minimum-height binary tree

T on Π. Each leaf of T is associated with a node of Π, i.e., with a face of A
||
(P ∗), and

each internal node v of T is associated with the subpath Πv of Π that connects the
leaves of the subtree rooted at v. For each node v of T, we set Lv =

⋃
ϕ Lϕ, where the

union is taken over all faces ϕ of A
||
(P ∗) associated with the leaves of Πv. Similarly,

we define Pv ⊆ P to be the set of points (taken without repetition) associated with
the edges in Πv. Set mv = |Pv| and nv = |Lv|. At any level of T,

∑
v

mv = O(m2) and
∑
v

nv = O(n).(6.1)

By construction, any point in P \ Pv lies either above or below all pseudo-lines in
Lv. We therefore add two points, one at y = +∞ and another at y = −∞, to each
Pv and compute F(Lv, Pv) at each node v of T, in a bottom-up manner. Let κv

be the complexity of F(Lv, Pv). For each leaf w ∈ T, we compute the lower and
upper envelopes of Lw in O(nw log nw) time. (Clearly, any of our marked faces must
lie above the upper envelope or below the lower envelope.) For each internal node
v ∈ T, with children w and z, we compute F(Lv, Pv) from F(Lw, Pw) and F(Lz, Pz)
in O((κv + κw + κz + mv + nv) log n) time, using the “red-blue-merge” algorithm
proposed by Edelsbrunner, Guibas, and Sharir [21] (and adapted by Guibas, Sharir,
and Sifrony [29] for curves). Let H be the height of T, and let h(v) denote the height
of a node v in T (i.e., the length of the longest path from v to a leaf in its subtree).
The time spent by the red-blue-merge algorithm over all nodes of T is

∑
v∈T

O((κv + mv + nv) log n) =

H∑
i=1

∑
v∈T, h(v)=i

O((κv + mv + nv) log n).(6.2)

The combination lemma of [21] implies that, for a node v with children w, z, one has

κv ≤ κw + κz + 4mv + 6nv.

Therefore, if Tv (resp., Λv) is the set of nodes (resp., leaves) in the subtree rooted at
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v, then

κv ≤
∑
u∈Λv

κu +
∑
z∈Tv

O(mz + nz).(6.3)

Since we compute only the upper and lower envelopes of Lu at each leaf u of T,
κu = O(nu). Using (6.1), (6.3), and the bound on κu, we obtain

∑
v∈T, h(v)=i

κv + mv + nv =
∑

v∈T, h(v)=i

O

( ∑
u∈Λv

nu +
∑
z∈Tv

(mz + nz)

)

=
∑
j≤i

∑
z∈T

h(z)=j

O(mz + nz)

= O((m2 + n)i).

Hence, (6.2) can now be rewritten as

H∑
i=1

O((m2 + n)i log n) = O((m2 + n) log3 n).

Together with the time spent in computing A(P ∗), the overall running time of the
algorithm is O(m2+ε + n1+ε). As in section 5, using the batching technique, the
running time can be reduced to O(mn1/2+ε + n1+ε).

Next, we use (1/r)-cuttings to obtain an algorithm for computing F(L,P ), which
is efficient for all values of m and n, as in [6], and in the general spirit of the preceding
section. That is, we choose a parameter r < n and compute a (1/r)-cutting Ξ of L,
as described in section 5. For each cell τ ∈ Ξ, we compute F(Lτ , Pτ ) in O((mτ

√
nτ +

nτ )n
ε
τ ) time, using the algorithm just described. In addition, we also compute, in

O(nτ log2 nτ ) time [29], the unbounded face of the arcs obtained by clipping Lτ within
τ . After having computed this for all cells of Ξ, we stitch the faces together to obtain
F(L,P ) in a straightforward manner; see [6] for details. The time spent in computing
Ξ and computing F(Lτ , P ) for each cell τ ∈ Ξ is

∑
τ

O
(
mτ (n/r)

1/2+ε + (n/r)1+ε
)

+ O(nr).

Again, choosing an appropriate value of r and following the same analysis as in sec-
tion 5, we obtain the following result.

Theorem 6.1. Let L be a set of n pseudo-lines that are extensions of circular or
polynomial arcs of bounded degree that traverse a fixed vertical strip W in the plane,
and let P be a set of m points in W , none lying on any pseudo-line. One can compute
F(L,P ) in time O(m2/3−εn2/3+2ε + m1+ε + n1+ε). If there are χ crossing pairs of
curves in L, F(L,P ) can be computed in time O(m2/3−εχ1/3+ε + m1+ε + n1+ε) for
any ε > 0.

7. Cutting lenses. Among our main motivations for studying arrangements of
pseudo-lines were the problems of computing incidences between points and circles
and computing marked faces in an arrangement of circles. The recent analysis of
Marcus and Tardos [33], following those of Aronov and Sharir [11] and Agarwal et
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al. [9], shows that a collection of n circles can be cut into O(n3/2 log n) pseudo-
segment arcs, meaning that any pair of arcs intersect at most once. One can then
apply known bounds for incidences between points and pseudo-segments to obtain
the bound O(m2/3n2/3 + n3/2 log n) on the number of incidences between m points
and n circles. (As already noted, this bound can then be further refined for small
values of m; see [9, 11] for details.) Our goal is to make this combinatorial analysis
constructive, so as to obtain a comparably efficient algorithm for detecting, counting,
or reporting these incidences. The first task that we face is to find, in time O(n3/2+ε),
a set of O(n3/2+ε) points that cut the given circles into pseudo-segments. If two circles
γ, γ′ ∈ C intersect, then the boundary of each of the three bounded faces of A({γ, γ′})
is called a lens. Our goal is thus to cut the circles in C so that all lenses will be cut,
i.e., a cut is made on at least one of the two edges of every lens.

The algorithm proceeds in two stages. In the first stage, we use standard range-
searching techniques [5] to decompose the intersection graph of the circles in C into
a union of complete bipartite subgraphs {Ai ×Bi}i such that (see also [11])2∑

i

(|Ai| + |Bi|)3/2 = O(n3/2+ε).(7.1)

In the second stage, we cut circles in each bipartite subgraph independently. Let A
be a set of “red” circles and B a set of “blue” circles so that every red circle intersects
every blue circle; set m = |A|+ |B|. We cut circles in A and B into circular arcs such
that all bichromatic lenses, i.e., lenses formed by a red circle and a blue circle, are
cut. We describe a recursive algorithm, which uses cutting-based decompositions of
R

2 into pseudo-trapezoids, for making these cuts. We first cut each circle in A∪B at
its leftmost and rightmost points, yielding 2m x-monotone semicircles. At each step,
we have a pseudo-trapezoid τ and two sets Γ, Γ′ of x-monotone circular arcs clipped
to within τ . The arcs in Γ and Γ′ lie on the circles in A and B, respectively. Initially,
Γ (resp., Γ′) is the set of upper and lower semicircles in A (resp., B), and τ is the
entire plane.

Lemma 7.1. If the endpoints of all arcs in Γ and Γ′ lie on ∂τ , then we can deter-
mine, in O((|Γ|+ |Γ′|) log3 m) time, whether Γ and Γ′ induce at least one bichromatic
lens that lies entirely in the interior of τ .

Proof. We use a two-level divide-and-conquer algorithm to determine whether a
lens of the desired form exists. We choose a point, say, the topmost point ξ, on ∂τ ,
and cut ∂τ at ξ. This induces a linear ordering on the endpoints of the arcs in Γ∪Γ′,
obtained by sorting the endpoints along ∂τ \ {ξ} in counterclockwise direction. For
each arc γ ∈ Γ ∪ Γ′, we refer to its first endpoint (in this ordering) as the birth point
and to the second point as the death point of γ. See Figure 7 (i). We denote these
points by βγ and δγ , respectively.

Let λ be a lens formed between an arc γ ∈ Γ and an arc γ′ ∈ Γ′, and lying fully
in the interior of τ . Then the four points βγ , δγ , βγ′ , δγ′ must appear along ∂τ \ {ξ}
either in the order βγ , βγ′ , δγ′ , δγ , or in the order βγ′ , βγ , δγ , δγ′ . We describe an
algorithm that tests for the existence of a lens of the first kind; lenses of the second
kind are handled in a fully symmetric manner.

We construct a 2-level range-tree data structure. The first-level structure T is
a minimum-height binary tree that stores at its leaves the arcs of Γ in increasing
counterclockwise order of their birth points along ∂τ \ {ξ}. For each node v of T,

2The same bound O(n3/2+ε) also holds for the smaller sum
∑

i (|Ai| + |Bi|). See remark (iv) in
the concluding section for the implications of this fact for potential improvements of the algorithm.
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Fig. 7. (i) All endpoints of Γ (solid arcs) and Γ′ (dashed arcs) lie on ∂τ ; endpoints drawn as
filled (resp., hollow) circles are birth (resp., death) points. (ii) A recursive subproblem: The arcs
of ΓT∗ are drawn as solid and those of Γ′

T∗ are drawn as dashed. The boundaries of the faces of
A(ΓT∗ ) and of A(Γ′

T∗ ) that contain β∗ and δ∗ are drawn as bold. Since their overlay separates β∗

and δ∗, this subproblem yields a bichromatic lens (two, as a matter of fact) fully contained in τ .

we construct a secondary tree T′
v on the set of all arcs that are stored at the leaves

of the subtree rooted at v, and store them at the leaves of T′
v, sorted in increasing

counterclockwise order of their death points along ∂τ \ {ξ}. We query with each arc
γ′ ∈ Γ′ in this data structure, as follows. We search in the primary tree for all arcs
of γ whose birth points precede the birth point of γ′ and obtain them as a collection
of O(logm) disjoint subtrees. For each such subtree rooted at some node v, we go to
the secondary structure T′

v and search for all arcs of Γ that are stored there, whose
death points succeed the death point of γ′, again obtaining them as a collection of
O(logm) disjoint subtrees. Thus the query output consists of O(log2 m) pairwise
disjoint subtrees of secondary trees. We repeat this procedure for each arc γ′ ∈ Γ′.
This produces O(m logm) subproblems, where each subproblem is associated with a
subtree T∗ of some secondary tree T′

v, and involves the set ΓT∗ of the arcs of Γ stored
at T∗, and the set Γ′

T∗ of those arcs of Γ′ for which T∗ is one of their query output
subtrees. The overall size

∑
T∗(|Γ′

T∗ | + |Γ′
T∗ |) of all subproblems is O(m log2 m).

Clearly, for any lens of the kind under consideration, formed by some γ ∈ Γ, γ′ ∈ Γ′,
there exists a (unique) subproblem involving both γ and γ′.

Consider the subproblem associated with T∗. By construction, there exist points
β∗, δ∗ ∈ ∂τ , such that all birth points of arcs in ΓT∗ lie between ξ and β∗ (in counter-
clockwise direction), all birth and death points of arcs in Γ′

T∗ lie between β∗ and δ∗,
and all death points of arcs in ΓT∗ lie between δ∗ and ξ. It is easy to see that β∗ and
δ∗ lie below the lower envelope of ΓT∗ and above the upper envelope of Γ′

T∗ . Hence
the subproblem of T∗ induces a lens of the desired kind if and only if β∗ and δ∗ lie in
different connected components of the sandwich region formed by the lower envelope
of ΓT∗ and the upper envelope of Γ′

T∗ , clipped to within τ . See Figure 7 (ii). We can
compute this sandwich region in O((|ΓT∗ |+ |Γ′

T∗ |) logm) time, using the fact that all
arcs are x-monotone and circular [38]. Summing this bound over all subtrees T∗, the
lemma follows.

If the endpoints of all arcs in Γ and Γ′ lie on ∂τ and Γ and Γ′ do not induce a
lens that lies completely inside τ , we stop. Otherwise (i.e., either an endpoint lies
inside τ , or there is a bichromatic lens lying fully inside τ), we choose a sufficiently
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large constant r and compute, within τ , a (1/r)-cutting Ξ of Γ ∪ Γ′, of size cr2, for a
constant c > 0, as described in section 5. For every arc γ ∈ Γ ∪ Γ′ and for every cell
∆ ∈ Ξ that is crossed by γ, we cut γ at its intersection points with ∂∆. The total
number of cuts made is O(mr). After this step, all lenses that lie in more than one
cell of Ξ have been cut, so we recursively solve the problem within each cell ∆ of Ξ,
with the sets Γ∆ and Γ′

∆, where Γ∆ is the set of the connected components of the
intersections γ ∩ ∆, for γ ∈ Γ, and where Γ′

∆ is similarly defined.
It is clear that the algorithm cuts all bichromatic lenses inside τ . (Initially, τ is

the whole plane.) In order to analyze its performance, we need the following result,
proven in [9, Lemma 3.2] and stated here in a slightly different manner.

Lemma 7.2 (see [9]). Let C = Γ ∪ Γ′ be a family of n pseudo-circles, where
each pseudo-circle in Γ intersects every pseudo-circle in Γ′ twice. Then the maximum
size of a family of pairwise-nonoverlapping bichromatic lenses in A(C) with pairwise
disjoint interiors is O(n).

Returning to the subproblem inside the trapezoid τ , let m = |Γ| + |Γ′|, let k
be the number of endpoints of arcs in Γ ∪ Γ′ that lie in the interior of τ plus the
maximum size of a family of pairwise-nonoverlapping bichromatic lenses in A(C)
with pairwise disjoint interiors that are fully contained in the interior of τ ,3 and let
N(m, k) denote the maximum number of cuts that the above algorithm performs, for
sets Γ,Γ′ with parameters m and k. Since the algorithm does not make any cuts if
neither an endpoint nor a bichromatic lens lies inside τ , we have N(m, 0) = 0. For
k > 0, N(m, k) satisfies the recurrence

N(m, k) ≤
∑
∆∈Ξ

N(m/r, k∆) + amr,

where a is a constant and k∆ is the number of endpoints of Γ ∪ Γ′ that lie in the
interior of a cell ∆ plus the maximum size of a family of pairwise-nonoverlapping
bichromatic lenses in A(C) with pairwise disjoint interiors that are fully contained in
the interior of ∆. By definition, we have

∑
∆ k∆ ≤ k. We claim that

N(m, k) ≤ Am1+ε
√
k

for some constant A that depends on ε. Indeed, the bound trivially holds if either m
or k is 0. For larger values of m and k, we have, by induction hypothesis (here c is
the constant defined above so that cr2 is an upper bound on the size of Ξ),

N(m, k) ≤
∑
∆∈Ξ

A
(m
r

)1+ε √
k∆ + amr

≤ Am1+ε

√∑
∆ k∆

√
|Ξ|

r1+ε
+ amr

≤ Am1+ε
√
k

(√
c

rε
+

ar

Amε
√
k

)
≤ Am1+ε

√
k,

provided that r > (2
√
c)1/ε and A ≥ 2ar. By Lemma 7.2, we have k = O(m). Hence,

the algorithm makes O(m3/2+ε) cuts.

3Note that k is not known to the algorithm and is used only for the purpose of the analysis of
its performance.
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Finally, let T (m, k) denote the maximum running time of the above algorithm
for sets Γ,Γ′ that have parameters m and k. Then, by Lemma 7.1, T (m, 0) =
O(m log3 m). As in the analysis of N(m, k), we obtain the following recurrence for
T (m, k):

T (m, k) =
∑
∆∈Ξ

T (m/r, k∆) + O(m log3 m).

The same analysis as for N(m, k) implies that

T (m, k) = O(m1+ε
√
k).

Substituting k = O(m), the maximum running time of the algorithm is O(m3/2+ε).
Repeating this procedure to all bipartite graphs Ai × Bi and adding up the re-

sulting complexity bounds, using (7.1), we obtain the following theorem.
Theorem 7.3. A collection of n circles in R

2 can be cut into O(n3/2+ε) pseudo-
segments, in time O(n3/2+ε), for any ε > 0.

8. Circle arrangements. Let C be a set of n circles and P a set of m points
in R

2, and let χ be the number of intersection points between the circles of C. We
combine the algorithm described in section 7 with those in sections 5 and 6 to obtain
efficient algorithms for computing I(C, P ) and F(C, P ). This is done as follows.

Using Theorem 7.3, we cut C into a set L of N = O(n3/2+ε) pseudo-segments for
any ε > 0. Each pair of arcs in L intersect at most once, but the endpoints of these
arcs do not lie on the boundary of a common vertical strip. To adapt the algorithms
of sections 5 and 6, we construct a segment tree T on the x-projections of the arcs in
L. Each node v of T is associated with a vertical strip Wv. Let Lv be the subset of
arcs in L, clipped within Wv, that are stored at v (these arcs cross Wv from left to
right, but have an endpoint inside the parent strip), and let L̄v be the set of arcs that
are stored at the descendants of v (including v itself), again clipped within Wv (each
of these arcs that is stored at a proper descendant has an endpoint in the interior
of Wv). Let Pv = Wv ∩ P . Set Nv = |Lv|, N̄v = |L̄v|, and mv = |Pv|. Let χv

(resp., χ̄v) be the number of intersections between the arcs of Lv (resp., of L̄v). We
construct I(L,P ) and F(L,P ) by visiting the nodes of T in a bottom-up manner and
computing I(L̄v, Pv) and F(L̄v, Pv) at each node v ∈ T. If ξ is the root of T, then
I(L,P ) = I(L̄ξ, Pξ) and F(L,P ) = F(L̄ξ, Pξ).

Computing incidences. Let w and z be the two children of a node v in T. Then

I(L̄v, Pv) = I(Lv ∪ L̄w ∪ L̄z, Pv) = I(Lv, Pv) ∪ I(L̄w, Pw) ∪ I(L̄z, Pz).

The last equality holds because Pw ∩ Wz = Pz ∩ Ww = ∅. The sets I(L̄w, Pw) and
I(L̄z, Pz) are computed recursively, so we need only to compute I(Lv, Pv) at v. Since
the endpoints of all arcs in Lv lie on the boundary of Wv, we can compute I(Lv, Pv) in

time O(m
2/3−ε
v χ

1/3+ε
v + m1+ε

v + N1+ε
v ), for any ε > 0, using Theorem 5.2. Using the

fact that
∑

v mv = O(m logm),
∑

v Nv = O(N logN), and
∑

v χv ≤ χ, the overall
running time, summed over all nodes of T, is

O(m2/3−εχ1/3+ε + m1+ε + n3/2+ε)

for any ε > 0, which has to be chosen larger than the preceding ε but can still be
arbitrarily small.
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This bound is nearly worst-case optimal for m ≥ n5/4. For smaller values of
m, we can improve the algorithm, following the decomposition technique of [9, 11].
Specifically, we map each circle C ∈ C to a point C∗ ∈ R

3 and each point p ∈ R
2

to a plane p∗ in R
3, so that p lies inside (resp., on, outside) C if and only if C∗ lies

above (resp., on, below) p∗. Let C∗ = {C∗ | C ∈ C} and P ∗ = {p∗ | p ∈ P}. We
choose the parameter r = min

{⌈
n5/11/m4/11

⌉
, m

}
and compute, in O(mr2) time, a

hierarchical (1/r)-cutting Ξ of P ∗, as mentioned in section 5. For each cell ∆ ∈ Ξ,
let C∗

∆ = C∗ ∩ ∆, let P ∗
∆ ⊆ P ∗ be the set of planes that cross ∆, and let P̄ ∗

∆ be the
set of planes that contain ∆. Chazelle’s technique computes C∗

∆ and P ∗
∆ explicitly,

for all cells ∆, in time O(n log r + mr2) [17]. Moreover, for any cell ∆, P̄ ∗
∆ can be

computed in time O(logm + |P̄ ∗
∆|) by traversing the ancestors of ∆ (i.e., the cells in

the intermediate cuttings that contain ∆). Let C∆, P∆, P̄∆ denote the corresponding
primal sets of circles and points. We compute I(C∆, P∆) in time

O(m
2/3−ε
∆ χ

1/3+ε
∆ + m1+ε

∆ + n
3/2+ε
∆ )

using the algorithm just outlined, where m∆ = |P∆|, n∆ = |C∆|, and χ∆ is the
number of intersection points between the circles of C∆. We also report all pairs in
P̄∆ × C∆. Since m∆ ≤ m/r for each ∆,

∑
∆ n∆ = n, and

∑
∆ χ∆ ≤ χ, we obtain the

following result by a straightforward calculation (see also [9, 11]).
Theorem 8.1. Let C be a set of n circles in R

2 and P a set of m points in R
2, and

let χ be the number of intersection points between the circles of C. Then the incidences
between C and P can be detected, counted, or reported, in time O(m2/3−εχ1/3+ε +
m6/11+3εχ4/11+2εn1/11−5ε + m1+ε + n1+ε), for any ε > 0.

Computing marked faces. Here the points of P do not lie on any circle of C and
are used to mark faces of A(C) that we wish to construct. To do so, we follow the same
approach as for computing I(L,P ), but we need to be a little more careful. Consider
the processing of a node v of T . For a subset X ⊆ L̄v and a set A of points, let F̄(X,A)
denote F(X,A) together with the unbounded face of A(X). (Since the arcs in L̄v are
clipped to within Wv, there is a single unbounded face.) Let w and z be the children
of v. Then we have F̄(L̄w, Pv) = F̄(L̄w, Pw) and F̄(L̄z, Pv) = F̄(L̄z, Pz). Moreover,
F̄(L̄w ∪ L̄z, Pv) can be obtained from F̄(L̄w, Pw) and F̄(L̄z, Pz) by simply stitching
together the common endpoints of the clipped arcs that they share at the common
boundary of Ww and Wz, updating the representation and the global structure of the
faces as this stitching takes place.

We recursively compute F̄(L̄w, Pw) and F̄(L̄z, Pz) and merge them into F̄(L̄w ∪
L̄z, Pv) by stitching the subarcs as just described. We then compute F̄(Lv, Pv) using
Theorem 6.1, and merge the two collections of faces, F̄(Lv, Pv) and F̄(L̄w ∪ L̄z, Pv),
using the red-blue-merge algorithm mentioned in section 6, to obtain F̄(L̄v, Pv). The

total time spent at v is O(m
2/3−ε
v χ

1/3+ε
v +m1+ε

v +N1+ε
v ). Summing up this cost over

all nodes of T, the total time spent in computing F(L,P ) is

O(m2/3−εχ1/3+ε + m1+ε + n3/2+ε).

Note that at the root ξ we also obtain the unbounded face of A(C), regardless of
whether it is one of the marked faces.

For small values of m, as in the case of incidences, we compute the sets C∗ and
P ∗, choose the parameter r =

⌈
n5/11/m4/11

⌉
, construct a hierarchical (1/r)-cutting

Ξ of A(P ∗) in R
3, and obtain the subsets P∆, C∆, for each cell ∆ ∈ Ξ, as defined

above (because of the generic locations of the points in P , the sets P̄∆ are not needed
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in the case of marked faces). For each ∆ ∈ Ξ, any point in P \ P∆ lies either in the
common interior of all the circles in C∆ or in their common exterior. For each ∆, we
compute F(C∆, P∆) in time

O(m
2/3−ε
∆ χ

1/3+ε
∆ + m1+ε

∆ + n
3/2+ε
∆ ).

We next compute the common interior and the common exterior of C∆. These
additional faces have a combined complexity of only O(n∆) [31], and they can be
constructed in randomized expected time O(n∆ log n∆) [36] or in deterministic time
O(n∆ log2 n∆) [31]. Adding these faces to F(C∆, P∆), we thus obtain F̄(C∆, P∆) ⊇
F(C∆, P ). Plugging in the value of r and using the fact that m∆ ≤ m/r and
n∆ ≤ n/r3, we obtain that the total time spent so far is

O(m2/3−εn2/3+2ε + m6/11+3εn9/11−ε + m1+ε + n1+ε).

Recall (cf. section 5) that a hierarchical cutting consists of a sequence of cuttings
Ξ0,Ξ1, . . . ,Ξν = Ξ, where Ξi is a (1/ri0)-cutting of P ∗ for some constant r0 and ν =⌈
logr0 r

⌉
. We extend the notation Pτ and Cτ to the cells τ of the intermediate cuttings

Ξi. If τ ∈ Ξi, then mτ = |Pτ | ≤ m/ri0, nτ = |Cτ | ≤ n/r3i
0 , and

∑
τ∈Ξi

nτ ≤ n. For

each τ ∈ Ξi, the next cutting Ξi+1 contains a (1/r0)-cutting Ξ(τ) of P ∗
τ (with respect to

τ) of size at most O(r3
0). By proceeding in decreasing order of i, we compute F(Cτ , P ),

for each τ ∈ Ξi, as follows: If i = ν, we have already computed the collections of faces
F(Cτ , P ). If i < ν, let τ1, . . . , τs be the simplices in Ξ(τ). We compute F(Cτ , P ) from
F(Cτ1 , Pτ1), . . . ,F(Cτs , Pτs), which we have already computed, by using the red-blue-
merge algorithm repeatedly. Let κτ be the complexity of F(Cτ , P ). Since all points
in P \ Pτ lie either in the common exterior or in the common interior of all circles of
Cτ , the total time spent in computing F(Cτ , P ) is

O

((
κτ +

s∑
i=1

κτi + mτ + nτ

)
log n

)
,

where the constant of proportionality depends on r0.
4 Since Ξ0 consists of a single

cell, namely, the entire R
3, we have F(C, P ) at our disposal after we have processed

the unique cell of Ξ0.

Summing the cost over all cells of the intermediate cuttings, the total running
time is

ν∑
i=0

∑
τ∈Ξi

O

⎛
⎝
⎛
⎝κτ +

∑
τ ′∈Ξ(τ)

κτ ′ + mτ + nτ

⎞
⎠ log n

⎞
⎠

=
ν∑

i=0

∑
τ∈Ξi

O(κτ log n) +

ν∑
i=0

O((mr2i
0 + n) log n)

=

ν∑
i=0

∑
τ∈Ξi

O(κτ log n) + O((mr2 + n log r) log n).(8.1)

4This is the main reason for using hierarchical cuttings here: Applying the red-blue-merge for a
single-level cutting, with a nonconstant value of r, would result in a constant of proportionality that
is a high power of r, and would thus be too expensive.
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As mentioned in the introduction, the recent result of Agarwal, Aronov, and
Sharir [2], enhanced by the more recent result of Marcus and Tardos [33], implies that

κτ = O(m2/3
τ n2/3

τ + m6/11
τ n9/11

τ log6/11(m3
τ/nτ ) + nτ log nτ ).

Substituting the individual bounds on mτ and nτ , we obtain

ν∑
i=0

∑
τ∈Ξi

κτ =

ν∑
i=0

∑
τ∈Ξi

O(m2/3
τ n2/3

τ + m6/11
τ n9/11

τ log6/11(m3
τ/nτ ) + nτ log nτ )

=

ν∑
i=0

O(m2/3n2/3r
i/3
0 + m6/11n9/11 log6/11(m) + n log n)

= O(m2/3n2/3r1/3 + m6/11n9/11 log6/11(m) + n log2 n).(8.2)

Plugging (8.2) and the value of r into (8.1), the total running time is

O((m2/3n2/3 + m6/11n9/11 log6/11(m) log n + n log2 n) log n).

Adding the time spent in computing F(C∆, P ) for all cells ∆ in the final cutting Ξ,
we obtain the following result.

Theorem 8.2. Given a set C of n circles and a set P of m points in R
2, we can

compute F(C, P ) in time O(m2/3−εn2/3+2ε +m6/11+3εn9/11−ε +n1+ε) for any ε > 0.

As for the case of incidences, we can obtain a bound that is sensitive to the
number of intersecting pairs of circles in Ξ. Omitting the details, we obtain the
following result.

Theorem 8.3. Given a set C of n circles with χ intersecting pairs and a set P
of m points in R

2, we can compute F(C, P ) in time

O(m2/3−εχ1/3+ε + m6/11+3εχ4/11+2εn1/11−5ε + n1+ε)

for any ε > 0.

Remark 8.4. Theorems 8.1–8.3 do not extend to pseudo-circles for small values of
m because we map C, the family of input circles, to a set P ∗ of points in R

3 by using
the so-called lifting transform, which we do not know how to extend to pseudo-circles.
See an expanded remark in the next section.

Handling congruent circles. If C is a set of congruent circles, then the algorithm
for computing F(C, P ) can be improved and simplified. We partition each circle in
C into two semicircles by splitting it at its leftmost and rightmost points. Let U
and L denote the sets of resulting upper and lower semicircles, respectively. Each
pair of arcs within U (or within L) intersect in at most one point. We use the
segment-tree based algorithm just described to compute F(L,P ) and F(U,P ), in time
O(m2/3−εχ1/3+ε +m1+ε + n1+ε). We can then compute F(C, P ) = F(U ∪L,P ) from
F(L,P ) and F(U,P ) in time O(κ log n) using, as above, the red-blue-merge algorithm
of [21], where κ is the total number of vertices in F(L,P ),F(U,P ), and F(C, P ). Hence
we obtain the following result.

Theorem 8.5. Let P be a set of m points and C a set of n congruent circles
with χ intersecting pairs in R

2. We can compute F(C, P ) in time O(m2/3−εχ1/3+ε +
m1+ε + n1+ε) for any ε > 0.
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9. Conclusion. In this paper we define a duality transform for pseudo-lines and
present an efficient algorithm for constructing the dual arrangement for the case when
the pseudo-lines are defined by circular arcs or graphs of polynomials of bounded
degree, clipped to within some vertical strip. Our algorithm relies on a dynamic
pseudo-halfplane-emptiness data structure, an extension of the halfspace-emptiness
data structure of Matoušek [34], and is therefore interesting in its own right. Finally,
we present various applications of our duality algorithm. Roughly speaking, our
algorithm extends algorithms for many problems involving arrangements of lines to
arrangements of pseudo-lines, which in turn leads to faster algorithms for problems
involving arrangements of circles and of other arcs. We conclude by mentioning a few
open problems.

(i) It is known [13, 23] that there does not exist a duality transform between
points and pseudo-hyperplanes in higher dimensions that preserves the above-
below relation. However it is not known whether the lifting transform, used
in section 8, can be extended to pseudo-circles. That is, given a set C of
pseduo-circles and a set P of points in the plane, can we map each C ∈ C to a
point C∗ in R

3 and each point p ∈ P to a pseudo-plane p∗ in R
3 so that p lies

outside C if and only if C∗ lies below p∗? Such a transform, and an efficient
algorithm for computing it, will allow us to extend several known algorithms
for circle arrangements (e.g., computing incidences and computing a family
of marked faces) to pseudo-circle arrangements.

(ii) Currently our pseudo-halfplane-emptiness data structure, and thus our al-
gorithm for constructing the dual arrangement, does not work efficiently for
algebraic arcs defined by implicit equations, e.g., a family of x-monotone el-
liptic arcs whose endpoints lie on the boundary of a fixed vertical strip. We
need to extend Lemma 4.2 to such arcs in order to answer pseudo-halfplane-
emptiness queries efficiently.

(iii) Since our lens-cutting algorithm uses a circle-range-searching structure in its
first step, it does not extend to pseudo-circles. It would be useful to develop
an efficient algorithm that bypasses the range-searching step.

(iv) The current combinatorial bound on point-circle incidences is not believed to
be optimal for smaller point sets. Should that bound be improved, the cur-
rent method would still need a more efficient algorithm that cuts circles into
fewer pseudo-segments. The current approach, based on complete bipartite
decomposition of the intersection graph of circles, is “stuck” with near-n3/2

running time.
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LAYOUT OF GRAPHS WITH BOUNDED TREE-WIDTH∗

VIDA DUJMOVIĆ† , PAT MORIN‡ , AND DAVID R. WOOD†

Abstract. A queue layout of a graph consists of a total order of the vertices, and a partition of
the edges into queues, such that no two edges in the same queue are nested. The minimum number
of queues in a queue layout of a graph is its queue-number. A three-dimensional (straight-line grid)
drawing of a graph represents the vertices by points in Z

3 and the edges by noncrossing line-segments.
This paper contributes three main results:

(1) It is proved that the minimum volume of a certain type of three-dimensional drawing of a
graph G is closely related to the queue-number of G. In particular, if G is an n-vertex member of
a proper minor-closed family of graphs (such as a planar graph), then G has a O(1) ×O(1) ×O(n)
drawing if and only if G has a O(1) queue-number.

(2) It is proved that the queue-number is bounded by the tree-width, thus resolving an open
problem due to Ganley and Heath [Discrete Appl. Math., 109 (2001), pp. 215–221] and disproving
a conjecture of Pemmaraju [Exploring the Powers of Stacks and Queues via Graph Layouts, Ph.
D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, 1992]. This result
provides renewed hope for the positive resolution of a number of open problems in the theory of
queue layouts.

(3) It is proved that graphs of bounded tree-width have three-dimensional drawings with O(n)
volume. This is the most general family of graphs known to admit three-dimensional drawings with
O(n) volume.

The proofs depend upon our results regarding track layouts and tree-partitions of graphs, which
may be of independent interest.

Key words. queue layout, queue-number, three-dimensional graph drawing, tree-partition, tree-
partition-width, tree-width, k-tree, track layout, track-number, acyclic coloring, acyclic chromatic
number

AMS subject classification. 05C62

DOI. 10.1137/S0097539702416141

1. Introduction. A queue layout of a graph consists of a total order of the
vertices, and a partition of the edges into queues, such that no two edges in the same
queue are nested. The dual concept of a stack layout, introduced by Ollmann [71]
and commonly called a book embedding, is defined similarly, except that no two edges
in the same stack may cross. The minimum number of queues (respectively, stacks)
in a queue (stack) layout of a graph is its queue-number (stack-number). Queue
layouts have been extensively studied [41, 53, 54, 58, 74, 78, 84, 86] with applications
in parallel process scheduling, fault-tolerant processing, matrix computations, and
sorting networks (see [74] for a survey). Queue layouts of directed acyclic graphs
[9, 56, 57, 74] and posets [55, 74] have also been investigated. Our motivation for
studying queue layouts is a connection with three-dimensional graph drawing.

Graph drawing is concerned with the automatic generation of aesthetically pleas-
ing geometric representations of graphs. Graph drawing in the plane is well studied
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(see [23, 64]). Motivated by experimental evidence suggesting that displaying a graph
in three dimensions is better than in two [88, 89], and applications including informa-
tion visualisation [88], VLSI circuit design [66], and software engineering [90], there
is a growing body of research in three-dimensional graph drawing. In this paper we
study three-dimensional straight-line grid drawings, or three-dimensional drawings for
short. In this model, vertices are positioned at grid-points in Z

3, and edges are drawn
as straight line-segments with no crossings [16, 20, 24, 26, 27, 42, 53, 76, 73]. We
focus on the problem of producing three-dimensional drawings with small volume.
Three-dimensional drawings with vertices in R

3 have also been studied [39, 47, 18,
15, 17, 61, 21, 63, 60, 62, 68, 72]. Aesthetic criteria besides volume that have been
considered include symmetry [60, 61, 62, 63], aspect ratio [18, 47], angular resolution
[47, 18], edge-separation [18, 47], and convexity [17, 18, 39, 85].

The first main result of this paper (Theorem 2.10) reduces the question of whether
a graph has a three-dimensional drawing with small volume to a question regarding
queue layouts. In particular, we prove that every n-vertex graph from a proper minor-
closed graph family G has a O(1) × O(1) × O(n) drawing if and only if G has a
O(1) queue-number, and this result holds true when replacing O(1) by O(polylogn).
Consider the family of planar graphs, which are minor-closed. (In the conference
version of their paper) Felsner, Liotta, and Wismath [42] asked whether every planar
graph has a three-dimensional drawing with O(n) volume. Heath and Rosenberg [58]
and Heath Leighton, and Rosenberg [54] asked whether every planar graph has a
O(1) queue-number. By our result, these two open problems are almost equivalent in
the following sense. If every planar graph has O(1) queue-number, then every planar
graph has a three-dimensional drawing with O(n) volume. Conversely, if every planar
graph has a O(1) × O(1) × O(n) drawing, then every planar graph has O(1) queue-
number. It is possible, however, that planar graphs have unbounded queue-number,
yet have, say, O(n1/3) ×O(n1/3) ×O(n1/3) drawings.

Our other main results regard three-dimensional drawings and queue layouts of
graphs with bounded tree-width. Tree-width, first defined by Halin [50], although
largely unnoticed until independently rediscovered by Robertson and Seymour [79]
and Arnborg and Proskurowski [7], is a measure of the similarity of a graph to a
tree (see section 2.1 for the definition). Tree-width (or its special case, path-width)
has been previously used in the context of graph drawing by Dujmović et al. [32],
Hliněný [59], and Peng [75], for example.

The second main result (Corollary 2.8) is that the queue-number of a graph is
bounded by its tree-width. This solves an open problem due to Ganley and Heath [45],
who proved that stack-number is bounded by tree-width and asked whether a similar
relationship holds for queue-number. This result has significant implications for the
above open problem (does every planar graph have O(1) queue-number), and the more
general question (since planar graphs have stack-number at most four [93]) of whether
queue-number is bounded by stack-number. Heath and colleagues [58, 54] originally
conjectured that both of these questions have an affirmative answer. More recently,
however, Pemmaraju [74] conjectured that the “stellated K3,” a planar 3-tree, has
Θ(log n) queue-number, and provided evidence to support this conjecture (also see
[45]). This suggested that the answer to both of the above questions was negative.
In particular, Pemmaraju [74] and Heath [private communication, 2002] conjectured
that planar graphs have O(log n) queue-number. However, our result provides a queue
layout of any 3-tree, and thus the stellated K3, with O(1) queues. Hence our result
disproves the first conjecture of Pemmaraju [74] mentioned above and renews hope in
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an affirmative answer to the above open problems.

The third main result is that every graph of bounded tree-width has a three-
dimensional drawing with O(n) volume. The family of graphs of bounded tree-width
includes most of the graphs previously known to admit three-dimensional drawings
with O(n) volume (for example, outerplanar graphs), and also includes many graph
families for which the previous best volume bound was O(n2) (for example, series-
parallel graphs). Many graphs arising in applications of graph drawing do have small
tree-width. Outerplanar and series-parallel graphs are the obvious examples. Another
example arises in software engineering applications. Thorup [87] proved that the
control-flow graphs of go-to free programs in many programming languages have tree-
width bounded by a small constant; in particular, 3 for Pascal and 6 for C. Other
families of graphs having bounded tree-width (for constant k) include almost trees
with parameter k, graphs with a feedback vertex set of size k, band-width k graphs,
cut-width k graphs, planar graphs of radius k, and k-outerplanar graphs. If the size
of a maximum clique is a constant k, then chordal, interval, and circular arc graphs
also have bounded tree-width. Thus, by our result, all of these graphs have three-
dimensional drawings with O(n) volume, and O(1) queue-number.

To prove our results for graphs of bounded tree-width, we employ a related struc-
ture called a tree-partition, introduced independently by Seese [83] and Halin [51]. A
tree-partition of a graph is a partition of its vertices into “bags” such that contracting
each bag to a single vertex gives a forest (after deleting loops and replacing parallel
edges by a single edge). In a result of independent interest, we prove that every k-tree
has a tree-partition such that each bag induces a connected (k − 1)-tree, amongst
other properties. The second tool that we use is a track layout, which consists of a
vertex-coloring and a total order of each color class, such that between any two color
classes no two edges cross.

The remainder of the paper is organized as follows. In section 2 we introduce the
required background material, state our results regarding three-dimensional drawings
and queue layouts, and compare these with results in the literature. In section 3 we
establish a number of results concerning track layouts. That three-dimensional draw-
ings and queue-layouts are closely related stems from the fact that three-dimensional
drawings and queue layouts are both closely related to track layouts, as proved in sec-
tion 4 and section 5, respectively. In section 6 we prove the above-mentioned theorem
for tree-partitions of k-trees, which is used in section 7 to construct track layouts of
graphs with bounded tree-width. We conclude in section 8 with a number of open
problems.

2. Background and results. Throughout this paper all graphs G are undi-
rected, simple, and finite with vertex set V (G) and edge set E(G). The number of
vertices and the maximum degree of G are respectively denoted by n = |V (G)| and
∆(G). The subgraph induced by a set of vertices A ⊆ V (G) is denoted by G[A]. For
all disjoint subsets A,B ⊆ V (G), the bipartite subgraph of G with vertex set A ∪ B
and edge set {vw ∈ E(G) : v ∈ A,w ∈ B} is denoted by G[A,B].

A graph H is a minor of a graph G if H is isomorphic to a graph obtained from
a subgraph of G by contracting edges. A family of graphs closed under taking minors
is proper if it is not the class of all graphs.

A graph parameter is a function α that assigns to every graph G a nonnegative
integer α(G). Let G be a family of graphs. By α(G) we denote the function f : N → N,
where f(n) is the maximum of α(G) taken over all n-vertex graphs G ∈ G. We
say that G has bounded α if α(G) ∈ O(1). A graph parameter α is bounded by a
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graph parameter β (for some graph family G), if there exists a function g such that
α(G) ≤ g(β(G)) for every graph G (in G).

2.1. Tree-width. Let G be a graph and let T be a tree. An element of V (T )
is called a node. Let {Tx ⊆ V (G) : x ∈ V (T )} be a set of subsets of V (G) indexed
by the nodes of T . Each Tx is called a bag. The pair (T, {Tx : x ∈ V (T )}) is a
tree-decomposition of G if

1.
⋃

x∈V (T )Tx = V (G) (that is, every vertex of G is in at least one bag),
2. ∀ edges vw of G, ∃ node x of T such that v ∈ Tx and w ∈ Tx, and
3. ∀ nodes x, y, z of T , if y is on the path from x to z in T , then Tx ∩ Tz ⊆ Ty.

The width of a tree-decomposition is one less than the maximum cardinality
of a bag. A path-decomposition is a tree-decomposition where the tree T is a path
T = (x1, x2, . . . , xm), which is simply identified by the sequence of bags T1, T2, . . . , Tm

where each Ti = Txi
. The path-width (respectively, tree-width) of a graph G, denoted

by pw(G) (tw(G)), is the minimum width of a path- (tree-) decomposition of G.
Graphs with tree-width at most one are precisely the forests. Graphs with tree-width
at most two are called series-parallel,1 and are characterized as those graphs with no
K4 minor (see [10]).

A k-tree for some k ∈ N is defined recursively as follows. The empty graph is
a k-tree, and the graph obtained from a k-tree by adding a new vertex adjacent to
each vertex of a clique with at most k vertices is also a k-tree. This definition of a
k-tree is by Reed [77]. The following more restrictive definition of a k-tree, which we
call “strict,” was introduced by Arnborg and Proskurowski [7], and is more often used
in the literature. A k-clique is a strict k-tree, and the graph obtained from a strict
k-tree by adding a new vertex adjacent to each vertex of a k-clique is also a strict
k-tree. Obviously the strict k-trees are a proper subclass of the k-trees. A subgraph
of a k-tree is called a partial k-tree, and a subgraph of a strict k-tree is called a partial
strict k-tree. The following result is well known (see, for example, [10, 77]). A chord
of a cycle C is an edge not in C whose end-vertices are both in C. A graph is chordal
if every cycle on at least four vertices has a chord.

Lemma 2.1. Let G be a graph. The following are equivalent:
1. G has tree-width tw(G) ≤ k,
2. G is a partial k-tree,
3. G is a partial strict k-tree,
4. G is a subgraph of a chordal graph that has no clique on k + 2 vertices.

Proof. Scheffler [81] proved that (1) and (3) are equivalent. That (1) and (4) are
equivalent is due to Robertson and Seymour [79]. That (2) and (4) are equivalent is the
characterization of chordal graphs in terms of “perfect elimination” vertex-orderings
due to Fulkerson and Gross [44].

2.2. Tree-partitions. As in the definition of a tree-decomposition, let G be a
graph and let {Tx ⊆ V (G) : x ∈ V (T )} be a set of subsets of V (G) (called bags)
indexed by the nodes of a tree T . The pair (T, {Tx : x ∈ V (T )}) is a tree-partition of
G if

1. ∀ distinct nodes x and y of T , Tx ∩ Ty = ∅, and
2. ∀ edges vw of G, either
(i) ∃ node x of T with v ∈ Tx and w ∈ Tx (vw is called an intrabag edge), or

1“Series-parallel digraphs” are often defined in terms of certain “series” and “parallel” composi-
tion operations. The underlying undirected graph of such a digraph has tree-width at most two (see
[10]).
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(ii) ∃ edge xy of T with v ∈ Tx and w ∈ Ty (vw is called an interbag edge).
The main property of tree-partitions that has been studied in the literature is the

maximum cardinality of a bag, called the width of the tree-partition [11, 51, 83, 30, 31].
The minimum width over all tree-partitions of a graph G is the tree-partition-width2

of G, denoted by tpw(G). A graph with bounded degree has bounded tree-partition-
width if and only if it has bounded tree-width [31]. In particular, for every graph G,
Ding and Oporowski [30] proved that tpw(G) ≤ 24 tw(G) ∆(G) (assuming ∆(G) ≥ 1),
and Seese [83] proved that tw(G) ≤ 2 tpw(G) − 1.

Theorem 6.1 provides a tree-partition of a k-tree G with additional features be-
sides small width. First, the subgraph induced by each bag is a connected (k−1)-tree.
This allows us to perform induction on k. Second, in each nonroot bag Tx the set
of vertices in the parent bag of x with a neighbor in Tx form a clique. This feature
is crucial in the intended application (Theorem 7.3). Finally the tree-partition has
width at most max{1, k(∆(G)− 1)}, which represents a constant-factor improvement
over the above result by Ding and Oporowski [30] in the case of k-trees.

2.3. Track layouts. Let G be a graph. A coloring of G is a partition {Vi : i ∈ I}
of V (G), where I is a set of colors, such that for every edge vw of G, if v ∈ Vi and
w ∈ Vj , then i �= j. Each set Vi is called a color class. A coloring of G with c colors is
a c-coloring, and we say that G is c-colorable. The chromatic number of G, denoted
by χ(G), is the minimum c such that G is c-colorable.

If <i is a total order of a color class Vi, then we call the pair (Vi, <i) a track. If
{Vi : i ∈ I} is a coloring of G and (Vi, <i) is a track for each color i ∈ I, then we
say {(Vi, <i) : i ∈ I} is a track assignment of G indexed by I. Note that at times
it will be convenient to also refer to a color i ∈ I and the color class Vi as a track.
The precise meaning will always be clear from the context. A t-track assignment is a
track assignment with t tracks.

As illustrated in Figure 2.1, an X-crossing in a track assignment consists of two
edges vw and xy such that v <i x and y <j w for distinct tracks Vi and Vj . A t-track
assignment with no X-crossing is called a t-track layout. The track-number of a graph
G, denoted by tn(G), is the minimum t such that G has a t-track layout.

x

y

v

w

(Vi, <i)

(Vj , <j)

Fig. 2.1. An example of an X-crossing in a track assignment.

Let {(Vi, <i) : i ∈ I} be a t-track layout of a graph G. The span of an edge vw of
G, with respect to a numbering of the tracks I = {1, 2, . . . , t}, is defined to be |i− j|,
where v ∈ Vi and w ∈ Vj .

Track layouts will be central in most of our proofs. To enable comparison of
our results to those in the literature we now introduce the notion of an “improper”
track layout. A improper coloring of a graph G is simply a partition {Vi : i ∈ I} of
V (G). Here adjacent vertices may be in the same color class. A track of an improper
coloring is defined as above. Suppose {Vi : i ∈ I} is an improper coloring of G and
(Vi, <i) is a track for each color i ∈ I. An edge with both end-vertices in the same

2Tree-partition-width has also been called strong tree-width [83, 11].
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track is called an intratrack edge; otherwise it is called an intertrack edge. We say
that {(Vi, <i) : i ∈ I} is an improper track assignment of G if, for all intratrack
edges vw ∈ E(G) with v ∈ Vi and w ∈ Vi for some i ∈ I, there is no vertex x
with v <i x <i w. That is, adjacent vertices in the same track are consecutive in
that track. An improper t-track assignment with no X-crossing is called an improper
t-track layout.3

Lemma 2.2. If a graph G has an improper t-track layout, then G has a 2t-track
layout.

Proof. For every track Vi of an improper t-track layout of G, let V ′
i be a new

track. Move every second vertex from Vi to V ′
i such that V ′

i inherits its total order
from the original Vi. Clearly there is no intratrack edge and no X-crossing. Thus we
obtain a 2t-track layout of G.

Hence the track-number of a graph is at most twice its “improper track-number.”
The following lemma, which was jointly discovered with Giuseppe Liotta, gives a
compelling reason to only consider proper track layouts. Similar ideas can be found
in [42, 26]. Let vw be an edge of a graph G. Let G′ be the graph obtained from G
by adding a new vertex x only adjacent to v and w. We say x is an ear, and G′ is
obtained from G by adding an ear to vw.

Lemma 2.3. Let G be a class of graphs closed under the addition of ears (for
example, series-parallel graphs or planar graphs). If every graph in G has an improper
t-track layout for some constant t, then every graph in G has a (proper) t-track layout.

Proof. For any graph G ∈ G, let G′ be the graph obtained from G by adding t
ears to every edge of G. By assumption, G′ has an improper t-track layout. Suppose
that there is an edge vw of G such that v and w are in the same track. None of
the ears added to vw are on the same track, as otherwise adjacent vertices would
not be consecutive in that track. Thus there is a track containing at least two of
the ears added to vw. However, this implies that there is an X-crossing, which is a
contradiction. Thus the end-vertices of every edge of G are in distinct tracks. Hence
the improper t-track layout of G′ contains a t-track layout of G.

Lemmas 2.2 and 2.3 imply that only for relatively small classes of graphs will
the distinction between track layouts and improper track layouts be significant. We
therefore chose to work with the less cumbersome notion of a track layout. The
following theorem summarizes our bounds on the track-number of a graph.

Theorem 2.4. Let G be a graph with maximum degree ∆(G), path-width pw(G),
tree-partition-width tpw(G), and tree-width tw(G). The track-number of G satisfies

(a) tn(G) ≤ pw(G) + 1 ≤ 1 + (tw(G) + 1) logn,
(b) tn(G) ≤ 3 tpw(G) ≤ 72 tw(G) ∆(G) (assuming ∆(G) ≥ 1),

(c) tn(G) ≤ 3 tw(G) · 6(4 tw(G)−3 tw(G)−1)/9.
Proof. Part (a) follows from Lemma 3.2 and the fact that pw(G) ≤ (tw(G) +

1) log n (see [10]). Note that tn(G) ≤ 1+(tw(G)+1) logn can be proved directly using
a separator-based approach similar to that used to prove pw(G) ≤ (tw(G) + 1) logn.
Part (b) follows from Lemma 3.3 in section 3 and the result of Ding and Oporowski [30]
discussed in section 2.2. Part (c) is Theorem 7.3.

2.4. Vertex-orderings. Let G be a graph. A total order σ = (v1, v2, . . . , vn) of
V (G) is called a vertex-ordering of G. Suppose that G is connected. The depth of a
vertex vi in σ is the graph-theoretic distance between v1 and vi in G. We say that

3In [33, 35, 91] we called a track layout an ordered layering with no X-crossing and no intralayer
edges, and an improper track layout was called an ordered layering with no X-crossing.
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σ is a breadth-first vertex-ordering if for all vertices v and w with v <σ w the depth
of v in σ is no more than the depth of w in σ. Vertex-orderings, and in particular,
vertex-orderings of trees, will be used extensively in this paper. Consider a breadth-
first vertex-ordering σ of a tree T such that vertices at depth d ≥ 1 are ordered with
respect to the ordering of vertices at depth d−1. In particular, if v and x are vertices
at depth d with respective parents w and y at depth d− 1 with w <σ y, then v <σ x.
Such a vertex-ordering is called a lexicographical breadth-first vertex-ordering of T ,
and is illustrated in Figure 2.2.

depth 0 depth 1 depth 2 depth 3

Fig. 2.2. A lexicographical breadth-first vertex-ordering of a tree.

2.5. Queue layouts. A queue layout of a graph G consists of a vertex-ordering
σ of G and a partition of E(G) into queues such that no two edges in the same queue
are nested with respect to σ. That is, there are no edges vw and xy in a single queue
with v <σ x <σ y <σ w. The minimum number of queues in a queue layout of G is
called the queue-number of G and is denoted by qn(G). A similar concept is that of
a stack layout (or book embedding), which consists of a vertex-ordering σ of G and a
partition of E(G) into stacks (or pages) such that there are no edges vw and xy in
a single stack with v <σ x <σ w <σ y. The minimum number of stacks in a stack
layout of G is called the stack-number (or page-number or book-thickness) of G and
is denoted by sn(G). A queue (respectively, stack) layout with k queues (stacks) is
called a k-queue (k-stack) layout, and a graph that admits a k-queue (k-stack) layout
is called a k-queue (k-stack) graph.

Heath and Rosenberg [58] characterized 1-queue graphs as the “arched levelled
planar” graphs, and proved that it is NP-complete to recognize such graphs. This
result is in contrast to the situation for stack layouts—1-stack graphs are precisely the
outerplanar graphs [8], which can be recognized in polynomial time. Heath, Leighton,
and Rosenberg [54] proved that 1-stack graphs are 2-queue graphs (rediscovered by
Rengarajan and Veni Madhavan [78]), and that 1-queue graphs are 2-stack graphs.

While it is NP-hard to minimize the number of stacks in a stack layout given a
fixed vertex-ordering [46], the analogous problem for queue layouts can be solved as
follows. A k-rainbow in a vertex-ordering σ consists of a matching {viwi : 1 ≤ i ≤ k}
such that v1 <σ v2 <σ · · · <σ vk <σ wk <σ wk−1 <σ · · · <σ w1, as illustrated in
Figure 2.3.

Fig. 2.3. A rainbow of five edges in a vertex-ordering.

A vertex-ordering containing a k-rainbow needs at least k queues. A straight-
forward application of Dilworth’s Theorem [29] proves the converse. That is, a fixed
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vertex-ordering admits a k-queue layout, where k is the size of the largest rainbow.
(Heath and Rosenberg [58] describe a O(m log log n) time algorithm to compute the
queue assignment.) Thus determining qn(G) can be viewed as the following vertex-
ordering problem.

Lemma 2.5 (see [58]). The queue-number qn(G) of a graph G is the minimum,
taken over all vertex-orderings σ of G, of the maximum size of a rainbow in σ.

Stack and/or queue layouts of k-trees have previously been investigated in [19,
78, 45]. A 1-tree is a 1-queue graph, since in a lexicographical breadth-first vertex-
ordering of a tree no two edges are nested (see Figure 2.2). Chung, Leighton, and
Rosenberg [19] proved that in a depth-first vertex-ordering of a tree no two edges
cross. Thus 1-trees are 1-stack graphs. Rengarajan and Veni Madhavan [78] proved
that graphs with tree-width at most two (the series parallel graphs) are 2-stack and
3-queue graphs.4 Improper track layouts are implicit in the work of Heath, Leighton,
and Rosenberg [54] and Rengarajan and Veni Madhavan [78]. In section 5 we prove
the following fundamental relationship between queue and track layouts.

Theorem 2.6. For every graph G, qn(G) ≤ tn(G) − 1. Moreover, if G is any
proper minor-closed graph family, then G has queue-number qn(G) ∈ F(n) if and only
if G has track-number tn(G) ∈ F(n), where F(n) is any family of functions closed
under multiplication (such as O(1) or O(polylogn)).

Ganley and Heath [45] proved that every graph G has stack-number sn(G) ≤
tw(G) + 1 (using a depth-first traversal of a tree-decomposition), and asked whether
queue-number is bounded by tree-width. One of the principal results of this paper is
to solve this question in the affirmative. Applying Theorems 2.4 and 2.6, we have the
following.

Theorem 2.7. Let G be a graph with maximum degree ∆(G), path-width pw(G),
tree-partition-width tpw(G), and tree-width tw(G). The queue-number qn(G) satis-
fies5

(a) qn(G) ≤ pw(G) ≤ (tw(G) + 1) logn,
(b) qn(G) ≤ 3 tpw(G) − 1 ≤ 72 tw(G) ∆(G) − 1 (assuming ∆(G) ≥ 1),

(c) qn(G) ≤ 3 tw(G) · 6(4 tw(G)−3 tw(G)−1)/9 − 1.
A similar upper bound to Theorem 2.7(a) was obtained by Heath and Rosen-

berg [58], who proved that every graph G has qn(G) ≤ � 1
2bw(G), where bw(G) is

the band-width of G. In many cases this result is weaker than Theorem 2.7(a) since
pw(G) ≤ bw(G) (see [28]). More importantly, we have the following corollary of
Theorem 2.7(c).

Corollary 2.8. Queue-number is bounded by tree-width, and hence graphs with
bounded tree-width have bounded queue-number.

2.6. Three-dimensional drawings. A three-dimensional straight-line grid
drawing of a graph, henceforth called a three-dimensional drawing, represents the
vertices by distinct points in Z

3 (called grid-points) and represents each edge as a
line-segment between its end-vertices, such that edges intersect only at common end-
vertices, and an edge only intersects a vertex that is an end-vertex of that edge.

In contrast to the case in the plane, a folklore result states that every graph has
a three-dimensional drawing. Such a drawing can be constructed using the “moment

4In [35] we give a simple proof based on Theorem 6.1 for the result by Rengarajan and Veni Mad-
havan [78] that every series-parallel graph has a 3-queue layout.

5In [91] we obtained an alternative proof that qn(G) ≤ pw(G) using the “vertex separation
number” of a graph (which equals its path-width); applying Lemma 2.5 directly, we proved that
qn(G) ≤ 3

2
tpw(G), and thus qn(G) ≤ 36 ∆(G) tw(G).
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curve” algorithm in which vertex vi, 1 ≤ i ≤ n, is represented by the grid-point
(i, i2, i3). It is easily seen—compare with Lemma 4.2—that no two edges cross. (Two
edges cross if they intersect at some point other than a common end-vertex.)

Since every graph has a three-dimensional drawing, we are interested in optimizing
certain measures of the aesthetic quality of a drawing. If a three-dimensional drawing
is contained in an axis-aligned box with side lengths X − 1, Y − 1, and Z − 1,
then we speak of an X × Y × Z drawing with volume X · Y · Z and aspect ratio
max{X,Y, Z}/min{X,Y, Z}. This paper considers the problem of producing a three-
dimensional drawing of a given graph with small volume, and with small aspect ratio
as a secondary criterion.

Observe that the drawings produced by the moment curve algorithm have O(n6)
volume. Cohen et al. [20] improved this bound by proving that if p is a prime with
n < p ≤ 2n, and each vertex vi is represented by the grid-point (i, i2 mod p, i3 mod p),
then there is still no crossing. This construction is a generalization of an analogous
two-dimensional technique due to Erdős [40]. Furthermore, Cohen et al. [20] proved
that the resulting O(n3) volume bound is asymptotically optimal in the case of the
complete graph Kn. It is therefore of interest to identify fixed graph parameters that
allow for three-dimensional drawings with small volume.

The first such parameter to be studied was the chromatic number [16, 73]. Cala-
moneri and Sterbini [16] proved that every 4-colorable graph has a three-dimensional
drawing with O(n2) volume. Generalizing this result, Pach, Thiele, and Tóth [73]
proved that graphs of bounded chromatic number have three-dimensional drawings
with O(n2) volume, and that this bound is asymptotically optimal for the complete
bipartite graph with equal sized bipartitions. If p is a suitably chosen prime, the main
step of this algorithm represents the vertices in the ith color class by grid-points in
the set {(i, t, it) : t ≡ i2 (mod p)}. It follows that the volume bound is O(k2n2) for
k-colorable graphs.

The lower bound of Pach, Thiele, and Tóth [73] for the complete bipartite graph
was generalized by Bose et al. [14] for all graphs. They proved that every three-
dimensional drawing with n vertices and m edges has volume at least 1

8 (n + m).
In particular, the maximum number of edges in an X × Y × Z drawing is exactly
(2X − 1)(2Y − 1)(2Z − 1)−XY Z. For example, graphs admitting three-dimensional
drawings with O(n) volume have O(n) edges.

The first nontrivial O(n) volume bound was established by Felsner, Liotta, and
Wismath [42] for outerplanar graphs. Their elegant algorithm “wraps” a two-dimensional
drawing around a triangular prism to obtain an improper 3-track layout (see Lem-
mas 3.1 and 3.4 for more on this method). Poranen [76] proved that series-parallel
digraphs have upward three-dimensional drawings with O(n3) volume, and that this
bound can be improved to O(n2) and O(n) in certain special cases. Di Giacomo,
Liotta, and Wismath [26] proved that series-parallel graphs with maximum degree
three have three-dimensional drawings with O(n) volume.

In section 4 we prove the following intrinsic relationship between three-dimensional
drawings and track layouts.

Theorem 2.9. Every graph G has a O(tn(G)) × O(tn(G)) × O(n) drawing.
Moreover, G has an F(n) × F(n) ×O(n) drawing if and only if G has track-number
tn(G) ∈ F(n), where F(n) is a family of functions closed under multiplication.

Of course, every graph has an n-track layout—simply place a single vertex on
each track. Thus Theorem 2.9 matches the O(n3) volume bound discussed in section
2.6. In fact, the drawings of Kn produced by our algorithm, with each vertex in a
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distinct track, are identical to those produced by the algorithm of Cohen et al. [20].
Theorems 2.6 and 2.9 immediately imply the following result, which reduces the

problem of producing a three-dimensional drawing with small volume to that of pro-
ducing a queue layout of the same graph with few queues.

Theorem 2.10. Let G be a proper minor-closed family of graphs, and let F(n)
be a family of functions closed under multiplication. The following are equivalent:

(a) every n-vertex graph in G has an F(n) ×F(n) ×O(n) drawing,
(b) G has track-number tn(G) ∈ F(n), and
(c) G has queue-number qn(G) ∈ F(n).
Graphs with constant queue-number include de Bruijn graphs, FFT, and Beneš

network graphs [58]. By Theorem 2.10, these graphs have three-dimensional drawings
with O(n) volume. Applying Theorems 2.4 and 2.9, we have the following result.

Theorem 2.11. Let G be a graph with maximum degree ∆(G), path-width pw(G),
tree-partition-width tpw(G), and tree-width tw(G). Then G has a three-dimensional
drawing with the following dimensions:

(a) O(pw(G)) ×O(pw(G)) ×O(n), which is O(tw(G) log n) ×O(tw(G) log n) ×
O(n),

(b) O(tpw(G))×O(tpw(G))×O(n), which is O(∆(G) tw(G))×O(∆(G) tw(G))×
O(n),

(c) O(3 tw(G) ·6(4 tw(G)−3 tw(G)−1)/9)×O(3 tw(G) ·6(4 tw(G)−3 tw(G)−1)/9)×O(n).
Most importantly, we have the following corollary of Theorem 2.11(c).
Corollary 2.12. Every graph with bounded tree-width has a three-dimensional

drawing with O(n) volume.
Note that bounded tree-width is not necessary for a graph to have a three-

dimensional drawing with O(n) volume. The
√
n ×

√
n plane grid graph has Θ(

√
n)

tree-width, and has a
√
n ×

√
n × 1 drawing with n volume. It also has a 3-track

layout, and thus, by Lemma 4.2, has a O(1) ×O(1) ×O(n) drawing.
Since a planar graph is 4-colorable, by the results of Calamoneri and Sterbini [16]

and Pach, Thiele, and Tóth [73] discussed above, every planar graph has a three-
dimensional drawing with O(n2) volume. This result also follows from the classical
algorithms of de Fraysseix, Pach, and Pollack [22] and Schnyder [82] for producing
O(n)×O(n) plane grid drawings. All of these methods produce O(n)×O(n)×O(1)
drawings, which have Θ(n) aspect ratio. Since every planar graph G has pw(G) ∈
O(

√
n) [10], we have the following corollary of Theorem 2.11(a).
Corollary 2.13. Every planar graph has a three-dimensional drawing with

O(n2) volume and Θ(
√
n) aspect ratio.

This result matches the above O(n2) volume bounds with an improvement in
the aspect ratio by a factor of Θ(

√
n). Our final result regarding three-dimensional

drawings, which is proved in section 4, examines the apparent trade-off between aspect
ratio and volume.

Theorem 2.14. For every graph G and for every r, 1 ≤ r ≤ n/tn(G), G has a
three-dimensional drawing with O(n3/r2) volume and aspect ratio 2r.

3. Track layouts. In this section we describe a number of methods for producing
and manipulating track layouts. The following result is implicit in the proof by Felsner,
Liotta, and Wismath [42] that every outerplanar graph has an improper 3-track layout.

Lemma 3.1 (see [42]). Every tree T has a 3-track layout.
Proof. Root T at an arbitrary node r. Let σ be a lexicographical breadth-first

vertex-ordering of T starting at r, as described in section 2.4. For i ∈ {0, 1, 2}, let Vi

be the set of nodes of T with depth d ≡ i (mod 3) in σ. With each Vi ordered by σ,
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we have a 3-track assignment of T . Clearly adjacent vertices are on distinct tracks.
Since no two edges are nested in σ, there is no X-crossing (see Figure 3.1).

Fig. 3.1. A 3-track layout of a tree.

Lemma 3.2. Every graph G with path-width pw(G) has track-number tn(G) ≤
pw(G) + 1.

Proof. Let k = pw(G)+1. It is well known that G is the subgraph of a k-colorable
interval graph [10, 48]. That is, there is a set of intervals {[�(v), r(v)] ⊆ R : v ∈ V (G)}
such that [�(v), r(v)]∩ [�(w), r(w)] �= ∅ for every edge vw of G. Let {Vi : 1 ≤ i ≤ k} be
a k-coloring of G. Consider each color class Vi to be an ordered track (v1, v2, . . . , vp),
where �(v1) < r(v1) < �(v2) < r(v2) < · · · < �(vp) < r(vp), as illustrated in Figure
3.2. Suppose there is an X-crossing between edges vw and xy with v, x ∈ Vi and
w, y ∈ Vj for some pair of tracks Vi and Vj . Without loss of generality, r(v) < �(x)
and r(y) < �(w). Since vw is an edge, �(w) ≤ r(v). Thus r(y) < �(w) ≤ r(v) < �(x),
which implies that xy is not an edge of G. This contradiction proves that there is no
X-crossing, and G has a k-track layout.

Fig. 3.2. A 4-track layout of a 4-colorable interval graph.

The next lemma uses a tree-partition to construct a track layout.

Lemma 3.3. Every graph G with maximum degree ∆(G) ≥ 1, tree-width tw(G),
and tree-partition-width tpw(G), has track-number tn(G) ≤ 3 tpw(G) ≤ 72 ∆(G)tw(G).

Proof. Let (T, {Tx : x ∈ V (T )}) be a tree-partition of G with width tpw(G). By
Lemma 3.1, T has a 3-track layout. Replace each track by tpw(G) “subtracks,” and
for each node x in T place the vertices in bag Tx on the subtracks replacing the track
containing x, with at most one vertex in Tx in a single track. For all nodes x and y
of T , if x < y in a single track of the 3-track layout of T , then for all vertices v ∈ Tx

and w ∈ Ty, v < w whenever v and w are assigned to the same track. There is no
X-crossing, since in the track layout of T , adjacent nodes are on distinct tracks and
there is no X-crossing. Thus we have a track layout of G. The number of tracks is
3 tpw(G), which is at most 72 ∆(G)tw(G) by the theorem of Ding and Oporowski [30]
discussed in section 2.2.

In the remainder of this section, we prove two results that show how track layouts
can be manipulated without introducing an X-crossing. The first is a generalization of
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the “wrapping” algorithm of Felsner, Liotta, and Wismath [42], who implicitly proved
the case s = 1.

Lemma 3.4. If a graph G has an (improper) track layout {(Vi, <i) : 1 ≤ i ≤ t}
with maximum edge span s, then G has an (improper) (2s + 1)-track layout.

Proof. Let � = 2s + 1. Construct an �-track assignment of G by merging the
tracks {Vi : i ≡ j (mod t)} for each j, 0 ≤ j ≤ t − 1, with vertices in Vα appearing
before vertices in Vβ in the new track j for all α, β ≡ j (mod t) with α < β. The
given order of each Vi is preserved in the new tracks. It remains to prove that there is
no X-crossing. Consider two edges vw and xy. Let i1 and i2, 1 ≤ i1 < i2 ≤ t, be the
minimum and maximum tracks containing v, w, x, or y in the given t-track layout of
G.

First consider the case that i2 − i1 > 2s. Then without loss of generality v is in
track i2 and y is in track i1. Thus w is in a greater track than x, and even if x (or
y) appear on the same track as v (or w) in the new �-track assignment, x (or y) will
be to the left of v (or w). Thus these edges do not form an X-crossing in the �-track
assignment. Otherwise i2 − i1 ≤ 2s. Thus any two of v, w, x, or y will appear on
the same track in the �-track assignment if and only if they are on the same track in
the given t-track layout (since � > 2s). Hence the only way for these four vertices to
appear on exactly two tracks in the �-track assignment is if they were on exactly two
layers in the given t-track layout, in which case, by assumption, vw and xy do not
form an X-crossing. Therefore there is no X-crossing, and we have an �-track layout
of G.

The next result shows that the number of vertices in different tracks of a track
layout can be balanced without introducing an X-crossing. The proof is based on an
idea due to Pach, Thiele, and Tóth [73] for balancing the size of the color classes in
a coloring.

Lemma 3.5. If a graph G has an (improper) t-track layout, then for every t′ > 0,
G has an (improper) �t + t′�-track layout with at most � n

t′  vertices in each track.
Proof. For each track with q > � n

t′  vertices, replace it by �q/� n
t′  “subtracks”

each with exactly � n
t′  vertices except for at most one subtrack with q mod � n

t′  ver-
tices, such that the vertices in each subtrack are consecutive in the original track and
the original order is maintained. There is no X-crossing between subtracks from the
same original track as there is at most one edge between such subtracks. There is no
X-crossing between subtracks from different original tracks as otherwise there would
be an X-crossing in the original. There are at most �t′� tracks with � n

t′  vertices. Since
there are at most t tracks with less than � n

t′  vertices, one for each of the original
tracks, there is a total of at most �t + t′� tracks.

4. Three-dimensional drawings and track layouts. In this section we prove
Theorem 2.9, which states that three-dimensional drawings with small volume are
closely related to track layouts with few tracks.

Lemma 4.1. If a graph G has an A × B × C drawing, then G has an improper
AB-track layout, and G has a 2AB-track layout.

Proof. Let Vx,y be the set of vertices of G with an X-coordinate of x and a Y -
coordinate of y, where without loss of generality 1 ≤ x ≤ A and 1 ≤ y ≤ Y . With each
set Vx,y ordered by the Z-coordinates of its elements, {Vx,y : 1 ≤ x ≤ A, 1 ≤ y ≤ Y } is
an improper AB-track assignment. There is no X-crossing, as otherwise there would
be a crossing in the original drawing, and hence we have an improper AB-track layout.
By Lemma 2.2, G has a 2AB-track layout.

We now prove the converse of Lemma 4.1. The proof is inspired by the generaliza-
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tions of the moment curve algorithm by Cohen et al. [20] and Pach, Thiele, and Tóth
[73], described in section 2.6. Loosely speaking, Cohen et al. [20] allow three “free”
dimensions, whereas Pach, Thiele, and Tóth [73] use the assignment of vertices to
color classes to “fix” one dimension with two dimensions free. We use an assignment
of vertices to tracks to fix two dimensions with one dimension free. The style of three-
dimensional drawing produced by our algorithm, where tracks are drawn vertically, is
illustrated in Figure 4.1.

Fig. 4.1. A three-dimensional drawing produced from a track layout.

Lemma 4.2. If a graph G has a (possibly) improper k-track layout, then G has
a k × 2k × 2k · n′ three-dimensional drawing, where n′ is the maximum number of
vertices in a track.

Proof. Suppose that {(Vi, <i) : 1 ≤ i ≤ k} is the given improper k-track layout.
Let p be the smallest prime such that p > k. Then p ≤ 2k by Bertrand’s postulate.
For each i, 1 ≤ i ≤ k, represent the vertices in Vi by the grid-points

{(i, i2 mod p, t) : 1 ≤ t ≤ p · |Vi|, t ≡ i3 (mod p)}

such that the Z-coordinates respect the given total order <i. Draw each edge as a
line-segment between its end-vertices. Suppose that two edges e and e′ cross such
that their end-vertices are at distinct points (iα, i

2
α mod p, tα), 1 ≤ α ≤ 4. Then these

points are coplanar, and if M is the matrix

M =

⎛
⎜⎜⎝

1 i1 i21 mod p t1
1 i2 i22 mod p t2
1 i3 i23 mod p t3
1 i4 i24 mod p t4

⎞
⎟⎟⎠ ,

then the determinant det(M) = 0. We proceed by considering the number of distinct
tracks N = |{i1, i2, i3, i4}|.

• N = 1: By the definition of an improper track layout, e and e′ do not cross.

• N = 2: If either edge is intratrack, then e and e′ do not cross. Otherwise neither
edge is intratrack, and since there is no X-crossing, e and e′ do not cross.



566 VIDA DUJMOVIĆ, PAT MORIN, AND DAVID R. WOOD

• N = 3: Without loss of generality i1 = i2. It follows that det(M) = (t2 − t1) ·
det(M ′), where

M ′ =

⎛
⎝1 i2 i22 mod p

1 i3 i23 mod p
1 i4 i24 mod p

⎞
⎠ .

Since t1 �= t2, det(M ′) = 0. However, M ′ is a Vandermonde matrix modulo p, and
thus

det(M ′) ≡ (i2 − i3)(i2 − i4)(i3 − i4) (mod p),

which is nonzero since i2, i3, and i4 are distinct and p is a prime, a contradiction.
• N = 4: Let M ′ be the matrix obtained from M by taking each entry modulo

p. Then det(M ′) = 0. Since tα ≡ i3α (mod p), 1 ≤ α ≤ 4,

M ′ ≡

⎛
⎜⎜⎝

1 i1 i21 i31
1 i2 i22 i32
1 i3 i23 i33
1 i4 i24 i34

⎞
⎟⎟⎠ (mod p).

Since each iα < p, M ′ is a Vandermonde matrix modulo p, and thus

det(M ′) ≡ (i1 − i2)(i1 − i3)(i1 − i4)(i2 − i3)(i2 − i4)(i3 − i4) (mod p),

which is nonzero since iα �= iβ and p is a prime. This contradiction proves there are
no edge crossings. The produced drawing is at most k × 2k × 2k · n′.

Proof of Theorem 2.9. Let F(n) be a family of functions closed under multi-
plication. Let G be an n-vertex graph with a t-track layout, where t ∈ F(n). By
Lemma 3.5 with t′ = t, G has a 2t-track layout with at most �n

t  vertices in each
track. By Lemma 4.2, G has a 2t×4t×4t · �n

t  drawing, which is O(t)×O(t)×O(n).
Conversely, suppose that an n-vertex graph G has an A× B ×O(n) drawing, where
A,B ∈ F(n). By Lemma 4.1, G has a track layout with 2AB ∈ F(n) tracks.

Proof of Theorem 2.14. Let t = tn(G), and suppose 1 ≤ r ≤ n/t. By Lemma 3.5
with t′ = n

r , G has a �n
r + t�-track layout with at most r vertices in each track. By

assumption t ≤ n
r , and the number of tracks is at most 2n

r . By Lemma 4.2, G has a
2n
r × 4n

r × 4n three-dimensional drawing, which has volume 32n3/r2 and aspect ratio
2r.

5. Queue layouts and track layouts. In this section we prove Theorem 2.6,
which states that track and queue layouts are closely related. Our first lemma high-
lights this fact—its proof follows immediately from the definitions (see Figure 5.1).

Lemma 5.1. A bipartite graph G = (A,B;E) has a 2-track layout with tracks A
and B if and only if G has a 1-queue layout such that in the corresponding vertex-
ordering, the vertices in A appear before the vertices in B.

We now show that a queue layout can be obtained from a track layout. This
result can be viewed as a generalization of the construction of a 2-queue layout of
an outerplanar graph by Heath, Leighton, and Rosenberg [54] and Rengarajan and
Veni Madhavan [78] (with s = 1).

Lemma 5.2. If a graph G has a (possibly) improper t-track layout {(Vi, <i) : 1 ≤
i ≤ t} with maximum edge span s (≤ t−1), then qn(G) ≤ s+1, and if the given track
layout is not improper, then qn(G) ≤ s.
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Fig. 5.1. A 2-track layout and a 1-queue layout of a bipartite graph.

Proof. First suppose that there are no intratrack edges. Let σ be the vertex
ordering (V1, V2, . . . , Vt) of G. Let Eα be the set of edges with span α in the given
track layout. As in Lemma 5.1, two edges from the same pair of tracks are nested
in σ if and only if they form an X-crossing in the track layout. Since no two edges
form an X-crossing in the track layout, no two edges that are between the same pair
of tracks are nested in σ. If two edges not from the same pair of tracks have the same
span, then they are not nested in σ. (This idea is due to Heath and Rosenberg [58].)
Thus no two edges are nested in each Eα, and we have an s-queue layout of G. If
there are intra-track edges, then they all form one additional queue in σ.

We now set out to prove the converse of Lemma 5.2. It is well known that the
subgraph induced by any two tracks of a track layout is a forest of caterpillars [52]. A
coloring of a graph is acyclic if every bichromatic subgraph is a forest; that is, every
cycle receives at least three distinct colors. Thus a t-track layout of a graph G defines
an acyclic t-coloring of G. The minimum number of colors in an acyclic coloring of G
is the acyclic chromatic number of G, denoted by χa(G). Thus,

χa(G) ≤ tn(G).

Acyclic colorings were introduced by Grünbaum [49], who proved that every pla-
nar graph is acyclically 9-colorable. This result was steadily improved [1, 65, 67]
until Borodin [12] proved that every planar graph is acyclically 5-colorable, which is
the best possible bound. Many other graph families have bounded acyclic chromatic
number, including graphs embeddable on a fixed surface [2, 3, 6], 1-planar graphs
[13], graphs with bounded maximum degree [5], and graphs with bounded tree-width.
A folklore result states that χa(G) ≤ tw(G) + 1 (see [43]). More generally, Nešetřil
and Ossona de Mendez [69] proved that every proper minor-closed graph family has
bounded acyclic chromatic number. In fact, they proved that every graph G has a
star k-coloring (every bichromatic subgraph is a forest of stars), where k is a (small)
quadratic function of the maximum chromatic number of a minor of G.

Lemma 5.3. Every graph G with acyclic chromatic number χa(G) ≤ c and queue-
number qn(G) ≤ q has track-number tn(G) ≤ c (2q)c−1.

Proof. Let {Vi : 1 ≤ i ≤ c} be an acyclic coloring of G. Let σ be the vertex-
ordering in a q-queue layout of G. Consider an edge vw with v ∈ Vi, w ∈ Vj , and
i < j. If v <σ w, then vw is forward, and if w <σ v, then vw is backward. Consider
the edges to be colored with 2q colors, where each color class consists of the forward
edges in a single queue, or the backward edges in a single queue.

Alon and Marshall [4] proved that given a (not necessarily proper) edge k-coloring
of a graph G, any acyclic c-coloring of G can be refined to a ckc−1-coloring so that the
edges between any pair of (vertex) color classes are monochromatic, and each (ver-
tex) color class is contained in some original color class. (Nešetřil and Raspaud [70]
generalized this result for colored mixed graphs.) Apply this result with the given
acyclic c-coloring of G and the edge 2q-coloring discussed above. Consider the re-
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sulting c(2q)c−1 color classes to be tracks ordered by σ. The edges between any two
tracks are from a single queue, and are all forward or all backward.

Suppose that there are edges vw and xy that form an X-crossing. Since each track
is a subset of some Vi, we can assume that v, x ∈ Vi, w, y ∈ Vj , and i < j. Suppose
that vw and xy are both forward. The case in which vw and xy are both backward
is symmetric. Thus v <σ w and x <σ y. Since vw and xy form an X-crossing, and
the tracks are ordered by σ, we have v <σ x and y <σ w. Hence v <σ x <σ y <σ w.
That is, vw and xy are nested. This is the desired contradiction, since edges between
any pair of tracks are from a single queue. Thus we have a c(2q)c−1-track layout of
G.

Proof of Theorem 2.6. Let F(n) be a family of functions closed under multi-
plication. Let G be an n-vertex graph from a proper minor-closed graph family
G. First, suppose that G has a t-track layout, where t ∈ F(n). By Lemma 5.2,
G has queue-number qn(G) ≤ t − 1 ∈ F(n). Conversely, suppose G has queue-
number qn(G) = q ∈ F(n). By the above-mentioned result of Nešetřil and Ossona
de Mendez [69], G has bounded acyclic chromatic number χa(G) ≤ c ∈ O(1). By
Lemma 5.3, G has a t-track layout, where t ≤ c(2q)c−1 ∈ F(n).

6. Tree-partitions of k-trees. In this section we prove our theorem mentioned
in section 2.2 regarding tree-partitions of k-trees. This result forms the cornerstone
of the proof of Theorem 7.3.

Theorem 6.1. Let G be a k-tree with maximum degree ∆. Then G has a rooted
tree-partition (T, {Tx : x ∈ V (T )}) such that for all nodes x of T ,

(a) if x is a nonroot node of T and y is the parent node of x, then the set of
vertices in Ty with a neighbor in Tx forms a clique Cx of G, and

(b) the induced subgraph G[Tx] is a connected (k − 1)-tree.

Furthermore the width of (T, {Tx : x ∈ V (T )}) is at most max{1, k(∆ − 1)}.
Proof. We assume that G is connected, since if G is not connected, then a tree-

partition of G that satisfies the theorem can be determined by adding a new root node
with an empty bag, adjacent to the root node of a tree-partition of each connected
component of G.

It is well known that G is a connected k-tree if and only if G has a vertex-ordering
σ = (v1, v2, . . . , vn), such that for all i ∈ {1, 2, . . . , n},

(i) if Gi is the induced subgraph G[{v1, v2, . . . , vi}], then Gi is connected and
the vertex-ordering of Gi induced by σ is a breadth-first vertex-ordering of Gi, and

(ii) the neighbors of vi in Gi form a clique Ci = {vj : vivj ∈ E(G), j < i} with
1 ≤ |Ci| ≤ k (unless i = 1, in which case Ci = ∅).

In the language of chordal graphs, σ is a (reverse) “perfect elimination” vertex-
ordering and can be determined, for example, by the Lex-BFS algorithm by Rose,
Tarjan, and Leuker [80] (also see [48]). Moreover, we can choose v1 to be any vertex
in G.

Let r be a vertex of minimum degree6 in G. Then deg(r) ≤ k. Let σ =
(v1, v2, . . . , vn) be a vertex-ordering of G with v1 = r and satisfying (i) and (ii).
By (i), the depth of each vertex vi in σ is the same as the depth of vi in the vertex-
ordering of Gj induced by σ for all j ≥ i. We therefore simply speak of the depth of
vi. Let Vd be the set of vertices of G at depth d.

6We choose r to have minimum degree to obtain a slightly improved bound on the width of the
tree-partition. If we choose r to be an arbitrary vertex, then the width is at most max{1,∆, k(∆−1)},
and the remainder of Theorem 6.1 holds.
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Claim 1. For all d ≥ 1, and for every connected component Z of G[Vd], the set
of vertices at depth d− 1 with a neighbor in Z form a clique of G.

Proof. The claim is trivial for d = 1 or d = 2. Now suppose that d ≥ 3. Assume
for the sake of contradiction that there are two nonadjacent vertices x and y at depth
d−1 such that x has a neighbor in Z and y has a neighbor in Z. Let P1 be a shortest
path between x and y with its interior vertices in Z. Let P2 be a shortest path between
x and y with its interior vertices at depth at most d− 2. Since the interior vertices of
P1 are at depth d, there is no edge between an interior vertex of P1 and an interior
vertex of P2. Thus P1 ∪ P2 is a chordless cycle of length at least four, contradicting
the fact that G is chordal (by Lemma 2.1).

Define a graph T and a partition {Tx : x ∈ V (T )} of V (G) indexed by the nodes
of T as follows. There is one node x in T for every connected component of each
G[Vd], whose bag Tx is the vertex-set of the corresponding connected component. We
say x and Tx are at depth d. Clearly a vertex in a depth-d bag is also at depth d. The
(unique) node of T at depth zero is called the root node. Let two nodes x and y of T
be connected by an edge if there is an edge vw of G with v ∈ Tx and w ∈ Ty. Thus
(T, {Tx : x ∈ V (T )}) is a “graph-partition.”

We now prove that in fact T is a tree. First observe that T is connected since G is
connected. By definition, nodes of T at the same depth d are not adjacent. Moreover,
nodes of T can be adjacent only if their depths differ by one. Thus T has a cycle
only if there is a node x in T at some depth d such that x has at least two distinct
neighbors in T at depth d − 1. However this is impossible since, by Claim 1, the set
of vertices at depth d− 1 with a neighbor in Tx form a clique (which we call Cx) and
are hence in a single bag at depth d− 1. Thus T is a tree, and (T, {Tx : x ∈ V (T )})
is a tree-partition of G (see Figure 6.1).

V0

V1

V2

V3

Fig. 6.1. Illustration for Theorem 6.1 in the case of k = 3.
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We now prove that each bag Tx induces a connected (k − 1)-tree. This is true
for the root node which only has one vertex. Suppose x is a nonroot node of T at
depth d. Each vertex in Tx has at least one neighbor at depth d − 1. Thus in the
vertex-ordering of Tx induced by σ, each vertex vi ∈ Tx has at most k − 1 neighbors
vj ∈ Tx with j < i. Thus the vertex-ordering of Tx induced by σ satisfies (i) and (ii)
for k − 1, and G[Tx] is (k − 1)-tree. By definition, each G[Tx] is connected.

Finally, consider the cardinality of a bag in T . We claim that each bag contains
at most max{1, k(∆ − 1)} vertices. The root bag has one vertex. Let x be a nonroot
node of T with parent node y. Suppose that y is the root node. Then Ty = {r}, and
thus |Tx| ≤ deg(r) ≤ k ≤ k(∆ − 1), assuming ∆ ≥ 2. If ∆ ≤ 1, then all bags have
one vertex. Now assume that y is a nonroot node. The set of vertices in Ty with a
neighbor in Tx forms the clique Cx. Let k′ = |Cx|. Thus k′ ≥ 1, and since Cx ⊆ Ty

and G[Ty] is a (k − 1)-tree, k′ ≤ k. A vertex v ∈ Cx has k′ − 1 neighbors in Cx and
at least one neighbor in the parent bag of y. Thus v has at most ∆ − k′ neighbors
in Tx. Hence the number of edges between Cx and Tx is at most k′(∆ − k′). Every
vertex in Tx is adjacent to a vertex in Cx. Thus |Tx| ≤ k′(∆ − k′) ≤ k(∆ − 1). This
completes the proof.

7. Tree-width and track layouts. In this section we prove that track-number
is bounded by tree-width. Let {(Vi, <i) : i ∈ I} be a track layout of a graph G. We
say a clique C of G covers the set of tracks {i ∈ I : C ∩ Vi �= ∅}. Let S be a set of
cliques of G. Suppose that there exists a total order � on S such that for all cliques
C1, C2 ∈ S, if there exists a track i ∈ I, and vertices v ∈ Vi ∩ C1 and w ∈ Vi ∩ C2

with v <i w, then C1 ≺ C2. In this case, we say � is nice, and S is nicely ordered by
the track layout.

Lemma 7.1. Let L ⊆ I be a set of tracks in a track layout {(Vi, <i) : i ∈ I} of a
graph G. If S is a set of cliques each of which covers L, then S is nicely ordered by
the given track layout.

Proof. Define a relation � on S as follows. For every pair of cliques C1, C2 ∈ S,
define C1 � C2 if C1 = C2 or there exists a track i ∈ L and vertices v ∈ C1 and
w ∈ C2 with v <i w. Clearly all cliques in S are comparable.

Suppose that � is not antisymmetric; that is, there exist distinct cliques C1, C2 ∈
S, distinct tracks i, j ∈ L, and distinct vertices v1, w1 ∈ C1 and v2, w2 ∈ C2 such that
v1 <i v2 and w2 <j w1. Since C1 and C2 are cliques, the edges v1w1 and v2w2 form
an X-crossing, which is a contradiction. Thus � is antisymmetric.

We claim that � is transitive. Suppose that there exist cliques C1, C2, C3 ∈ S
such that C1 � C2 and C2 � C3. We can assume that C1, C2, and C3 are pairwise
distinct. Thus there are vertices u1 ∈ C1, u2 ∈ C2, v2 ∈ C2, and v3 ∈ C3 such that
u1 <i u2 and v2 <j v3 for some pair of (not necessarily distinct) tracks i, j ∈ L. Since
C3 has a vertex in Vi and since C3 �� C2, there is a vertex u3 ∈ C3 with u2 ≤i u3.
Thus u1 <i u3, which implies that C1 � C3. Thus � is transitive.

Hence � is a total order on S, which by definition is nice.
Consider the problem of partitioning the cliques of a graph into sets such that

each set is nicely ordered by a given track layout. The following immediate corollary
of Lemma 7.1 says that there exists such a partition where the number of sets does
not depend upon the size of the graph.

Corollary 7.2. Let G be a graph with maximum clique size k. Given a t-track
layout of G, there is a partition of the cliques of G into

∑k
i=1

(
t
i

)
sets, each of which

is nicely ordered by the given track layout.
We do not actually use Corollary 7.2 in the following result, but the idea of
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partitioning the cliques into nicely ordered sets is central to its proof.

Theorem 7.3. For every integer k ≥ 0, there is a constant tk = 3k · 6(4k−3k−1)/9

such that every graph G with tree-width tw(G) ≤ k has a tk-track layout.

Proof. If the input graph G is not a k-tree, then add edges to G to obtain a k-tree
containing G as a subgraph. It is well known that a graph with tree-width at most
k is a spanning subgraph of a k-tree. These extra edges can be deleted once we are
done. We proceed by induction on k with the following hypothesis:

For all k ∈ N, there exists a constant sk and sets Ik and Sk such that

1. |Ik| = tk and |Sk| = sk,
2. each element of Sk is a subset of Ik, and
3. every k-tree G has a tk-track layout indexed by Ik, such that for every clique

C of G, the set of tracks that C covers is in Sk.

Consider the base case with k = 0. A 0-tree G has no edges and thus has a 1-track
layout. Let I0 = {1}, and order V1 = V (G) arbitrarily. Thus t0 = 1, s0 = 1, and
S0 = {{1}} satisfy the hypothesis for every 0-tree. Now suppose that the result holds
for k − 1, and G is a k-tree.

Let (T, {Tx : x ∈ V (T )}) be a tree-partition of G described in Theorem 6.1, where
T is rooted at r. Each induced subgraph G[Tx] is a (k − 1)-tree. Thus, by induction,
there are sets Ik−1 and Sk−1 with |Ik−1| = tk−1 and |Sk−1| = sk−1 such that for
every node x of T the induced subgraph G[Tx] has a tk−1-track layout indexed by
Ik−1. For every clique C of G[Tx], if C covers L ⊆ Ik−1, then L ∈ Sk−1. Assume
Ik−1 = {1, 2, . . . , tk−1} and Sk−1 = {X1, X2, . . . , Xsk−1

}. By Theorem 6.1, for each
nonroot node x of T , if p is the parent node of x, then the set of vertices in Tp with
a neighbor in Tx form a clique Cx. Let α(x) = i, where Cx covers Xi. For the root
node r of T , let α(r) = 1.

Track layout of T . To construct a track layout of G we first construct a track
layout of the tree T indexed by the set {(d, i) : d ≥ 0, 1 ≤ i ≤ sk−1}, where the track
Ld,i consists of nodes x of T at depth d with α(x) = i. Here the depth of a node x
is the distance in T from the root node r to x. We order the nodes of T within the
tracks by increasing depth. There is only one node at depth d = 0. Suppose that we
have determined the orders of the nodes up to depth d− 1 for some d ≥ 1.

Let i ∈ {1, 2, . . . , sk−1}. The nodes in Ld,i are ordered primarily with respect to
the relative positions of their parent nodes (at depth d− 1). More precisely, let ρ(x)
denote the parent node of each node x ∈ Ld,i. For all nodes x and y in Ld,i, if ρ(x)
and ρ(y) are in the same track and ρ(x) < ρ(y) in that track, then x < y in Ld,i. For
x and y with ρ(x) and ρ(y) on distinct tracks, the relative order of x and y is not
important. It remains to specify the order of nodes in Ld,i with a common parent.

Suppose that P is a set of nodes in Ld,i with a common parent node p. By
construction, for every node x ∈ P , the parent clique Cx covers Xi in the track layout
of G[Tp]. By Lemma 7.1 the cliques {Cx : x ∈ P} are nicely ordered by the track
layout of G[Tp]. Let the order of P in track Ld,i be specified by a nice ordering of
{Cx : x ∈ P}, as illustrated in Figure 7.1.

This construction defines a partial order on the nodes in track Ld,i, which can be
arbitrarily extended to a total order. Hence we have a track assignment of T . Since
the nodes in each track are ordered primarily with respect to the relative positions of
their parent nodes in the previous tracks, there is no X-crossing, and hence we have
a track layout of T .
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Cx1 Cx3

Cy1 Cy3

Cz1 Cz3

x1 x2 x3

y1 y2 y3
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Ld,2

�

�

�

Ld,sk−1

Fig. 7.1. Track layout of nodes with a common parent p.

Track layout of G. To construct a track assignment of G from the track layout
of T , replace each track Ld,i by tk−1 subtracks, and for each node x of T insert
the track layout of G[Tx] in place of x on the subtracks corresponding to the track
containing x in the track layout of T . More formally, the track layout of G is indexed
by the set

{(d, i, j) : d ≥ 0, 1 ≤ i ≤ sk−1, 1 ≤ j ≤ tk−1}.

Each track Vd,i,j consists of those vertices v of G such that, if Tx is the bag containing
v, then x is at depth d in T , α(x) = i, and v is in track j in the track layout of G[Tx].
If x and y are distinct nodes of T with x < y in Ld,i, then v < w in Vd,i,j for all
vertices v ∈ Tx and w ∈ Ty in track j. If v and w are vertices of G in track j in bag
Tx at depth d, then the relative order of v and w in Vd,α(x),j is the same as in the
track layout of G[Tx].

Clearly adjacent vertices of G are in distinct tracks. Thus we have defined a track
assignment of G. We claim there is no X-crossing. Clearly an intrabag edge of G is
not in an X-crossing with an edge not in the same bag. By induction, there is no
X-crossing between intrabag edges in a common bag. Since there is no X-crossing in
the track layout of T , interbag edges of G which are mapped to edges of T without a
common parent node are not involved in an X-crossing.

Consider a parent node p in T . For each child node x of p, the set of vertices
in Tp adjacent to a vertex in Tx forms the clique Cx. Thus there is no X-crossing
between a pair of edges both from Cx to Tx, since the vertices of Cx are on distinct
tracks. Consider two child nodes x and y of p. For there to be an X-crossing between
an edge from Tp to Tx and an edge from Tp to Ty, the nodes x and y must be on the
same track in the track layout of T . Suppose x < y in this track. By construction, Cx

and Cy cover the same set of tracks, and Cx � Cy in the corresponding nice ordering.
Thus for any track containing vertices v ∈ Cx and w ∈ Cy, v ≤ w in that track. Since
all the vertices in Tx are to the left of the vertices in Ty (in a common track), there is
no X-crossing between an edge from Tp to Tx and an edge from Tp to Ty. Therefore
there is no X-crossing, and hence we have a track layout of G.

Wrapped track layout of G. 0As illustrated in Figure 7.2, we now “wrap” the
track layout of G in the spirit of Lemma 3.1. In particular, define a track assignment
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Fig. 7.2. Wrapped track layout in Theorem 7.3.

of G indexed by{
(d′, i, j) : d′ ∈ {0, 1, 2}, 1 ≤ i ≤ sk−1, 1 ≤ j ≤ tk−1

}
,

where each track

Wd′,i,j =
⋃

{Vd,i,j : d ≡ d′ (mod 3)}.

If v ∈ Vd,i,j and w ∈ Vd+3,i,j , then v < w in the order of Wd′,i,j (where d′ = d mod 3).
The order of each Vd,i,j is preserved in Wd′,i,j . The set of tracks {Wd′,i,j : d′ ∈
{0, 1, 2}, 1 ≤ i ≤ sk−1, 1 ≤ j ≤ tk−1} forms a track assignment of G.

For every edge vw of G, the depths of the bags in T containing v and w differ by
at most one. Thus in the wrapped track assignment of G, adjacent vertices remain
on distinct tracks, and there is no X-crossing. The number of tracks is 3 · sk−1 · tk−1.

Every clique C of G is either contained in a single bag of the tree-partition or is
contained in two adjacent bags. Let

S ′ =
{
{(d′, i, h) : h ∈ Xj} : d′ ∈ {0, 1, 2}, 1 ≤ i, j ≤ sk−1

}
.

For every clique C of G contained in a single bag, the set of tracks containing C is in
S ′. Let

S ′′ =
{
{(d′, i, �) : � ∈ Xj} ∪ {((d′ + 1) mod 3, p, h) : h ∈ Xq} :

d′ ∈ {0, 1, 2}, 1 ≤ i, j, p, q ≤ sk−1

}
.

For every clique C of G contained in two bags, the set of tracks containing C is in S ′′.
Observe that S ′∪S ′′ is independent of G. Hence Sk = S ′∪S ′′ satisfies the hypothesis
for k.
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Now |S ′| = 3s2
k−1 and |S ′′| = 3s4

k−1, and thus |S ′ ∪ S ′′| = 3s2
k−1(s

2
k−1 + 1).

Therefore any solution to the following set of recurrences satisfies the theorem:

s0 ≥ 1, t0 ≥ 1, sk ≥ 3s2
k−1(s

2
k−1 + 1), tk ≥ 3sk−1 · tk−1.(7.1)

We claim that

sk = 6(4k−1)/3 and tk = 3k · 6(4k−3k−1)/9

is a solution to (7.1). Observe that s0 = 1 and t0 = 1. Now

3s2
k−1(s

2
k−1 + 1) ≤ 6s4

k−1

and

6(6(4k−1−1)/3)4 = 61+4(4k−1−1)/3 = 6(4k−1)/3 = sk.

Thus the recurrence for sk is satisfied. Now

3 · sk−1 · tk−1 = 3 · 6(4k−1−1)/3 · 3k−1 · 6(4k−1−3(k−1)−1)/9

= 3k · 6(3·4k−1−3+4k−1−3k+3−1)/9

= 3k · 6(4k−3k−1)/9

= tk.

Thus the recurrence for tk is satisfied. This completes the proof.
In the proof of Theorem 7.3 we have made little effort to reduce the bound on tk,

beyond that it is a doubly exponential function of k. In [35] we describe a number
of refinements that result in improved bounds on tk. One such refinement uses strict
k-trees. From an algorithmic point of view, the disadvantage of using strict k-trees is
that at each recursive step, extra edges must be added to enlarge the graph from a
partial strict k-tree into a strict k-tree, whereas when using (nonstrict) k-trees, extra
edges need be added only at the beginning of the algorithm.

For small values of k, much-improved results can be obtained. For example, we
prove that every series-parallel graph (that is, with tree-width at most two) has an
18-track layout [35], whereas t2 = 54. This bound has recently been improved to
15 by Di Giacomo, Liotta, and Meijer [25]. Their method is based on Theorems 6.1
and 7.3, and in the general case still gives a doubly exponential upper bound on the
track-number of graphs with tree-width k. For other particular classes of graphs,
Di Giacomo [24] and Di Giacomo and Meijer [27] recently improved the constants in
our results.

Our doubly exponential upper bound is probably not best possible. Di Giacomo,
Liotta, and Meijer [25] constructed graphs with tree-width k and track-number at
least 2k + 1. The following construction establishes a quadratic lower bound. It is
similar to a graph due to Albertson et al. [3], which gives a tight lower bound on the
star chromatic number of graphs with tree-width k.

Theorem 7.4. For all k ≥ 0, there is a graph Gk with tree-width at most k and
track-number tn(Gk) = 1

2 (k + 1)(k + 2).
Proof. Let G0 = K1. Obviously G0 has tree-width 0. Construct Gk from Gk−1 as

follows. Start with a k-clique {v1, v2, . . . , vk}. Let n = 2( 1
2 (k + 1)(k + 2)− 1− k) + 1.

Add n vertices {w1, w2, . . . , wn}, each adjacent to every vi. Let H1, H2, . . . , Hn be
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Fig. 7.3. The graph Gk.

copies of Gk−1. For all 1 ≤ j ≤ n, add an edge between wj and each vertex of Hj , as
illustrated in Figure 7.3. It is easily seen that from a tree decomposition of Gk−1 of
width k − 1 we can construct a tree decomposition of Gk of width k. Thus Gk has
tree-width at most k.

To prove that tn(Gk) ≥ 1
2 (k + 1)(k + 2), we proceed by induction on k ≥ 0.

Obviously tn(G0) = 1. Suppose that tn(Gk−1) ≥ 1
2k(k + 1) but tn(Gk) ≤ 1

2 (k +
1)(k + 2) − 1. Since {v1, v2, . . . , vk} is a clique, we can assume that vi is in track i.
Since each vertex wj is adjacent to each vi, no wj is in tracks {1, 2, . . . , k}. There are
1
2 (k + 1)(k + 2) − 1 − k remaining tracks. Since n is more than twice this number,
there are at least three wj vertices in a single track. Without loss of generality,
w1 < w2 < w3 in track k + 1. No vertex x of H2 is in track i ∈ {1, 2, . . . , k}, as
otherwise xw2 would form an X-crossing with viw1 or viw3. No vertex x of H2 is
in track k + 1, since x and w2 are adjacent, and w2 is in track k + 1. Thus all
the vertices of H2 are in tracks {k + 2, k + 3, . . . , 1

2 (k + 1)(k + 2) − 1}. There are
1
2 (k + 1)(k + 2) − 1 − (k + 1) = 1

2k(k + 1) − 1 such tracks. This contradicts the
assumption that tn(Gk−1) ≥ 1

2k(k + 1). Therefore tn(Gk) ≥ 1
2 (k + 1)(k + 2).

It remains to prove that tn(Gk) ≤ 1
2 (k+ 1)(k+ 2). Suppose we have a 1

2k(k+ 1)-
track layout of Gk−1. Thus each Hj has a 1

2k(k + 1)-track layout. Put each vertex vi
of Gk in track i. Put the vertices {w1, w2, . . . , wn} in track k + 1 in this order. Put
the track layout of each Hj in tracks k + 2, k + 3, . . . , 1

2 (k + 1)(k + 2) such that the
vertices of Hj precede the vertices of Hj+1. Clearly there are no X-crossings.

Also note that Theorem 7.4 (for k ≥ 2) can be extended using the proof technique
of Lemma 2.3 to give the same lower bound for improper track layouts.

8. Open problems.

1. (In the conference version of their paper) Felsner, Liotta, and Wismath [42]
asked whether every planar graph has a three-dimensional drawing with O(n) volume.
By Theorem 2.9, this question has an affirmative answer if every planar graph has a
O(1) track-number. Whether every planar graph has O(1) track-number is an open
problem due to H. de Fraysseix [private communication, 2000] and, by Theorem 2.6,
is equivalent to the following question.

2. Heath and colleagues [58, 54] asked whether every planar graph has a O(1)
queue-number. The best known upper bound on the queue-number of a planar graph
is O(

√
n). In general, Dujmović and Wood [37] proved that every m-edge graph has

queue-number at most e
√
m, where e is the base of the natural logarithm.

3. Heath and colleagues [58, 54] also asked whether stack-number is bounded
by queue-number (and vice-versa). Note that there is a family of graphs G with
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sn(G) ∈ Ω(3Ω(qn(G))−ε) for all G ∈ G [54].
4. Is the queue-number of a graph bounded by a polynomial (or even singly

exponential) function of its tree-width?

Note added in proof. Subsequent to this research, Dujmović and Wood [38]
proved that graphs excluding a fixed graph as a minor, such as planar graphs, have
three-dimensional drawings with O(n3/2) volume, as do graphs with bounded degree;
Dujmović, Pór, and Wood [34] proved that track-number and queue-number are tied
for all graphs; and Theorem 6.1 has been generalized (with a different proof) by
Wood [92].

Acknowledgments. The authors are grateful for stimulating discussions with
Prosenjit Bose, Jurek Czyzowicz, Hubert de Fraysseix, Stefan Langerman, Giuseppe
Liotta, Patrice Ossona de Mendez, and Matthew Suderman. Thanks also to an anony-
mous referee for many helpful comments.

REFERENCES

[1] M. O. Albertson and D. M. Berman, Every planar graph has an acyclic 7-coloring, Israel J.
Math., 28 (1977), pp. 169–174.

[2] M. O. Albertson and D. M. Berman, An acyclic analogue to Heawood’s theorem, Glasgow
Math. J., 19 (1978), pp. 163–166.

[3] M. O. Albertson, G. G. Chappell, H. A. Kierstead, A. Kündgen, and R. Ramamurthi,
Coloring with no 2-colored P4’s, Electron. J. Combin., 11 (2004), paper R26.

[4] N. Alon and T. H. Marshall, Homomorphisms of edge-colored graphs and Coxeter groups,
J. Algebraic Combin., 8 (1998), pp. 5–13.

[5] N. Alon, C. McDiarmid, and B. Reed, Acyclic coloring of graphs, Random Structures Algo-
rithms, 2 (1991), pp. 277–288.

[6] N. Alon, B. Mohar, and D. P. Sanders, On acyclic colorings of graphs on surfaces, Israel
J. Math., 94 (1996), pp. 273–283.

[7] S. Arnborg and A. Proskurowski, Linear time algorithms for NP-hard problems restricted
to partial k-trees, Discrete Appl. Math., 23 (1989), pp. 11–24.

[8] F. R. Bernhart and P. C. Kainen, The book thickness of a graph, J. Combin. Theory Ser.
B, 27 (1979), pp. 320–331.

[9] S. N. Bhatt, F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg, Scheduling tree-dags
using FIFO queues: A control-memory trade-off, J. Parallel Distrib. Comput., 33 (1996),
pp. 55–68.

[10] H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput.
Sci., 209 (1998), pp. 1–45.

[11] H. L. Bodlaender and J. Engelfriet, Domino treewidth, J. Algorithms, 24 (1997), pp. 94–
123.

[12] O. V. Borodin, On acyclic colorings of planar graphs, Discrete Math., 25 (1979), pp. 211–236.
[13] O. V. Borodin, A. V. Kostochka, A. Raspaud, and E. Sopena, Acyclic colouring of 1-planar

graphs, Discrete Appl. Math., 114 (2001), pp. 29–41.
[14] P. Bose, J. Czyzowicz, P. Morin, and D. R. Wood, The maximum number of edges in a

three-dimensional grid-drawing, J. Graph Algorithms Appl., 8 (2004), pp. 21–26.
[15] I. Bruß and A. Frick, Fast interactive 3-D graph visualization, in Proceedings of the Inter-

national Symposium on Graph Drawing (GD ’95), F. J. Brandenburg, ed., Lecture Notes
in Comput. Sci. 1027, Springer, New York, 1996, pp. 99–110.

[16] T. Calamoneri and A. Sterbini, 3D straight-line grid drawing of 4-colorable graphs, Inform.
Process. Lett., 63 (1997), pp. 97–102.

[17] K. Chilakamarri, N. Dean, and M. Littman, Three-dimensional Tutte embedding, in Pro-
ceedings of the 26th Southeastern International Conference on Combinatorics, Graph The-
ory, and Computing, Congr. Numer. 107, 1995, pp. 129–140.

[18] M. Chrobak, M. Goodrich, and R. Tamassia, Convex drawings of graphs in two and three
dimensions, in Proceedings of the 12th Annual ACM Symposium on Computational Ge-
ometry, 1996, ACM, New York, pp. 319–328.

[19] F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg, Embedding graphs in books: A
layout problem with applications to VLSI design, SIAM J. Algebraic Discrete Methods, 8
(1987), pp. 33–58.



LAYOUT OF GRAPHS WITH BOUNDED TREE-WIDTH 577

[20] R. F. Cohen, P. Eades, T. Lin, and F. Ruskey, Three-dimensional graph drawing, Algorith-
mica, 17 (1996), pp. 199–208.

[21] I. F. Cruz and J. P. Twarog, 3D graph drawing with simulated annealing, in Proceedings of
the International Symposium on Graph Drawing (GD ’95), F. J. Brandenburg, ed., Lecture
Notes in Comput. Sci. 1027, Springer, New York, 1996, pp. 162–165.

[22] H. de Fraysseix, J. Pach, and R. Pollack, How to draw a planar graph on a grid, Combi-
natorica, 10 (1990), pp. 41–51.

[23] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph Drawing: Algorithms for
the Visualization of Graphs, Prentice-Hall, Englewood Cliffs, NJ, 1999.

[24] E. Di Giacomo, Drawing series-parallel graphs on restricted integer 3D grids, in Proceedings
of the 11th International Symposium on Graph Drawing (GD ’03), G. Liotta, ed., Lecture
Notes in Comput. Sci. 2912, Springer, New York, pp. 238–246.

[25] E. Di Giacomo, G. Liotta, and H. Meijer, 3D Straight-Line Drawings of k-Trees, Tech.
Report 2003-473, School of Computing, Queen’s University, Kingston, ON, Canada, 2003.

[26] E. Di Giacomo, G. Liotta, and S. Wismath, Drawing series-parallel graphs on a box, in
Proceedings of the 14th Canadian Conference on Computational Geometry (CCCG ’02),
The University of Lethbridge, Lethbridge, AB, Canada, 2002, pp. 149–153.

[27] E. Di Giacomo and H. Meijer, Track drawings of graphs with constant queue number, in
Proceedings of the 11th International Symposium on Graph Drawing (GD ’03), G. Liotta,
ed., Lecture Notes in Comput. Sci. 2912, Springer, New York, pp. 214–225.

[28] J. D́iaz, J. Petit, and M. Serna, A survey of graph layout problems, ACM Comput. Surveys,
34 (2002), pp. 313–356.

[29] R. P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. (2), 51
(1950), pp. 161–166.

[30] G. Ding and B. Oporowski, Some results on tree decomposition of graphs, J. Graph Theory,
20 (1995), pp. 481–499.

[31] G. Ding and B. Oporowski, On tree-partitions of graphs, Discrete Math., 149 (1996), pp. 45–
58.

[32] V. Dujmović, M. Fellows, M. Hallett, M. Kitching, G. Liotta, C. McCartin,

N. Nishimura, P. Ragde, F. Rosemand, M. Suderman, S. Whitesides, and D. R.

Wood, On the parameterized complexity of layered graph drawing, in Proceedings of the
5th Annual European Symposium on Algorithms (ESA ’01), F. Meyer auf der Heide, ed.,
Lecture Notes in Comput. Sci. 2161, Springer, New York, 2001, pp. 488–499.
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Abstract. Property testing is a relaxation of classical decision problems which aims at dis-
tinguishing between functions having a predetermined property and functions being far from any
function having the property. In this paper we present a novel framework for analyzing property
testing algorithms. Our framework is based on a connection of property testing and a new class of
problems which we call abstract combinatorial programs. We show that if the problem of testing a
property can be reduced to an abstract combinatorial program of small dimension, then the property
has an efficient tester.

We apply our framework to a variety of problems. We present efficient property testing algorithms
for geometric clustering problems, for the reversal distance problem, and for graph and hypergraph
coloring problems. We also prove that, informally, any hereditary graph property can be efficiently
tested if and only if it can be reduced to an abstract combinatorial program of small size.

Our framework allows us to analyze all our testers in a unified way, and the obtained complexity
bounds either match or improve the previously known bounds. Furthermore, even if the asymptotic
complexity of the testers is not improved, the obtained proofs are significantly simpler than the
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testable properties.
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1. Introduction. In this paper, we consider property testing problems, that is,
problems of determining whether a given function has a predetermined property or is
“far” from any function having the property. A notion of property testing was first
explicitly formulated by Rubinfeld and Sudan [69], where it was motivated mainly by
its connection to program checking. The notion of property testing arises naturally in
the context of program verification [15, 69], learning theory, and, in a more theoretical
setting, probabilistically checkable proofs [9, 70], and it has been further developed in
many follow-up works.

In [43], Goldreich, Goldwasser, and Ron initiated the study of property testing for
combinatorial objects. They investigated several classical properties of labeled graphs
and showed, for example, that k-colorability of graphs is testable in time independent
of the input size. In this and other more recent papers (see, e.g., the excellent surveys
in [34, 42, 68]), various algorithms have been proposed for testing graph and hyper-
graph properties [2, 4, 5, 7, 8, 23, 35, 43, 45, 46, 47, 56]; for testing geometric properties
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[3, 24, 27, 28]; for testing properties of metrics [62] and matrices [37]; for testing prop-
erties of regular languages and branching problems [6, 38, 61]; for testing monotonicity
[29, 36, 44], etc. (see, e.g., the result about quantum property testing [17]).

In all these algorithms the goal is to verify whether an input function (or an
object) has a predetermined property or is “far” from having the property. Since the
exact and deterministic solution to this problem may still be very hard to obtain, a
property testing algorithm (tester) may have a one-sided error,1 i.e., the tester must
accept every function that has the property and must reject with probability at least
2
3 every function that is “far” from having the property. To specify the notion of
being “far” from having a property, we define a distance measure between functions.
For a given parameter ε, we say a function is ε-far from having a property if it has
distance bigger than ε from any function having the property.

Property testing may be seen as some kind of approximation algorithm for decision
problems. Since we only want to “approximately decide” problems, it is often possible
to obtain algorithms that are much more efficient than their exact counterparts. Many
property testers have indeed a query complexity and running time that is sublinear
in the input size. For some problems it is even possible to obtain property testers
whose query complexity and running time is independent of the input size (see, e.g.,
the surveys [34, 42, 68]). This, in turn, resulted in the development of sublinear -time
approximation algorithms for many classical combinatorial problems, including dense
max-cut, clustering problems, and estimating the cost of the minimum spanning tree
(see, e.g., [19, 20, 25, 26, 33, 39, 43, 52, 53]).

Even if there are known many very efficient testing algorithms, most of them have
been analyzed using ad hoc techniques, designed specially for the problem at hand.
There is still insufficient methodology and few tools that could help in the analysis
of efficient testers for new problems. One such general approach has been developed
by Goldreich, Goldwasser, and Ron [43], where a close relationship between property
testing and PAC learning was investigated. In particular, it is shown that (in the
two-sided error model) testing is not harder than (proper) learning, and thus known
algorithms for learning can be applied in the context of property testing. Goldreich
et al. [43] (see also Theorem 4.3 in [34]) presented also a fairly general framework
(in the two-sided error model; see [47] for a characterization in a one-sided error
model) of studying testing of certain graph partitioning problems. They were able
to apply this framework to some graph problems, including graph coloring, clique,
cut, and bisection. Another general approach, which uses the Szemerédi regularity
lemma, has been proposed for studying graph problems and problems on matrices
[4, 28, 39, 40, 56]. Even if this method is very powerful and has been shown to be
very successful (for example, it allowed to prove that all first order graph properties
without a quantifier alternation of type ∀∃ have property testers whose complexity is
independent of the size of the input graph), there are still many limitations of this
approach. Furthermore, even though the bounds obtained by using the regularity
lemma lead to the complexity bounds that are often independent from the input
size, their dependence on the approximation parameter ε is often enormous (see the
“tower” bounds in [4] and superpolynomial lower bounds in [2]).

1.1. Framework for property testing. The main contribution of this paper
is a novel framework to analyze property testing algorithms. We consider one-sided

1In the literature a two-sided error model for property testing has also been investigated. In this
paper we focus on the one-sided error model only.
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error testers for properties of functions f from a finite domain D to range R. We
denote by f|X the function f restricted to X. We denote the tested property with Π.
We consider property testing algorithms that choose a random sample of the domain
S ⊆ D and then verify whether f agrees on S with some function g having property
Π. If this is the case, our sampling property tester accepts; otherwise, it rejects.�

�

�

�

Sampling property tester for property Π.

Sample a set S of s objects from D uniformly at random
if f|S = g|S for some function g with property Π then accept
else reject

Sampling property testers are simple to implement. The main difficulty with their
use is the estimation of the sample size—what is the right sample size s (the query
complexity of the tester) so that the algorithm is a correct property tester? It is easy
to see that if f has the required property, then the algorithm will always accept f .
Thus, the challenging part of the analysis is to estimate the value of s such that if f
is far from having the property, then f will be rejected with probability at least 2

3 .
Our framework is designed to help in the analysis needed in this step.

In order to define our framework, we first introduce a notion of an abstract com-
binatorial program (ACP). An ACP is a triplet that consists of a ground set, which is
typically a set of basic objects underlying the property testing problem; a set of bases,
where each basis is a configuration of a subset of the ground set; and a violation func-
tion that verifies the input constraints and determines whether an element violates a
given basis or not. We call a basis feasible if it is not violated by any object from the
ground set. We investigate a generic problem of testing feasibility of an ACP. That is,
for a given ACP, we want to distinguish whether the ACP has a feasible basis or any
basis is violated by at least an ε fraction of objects from the ground set. Our main
technical result is a theorem that gives a bound for the size of the random sample
used in the sampling property tester for feasibility of ACPs. We show that if a certain
monotonicity property is satisfied by an ACP, then the sample size s can be chosen
to be of size depending only on the maximum size of any basis in the ACP. Thus, the
sample size is independent of the size of the ground set.

The main idea behind introducing ACPs is that for many properties ACPs capture
the structure essential for testing the property. Therefore, in our framework we reduce
property testing of a given property Π to the problem of testing feasibility of related
ACPs. We show that property Π can be tested efficiently if there is a reduction to
ACPs that satisfies two properties:

• the reduction is distance preserving, that is, any function that is far away
from Π is mapped to an ACP in which each basis is violated by many objects
from the ground set; and

• the reduction is feasibility preserving, that is, if the function restricted to a
sample set S can be extended to a function with property Π, then there is a
feasible basis for the subset of the ground set corresponding to S in the ACP.

What are the advantages of our framework? We believe that our framework
can be used as one of the first general tools to estimate the sample size for many
tested properties. Our approach of using ACPs introduces/enforces a very important
structure in the analysis of the properties and gives rather clear guidelines on how to
perform the analysis. For many problems, our framework allows us to abstract the
most important features of the problem at hand and to focus only on the combinatorial
structures/properties of the problem. As a result, as we demonstrate in this paper,
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Table 1.1

Summary of specific results.

Problem Source Query complexity Comments

k-radius clustering Alon et al. [3] Õ(d · k/ε) in any Lp metric, p ≥ 1

in R
d this paper Õ(d · k/ε) in any Lp metric, p ≥ 1

k-diameter clustering Alon et al. [3] Ω((1/β)(d−1)/4) Ω(
√
n) for β = 0

in R
d Alon et al. [3] Õ(k2 · d · ε−1 · (2/β)2 d) in L2 metric

this paper Õ(k · ε−1 · (1 + 2/β)d) in any Lp metric, p ≥ 1

sorting by reversals this paper O(k/ε)

graph k-coloring Goldreich et al. [43] Õ(k4/ε6)

Alon and Krivelevich [7] Õ(k2/ε4)

this paper Õ(k2/ε4)

k-coloring of Czumaj and Sohler [23] (Õ(k2 �2/ε2))�

�-uniform Alon and Shapira [8] (Õ(k�−1/ε2))� claimed (Õ(k �/ε2))�

hypergraphs this paper (Õ(k �/ε2))�

the use of this method often allows us to obtain short and elegant proofs.
Finally, we would like to mention that the notion of ACPs and the approach to

correlate the algorithmic question of testing to the existence of a certain combinatorial
structure is similar to the framework of LP-type problems introduced in [60].

1.2. Applications of new framework: Specific results. We demonstrate
our framework on a variety of classical problems in computational geometry, graph
algorithms, and computational biology (see Table 1.1 for a summary). We begin with
two classical geometric clustering problems: radius clustering and diameter clustering.
Then we discuss a standard problem in computational biology of sorting by reversals;
we provide the first property tester for this problem. Next, we study labeled graph and
hypergraph problems (in the adjacency matrix model). We first apply our approach
to the graph and hypergraph k-coloring problems. Next, we consider testability of
hereditary graph properties (that is, graph properties that are closed under taking
induced subgraphs). We prove that any hereditary graph property can be tested with
query complexity independent of the size of the input graph if and only if it can be
reduced to an ACP in which each basis is of size independent of the size of the input
graph. This result shows that for this specific and very important class of properties
our framework captures the essence of property testing.

All our analyses of property testers listed above use our new framework of ACPs.
All the obtained property testers have a query complexity independent of the input
size. Furthermore, all our results either match or improve upon the best previously
known query complexity of the problems; our tester for sorting by reversals is the
first tester for this problem, and our result for hereditary graph properties is a new
general tool to analyze graph properties. We will discuss now our specific results in
more detail.

1.2.1. Clustering. We apply our framework to study two classical geometric
clustering problems in R

d: radius clustering [1, 3, 32], [51, p. 325] (also called the
Euclidean k-center problem) and diameter clustering [3], [10, problem ND54], [41,
problem MS9], [51, p. 326]. For a given point set X in R

d, the radius of X is the
radius of the smallest ball containing X, and the diameter of X is the maximum
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distance between any two points in X. In this paper, we consider the problem under
an arbitrary Lp metric, p ≥ 1. The (decision version of the) radius clustering problem
is to decide if an input point set P in R

d can be partitioned into k clusters such
that the radius of each cluster is bounded from above by a given real number r; the
(decision version of the) diameter clustering problem is to decide if an input point set
P in R

d can be partitioned into k clusters such that the diameter of each cluster is
bounded from above by a given real number b.

It is well known that both the radius and the diameter clustering problems are
NP-complete and that it is NP-hard to find a (1 + c)-approximation algorithm for
these two problems for certain positive constant c [32] (for recent positive approxima-
tion results, see, e.g., [11, 49]). In the context of property testing, both radius and
diameter clustering have been recently investigated by Alon et al. [3].

Radius clustering. For radius clustering under the L2 metric, Alon et al. designed
an ε-tester having a query complexity of Õ(d ·k/ε). Given a positive real r, this tester
accepts any point set P in R

d that can be partitioned into k clusters such that in each
cluster all points can be enclosed by a ball of radius r. If P cannot be partitioned in
that way even if any ε fraction of the points is removed from P , then the tester rejects
P with probability at least 2

3 . Alon et al. [3] pointed out that their analysis can be
extended to deal with the problem in arbitrary Lp metrics, p ≥ 1.

We apply our framework to design an ε-tester for the radius clustering problem
under any Lp metric, p ≥ 1. The query complexity of our tester is asymptotically
the same as the query complexity of the tester from [3]. The main advantage of our
approach is that it follows easily from our general framework (though the analysis
from [3] is also relatively simple). We discuss our tester in detail here mostly to
demonstrate our approach to a relatively simple but nontrivial problem.

Diameter clustering. For diameter clustering under the L2 metric, Alon et al. [3]

designed a so-called (ε, β)-tester having a query complexity of Õ(k2 ·d · ε−1 · (2/β)2 d).
Given b > 0, this tester accepts any point set P in R

d that can be partitioned into k
clusters such that the diameter of every cluster is upper bounded by b. If, however,
after removal of any ε fraction of the points in P the obtained set cannot be partitioned
into k clusters so that the diameter of each cluster is upper bounded by b ·(1+β), then
the tester rejects P with probability at least 2

3 . Alon et al. [3] also gave a lower bound
for the query complexity of (ε, β)-testers for diameter clustering, which is Ω(

√
n) for

β = 0 and Ω((1/β)(d−1)/4) for β > 0; these bounds hold for constant ε and k = 1.

Unlike in the radius clustering problem, Alon et al. [3] did not extend their results
with arbitrarily small positive β for testing diameter clustering to any other metric
than L2. For the values of β around 1, they discussed the diameter clustering problem
under an arbitrary metric (not necessarily Lp). On one hand, Alon et al. showed that

there is an (ε, 1)-tester having a query complexity of Õ(k2 log k/ε), and on the other
hand, they showed that for any β < 1 every (ε, β)-tester must have a query complexity
of Ω(

√
n/ε).

For diameter clustering under the L2 metric, we apply our framework to improve
upon the result of Alon et al. [3] and design an (ε, β)-tester having the query com-

plexity of Õ(k · ε−1 · (1 + 2/β)d). If β ≤ 1/d, then we can obtain even a better bound

for the query complexity of Õ(k · d · ε−1 · (2/β)d−1). And so, in the most classical
version of the diameter clustering problem on the plane, we improve the bound for
the query complexity of Alon et al. [3] from Õ(k2 (2/β)4/ε) to Õ(k/(β ε)). Besides
the improvement in the complexity of the property tester (quadratic with respect to
k and 1/β), our analysis is significantly simpler than that in [3]. Moreover, unlike the
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method of Alon et al., our approach can be easily extended to deal with the diameter
clustering problem under an arbitrary Lp metric, p ≥ 1.

1.2.2. Reversals distance. The study of genome comparisons and rearrange-
ments is one of the major topics in modern molecular biology. Mathematical analysis
of genome rearrangements was initiated by Sankoff, who introduced the sorting by
reversals problem (see, e.g., [63, Chapter 10]). In sorting by reversals, one asks to
compute the reversal distance of a given permutation, which is the minimum num-
ber of reversals (inversions of segments) needed to be performed to transform the
permutation into the identity permutation. Because of its applications in compu-
tational biology, sorting by reversals has been widely studied in recent years (see,
e.g., [12, 13, 18, 54, 63, 64]). For example, Pevzner and Waterman [64], in their col-
lection of open problems in computational biology, mentioned algorithmic issues of
the sorting by reversals problem as one of the most important problems in genome
rearrangements. It is known that sorting by reversals is NP-hard [18], that its op-
timization version is Max-SNP-hard [14], and that there exits a polynomial-time
1.375-approximation algorithm [13] (see also [12, 54]).

In this paper, we introduce the notion of property testing in the context of sorting
by reversals. We design a property testing algorithm that verifies whether a given
permutation has reversal distance at most k or is ε-far from having reversal distance
at most k. We apply our framework to show that this property tester has the query
complexity of Õ(k/ε).

1.2.3. Graphs and hypergraphs. Our framework can be also successfully ap-
plied to test graph and hypergraph properties in the adjacency matrix representation
model. We discuss here its applications to graph and hypergraph coloring and to
testing arbitrary hereditary properties.

Graph coloring. The graph k-coloring problem is a classical problem in algorith-
mic graph theory. It is known that for k ≥ 3 the problem of verifying whether an
input graph is k-colorable is NP-complete (see, e.g., [41, problem GT4] or [10, problem
GT5]). It is also well known that this problem is very hard to approximate, and so, for
example, it is NP-hard to 4-color 3-colorable graphs, and it is hard to color k-colorable
graphs with approximation within n1−ε, and even within n1−O(1/

√
log log n) [31]; here

and in what follows, n denotes the number of vertices in the graph. The best known
approximation bound for arbitrary k is of O(n (log log n)2/ log3 n) [10, problem GT5].

The problem of testing graph k-coloring has been first investigated in the seminal
work of Goldreich et al. [43]. We say a graph is ε-far from k-colorable if one has to
remove more than ε n2 of its edges to obtain a k-colorable graph. Goldreich et al.
[43] showed that it is possible to test with the query complexity of Õ(k4/ε6) whether
a given graph has a k-coloring or is ε-far from being k-colorable. This result has
been improved to the query complexity of Õ(k2/ε4) by Alon and Krivelevich [7]. In
the current paper, we present a simple analysis of a property tester based on our
framework that matches the best known bounds from Alon and Krivelevich [7].

Hypergraph coloring. The simple structure of our framework allows us to extend
relatively easily our analysis for graph coloring to obtain a very efficient property tester
for testing hypergraph coloring. Let us recall that a hypergraph is a pair H = (V,E)
with a finite vertex set V and the edge set E ⊆ 2V ; we let n denote the size of the vertex
set V . A hypergraph H is �-uniform if |e| = � for all e ∈ E; a 2-uniform hypergraph
is a graph. A k-coloring of a hypergraph H is an assignment χ : V → {1, . . . , k}.
A coloring is proper if no edge in E is monochromatic, that is, if for every edge
e ∈ E, there are v, u ∈ e with χ(v) 	= χ(u). If H has a proper k-coloring, then H
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is k-colorable. The k-coloring problem for hypergraphs is to decide whether a given
hypergraph is k-colorable. We say an �-uniform hypergraph is ε-far from k-colorable
if one has to remove more than ε n� of its edges to obtain a k-colorable hypergraph.

Hypergraph coloring is a well-studied problem in the literature of discrete math-
ematics, combinatorics, and computer science. In contrast to graphs, where one can
decide in linear time if a graph is 2-colorable (or, equivalently, bipartite), testing
whether a given hypergraph is 2-colorable is NP-complete even for 3-uniform hyper-
graphs [59]. In [57], it is shown that unless NP ⊆ ZPP, for any fixed � ≥ 3, it
is impossible to approximate in polynomial time the chromatic number of �-uniform
hypergraphs within a factor n1−ε for any constant ε > 0. See also [48, 55] for further
inapproximability results. The property of hypergraph 2-colorability has also been
extensively studied in combinatorics (see, e.g., [21, 22, 30, 66]), and, for example, the
study of this problem led to the discovery of the celebrated Lovász Local lemma [30].

In the context of property testing, Czumaj and Sohler [23] were the first to design
efficient property testers for hypergraph coloring. They presented an ε-tester for k-
coloring �-uniform hypergraphs with the query complexity of (O(k2 �2 log k/ε2))�.
Alon and Shapira [8] applied a novel framework based on testing satisfiability of
boolean formulas to design property testers for coloring uniform hypergraphs. The
complexity of that tester is O((k�−1 log k/ε2)�), which is worse than that of Czumaj
and Sohler. However, Alon and Shapira claimed they could modify the proof due
to Czumaj and Sohler [23] to obtain an improvement in the query complexity to
O((� k log k/ε2)�). In this paper, we show how our framework can be applied to test
hypergraph coloring. The obtained property tester has asymptotically the same query
complexity as the one claimed by Alon and Shapira [8] (both of these results have
been obtained independently).

The generic results for testing hypergraph properties presented in [5] and [56]
imply also new property testing algorithms for k-coloring �-uniform hypergraphs that
achieve query complexity independent of the hypergraph size (that is, their query
complexity is a function of k, �, and ε only). However, in these papers the dependence
on k, �, and ε is significantly higher than in our paper.

Hereditary graph properties. Many interesting graph properties are hereditary ;
i.e., they are closed under taking induced graphs. And so, for example, being acyclic,
stable (independent set), planar, perfect, bipartite, k-colorable, chordal, perfect, and
having no induced predefined subgraph K are all hereditary graph properties.

Hereditary graph properties have been extensively investigated in combinatorics,
graph theory (see, e.g., [16] for a recent survey), and theoretical computer science (see,
e.g., the classical hardness result in [58]). The class of hereditary graph properties
contains also trivially all (decreasing) monotone graph properties (these are properties
closed under edge removal). Monotone graph properties have been studied extensively
in the literature, most notably in the context of the celebrated Aanderaa–Rosenberg
conjecture (proven in [67]).

There are known hereditary graph properties (e.g., the graph k-coloring discussed
above) being testable with the query complexity independent of the input graph
size; such properties are often called testable. On the other hand, Goldreich and
Trevisan [47] prove that there exist monotone (and thus hereditary) graph properties
for which testing requires one to examine a constant fraction of the entries in the input
graph adjacency matrix. It is a major problem in property testing to characterize
graph properties, and in particular hereditary graph properties, that are testable. In
this paper we prove that any hereditary graph property is testable with the query
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complexity independent of the input graph size if and only if it can be reduced to an
ACP of constant size. This result implies that for hereditary graph properties our
framework captures the entire essential structure of the property.

1.3. Organization. In section 2, we describe formally the property testing prob-
lem and then, in section 3, we introduce the concept of abstract combinatorial pro-
grams. In section 4, we discuss a (simple) version of our framework that reduces
property testing to testing ACPs. In section 5, we apply our framework of testing
ACPs to testing two classical geometric clustering problems: radius clustering and
diameter clustering. Next, in section 6, we apply this framework to test the reversal
distances of permutations. In section 7, we generalize our framework presented in sec-
tion 4 and give a full description of our framework. In section 8, we apply this general
framework to design a property tester for k-coloring of graphs. In section 9, we extend
our testing analysis for graph coloring to design a property tester for k-coloring of
uniform hypergraphs. Then, in section 10, we give a new characterization of hereditary
graph properties and show that, essentially, any such property is efficiently testable
if and only if it is efficiently testable in our framework. Finally, in section 11, we
summarize the results obtained in the paper and provide final conclusions.

2. Preliminaries. We begin with some basic notation and definitions. We use
the Õ-notation to hide polylogarithmic factors; i.e., we have Õ(n) = n · logO(1) n.
We write [n] = {1, . . . , n} to denote the set of integer numbers between 1 and n.
Throughout this paper, we let D denote a finite set called domain and R a (possibly
infinite) set called range. Next, let F denote a set of functions from D to R. For a
subset S ⊆ D and a function f ∈ F let f|S denote the restriction of f to S. That is,
f|S : S → D with f|S(x) = f(x) for all x ∈ S. Now we define a property of F as a
set of functions from F .

Definition 2.1. A set Π ⊆ F is called a property.
As already mentioned in the introduction we also need a distance measure between

functions in F to define a property testing problem. In general, such a distance
measure can be an arbitrary function ς : F × F → [0, 1].

Definition 2.2. Given a distance measure ς between functions in F and a real
number ε, 0 ≤ ε < 1, we say a function f ∈ F is ε-far from (having a property) Π if
ς(f, g) > ε for every function g ∈ Π.

Typically, we define the distance between two functions f, g ∈ F as the fraction of
domain elements on which the two functions differ (see, for example, [43]). Therefore,
we denote this distance measure as the standard distance measure.

Definition 2.3. Given two functions f, g ∈ F we define the standard distance
measure ς1 for functions in F as

ς1(f, g) =
|{x ∈ D : f(x) 	= g(x)}|

|D| .

The goal of property testing is to design efficient property testers. A property
tester for Π is an algorithm that takes as input a distance parameter ε and a (possibly
implicit) description of D. The property tester has oracle access to the input function
f (for each x ∈ D it may ask queries of the form, “What is the value of f(x)?”). A
property tester must

• accept every function f ∈ Π; and
• reject every function f that is ε-far from Π with probability at least 2

3 .2

2We consider a one-sided error model, though in the literature a two-sided error model has also
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Notice that if f /∈ Π and f is not ε-far from Π, then the outcome of the algorithm can
go either way.

Complexity of property testers. There are two types of possible complexity mea-
sures for property testers: the query complexity and the running time. In this paper
we focus our attention on the query complexity, which measures the number of queries
asked by a property testing algorithm.

Definition 2.4. The number of queries to the oracle is the query complexity of
the property tester.

3. Abstract combinatorial programs. In this section we introduce abstract
combinatorial programs (ACPs). An ACP is a combinatorial structure defined over a
ground set of atom items. Some subsets of the ground set can describe possible “basic”
configurations, and they are called the bases of the abstract combinatorial program.
Furthermore, there is a relationship between atom items and bases: Each atom item
is either consistent with a given basis or violates it; this relation is described by a
violation function.

ACPs can be used to highlight combinatorial features of property testing prob-
lems. In typical applications the ground set depends on the problem under consider-
ation and corresponds in a natural way to the basic items of the considered problem.
For example, when we want to apply ACPs to graph problems, then the ground set
might be the set of vertices of the graph, and when we consider properties of point
sets, the ground set might be the set of points.

The set of bases describes possible “basic” configurations of the corresponding
problem. If we consider a graph coloring problem, then a basis might correspond to a
subset of vertices W together with an associated coloring of W . For technical reasons
we define every basis as a pair (W, �), where W is a subset of the ground set and � is
an index describing a configuration of W (for example, in the graph coloring example
above, it might encode a coloring of vertices in W ).

The violation function describes for each basis b and each atom item x whether
x is consistent with b or not. If x is not consistent with b, then we say x violates b. If
every atom item is consistent with a basis, then we call this basis feasible. Normally,
the violation function depends on the input instance. For the graph coloring example
above one could define the violation function such that a vertex v violates a basis
(colored vertex set W ) if and only if in the input graph the k-coloring of W cannot
be extended to a proper k-coloring of W ∪ {v}.

Formally, we define an ACP in the following way.
Definition 3.1. An ACP is a triple (C,B, �), where
• C is a finite set called ground set;
• B ⊆ {(W, �) : W ⊆ C, � ∈ N} is a set of bases; and
• � : B → 2C is a violation function.

For each basis b ∈ B the set �(b) is the set of atom items violating b. A basis b is
feasible if �(b) = ∅. An ACP is feasible if it has a feasible basis.

Before we introduce some further definitions we give an example of how problem
instances can be formulated as ACPs.

Example 1. We consider the problem of testing if a function f : F → F over
a finite field F is a polynomial of degree at most d. We use the standard distance
measure: a function is ε-far from being a polynomial of degree at most d if one has

been considered. In the two-sided error model the goal is to distinguish with probability at least 2
3

between the case f ∈ Π and the case of f being ε-far from Π.
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to change more than ε · |F| function values to obtain a polynomial of degree no more
than d.

In many cases (as in this example) one can formulate a problem instance as an
ACP by using the domain of the tested functions as the ground set of the ACP. Con-
sequently, in this example we have C = F. Bases typically correspond to “solutions”
of the problem under consideration. In our example a basis should therefore corre-
spond to a polynomial of degree at most d. By the fundamental theorem of algebra
which states that a degree d polynomial is uniquely defined by d + 1 function values,
we define the bases to be the set of (d + 1)-tuples from C. Thus, the set of bases is
defined as

B = {(W, 1) : W ∈ F
d+1} .

We associate with each basis (W, 1) the unique polynomial p : F → F with p|W = f|W .
Then we define the violation function in a straightforward way: A basis b = (W, 1) is
violated by an atom item c ∈ C if f(c) 	= pb(c), where pb is the polynomial associated
with b. Thus we get

�(b) = {c ∈ C : f(c) 	= pb(c)} .

In this example we did not use the second parameter of the bases. This parameter
comes into play when a single set of input constraints might correspond to multiple
solutions of the problem. One such example can be found in section 5, where we
consider clustering problems.

It is easy to see that the ACP in our example is feasible if and only if the corre-
sponding function is a polynomial of degree at most d. Furthermore, if f is ε-far from
being a polynomial of degree at most d, then every basis in the ACP is violated by
more than ε · |F| atom items.

We are now interested in the problem of testing the feasibility of ACPs. Our
property testing algorithm will explore properties of ACPs for subsets of the ground
set, and for this we need further definitions.

Definition 3.2 (ACP dimension and width). Let P be an ACP. The dimension
of P, dim(P), is defined as max{|W | : (W, �) ∈ B}. The width of P, width(P), is
defined as max{� : (W, �) ∈ B}.

Definition 3.3 (self-feasible bases). Let P = (C,B, �) be an ACP. We say a
basis b = (W, �) ∈ B is covered by a subset C∗ ⊆ C if W ⊆ C∗. We say that a basis
b is feasible for a subset C∗ ⊆ C if no c ∈ C∗ violates b. We say a subset C∗ ⊆ C
contains a self-feasible basis if there is a basis b that is covered by C∗ and that is
feasible for C∗.

In the next section, we design a property tester for feasibility of ACPs. We assume
that the algorithm can determine for a set S ⊆ C if S has a self-feasible basis or not.
The size of the set S should be as small as possible (the size of this set could be seen
as the query complexity of the algorithm). To ensure that our property tester has a
one-sided error, we consider only monotone ACPs.

Definition 3.4 (monotonicity). Let P = (C,B, �) be an ACP with dimension
dim(P). P is called monotone if it is either not feasible or if (it is feasible and) every
subset S ⊆ C with |S| ≥ dim(P) contains a self-feasible basis.

3.1. Testing ACPs. In this section we design a property tester for monotone
ACPs. We first have to define when an ACP is far from feasible. We do this directly
without specifying a distance measure between ACPs.
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Definition 3.5. An ACP is ε-far from feasible if every basis is violated by more
than ε · |C| objects from the ground set C.

A property tester for ACPs is an algorithm that (i) accepts every feasible ACP
and (ii) rejects with probability at least 2

3 every ACP that is ε-far from feasible. The
following is our main theorem, which establishes the quality of a simple property
tester for ACPs.

Theorem 3.6 (testing ACPs). Let P = (C,B, �) be an ACP with dimension at
most δ and width at most 	. Then there exists s with

s = Θ(ε−1 · (δ · ln(δ/ε) + ln 	)) ,

such that the algorithm�

�

�

�

ACP-tester(P, ε).
Sample a set S of s objects from C uniformly at random
if S contains a self-feasible basis then accept P
else reject P

1. accepts P if P is monotone and feasible, and
2. rejects P with probability at least 2/3 if P is ε-far from feasible.

Proof. Let P = (C,B, �) be an ACP that is ε-far from feasible. Let P have
dimension at most δ and width at most 	. For a basis b = (W, �), let Eb be the
random event (with respect to the random choice of S) that W ⊆ S and that none of
the elements from �(b) is in S. Now, in order to prove the theorem it is sufficient to
show that with the probability larger than or equal to 2

3 for none of b ∈ B the event
Eb holds.

For every r, 0 ≤ r ≤ δ, let ∆r be the set of all b = (W, �) ∈ B with |W | = r. Let
us fix an arbitrary b ∈ ∆r. Then we have

Pr[Eb] =

(
n−r−|�(b)|

s−r

)
(
n
s

) ≤
(
(1−ε)n−r

s−r

)
(
n
s

) .

Since P has dimension at most δ and width at most 	, we have |∆r| ≤ 	 ·
(
n
r

)
for every

r ≥ 0. Furthermore, we have |∆r| = 0 for all r > δ. Therefore, by the union bound
we obtain

Pr[∃b ∈ B : Eb] ≤
∑
b∈B

Pr[Eb] =

δ∑
r=0

∑
b∈∆r

Pr[Eb] ≤ 	 ·
δ∑

r=0

(
n

r

)
·
(
(1−ε)n−r

s−r

)
(
n
s

)
= 	 ·

δ∑
r=0

(
s

r

)
· ((1 − ε)n− r) · · · ((1 − ε)n− s + 1)

(n− r) · · · (n− s + 1)

≤ 	 ·
δ∑

r=0

sr · (1 − ε)s−r ≤ 	 ·
δ∑

r=0

sr · e−ε(s−r)

≤ 	 · δ · sδ · e−ε(s−δ) ≤ 	 · δ · sδ · e−ε(s−s/2) ,

where we assume in the last inequality that s ≥ 2δ. Then we set s′ = (δ ε−1 ln(3 δ 	))3

and

s = 2 ε−1 (δ ln s′ + ln(3 δ 	)) .
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With these choices, we have

s = 2 ε−1 · (δ ln s′ + ln(3 δ 	)) ≤ 2 ε−1 δ ln s′ ln(3 δ 	)

≤ 2 (ε−1 δ ln(3 δ 	))2 ≤ (δ ε−1 ln(3 δ 	))3 = s′ .

We conclude that

	 · δ · sδ · e−ε(s−s/2) ≤ 	 · δ · sδ · (s′)−δ · (3δ · 	)−1 ≤ 1/3 .

Hence, with probability at least 2
3 all b = (W, �) ∈ B with W ⊆ S are violated by

S, which completes the proof of the first part of the theorem. If P is monotone and
feasible, then every set X ⊆ C of size at least dim(P) contains a self-feasible basis.
Therefore, S must contain a self-feasible basis because s ≥ dim(P). Hence the tester
accepts the input. It remains to show that

s = Θ(ε−1 · (δ · ln(δ/ε) + ln 	)) .

We have

s = 2 ε−1 (δ ln s′ + ln(3 δ 	)) = Θ(ε−1 (δ (ln(δ ε−1) + ln ln(δ 	)) + ln(δ 	)))

= Θ(ε−1 (δ (ln(δ ε−1) + ln ln 	) + ln 	)) = Θ(ε−1 (δ ln(δ/ε) + ln 	))

by the observation that for δ ≥
√

ln 	 we have δ ln ln 	 = O(δ ln(δ/ε)) and for δ <
√

ln 	
we have δ ln ln 	 = o(ln 	).

Corollary 3.7. Algorithm ACP-tester is a property tester for monotone
ACPs.

Proof. The proof follows immediately from Theorem 3.6.

4. Property testing vs. testing ACPs. Our motivation to introduce ACPs
was to study their relation to property testing problems. We now prove a theorem
that shows how we can use ACPs to prove for certain properties that there is an
efficient property tester. Roughly speaking, a property can be tested with small
query complexity if for every problem instance there is an equivalent (in the sense of
property testing) ACP of small dimension and width.

We now present a first (simple) variant of Theorem 3.6. Then we give some
examples and discuss in detail how our theorem can be used to prove the existence
of a property tester with small query complexity. In most examples the obtained
algorithm also has a small running time.

Our approach of using the framework of ACPs to study property testers of func-
tions f ∈ F is to reduce testing of f to testing certain ACPs. In this section we
consider only ACPs whose ground set C is the domain D of the function f . Later, in
section 7, we show how to deal with other, more general cases.

Theorem 4.1. Let F be a set of functions from a finite set D to a set R and let
Π be a property of F . Let 0 < ε < 1 and let δ, 	 ∈ N. If for every f ∈ F there exists
an ACP Pf with dim(Pf ) ≤ δ and width(Pf ) ≤ 	 such that

• (distance preserving) if f is ε-far from Π, then Pf is ε-far from feasible; and
• (feasibility preserving) for every X ⊆ C with |X| ≥ δ: If there exists g ∈ Π

with f|X = g|X , then X contains a self-feasible basis;
then there exists s = Θ(ε−1 · (δ · ln(δ/ε) + ln 	)) such that the following algorithm is a
property tester for property Π:
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�

�

�

�

Tester(f, ε).
Sample a set S of s elements in D uniformly at random
if f|S = g|S for some g ∈ Π then accept f
else reject f

Proof. In order to show that Tester(f, ε) is a property tester for Π, we have
to prove that every function having property Π is accepted by the tester, and every
function that is ε-far from having property Π is rejected with probability at least 2

3 .
If f ∈ Π, then for every X ⊆ C we have f|X = g|X with g = f ∈ Π. This immediately
implies that every f ∈ Π is accepted by Tester(f, ε). Therefore, it remains to prove
that if f is ε-far from Π, then the algorithm rejects the input with probability greater
than or equal to 2

3 . We prove this by relating ACP-tester(P, ε) to Tester(f, ε)
and by applying Theorem 3.6.

By the distance preserving property, if f is ε-far from Π, then Pf is ε-far from
feasible. Furthermore, by Theorem 3.6, if Pf is ε-far from feasible, then ACP-

tester(Pf , ε) rejects Pf with probability greater than or equal to 2
3 . Pf is rejected

by ACP-Tester(Pf , ε) only if the chosen sample set S contains no self-feasible basis.
But the feasibility preserving property implies that if there is g ∈ Π that agrees with
f on the sample set, then every set X ⊆ C with |X| ≥ δ ≥ dim(Pf ) contains a self-
feasible basis. By the fact that |S| ≥ δ we can conclude that S contains a self-feasible
basis if there exists a g ∈ Π that agrees with f on the sample set S. Therefore, we
can conclude that if f is ε-far from Π, then with probability at least 2

3 there is no
such g ∈ Π with f|S = g|S . Hence, f is rejected by Tester(f, ε) with probability at

least 2
3 . This implies that Tester(f, ε) is a property tester for Π.

5. Clustering problems. In this section, we apply our framework of testing
ACPs to test two classical clustering problems. Clustering deals with the problem of
partitioning a set of items into different groups called clusters such that a given op-
timization function is minimized. If we consider the corresponding decision problem,
we want to know if a clustering with a given optimization value exists.

We consider two clustering problems of point sets in the R
d: the radius k-

clustering and the diameter k-clustering. Both problems have been analyzed in the
context of property testing, and it is known that they possess efficient property testers
[3]. Our goal is to show that these two problems can also be analyzed using our frame-
work; in the case of the diameter clustering problem we also significantly improve the
query complexity.

5.1. Radius clustering. The decision version of the radius k-clustering prob-
lem in the Euclidean space R

d [3, 32], [51, p. 325] (sometimes also called the Euclidean
k-center problem) consists of verifying whether a given set P of n points in R

d can
be partitioned into k sets such that the points in each set are contained in a unit
ball. If such a partition exists, we say that P is k-clusterable. We assume that P
is in a general position and that P is represented as a function f : [n] → R

d, where
f(i) describes the location of the ith input point. Let F denote the set of functions
representing point sets of size n and let Π ⊆ F denote the set of functions representing
point sets that are k-clusterable. The distance between two point sets is given by the
standard distance measure between functions (see Definition 2.3), which is consistent
with the following definition.

Definition 5.1. A set P of n points in R
d is ε-far from being k-clusterable if

more than ε n points must be deleted from P to obtain a point set that is k-clusterable.
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In order to use our framework from Theorem 4.1 we have to describe for every
input point set P in R

d an ACP P = (C,B, �) with C = [n] that satisfies the two
conditions of the theorem. Let us first observe that the radius k-clustering property is
a combinatorial property, that is, the identifiers of the points in the representation are
irrelevant for the property. Thus, we can identify the ground set C of the ACP with
the point set P . Hence, a basis of such ACP consists of a small set of points from P
(formally, of their corresponding indices) and some additional information (formally
encoded as an integer).

We define the bases to specify all possible representations of feasible k-clusterings.
For simplicity, let us first consider the radius 1-clustering problem. If the point set P
is 1-clusterable, then it is contained in some unit ball. Conversely, we can implicitly
describe every “possible solution” of the problem by the position of such a unit ball.
In a similar way, we can consider every ball with radius at most 1 as a possible
solution. Our goal is to describe a subset of these balls implicitly in terms of atom
items (points). If P is 1-clusterable, then this subset must contain a ball that contains
every point in P .

It is known that every finite point set X is contained in a unique (closed) ball of
smallest radius (see, e.g., [72]). We denote this ball by sball(X). With every subset
W ⊆ P we associate its smallest enclosing ball sball(W ). If the radius of sball(W ) is
at most 1, then this ball can be interpreted as a “possible solution” of the problem
and W (formally, the pair (W, 1)) as a basis. So we could say that for each W ⊆ P
the pair (W, 1) is a basis if and only if the radius of sball(W ) is at most 1. But to
obtain a query complexity independent of n we need to reduce the number of atoms
involved in a basis. To do this, we use the fact that there is always a subset W ⊆ P
of cardinality at most d+ 1 such that sball(W ) = sball(P ) [72]. This motivates us to
define (W, 1) as a basis if the following two conditions are satisfied:

• |W | ≤ d + 1; and
• the radius of sball(W ) is at most 1.

We can now define a natural violation function in the following way: A basis (W, 1)
is violated by all points that are not contained in sball(W ). Using this definition we
notice two important properties of our construction: (a) if P is 1-clusterable, then P
has a feasible basis, and (b) if P is ε-far from 1-clusterable, then every basis in P is
violated by more than ε n points.

We can easily extend this definition of a basis to k clusters: A basis for the
radius k-clustering problem consists of k bases for single clusters. Formally, a basis
consists of at most k (d+ 1) points from P and an integer encoding a partition of the
k (d + 1) points into k sets (of size at most d + 1). The violation function is defined
in a straightforward way: a point violates a basis if it is not contained in any of the
smallest enclosing balls defined by the bases.

Bases for radius clustering. We define the set of bases B = {(W, �) : W ⊆
[n], |W | ≤ (d + 1) k, 1 ≤ � ≤ k(d+1) k}, where the pair (W, �) ∈ B should be inter-
preted as follows:

• W is the set of points defining k smallest enclosing balls (clusters); and
• � is represented as a vector 〈ν1, . . . , ν(d+1) k〉 of length (d + 1) k, where for

1 ≤ i ≤ k, the ith point in W is one of the points defining the smallest
enclosing ball containing cluster number νi ∈ [k].

We say a basis b ∈ B is valid if, for every set W ′ of points defining one of the k
smallest enclosing balls in b, the radius of sball(W ′) is at most 1.
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It is easy to see that with such a definition of the bases, the ACP designed for
the radius clustering problem has dim(P) = (d + 1) k and width(P) = k(d+1) k.

Violation function for radius clustering. We say p ∈ C = [n] violates a basis b ∈ B
if b is not valid or the point p (located at f(p)) is not contained in any of the k balls
defined by b. (Notice that all nonvalid bases are violated by all ground set elements.)

Once we have defined formally the ACP P for every instance of the radius clus-
tering problem, we have to verify the prerequisites of Theorem 4.1: the distance
preserving and the feasibility preserving properties.

Distance preserving property. If P is ε-far from being k-clusterable, then for every
set of k unit balls in R

d there is always a set of more than ε n points in P that are not
contained in any of the balls. By definition every basis corresponds to such a set of
unit balls and the violation function is defined according to these balls. Thus every
basis b ∈ B must be violated by more than ε n elements from C. This implies the
distance preserving property.

Feasibility preserving property. Every set S, |S| ≥ δ, that is k-clusterable is con-
tained in k unit balls. Thus we can partition S into k clusters S1, . . . , Sk, each
of which is contained in a unit ball. Furthermore, there exist sets Wi ⊆ Si with
sball(Wi) = sball(Si) and |Wi| ≤ d + 1. The sets Wi define a basis in B which is
covered by S and is feasible for S. This implies the feasibility preserving property.

Lp metrics. We remark that the proof of [72] can be generalized to any Lp metric.
Hence, our analysis holds for any Lp metric as well.

To summarize our discussion in this section, using our framework we can apply
Theorem 4.1 to obtain a property tester for the radius clustering problem with a query
complexity of Õ(d k/ε).

Theorem 5.2. There is a property tester for the radius clustering problem (in
any Lp metric) with query complexity of

O(d k ε−1 ln(d k/ε)) = Õ(d k/ε) .

5.2. Diameter clustering. The decision version of the diameter k-clustering
problem (see [3], [10, problem ND54], [41, problem MS9], [51, p. 326]) is defined as
follows: Given a point set P in R

d and a positive integer k, can P be partitioned
into k disjoint sets (clusters) C1, . . . , Ck such that for every i, 1 ≤ i ≤ k, and every
x, y ∈ Ci it holds that dist(x, y) ≤ 1? If such a partition exists, we say that P is
k-clusterable. As before, we assume in the property testing setting that the point set
is represented by a function f : [n] → R

d.
Unlike for the radius clustering problem (and for all other problems discussed

in this paper) we do not use the standard distance measure. This is because under
the standard distance measure every property tester must have a query complexity
of Ω(

√
n) [3]. Therefore, we use instead the bicriteria distance measure that was

proposed first in [3] and which is defined in the following way.
Definition 5.3 (see [3]). Let P be a point set in R

d and k a positive integer.
We say P is (ε, β)-far from being k-clusterable if, for every partition of P into sets
C0, C1, . . . , Ck satisfying dist(x, y) ≤ 1 + β for all 1 ≤ i ≤ k and x, y ∈ Ci, it holds
that C0 > ε · |P |.

It is known that under this distance measure there is a property tester with query
complexity Õ(k2/ε ·(2/β)2 d) for the diameter k-clustering problem [3]. In this section
we improve this result using our framework and decrease the query complexity to
Õ(k/ε · (2/β)d). Our proof uses combinatorial arguments similar to those that appear
implicitly in the proof presented in [3], but the use of our framework allows us to
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obtain a significant improvement in the complexity. Our goal is to design an efficient
property tester that for given k, ε and β > 0, (i) accepts every point set that is
k-clusterable and (ii) rejects with probability at least 2

3 every input that is (ε, β)-far
from being k-clusterable. As in our analysis for the radius clustering problem, we
denote by F all functions representing point sets of size n and by Π ⊆ F all functions
representing point sets that are k-clusterable.

We begin our discussion with the construction of bases for a single cluster. We
use the following notation: A cluster is a nonempty set of points C in R

d with
dist(x, y) ≤ 1 for every x, y ∈ C.

Definition 5.4. Let C be a cluster. The kernel kern(C) of C is defined as the
intersection of unit balls with centers at the points in C.

We use the following simple properties of a kernel.

Claim 5.5. Let C be a cluster. Then we have the following:

1. C ⊆ kern(C);
2. there exists a unit ball containing all the points in C; and
3. if p ∈ kern(C), then dist(x, y) ≤ 1 for every x, y ∈ C ∪ {p}.

Proof. (1) Since dist(x, y) ≤ 1 for every x, y ∈ C, each point x ∈ C is contained
in every unit ball with the center at any other point y ∈ C, and hence x is contained
in kern(C). (2) Since C 	= ∅, from the previous property we get kern(C) 	= ∅. Let us
pick any point x ∈ kern(C). Since x is contained in all unit balls with centers at the
points in C, it is at the distance at most 1 from every point in C. Therefore all points
in C are contained in the unit ball with the center at x. (3) If p ∈ kern(C), then p
is contained in all unit balls with centers at the points in C, and thus its distance to
every point in X is at most 1.

Now, in order to use our framework, from Theorem 4.1 we describe for every
input set P of n points in R

d an ACP P = (C,B, �) with C = [n] that satisfies the
preconditions of the theorem. Following the arguments from the radius clustering
case we identify the ground set C of the ACP with the input point set P . We first
consider the case k = 1.

We start by making an observation about the kernel of a cluster C: for any point
p, C ∪ {p} is a cluster if and only if p is in the kernel of C. Thus we would like
a good basis to contain exactly those elements from C that define the “boundary”
of kern(C). Unfortunately, it might be that almost every element of C defines the
boundary of C, in which case the bases would be too large. Therefore, instead we find
a small set of points W in C that approximates the kernel of C. We choose a basis
for a cluster C to be any maximal subset W ⊆ C with the property that all points
in W have a mutual pairwise distance of at least β. In this way, we ensure that (a)
the kernel is well approximated and (b) the number of points defining the kernel of a
cluster is small.

Our first result shows that every basis for a single cluster is defined by at most
(1 + 2

β )d points.

Lemma 5.6. Let C be a cluster and let W be a subset of C such that for every
p, q ∈ W we have dist(p, q) ≥ β > 0. Then |W | ≤ (1 + 2/β)d.

Proof. Let C and W be as stated in the lemma. If we draw balls of radius β/2
centered at every point in W , then all these balls are pairwise disjoint. By property
2 in Claim 5.5, all points in W are contained in some unit ball because W ⊆ C and
C is a cluster. Therefore, if we draw balls of radius β/2 centered at every point in
W , then all these balls are contained in a ball of radius 1 + β/2. Since all these small
balls are disjoint, we have the following upper bound for the size of W , where V ol()
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denotes the volume of the object:

|W | · V ol(ball of radius β/2) ≤ V ol(ball of radius 1 + β/2) .

Since the volume of a d-dimensional ball of radius r is equal to3 rd·πd/2

Γ(1+d/2) , we obtain
an upper bound of (1 + (2/β))d for the size of W .

To formalize our definition of bases we need the following.
Definition 5.7. Let P be a point set in R

d, and let β be a positive real. Let C
be a cluster. We say a point p ∈ P is β-covered by C if p ∈ kern(C), and there is
q ∈ C such that dist(p, q) ≤ β.

We say a pair b = (W, �) is a basis for the diameter 1-clustering problem if W is
a subset of P of size at most (1 + 2

β )d and � = 1. We say a basis (W, �) is valid if for

all p, q ∈ W we have β < dist(p, q) ≤ 1. It remains to define the violation function. If
a basis is not valid, it is violated by every point in P . If a basis is valid, we have two
different types of violation: First, a point p violates a basis b = (W, 1) if p /∈ kern(W ).
This is the straightforward type of violation. If a point is not in the kernel of W ,
then it cannot belong to the same cluster. The second type of violation is different.
A point p ∈ kern(W ) violates b if p is not β-covered by W . The intuition behind this
definition is such that a point violates a basis if it is consistent with the current basis
of the cluster, but it changes the kernel significantly, and hence it is no longer a good
implicit description of the solution of the clustering problem.

Bases for diameter clustering. We can extend our definition of bases for the
diameter 1-clustering problem to arbitrary k in the following way: A basis for the
diameter k-clustering problem is an encoding of k sets W1, . . . ,Wk ⊆ P each of size
at most (1 + 2

β )d. A basis is valid if for every p, q ∈ Wi, 1 ≤ i ≤ k, it holds that

β < dist(p, q) ≤ 1. Formally, a basis is a set W =
⋃

i Wi with an integer encoding the
partition of W in the sets Wi.

Lemma 5.8. For any point set in R
d, the ACP P for the diameter k-clustering

problem has dimension at most k · (1 + 2/β)d and width at most kk·(1+2/β)d .
Proof. The dimension of the ACP follows immediately from the definition of the

bases. The width follows from the fact that every point of a basis can belong to one
of k sets; that is, we have (at most) k choices for each point of the basis.

Violation function for diameter clustering. A basis b that is an encoding of the
sets W1, . . . ,Wk is violated by a point p ∈ P if b is not valid or if p violates every Wi

(seen as a basis for the 1-clustering problem), 1 ≤ i ≤ k.

Feasibility preserving property. In order to show the feasibility preserving prop-
erty we have to show that every k-clusterable set S ⊆ P of size at least δ =
k · (1 + 2/β)d ≥ dim(P) has a self-feasible basis. If S is k-clusterable, then there
exists a partition of S into k clusters C1, . . . , Ck. Since for every Wi ⊆ Ci it holds
that kern(Ci) ⊆ kern(Wi), we know that there exist sets Wi with the property that
for each p, q ∈ Wi we have β < dist(p, q) ≤ 1 and for each p ∈ Ci and q ∈ Wi we have
dist(p, q) ≤ β. By Lemma 5.6 and the bound of the size of the bases, the feasibility
preserving property follows.

Distance preserving property. We prove the distance preserving property by con-
tradiction. Let us assume P is (ε, β)-far from being k-clusterable, and suppose there
is a basis b encoding the sets W1, . . . ,Wk that is violated by less than ε n points. We

3Here, Γ() is Euler’s Gamma (factorial) function, defined as Γ(x) =
∫ ∞
0 tx−1 e−t dt for all positive

x. It is well known that Γ(x + 1) = xΓ(x) and that for integer x ≥ 0 we have Γ(x + 1) = x! and
Γ(x + 1

2
)! =

√
π · ((2x)!)/(x! · 4x).
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delete all points in P that violate b and let P ∗ be the remaining point set. Since all
the points in P ∗ are β-covered by some Wi, for each point p ∈ P ∗ there is a Wi with
p ∈ kern(Wi) and for which there exists qp ∈ Wi with dist(p, qp) ≤ β. We assign
each such point p to the cluster corresponding to Wi. Observe that all points in the
cluster are contained in kern(Wi). Furthermore, for every point r ∈ kern(Wi) the
distance between p and r is not larger than the distance from p to qp plus the distance
from qp to r. Hence, we can conclude that the distance between two points in the
cluster (both of which must be contained in kern(Wi)) is at most 1 + β. This implies
that P ∗ can be partitioned into k clusters of diameter at most 1 + β each, which is a
contradiction.

5.2.1. Generalization to Lp metrics. It is not hard to see that our entire
analysis carries over to arbitrary Lp metrics. Indeed, all our arguments but the volume
argument in the proof of Lemma 5.6 are independent of the metric space. The volume
arguments in the proof of Lemma 5.6 can be easily extended to an arbitrary Lp metric
by observing that the volume of a ball with radius r in the d-dimensional Lp space is
equal to rd · (2 Γ(1 + 1/p))d/Γ(1 + d/p); see, e.g., [65, p. 11]. Using this bound in the
proof of Lemma 5.6, one can easily see that also that the lemma is true for arbitrary
Lp metrics.

Now, we can summarize our discussion above and apply Theorem 4.1 to obtain
the following result.

Theorem 5.9. There is a property tester for the diameter k-clustering problem
in an arbitrary Lp metric with the query complexity of

Õ(k · ε−1 · (1 + (2/β))d) .

6. Reversal distance. In this section we consider the reversal distance problem.
In sorting by reversals one is asked to compute the shortest sequence of (interval)
reversals that transforms a given permutation π into the identity permutation. The
number of reversals that are necessary is called the reversal distance between π and
the identity permutation.

We now introduce the problem formally. Let Sn denote the set of all permutations
of [n].

Definition 6.1. A reversal 	〈i, j〉 of an interval [i, j], 1 ≤ i ≤ j ≤ n, is the
permutation(

1 2 . . . i− 1 i i + 1 . . . j − 1 j j + 1 . . . n
1 2 . . . i− 1 j j − 1 . . . i + 1 i j + 1 . . . n

)
.

That is, for a permutation π = (π1, . . . , πn) ∈ Sn, 	〈i, j〉 has the effect of reversing
the order of (πi, πi+1, . . . , πj) and transforming π into

π · 	〈i, j〉 = (π1, . . . , πi−1, πj , πj−1, . . . , πi, πj+1, . . . , πn) .

We now define the reversal distance between two permutations.
Definition 6.2. Given a pair of permutations π = (π1, . . . , πn), σ = (σ1, . . . , σn)

∈ Sn, the reversal distance drev(π, σ) between π and σ is the minimum number of
reversals needed to transform π into σ (that is, the minimum number k such that
there exists a sequence of reversals 	1, 	2, . . . , 	k with π · 	1 · 	2 · · · 	k = σ).

Equivalently, we can compute the number of reversals necessary to transform
σ−1π into the identity permutation id. Therefore, we are interested in the reversal
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distance between a given permutation π and the identity permutation. We consider
the decision version of the reversal distance problem.

Definition 6.3. The reversal distance problem consists of determining, for a
given permutation π ∈ Sn and an integer k, whether the reversal distance drev(π, id)
between π and the identity permutation id is at most k.

We now formulate the problem as a property testing problem that fits into our
framework. The set of functions F we want to consider is the set of permutations
of [n], that is, F = Sn. We are interested in all permutations that have a reversal
distance of at most k to the identity permutation. We can write this as a property Π
as follows:

Π = {π ∈ Sn : drev(π, id) ≤ k} .

We use the standard distance measure from Definition 2.3, which is equivalent to
the following.

Definition 6.4. A permutation π ∈ Sn is ε-far from having reversal distance
smaller than or equal to k if for every sequence of k reversals 	1, 	2, . . . , 	k the permu-
tation π ·	1 ·	2 · · · 	k disagrees with the identity permutation on more than ε ·n places;
that is, if π · 	1 · 	2 · · · 	k = (σ1, . . . , σn), then |{i ∈ {1, 2, . . . , n} : σi 	= i}| > ε · n.

In contrast to the clustering problems, the reversal distance property is not com-
binatorial. Therefore, we have to take the domain of the function into account. For a
permutation π = (π1, . . . , πn) we denote atom items by πi. This notion covers the fact
that the value of domain element i is πi = π(i). Hence it captures also the domain of
a value of f .

Let us notice that we can encode an interval [i, j] by the two domain elements πi

and πj (using the fact that π−1(πi) = i and π−1(πj) = j). If we apply a reversal 	 to
π, then πi and πj induce the interval

[
((π · 	)−1)(πi), ((π · 	)−1)(πj)

]
(for this reason

we want to work with πi rather than with i). We denote the interval induced by two
elements πi and πj by [πi, πj ].

We say a reversal 	〈r, s〉 splits an interval [πi, πj ] if i < r ≤ j or i ≤ s < j (or
both).

Definition 6.5. Let π = (π1, . . . , πn) be a permutation and let [πi, πj ] denote
an interval. We say that a reversal 	〈k, �〉 splits an interval [πi, πj ] if i < k ≤ j or if
i ≤ � < j.

We generalize this notion to k-reversals.
Definition 6.6. Let π = (π1, . . . , πn) be a permutation. A k-reversal 	 =

	1 · 	2 · · · 	k splits an interval [πi, πj ] if there exists �, 0 ≤ � < k, such that 	�+1 splits

[(π · 	1 · · · 	�)−1(πi), (π · 	1 · · · 	�)−1(πj)] .

If 	 does not split [πi, πj ], then we say 	 is safe for [πi, πj ].
Notice that if 	1, . . . , 	k is safe for [πi, πj ], then each of the reversals 	1, . . . , 	k

either entirely contains [πi, πj ] or it does not contain any π� ∈ [πi, πj ]. Therefore, in
this case, after applying 	1, . . . , 	k the positions of πi+1, . . . , πj−1 are determined by
the position of πi and πj .

Bases for the k-reversal problem. We define a basis as a set of 2k + 1 intervals
induced by pairs of the atom items of the basis. For each such set we consider only
reversals that are safe for these intervals. We say a set of 2k + 1 intervals is a basis
if there exists a sequence of k reversals 	1, . . . , 	k such that for each atom item πi of
the basis (π · 	1 · · · 	k)−1(πi) = πi and if 	1, . . . , 	k is safe for all intervals induced by
the elements involved in the basis.
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Definition 6.7. Let π = (π1, . . . , πn) ∈ Sn. A set I of 2 k+1 intervals is a valid
basis for the reversal distance problem if there is a sequence 	1, . . . , 	k of k reversals
such that

• (π · 	1 · · · 	k)−1(πi) = πi and (π · 	1 · · · 	k)−1(πj) = πj for each interval
[πi, πj ] ∈ I; and

• no interval [πi, πj ] ∈ I is split by 	1, . . . , 	k.
If the set of intervals is a basis b, then we associate with it the k-reversal 	b = 	1 · · · 	k.
(In case that there are different sequences that witness the basis property we choose
an arbitrary one.)

Formally, a basis consists of 4k + 2 atom items and an integer number encoding
the 2k + 1 pairs of atom items (an atom item may be paired with itself). The integer
number can be seen as a vector of length 2k + 1 having entries with values from
[4k + 2] × [4k + 2] to specify each of the 2k + 1 pairs.

Lemma 6.8. For each instance of the reversal distance problem the corresponding
ACP P has dim(P) ≤ 4k + 2 and width(P) ≤ (4k + 2)4k+2.

Proof. By definition, a basis consists of 4k+2 atom items. Thus we have dim(P)
≤ 4k + 2. Each vector of length 2k + 1 with values from [4k + 2] × [4k + 2] can be
encoded as an integer number between 1 and (4k+2)4k+2. Thus we have width(P) ≤
(4k + 2)4k+2.

Violation function for k-reversal distance. Let b be a basis and let 	b = 	1 · · · 	k
be the k-reversal associated with basis b. We say b is violated by πi ∈ C if (π ·
	b)

−1(πi) 	= πi; that is, πi is not moved to position πi when 	b is applied to π.
Distance preserving property. We have associated a k-reversal 	b to each basis.

An atom item violates a basis if it is not at the correct position when 	b is applied
to π. If a permutation is ε-far from having reversal distance smaller than or equal to
k, then every k-reversal puts more than εn elements to the wrong position. Hence
every basis is violated by more than ε n elements. Therefore, the distance preserving
property is satisfied.

Feasibility preserving property. Let S ⊆ C be a set of atom items and let 	 =
	1 · · · 	k be a k-reversal with (π · 	)−1(πi) = πi for each πi ∈ S. We show that in this
case S has a self-feasible basis. First we want to construct a set of 2k + 1 intervals
that are safe for 	1, . . . , 	k. We start with the set of s−1 intervals induced by S. Now
we observe that each reversal 	i can split at most 2 of these intervals. We conclude
that at most 2k of these intervals are split by 	1, . . . , 	k. We can merge adjacent
intervals not split by 	1, . . . , 	k and obtain a set of 2k + 1 intervals that are not split
by 	1, . . . , 	k. Hence there exists a sequence of k reversals that is safe for each of our
intervals. Thus these intervals form a basis b. It remains to prove that this basis is not
violated (the k-reversal associated with the basis must not be the k-reversal 	). By
our construction of the intervals each πi ∈ S is contained in a safe interval. Therefore,
its position after applying the reversal is uniquely determined by the positions of the
endpoints of the interval. Let SI ⊆ S denote the set of endpoints of intervals of the
basis b. Since b is a basis there is a k-reversal 	b with

(π · 	b)−1(πi) = πi = (π · 	)−1(πi) for each πi ∈ SI .

Since the endpoints are mapped to the same places when 	b and 	 are applied to π,
we can conclude that each other point in S is also mapped to the same place. Hence
no πi ∈ S violates b, and we have shown the feasibility preserving property.

Once we have proven the distance and the feasibility preserving properties, Lemma
6.8 and Theorem 4.1 allow us to conclude with the following theorem.
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Theorem 6.9. There exists a property tester for the k-reversal distance property
with query complexity Õ(k/ε).

7. Property testing vs. testing ACPs: General case. In section 4, we
described a framework for testing problems via testing ACPs. We only considered
ACPs whose ground set is identical to the domain of the tested function. Although
we showed that this framework can be applied to various problems, it is not always
powerful enough to deal with a larger spectrum of problems. In some cases it is
necessary to consider ground sets different from the domain of the tested function.
For example, if we consider the adjacency matrix model using the approach from
section 4 and represent a graph by a function f : V × V → {0, 1}, then the ground
set would be a set of entries in the adjacency matrix. But sampling entries of the
adjacency matrix results in a disconnected set of edges if the size of the sample set is
o(
√
n) [43]. For graph problems, typically a better approach would be to identify the

ground set with the set of vertices of the graph and then analyze the subgraph induced
by these vertices. To make a more flexible model in order to deal with problems more
complex than this one, we introduce interpretations.

Interpretations. Interpretations are functions that map each subset of the ground
set of the ACP to a subset of the domain of the tested function. Given a sample set S
of ground set items, we use the interpretation to determine a set of domain elements
DS . Then we query for the value f(x) for each x ∈ DS .

Definition 7.1. An interpretation of C in D is a function I : 2C → 2D.
To investigate quantitative properties of the reduction, we need the following

definition.
Definition 7.2. For a function h : N → N, we say an interpretation I of C in

D is h-bounded if for every X ⊆ C it holds that |I(X)| ≤ h(|X|). (We write in that
case that I is h(N)-bounded, with N being the formal input variable.)

The main idea behind introducing these notions is to allow a more general analysis
of algorithm Tester(f, ε) from section 4. Similarly to the proof of Theorem 4.1, we
want to test an input function f ∈ F via testing a related ACP P = (C,B, �). Since P
is now allowed to be an ACP with an arbitrary ground set C, we use the interpretation
I of C in D to link the domains of f and P in the reduction. The notion of h-bounded
functions in Definition 7.2 is used to describe the size of the random sample in the
tester. That is, if the interpretation I is h(N)-bounded and if our algorithm samples
a set S ⊆ C, then we query for the value of f(x) for every x ∈ I(S) ⊂ D, and the
restriction |I(S)| ≤ h(s) yields an upper bound on the query complexity.

Distance preserving property. In Theorem 4.1 we used the distance preserving
property that requires that if a function f is ε-far from property Π, then the ACP
is ε-far from feasible. In general, however, one can parameterize this property and
require the (ε, λ)-distance preserving property: if f is ε-far from property Π, then the
ACP is λ-far from feasible.

Now, in the framework defined above, it is easy to see that Theorem 4.1 can
be generalized to the following theorem, which describes our framework in its full
generality.

Theorem 7.3. Let F be a set of functions from a finite set D to a set R,
and let Π be a property of F . Let 0 < ε, λ < 1 and let I : 2C → 2D be an h-bounded
interpretation of C in D. If for every f ∈ F there exists an ACP Pf with dim(Pf ) ≤ δ
and width(Pf ) ≤ 	 such that

• ((ε, λ)-distance preserving) if f is ε-far from Π, then every basis in Pf is
λ-far from feasible; and
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• (feasibility preserving) for every X ⊆ C with |X| ≥ δ: If there exists g ∈ Π
with f|I(X) = g|I(X), then X contains a self-feasible basis;

then there exists s = Θ(λ−1 · (δ · ln(δ/λ) + ln 	)) such that the following algorithm is
a property tester for Π with query complexity h(s):�

�

�

�

Tester(f, ε).
Sample a set S of s elements in C uniformly at random
if f|I(S) = gI(S) for some g ∈ Π then accept f
else reject f

Proof. In order to show that Tester(f, ε) is a property tester for Π, we have
to prove that every function having property Π is accepted by the tester, and every
function that is ε-far from having property Π is rejected with probability at least 2

3 .
If f ∈ Π, then for every X ⊆ C we have f|I(X) = g|I(X) with g = f ∈ Π. This
immediately implies that every f ∈ Π is accepted by Tester(f, ε). Therefore, it
remains to prove that if f is ε-far from Π, then the algorithm rejects the input with
probability greater than or equal to 2

3 . We prove this by relating ACP-tester(P, λ)
to Tester(f, ε) and by applying Theorem 3.6.

By the distance preserving property, if f is ε-far from Π, then Pf is λ-far from
feasible. Furthermore, by Theorem 3.6, if Pf is λ-far from feasible, then ACP-

tester(Pf , λ) rejects Pf with probability greater than or equal to 2
3 . Pf is rejected

by ACP-tester(Pf , λ) only if the chosen sample set S contains no self-feasible ba-
sis. But now the feasibility preserving property implies that if there is g ∈ Π that
agrees with f on the interpretation of the sample set, then every set X ⊆ C with
|X| ≥ δ ≥ dim(Pf ) contains a self-feasible basis. By the fact that |S| ≥ δ we can
conclude that S contains a self-feasible basis if there exists a g ∈ Π that agrees with
f on the sample set S. Therefore, we can conclude that if f is ε-far from Π, then
with probability at least 2

3 there is no such g ∈ Π with f|I(S) = g|I(S). Hence, f is

rejected by Tester(f, ε) with probability at least 2
3 . This implies that Tester(f, ε)

is a property tester for Π.

8. Graph coloring. In this section we apply Theorem 7.3 to graph coloring. A
k-coloring of a graph G = (V,E) is an assignment χ : V → {1, . . . , k} of colors to the
vertices of the graph. A coloring is proper if there is no edge e = (v, u) ∈ E such
that χ(v) = χ(u). If G has a proper k-coloring, then G is k-colorable. The graph
k-coloring problem consists of determining whether a given graph is k-colorable.

We consider the graph coloring problem in the adjacency matrix model. That is,
the input graph G = (V,E) is given as a function V × V → {0, 1} representing the
adjacency matrix of the graph. Therefore we have f(u, v) = 1 if and only if (u, v) ∈ E.
Without loss of generality, we assume that V = [n]. Let Π denote all n-vertex graphs
that have a proper k-coloring. We use the standard distance measure between graphs
(see Definition 2.3), which is equivalent to the following definition.

Definition 8.1. A graph G is ε-far from being k-colorable if in order to trans-
form G into a k-colorable graph one has to modify more than ε n2 entries in the
adjacency matrix of G.

It is known that graph coloring in the adjacency model can be tested efficiently
[43]. The main contribution of our framework is a clear and elegant proof that high-
lights the combinatorial aspects of the problem and a slight improvement in the query
complexity that matches for k > 2 the bounds from [7] in the Õ-notation.

For the k-coloring problem, we identify the ground set C with the set of vertices
V of the input graph G = (V,E). Since in our framework G can be viewed as given
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by its adjacency matrix representation, we define the interpretation I to map each set
of vertices to the submatrix induced by these vertices. That is, for every W ⊆ V , we
have I(W ) = W ×W . Clearly, the interpretation is N2-bounded.

The bases of the coloring problem are formed by some properly colored sets of
vertices. That is, every basis corresponds to a pair (W,χ∗), where W ⊆ V = C and
χ∗ is an encoding of a proper k-coloring of W (here, one can think that a k-coloring
of W is represented by a vector of length |W | with values in kW ). Notice that with
this definition, if for each (W,χ∗) ∈ B we have |W | ≤ δ, then the so-defined ACP P
has dim(P) ≤ δ and width(P) ≤ kδ.

Before we define the bases formally, we need some more definitions.
Definition 8.2. Let S ⊆ V be a set of vertices and let χ be a proper k-coloring

of S. Let

Vi =
{
v ∈ V : ∃u ∈ S with χ(u) = i and (v, u) ∈ E

}
be the set of vertices that cannot be properly colored in color i using any extension of
χ to V . We call a vertex v ∈ V \ S heavy for 〈S, χ〉 if there is a proper extension
of χ to S ∪ {v}, but every extension increases the number of vertices in certain Vi,
1 ≤ i ≤ k, by at least ε n/3 (that is, (i) there exists 1 ≤ j ≤ k, with v /∈ Vj, and (ii)
∀1≤j≤k if v /∈ Vj, then

∣∣{w /∈ Vj : (v, w) ∈ E}
∣∣ ≥ ε n/3).

A vertex v ∈ V \S that cannot be properly colored by any extension of the coloring

χ (that is, v ∈
⋂k

i=1 Vi) is called a conflict vertex for 〈S, χ〉.
Bases for k-coloring. For the graph coloring problem we define the bases induc-

tively.
• {∅, 1} is a basis (where 1 is the encoding of the coloring of the empty set of

vertices).
• If b = (K,χ) is a basis, v is a heavy vertex for b, and χ∗ is an encoding of the

previous coloring χ of K extended by a proper coloring of v, then (K∪{v}, χ∗)
is a basis.

Our next step is to show that the ACP has small dimension and width.
Lemma 8.3. For every input instance of the graph coloring problem the corre-

sponding ACP P has dim(P) ≤ 3k/ε and width(P) ≤ k3 k/ε.
Proof. Since every k-coloring of a set of r vertices can be encoded using an

integer number between 1 and kr, it is enough to show that |K| ≤ 3 k/ε for every
basis b = (K,χ).

Let b = (K,χ) be a basis with |K| = r. Since b is a basis, there must exist a
sequence of bases (K0, χ0), (K1, χ1), . . . , (Kr, χr) with (K0, χ0) = (∅, 1), (Kr, χr) =
(K,χ), and such that for every 1 ≤ i ≤ r we have |Ki| = i and the only vertex in
Ki \Ki−1 is heavy for 〈Ki−1, χi−1〉.

Let V
(i)
1 , V

(i)
2 , . . . , V

(i)
k , 0 ≤ i ≤ r, be the sets of vertices such that each vertex

v ∈ V
(i)
j cannot be properly colored in color j if we want to extend coloring χi to the

set Ki ∪ {v}. That is,

V
(i)
j =

{
v ∈ V : ∃u ∈ Ki with χi(u) = j and (v, u) ∈ E

}
.

It is easy to see that for every i, j we have V
(i)
j ⊆ V

(i+1)
j . Furthermore, by the

definition of heavy vertices, we know that for every i, 1 ≤ i ≤ r, there is certain j,

1 ≤ j ≤ k, such that |V (i)
j | ≥ |V (i−1)

j | + ε n/3. Therefore, since we have V
(0)
j = ∅ for

every j, 1 ≤ j ≤ k, it must hold that
∑k

j=1 |V
(i)
j | ≥ i ε n/3 for every i, 1 ≤ i ≤ r.

Finally, since |V (r)
j | ≤ n for every j, 1 ≤ j ≤ k, we conclude that r ≤ 3 k/ε.
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Violation function for k-coloring. A basis b = (K,χ) is violated by a vertex v ∈ V
if either (i) v is a heavy vertex for 〈K,χ〉 or (ii) v is a conflict vertex for 〈K,χ〉.

Once we have described k-coloring in our framework, in order to apply Theo-
rem 7.3, we must show that the (ε, λ)-distance preserving and the feasibility preserv-
ing properties hold. We begin with the proof of the following lemma that implies the
(ε, λ)-distance preserving property with λ = ε/3.

Lemma 8.4 ((ε, ε/3)-distance preserving property). Let G = (V,E) be a graph
that is ε-far from being k-colorable and let S ⊆ V be any set of properly k-colored
vertices with a proper coloring χ. Then V contains more than ε n/3 conflict vertices
for 〈S, χ〉 or V has more than ε n/3 heavy vertices for 〈S, χ〉.

Proof. Our proof is by contradiction. Assume G is ε-far from having a proper
k-coloring and there are less than ε n/3 conflict vertices for 〈S, χ〉 and less than ε n/3
heavy vertices for 〈S, χ〉. Then we show that there is a k-colorable graph G∗ that is
obtained from G by removing less than ε n2 edges. This would yield a contradiction
and hence would conclude the proof.

Let X be the set of all conflict vertices for 〈S, χ〉, let Y be the set of all heavy
vertices for 〈S, χ〉, and let Z be the set of remaining uncolored vertices (i.e., Z =
V \ (S ∪X ∪ Y )). For every i, 1 ≤ i ≤ k, let Vi be the set of vertices in V such that
for every v ∈ Vi the extension of χ by coloring v with color i is not a proper coloring
(cf. Definition 8.2).

We first construct a graph G′ by removing all edges incident to the vertices in
X ∪ Y and extend the coloring χ of S to a k-coloring of S ∪X ∪ Y by coloring the
vertices in X ∪ Y arbitrarily. Since |X ∪ Y | < 2 ε n/3, less than 2 ε n2/3 edges are
removed from G in this way. Furthermore, since all vertices in X ∪ Y are isolated,
the obtained coloring χ′ is a proper k-coloring of S ∪X ∪ Y .

Now, we modify G′ to extend the coloring χ′ to all vertices in Z. For each v ∈ Z,
let τ(v) be a color that satisfies the following two constraints:

• If we extend χ′ to S ∪ {v} and we color v with τ(v), then the resulting
k-coloring is proper.

• If we extend χ′ to S∪{v} and we color v with τ(v), then the absolute increase
in the size of Vτ(v) is minimal (among all possible choices that satisfy the first
constraint).

In other words, v /∈ Vτ(v) and for every i, 1 ≤ i ≤ k, if v /∈ Vi, then |{w /∈ Vi : (v, w) ∈
E}| ≥ |{w /∈ Vτ(v) : (v, w) ∈ E}|. Since v is not a conflict vertex for 〈S, χ〉, such a
color τ(v) always exists (but is possibly not unique). By the fact that v is not a heavy
vertex for 〈S, χ〉, we know that |{w /∈ Vτ(v) : (v, w) ∈ E}| < εn/3. Therefore, if we
remove from G′ for every v ∈ Z all edges (v, w) ∈ E with w /∈ Vτ(v), then the resulting
graph G∗ is obtained from G by removal of less than ε n2 edges. It remains to show
that the following coloring of G∗ is proper: We color each vertex v ∈ S ∪ X ∪ Y
with color χ′(v). Each vertex v ∈ Z is colored with color τ(v). Now assume that
this coloring is not proper. Then there must be an edge (v, u) such that v and u are
colored in the same color. Since χ is proper, all vertices in X and Y are isolated,
and by the definition of τ(v) it is immediate that such an edge can only be between
vertices in Z. But then we have that u /∈ Vτ(v), and this implies that (v, u) has been
removed from G′. This yields a contradiction.

It remains to prove the feasibility preserving property.

Lemma 8.5 (feasibility preserving property). If for some S ⊆ V every basis
covered by S is violated by certain v ∈ S, then the subgraph of G induced by vertices
in S cannot be properly k-colored.
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Proof. The proof is by contradiction. Let us suppose there is a proper k-coloring
χ of the subgraph of G induced by the vertices in S. For every U ⊆ S, let χU denote
the coloring χ restricted to vertex set U .

Let us observe that the set of bases covered by S is not empty because it contains
the “empty set” basis (∅, χ∅). Therefore, there exists a basis (possibly one of many)
b = (U, χU ) covered by S having the maximum size of set U . Since b is violated
by certain v ∈ S, either v is a conflict vertex for 〈U, χU 〉 or v is a heavy vertex for
〈U, χU 〉. Furthermore, since χ was assumed to be a proper k-coloring of S, v cannot
be a conflict vertex for 〈U, χU 〉 and therefore it must be a heavy vertex for 〈U, χU 〉.
But this implies that (U ∪{v}, χU∪{v}) is a basis that is moreover covered by S. This
yields a contradiction, because we assumed that there is no basis (K,χK) covered by
S having |K| > |U |.

Therefore, we summarize our discussion in this section with the following theorem
that follows directly from Theorem 7.3 and Lemmas 8.4 and 8.5.

Theorem 8.6. There is a property tester for the graph k-coloring property with
a query complexity of

O
(
(k ε−2 ln(k/ε2))2

)
= Õ(k2/ε4) .

9. Hypergraph coloring. We now want to extend the analysis from section 8
to obtain an efficient property tester for hypergraph coloring. A hypergraph is a pair
H = (V,E) with a finite vertex set V and the edge set E ⊆ 2V . A hypergraph H is
�-uniform if |e| = � for all e ∈ E. (Notice that a 2-uniform hypergraph is a graph.)
A k-coloring of a hypergraph H is an assignment χ : V → {1, . . . , k} of colors to the
vertices of the hypergraph. A coloring is proper if no edge in E is monochromatic,
that is, if for every edge e ∈ E there are v, u ∈ e with χ(v) 	= χ(u). If H has a proper
k-coloring, then H is k-colorable. The k-coloring problem for hypergraphs consists of
determining whether a given hypergraph is k-colorable.

We want to design a property tester for the k-coloring problem in �-uniform hy-
pergraphs. An �-uniform hypergraph can be represented by a function f : V � → {0, 1}
that encodes its adjacency matrix. We use the standard distance measure (Definition
2.3) to measure the distance between hypergraphs. In terms of hypergraphs we can
express this distance measure as follows.

Definition 9.1. An �-uniform hypergraph H = (V,E) is ε-far from having
a proper k-coloring if one has to remove more than εn� edges from H to obtain a
hypergraph that has a proper k-coloring.

Now, we discuss how to apply our framework to hypergraph coloring. Similarly
to the graph coloring problem, we identify the ground set C with the set of vertices V
of the input hypergraph H = (V,E). Since in our representation H can be viewed as
given by its adjacency matrix representation, we define the interpretation I to map
each set of vertices to the submatrix induced by these vertices. That is, for every
S ⊆ V , we have I(S) = S × S × · · · × S. Clearly, the interpretation is N �-bounded.
Let 〈S, χ〉 be a pair with S ⊆ V and χ a proper k-coloring of vertices in S.

Definition 9.2. We say a vertex v is i-colorable with respect to 〈S, χ〉 if for
every e ∈ E with v ∈ e, either (i) there exists a vertex u ∈ (S ∩ e) with χ(u) 	= i or
(ii) there exists a vertex w ∈ e \ (S ∪ {v}).

We want to extend our approach for graph coloring to hypergraphs. Again we use
a recursive definition of bases that is based on heavy vertices and conflict vertices. In
order to define heavy vertices we introduce a potential function. A vertex is a heavy
vertex if its coloring increases the potential significantly, very much in the spirit of
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graph coloring; further motivation behind the definition of the potential function can
be found in the proof of Lemma 9.7.

Definition 9.3. Let H = (V,E) be a hypergraph. Let S ⊆ V and let χ be a
proper k-coloring of vertices in S. The potential of 〈S, χ〉 is defined as

ΦH(〈S, χ〉) =

k∑
i=1

�−1∑
j=1

nj−1 · |ϕ(〈S, χ〉, i, j)| ,

where

ϕ(〈S, χ〉, i, j) =
{
W ⊆ V : |W | = �− j & ∃e ∈ E (W ⊆ e & ∀v∈e\W χ(v) = i)

}
.

Hence, if W ∈ ϕ(〈S, χ〉, i, j), then coloring all vertices in W with color i creates
a monochromatic edge. Our next step is to extend the notion of heavy and conflict
vertices to hypergraphs.

Definition 9.4. A vertex v ∈ V \ S is heavy with respect to 〈S, χ〉 if (i) there
is an i, 1 ≤ i ≤ k, such that v is i-colorable and (ii) for every i, 1 ≤ i ≤ k, if v is
i-colorable and χ′ is the extension of χ to S ∪ {v} by coloring v with color i, then

∆ΦH(〈S, χ〉, v, i) = ΦH(〈S ∪ {v}, χ′〉) − ΦH(〈S, χ〉) >
εn�−1

3
.

Definition 9.5. A vertex v ∈ V \ S is a conflict vertex with respect to 〈S, χ〉 if
for every i, 1 ≤ i ≤ k, v is not i-colorable.

The bases and the violation function are defined in the same way as for graph
coloring.

Bases for k-coloring.
• {∅, 1} is a basis (where 1 is the encoding of the coloring of the empty set of

vertices).
• If b = (K,χ) is a basis, v is a heavy vertex for b and χ′ is an encoding of the

previous coloring χ of K extended by a proper coloring of v, then (K∪{v}, χ′)
is a basis.

Violation function for k-coloring. A basis b = (K,χ) is violated by a vertex v ∈ V
if either (i) v is a heavy vertex for 〈K,χ〉 or (ii) v is a conflict vertex for 〈K,χ〉.

In a manner similar to that for the graph coloring problem, we can give an upper
bound for the dimension of the constructed ACP.

Lemma 9.6. For every problem instance of the hypergraph k-coloring problem the
corresponding ACP P has dim(P) ≤ 3k�/ε and width(P) ≤ k3k�/ε.

Proof. Since every k-coloring of a set of r vertices can be encoded using an integer
in the range between 1 and kr, it is enough to show that |K| ≤ 3 k �/ε for every basis
b = (K,χ). To show this, let us recall that the bases are defined inductively by adding
a heavy vertex to another basis. By definition, a heavy vertex increases the potential
of the corresponding basis by more than 1

3 ε n
�−1. The maximum potential of every

basis is less than k � n�−1 and the starting potential is 0. Thus, it follows for every
basis b = (K,χ) that |K| ≤ 3 k �/ε.

Our next step is to prove the distance preserving property.
Lemma 9.7 ((ε, ε/3)-distance preserving property). Let H = (V,E) be a hyper-

graph that is ε-far from being k-colorable, and let S ⊆ V be an arbitrary set of vertices
colored according to a proper k-coloring χ. Then either V contains more than ε n/3
conflict vertices with respect to 〈S, χ〉 or V has more than ε n/3 heavy vertices for
〈S, χ〉.
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Proof. Our arguments are similar to those used in the proof of Lemma 8.4. The
proof is by contradiction. Let us assume there are less than or equal to ε n/3 heavy
vertices and less than or equal to ε n/3 conflict vertices with respect to 〈S, χ〉. Then
we show that it is possible to extend coloring χ of S to a coloring χ∗ of V that has at
most ε n� monochromatic (violating) edges in H. This would yield a contradiction.

We define χ∗ as follows:

χ∗(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ(v) for every v ∈ S;
1 if v ∈ V \ S and v is a heavy vertex or a conflict vertex with

respect to 〈S, χ〉;
i if v ∈ V \ S is i-colorable with respect to 〈S, χ〉 and i minimizes

(over all possible choices of proper coloring i) the increase in
the potential, that is, ∆ΦH(〈S, χ〉, v, i) ≤ ∆ΦH(〈S, χ〉, v, j)
for every proper coloring j of v.

Now, we give an upper bound on the number of monochromatic edges in coloring
χ∗ of H. Let us first consider heavy and conflict vertices. By our assumption, the
number of such vertices is upper bounded by 2

3 ε n. Therefore, the number of edges
incident to these vertices is upper bounded by 2

3 ε n
�. Hence, it is sufficient to show

that there are at most 1
3 ε n

� monochromatic edges in H that are not incident to heavy
or conflict vertices. We show this indirectly by defining a set ED ⊆ E of at most 1

3 ε n
�

edges. Then we prove that this set contains all monochromatic edges for the coloring
χ∗. Let Vlight denote the set of all vertices in V \S that are neither heavy nor conflict
vertices for 〈S, χ〉.

For a vertex v ∈ Vlight let us define

∆ϕ(〈S, χ〉, v, i, j) = ϕ(〈S ∪ {v}, χ′〉, i, j) \ ϕ(〈S, χ〉, i, j) ,

where χ′ is the extension of χ to S ∪{v} by coloring vertex v with color i. We further
denote by E(X, v) = {e ∈ E : v ∈ e & X ⊆ e} all edges of the hypergraph that
contain X ∪ {v}. Now we make a simple but important observation.

Claim 9.8. If E(X, v) = ∅, then X /∈ ∆ϕ(〈S, χ〉, v, χ∗(v), j).
Proof. The proof follows immediately from the definition of ∆ϕ(〈S, χ〉, v,

χ∗(v), j).
We define the set

ED =
⋃

v∈Vlight

⋃
j∈[�−1]

E
(v)
D,j

using sets E
(v)
D,j that determine for each vertex v a set of edges that is responsible for

the sets in ∆ϕ(〈S, χ〉, v, χ∗(v), j). As we will see later, these edges are the only edges

that may possibly be monochromatic in χ∗. We define the set E
(v)
D,j as follows:

E
(v)
D,j =

⋃
X∈∆ϕ(〈S,χ〉,v,χ∗(v),j)

E(X, v) .

Claim 9.9. Let e ∈ E be a monochromatic edge in the coloring 〈V, χ∗〉. Then
e ∈ ED.

Proof. If e is monochromatic, then there is i ∈ [k] such that χ∗(u) = i for all
u ∈ e. Furthermore, we conclude that for each u ∈ e we have {u} ∈ ϕ(〈V, χ〉, i, �− 1).
Now we distinguish between two cases. First let us consider the case when there is a
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u ∈ e with {u} ∈ ϕ(〈S, χ〉, i, �− 1). In this case χ∗(u) 	= i by the definition of χ∗. In
the second case such a u does not exists, but we have {u} ∈ ϕ(〈V, χ〉, i, � − 1). But
as can be seen from Claim 9.8, we defined ED in such a way that there cannot be an
X ∈ ϕ(〈V, χ〉, i, �− 1) that is not contained in ϕ(〈S, χ〉, i, �− 1). Hence, if e is not in
ED, it cannot be monochromatic.

It remains to show that the size of ED is small enough. By definition we have

∣∣ED

∣∣ =
∑

v∈Vlight

�−1∑
j=1

∣∣E(v)
D,j

∣∣ ,

and it is easy to see that for the E
(v)
D,j it holds that

∣∣E(v)
D,j

∣∣ ≤
∣∣∆ϕ(〈S, χ〉, v, χ∗(v), j)

∣∣ · nj−1

because of the fact that |E(X, v)| ≤ n�−(|X|+1). We conclude that we have

∣∣ED

∣∣ ≤
∑

v∈Vlight

�−1∑
j=1

∣∣∆ϕ(〈S, χ〉, v, χ∗(v), j)
∣∣ · nj−1 .

Since all considered vertices are light we also have, for every v ∈ Vlight,

∆ΦH(〈S, χ〉, v, χ∗(v)) =

�−1∑
j=1

∣∣∆ϕ(〈S, χ〉, v, χ∗(v), j)
∣∣ · nj−1 ≤ 1

3
ε n�−1 .

This finally gives us

∣∣ED

∣∣ ≤ 1

3
ε n� .

Together with Claim 9.9 we get a contradiction to the fact that H is ε-far from being
k-colorable. This proves the lemma.

The proof of the following lemma is essentially the same as the proof of Lemma
8.5, and we present it here for the sake of completeness only.

Lemma 9.10 (feasibility preserving property). If for some S ⊆ V every basis
covered by S is violated by certain v ∈ S, then the subhypergraph of H induced by
vertices in S cannot be properly k-colored.

Proof. The proof is by contradiction. Let us suppose there is a proper k-coloring
χ of the subgraph of H induced by the vertices in S. For every U ⊆ S, let χ|U denote
the coloring χ restricted to vertex set U .

Let us observe that the set of bases covered by S is not empty, because it contains
the “empty set” basis (∅, χ∅). Therefore, there exists a basis (possibly one of many)
b = (U, χ|U ) covered by S having the maximum size of set U . Since b is violated
by certain v ∈ S, either v is a conflict vertex for 〈U, χ|U 〉 or v is a heavy vertex for
〈U, χ|U 〉. Furthermore, since χ was assumed to be a proper k-coloring of S, v cannot
be a conflict vertex for 〈U, χU 〉, and therefore it must be a heavy vertex for 〈U, χ|U 〉.
But this implies that (U ∪{v}, χ|U∪{v}) is a basis that is moreover covered by S. This
yields a contradiction, because we assumed that there is no basis (K,χ|K) covered by
S having the size of K greater than |U |.

The three lemmas above combined with our framework from Theorem 7.3 imply
the following result.



608 ARTUR CZUMAJ AND CHRISTIAN SOHLER

Theorem 9.11. There is a property tester for the hypergraph k-colorability with
the query complexity

O
(
(k � ε−2 ln(k/ε))�

)
= Õ((k �/ε2)�) .

10. Testable hereditary graph properties. In this section we consider ar-
bitrary hereditary graph properties. A graph property Π is a family of graphs that
is preserved under graph isomorphism (that is, if G satisfies property Π and G′ is a
graph isomorphic to G, then G′ has property Π, too). A graph property Π is hered-
itary if it is closed under taking induced subgraphs; that is, if graph G = (V,E) has
Π, then every subgraph GS induced by a set S ⊆ V has property Π (see, e.g., [16]).
Similarly as in section 8, we consider undirected graphs that are represented by a
function f : V × V → {0, 1} that encodes the adjacency matrix of the graph. We
assume without loss of generality that V = [n]. When we talk about graph properties
we have to observe that in our framework a property is defined as a subset of the
set of n-vertex graphs. When no confusion can arise we use Π to denote the graph
property Π as well as the corresponding set of n-vertex graphs (which is the formal
definition of a property in this paper). Our main result is that a hereditary graph
property is efficiently testable if and only if it can be reduced to an ACP of dimension
that is independent of the size of the input graph.

For every graph G = (V,E) and every subset U ⊆ V we denote by GU the
subgraph of G induced by U .

We use the standard distance measure from Definition 2.3 for testing graph prop-
erties.

Definition 10.1. Let Π be an arbitrary graph property. A graph G is ε-far from
(satisfying) Π if in order to transform G into a graph satisfying Π one has to modify
more than ε n2 entries in the adjacency matrix of G.

Now, we can formally state the main result of this section.
Theorem 10.2. Let Π be a hereditary graph property. Let 0 < ε < 1. Let G

be the set of all graphs on the vertex set V = [n]. Then Π is efficiently testable if
and only if there are δ = δ(ε), 	 = 	(ε), and λ = λ(ε), such that every G ∈ G can
be mapped to an ACP PG = ([n],B, �) with dim(PG) ≤ δ(ε) and width(PG) ≤ 	(ε)
satisfying the following two properties:

• ((ε, λ)-distance preserving) if G is ε-far from Π, then every basis in PG is
λ-far from feasible; and

• (feasibility preserving) for every S ⊆ V with |S| ≥ δ(ε): If there is G′ ∈ Π
with GS = G′

S, then there is a self-feasible basis for S in PG.
The remaining part of this section is devoted to the proof of Theorem 10.2. We

begin with the following lemma, which simplifies the analysis of property testers for
graph properties. By this lemma, if a hereditary graph property Π has a property
tester with a query complexity of q(ε), then it has a property tester that samples a
set S of r(q(ε)) = O(q(ε)) vertices and accepts if and only if the subgraph induced by
S has Π.

Lemma 10.3 (Alon; see [47, Proposition D.2]). Let Π be a hereditary graph
property. Suppose there is a property tester for property Π with query complexity q(ε).
Then there is a property tester for property Π that selects uniformly at random a set of
r(q(ε)) = O(q(ε)) vertices and accepts the input graph if and only if the corresponding
induced subgraph satisfies property Π.

In order to prove Theorem 10.2, we must prove that our condition is both nec-
essary and sufficient for efficient testability of any property Π. We first observe that
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our proof of Theorem 7.3 with the interpretation I as defined in section 8 implies di-
rectly the sufficiency of our conditions. Now, we prove the necessity of our condition
(Lemma 10.4 uses the identical function r() as in Lemma 10.3).

Lemma 10.4 (necessary condition). Let Π be a hereditary graph property. Let
0 < ε < 1. Suppose there is a property tester for property Π with query complexity
q(ε) ≤ 1

4 n, and let us set r = r(q(ε)). Let G be the set of all graphs on the vertex
set V = {1, . . . , n}. Let λ = λ(ε) = 1

3·2r . Then for every G ∈ G there exists an ACP
PG = ([n],B, �) with dim(PG) ≤ 2r and width(PG) = 1 satisfying the (ε, λ)-distance
preserving and the feasibility preserving properties.

Proof. Let us fix an arbitrary graph G = (V,E) for which we describe ACP PG

satisfying the required properties.
Bases for graph properties. We define the bases of PG to be of the form (K, 1),

where K ⊆ V . We first give a set of basis candidates BC and then show how to obtain
the set of bases from this set of candidates.

We define the set of basis candidates BC as follows:
• (∅, 1) is a basis candidate;
• if K is a set of vertices of size r and GK (the subgraph induced by K) does

not satisfies Π, then (K, 1) is a basis candidate; and
• if (K, 1) is a basis and K ′ ⊆ K, then (K ′, 1) is a basis candidate.

We also define the notion of violators and light bases.
Definition 10.5. Let BC be a set of basis candidates and let b = (K, 1) ∈ BC.

The set of violators ViolBC(b) of b with respect to BC is defined as follows:
• if |K| = r, then ViolBC(b) = V \K; and
• if |K| < r, then ViolBC(b) = {v ∈ V \K : there exists a basis candidate b′ =

(K ∪ {v}, 1)}.
Definition 10.6. Let BC be a set of basis candidates and let b ∈ BC. We call b

light (with respect to BC) if |ViolBC(b)| ≤ 3
2 λn. If b is not light, then it is heavy.

Now, we define the set of bases B as the output of the following algorithm Com-

puteBases.�

�

�

�

ComputeBases (set of candidates BC).
while there is a light basis b (with respect to the current BC) do

BC = BC \ {b}
return B = BC ∪ {(∅, 1)}

Violation function for graph properties. A basis b ∈ B is violated by its violators,
that is, by all vertices contained in ViolB(b).

Notice that our construction of bases and the definition of the violation function
implies that every basis b ∈ B is heavy; that is, it is violated by more than 3

2 λn
vertices in V .

Now, the following claim follows trivially from our construction.
Claim 10.7. PG has dimension (r, 1).
(ε, λ)-distance preserving property. We prove now that the ACP PG defined above

satisfies the (ε, λ)-distance preserving property; that is, we prove that if G is ε-far from
Π, then every basis in PG is λ-far from feasible, where λ = λ(ε) = 1

3·2r . Notice that
by the definition of bases, every basis except for (∅, 1) is violated by more than λn
ground set elements. Therefore, what remains to be proved is that the basis (∅, 1) is
also violated by more than λn ground set elements. Our proof of this fact is via a
sequence of claims that top-down establish lower bounds for the number of bases of
given size.
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For a basis b = (K, 1), let |K| be called its size. We begin with the following
simple claim about bases of size r.

Claim 10.8. Suppose r < (1 − 2
3 λ)n. If G is ε-far from Π, then the number of

bases of size r in B is bigger than 2
3 ·

(
n
r

)
.

Proof. The proof follows directly from the definition of the bases and from Lemma
10.3. Indeed, Lemma 10.3 implies that for a graph that is ε-far from Π, if one picks at
random a set of r vertices in V , then with probability at least 2

3 the subgraph induced
by these vertices does not satisfy Π. This is equivalent to saying that the number
of subsets of V of size r for which the induced subgraph does not satisfy Π is bigger
than 2

3 ·
(
n
r

)
. By the definition of the basis candidates, for every set K ⊆ V of size

r, (K, 1) ∈ BC. Moreover, the set V \ K is the set of violators of K. Hence (K, 1)
is a basis that is violated by n − r violators, and thus (K, 1) is heavy. Thus, (K, 1)
belongs to B. Therefore, the number of bases of size r in B is bigger than 2

3 ·
(
n
r

)
.

The next claim deals with the relation between the number of bases of size k and
of size k − 1.

Claim 10.9. Suppose that n ≥ 2 r. Let ζ, 0 ≤ ζ ≤ 1, and let k, 1 ≤ k ≤ r, be an
integer. If there are more than ζ ·

(
n
k

)
bases of size k in B, then the number of bases

in B of size k − 1 is bigger than ζ−3·λ
2 ·

(
n

k−1

)
.

Proof. Recall that B contains only heavy bases. Furthermore, if (K, 1) is a basis,
then our construction of bases ensures that for every u ∈ K, (K \{u}, 1) is a basis (in
the following, “basis” also refers to basis candidates) and that this basis is violated by
u. Thus, every basis of size k defines k violators for bases for size k− 1. We conclude
that overall, there are more than

k · ζ ·
(
n

k

)
= (n− k + 1) · ζ ·

(
n

k − 1

)
>

1

2
· n · ζ ·

(
n

k − 1

)

violators for bases of size k − 1. Observe that every light basis has at most 3
2 λn

violators. Therefore, the number of violators of all light bases of size k− 1 is at most
3
2 λn

(
n

k−1

)
. It follows that the number of violators of heavy bases of that size is bigger

than

1

2
· n · ζ ·

(
n

k − 1

)
− 3

2
· λ · n ·

(
n

k − 1

)
=

1

2
· (ζ − 3λ) · n ·

(
n

k − 1

)
.

Since each basis has at most n violators it follows that the number of heavy bases is
larger than

1

2
· (ζ − 3λ) ·

(
n

k − 1

)
,

which completes the proof of our claim.
The next claim gives a lower bound for the number of bases of given size (bigger

than 0).
Claim 10.10. Let 1 ≤ k ≤ r be an integer. Then the number of bases of size

r − k is bigger than (
1

3 · 2k−1
− 3

2
λ

(
2 − 1

2k−1

))
·
(

n

r − k

)
.

Proof. The proof is by induction on k. For k = 1 the claim follows directly from
Claims 10.8 and 10.9. Now, let us assume the claim is true for k = k′, for certain
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1 ≤ k′ < r, and we show that this implies that the claim is true also for k = k′ + 1.
By induction, this will yield the claim.

By the induction hypothesis, the number of bases in B of size r−k′ is bigger than(
1

3 · 2k′−1
− 3

2
λ (2 − 1

2k′−1
)

)
·
(

n

r − k′

)

=

(
1

3 · 2k−2
− 3

2
λ

(
2 − 1

2k−2

))
·
(

n

r − k + 1

)
.

Therefore, by Claim 10.9, the number of bases in B of size r − k = (r − k′) − 1 is
bigger than(

1
3·2k−2 − 3

2λ
(
2 − 1

2k−2

))
− 3λ

2
·
(

n

r − k

)
=

(
1

3 · 2k−1
− 3

2
λ

(
2 − 1

2k−1

))
·
(

n

r − k

)
,

and the claim follows.
Now, we are ready to complete the proof of the (ε, λ)-distance preserving property

for PG. By our discussion above, we must show only that the basis (∅, 1) is violated
by more than λn ground set elements. By Claim 10.10, the number of bases in B of
size 1 is bigger than(

1

3 · 2r−2
− 3 · λ

)
·
(
n

1

)
=

(
4

3 · 2r − 3 · λ
)
· n ≥ λ · n

by our assumption that λ = 1
3·2r . Each of the bases of size 1 is of the form ({u}, 1)

for some u ∈ V , and by the definition of violation, such a vertex u violates (∅, 1).
Since the number of such vertices u is bigger than λ · n, this completes the proof of
the (ε, λ)-distance preserving property for PG.

Feasibility preserving property. We prove now that the ACP PG satisfies the fea-
sibility preserving property. We prove that for every S ⊆ V , |S| ≥ 2 r, if the subgraph
GS satisfies Π, then there is a self-feasible basis for S in PG. This implies the feasibil-
ity preserving property because Π is hereditary, and so if GS does not have property
Π, then G cannot have Π, as well.

Our arguments are roughly the same as those in the proof of Lemma 8.5. The
proof is by contradiction. Let us suppose that the subgraph GS satisfies Π, but every
basis in S is violated. Observe that the set of bases covered by S is not empty, because
it contains the “empty set” basis (∅, 1). Therefore, there exists a basis b = (K, 1)
covered by S maximizing the size of set K. Since b is violated by certain v ∈ S and
since K is of maximum size, we conclude that |K| = r. It follows that the subgraph
GK induced by K does not have property Π. Since Π is hereditary, it is closed under
taking induced subgraphs, and hence we conclude that GS does not have property Π.

If n < 2r, then we use the following simple ACP: The ACP has a single basis
(V, 1) which is violated by all ground set elements if G is ε-far from Π, and which is
not violated otherwise. This completes the proof of Lemma 10.4.

Now, we can conclude our discussion to complete the proof of Theorem 10.2.
Proof. The “only if” part follows from Lemma 10.4, and the “if” part follows

from Theorem 7.3 with the interpretation I as defined in section 8.

11. Conclusions. In this paper we introduced a novel framework that provides
a sufficient condition for property testing in the one-sided error model. We demon-
strated how to apply our framework on several problems from different areas, includ-
ing computational geometry, graph theory, and computational biology. For some of
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these problems we presented the first property tester. For others, we improved exist-
ing bounds on the query complexity of property testers for these problems. We also
proved that for hereditary graph properties our framework provides a sufficient and
necessary condition for testability: we showed that any hereditary graph property is
testable with query complexity independent of the input graph if and only if this can
be proven using our framework.

Perhaps one of the most interesting open problems left in the paper concerns
extending our framework to the two-sided error model. Another exciting problem is to
design a similar framework for the sparse graph model. Compared to our framework,
one difficulty with testing properties of sparse graphs is the fact that property testers
use adaptive sampling techniques, e.g., random walks or graph traversals starting
from random vertices, rather than uniform sampling. Consequently, one would have
to find a randomized process that covers most of these adaptive sampling techniques.
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Abstract. We study the long-term (steady state) performance of a simple, randomized, local
load balancing technique under a broad range of input conditions. We assume a system of n processors
connected by an arbitrary network topology. Jobs are placed in the processors by a deterministic or
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Assuming the stochastic adversarial input model, we show that if the adversary does not trivially
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interval of length w is bounded by λnw for some λ < 1), then the system is stable for any connected
network topology, regardless of how the adversary allocates the new jobs between the processors.
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We develop expected and high probability bounds on the total load in the system and the waiting
time of jobs in terms of the network topology. In particular, in the above stochastic adversary model,
if the network is an expander graph, the expected wait of a task is O(w + logn), and in the strongly
bounded adversary model the waiting time of a task is O(w + logn) with high probability.

We contrast these results with the work stealing load balancing protocol, where we show that in
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1. Introduction. Efficient utilization of parallel and distributed systems can
often depend on dynamic load balancing of individual tasks between processors. In
the dynamic load balancing problem, we consider a system that is designed to run
indefinitely. New jobs arrive during the run of the system, and existing jobs are
executed by the processors and leave the system. The arrival of new jobs may not be
evenly distributed between the processors. The task of the load balancing protocol is
to maintain approximately uniform job load between the processors, and in particular
to keep all processors working as long as there are jobs in the system waiting for
execution.

We assume a simple combinatorial model of load balancing following a number
of earlier studies. The computing system is represented by a connected, undirected,
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n-node graph. Jobs (represented by tokens) have equal execution time. The load of a
node is the number of tokens in its queue. A processor can execute (or consume) one
token per step, and we assume that it executes the oldest job in its queue. In each
step a processor can also move a number of jobs from its queue to the queue of an
adjacent node in the network. This abstraction models the case where the execution
time of a job is significantly longer than the time required to move a job to an adjacent
node. The assumption that all jobs have equal execution time simplifies the analysis
while still capturing the combinatorial complexity of the load balancing problem in
networks.

Dynamic load balancing algorithms have been studied extensively in experimen-
tal settings, demonstrating significant run-time improvements obtained by relatively
simple load balancing techniques [20, 21]. Rigorous, theoretical study of load balanc-
ing in the past has focused mainly on static analysis [1, 7, 8, 11, 16, 18], where a set
of jobs is initially placed in the processors and the algorithm needs to distribute the
jobs almost evenly between the processors in a minimum number of parallel rounds.
A number of important techniques have been developed in this line of work, and in
particular our work here builds on the static analysis in [8].

Load balancing, however, is best analyzed in a dynamic setting that captures the
actual application of such protocols. An important step in that direction was taken
in [4], where the work stealing model was shown to be stable on the complete network.
The main tool used in that work was the stability conditions for ergodic Markov
chains, and consequently their stability result holds only for Markovian adversaries.
In addition, a number of other works have studied dynamic load balancing under the
assumptions that jobs are generated by a randomized process that is oblivious to the
current state of the system [10, 13, 14, 19]. Finally, [3, 15] proved stability results for
load balancing on a general network assuming the deterministic adversarial model.
The computational model there is different, assuming that only one job can traverse
an edge per step.

2. Model and main results. In this work we address both the stability and
the efficiency (waiting time) of the load balancing task. We present a simple local
randomized protocol and analyze its performance on a general n-node network, and
under several adversarial models for the arrival of jobs into the system. Since we
do not use Markov chain techniques in the analysis, our results are not restricted to
Markovian adversaries. That is, the process that injects new jobs into the system can
use information about all previous steps.

In particular, we consider the type of adversaries proposed by Borodin et al. in [5].
Following that work we define a (w, λn) input adversary as a process that inserts jobs
in the system subject to the condition that for every sequence of w consecutive time
steps, the total inserted load is at most λnw. This allows the adversary to insert more
jobs at some time steps, as long as the total load in windows of size w is bounded. An
extension is a (w, λn) stochastic adversary, whose input load is a random variable, with
the property that the expected injected load during any sequence of w consecutive
time steps is bounded by λnw, and additionally, for some p > 2, the pth moment of
the new load is bounded (see [5] for a detailed discussion).

For these adversaries, we derive asymptotic (with respect to the network size)
bounds on both the expected total load and the waiting time of a job in the system.
However, it is still reasonable to seek stronger guarantees than bounds on expected
performance can provide. In particular, one might wish to augment the expected per-
formance results with high-probability bounds. In this case, the stochastic adversarial
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model is too powerful, since it allows for large bursts of load to occur in certain time
steps with decent probability. Therefore we need to place additional restrictions on
the adversary if we wish to derive high-probability results. To this end, we introduce
a constrained version of the stochastic adversary by enforcing a large-deviation–type
bound for the incoming load, similar to a Chernoff bound. We call these adversaries
strongly bounded.

Formally, let A be an adversary that is injecting load into the system. Let It be
the load injected by the adversary during time step t.

Definition 2.1. We say that A is a (λ,w, p,M) stochastic adversary (where we
assume that w is a positive integer) if the following conditions hold for any time t and
any event H determined entirely by information about the system at or before time t.

1. E [
∑w

i=1 It+i |H] ≤ λnw.
2. E

[
(
∑w

i=1 It+i)
p |H

]
≤ Mnpwp.

In addition, we say that A is strongly bounded if it also satisfies the following con-
dition.

3. There is a constant α > 0 and a constant β ≥ 1 such that for any ε > 0

Pr

(
w∑
i=1

It+i > (1 + ε)λnw |H
)

≤ e−αλnwεβ .

Throughout the paper, we always assume that λ and p do not depend on n, while
w and M may be functions of n.

We give a high-level description of the protocol here, deferring the details to sec-
tion 3. After the generation of new load, the nodes execute a particular distributed
randomized algorithm for choosing a random matching. The matching is not nec-
essarily perfect, nor is it necessarily chosen uniformly from all possible matchings,
although it does have some important properties that we will exploit later. Once the
matching is chosen, every two matched nodes equalize their load (up to one token).
For simplicity, we refer to this protocol as P.

We first show that the system (using P) is stable under the stochastic adversary
model (for λ < 1 and p > 2). That is, the expected total load in the system is
bounded with respect to time. The following theorem, proven in sections 5.1 and 5.3,
relates the load in the system to the network topology and establishes the stability of
the system. We assume a connected network G = (V,E) that has n nodes, maximum
degree at most ∆, and whose Laplacian1 has smallest nontrivial eigenvalue Λ. For
convenience, we define the quantity γ = Λ/16∆.

Theorem 2.2. Suppose that we run the system with a (λ,w, p,M) adversary,
where λ < 1 and p > 2, using protocol P (described in section 3). Let Lt be the load
of the system at time t. Then the system is stable and

lim sup
t→∞

E[Lt |L0] = O(γ−1n(w + lnn)(1 + M)3p) as n → ∞.

In addition, if the adversary is strongly bounded, then for any constant c > 0 there is
a constant κ = κ(c), such that for sufficiently large n,

lim inf
t→∞

Pr(Lt ≤ κγ−1n(w + lnn)) ≥ 1 − n−c.

The above bounds hold without the limits if the system starts with no load.

1Let A denote the adjacency matrix of a graph G, and let D = (dij), where dij is the degree of
node i if i = j, and is 0 otherwise. The Laplacian of G is the matrix L = D − A. The eigenvalues
of L are 0 = Λ1 ≤ Λ2 ≤ · · · ≤ Λn, and Λ2 = Ω(n−2) if G is connected.
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Next we address the efficiency of the load balancing protocol, an important per-
formance parameter that was not addressed in most previous work. That is, we relate
the waiting time of jobs to the topology of the network. Since protocol P treats all
tokens equally regardless of their ages, it cannot guarantee efficient delivery time for
individual packets. To bound the waiting time of jobs in the system, we augment
the protocol with a distributed version of the first-in-first-out queueing discipline,
requiring that a node always respect the ages of its tokens in the load balancing step,
and always consume its oldest token in the load consumption step (see section 3 for
details). We denote this version of P by P∗.

Theorem 2.3. Suppose that we run the system with a (λ,w, p,M) adversary,
where λ < 1 and p > 2, using protocol P∗ (described in section 3). Let Wt be the wait
of a job that arrived at time t. Then

lim sup
t→∞

E[Wt |L0] = O(γ−1(w + lnn)(1 + M)3p) as n → ∞.

In addition, if the adversary is strongly bounded, then for any constant c > 0 there is
a constant κ = κ(c), such that for sufficiently large n,

lim inf
t→∞

Pr(Wt ≤ κγ−1(w + lnn)) ≥ 1 − n−c.

The above bounds hold without the limits if the system starts with no load.
In particular, for bounded degree regular expanders, γ = Θ(1), and the diameter

of the graph is Θ(lnn), so for these graphs the above result is optimal.
As a special case of a strongly bounded adversary, we consider the generator model

that appeared in [4]. We contrast our results with the work stealing load balancing
protocol that is analyzed there and show that in sparse networks, both the load in
the system and the waiting time of a job can be exponential in the network size.

Notice that both Theorems 2.2 and 2.3 are concerned with the long-term behavior
of the system. In both cases, we show that if certain restrictions are placed on
the adversary, then the system behaves well most of the time. Since we focus on
the asymptotic behavior of the system, every valid system state will occur infinitely
often. Therefore the analysis must ensure that the system rarely enters undesirable
states and quickly recovers from them when it does. Simple probabilistic techniques
(e.g., estimating the probability of rare events for every time point and using a union
bound over all time steps) are not sufficient to achieve these goals. We require more
sophisticated arguments.

There is a substantial class of results, based on modeling the system’s evolution
as a Markov chain, that is frequently employed in these sorts of analyses—the proof
of stability for the work stealing protocol in [4] is one example. Furthermore, for this
Markov chain setting, there are additional tools for proving rapid convergence to a
stationary distribution (see Meyn and Tweedie [12]), as well as for deriving properties
of the stationary distribution (see [4] and the references therein). However, many of
these results are qualitative and not quantitative. More importantly, they restrict
the class of problems that they can model. In the particular context of adversarial
load balancing that is the focus of this work, any straightforward application of such
tools will only yield results for Markovian adversaries (i.e., adversaries whose usage
allows for the system to be modeled as a time-homogeneous Markov chain)—the
analysis in [4] is an example. While it is not obvious whether this restricted class
of adversaries is really any weaker than the general class presented earlier, it is clear
that results in the general adversarial model serve as a compelling argument for the
efficacy of the load balancing protocol under a wide range of input conditions.
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Since we seek greater generality than Markov chain results are known to provide,
we need more elaborate tools. In the conference version of this paper [2], we apply
results from renewal theory to show that the system has efficient long-term behavior
under a particular non-Markovian adversary. In the current work, we generalize the
results presented there by analyzing the behavior under the more general adversaries
of Definition 2.1. To this end, we show that the load in the system behaves like
a supermartingale above some threshold and then employ a result of Pemantle and
Rosenthal [17] for the analysis of such processes. Finally, in section 5.3, we derive
stronger, high-probability results for the more restricted adversaries.

3. Protocol. If we were simply interested in a stability result we could use
the protocol studied in [8]: in each step nodes are matched randomly with adjacent
neighbors in the network, and if node v is matched with node u, they equalize their
load subject to integer rounding. The details of the protocol (which we call protocol P)
are given below.

1. Matching phase:
• For each node i

– Node i inserts each incident edge (i, j) into a set S with probability 1
8 max(di,dj)

, where
di is the degree of node i.

– Node i removes edge (i, j) from S if some edge (i, k) or (j, k) is in S, with k �= i, j.
• Let the matching M consist of the remaining edges in S.

2. Transfer phase:
• If (i, j) ∈ M

– i and j equalize their loads so that, say, i gets load �(�t(i) + �t(j))/2� and j gets load
�(�t(i) + �t(j))/2�, where �t(i) is the load of processor i in the beginning of the step.

To bound the waiting time of jobs in the system we need to augment the above
protocol with a distributed version of the first-in-first-out queueing discipline. It is
not enough to require that a node consume the oldest job in its queue; we also need
to consider the jobs’ ages in the load balancing procedure. In particular, when u and
v are matched they should not only equalize their total load but also equalize (up to
rounding) the load that they have above any given age. A simple method to maintain
this property is given by protocol P∗ below. Note that protocol P∗ is a special case
of protocol P.

1. Matching phase:
• For each node i

– Node i inserts each incident edge (i, j) into a set S with probability 1
8 max(di,dj)

, where
di is the degree of node i.

– Node i removes edge (i, j) from S if some edge (i, k) or (j, k) is in S, with k �= i, j.
• Let the matching M consist of the remaining edges in S.

2. Transfer phase:
• If (i, j) ∈ M

– Let Ji
1, J

i
2, . . . , J

i
�t(i)

(where �t(i) is the load of processor i in the beginning of the step),

and let Jj
1 , J

j
2 , . . . , J

j
�t(j)

be the jobs in the queues of nodes i and j, respectively, sorted

from oldest to newest.
– Node i sends jobs Ji

2, J
i
4, . . . , J

i
2��t(i)/2� to node j. Similarly, node j sends jobs

Jj
2 , J

j
4 , . . . , J

j
2��t(i)/2� to node i.

– Node i merges jobs Ji
1, J

i
3, J

i
5, . . . with Jj

2 , J
j
4 , J

j
6 , . . . in its queue, so that, finally, if a

job J is older than a job J ′, then job J is in the queue before job J ′.
– Similarly, node j merges jobs Jj

1 , J
j
3 , J

j
5 , . . . with Ji

2, J
i
4, J

i
6, . . . in its queue, so that,

finally, if a job J is older than a job J ′, then job J is in the queue before job J ′.
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4. Analysis of the static case. We first analyze our load balancing protocol
in a static setting in which some initial load is placed on the n processors, and load
is moved between processors until the loads in all the processors are approximately
equal. No new load is added to or removed from the system throughout the execution
of the protocol.

Our analysis of the static case is based on coupling the execution of our protocol
with the nonintegral protocol studied in [8]. The only difference between the two
protocols is that in the nonintegral protocol the load is equally distributed between
the two matched processors with no rounding. We consider two copies of the network
starting with the same initial distribution, one using our protocol and the other using
the nonintegral protocol. The two processes are coupled so that they use the same
matching at every time step.

Fix any initial distribution of K tokens to the nodes in V , and let �̄ = K/n.
For each time step t ≥ 0 and u ∈ V , let �t(u) be the number of tokens at u at the
end of step t of the original, integral protocol, and let �′t(u) be the number of tokens
at u at the end of step t in the nonintegral copy of the protocol. Also, for each time
step t ≥ 0, let Φ′

t =
∑

v∈V (�′t(v) − �̄)2. Note that if the total load in the system is
K, then for any t ≥ 0, Φ′

t ≤ K2. Notice that Φ′
t corresponds to the variance of the

load on the nodes, and it is easy to see that it is nonincreasing with time, which,
intuitively, means that successive applications of the load balancing protocol even out
the distribution of the tokens to the nodes.

Recall that γ = Λ/16∆. The performance of the nonintegral protocol was ana-
lyzed in terms of γ in [8]. The relevant result is the following lemma, which follows
immediately from Theorem 1 in that work.

Lemma 4.1. For any t ≥ 0,

E[Φ′
t+1 |Φ′

t] ≤ (1 − γ)Φ′
t.

Adapting the technique in [8] we can prove the following static load balancing
result for the nonintegral copy.

Lemma 4.2. If t ≥ γ−1(2 lnK + c lnn), then the probability that there is some
v ∈ V with |�′t(v) − �̄| > 1 is at most 1/nc.

Proof. By Lemma 4.1 we get

E[Φ′
t] = E[E[Φ′

t |Φ′
t−1] ] ≤ (1 − γ)E[Φ′

t−1].

By applying the same argument t times we get

E[Φ′
t] = (1 − γ)tΦ′

0

≤ Φ′
0e

−γt

≤ e−c lnn,

where in the last inequality we used the facts that Φ′
0 ≤ K2 and t ≥ γ−1(2 lnK +

c lnn). Applying Markov’s inequality yields Pr(Φ′
t > 1) < n−c.

We will now tie the performance of our protocol to the performance of the non-
integral copy.

Lemma 4.3. For any t ≥ 0 and any v ∈ V , |�t(v)− �′t(v)| ≤ t/2, regardless of the
chosen matchings and the rounding decisions in the original protocol.

Proof. The proof is by induction on t ≥ 0. If t = 0, then �t(v) = �′t(v) for every
v ∈ V , because no randomness has been introduced into the process yet. For the
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induction step, suppose that the lemma holds for time t. Choose any v ∈ V . If v is
not matched at time t+1, then �t+1(v) = �t(v) and �′t+1(v) = �′t(v), so the lemma holds
by the induction hypothesis. Otherwise, v is matched to some vertex u at time t+1. In
this case, for any rounding choice, (�t(u)+�t(v)−1)/2 ≤ �t+1(v) ≤ (�t(u)+�t(v)+1)/2.
Also, �′t+1(v) = (�′t(u) + �′t(v))/2. These observations give

|�t+1(v) − �′t+1(v)|
(a)

≤ 1

2
+

∣∣∣∣�t(u) + �t(v)

2
− �′t(u) + �′t(v)

2

∣∣∣∣
(b)

≤ 1

2
+

1

2
|�t(u) − �′t(u)| + 1

2
|�t(v) − �′t(v)|

(c)

≤ 1

2
· t
2

+
1

2
· t
2

+
1

2

=
t + 1

2
,

where (a) follows from previous observations, (b) follows from the triangle inequality,
and (c) follows from the induction hypothesis.

Putting Lemmas 4.2 and 4.3 together yields the following theorem.
Theorem 4.4. Let t̂ = γ−1(2 lnK + c lnn). Then, for any t ≥ t̂, the probability

that there is some v ∈ V with |�t(v) − �̄| > 1 + t̂
2 is at most n−c.

Proof. We first prove the theorem for the case t = t̂. Regardless of the matchings
generated in the first t̂ steps, |�t̂(v) − �′

t̂
(v)| ≤ t̂/2 for every v ∈ V by Lemma 4.3.

With probability at least 1−1/nc, |�′
t̂
(v)− �̄| ≤ 1 for all v ∈ V by Lemma 4.2. Adding

these inequalities proves the theorem for the case t = t̂. To extend the result for the
case t > t̂, notice that the sequence {maxv∈V |�t(v) − �̄|}t≥t̂ is nonincreasing.

5. Analysis of the dynamic case. In order to analyze the long-term perfor-
mance of the system, we split the time into epochs of a fixed length TE (to be defined
later). We analyze each epoch in Theorem 5.1, which is the key ingredient in showing
the stability and waiting-time properties of the system. Notice that the first part of
the theorem, which we will apply for the stability result, holds for any protocol obey-
ing the rules of P, while the second part, which will be applied for the waiting-time
guarantees, uses protocol P∗.

Theorem 5.1. For any constant c > 0 and load Θ = Θn > 0, consider an epoch
of length TE = TD + TC , such that

TD ≥ γ−1(2 ln Θ + c lnn) and TC ≥ Θ

n
+

TD

2
+ 1.

1. Running protocol P, if at time τ the load is Lτ , then the system consumes at
least min{Lτ ,Θ} tokens in the next TE steps with probability at least 1−n−c.

2. Running protocol P∗, if at time τ the load is bounded by Θ, then with prob-
ability at least 1 − n−c, all the jobs that exist in the system at time τ will be
consumed by time τ + TE.

Proof. For the purpose of the analysis we split the epoch into two parts. In the
first TD steps we focus on the distribution of load between the processors, and in the
remaining TC steps we focus on the consumption of load by the processors (although
load is consumed throughout the whole execution by processors that have load).

We start by proving the first part of the theorem; a modification of that argument
gives the second part. To analyze the distribution of load between the processors, we
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couple the actual execution of the protocol in the first TD steps with an execution of
the protocol in a static setting that starts with a total load of exactly Θ and does not
generate or consume any jobs. We refer to the actual execution of the protocol as the
dynamic copy and the static execution as the static copy.

To formulate the coupling we color all the tokens (jobs) in the dynamic copy at
time τ by red and blue. A subset of M = min{Lτ ,Θ} tokens in the system at time τ
is colored red, and the rest are colored blue. We now place Θ tokens in the static
copy so that each node in the static copy starts the process with at least as many
tokens as the number of red tokens in the corresponding node of the dynamic copy.
New tokens that arrive through the execution of the dynamic copy are colored blue.

The executions of the two copies are coupled so that they use the same matching
in each step and the same rounding decisions. When we equalize (up to one) the load
between two vertices in the dynamic execution, we also equalize (up to one, using the
same rounding rule) the number of red tokens in the two nodes, keeping the total
number of red tokens in the two nodes as before (this can be achieved by recoloring
some tokens). Finally, after each matching we recolor the tokens in the nodes again,
preserving the total number of red tokens in each queue, but putting all the red tokens
in a queue ahead of all the blue tokens.

Lemma 5.2. At any time τ ≤ t ≤ τ + TD the number of red tokens in each node
of the dynamic copy is bounded by the number of tokens in the corresponding node in
the static copy.

Proof. We begin with some intuition. Initially the coloring of the tokens in the
dynamic copy is such that the claim holds. New tokens that enter the system in
the dynamic copy are colored blue, while no tokens in the static copy are removed.
Furthermore, the matching operations in both copies are coupled, so we expect that
if one node in the static copy gives half of its tokens to a neighbor, the same node in
the dynamic copy will do the same with its red tokens. Therefore, we expect that the
claim will hold at the next step. By induction, the lemma follows.

We now proceed formally by induction on t. The claim is true for t = τ by the
construction of the static copy. Assume that the claim holds after the execution of
step t − 1, and consider the load of node u after the execution of step t. If u was
not part of a matching in step t, then the load of the static copy did not change.
The number of red tokens of the dynamic copy either did not change or was reduced
by 1 if a red token was consumed. In both cases, using the induction hypothesis, the
number of red tokens in the dynamic copy after the execution of step t is bounded by
the number of tokens in the static copy of u.

Assume now that node u was matched with node v during step t. Recall that
every time step in the process can be decomposed into three substeps: the insertion
substep (where new load is created in the dynamic copy), the balancing substep (where
the matching is chosen and the nodes in both copies equalize their loads), and the
consumption substep (where the nonempty nodes in the dynamic copy consume a
job). With this in mind, we define some new variables:

• �it(u), �bt(u), �ct(u) are the total number of tokens at node u in the dynamic
copy immediately following the insertion, balancing, and consumption sub-
steps of time step t, respectively.

• rit(u), rbt (u), rct (u) are the number of red tokens at node u in the dynamic
copy at that time.

• sit(u), sbt(u), sct(u) are the number of tokens at node u in the static copy at
that time.
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We analyze each substep separately.
• Initially, by the induction hypothesis, we have

rct−1(u) ≤ sct−1(u), rct−1(v) ≤ sct−1(v).(5.1)

• After the insertion substep, we color the new tokens blue so the number of red
tokens remains the same:

rit(u) = rct−1(u), rit(v) = rct−1(v).(5.2)

The static copy does not accept new tokens, so

sit(u) = sct−1(u), sit(v) = sct−1(v).(5.3)

So from relations (5.1), (5.2), and (5.3) we get that

rit(u) ≤ sit(u), rit(v) ≤ sit(v).(5.4)

Notice also that the number of red tokens is bounded by the total number of
tokens, so

rit(u) ≤ �it(u), rit(v) ≤ �it(v).(5.5)

• After the balancing substep, we assume, without loss of generality, that the
rounding is such that

�bt(u) =

⌈
1

2
(�it(u) + �it(v))

⌉
, �bt(v) =

⌊
1

2
(�it(u) + �it(v))

⌋
.(5.6)

The results of the analysis of the static case in section 4 hold for an arbitrary
rounding procedure. Thus, in the static copy we perform the rounding so that

sbt(u) =

⌈
1

2
(sit(u) + sit(v))

⌉
, sbt(v) =

⌊
1

2
(sit(u) + sit(v))

⌋
.(5.7)

Finally, we recolor the tokens in the dynamic copy (we swap colors between some
tokens), so that

rbt (u) =

⌈
1

2
(rit(u) + rit(v))

⌉
, rbt (v) =

⌊
1

2
(rit(u) + rit(v))

⌋
.(5.8)

Then, using relation (5.4), we get

rbt (u) =

⌈
1

2
(rit(u) + rit(v))

⌉
≤

⌈
1

2
(sit(u) + sit(v))

⌉
= sbt(u)(5.9)

and

rbt (v) =

⌊
1

2
(rit(u) + rit(v))

⌋
≤

⌊
1

2
(sit(u) + sit(v))

⌋
= sbt(v).(5.10)

Notice that

rbt (u) + rbt (v) =

⌈
1

2
(rit(u) + rit(v))

⌉
+

⌊
1

2
(rit(u) + rit(v))

⌋
= rit(u) + rit(v),



LOAD BALANCING WITH STOCHASTIC ADVERSARIAL INPUT 625

which means that we haven’t changed the number of red tokens, and notice also that
by using relation (5.5) we get that

rbt (u) =

⌈
1

2
(rit(u) + rit(v))

⌉
≤

⌈
1

2
(�it(u) + �it(v))

⌉
= �bt(u)

and

rbt (v) =

⌊
1

2
(rit(u) + rit(v))

⌋
≤

⌊
1

2
(�it(u) + �it(v))

⌋
= �bt(v),

which ensure that the recoloring is valid (i.e., for both u and v, the number of the red
tokens is not more than the total number of tokens).

Finally, we recolor the tokens again (preserving the number of red tokens at each
node), so that every red token in a queue is ahead of every blue token in that queue.

• After the consumption substep, since some red tokens may be consumed, we
get that

rct (u) ≤ rbt (u), rct (v) ≤ rbt (v).(5.11)

In the static copy there are no tokens being consumed, so

sct(u) = sbt(u), sct(v) = sbt(v).(5.12)

Hence, from relations (5.9), (5.10), (5.11), and (5.12) we can finally prove the
induction hypothesis for step t:

rct (u) ≤ sct(u), rct (v) ≤ sct(v).

We now turn to studying the consumption phase. Applying Theorem 4.4 to the
execution of the static copy, we see that at time τ + TD (the reader can verify that
the condition of Theorem 4.4 holds for t = TD and K = Θ), with probability at least
1−n−c no node of the static copy has more than TD/2+Θ/n+1 ≤ TC tokens. Thus,
by Lemma 5.2, with the same probability, no node in the dynamic copy has more
than TC red tokens.

We continue to run the coupling from time τ + TD with this new coloring. When
balancing between two nodes, we recolor the tokens in exactly the same way as in
the distribution phase (see Lemma 5.2), so that, in particular, if a node has some red
tokens in its queue, then these tokens are at the front of the node’s queue, before the
blue tokens. In this case, notice that after a balancing substep, the maximum (over
all the nodes in the graph) number of tokens does not increase. In the consumption
substep the maximum (again, over all the nodes in the graph) number of red tokens
decreases by 1, since the red tokens are at the front of their queues. Since initially at
most TC red tokens are at a node with probability at least 1− n−c, we conclude that
with probability 1 − n−c, all the red tokens (which means at least M = min{Lτ ,Θ}
tokens) are consumed in this epoch. This completes the proof of the first part of the
theorem.

The proof of the second part of the theorem is almost identical to the first one.
We color initially all the Lτ ≤ Θ tokens of the dynamic copy at time τ red, while all
the subsequent ones are colored blue, and again we consider the coupled static copy.
Since now we are interested in the identities of the jobs that are being consumed, we
do not allow recolorings of the tokens.
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Notice though that protocol P∗ ensures that during the whole epoch, if a node
has both red and blue tokens in its queue, the red tokens are before the blue ones.
Moreover, the transfer phase of P∗ ensures that when node u is matched with node v,
they balance their red tokens (up to a difference of 1). Without loss of generality,
we assume that the rounding is such that if the ensemble of the red tokens in the
two nodes is odd, then node u ends up with one more red token. Hence equations
(5.8) remain true. We then perform the rounding in the static copy to ensure that
equations (5.7) remain true as well.

As an aside, notice that it may be the case that after the balancing substep,
node v’s total load is exactly one larger than u’s total load, in which case equations
(5.6) may become

�bt(u) =

⌊
1

2
(�it(u) + �it(v))

⌋
, �bt(v) =

⌈
1

2
(�it(u) + �it(v))

⌉
.

Here, however, we analyze only the distribution of the red tokens, so the analysis is
not affected by this fact.

Everything else is identical to the first part, and by the same reasoning we con-
clude that by the end of the distribution phase, for every node u, the number of red
tokens in the dynamic copy is bounded by the number of tokens in the static copy,
with probability at least 1−n−c, which, by applying Theorem 4.4, implies that every
node has at most TC red tokens.

Then, as in the first part, we can conclude that by the end of the consumption
phase all the red tokens—which are exactly the tokens that were in the system in the
beginning of the epoch—are consumed.

An immediate consequence of the analysis of the second part of Theorem 5.1
is the following lemma, which gives a bound on the expected time needed until the
initial load is distributed. We make use of the lemma in order to bound the expected
waiting time.

Lemma 5.3. Assume that we are given c,Θ, TD, TC , satisfying the conditions of
Theorem 5.1, and assume that we balance according to protocol P∗. If at time τ the
load is bounded by Θ, then the expected time needed until every node in the system
has at most TC of the initial jobs is bounded by 2TD for sufficiently large n. At every
time, when a node has some of the initial load, this is at the head of its queue.

Proof. The analysis is an extension of the proof of the second part of Theorem 5.1.
We color the initial load at time τ red, all the new incoming load blue, and we let T
be the time until every node in the network has at most TC red tokens. We perform
the same coupling as in Theorem 5.1 from time τ until time τ +T . During this whole
period the number of red tokens in the dynamic copy is bounded by the number of
tokens in the static copy. Since the red tokens are the oldest tokens in the system,
protocol P∗ ensures that if a node has some red tokens and some blue tokens, the red
tokens are always in front of the blue ones.

Thus, by the proof of Theorem 5.1, part 2, we get that T ≤ TC with probability
at least 1 − n−c. It follows that �T/TD� is stochastically dominated by a geometric
random variable with parameter 1 − n−c, so

E[T ] ≤ 1

1 − n−c
TD ≤ 2TD

for sufficiently large n.
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5.1. Stability. In this section we prove the stability of the system under a
(λ < 1, w, p > 2,M) stochastic adversary. The main technical tool that we use is
the following theorem, which follows immediately from [17, Corollary 2].

Theorem 5.4. Let X1, X2, . . . be a sequence of nonnegative random variables
satisfying the following conditions:

1. There exist positive numbers α = αn and Θ = Θn such that for all x1, . . . , xi

with xi > Θ,

E[Xi+1 −Xi |X1 = x1, . . . , Xi = xi] ≤ −α.

2. There exists a positive number ξ = ξn and a p = pn > 2 such that for all
x1, . . . , xi

E[|Xi+1 −Xi|p |X1 = x1, . . . , Xi = xi] ≤ ξ.

Then there exists Ξ = Ξ(X0, α,Θ, ξ) and t0 such that for all t ≥ t0,

E[Xt |X0] ≤ Ξ + max(0, X0 − Θ).

Furthermore, assuming that p is a constant with respect to n,

Ξ = O

(
Θ + α

(
1 +

ξ

αp

)3p
)

as n → ∞.

Our stability result is summarized in the following theorem.
Theorem 5.5. Suppose that we run protocol P with a (λ,w, p,M) adversary,

where λ < 1 and p > 2. Then

sup
t≥0

E[Lt |L0] = O(max(γ−1n(w + lnn)(1 + M)3p, L0)) as n → ∞.

Proof. We first present the high-level idea of the proof. Recall that Lt is the load
of the system at time t. We partition the time into epochs of some length d and apply
Theorem 5.4 to the subsequence {Ldi | i ≥ 0}. Using Theorem 5.1, we show that if
the load at the beginning of an epoch is above some threshold Θ, then the expected
load at the end of that epoch is strictly smaller by a significant amount, proving
condition 1 of Theorem 5.4. We then derive the required bound on the pth moment
L(i+1)d − Lid, establishing condition 2 of Theorem 5.4. Applying Theorem 5.4 then
gives the desired bound on the maximum expected load at the end of epochs. Finally,
we generalize to steps that are not multiples of d.

Let us now formalize the above argument. The two conditions that we want to
satisfy are

E[L(i+1)d − Lid |L0 = l0, Ld = ld, . . . , L(i−1)d = l(i−1)d, Lid = �id > Θ] ≤ −α,

E[|L(i+1)d − Lid|p |L0 = l0, Ld = ld, . . . , L(i−1)d = l(i−1)d, Lid = �id] ≤ ξ

for all (l0, l1, . . . , lid). In order to simplify the notation we denote

Li−1 = {L0 = l0, Ld = ld, . . . , L(i−1)d = l(i−1)d},

so the conditions become

E[L(i+1)d − Lid | Li−1, Lid = �id > Θ] ≤ −α,(5.13)

E[|L(i+1)d − Lid|p | Li−1, Lid] ≤ ξ.(5.14)
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Let

Θ = σγ−1n(w + lnn)(5.15)

for some constant σ that we will fix later. Also let

TD = γ−1(2 ln Θ + lnn) and TC =
Θ

n
+

TD

2
+ 1,

so that

TE = TD + TC

=
Θ

n
+ 3γ−1 ln Θ +

3

2
γ−1 lnn + 1

= σγ−1(w + lnn) + 3γ−1 lnσ + 3γ−1 ln γ−1 + 3γ−1 ln(w + lnn) +
9

2
γ−1 lnn + 1.

(5.16)

We let σ be such that TE/w is an integer, say k (we show later that such a σ exists),
so that TE is a multiple of the window size w, and define the epoch length

d = kw = TE .(5.17)

Notice that d = O(γ−1(w + lnn)), a fact that we use later. Fix some time t = id and
consider what happens in the case that Lt > Θ. By Theorem 5.1, part 1 (for c = 1),
we get that within d = TE steps the system consumes at least Θ units of load, with
probability at least 1− 1/n. Thus, the expected number of tokens consumed between
steps id and (i + 1)d is at least(

1 − 1

n

)
· Θ = σγ−1n(w + lnn) − σγ−1(w + lnn),(5.18)

independently of the past, and of any of the adversary’s decisions.
Since an epoch consists of k windows, by the definition of the adversary, the

expected injected new load in the system from time id until (i + 1)d, conditioned on
Li−1, is bounded by

kλnw = λnd.

Using (5.16) and (5.17) we can conclude that the expected new load injected by
the adversary, conditioned on the history, is bounded by

λnd = λσγ−1n(w + lnn) + 3λγ−1n lnσ

+ 3λγ−1n ln γ−1 + 3λγ−1n ln(w + lnn) +
9

2
λγ−1n lnn + λn

≤ λσγ−1n(w + lnn) + 3λγ−1n lnσ

+ 9λγ−1n ln(c′n) + 3λγ−1n ln(w + lnn) +
9

2
λγ−1n lnn + λn

= γ−1n(w + lnn)

[
λσ +

3λ lnσ

w + lnn
+

9λ ln(c′n)

w + lnn
+

3λ ln(w + lnn)

w + lnn

+
9λ lnn

2(w + lnn)
+

λ

γ−1(w + lnn)

]
,

(5.19)
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where the inequality follows from the fact that γ−1 ≤ c′n3 for some constant c′, since
Λ = Ω(n−2) for any connected graph. Therefore, from relations (5.18) and (5.19) we
get

E[L(i+1)d − Lid | Li−1] ≤ −σγ−1n(w + lnn) + γ−1n(w + lnn)[
λσ +

3λ lnσ

w + lnn
+

9λ ln(c′n)

w + lnn
+

3λ ln(w + lnn)

w + lnn

+
9λ lnn

2(w + lnn)
+

λ

γ−1(w + lnn)
+

σ

n

]
≤ −σγ−1n(w + lnn) + γ−1n(w + lnn)(λσ + Q),

for sufficiently large n, where Q is a constant independent of σ. Hence,

E[L(i+1)d − Lid | Li−1] ≤ −γ−1n(w + lnn)(σ − λσ −Q).

If

σ >
Q

1 − λ
,

then relation (5.13) is satisfied for sufficiently large n. We therefore let σ be the
smallest number that is greater than Q/(1−λ) that ensures that d = TE is a multiple
of the window size w. Notice that the fact that d is a continuous function of σ ensures
that such a value of σ exists and satisfies

σ ≤ 2Q

1 − λ
.

Thus condition 1 is satisfied for α = O(γ−1n(w + lnn)).
We now turn our attention to relation (5.14). Let Ji and Zi be the number of

tokens injected by the adversary and consumed by the processors, respectively, during
the ith epoch. We note that

|L(i+1)d − Lid|p = |Ji − Zi|p

≤ Jp
i + Zp

i

≤ Jp
i + dpnp,

(5.20)

where the last inequality follows from the fact that the system (deterministically)
consumes at most n tokens in every step.

We now bound E[Jp
i | Li−1, Lid]. Write Ji =

∑k−1
j=0 Yj , where

Yj =

w−1∑
t=0

Iid+jw+t

is the number of tokens injected by the adversary during the window [id + jw,
id + (j + 1)w − 1].

The second condition on the stochastic adversary gives, for all j,

E[Y p
j ] ≤ Mnpwp.

Applying Hölder’s inequality gives

Jp
i =

⎛
⎝k−1∑

j=0

Yj

⎞
⎠

p

≤

⎛
⎝k−1∑

j=0

1

⎞
⎠

p(1− 1
p ) ⎛

⎝k−1∑
j=0

Y p
j

⎞
⎠ = kp−1

k−1∑
j=0

Y p
j ,
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and therefore we get

E[Jp
i | Li−1, Lid] ≤ kpMnpwp.(5.21)

Therefore, relations (5.20) and (5.21) imply that relation (5.14) is satisfied with

ξ = kpMnpwp + dpnp = (M + 1)dpnp,

and by Theorem 5.4 we deduce that

sup
i≥0

E[Lid |L0] = O(max(γ−1n(w + lnn)(1 + M)3p, L0)).

We have now proven the theorem for t corresponding to the beginning of an epoch.
To finish the proof, we have for any t ≥ 0

E[Lt |L0] = E[L�t/d	d+(t−�t/d	d) |L0]

≤ E[L�t/d	d |L0] + E

⎡
⎣ t∑
j=�t/d	d

Ij

∣∣∣∣∣L0

⎤
⎦

≤ sup
i≥0

E[Lid |L0] + λnd

= O(max(γ−1n(w + lnn)(1 + M)3p, L0)).

Theorem 5.6. Given any initial load L0, with probability 1 there is an i ≥ 0,
such that Lid ≤ Θ for Θ defined as in (5.15).

Proof. For intuition, assume that the initial load L0 is above Θ. Then by relation
(5.13), we expect it to decrease below Θ after a sufficiently long time period. In order
to prove this fact, we use martingale techniques. Since the expected load decreases
independently of the past, we can couple the load with a supermartingale until it
drops below Θ. Then we can apply a martingale convergence theorem to show that
the supermartingale (and therefore the coupled system load) will eventually reach Θ.

Proceeding formally, we define a supermartingale {Yid | i ≥ 0} with respect to
the sequence {Lid | i ≥ 0}, where

Yid =

⎧⎨
⎩

max(L0,Θ) for i = 0,
Lid if L(i−1)d > Θ,
Θ if L(i−1)d ≤ Θ.

As long as Y(i−1)d > Θ the two sequences of random variables are identical. The
sequence Lid assumes a value ≤ Θ if and only if there is an index j such that Yjd = Θ.

The (nonnegative) supermartingale Yid converges with probability 1 to a random
variable Y (see [9, Theorem 5.1]), and since

E[Y(i+1)d | Yid > Θ] ≤ Yid − α

for some α > 0 (defined in the proof of Theorem 5.5), we have limi→∞ E[Yid] = Θ.
By applying Fatou’s lemma [6, p. 110] we get E[Y ] ≤ lim infi→∞ E[Yid] = Θ. Thus,
with probability 1 the sequence {Lid} assumes at some time jd a value less than or
equal to Θ.
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Corollary 5.7.

1. If the system starts with no load, then for sufficiently large n,

sup
t≥0

E[Lt] = O(γ−1n(w + lnn)(1 + M)3p).

2. For any starting conditions

lim sup
t→∞

E[Lt |L0] = O(γ−1n(w + lnn)(1 + M)3p) as n → ∞.

Proof. The first part follows from Theorem 5.5, while the second part uses also
Theorem 5.6.

5.2. Waiting time. Having established that the system is stable, the next im-
portant performance parameter is the waiting time of a job from the time it enters
the system until it is executed. For a given task that enters the system at time t,
let Wt be the number of steps until the task is executed. Following the discussion of
section 3, throughout this section we assume that we perform protocol P∗.

Theorem 5.8. Suppose that we run protocol P∗ with a (λ,w, p,M) adversary,
where λ < 1 and p > 2. Then

sup
t≥0

E[Wt |L0] = O(max(γ−1(w + lnn)(1 + M)3p, L0/n)) as n → ∞.

Proof. We begin with some intuition. By the results of section 5.1, we expect the
load Lt at time t to be low, namely, bounded by O(max(γ−1n(w+lnn)(1+M)3p, L0)).
We also expect that the distribution protocol will rapidly distribute this load among
the nodes (even if it is not already distributed, and regardless of any load that comes
in after time t)—this is formalized by Lemma 5.3. Once this load is evenly distributed,
it can be quickly consumed, since P∗ ensures that every node consumes the oldest
token in its queue at the end of every time step. Therefore, the expected time to
consume all the load is O(E[Lt]/n).

We now proceed formally. Assume that at some time t the load in the system
is Lt. We apply Lemma 5.3 with c = 1, Θ = Lt, TD = γ−1(2 lnLt + lnn) and

TC =
Θ

n
+

TD

2
+ 1,

and we get that the expected time, conditioned on any past event H, until all the
tokens that were present at time t are consumed (measured from time t) is at most

2TD + TC ≤ 4TC + TC = 5TC

for n ≥ 2. Thus for n ≥ 2,

E[Wt |Lt,H] ≤ 5TC =
5Lt

n
+

5γ−1

2
(2 lnLt + lnn) + 5.
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Consequently, for sufficiently large n, we have that for any t ≥ 0,

E[Wt |L0] =
∑
�t

E[Wt |L0, Lt = �t] · Pr(Lt = �t |L0)

≤
∑
�t

(
5�t
n

+
5γ−1

2
(2 ln �t + lnn) + 5

)
· Pr(Lt = �t |L0)

= E

[
5Lt

n
+

5γ−1

2
(2 lnLt + lnn) + 5

∣∣∣∣L0

]

=
5E[Lt |L0]

n
+

5γ−1

2
(2E[lnLt |L0] + lnn) + 5

≤ 5E[Lt |L0]

n
+

5γ−1

2
(2 lnE[Lt |L0] + lnn) + 5

= O(max(γ−1(w + lnn)(1 + M)3p, L0/n)),

where the second-to-last step follows from Jensen’s inequality applied to the concave
function f(x) = lnx, and the last step follows from Theorem 5.5.

Applying Theorem 5.6 we have the following.
Corollary 5.9.

1. If the system starts with no load, then for sufficiently large n,

sup
t≥0

E[Wt] = O(γ−1(w + lnn)(1 + M)3p).

2. For any starting conditions,

lim sup
t≥0

E[Wt |L0] = O(γ−1(w + lnn)(1 + M)3p) as n → ∞.

Proof. The first part follows from Theorem 5.8, while the second part uses also
Theorem 5.6.

5.3. Strongly bounded adversaries. Recall that a strongly bounded adver-
sary satisfies the additional requirement that for some constants α > 0, β ≥ 1, for
any ε > 0, the probability that the total number of new jobs that arrive in a given

interval of length w is greater than (1 + ε)λnw is bounded by e−αλnwεβ .
In this subsection we strengthen the preceding results for adversaries that are

strongly bounded. The Chernoff-type restrictions on the input stream allow us to get
high-probability results for the load and the waiting time.

5.3.1. High-probability bound on load. Our first result bounds the proba-
bility that at a given time point the load of the system is high.

Theorem 5.10. Consider a system where load is injected by a strongly bounded
adversary. Let Lt be the load of the system at time t. Then for any sufficiently large
constant c1 there exists a constant c′ > 0 such that

lim sup
t→∞

Pr(Lt > c1γ
−1n(w + lnn)) ≤ 3n−c′ .

The above holds without the limit if the system starts with no load.
Proof. Let Θ = c1γ

−1n(w + lnn). We observe the system at some time t, and
we need to bound the probability that the load at time t is above Θ. Therefore, we
assume that the load at time t is above Θ and calculate the probability of the events
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that may have led to such a load. If the load at some time t′ < t were smaller than Θ
(which holds with probability 1 as t → ∞ by Theorem 5.6), then from time t′ up to t
some rare events have taken place and increased the load much more than expected.
We bound the probability of those events, thus bounding the probability that the load
at time t is above Θ.

Similarly to Theorem 5.5, we split time into epochs of length

TE = c2γ
−1(w + lnn)

starting from time t and going backwards. The constant c2 (which depends on c1) is
chosen so that the epoch length is a multiple k of the window size (TE = kw). Let
B be the event {Lt ≥ Θ}, and for i ≤ t/TE let Bi be the event that the load of the
system is above Θ for exactly the last i epochs. More precisely,

Bi = {∀j = 0, . . . , i− 1 : Lt−jTE
≥ Θ, Lt−iTE

< Θ}.

Let Ct be the event that the load in the system was not always above Θ before time t.
Formally,

Ct = {∃t′ ≤ t : Lt′ ≤ Θ}.

Then we have

Pr(B | Ct) =

�t/TE	∑
i=1

Pr(Bi | Ct).(5.22)

To estimate Pr(Bi | Ct) we distinguish between two cases, depending on the total
load injected by the adversary during the i epochs immediately before t. Either the
adversary inserted a lot of new jobs during this time, or he inserted a reasonable
number of new jobs and the protocol failed to reduce the total load. Both cases are
intuitively unlikely: the first by the strong bound on the adversary, and the second
by the efficacy of the protocol. We bound the two cases separately and then use a
union bound. We fix a constant ε > 0 (whose actual value will be determined later)
and define M as the event that “the injected load during the i epochs immediately
preceding t is less than K = (1 + ε)iλnTE = (1 + ε)iλnkw.” Then we have

Pr(Bi | Ct) ≤ Pr(M|Ct) + Pr(Bi ∩M|Ct).(5.23)

We bound each term separately, starting with Pr(M|Ct). The first K jobs can
be distributed in the ik windows of the period in(

K + ik − 1

ik

)
(5.24)

ways.
We now bound the probability of each such distribution of the inserted jobs

(K1,K2, . . . ,Kik) (so that
∑ik

j=1 Kj = K). Recall that the expected number of jobs
during the jth time window is at most λnw. Define εj as the deviation of Kj above
λnw, namely,

εj = max

(
0,

K

λnw
− 1

)
.
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In other words, εj is such that

Kj = (1 + εj)λnw

if K > λnw and εj = 0 otherwise. Since
∑

Kj = K, we get that

ik∑
j=1

εj ≥ ikε.

By using the definition of the strongly bounded adversary, we can bound the probabil-
ity (conditioned on any past event) that in the jth window at least Kj were generated
by

e−αλnwεβj .

Therefore, the probability of a particular distribution (K1, . . . ,Kid) of the first K jobs
is bounded by ∏

e−αλnwεβj = e−αλnw
∑

εβj .

Since β ≥ 1, and
∑

εj ≥ ikε, we obtain
∑

εβj ≥ ikεβ (by raising to the βth power and
using Hölder’s inequality as in relation (5.21)), and the aforementioned probability
becomes

e−αλnwikεβ .

Together with (5.24) we get that

Pr(M|Ct) ≤
(
K + ik − 1

ik

)
e−αλnwikεβ

<

(
K + ik

ik

)
e−αλnwikεβ

≤
(

(K + ik)e

ik

)ik

e−αλnwikεβ

= eik ln(K+ik)+ik−αλnwikεβ−ik ln(ik)

≤ eik ln[ik((1+ε)λnw+1)]+ik−αλnwikεβ−ik ln(ik)

= eik ln[(1+ε)λnw+1]+ik−αλnwikεβ

< n−κi

(5.25)

for any constant κ and sufficiently large n.
Next we bound Pr(Bi ∩M|Ct). By Theorem 5.1, part 1, if at the beginning of

an epoch the load of the system is at least Θ, then the load decreases by at least Θ
with probability at least 1− n−c. This is the case for the last i− 1 epochs. However,
at time t− iTE the load of the system is below Θ, while at time t the load is above Θ.
Moreover we have assumed that the total new load is at most K = (1 + ε)iλnTE .
These facts imply that the consumed load is less than K, which in turn implies that
in fewer than

K

Θ
=

(1 + ε)λc2
c1

i


= µi
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epochs the consumed load was more than Θ. By making c1 sufficiently large and ε
sufficiently small, we can guarantee that µ < 1. In this case, the probability that,
among the i− 1 epochs, fewer than µi consumed at least Θ load can be bounded by

Pr(Bi ∩M|Ct) ≤
(

i− 1

(1 − µ)i

)(
1

nc

)(1−µ)i

≤
(
e(i− 1)

(1 − µ)i

)(1−µ)i(
1

nc

)(1−µ)i

=

(
n−c · e

1 − µ
· i− 1

i

)(1−µ)i

≤ n−(1−µ)(c−1)i.

(5.26)

By combining (5.23), (5.25), and (5.26) we get that

Pr(Bi | Ct) ≤ 2n−(1−µ)(c−1)i.

Finally, we estimate the probability that the load is above Θ at time t using
(5.22). If we make c and c1 sufficiently large, we get that (1 − µ)(c − 1) > 0, so the
sum converges and we get

Pr(B | Ct) =

�t/TE	∑
i=1

2n−(1−µ)(c−1)i ≤
∞∑
i=1

2n−(1−µ)(c−1)i ≤ 3n−(1−µ)(c−1).

From Theorem 5.6 we have limt→∞ Pr(Ct) = 1, which gives the result.

5.3.2. Waiting time. By Theorem 5.1, part 2, we get that if the load of the
system is bounded by Θ at some particular time, then with probability at least
1 − n−c ≥ 1 − n−c′ all the load that was in the system at that time is consumed
during the next TE steps. The limiting probability that the load of the system is
above Θ is bounded by 3n−c′ . Summing the failure probabilities proves the following.

Theorem 5.11. Consider a system whose load is injected by a strongly bounded
adversary. Let Wt be the wait of a job that arrived at time t.

lim inf
t→∞

Pr(Wt ≤ c2γ
−1(w + lnn)) ≥ 1 − 4n−c′ .

The above holds without the limit if the system starts with no load.

6. Work stealing and the generator models. In this section we compare
our results to the stochastic analysis of the work stealing load balancing protocol
in [4]. In the work stealing protocol, nodes initiate load balancing steps only when
their queues are empty. Concretely, after the new load generation, and before the
load consumption, if a node u is empty, it selects a random neighbor, say v. If the
load of v is �t(v), then v transfers half of its load to u, so that eventually u has load
��t(v)�, while v ends up with load ��t(v)�. Finally the nonempty nodes execute one
job from their queue. The advantage of the work stealing protocol is that the total
load balancing work in the network at any given time is proportional to the number
of processors with empty queues. In particular, as long as all the processors are
working, the network does not perform any load balancing. However, in this section
we show that the work stealing protocol is either unstable, or stable with expected
load exponential in n/d, where d is the minimum degree of the network. In contrast,
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protocol P is stable with expected load polynomial in n for any connected network
topology.

We prove the gap in performance between the two protocols in the job-generator
model introduced in [4]. We distinguish between two versions of this input model. In
the deterministic generator model, an adversary places λn job-generators in the pro-
cessors in an arbitrary fashion at the beginning of every step (having full information
of the history of the system), and each generator adds one new job to the processor on
which it is placed. In the stochastic job-generator model an adversary places n gen-
erators in the processors in an arbitrary fashion at the beginning of every time step
(again having full information of the history), and each generator adds one new job
to the processor on which it is placed with probability at most λ < 1, independently
of the other generators.

Notice that both of these adversaries are special cases of a strongly bounded
(λ,w, p,M) adversary, with w = 1, p = 3 and corresponding M being 0 for the
deterministic and a constant for the stochastic. The deterministic model is clearly
strongly bounded, while a standard Chernoff bound establishes the claim for the
stochastic model. Then by Theorems 2.2 and 2.3, we get that, in both cases, the
load and waiting time are bounded (both in expectation and with high probability)
by O(γ−1n lnn) and O(γ−1 lnn), respectively.

We contrast these results with the performance of the work stealing load balancing
protocol on similar input. Consider first a deterministic job-generator adversary that
adds, in each step, up to λn tokens to the n-node network. Let v be a node in
the network with degree d = o(n) (the claim is trivial for d = Ω(n), since then
n/d = O(1)). In each step, the adversary puts λn − d tokens in v and one token
in each of its neighbors. Since the queues of the d neighbors of v are never empty,
v never participates in a load balancing step, and so its load increases (unboundedly)
by λn− d− 1 in each step.

Consider now the stochastic job-generator adversarial input process. Assume
again a node v with minimal degree d = o(n), and assume that in each step the
adversary places exactly m = �n/(d + 1)� generators at v and at least m generators
at each of its neighbors. Let �t(v) denote the load at v at time t.

Define p = (2 + λm/(1 − λ))e−λm and assume that n is large, so that p < 1
(we use this fact later). Fix some time step t ≥ 1. If node v’s load did not increase
during this time step, then either v did not produce many jobs (at most 1) or one of
v’s neighbors (say ui, with degree dui ≥ d) was empty and chose to try to steal work
from v, so v gave away load. For the latter to happen, ui must have had no load (and
in particular must have not produced any load at time t) and must have randomly
chosen v out of its dui neighbors. Thus,

Pr(�t(v) − �t−1(v) < 1) ≤ (1 − λ)m + λm(1 − λ)m−1 +

d∑
i=1

1

dui

(1 − λ)m

≤ p,

(6.1)

conditioned on all past events.
We now construct a random sequence {�′t(v)}t≥0, and we show that it is stochas-

tically dominated by the sequence {�t(v)}, as follows. We have �′0(v) = 0, and for
t > 0,

�′t(v) =

{
�′t−1(v)/2 with probability p,

�′t−1(v) + 1 with probability 1 − p,
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with all the random choices being independent. Notice that by relation (6.1) the
load of node v decreases with probability at most p. Moreover, if the load of node v
decreases, the new load will be at least half of the old load, and hence each load
�t(v) stochastically dominates the corresponding �′t(v). Therefore we have E[�t(v)] ≥
E[�′t(v)].

Using the recursion

E[�′t(v)] =
p

2
E[�′t−1(v)] + (1 − p)(E[�′t−1(v)] + 1),

we compute

E[�′t(v)] =
2(1 − p)

p

[
1 −

(
1 − p

2

)t
]

and

E[Lt] ≥ E[�t(v)]

≥ E[�′t(v)]

=
2(1 − p)

p

[
1 −

(
1 − p

2

)t
]
.

Using the fact that p < 1, we get

lim inf
t→∞

E[Lt] ≥
2(1 − p)

p

= 2

(
1

p
− 1

)

=
2eλ� n

d+1�

2 + λ
1−λ

⌊
n

d+1

⌋ − 2.

Thus in the limit the expected total load in the system is at least exponential in n/d.
In particular, if the network’s minimum degree is constant, the expected total load in
the system is exponential in the size of the network!

7. Conclusion. We analyze a simple load balancing system and show that it
has many desirable steady state properties under a big variety of input conditions.
In particular, we derive low-degree polynomial bounds on the asymptotic expected
load and waiting times of jobs in the system, and we match these expected perfor-
mance results with high-probability results in a very natural restriction of the general
stochastic adversary model. While there are many stability results for similar sys-
tems in the literature, our analysis of waiting time, the strength of our bounds, and
our high-probability results are novel. In addition, our application of the Pemantle–
Rosenthal result reveals many of the challenges in using general adversaries and will
likely provide good insight for other applications. Finally, unlike much of the related
work, our results hold for arbitrary connected network topologies and are optimal for
the extremely important expander topology.

Plenty of open problems remain. In particular, our analysis cannot be easily
modified to handle the case λ = 1, since we do not count the load that is consumed
during the distribution phase of an epoch. Thus that case remains open. In addition,
it is unknown whether Markovian adversaries are weaker than the general adversaries
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that we analyze. A result along these lines would have important ramifications in
future analyses of network processes, since it would answer the question of whether
Markov chain techniques can fill the role of the more general Pemantle and Rosenthal
stochastic process results. And, of course, any results in an extension of our model
allowing for asynchronous communication between nodes, nonuniform job execution
time, and/or a continuous timescale would be very interesting.

Acknowledgments. We would like to thank the anonymous referees, whose
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Abstract. Kernel-based linear-threshold algorithms, such as support vector machines and
Perceptron-like algorithms, are among the best available techniques for solving pattern classifica-
tion problems. In this paper, we describe an extension of the classical Perceptron algorithm, called
second-order Perceptron, and analyze its performance within the mistake bound model of on-line
learning. The bound achieved by our algorithm depends on the sensitivity to second-order data
information and is the best known mistake bound for (efficient) kernel-based linear-threshold clas-
sifiers to date. This mistake bound, which strictly generalizes the well-known Perceptron bound,
is expressed in terms of the eigenvalues of the empirical data correlation matrix and depends on a
parameter controlling the sensitivity of the algorithm to the distribution of these eigenvalues. Since
the optimal setting of this parameter is not known a priori, we also analyze two variants of the
second-order Perceptron algorithm: one that adaptively sets the value of the parameter in terms of
the number of mistakes made so far, and one that is parameterless, based on pseudoinverses.
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1. Introduction. Research in linear-threshold classifiers has been recently re-
vamped by the popularity of kernel methods [1, 12, 36], a set of mathematical tools
used to efficiently represent complex nonlinear decision surfaces in terms of linear
classifiers in a high-dimensional feature space defined by kernel functions. To some
extent, statistical learning theories have been able to explain why kernel methods do
not suffer from the “curse of dimensionality”—that is, why they exhibit a remarkable
predictive power despite the fact that the kernel-induced feature space has very many
(possibly infinite) dimensions. However, these statistical results are often based on
quantities, like the “margin,” that provide only a superficial account of the way the
predictive power is affected by the geometry of the feature space.

A different approach to the analysis of linear-threshold classifiers is the mistake
bound model of on-line learning [28]. In this model, similarly to the framework of
competitive analysis, the learning algorithm must be able to sequentially classify
each sequence of data points making a number of mistakes not much bigger than
those made by the best fixed linear-threshold classifier in hindsight (the reference
predictor). The power of this approach resides in the fact that the excess loss of the
learning algorithm with respect to the reference predictor can be nicely bounded in
terms of the geometrical properties of any individual sequence on which the algorithm
is run. Furthermore, as shown in [9], mistake bounds have corresponding statistical
risk bounds that are not worse, and sometimes better, than those obtainable with a
direct statistical approach.
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So far, the best known mistake bound for kernel-based linear-threshold classifiers
was essentially the one achieved by the classical1 Perceptron algorithm [7, 32, 34].
In this paper we introduce an extension of the standard Perceptron algorithm, called
second-order Perceptron.

The standard Perceptron algorithm is a popular greedy method for learning linear-
threshold classifiers. Since the early sixties, it has been known that the performance
of the Perceptron algorithm is governed by simple geometrical properties of the in-
put data. As the Perceptron algorithm is essentially a gradient descent (first-order)
method, we improve on it by introducing sensitivity to second-order data information.
Our second-order algorithm combines the Perceptron’s gradient with a sparse (and
incrementally computed) version of the data correlation matrix. Our analysis shows
that the second-order Perceptron algorithm is able to exploit certain geometrical prop-
erties of the data which are missed by the first-order algorithm. In particular, our
bounds for the second-order algorithm depend on the distribution of the eigenvalues
of the correlation matrix for the observed data sequence, as opposed to the bound
for the first-order algorithm, relying only on trace information. A typical situation
where the second-order bound is substantially smaller than the first-order bound is
when the data lie on a flat ellipsoid, so that the eigenvalues of the correlation ma-
trix have sharply different magnitudes, whereas the trace is dominated by the largest
one.

In its basic form, the second-order Perceptron algorithm is parameterized by a
constant a > 0, which rules the extent to which the algorithm adapts to the “warped-
ness” of the data. In the limit as a goes to infinity our algorithm becomes the first-
order Perceptron algorithm and, in that limit, the second-order bound reduces to the
first-order one. The value of a affects performance in a significant way. The best
choice of a depends on information about the learning task that is typically not avail-
able ahead of time. We develop two variants of our algorithm and prove corresponding
mistake bounds. The first variant is an adaptive parameter version, while the second
variant eliminates parameter a and replaces standard matrix inversion with pseudo-
inversion. Again, the bounds we prove are able to capture the spectral properties of
the data.

In the next section, we take the classical Perceptron algorithm as a starting point
for defining and motivating our second-order extension. Our description steps through
an intermediate algorithm, called the whitened Perceptron algorithm, which serves as
an illustration of the kind of spectral behavior we mean. The section is concluded
with a precise definition of the learning model and with a description of the basic
notation used throughout the paper.

2. Perceptron and whitened Perceptron. The classical Perceptron algo-
rithm processes a stream of examples (xt, yt) one at a time in trials. In trial t the
algorithm receives an instance vector xt ∈ R

n and predicts the value of the un-
known label yt ∈ {−1,+1} associated with xt. The algorithm keeps a weight vector
wt ∈ R

n representing its internal state, and its prediction at time t is given by2

1Several kernel-based linear-threshold algorithms have been proposed and analyzed in recent
years, including relaxation methods [14], ROMMA [27], Alma [17], and variants thereof. All these
on-line algorithms are Perceptron-like, and their mistake bounds coincide with the one achieved by
the standard Perceptron algorithm.

2Here and throughout, superscript � denotes transposition. Also, sgn denotes the signum func-
tion sgn(z) = 1 if z ≥ 0 and sgn(z) = −1 otherwise (we conventionally give a positive sign to
zero).
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ŷt = sgn(w�
t xt) ∈ {−1, 1}. We say that the algorithm has made a mistake at trial t

if the prediction ŷt and the label yt disagree. In such a case the algorithm updates its
internal state according to the simple additive rule wt+1 = wt +yt xt, i.e., by moving
the old weight vector along the direction of the instance xt on which the algorithm
turned out to be wrong (with the “right” orientation determined by yt = −ŷt). If
ŷt = yt, no weight update is made (thus the number of mistakes is always equal to
the number of weight updates).

A sequence of examples is linearly separable if the instance vectors xt are consis-
tently labeled according to whether they lie on the positive (yt = +1) or the negative
(yt = −1) side of an unknown target hyperplane with normal vector u ∈ R

n and
passing through the origin. The well-known Perceptron convergence theorem [7, 32]
states that the Perceptron algorithm is guaranteed to make at most (R/γ)2 mistakes
on any number t of examples in a linearly separable sequence, where

R = max
1≤s≤t

‖xs‖,

γ = min
1≤s≤t

∣∣u�xt

∣∣.
This implies that cycling through any sequence of linearly separable examples will
eventually lead the Perceptron algorithm to compute a weight vector w ∈ R

n classi-
fying all examples correctly, i.e., such that yt = sgn(w�xt) for all t in the sequence.
The convergence speed is thus critically influenced by the degree of linear separability
of the examples, as expressed by the ratio (R/γ)2. Hence, those vectors xt which have
both a small projection component over u (i.e., they are “almost” orthogonal to u)
and have a large norm ‖xt‖ are the hardest ones for the Perceptron algorithm. The
situation is illustrated in Figure 2.1. Consider the case when the algorithm observes
instance vectors xt lying in the dotted circles on opposite sides of that figure. Such
vectors have small components along the direction of u; hence they are intuitively
irrelevant to the target vector. Still, such xt’s might significantly mislead the Percep-
tron algorithm (thereby slowing down its convergence). Trial t depicted in Figure 2.1
is a mistaken trial for the algorithm, since sgn(w�

t xt) �= sgn(u�xt) = yt = −1.
Now, the new weight vector wt+1 computed by the algorithm has a larger projection3

onto u than the old vector wt. But the algorithm’s prediction is based only upon the
direction of its current weight vector. Hence the step wt → wt+1 does not seem to
make satisfactory progress toward u.

Let us now turn to an algorithm which is related to both the first-order and
the second-order Perceptron algorithm (described in section 3). We call this algo-
rithm the whitened Perceptron algorithm. Strictly speaking, this is not an incremen-
tal algorithm. In fact, it assumes that all the instance vectors x1,x2, . . . ,xT ∈ R

n

are preliminarily available, and only the labels y1, y2, . . . , yT are hidden. For the
sake of simplicity, assume that these vectors span R

n. Therefore T ≥ n, the cor-
relation matrix M =

∑T
t=1 xt x�

t is full-rank, and M−1 exists. Also, since M is
positive definite, M−1/2 exists as well (see, e.g., [31, Chap. 3]). The whitened Per-
ceptron algorithm is simply the standard Perceptron algorithm run on the trans-
formed (whitened) sequence (M−1/2x1, y1), (M

−1/2x2, y2), . . . , (M
−1/2xT , yT ). The

transformation M−1/2 is called the whitening transform (see, e.g., [14]) and has the

3In its simplest form, the Perceptron convergence theorem exploits the measure of progress u�wt

and is based on the fact that under linear separability assumptions this measure steadily increases
through mistaken trials.
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u

wt

R

wt+1

ytxt

xt

γ

Fig. 2.1. Behavior of the Perceptron algorithm on extreme (though linearly separable) cases.
Here u denotes the hidden target vector, wt is the weight vector maintained by the algorithm at
the beginning of trial t, and xt is the instance vector observed in that trial. We are assuming that
all instances have bounded (Euclidean) length R and that the examples are linearly separable with
margin γ > 0 (so that no vector in the sequence of examples can lie within the two dotted lines
running parallel to the decision boundary of u). Since the angle between u and xt is (slightly)
larger than 90 degrees, the label yt is assigned the value −1. On the other hand, w�

t xt > 0 holds;
hence the algorithm makes a mistake. Now, xt lies exactly on one of the two dotted lines and
has maximal length R, but it has also a small projection along the direction of u, meaning that
the direction marked by xt is (almost) irrelevant to u. However, the simple additive rule of the
Perceptron algorithm makes the new weight vector wt+1 farther from u than the old one.

effect of reducing the correlation matrix of the transformed instances to the identity
matrix In. In fact,

T∑
t=1

(
M−1/2xt

)(
M−1/2xt

)�
=

T∑
t=1

M−1/2xt x�
t M

−1/2

= M−1/2M M−1/2

= In.

Again for the sake of simplicity, suppose that the original sequence of examples is
linearly separable: γ = mint yt u�xt > 0 for some unit norm vector u. Then the
whitened sequence is also linearly separable. In fact, hyperplane z = M1/2u separates
the whitened sequence with margin γ

/∥∥M1/2u
∥∥. By the aforementioned convergence

theorem, the number of mistakes made by the Perceptron algorithm on the whitened
sequence is thus at most

1

γ2

(
max

t

∥∥∥M−1/2xt

∥∥∥2
)∥∥∥M1/2u

∥∥∥2

=
1

γ2
max

t

(
x�
t M

−1xt

) (
u�Mu

)
.(2.1)

To appreciate the potential advantage of whitening the data, note that when the
instance vectors x1, . . . ,xT are very correlated the quadratic form x�

t M
−1xt tends
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u

wt

R

γ

pos. (+1) example

neg. (−1) example

Fig. 2.2. Scattering of data which the whitened (and the second-order) Perceptron algorithm
can take advantage of. Here all instance vectors lie on a flat ellipsoid enclosed in a ball of radius R.
The examples are linearly separable with margin γ > 0 via a hyperplane whose normal vector u is
aligned with the small axis of the ellipse. Thus for any instance vector xt the projection |u�xt|
onto u is “small” (though not smaller than γ). This does not make any difference for the standard
Perceptron algorithm, whose worst-case behavior is essentially ruled by the norm of the instances
lying in the two dotted circles (recall Figure 2.1).

to be quite small (the expression maxt

(
x�
t M

−1xt

)
might actually be regarded as

a measure of correlation of the instance vectors). Also, if the instances look like
those displayed in Figure 2.2, where the separating hyperplane vector u is strongly
correlated with a nondominant eigenvector of M (i.e., if all instances have a small
projected component onto u), then the bound in the right-hand side of (2.1) can be
significantly smaller than the corresponding mistake bound maxt ‖xt‖2/γ2 = R2/γ2

for the classical (nonwhitened) Perceptron algorithm.
For the sake of clarity, consider the degenerate case when all data points in Fig-

ure 2.2 are evenly spread over the two parallel lines at margin γ (so that the ellipse
sketched in that figure is maximally squashed along the direction of u). It is not hard
to argue that this symmetric scattering of data leads to the following eigenstructure
of matrix M : Let λmin and λmax be the minimal and the maximal eigenvalues of M ,
respectively. We have that the first eigenvector of M (the one associated with λmin)
is aligned with u, while the second eigenvector (associated with λmax) is orthogonal
to u (i.e., it is parallel to the two lines mentioned above). Let us denote by u⊥ a unit
norm vector orthogonal to u. Now, since u has unit norm, we have

λmin = u�Mu = u�

(
T∑

t=1

xt x�
t

)
u =

T∑
t=1

(u�xt)
2 = γ2 T.(2.2)

Also, since λmin +λmax =
∑T

t=1 ‖xt‖2 (see, e.g., section 3.1) and since, for all x ∈ R
n,
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(u�x)2 + ((u⊥)�x)2 = ‖x‖2, for each t = 1, . . . , T we can write

xtM
−1xt =

(u�xt)
2

λmin
+

((u⊥)�xt)
2

λmax
=

γ2

γ2 T
+

‖xt‖2 − γ2∑T
t=1 ‖xt‖2 − γ2 T

,(2.3)

where in the first step we used the singular value decomposition (SVD) of M (see Ap-
pendix D). Hence, combining (2.2) and (2.3) as in (2.1) and simplifying, we conclude
that in the extreme case we sketched, the number of mistakes made by the whitened
Perceptron algorithm can be bounded by

1

γ2
max

t

(
x�
t M

−1xt

) (
u�Mu

)
= 1 +

R2 T − γ2 T∑T
t=1 ‖xt‖2 − γ2 T

.

Note that this bound approaches 2 as the norm of the instance vectors xt approaches R
(which is just the hardest case for the standard Perceptron algorithm). Thus in this
case, unlike the standard Perceptron bound R2/γ2, the whitened Perceptron bound
tends to be a constant, independent of both the margin γ and the radius R of the ball
containing the data.

Learning model and notation. In the last part of this section we precisely
describe the learning model and introduce our notation (some of this notation has
been used earlier). The formal model we consider is the well-known mistake bound
model of incremental learning, introduced by Littlestone [28] (see also [2]) and further
investigated by many authors (see, e.g., [4, 10, 11, 20, 21, 25, 26, 29, 30, 39] and the
references therein).

In incremental or sequential models, learning proceeds in trials. In each trial
t = 1, 2, . . . , the algorithm observes an instance vector xt ∈ R

n (all vectors here
are understood to be column vectors) and then guesses a binary label ŷt ∈ {−1, 1}.
Before seeing the next vector xt+1, the true label yt ∈ {−1, 1} associated with xt

is revealed and the algorithm knows whether its guess ŷt for yt was correct or not.
In the latter case we say that the algorithm has made a mistake, and we call t a
mistaken trial. Each pair (xt, yt) we call an example, and a sequence of examples is
any sequence S = ((x1, y1), (x2, y2), . . . , (xT , yT )). No assumptions are made on the
mechanism generating the sequence of examples. Similarly to competitive analyses of
on-line algorithms [8], the goal of the learning algorithm is to minimize the amount by
which its total number of mistakes on an arbitrary sequence S exceeds some measure
of the performance of a fixed classifier (in a given comparison class) on the same
sequence S.

The comparison class we consider here is the set of linear-threshold classifiers
parametrized by the unit norm vectors {u ∈ R

n : ‖u‖ = 1}. Thus we speak of the
linear-threshold classifier u to mean the classifier h(x) = sgn(u�x). For technical
reasons, the number of mistakes of the learning algorithm will be compared to the cu-
mulative hinge loss (see, e.g., [19]) of the best linear-threshold classifier in the compar-
ison class. For any γ > 0, the hinge loss of the linear-threshold classifier u on example
(x, y) at margin γ is Dγ(u; (x, y)) = max{0, γ−yu�x}. Also, for a given sequence of

examples S = ((x1, y1), (x2, y2), . . . , (xT , yT )), let Dγ(u;S) =
∑T

t=1 Dγ(u; (xt, yt)).
Note that Dγ(u;S)/γ is a strict upper bound on the number of mistakes made by u
on the same sequence S. Moreover, if u linearly separates S with margin γ, i.e., if
yt u�xt ≥ γ for t = 1, . . . , T , then Dγ(u;S) = 0.

We will prove bounds on the number of mistakes having the general form

number of mistakes on S ≤ inf
γ>0

inf
u

(
Dγ(u;S)

γ
+

spectral(u;S)

γ

)
,
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where S is any sequence of examples and spectral(u;S) measures certain spectral
properties arising from the interaction between u and S. The mistake bound shown
above reveals how the algorithm is able to optimally trade off between the terms
Dγ(u;S) and spectral(u;S) using a single pass over an arbitrary data sequence.
This aggressive adaptation can be successfully exploited in settings different from the
mistake bound model. In fact, as mentioned in the conclusions, the linear-threshold
classifiers generated by the second-order Perceptron algorithm can be easily shown to
have a probability of mistake (risk) in the statistical model of pattern classification
(see, e.g., [13]) which is tightly related to the algorithm’s mistake bound. These
risk bounds are actually among the best achievable by any algorithm for learning
linear-threshold classifiers.

The rest of the paper is organized as follows. The next section describes and
analyzes the basic form of the second-order Perceptron algorithm and also shows how
to formulate the algorithm in dual form, thereby allowing the use of kernel functions.
In section 4 we analyze two variants of the basic algorithm: the first variant has
an adaptive parameter, and the second variant computes the pseudoinverse of the
correlation matrix instead of the standard inverse. Some toy experiments are reported
in section 5. Section 6 contains conclusions, final remarks, and open problems.

3. Second-order Perceptron, basic form. The second-order Perceptron al-
gorithm might be viewed as an incremental variant of the whitened Perceptron al-
gorithm; this means that the instances in the data sequence are not assumed to be
known beforehand. Besides, the second-order Perceptron algorithm is sparse; that is,
the whitening transform applied to each new incoming instance is based only on a
possibly very small subset of the instances observed so far.

In its basic form, the second-order Perceptron algorithm (described in Figure 3.1)
takes an input parameter a > 0. To compute its prediction in trial t the algorithm
uses an n-row matrix Xk−1 and an n-dimensional weight vector vk−1, where subscript
k − 1 indicates the number of times matrix X and vector v have been updated in
the first t − 1 trials. Initially, the algorithm sets X0 = ∅ (the empty matrix) and
v0 = 0. Upon receiving the tth instance xt ∈ R

n, the algorithm builds the augmented
matrix St = [Xk−1 xt ] (where xt is intended to be the last column of St) and

predicts the label yt of xt with ŷt = sgn

(
v�
k−1

(
aIn + St S

�
t

)−1
xt

)
, with In being

the n×n identity matrix (the addition of In guarantees that the above inverse always
exists). If ŷt �= yt, then a mistake occurs and the algorithm updates4 both vk−1 and
Xk−1. Vector vk−1 is updated using the Perceptron rule vk = vk−1 + yt xt, whereas
matrix Xk−1 is updated using Xk = St = [Xk−1 xt ]. Note that this update implies
XkX

�
k = Xk−1X

�
k−1 +xt x�

t . The new matrix Xk and the new vector vk will be used
in the next prediction. If ŷt = yt, no update takes place, and hence the algorithm is
mistake driven [28]. Also, just after an update, matrix Xk has as many columns as the
number of mistakes made by the algorithm so far. Note that, unlike the Perceptron
algorithm, here wt does depend on xt (through St). Therefore the second-order
Perceptron algorithm, as described in Figure 3.1, is not a linear-threshold predictor.

Our algorithm might be viewed as an adaptation to on-line binary classification
of the ridge regression [23] method. Indeed, our analysis is inspired by the analysis of
a variant of ridge regression recently introduced by Vovk [40] and further studied by
Azoury and Warmuth [5] and Forster and Warmuth [15]. This variant is an instance of
Vovk’s general aggregating algorithm and is called the “forward algorithm” in [5]. Both

4In the degenerate case when xt = 0 no update is performed.
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Parameter: a > 0.
Initialization: X0 = ∅; v0 = 0; k = 1.
Repeat for t = 1, 2, . . . :

1. get instance xt ∈ R
n;

2. set St = [Xk−1 xt ];
3. predict ŷt = sgn(w�

t xt) ∈ {−1,+1},
where wt =

(
aIn + St S

�
t

)−1
vk−1;

4. get label yt ∈ {−1,+1};
5. if ŷt �= yt, then:

vk = vk−1 + yt xt,

Xk = St,

k ← k + 1.

Fig. 3.1. The second-order Perceptron algorithm with parameter a > 0.

our algorithm and the forward algorithm predict with a weight vector wt given by the
product of the inverse correlation matrix from past trials and a linear combination of
past instance vectors. In both cases the current instance xt is incorporated into the
current correlation matrix before prediction. However, unlike the forward algorithm,
we only keep track of past trials where the algorithm made a mistake. To complete this
qualitative analogy, we note that the analysis of our algorithm uses tools developed
in [5] for the forward algorithm.

The reader might wonder whether this nonlinear dependence on the current in-
stance is somehow necessary. As a matter of fact, if in Figure 3.1 we predicted
using Xk−1 instead of the augmented matrix St, then the resulting algorithm would
be a linear-threshold algorithm.5 It is easy to show that the margin value yt w�

t xt

achieved by the latter algorithm is always equal to the margin value of the algorithm
in Figure 3.1 multiplied by a positive quantity depending on all instances observed

5In this case, the weight vector wt computed when the algorithm is run on a sequence of examples
((x1, y1), . . . , (xt−1, yt−1)) can be defined by

wt = argmin
v

⎛
⎝ ∑

s∈Mt−1

(
v�xs − ys

)2
+ a ‖v‖2

⎞
⎠ ,

where Mt−1 is the set of all trials s ≤ t−1 such that ys w�
s xs < 0, and w0 = 0. This way of writing

the update rule shows that this version of the second-order Perceptron algorithm can also be viewed
as a sparse variant of an on-line ridge regression algorithm, whose prediction rule is ŷt = sgn(w�

t xt),
where the weight vector wt is just

wt = argmin
v

(
t−1∑
s=1

(
v�xs − ys

)2
+ a ‖v‖2

)
.

This is actually the approach to binary classification taken in [33], where it is called the regularized
least-squares classification (RLSC) method. The reader might also want to check [37] for an approach
having a similar flavor. This comparison also stresses the role played by the sparsity: First, our
algorithm is more efficient than RLSC, as we have only to store a (potentially small) submatrix
of the data correlation matrix—the algorithm becomes significantly more efficient on the “easy”
sequences where it makes very few mistakes. Second, the mistake-driven property, which causes
sparsity, is a key feature when deriving spectral bounds on the number of mistakes that hold for
arbitrary data sequences: no such bounds are currently known for RLSC.
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so far. Therefore, unlike the linear regression framework considered in [5, 40], for
binary classification the inclusion of the current instance makes no difference: run-
ning the two algorithms on the same sequence of examples would produce the same
sequence of predictions. This is true even for the second-order Perceptron algorithm
with pseudoinverse described in Figure 4.2 (section 4.2).

Hence, the algorithms in Figures 3.1 and 4.2 can be equivalently viewed as gener-
ators of linear-threshold classifiers. The reason we did not formulate our algorithms
directly in this way is threefold. First, the above equivalence does not hold in gen-
eral when parameter a changes with time, as in Figure 4.1 (section 4.1). Thus, in
order to maintain a uniform style of exposition, we preferred to keep the difference
between Figures 3.1, 4.2, and 4.1 as little as possible. Second, including the current
instance for prediction seems to be naturally suggested by the way we analyzed the
algorithms. Third, in scenarios where the margin plays a crucial role, such as the
information filtering problems studied in [9], including the current instance in the
margin computation seems to give a slight improvement in performance.

3.1. Analysis. We now claim the theoretical properties of our algorithm. The
following theorem is proved in Appendix A.

Theorem 3.1. The number m of mistakes made by the second-order Perceptron
algorithm of Figure 3.1, run on any finite sequence S = ((x1, y1), (x2, y2), . . . ) of
examples, satisfies

m ≤ inf
γ>0

min
‖u‖=1

⎛
⎝Dγ(u;S)

γ
+

1

γ

√√√√(a + u�Xm X�
mu)

n∑
i=1

ln (1 + λi/a)

⎞
⎠ ,

where λ1, . . . , λn are the eigenvalues of Xm X�
m.

Some remarks are in order.
First, observe that the quantity u�Xm X�

mu in the above bound always lies be-
tween mini λi and maxi λi. In particular, u�Xm X�

mu = λi when u is aligned with
the eigenvector associated with λi. This fact entails a trade-off between the hinge loss
term and the square-root term in the bound.

Second, the larger a gets, the more similar the “warping” matrix (aIn +St S
�
t )−1

becomes to the diagonal matrix a−1In. In fact, as the reader can see from Figure 3.1,
in the limit as a → ∞ the second-order Perceptron algorithm becomes the classical
Perceptron algorithm, and the bound in Theorem 3.1 takes the form

m ≤ inf
γ>0

min
‖u‖=1

⎛
⎝Dγ(u;S)

γ
+

1

γ

√√√√ n∑
i=1

λi

⎞
⎠ .

Now, since the trace of a matrix equals the sum of its eigenvalues and the nonzero
eigenvalues of Xm X�

m coincide with the nonzero eigenvalues of X�
m Xm, we can im-

mediately see that
∑n

i=1 λi = trace(X�
m Xm) =

∑
t∈M ‖xt‖2 ≤ m

(
maxt∈M ‖xt‖2

)
,

where M ⊆ {1, 2, . . . } is the set of indices of mistaken trials. Thus, setting R2 =
maxt∈M ‖xt‖2, we can solve the resulting bound for m. This gives

m ≤ inf
γ>0

min
‖u‖=1

(
R2

2 γ2
+

Dγ(u;S)

γ
+

R

γ

√
Dγ(u;S)

γ
+

R2

4 γ2

)
,

which is the Perceptron bound in the general nonseparable case [18]. This shows
that, in a certain sense, the second-order Perceptron algorithm strictly generalizes the
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classical Perceptron algorithm by introducing an additional parameter a. In general,
the larger a becomes, the more the algorithm in Figure 3.1 resembles the Perceptron
algorithm.

Third, in the linearly separable case the mistake bound for the Perceptron algo-
rithm is (R/γ)2. This bound is determined by the aforementioned trace inequality∑n

i=1 λi ≤ R2 m. The second-order algorithm, on the other hand, has the bound√
(a + u�Xm X�

mu)
∑n

i=1 ln (1 + λi/a) / γ, which is determined by the core spectral
quantity

(
a + u�Xm X�

mu
)∑n

i=1 ln (1 + λi/a). A quick comparison of the two bounds
suggests that data sequences that are linearly separable by hyperplanes whose nor-
mal vectors are nearly aligned with eigenvectors having small eigenvalues should be
advantageous for the second-order Perceptron algorithm (see Figure 2.2).

A more precise quantitative comparison between the two bounds might go as
follows. We first note that in order to carry out this comparison, we need to somehow
renounce the second-order dependence on the eigenvalues λi. Introduce the notation
λu = u�Xm X�

mu. We have

(a + λu)

n∑
i=1

ln (1 + λi/a) ≤ max
λ1,...,λn :

∑n
i=1 λi≤R2m

(a + λu)

n∑
i=1

ln (1 + λi/a)

= (a + λu) n ln

(
1 +

R2m

na

)
,

since the maximum is achieved when all λj are equal to R2m/n. Now, finding condi-
tions on the data for which the second-order algorithm is advantageous is reduced to
finding conditions on a, λu, and r = R2m/n such that

(a + λu) ln
(
1 +

r

a

)
≤ r(3.1)

is satisfied. The next lemma, proved in Appendix B through a simple derivative
argument, shows that if λu < r/2, then a = rλu/(r − 2λu) makes (3.1) a strict
inequality. With this setting of a, the smaller λu is when compared to r/2, the
smaller the left-hand side of (3.1) is when compared to the right-hand side, that is,
the smaller the second-order bound is when compared to the first-order one. Thus,
as we expected, if the data tend to be “flat” and u has irrelevant components along
the direction of large instance vectors (as in Figure 2.2), then it is convenient to pick
a small value of a. In particular, when λu is “small” the above setting of a becomes
a � λu (independent of r). On the other hand, the lemma also shows that whenever
λu ≥ r/2, then (3.1) is satisfied (as an equality) only for a → ∞. Thus when λu is
“not small” the best thing to do is to resort to the first-order algorithm.

Lemma 3.2. Let f(a, λ, r) = (a + λ) ln
(
1 + r

a

)
, where a, λ, r > 0. Then the

following hold:
1. lima→∞ f(a, λ, r) = r; moreover, if λ and r are such that λ ≥ r/2, then

f(a, λ, r) ≥ r for all a > 0.
2. If λ and r are such that λ < r/2, then setting a = a(λ, r) = rλ

r−2λ gets
f(a, λ, r) < r and lim2λ/r→0 f(a, λ, r)/r = 0.

We finally observe that the running time per trial of the second-order algorithm
is Θ(n2), since by the well-known Sherman–Morrison formula (see, e.g., [24, Chap. 0])
if x is a vector and A is a positive definite matrix, then so is B = A + xx� and

B−1 = A−1 −
(
A−1x

) (
A−1x

)�
1 + x�A−1x

.(3.2)
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This formula allows us to perform matrix inversion incrementally. In particular, since
the n×n positive definite matrix aIn+St S

�
t equals aIn+Xk−1 X

�
k−1+xtx

�
t , one can

compute in time Θ(n2) the n-dimensional vector
(
aIn + Xk−1 X

�
k−1

)−1
xt and use it

along with the Sherman–Morrison formula to obtain
(
aIn + St S

�
t

)−1
, again in time

Θ(n2).

3.2. The algorithm in dual variables and the use of kernel functions.
In this section we show that the second-order Perceptron algorithm can be equiva-
lently formulated in dual variables. This formulation allows us to run the algorithm
efficiently in any given reproducing kernel Hilbert space. As a consequence, we are
able to derive a kernel version of Theorem 3.1 where the mistake bound is expressed
in terms of the eigenvalues of the kernel Gram matrix.

We recall that a kernel function (see, e.g., [12, 36, 38]) is a nonnegative function
K : R

n × R
n → R satisfying

m∑
i=1

m∑
j=1

αi αj K(xi,xj) ≥ 0

for all α1, . . . , αm ∈ R, x1, . . . ,xm ∈ R
n, and m ∈ N (such functions are also called

positive definite). Given a kernel K, we can define the linear space

VK =

{
f(·) =

m∑
i=1

αi K(xi, ·) : αi ∈ R, xi ∈ R
n, i = 1, . . . ,m, m ∈ N

}
,

with norm defined by

‖f‖K =

√√√√ m∑
i=1

m∑
j=1

αi αj K(xi,xj) .

If this space is completed by adding all limit points of sequences f1, f2, . . . ∈ VK that
are convergent in the norm ‖f‖K , the resulting space, denoted by HK , is called the
reproducing kernel Hilbert space (induced by the kernel K). Classical examples of
kernel functions include the so-called polynomial kernel K(x,y) = (1+x�y)d, where
d is a positive integer, and the Gaussian kernel K(x,y) = exp(−‖x−y‖2/2σ2), σ > 0.

In practice, any algorithm depending on the instance vectors xi only through inner
products x�

i xj can be turned into a more general kernel version just by replacing the
standard inner products x�

i xj throughout by the kernel inner products K(xi,xj).
The following theorem is a slight modification of the dual formulation of the ridge

regression algorithm derived in [35].
Theorem 3.3. With the notation of Figure 3.1, let ỹt be the k-component vector

whose first k−1 components are the labels yi where the algorithm has made a mistake
up to trial t− 1 and whose last component is 0. Then, for all xt ∈ R

n, we have

v�
k−1

(
aIn + St S

�
t

)−1
xt = ỹ�

t (aIk + Gt)
−1 (

S�
t xt

)
,

where Gt = S�
t St is a k × k (Gram) matrix and Ik is the k-dimensional identity

matrix.
Proof. Recalling Figure 3.1, we have vk−1 = St ỹt. This implies

v�
k−1

(
aIn + St S

�
t

)−1
= ỹ�

t S
�
t

(
aIn + St S

�
t

)−1
.
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Thus we need only prove that

S�
t

(
aIn + St S

�
t

)−1
= (aIk + Gt)

−1
S�
t

holds. But this follows from, e.g., part (d) of Exercise 17 in [6, Chap. 1].
From a computational standpoint, we remark that the update rule of this algo-

rithm can exploit a known adjustment formula for partitioned matrices (see, e.g., [24,
Chap. 0]). This formula relates the inverse of a matrix to the inverses of some of its
submatrices. In our simple case, given a (k − 1) × (k − 1) positive definite matrix A,
a (k − 1)-dimensional column vector b, and a scalar c, we have

[
A b

b� c

]−1

=

[
A−1 + vv�/d −v/d

−v�/d 1/d

]
,

where v = A−1b and6 d = c − b�v can be computed with Θ(k2) multiplications.
Using the notation of Theorem 3.3 it is easy to see that

aIk + Gt =

[
aIk−1 + X�

k−1Xk−1 X�
k−1xt

x�
t Xk−1 a + x�

t xt

]
.

Thus, using the above formula for the inverse of partitioned matrices, it follows
that the k-dimensional matrix (aIk + Gt)

−1
can be computed incrementally from

the (k − 1)-dimensional matrix
(
aIk−1 + X�

k−1Xk−1

)−1
with only Θ(k2) extra dot

products. Also, sweeping through a sequence of T examples needs only Θ(m2 T ) dot
products, where m is upper bounded as in Theorem 3.1.

The following result is a kernel version of Theorem 3.1. The hinge loss of any
function f ∈ HK is defined by Dγ(f ; (x, y)) = max{0, γ − y f(x)}.

Corollary 3.4. The number m of mistakes made by the dual second-order Per-
ceptron algorithm with kernel K, run on any finite sequence S = ((x1, y1), (x2, y2), . . . )
of examples, satisfies

m ≤ inf
γ>0

min
‖f‖K=1

⎛
⎝Dγ(f ;S)

γ
+

1

γ

√√√√(
a +

∑
t∈M

f(xt)2

)∑
i

ln (1 + λi/a)

⎞
⎠ .

The numbers λi are the nonzero eigenvalues of the kernel Gram matrix with entries
K(xi,xj), where i, j ∈ M and M is the set of indices of mistaken trials.

Considerations similar to those made after the statement of Theorem 3.1 apply
here as well. Note that the number of nonzero eigenvalues λi of the kernel Gram
matrix is, in general, equal to m, since the very nature of kernel functions makes
the dimension of the space HK very large, possibly infinite (hence the kernel Gram
matrix is likely to be full-rank). Note also that if a linear kernel K(xi,xj) = x�

i xj is
used in Corollary 3.4, then the mistake bound of Theorem 3.1 is recovered exactly. To
see this observe that λu = u�Xm X�

mu =
∑

t∈M(u�xt)
2 and also that the nonzero

eigenvalues of the matrix Xm X�
m coincide with the nonzero eigenvalues of the Gram

matrix X�
mXm.

6The quantity d is called the Schur complement of the augmented matrix [
A b

b� c
] with respect to

matrix A. From the positive definiteness of both A and [
A b

b� c
] it follows that d > 0 (see, e.g., [24,

Chap. 7]).
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4. Getting rid of parameter a. A major drawback of the algorithm described
in Figure 3.1 is that its input parameter a is fixed ahead of time. It turns out that in
any practical application the value of this parameter significantly affects performance.
For instance, a bad choice of a might make the second-order Perceptron algorithm
similar to the first-order one, even in cases when the former should perform far better.

In this section we analyze two variants of the basic algorithm: The first variant
(section 4.1) is an adaptive parameter version of the algorithm in Figure 3.1; the
second variant (section 4.2) eliminates the need for the trade-off parameter a by
replacing the “warping” matrix (aIn + St S

�
t )−1 with the matrix (St S

�
t )+, i.e., the

pseudoinverse of St S
�
t .

4.1. Second-order Perceptron with adaptive parameter. In this section
we refine the arguments of section 3.1 by motivating and analyzing an adaptive pa-
rameter version of the algorithm in Figure 3.1. Ideally, we would like the resulting
algorithm to be able to learn on the fly the “best” a for the given data sequence, such
as the value of a that minimizes the bound in Theorem 3.1. The optimal a clearly
depends on unknown quantities, like the spectral structure of data and the unknown
target u. This ideal choice of a would be able to automatically turn the second-order
algorithm into a first-order one when the actual scattering of data has, say, spherical
symmetry. This is a typical eigenstructure of data which a second-order algorithm
cannot take advantage of.

To make our argument, we first note that the value of a in Theorem 3.1 affects
the bound only through the quantity

(a + λu)

n∑
i=1

ln (1 + λi/a) .(4.1)

In turn, both λu and the λi’s depend only on the examples where the algorithm has
made a mistake. Therefore it seems reasonable to let a change only in mistaken trials
(this keeps the algorithm mistake driven).

Our second-order algorithm with adaptive parameter is described in Figure 4.1.
The algorithm is the same as the one in Figure 3.1, except that we now feed the
algorithm with an increasing sequence of parameter values {ak}k=1,2,..., indexed by
the current number of mistakes k. The algorithm is analyzed in Theorem 4.1 below.
From the proof of that theorem (given in Appendix C) the reader can see that any
strictly increasing sequence {ak} results in a bound on the number of mistakes. In
Theorem 4.1 we actually picked a sequence which grows linearly with k. This choice
seems best according to the following simple upper bounding argument. Consider
again (4.1). As we noted in section 3.1,

(4.1) ≤ (a + λu)n ln

(
1 +

R2m

na

)
,(4.2)

where R = maxt∈M ‖xt‖. Now, from the Cauchy–Schwarz inequality one gets λu =∑
t∈M(u�xt)

2 ≤ R2m. On the other hand, if the data sequence is linearly separable

with margin γ > 0, then λu =
∑

t∈M(u�xt)
2 ≥ γ2m. Hence, in many interesting

cases, λu is linear in m. A further glance at (4.2) allows us to conclude that, viewed as
a function of m, the right-hand side of (4.2) cannot grow less than linearly. Moreover,
this minimal growth speed is achieved when a is a linear7 function of m.

7The reader will note that if a grows faster than linearly, then (4.2) is still linear in m. However,
the resulting (multiplicative) constants in (4.2) would be larger.
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Parameter sequence: {ak}k=1,2,..., ak+1 > ak > 0, k = 1, 2, . . . .
Initialization: X0 = ∅; v0 = 0; k = 1.
Repeat for t = 1, 2, . . . :

1. get instance xt ∈ R
n;

2. set St = [Xk−1 xt ];
3. predict ŷt = sgn(w�

t xt) ∈ {−1,+1},
where wt =

(
akIn + St S

�
t

)−1
vk−1;

4. get label yt ∈ {−1,+1};
5. if ŷt �= yt, then

vk = vk−1 + yt xt,

Xk = St,

k ← k + 1.

Fig. 4.1. The second-order Perceptron algorithm with increasing parameter sequence {ak}k=1,2,....

It is important to point out that this qualitative argument does not depend on
the number of nonzero eigenvalues of matrix Xm X�

m. For example, our conclusions
would not change even if all instances x1,x2, . . . lived in a small subspace of R

n or,
alternatively, if we mapped the same instances into a high-dimensional feature space
via a kernel function (see also the discussion after Corollary 3.4).

Theorem 4.1 below uses8 ak = cR2k, where c is a small positive constant. This
tuning captures the “right” order of growth of ak, up to a multiplicative constant c,
whose best choice depends again on unknown quantities.

Theorem 4.1. If the second-order Perceptron algorithm of Figure 4.1 is run
with parameter sequence ak = cR2k, where c > 0, on any finite sequence S =
((x1, y1), (x2, y2), . . . ) of examples such that ‖xt‖ ≤ R, then the total number m
of mistakes satisfies

m ≤ inf
γ>0

min
‖u‖=1

⎡
⎣Dγ(u;S)

γ
+

1

γ

√√√√(am + λu)

(
B(c,m) +

n∑
i=1

ln

(
1 +

λi

am

))⎤⎦ ,(4.3)

where λ1, . . . , λn are the eigenvalues of Xm X�
m, am = cR2m, and

B(c,m) =
1

c
ln

m + 1/c

1 + 1/c
.

To see why the algorithm with adaptive parameter might be advantageous over
the one with fixed parameter, recall the tuning argument around (3.1). There, it was
shown that the second-order algorithm is able to exploit the spectral properties of
data when λu is “small.” In such a case, a good tuning of a is a = rλu/(r − 2λu),
which, for small values of λu, becomes a � λu. Now, for the sake of concreteness, let
us focus on the linearly separable case. We have already observed that in this case
λu = c′R2m, where γ2/R2 ≤ c′ ≤ 1 and γ ∈ (0, R] is the minimal margin on the
data. We emphasize that the tuning a � λu = c′ R2m matches the one mentioned
in Theorem 4.1 up to a scaling factor. In particular, after comparing the bounds in

8The presence of the scaling factor R2 simplifies the analysis in Appendix C.
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Theorems 3.1 and 4.1, we see that Theorem 4.1 replaces a with am = cR2m, i.e., with
a function having a linear dependence on m. The price we pay for this substitution is
a further additive term B(c,m) which has a mild (logarithmic) dependence on m. The
resulting bound has an inconvenient implicit form. An upper bound on an explicit
solution can be clearly computed, but the calculations get overly complicated and do
not add any new insights into the heart of the matter. Therefore we feel justified in
omitting any further analytical detail.

As in section 3.2, one can derive a dual formulation of the algorithm in Figure 4.1
and prove a result similar to the one contained in Corollary 3.4.

In general, the total number of mistakes made by the algorithm conveys relevant
information about the specific dataset at hand. Using a parameter that scales with
this number allows one to partially exploit this information. Note, for instance, that
if the second-order algorithm of Figure 4.1 is making “many” mistakes (and c is not
too small), then the algorithm tends to behave as a first-order algorithm, since ak is
growing “fast.” In other words, we might view the algorithm as being able to detect
that its second-order structure is not suitable to the data it is processing, thereby
trying to turn itself into a first-order algorithm. On the other hand, if the algorithm
is making only a few mistakes, then ak tends to remain small, meaning that the
current second-order structure of the algorithm appears to be the right one for the
dataset at hand. This approach to parameter tuning is similar to the self-confident
tuning adopted in [3].

We finally note that, unlike the algorithm with fixed a, here incremental matrix
inversion looks a bit more troublesome. In fact, making a change from trial to trial
results in a matrix update which is no longer a low-rank adjustment. Therefore the
algorithm in Figure 4.1 (as well as its dual version) does not seem to have an update
rule requiring only a quadratic number of operations per trial.

4.2. Second-order Perceptron with pseudoinverse. A more radical way of
dealing with the trade-off parameter a is to set it to zero and replace the inverse
of aIn + StS

�
t with the pseudoinverse (StS

�
t )+. This is done in the algorithm of

Figure 4.2. The matrix (StS
�
t )+ does always exist and coincides with (StS

�
t )−1 in the

case when StS
�
t is nonsingular. In Appendix D we collected some relevant information

about pseudoinverses and their connection to the SVD. A classical reference in which
to learn about them is [6].

The following result is proved in Appendix E.

Theorem 4.2. If the second-order Perceptron algorithm of Figure 4.2 is run on
any finite sequence S = ((x1, y1), (x2, y2), . . . ) of examples such that ‖xt‖ ≤ R, then
the total number m of mistakes satisfies

m ≤ inf
γ>0

min
‖u‖=1

[
Dγ(u;S)

γ
+

1

γ

√
λu

(
r +

1

2
r(r + 1) ln

(
1 +

2R2

λ∗
m

r(r + 1)

))]
,

(4.4)

where r = rank(Xm X�
m) ≤ n and λ∗ is the minimum among the smallest positive

eigenvalues of the matrices Xk X
�
k , k = 1, . . . ,m, produced by the algorithm during

its run.

Inequality (4.4) depends on a lower bound on the positive eigenvalues of the cor-
relation matrices produced by the algorithm. In a sense, this dependence substitutes
the dependence on a in the bound of Theorem 3.1. In fact, adding the matrix aIn to
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Initialization: X0 = ∅; v0 = 0; k = 1.
Repeat for t = 1, 2, . . . :

1. get instance xt ∈ R
n;

2. set St = [Xk−1 xt ];
3. predict ŷt = sgn(w�

t xt) ∈ {−1,+1},
where wt =

(
St S

�
t

)+
vk−1;

4. get label yt ∈ {−1,+1};
5. if ŷt �= yt, then:

vk = vk−1 + yt xt,

Xk = St,

k ← k + 1.

Fig. 4.2. The second-order Perceptron algorithm with pseudoinverse.

the current correlation matrix of the data might be viewed as a way of setting a lower
bound on the positive eigenvalues of the resulting matrix.

As we have observed in section 4.1, when the data are linearly separable with
margin γ > 0 the quantity λu is linear in m. Thus, once we set λu = c′R2m, with
γ2/R2 ≤ c′ ≤ 1, and simplify, bound (4.4) takes the form

m ≤ c′R2

γ2

(
r +

1

2
r(r + 1) ln

(
1 +

2R2

λ∗
m

r(r + 1)

))
.(4.5)

As for Theorem 4.1, the two bounds (4.4) and (4.5) are in implicit form with respect
to m. The bounds can be made explicit at the cost of adding a few logarithmic terms.
Again, we decided not to carry out such calculations since they are not very insightful.

Comparing bounds (4.4) and (4.5) to the one in Theorem 3.1, one can see that
the second-order algorithm with pseudoinverse might be advantageous over the basic
version when the effective dimension r of the data is relatively small. Also, the bounds
(4.4) and (4.5) are nonvacuous only when r < m.

Actually, as for the algorithm in Figure 3.1, it is not hard to turn the algorithm
in Figure 4.2 into an equivalent dual form. Again, one can exploit known methods
to incrementally compute the pseudoinverse (see, e.g., the so-called Greville’s method
in [6]), reducing the computational cost per trial from cubic to quadratic.

Unfortunately, the bounds (4.4) and (4.5) are generally not useful in the presence
of kernel functions9 since the bounds have a linear10 dependence on r which cannot
be avoided in the worst case. This is due to the simple fact that each time the new
instance xt lies outside the column space of the previous matrix Xk−1 the pseudo-
inverse (St S

�
t )+ maps xt to the orthogonal space of this column space, so that the

algorithm has a degenerate margin w�
t xt = 0.

5. Simulations on a toy problem. With the purpose of empirically verifying
our theoretical results, we ran our second-order Perceptron algorithm on two sets of

9In the kernel case, r is likely to be equal to m, giving rise to a vacuous bound.
10Note that the quadratic dependence on r is essentially fictitious here since the r(r + 1) factor

occurs both at the numerator and at the denominator inside the logarithm.
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Fig. 5.1. Projection on the two most relevant coordinates of the 100-dimensional datasets used
in our simulations.

Table 5.1

Algorithm Mistakes, 1st dataset Mistakes, 2nd dataset

Perceptron 30.20 (6.24) 29.80 (8.16)
second-order Perceptron, a = 1 9.60 (2.94) 5.60 (2.80)
second-order Perceptron, a = 10 10.60 (2.58) 3.20 (1.47)
second-order Perceptron, a = 50 14.00 (4.36) 10.40 (6.05)

linearly separable data with 100 attributes. The two datasets are generated by sam-
pling a Gaussian distribution whose correlation matrix has a single dominant eigen-
value, the remaining eigenvalues having the same size (in the sample realizations, the
dominant eigenvalue is about eight times bigger than the others). In the first dataset
(leftmost plot in Figure 5.1), labels are assigned so that the separating hyperplane is
orthogonal to the eigenvector associated with the dominant eigenvalue. In the sec-
ond dataset (rightmost plot in Figure 5.1), labels are assigned so that the separating
hyperplane is orthogonal to the eigenvector associated with the first nondominant
eigenvalue in the natural ordering of the coordinates.

According to the remarks following Theorem 3.1, we expect the Perceptron algo-
rithm to perform similarly on both datasets (as the radius of the enclosing ball and
the margin do not change between datasets), whereas the second-order Perceptron
algorithm is expected to outperform the Perceptron algorithm on the second dataset.
This conjecture is supported by the results in Table 5.1. These results were obtained
by running the Perceptron algorithm and the second-order Perceptron algorithm (for
different values of parameter a) for two epochs on a training set of 9000 examples,
and then saving the final classifier generated by each algorithm after its last training
mistake. The numbers in the table are the average number of mistakes made by these
classifiers on a test set of 3000 examples, where the averages are computed over 5 ran-
dom permutations of the training set (standard deviations are shown in parentheses).
Normalizing the instances did not alter significantly Perceptron’s performance.

To offer a familiar context for the reader experienced in empirical comparisons of
learning algorithms, the predictive performance in our experiments has been evaluated
using the standard test error measure. However, we could have drawn the same
conclusions using, instead of the test error, the number of mistakes made by the
two algorithms during training. This quantity, which is the one we bound in our
theoretical results, is different from the standard training error, since in the on-line
model each new mistake is made by a different classifier. A theory accounting for the
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relationship between the fraction of mistakes in the on-line model and the test error
is developed in [9].

6. Conclusions and open problems. We have introduced a second-order Per-
ceptron algorithm, a new on-line binary classification algorithm for learning linear-
threshold functions. The algorithm is able to exploit certain spectral properties of
the data sequence, expressed as an interaction between the underlying target vector
and the eigenvalues of the correlation matrix of the data.

The second-order Perceptron algorithm retains the standard Perceptron’s key
properties of sparsity and efficient dual variable representation. This allows us to
efficiently run the algorithm in any reproducing kernel Hilbert space. We have proved
for this algorithm the best known mistake bound for efficient kernel-based linear-
threshold classifiers to date.

Since the performance of our algorithm is critically influenced by an input param-
eter a, whose optimal setting depends on the whole training set, we have developed
two variants of our basic algorithm. The first variant increases the parameter a as
a function of the number of mistakes made. The second variant avoids altogether
the parameter a by replacing the inverse correlation matrix (aI + XX�)−1 with the
pseudoinverse (XX�)+.

We have also run a simple experiment on synthetic data to give some evidence of
the theoretical properties of our algorithm (in its basic form).

Our second-order Perceptron algorithm might be seen as a new on-line classifica-
tion technique. As such, this technique could be combined with previous techniques,
such as the shifting target technique [4, 22] and the approximate on-line large margin
technique (see, e.g., [17, 27]).

As shown in [9], our analysis can be used to derive linear-threshold classifiers
whose statistical risk can be bounded, in probability, by quantities directly related
to the mistake bounds of Theorems 3.1, 4.1, and 4.2. The resulting data-dependent
generalization bounds are similar in spirit, though not readily comparable, to the
bounds given in [41, Thm. 5.2]. In fact, the results in [41] are derived, via involved
covering numbers arguments, in terms of the correlation matrix XX� of the whole
sequence of examples. More precisely, these results are expressed in terms of all
the “large” eigenvalues of XX�, taken in decreasing order of magnitude up to the
“effective number of dimensions.”11 In contrast to that, our bounds are in terms
of all the eigenvalues of the submatrix of XX� made up of instances where the
algorithm has made a mistake. In this sense, the sparsity of the solution produced by
our algorithm is directly reflected by the magnitude of the eigenvalues of the above
submatrix. To see this, go back to the primal variable form of Theorem 3.1 and observe
that adding rank-one matrices of type x x� to a correlation matrix XX� results in
a new correlation matrix whose eigenvalues can only be larger. Hence few mistakes
are equivalent to high sparsity, which, in turn, is equivalent to small eigenvalues.

We also observe that the application of mistake bounds to the statistical learning
setting is not straightforward for the whitened Perceptron algorithm described in
section 2. Since the whitening matrix M−1/2 depends on the whole training data, the
whitening transformation x → M−1/2x does not preserve stochastic independence
among the (whitened) instance vectors M−1/2x1, . . . ,M

−1/2xT .
There are several directions in which this work can be extended. In the following

we briefly mention three of them.

11The “effective number of dimensions” depends, for instance, on the margin of the data.
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First, it might be possible to refine the analysis of the second-order Perceptron al-
gorithm with adaptive parameter (Theorem 4.1). The linear growth of ak is certainly a
first step toward on-line parameter adaptation, though somewhat unsatisfactory since
it leaves the leading coefficient of ak unspecified. Moreover, we are not aware of any
incremental updating scheme for this algorithm (neither in primal nor in dual form).
Second, it might be possible to refine the analysis of the second-order Perceptron with
the pseudoinverse (Theorem 4.2) so as to eliminate the dependence on λ∗. Third, we
would like to combine the second-order classification technology with dual-norm al-
gorithms such as the p-norm algorithms [18, 20] and the Winnow/weighted majority
algorithms [28, 29, 30]. This would probably give rise to new attractive algorithms
for learning sparse linear-threshold functions.

Appendix A. Proof of Theorem 3.1. Fix an arbitrary finite sequence S =
((x1, y1), (x2, y2), . . . ), and let M ⊆ {1, 2, . . . } be the set of trials where the algorithm
of Figure 3.1 made a mistake. Let A0 = aIn and Ak = aIn + Xk X

�
k . We study the

evolution of v�
k A

−1
k vk over mistaken trials. Let t = tk be the trial where the kth

mistake occurred. We have

v�
k A

−1
k vk = (vk−1 + yt xt)

�
A−1

k (vk−1 + yt xt)

(since ŷt �= yt implies vk = vk−1 + yt xt)

= v�
k−1A

−1
k vk−1 + 2yt

(
A−1

k vk−1

)�
xt + x�

t A
−1
k xt

= v�
k−1A

−1
k vk−1 + 2yt w�

t xt + x�
t A

−1
k xt

(since ŷt �= yt implies Xk = St and A−1
k vk−1 = wt)

≤ v�
k−1A

−1
k vk−1 + x�

t A
−1
k xt

(since ŷt �= yt implies yt w�
t xt ≤ 0).

Now, note that Ak can be recursively defined using Ak = Ak−1 + xtx
�
t . Hence,

applying the Sherman–Morrison formula (3.2), we get

v�
k−1A

−1
k vk−1 = v�

k−1A
−1
k−1vk−1 −

(
v�
k−1A

−1
k−1xt

)2
1 + x�

t A
−1
k−1xt

≤ v�
k−1A

−1
k−1vk−1,

where the inequality holds since A−1
k−1 is the inverse of a positive definite matrix (and

so A−1
k−1 is positive definite). Thus we get

v�
k A

−1
k vk ≤ v�

k−1A
−1
k−1vk−1 + x�

t A
−1
k xt,

holding for all k = 1, . . . ,m = |M|. Summing the last inequality over k (or, equiva-
lently, over t ∈ M) and using v0 = 0 yields

v�
mA−1

m vm ≤
m∑

k=1

x�
t A

−1
k xt

=

m∑
k=1

(
1 − det(Ak−1)

det(Ak)

)

(using Lemma A.1 from [5] or Lemma D.1 in Appendix D)

≤
m∑

k=1

ln
det(Ak)

det(Ak−1)
(since 1 − x ≤ − lnx for all x > 0)
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= ln
det(Am)

det(A0)

= ln
det(aIn + XmX�

m)

det(aIn)

=

n∑
i=1

ln

(
1 +

λi

a

)
,(A.1)

where λ1, . . . , λn are the eigenvalues of Xm X�
m.

To conclude the proof, note that A
1/2
m does exist since Am is positive definite (see,

e.g., [31, Chap. 3]). Pick any unit norm vector u ∈ R
n and let z = A

1/2
m u. Then,

using the Cauchy–Schwarz inequality, we have√
v�
mA−1

m vm =
∥∥∥A−1/2

m vm

∥∥∥
≥

(
A

−1/2
m vm

)�
z

‖z‖

=
v�
mu√

u�Amu

=
v�
mu√

a + u�Xm X�
mu

≥ γ m−Dγ(u;S)√
a + u�Xm X�

mu
,(A.2)

where the last inequality follows from the very definition of Dγ(u;S) and holds for
any γ > 0. Putting together (A.1) and (A.2) and solving for m gives the statement
of the theorem.

Appendix B. Proof of Lemma 3.2. We first check the limiting behavior of f
as a function of a: we have f(a, λ, r) → ∞ as a → 0 and f(a, λ, r) → r as a → ∞ for
any fixed λ, r > 0. To prove the remainder of part 1, note that since ∂2f/∂a2 has the
same sign as

2 aλ + r λ− a r,(B.1)

it follows that when λ ≥ r/2, no choice of a > 0 exists, which makes (B.1) negative.
In this case, f(a, λ, r), viewed as a function of a, is convex and decreasing. Hence its
minimal value r is achieved only asymptotically (a → ∞).

When λ < r/2 a finite value of a exists which minimizes f . However, computing
the minimizing a analytically does not seem to be easy. Therefore we resort to the
approximation a = rλ

r−2λ , which is actually the value of a where (B.1) vanishes, i.e.,
where f changes concavity. To prove part 2 we set β = r/(2λ) > 1 and g(β) =

2β−1
2β(β−1) ln(2β − 1) = f( rλ

r−2λ , λ, r)/r. It thus suffices to show that g(β) < 1 for

all β > 1 and limβ→∞ g(β) = 0. The first statement can be proved by showing
that limβ→1 g(β) = 1 and that for any β > 1 the first derivative of ln(2β − 1) is

always smaller than the first derivative of 2β(β−1)
2β−1 . We omit the details of these

easy calculations. The second statement trivially follows from g(β) = O(lnβ/β), as
β → ∞.
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Appendix C. Proof of Theorem 4.1. The proof is a more refined version of
the proof of Theorem 3.1 and proceeds along the same lines.

Again, we assume that the kth mistake occurs when processing example (xt, yt),
t = tk, and we let M ⊆ {1, 2, . . . } be the set of trials where a mistake occurred. Let
Ak = akIn + Xk X

�
k , k = 1, 2, . . . , and A0 = a1In. We have

Ak = Ak−1 + (ak − ak−1)In + xtx
�
t , k = 1, 2, . . . ,(C.1)

where a0 = a1. We study the evolution of the quantity v�
k A

−1
k vk over mistaken trials.

As in the proof of Theorem 3.1, we have

v�
k A

−1
k vk ≤ v�

k−1A
−1
k vk−1 + x�

t A
−1
k xt.(C.2)

We need to bound v�
k−1A

−1
k vk−1 from above. From (C.1) we see that when k ≥ 2 the

matrix Ak is the sum of the nonsingular matrices Ak−1 and (ak − ak−1)In + xt x�
t

(the latter is nonsingular since ak > ak−1). Thus, when k ≥ 2, computing A−1
k can

be done through the general inversion formula

(B + C)−1 = B−1 −B−1(B−1 + C−1)−1B−1

with B = Ak−1 and C = (ak−ak−1)In+xt x�
t . Now, since both B and C are positive

definite, so is the matrix B−1(B−1 + C−1)−1B−1 (this easily follows from the fact
that the inverse of a positive definite matrix is again positive definite and that both
the sum and the product of two positive definite matrices give rise to positive definite
matrices). Hence if k ≥ 2, we can write

v�
k−1A

−1
k vk−1 = v�

k−1(B + C)−1vk−1

= v�
k−1

(
B−1 −B−1(B−1 + C−1)−1B−1

)
vk−1

≤ v�
k−1B

−1vk−1

= v�
k−1A

−1
k−1vk−1.(C.3)

On the other hand, when k = 1, inequality (C.3) is trivially true since v0 = 0.
Thus the inequality holds for all k ≥ 1. We plug (C.3) back into (C.2), sum over
k = 1, . . . ,m = |M|, and take into account that v0 = 0. We obtain

v�
mA−1

m vm ≤
m∑

k=1

x�
t A

−1
k xt

=

m∑
k=1

(
1 − det(Ak−1 + (ak − ak−1)In)

det(Ak)

)

(applying Lemma A.1 in [5] or Lemma D.1 in Appendix D to (C.1))

≤
m∑

k=1

ln
det(Ak)

det(Ak−1 + (ak − ak−1)In)
.(C.4)

The presence of matrix term (ak − ak−1)In makes the rest of the proof a bit more
involved than the proof of Theorem 3.1. Since we want to obtain bounds in terms
of eigenvalues of matrices, we rewrite the rightmost side of (C.4) as a function of the
eigenvalues of matrices Xk X

�
k . Let λk,i be the ith eigenvalue of matrix Xk X

�
k , with

λ0,i = 0. We can write

ln
det(Ak)

det(Ak−1 + (ak − ak−1)In)
=

n∑
i=1

ln
ak + λk,i

ak + λk−1,i
.
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Now, simple manipulations yield

m∑
k=1

n∑
i=1

ln
ak + λk,i

ak + λk−1,i
=

m∑
k=1

n∑
i=1

ln

(
ak

ak−1

ak−1 + λk−1,i

ak + λk,i

)
(recall that a0 = a1)

+

m∑
k=1

n∑
i=1

ln

(
ak + λk,i

ak + λk−1,i

)

+

n∑
i=1

ln

(
am + λm,i

am

)

=

m∑
k=1

n∑
i=1

ln

(
ak

ak−1

ak−1 + λk−1,i

ak + λk−1,i

)
+

n∑
i=1

ln

(
1 +

λm,i

am

)
.

Hence from (C.4) we have obtained

v�
mA−1

m vm ≤
m∑

k=1

n∑
i=1

ln

(
ak

ak−1

ak−1 + λk−1,i

ak + λk−1,i

)
+

n∑
i=1

ln

(
1 +

λm,i

am

)
.(C.5)

The reader can see that (C.5) is analogous to (A.1) but for the presence of a spurious
double sum term.

We turn to upper bounding the double sum in (C.5) as a function of m. We
proceed as follows. We first note that for k = 1 the inner sum is zero. Therefore we
continue by assuming k ≥ 2 in the inner sum. Since Xk−1 X

�
k−1 has size n×n and has

rank at most k − 1, only min{k − 1, n} among the eigenvalues λk−1,1, . . . , λk−1,n can
be nonzero. Also, as we have observed elsewhere, Xk−1 X

�
k−1 has the same nonzero

eigenvalues as the (Gram) matrix X�
k−1Xk−1. Since the trace of a matrix equals the

sum of its eigenvalues and the trace of X�
k−1Xk−1 is at most (k − 1)R2, we have, for

k = 2, . . . ,m,

n∑
i=1

ln

(
ak

ak−1

ak−1 + λk−1,i

ak + λk−1,i

)

≤ max

⎧⎨
⎩

k′∑
j=1

ln

(
ak

ak−1

ak−1 + µj

ak + µj

)
: µ1, . . . , µk′ ≥ 0,

k′∑
j=1

µj ≤ (k − 1)R2

⎫⎬
⎭ ,

where k′ = min{k− 1, n}. The maximum is achieved when all µj equal (k− 1)R2/k′.
Thus

n∑
i=1

ln

(
ak

ak−1

ak−1 + λk−1,i

ak + λk−1,i

)
≤ k′ ln

(
ak

ak−1

ak−1 + (k − 1)R2/k′

ak + (k − 1)R2/k′

)

= k′ ln

(
k′ ak ak−1 + ak (k − 1)R2

k′ ak ak−1 + ak−1 (k − 1)R2

)
(C.6)

for k = 2, 3, . . . ,m. Now, a derivative argument shows that the function f(x;α, β) =
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x ln
(
x+α
x+β

)
is increasing in x > 0 whenever α > β ≥ 0. Therefore we see that

(C.6) =
1

ak ak−1
f
(
ak ak−1k

′; ak(k − 1)R2, ak−1(k − 1)R2
)

≤ 1

ak ak−1
f
(
ak ak−1(k − 1); ak(k − 1)R2, ak−1(k − 1)R2

)
= (k − 1) ln

(
ak

ak−1

ak−1 + R2

ak + R2

)
.

Hence we can write

m∑
k=1

n∑
i=1

ln

(
ak

ak−1

ak−1 + λk−1,i

ak + λk−1,i

)
≤

m∑
k=2

(k − 1) ln

(
ak

ak−1

ak−1 + R2

ak + R2

)

=

m−1∑
k=1

k ln

(
k + 1

k

cR2k + R2

cR2(k + 1) + R2

)

(using ak = cR2k)

=

m−1∑
k=1

k ln

(
1 +

1

c k2 + c k + k

)

≤
m−1∑
k=1

1

c k + c + 1
(using ln(1 + x) ≤ x)

≤ 1

c

∫ m+1/c

1+1/c

dx

x

=
1

c
ln

m + 1/c

1 + 1/c

= B(c,m).

To bound
√

v�
mA−1

m vm from below, one can proceed as in the proof of Theorem 3.1,
yielding

√
v�
mA−1

m vm ≥ γ m−Dγ(u;S)√
am + u�Xm X�

mu
,

where am = cR2m. We plug this lower bound back into (C.5) together with the
previous upper bound. After rearranging we obtain

(
γ m−Dγ(u;S)√
am + u�Xm X�

mu

)2

≤ B(c,m) +

n∑
i=1

ln

(
1 +

λm,i

am

)
.

Solving for m occurring in the numerator of the left-hand side gives the desired bound.

Appendix D. Pseudoinverse and SVD of a matrix. In this section we
recall basic facts about the pseudoinverse and the SVD of a matrix. This background
material can be found, e.g., in [6]. We then exploit these facts to prove two technical
lemmas which will be used in the subsequent sections. These lemmas build on ancillary
results proven, e.g., in [5, 15, 16].
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The pseudoinverse of an n × n real matrix A is the (unique) n × n matrix A+

satisfying the following four conditions:

AA+A = A,

A+AA+ = A+,

(A+A)� = (A+ A),

(AA+)� = (AA+).

If the matrix is nonsingular, then the pseudoinverse coincides with the usual inverse,
i.e., A+ = A−1.

In order to state the properties of the pseudoinverse that we need, we exploit the
well-known connection between the pseudoinverse of a matrix and its SVD. In what
follows we will focus only on (symmetric) positive semidefinite matrices. This allows
us to simplify the exposition and replace the notion of singular value with the more
familiar notion of eigenvalue.

Let r ≤ n be the rank of A. An SVD of a matrix A takes the form A = U DU�,
where U is an orthogonal matrix (i.e., such that U U� = U�U = In), and D is a
diagonal matrix whose first r diagonal entries are the positive eigenvalues λ1, . . . , λr

of A, and the remaining entries are zero. The first r columns of U form an orthonormal
basis for span(A), the space spanned by the columns of A, whereas the remaining n−r
columns of U form an orthonormal basis for the orthogonal complement span⊥(A).
Recall that in the case under consideration, span⊥(A) coincides with null(A), the null
space of A.

A more convenient form of an SVD is one in which only the eigenvectors corre-
sponding to positive eigenvalues are shown. Let Ur be the n × r matrix made up
of the first r columns of U and let Dr be the r × r diagonal matrix whose diagonal
entries are the positive eigenvalues of A. Then one immediately sees that the finer
SVD holds:

A = Ur Dr U
�
r .(D.1)

Every positive semidefinite matrix admits an SVD like (D.1).
Given an SVD of a matrix, computing its pseudoinverse is a rather simple matter.

In particular, given (D.1), one can easily show that

A+ = Ur D
−1
r U�

r ,(D.2)

where D−1
r is the inverse of the (nonsingular) matrix Dr.

Many properties of pseudoinverses which are relevant to this paper can be derived
from (D.1) and (D.2). For instance, one can immediately see that, viewed as linear
transformations from R

n to R
n, both A+A and AA+ are the identical transformation

onto span(A) and the null transformation on span⊥(A), i.e.,

A+Ax = AA+x =

{
x if x ∈ span(A),

0 if x ∈ span⊥(A).
(D.3)

This property easily follows from the matrix identity

A+A = AA+ = Ur U
�
r .(D.4)

We are now ready to prove the following lemma, which generalizes the valuable
Lemma A.1 in [5] to positive semidefinite matrices.
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Lemma D.1. Let A be an arbitrary n × n positive semidefinite matrix, let x be
an arbitrary vector in R

n, and let B = A− x x�. Then

xA+ x =

{
1 if x /∈ span(B),

1 − det �=0(B)
det �=0(A) < 1 if x ∈ span(B),

(D.5)

where det�=0(M) denotes the product of the nonzero eigenvalues of matrix M . Note
that det�=0(M) = det(M) when M is nonsingular.

Proof. If x = 0, the lemma is trivially verified. Hence we continue by assuming
x �= 0. We first prove that x�A+x = 1 if and only if x /∈ span(B). From Lemma A.3
in [16] it follows that BA+x = 0 when x /∈ span(B). Hence, using (D.3) we can write

0 = BA+x = (A− xx�)A+x = x − x x�A+x,

which implies x�A+x = 1. On the other hand, if x ∈ span(B), we can always apply
the Sherman–Morrison formula (3.2) and conclude that

x�A+x = x�(B + x x�)+x =
x�B+x

1 + x�B+x
< 1.

Let us now continue by assuming x ∈ span(B). Let A = UrDrU
�
r be an SVD for A,

in the sense of (D.1). Since Ur U
�
r x = x we can write

B = A− xx� = UrMU�
r ,

where M is the r × r symmetric matrix M = Dr − U�
r xx�Ur. We now claim that

B and M have the same nonzero eigenvalues, so that det �=0(B) = det�=0(M). Let
µ1, µ2, . . . , µk, k ≤ r, be the nonzero eigenvalues of M and let e1, e2, . . . ,ek be the
corresponding orthonormal eigenvectors. It is then easy to verify that µ1, µ2, . . . , µk

are also eigenvalues of B with corresponding orthonormal eigenvectors Ure1, Ure2,
. . . , Urek. Let Ek be the orthonormal matrix whose columns are e1, e2, . . . ,ek, let
M = EkSkE

�
k be an SVD of M , and let v ∈ span⊥(UrEk). We have

Bv = UrMU�
r v = UrEkSkE

�
k U�

r v = 0,

where the last equality follows from the orthogonality v�UrEk = 0. Thus v ∈ null(B),
rank(B) = rank(M), and the only nonzero eigenvalues of B are µ1, µ2, . . . , µk.

Computing the nonzero eigenvalues of M is actually fairly straightforward. We
have

M = Dr − U�
r xx�Ur = Dr(Ir −D−1

r U�
r xx�Ur).

Now, det�=0(Dr) = det(Dr) = det�=0(A), while it is easy to verify by direct inspection
that the matrix Ir − D−1

r U�
r xx�Ur has eigenvalue 1 with multiplicity r − 1 corre-

sponding to r− 1 eigenvectors forming an orthogonal basis for span⊥(D−1
r U�

r x), and
eigenvalue 1 − x�UrD

−1
r U�

r x = 1 − x�A+x corresponding to eigenvector D−1
r U�

r x.
Since x ∈ span(B) we already know that 1−x�A+x > 0. Therefore we have obtained

det
�=0

(B) = det
�=0

(M) = det(Dr) det
�=0

(Ir −D−1
r U�

r xx�Ur) = det
�=0

(A)(1 − x�A+x).

Rearranging gives the desired result.
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Lemma D.2. Let A be an arbitrary n × n positive semidefinite matrix. Set
B = A−x x�, where x /∈ span(B). Then for any v,w ∈ span(B) we have v�A+w =
v�B+w.

Proof. We have

v�A+w = v�B+BA+w

(by (D.3) and the fact that v ∈ span(B))

= v�B+(A− xx�)A+w

= v�B+AA+w − v�B+x x�A+w

= v�B+w − v�B+x x�A+w

(by (D.3) and the fact that w ∈ span(B) ⊆ span(A))

= v�B+w

(since x�A+w = 0 by Lemma A.3 in [16]).

Appendix E. Proof of Theorem 4.2. The proof is again similar to the proof
of Theorem 3.1.

Let M ⊆ {1, 2, . . . } be the set of trials where the algorithm in Figure 4.2 made a
mistake, and let Ak = Xk X

�
k , k = 1, . . . ,m = |M|. We investigate how the quadratic

form v�
k A

+
k vk changes over mistaken trials. Suppose the kth mistake occurred in trial

t = tk. Proceeding as in the proof of Theorem 3.1, one can show that

v�
k A

+
k vk ≤ v�

k−1A
+
k vk−1 + x�

t A
+
k xt.(E.1)

Now, as in the proof of Theorem 3.1, if xt ∈ span(Ak), we can apply the Sherman–
Morrison formula (3.2) and obtain v�

k−1A
+
k vk−1 ≤ v�

k−1A
+
k−1vk−1. On the other

hand, in the case when xt /∈ span(Ak) we can apply Lemma D.2 and conclude that
v�
k−1A

+
k vk−1 = v�

k−1A
+
k−1vk−1. Thus in both cases v�

k−1A
+
k vk−1 ≤ v�

k−1A
+
k−1vk−1.

Combining with (E.1) we obtain

v�
k A

+
k vk ≤ v�

k−1A
+
k−1vk−1 + x�

t A
+
k xt,

holding for all k = 1, . . . ,m. We now sum over k = 1, . . . ,m using v0 = 0. We get

v�
mA+

mvm ≤
m∑

k=1

x�
t A

+
k xt.(E.2)

In order to upper bound the right-hand side of (E.2), we proceed as follows. We
separate the mistaken trials k such that xt ∈ span(Ak−1) (i.e., the trials such that
rank(Ak) = rank(Ak−1)) from the mistaken trials k such that xt /∈ span(Ak−1) (i.e.,
the trials such that rank(Ak) = rank(Ak−1) + 1). Then, in applying Lemma D.1, we

count 1− det �=0(Ak−1)
det �=0(Ak) for the first kind of trials and 1 for the second kind. Finally, we

upper bound taking the worst possible case of arranging the two kinds of trials within
the sequence M, taking into account that the number of trials of the second kind is
equal to r = rank(Am).

We assume the following general scenario:

rank(Ak) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, k = 1, 2, . . . , 1 + i1,

2, k = 2 + i1, 3 + i1, . . . , 2 + i2,

3, k = 3 + i2, 4 + i2, . . . , 3 + i3,
...

r, k = r + ir−1, r + ir−1 + 1, . . . , r + ir,
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where 0 ≤ i1 ≤ i2 ≤ · · · ≤ ir = m− r. With this notation the right-hand side of (E.2)
can be rewritten as follows (here and in what follows we assume i0 = 0):

m∑
k=1

x�
t A

+
k xt =

r∑
�=1

⎛
⎝x�

t A
+
�+i�−1

xt +

�+i�∑
k=�+i�−1+1

x�
t A

+
k xt

⎞
⎠

=
r∑

�=1

⎛
⎝1 +

�+i�∑
k=�+i�−1+1

(
1 − det�=0(Ak−1)

det�=0(Ak)

)⎞⎠ (using Lemma D.1)

= r +

r∑
�=1

�+i�∑
k=�+i�−1+1

(
1 − det�=0(Ak−1)

det�=0(Ak)

)

≤ r +

r∑
�=1

�+i�∑
k=�+i�−1+1

ln
det�=0(Ak)

det�=0(Ak−1)

= r +

r∑
�=1

ln
det�=0(A�+i�)

det�=0(A�+i�−1
)
.(E.3)

We now proceed by bounding from above the logarithmic terms in (E.3). By con-
struction we have rank(A�+i�) = rank(A�+i�−1

) = �, which is also equal to the number
of nonzero eigenvalues of the two matrices. Let λi, i = 1, . . . , �, denote the positive
eigenvalues of A�+i�−1

. Since A�+i� − A�+i�−1
is positive semidefinite, the positive

eigenvalues of A�+i� can be expressed as λi + µi, i = 1, . . . , �, for some nonnegative

values µi, such that
∑�

i=1 µi ≤ d� R
2, where d� = i� − i�−1 is the number of rank-one

matrices of the form xt x�
t which have been added to A�+i�−1

in order to obtain A�+i� .
We have

ln
det�=0(A�+i�)

det�=0(A�+i�−1
)

= ln
�∏

i=1

λi + µi

λi

≤
�∑

i=1

ln
(
1 +

µi

λ∗

)
(recall that λ∗ ≤ λi, i = 1, . . . , �)

≤ max
µ1,...,µ� :

∑�
i=1 µi≤R2d�

�∑
i=1

ln
(
1 +

µi

λ∗

)

= � ln

(
1 +

R2d�
λ∗�

)

since the maximum is achieved when µi = R2d�/�, i = 1, . . . , �. Now, since
∑r

�=1 d� =
m − r ≤ m, we can plug back into (E.3) and maximize over d1, . . . , dr such that∑r

�=1 d� ≤ m. We have

∑
t∈M

x�
t A

+
k xt ≤ r +

r∑
�=1

� ln

(
1 +

R2d�
λ∗�

)

≤ r + max
d1,...,dr :

∑r
�=1 d�≤m

r∑
�=1

� ln

(
1 +

R2d�
λ∗�

)
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= r +
r(r + 1)

2
ln

(
1 +

2R2

λ∗
m

r(r + 1)

)
(E.4)

(since the maximum is achieved when d� = 2 �m
r(r+1) , � = 1, . . . , r),

which is the required upper bound on the right-hand side of (E.2).

When u /∈ span⊥(Am) we can bound
√

v�
mA+

mvm from below as in the proof of
Theorem 3.1. This yields √

v�
mA+

mvm ≥ γ m−Dγ(u;S)√
u�Xm X�

mu
.

Plugging back into (E.2) and combining with (E.4) gives

(
γ m−Dγ(u;S)√

u�Xm X�
mu

)2

≤ r +
r(r + 1)

2
ln

(
1 +

2R2

λ∗
m

r(r + 1)

)
.

Solving for m occurring in the numerator of the left-hand side gives (4.4). On the

other hand, when u ∈ span⊥(Am) we have
Dγ(u;S)

γ = m and u�Xm X�
mu = 0, and

thus (4.4) is vacuously verified as an equality.
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NONMIGRATORY ONLINE DEADLINE SCHEDULING
ON MULTIPROCESSORS∗

HO-LEUNG CHAN† , TAK-WAH LAM† , AND KAR-KEUNG TO†

Abstract. In this paper we consider multiprocessor scheduling with hard deadlines and inves-
tigate the cost of eliminating migration in the online setting. Let I be any set of jobs that can
be completed by some migratory offline schedule on m processors. We show that I can also be
completed by a nonmigratory online schedule using m speed-5.828 processors (i.e., processors 5.828
times faster). This result supplements the previous results that I can also be completed by a non-
migratory offline schedule using 6m unit-speed processors [B. Kalyanasundaram and K. R. Pruhs,
J. Algorithms, 38 (2001), pp. 2–24] or a migratory online schedule using m speed-2 processors [C. A.
Phillips et al., Algorithmica, 32 (2002), pp. 163–200]. Our result is based on a simple conservative
scheduling algorithm called PARK, which commits a processor to a job only when the processor has
zero commitment before its deadline. A careful analysis of PARK further shows that the processor
speed can be reduced arbitrarily close to 1 by exploiting more processors (say, using 16m speed-1.8
processors). PARK also finds application in overloaded systems; it gives the first online nonmigratory
algorithm that can exploit moderately faster processors to match the performance of any migratory
offline algorithm.
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1. Introduction. In this paper we consider the online hard-deadline schedul-
ing problem on multiprocessors; our focus is on eliminating migration among the
processors. The hard-deadline scheduling problem is defined as follows: There are
m identical processors. Given a set of jobs, each characterized by its release time,
deadline, and processing time (work), the objective is to schedule all the jobs on the
processors so that each job can be completed by its deadline. Note that each job can
be scheduled on at most one processor at any time. Preemption is allowed and a pre-
empted job can resume later from the point of preemption. If migration is allowed, a
job can resume on a different processor. From a practical point of view, nonmigratory
schedules are preferable since migration may incur significant overhead. Yet allowing
migration simplifies the design of scheduling algorithms.

Let I be a set of jobs that can be completed by an offline schedule that allows
migration. Kalyanasundaram and Pruhs [8] showed that migration is actually of
limited power in offline scheduling; given a migratory offline schedule on m processors,
it is always possible to construct a nonmigratory offline schedule on 6m−5 processors.1

On the other hand, scheduling I online (i.e., the information about a job is known
only when it is released) is very difficult even if migration is allowed. In fact, I does

∗Received by the editors October 3, 2003; accepted for publication September 13, 2004; published
electronically March 17, 2005. A preliminary version of this paper appeared in the Proceedings of the
15th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, ACM, New York,
2004, pp. 963–972. This research was supported in part by Hong Kong RGC grant HKU-7024/01E.

http://www.siam.org/journals/sicomp/34-3/43576.html
†Department of Computer Science, University of Hong Kong, Hong Kong (hlchan@cs.hku.hk,

twlam@cs.hku.hk, kkto@cs.hku.hk).
1The construction runs in pseudopolynomial time but can be improved to run in polynomial time

if the processor bound is raised from 6m− 5 to 12m− 5.

669



670 HO-LEUNG CHAN, TAK-WAH LAM, AND KAR-KEUNG TO

not admit any online schedule on m processors if m ≥ 2 [5].2 Nevertheless, Phillips
et al. showed that I can be completed by a migratory online schedule on m processors
that are two times faster [13]. Migration seems to be a necessary tool in all online
algorithms that are known to be able to complete I on m moderately faster processors
(e.g., EDF (earliest deadline first), LLF (least laxity first), FR [13, 11]).

Main result. In this paper we devise a conservative online algorithm to show
that I can be completed by a nonmigratory online schedule on m speed-5.828 pro-
cessors. This result supplements the result of Kalyanasundaram and Pruhs [8], as
it illustrates that allowing migration in the online setting also gives limited power.
A careful analysis of the new algorithm further shows that the speed requirement of
5.828 can also be reduced arbitrarily close to 1 by exploiting more processors (say,
using 16m speed-1.8 processors). More precisely, we show that for any ε > 0, I can be
completed by a nonmigratory online schedule on �(1+ 1

ε )
2�m speed-(1+ε)2 processors.

Laxity assumption. It is widely believed that jobs with very tight deadlines or
very small laxity (i.e., deadline minus release time minus work) make online scheduling
difficult. Our nonmigratory online scheduling is no exception; in this paper we show
that advance knowledge of the laxity of jobs in I can reduce the speed or processor
requirement for a nonmigratory online schedule. For example, if the work requested
for every job in I is at most one-eighth of its span (i.e., deadline minus release time),
then we can have a nonmigratory online schedule for I on m speed-2.5 processors
or on 4m unit-speed processors. Note that the latter result does not demand the
presence of faster processors. In general, if the work-span ratio is at most w, then I
can be completed by a nonmigratory online schedule on m speed-(4w + 2) processors
or �2/(1 − 4w)�m unit-speed processors. (The latter result holds only for w < 1/4.)

PARK. The core of our results is a simple conservative online scheduling algo-
rithm called PARK; it does not commit a processor to any job unless the processor
has zero commitment before its deadline. This algorithm often lets a job wait for a
while before admitting it to a processor. The conservative nature of PARK keeps any
processor from being overcrowded and being tricked by the offline adversary. Like
many other online algorithms, PARK is very simple but the analysis of its perfor-
mance is relatively complicated. In this paper we present two different analyses of
PARK showing different dimensions of its performance.

Firm-deadline scheduling. PARK also finds applications in scheduling over-
loaded systems, in which there may be too many jobs to be completed and the dead-
lines are firm (instead of hard) in the sense that failing to complete a job by its
deadline causes only a loss in value due to that job and does not cause a system
failure. Given a set I of such jobs, the objective of a scheduler is to maximize the
value obtained from completing the jobs. For any c ≥ 1, an online algorithm is said
to be c-competitive if, for any job sequence, it can obtain at least a fraction of 1/c
of the total value obtained by any offline schedule on m speed-1 processors. Consider
the special case when the value of a job is proportional to its processing time. The
work of Koren and Shasha [10] gave a nonmigratory online algorithm on m speed-1
processors that is 3-competitive. Lam and To [12] showed that, if migration is al-
lowed, it is possible to devise an online algorithm on m speed-3 processors that is
1-competitive. Based on the latter result, we can actually extend PARK to give a
nonmigratory online algorithm on m speed-10 processors that is 1-competitive.

In the context of offline scheduling, the study of the power of migration is centered
on the notion ωm, which is defined as the maximum over all input I, the ratio of the

2When m = 1, the earliest deadline first (EDF) strategy guarantees the completion of I [4].
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value attained by the optimal migratory offline schedule for I to the value attained
by the optimal nonmigratory offline schedule for I [9, 8]. For jobs with arbitrary
values, the best upper bound of ωm is (6m− 5)/m [8]. This paper contributes to the
knowledge of ωm for the case when jobs are assumed to have a certain laxity. More
precisely, our work implies that ωm ≤ min(6, � 2

1−4w �) if the work-span ratio is at most
w < 1/4.

Organization of the paper. Section 2 presents the new online algorithm PARK
and discusses several interesting properties of PARK. Section 3 gives the first analysis
of PARK, showing how to obtain a nonmigratory online schedule on m speed-5.828
processors. As a byproduct, we show how to improve the resource bounds when all
jobs are assumed to have a certain laxity. Section 4 gives a slightly more complicated
analysis of PARK, showing that the speed requirement of 5.828 can be reduced arbi-
trarily close to 1 when extra processors are used. Section 5 presents a simple lower
bound result which shows that a nonmigratory schedule is not feasible on m speed-s
processors if s < 2m/(m+1). Also, the extension of PARK to firm-deadline scheduling
is discussed.

Notation. Throughout this paper, we denote the release time, work (processing)
time, and deadline of a job J as r(J), p(J), and d(J), respectively. We also assume
that jobs have distinct deadlines (ties are broken using the job IDs). The laxity and
span of J are defined as d(J) − r(J) − p(J) and d(J) − r(J), respectively. For any
s ≥ 1, a speed-s processor refers to a processor that can process s units of work in
one unit of time.

EDF refers to the strategy of scheduling jobs with earliest deadlines. Note that
when a new job J is released, the current job J ′ on a processor will be preempted
if J ′ has a deadline later than J ’s as well as the deadlines of the current jobs on all
other processors. When we say an algorithm completes a job sequence, we mean that
the algorithm completes all jobs in the sequence within their respective deadlines.

2. The PARK algorithm. In this section, we describe a nonmigratory online
algorithm called PARK and discuss several interesting properties of PARK. We will
show in the next section that for any sequence I of jobs that can be completed by
a migratory offline schedule on m unit-speed processors, I can also be completed by
PARK on m speed-5.828 processors.

PARK is a very conservative algorithm. Roughly speaking, whenever PARK
admits a job J to a processor, it ensures that the processor has no commitment to
other admitted jobs before the deadline of J . This concept of zero commitment is
made formal through the following notion of due.

Definition 1. Let t be the current time. Consider any job J .
• Denote xt(J) and pt(J) as the amount of work done on J up to time t and

the remaining work, respectively (note that pt(J) = p(J) − xt(J)).
• Define the latest processing interval (LPI) of J as the interval [d(J)− pt(J),
d(J)]. If d(J) − pt(J) < t, we say that J expires.

• For any t′ > t, define duet(J, t
′) as the minimum amount of J ’s remaining

work that a speed-1 processor needs to do by time t′ in order to complete J
by its deadline. More formally, duet(J, t

′) = max{0, t′ − (d(J) − pt(J))} if
t′ ≤ d(J), and pt(J) otherwise.

PARK is a nonmigratory algorithm using pm speed-s processors, where p and m
are positive integers and s ≥ 1 is any real number. It maintains a central pool to store
jobs that have been released but not yet admitted to any processor. PARK is nonmi-
gratory and each processor has its own queue of admitted jobs. Before describing the
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algorithm, we have one more definition.
Definition 2. Let t be the current time. Consider any processor Pi used by

PARK. For any t′ > t, we define duet(Pi, t
′) as the sum of duet(J, t

′) over each job J
in the queue of Pi at time t.

In the rest of the paper, we say that at time t, (i) a job J has w units of work
due at time t′ > t if duet(J, t

′) = w; (ii) a processor Pi has w units of work due at t′

if duet(Pi, t
′) = w; (iii) a processor Pi is doing some work due at t′ if Pi is processing

a job J with duet(J, t
′) > 0.

Algorithm 1 (PARK).

Job release: A job upon release is put into the pool if it cannot be admitted
to one of the processors.
Job admission: At any time t, let S be the set of jobs in the pool plus possibly
the job just released at t. If S is nonempty, we attempt to admit such jobs as
follows: Let J ∈ S be the job with the earliest deadline.
• If J expires, discard J .
• Else if there exists a processor Pi such that duet(Pi, d(J)) = 0, admit J into
the queue of Pi.
Individual processor scheduling: Each processor schedules the jobs in its
queue using EDF.

It is worth mentioning that though PARK is using speed-s processors, the defini-
tions of duet(Pi, t

′) as well as LPI are based on a unit-speed processor. To understand
the admission policy of PARK, we need to focus on the LPIs of the jobs. In general,
the LPIs of jobs may overlap with each other. For example, if two jobs have the same
deadline, their LPIs always share a common ending time. Yet the way PARK admits
jobs aims to guarantee that, at any time, all jobs admitted to the same processor have
nonoverlapping LPIs. This can be observed as follows. When a job J is admitted by
a processor Pi at time t, all the previously admitted jobs have zero work due at d(J).
It means that at time t, the LPI of any previously admitted job starts no earlier than
d(J) and cannot overlap the LPI of J . As time passes, the LPI of each individual job
might shrink (if Pi has worked on it) but cannot get bigger; thus, the nonoverlapping
property remains. The following is a precise statement about the nonoverlapping
property. Figure 1 shows the LPIs of the jobs at different times when PARK is given
a sequence of five jobs.

Property 1 (nonoverlapping property). Let t be the current time. Consider any
processor Pi. Let Ju and Jv be two jobs in the queue of Pi. The LPIs of Ju and Jv
do not overlap.

The nonoverlapping property allows us to bound the commitment of each proces-
sor easily.

Property 2 (bounded-commitment property). Let t be the current time. Con-
sider any processor Pi.

(a) For every job in the queue of Pi, its LPI starts no earlier than t. That is, no
job in the queue of Pi expires.

(b) For any t′ > t, Pi has at most (t′ − t) units of work due at time t′.
Proof. (a) For the sake of contradiction, assume that J is the first job that expires

in the queue of a processor Pi. When J is admitted to Pi, J has not yet expired. Let
t0 be the moment just before the first time J is found to expire. That is, at t0, the
LPI of J starts exactly at t0; all other jobs in the queue of Pi have not yet expired and
their LPIs, due to the nonoverlapping property, must start after J ’s LPI. In other
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current time = 0

At time 0, P1 admits J1 but it does not admit J2 because after
admitting J1, P1 has nonzero work due at d(J2). P2 admits J2.

(c)

current time = 1

At time 1, P1 admits J3 as it has no work due at d(J3). Both
processors have work due at d(J4), so J4 has to wait in the pool.

(d)

current time = 2

At time 2, both processors have work due at d(J5), so J5 has
to wait in the pool.

(e)

current time = 3

At time 3, P2 admits J5 because J5 is the job with earliest
deadline in the pool, and P2 has no work due at d(J5).

Fig. 1. Figure (a) shows a sequence of five jobs to be scheduled by PARK on two speed-4
processors. Figures (b)–(e) show the LPIs (not the schedules) of the jobs in each processor at
different times.



674 HO-LEUNG CHAN, TAK-WAH LAM, AND KAR-KEUNG TO

words, all jobs except J have deadlines later than d(J). Recall that Pi schedules jobs
using EDF and its speed is s ≥ 1. Thus, J must be processed by Pi at t0 and cannot
expire immediately after t0. A contradiction occurs.

(b) At any time t, consider the LPIs of all the jobs in the queue of Pi. The
LPIs are nonoverlapping and, by (a), the first LPI starts no earlier than t. For any
t′ > t, the amount of work due at t′ for Pi is equal to the total length of each LPI
(or its portion) that ends on or before t′. The latter is obviously upper bounded by
t′ − t.

Since a job admitted by a processor Pi never expires, it can be completed by Pi

by its deadline. In the next section, we will show that for a sequence of jobs that
can be completed by some offline schedule, PARK will admit every job to a processor
before they expire. PARK seems to be conservative in admitting jobs and often lets
jobs wait in the pool. The next property shows that whenever a job is waiting, all
processors are actually productive. In other words, such waiting is reasonable.

Property 3 (waiting property). At any time t, if there is a job J left in the
pool, then

• all processors are busy, and
• all processors are doing some work due at d(J).

Proof. Suppose on the contrary that, at time t, there exists a processor Pi that
is idle. Then Pi should admit J or another job from the pool and become busy at t.
A contradiction occurs. If Pi at t is working on a job Je that has no work due at
d(J), then the LPI of Je starts no earlier than d(J). Pi is using EDF and Je has the
earliest deadline among all jobs in Pi. By the nonoverlapping property, at t, every job
in Pi has no work due at d(J), and Pi should admit J , or another job with a deadline
earlier than d(J), from the pool. This contradicts that at t, Pi is working on Je.

3. Analysis of PARK. In this section, we prove the main result that any job
sequence that can be completed by some migratory offline schedule on m speed-1
processors can also be completed by PARK on m speed-(3 + 2

√
2) processors. Note

that 3+2
√

2 ≈ 5.828. We also show how to improve the resource bounds when jobs are
assumed to have a certain laxity. For ease of discussion, this section will first present
a lemma for the special case where every job has nonzero laxity, or equivalently, a
work-span ratio strictly less than one. This is to illustrate the core idea of our analysis
of PARK. Then we make use of a scaling technique to prove the general theorem,
followed by two corollaries that capture the results stated earlier.

Lemma 3. Let I be any job sequence that can be completed by some migratory
offline schedule on m speed-1 processors. Let 0 < w < 1. If all jobs in I have a work-
span ratio of at most w, then PARK can complete I on m speed-( 2

1−w ) processors.

Proof. Note that the speed of the processors used by PARK is 2
1−w > 1. As

mentioned in the previous section, every job admitted by PARK to a processor can
be completed by its deadline. To prove Lemma 3, it suffices to show that every job
in I is admitted rather than discarded in the admission step of PARK.

For the sake of contradiction, we assume that in the course of scheduling I with
PARK, some job expires in the pool and is discarded. Let J be the first such job. Let
t0 = d(J) − w(d(J) − r(J)) = r(J) + (1 − w)(d(J) − r(J)). Since J has a work-span
ratio of at most w, J cannot expire on or before t0 and is in the pool during the time
interval [r(J), t0].

Let r(J) − l be the earliest time such that, at any time throughout the interval
[r(J) − l, t0], there is at least one job in the pool with deadline on or before d(J).
Note that l ≥ 0 is a real number. By the waiting property, during [r(J) − l, t0], all
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the m processors of PARK are busy and the total work done by PARK is exactly

m× 2

1 − w
× (t0 − (r(J) − l)) = 2m(d(J) − r(J)) +

2lm

1 − w
.

By the waiting property again, at any time in [r(J) − l, t0], PARK schedules all
processors to do some work due at d(J). Such work can be classified into two types:

1. Work owing to jobs that are admitted to processors before r(J) − l.
2. Work owing to jobs admitted during [r(J) − l, t0].

By the bounded-commitment property, at time r(J) − l, each processor has at
most d(J)−(r(J)− l) units of work due at d(J), and hence the amount of type 1 work
is at most m× (d(J)− (r(J)− l)). Consider any job J ′ admitted during [r(J)− l, t0].
J ′ has a deadline no later than d(J) and, by definition of l, J ′ must be released no
earlier than r(J) − l. Note that the total work of jobs with release time at least
r(J)− l and deadline at most d(J) cannot exceed m(d(J)− (r(J)− l)); otherwise such
jobs cannot be completed by any offline schedule on m unit-speed processors. On
the other hand, J is one of such jobs but is not admitted by PARK. The amount of
type 2 work is at most m× (d(J)− (r(J)− l))− p(J). In summary, the total amount
of work done by PARK during [r(J) − l, t0] is at most

m(d(J) − (r(J) − l)) + m(d(J) − (r(J) − l)) − p(J)

< 2m(d(J) − r(J)) + 2lm

≤ 2m(d(J) − r(J)) +
2lm

1 − w
.

This leads to a contradiction, and Lemma 3 follows.
In the following, we present an extension to PARK so as to remove the assumption

that the work-span ratio must be less than one. This extension also allows for a
tradeoff between the processor speed and the number of processors used by PARK.

PARK(u) is a scaled version of PARK characterized by a real number u > 0.
Intuitively, PARK(u) scales every job by a factor of u and follows the schedules
of PARK for the scaled jobs. When u = 1, PARK(u) is identical to PARK. More
specifically, to schedule a job sequence I on n speed-s′ processors, PARK(u) simulates
a copy of PARK that uses n speed-s processors, where s = us′. Whenever PARK(u)
receives a new job J , it releases a job J ′ for PARK with r(J ′) = r(J), d(J ′) = d(J),
and p(J ′) = u × p(J). Denote the processors used by PARK(u) as P1, . . . , Pn and
those used by PARK as P ′

1, . . . , P
′
n. At any time, PARK(u) admits a job J to a

processor Pi if PARK admits the corresponding job J ′ to P ′
i ; PARK(u) discards J if

PARK discards J ′; and PARK(u) runs a job J on a processor Pi if PARK runs J ′

on P ′
i .
We notice that PARK(u) can always synchronize with the simulated copy of

PARK because the amount of time for PARK(u) to complete a job J is exactly the
same as that for PARK to complete the corresponding job J ′. The following is the
main theorem of this section.

Theorem 4. Let I be any job sequence that can be completed by some migratory
offline schedule on m speed-1 processors. Let 0 < w ≤ 1. If all jobs in I have
a work-span ratio of at most w, then PARK (u) can complete I using pm speed-
( p+u
pu(1−wu) ) processors, where p is any positive integer and u is any real number such

that 0 < wu < 1.
Before proving Theorem 4, we illustrate how to choose the parameters in Theo-

rem 4 so as to obtain the results claimed in the introduction. Consider the case where
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w = p = 1. Choosing u =
√

2 − 1 minimizes the speed requirement and gives the
following corollary.

Corollary 5. Let I be any job sequence that can be completed by some migratory
offline schedule on m speed-1 processors. PARK (u) with u =

√
2 − 1 can complete I

using m speed-(3 + 2
√

2) processors.
Putting u = 1/(2w) gives a more general corollary.
Corollary 6. Let I be any job sequence that can be completed by some migratory

offline schedule on m speed-1 processors. Let 0 < w ≤ 1. If all jobs in I have a work-
span ratio of at most w, then PARK (u) with u = 1/(2w) can complete I using (i) pm
speed-(4w+(2/p)) processors for any positive integer p, or (ii) �2/(s−4w)�m speed-s
processors for any s > 4w.

Proof of Theorem 4. Recall that PARK(u) uses pm speed-( p+u
pu(1−wu) ) processors.

To schedule a job sequence I as stated in the theorem, PARK(u) simulates a copy of
PARK that uses pm speed-( p+u

p(1−wu) ) processors. Let I ′ be the sequence of the jobs

created for PARK while PARK(u) schedules I. As I can be completed by some offline
schedule on m speed-1 processors, I ′ can also be completed by some offline schedule
on m speed-u processors. Each job in I ′ has a work-span ratio of at most wu. To show
that PARK(u) can complete I, it suffices to show that PARK meets the deadlines of
all jobs in I ′. The proof is a straightforward generalization of Lemma 3.

First, note that p+u
p(1−wu) > 1, as both u > 0 and 1 > wu > 0. Suppose, for the

sake of contradiction, that PARK fails to complete a job in I ′. This job must expire
in the pool. Let J be the first such job. Let t0 = r(J)+(1−wu)(d(J)−r(J)). As the
work-span ratio of J is at most wu, J expires no earlier than t0 and must have resided
in the pool during the interval [r(J), t0]. Again, let l ≥ 0 be the largest number such
that, at any time throughout the interval [r(J) − l, t0], there is at least one job in
PARK’s pool with deadline on or before d(J). Note that l ≥ 0. During [r(J) − l, t0],
all m processors are busy and the total work done by PARK is exactly

pm× s× (t0 − (r(J) − l)) = (p + u)m(d(J) − r(J)) +
(p + u)lm

1 − wu
.

Furthermore, at any time in [r(J) − l, t0], every processor of PARK is always doing
work due at d(J) and such work belongs to either a job admitted before r(J) − l or
during [r(J) − l, t0]. Thus, the total work done by PARK during [r(J) − l, t0] is at
most

pm(d(J) − (r(J) − l)) + mu(d(J) − (r(J) − l)) − p(J)

< (p + u)m(d(J) − r(J)) + l(p + u)m

≤ (p + u)m(d(J) − r(J)) +
(p + u)lm

1 − wu
.

This leads to a contradiction, and PARK must be able to complete I ′. Hence, the
theorem follows.

4. Alternative analysis of PARK. In this section, we show a more com-
plicated analysis of PARK, resulting in the following theorem, which enables us to
construct a nonmigratory online algorithm for hard-deadline scheduling that can ex-
ploit extra processors to reduce the speed requirement arbitrarily close to one (see
Corollary 8).

Theorem 7. Let 0 < w < 1 be a real number. Let I be a job sequence that can
be completed by some migratory offline schedule on m speed-1 processors. If all jobs
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in I have a work-span ratio of at most w, then I can be completed by PARK using
pm speed-s processors, where p is any positive integer such that p(1 − w) > 1 and
s = 1 + 1

p(1−w)−1 .

Using the scaling technique, we can remove the assumption of work-span ratios
and extend Theorem 7 to any job sequence I. Recall that PARK(u) scales every job
of I by a factor of u and schedules the scaled jobs using PARK. Let u = 1

1+ε for
some ε > 0, and denote the scaled version of I as I ′. Every job in I ′ has a work-span
ratio of at most 1

1+ε . By Theorem 7, I ′ can be completed by PARK using pm speed-s

processors where s = 1 + 1
p(1− 1

1+ε )−1
. PARK(u), using pm speed-s/u processors, can

synchronize with PARK and complete I. In particular, choosing p = �(1 + 1
ε )

2�, we
have s/u = (1 + 1

p(1− 1
1+ε )−1

)/u ≤ (1 + ε)2. This relationship is stated in the following

corollary. Note that choosing a small ε means using more and slower processors.
Corollary 8. Let I be a job sequence that can be completed by some migratory

offline schedule on m speed-1 processors. Let ε > 0 be any real number. PARK (u)
with u = 1

1+ε can complete I using �(1 + 1
ε )

2� ×m speed-(1 + ε)2 processors.
We are ready to prove Theorem 7. In the rest of this section, we assume that I

is a job sequence that can be completed by some migratory offline schedule OPT on
m speed-1 processors and all jobs in I have a work-span ratio of at most w < 1. PARK
is using pm speed-s processors, where p is a positive integer such that p(1 − w) > 1
and s = 1 + 1

p(1−w)−1 .

To prove Theorem 7, we need to compare the total amount of work due at any
particular time in PARK and in OPT. At any time t, for any t′ > t, we let C(t, t′)
be the total amount of work due at t′ in PARK, and similarly O(t, t′) for OPT. Let
L(t, t′) = C(t, t′) − O(t, t′). If L(t, t′) = β, we say that at time t, PARK lags behind
OPT by β units of work due at t′. Furthermore, PARK is said to be safe at time t
if for any t′ > t, L(t, t′) is proportional to the duration from t to t′ (see the following
definition).

Definition 9. In the course of scheduling I, at any time t, for any t′ > t, PARK
is t′-safe if L(t, t′) < m

s−1 (t′ − t). At any time t, PARK is safe if PARK is t′-safe for
all t′ > t.

The most nontrivial observation in analyzing PARK is that at any time, PARK
is safe (see Lemma 10). It is then relatively easy to see that, whenever a job J is
released to PARK, if PARK is safe at r(J), then J will be eventually admitted by
PARK (see Lemma 11).

Lemma 10. In the course of scheduling I, at any time t, PARK is safe.
Lemma 11. Let J be any job in I. If PARK is safe at r(J), then J will be

admitted by PARK on or before t0 = r(J) + (1 − w)(d(J) − r(J)).
Lemmas 10 and 11 together guarantee that every job in I must be admitted by

PARK. As mentioned in section 2, PARK meets the deadlines of all admitted jobs.
Thus, Theorem 7 follows. For ease of discussion, we will first present the proof for
Lemma 11. We start with a more technical lemma, which will also be used in the
proof of Lemma 10.

Proposition 12. Consider any time interval [a, b] and any time d > b. Assume
that PARK is d-safe at time a and, at any time in [a, b], there exists a job in PARK’s
pool with deadline no later than d. Then b−a < 1

p(s−1) (d−a). (Recall that s is chosen

as 1 + 1
p(1−w)−1 ; thus, 1

p(s−1) = 1 − w − 1
p .)

Proof. Due to the waiting property, at any time in the interval [a, b], all the
pm processors of PARK are busy and doing work due at d. The total work done by
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PARK during [a, b] is exactly

pm× s× (b− a).(1)

PARK is d-safe at a and L(a, d) < m
s−1 (d−a). At a, PARK and OPT have C(a, d) and

O(a, d) units of work due at d, respectively. Consider all the jobs that are released
from a to b; the sum of their work due at d is at most m(d− a)−O(a, d) (otherwise,
even OPT cannot complete these works by d). During the interval [a, b], the total
amount of work due at d that PARK can possibly work on is at most

C(a, d) + m(d− a) −O(a, d) = L(a, d) + m(d− a)(2)

<
m

s− 1
(d− a) + m(d− a)(3)

=
ms

s− 1
(d− a).(4)

Combining (1)–(4), we have pms(b − a) < ms
s−1 (d − a), or equivalently, (b − a) <

1
p(s−1) (d− a).

Lemma 11 is in fact a corollary of Proposition 12. Details are as follows.
Proof of Lemma 11. Suppose on the contrary that at time t0 = r(J) + (1 −

w)(d(J) − r(J)), J has not been admitted. As J is assumed to have a work-span
ratio of at most w, J has not yet expired at t0 and is in the pool during the interval
[r(J), t0]. Note that t0 − r(J) = (1 − w)(d(J) − r(J)) and, by Proposition 12 (with
a = r(J), b = t0, and d = d(J)), we have (t0 − r(J)) < (1−w− 1

p )(d(J)− r(J)). This

implies that 1
p < 0, contradicting that p ≥ 1.

The rest of this section is devoted to the proof of Lemma 10, which is further
broken into two lemmas. We first state a simple fact about how the value of L(t, t′)
changes over time.

Fact 1. Let [t1, t2] be a time interval before a certain time t′. Assume that during
the interval [t1, t2], PARK has done at least x units of work due at t′ and OPT has
done at most y units of work due at t′. Then, L(t2, t

′) ≤ L(t1, t
′) − x + y.

Intuitively, we prove Lemma 10 inductively over time. Assume that PARK is safe
at time a. We first consider two basic types of time intervals [a, b] and show that, in
either case, PARK is safe at time b. Precisely, for any t′ > b, we call [a, b]

• a t′-quiet period if at any time in [a, b] there is no job in PARK’s pool with
work due at t′, and

• a t′-hectic period if at any time in [a, b] there is at least one job in PARK’s
pool with work due at t′.

During a t′-quiet period, any job with work due at t′ in PARK is admitted to some
processor. Since PARK is using speed-s processors, we can argue that PARK will not
lag behind OPT too much on work due at t′ during a t′-quiet period (see Lemma 13).
A hectic period is more complicated. In Lemma 14 we first show that with the extra
speed and number of processors given to PARK, a t′-hectic period cannot last for too
long. Then we notice that within such a short period, the amount of PARK’s work
due at t′ that lags behind OPT’s cannot change too drastically and PARK is still
t′-safe at b. Below we prove the above observations regarding quiet and hectic periods
(see Lemmas 13 and 14). Then it is easy to show that PARK is safe at any time (i.e.,
Lemma 10).

Lemma 13. Consider a time interval [a, b] and a certain time t′ > b. Assume
that at any time in the interval [a, b] there is no job in PARK’s pool with work due
at t′. If PARK is safe at a, then PARK is t′-safe at b.
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Proof. We prove inductively that, at any time in [a, b], PARK is t′-safe. Let r > a
be the first time a job is released; if no jobs are released on or before b, let r = b.
Below we first show that PARK is t′-safe at time r, i.e., L(r, t′) ≤ m

s−1 (t′ − r). Note
that, at time r, if a job J is released, it contributes exactly p(J) to both C(r, t′)
and O(r, t′) and does not affect the value of L(r, t′). To derive an upper bound of
L(r, t′), it suffices to consider the amount of work released before r. In particular, we
can tighten the trivial upper bound of L(r, t′) from C(r, t′) to Ĉ(r, t′), where Ĉ(r, t′)
denotes, at time r, the amount of work in PARK that has been released before r and
due at t′.

Denote by Φr the set of PARK’s processors which, at r, have work released before r
and due at t′. Then Ĉ(r, t′) ≤ |Φr|(t′ − r). If |Φr| < m

s−1 , then L(r, t′) ≤ Ĉ(r, t′) <
m
s−1 (t′− r). Bound L(r, t′) for the case when |Φr| ≥ m

s−1 is more complicated. During
[a, r], the pool contains no job due at t′ and no job is released until r. Thus, at any
time t where a ≤ t < r, if a processor of PARK does not have any work due at t′,
this processor cannot be in Φr. In other words, throughout the interval [a, r], every
processor in Φr has work due at t′ and PARK has done at least |Φr|s(r − a) units of
work due at t′. Note that OPT achieves at most m(r − a). Thus,

L(r, t′) ≤ L(a, t′) − |Φr|s(r − a) + m(r − a)

<
m

s− 1
(t′ − a) − m

s− 1
s(r − a) + m(r − a) (at time a, PARK is t′-safe)

=
m

s− 1
(t′ − r).

In summary, we have proven that, at time r, PARK is t′-safe. If r < b, we can repeat
the above argument to prove that PARK is t′-safe at each subsequent release time
and eventually at time b.

Next, we consider the case of hectic periods.
Lemma 14. Consider a time interval [a, b] and a certain time t′ > b. Assume

that, just before a, there is no job in PARK’s pool with work due at t′ and that, at any
time in [a, b], there is at least one job in PARK’s pool with work due at t′. If PARK
is safe at a, then

(i) (b− a) < 1
s (t′ − a), and

(ii) PARK is t′-safe at b.
Proof. (i) Due to the condition of Lemma 14, we know that, at any time in [a, b],

there is a job J in the pool with work due at t′ and J must be released on or after a.
Due to the work-span ratio assumption, any job released after a and with work due
at t′ must have a deadline on or before a+ 1

1−w (t′ − a) ≥ t′. Let d = a+ 1
1−w (t′ − a).

At time a, PARK is safe and, in particular, d-safe. By Proposition 12, (b − a) <
(1 − w − 1

p )(d − a) = (1 − w − 1
p )(t′ − a)/(1 − w). Note that s = 1 + 1

p(1−w)−1 and
1
s = p(1−w)−1

p(1−w) = (1 − w − 1
p )/(1 − w). Thus, (b− a) < 1

s (t′ − a), and (i) follows.

(ii) Consider the pm processors used by PARK. Let Ψ be the set of PARK’s
processors which, at any time in the interval [a, b], are doing work due at t′. Let
|Ψ| = ψ. If ψ ≥ m

s−1 , then,

L(b, t′) ≤ L(a, t′) − ψs(b− a) + m(b− a)

<
m

s− 1
(t′ − a) − m

s− 1
s(b− a) + m(b− a)

=
m

s− 1
(t′ − b).
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Next, we consider ψ < m
s−1 . Label the processors in Ψ as P1, P2, . . . , Pψ. At a,

each of these processors has at most t′−a units of work due at t′. Label the processors
not in Ψ as Pψ+1, . . . , Ppm. At a, for each processor Pi not in Ψ, let wi be the amount
of work due at t′. Let W =

∑pm
i=ψ+1 wi. Then L(a, t′) ≤ C(a, t′) ≤ ψ(t′ − a) + W .

From a to b, each of P1, P2, . . . , Pψ, has done exactly s(b − a) units of work due
at t′. For each Pi, where i = ψ + 1, . . . , pm, Pi at some point in [a, b] is doing some
work due at a time later than t′; thus Pi has done at least wi units of work due at t′.
In summary, during [a, b], PARK, by time b, must have done at least ψ×s(b−a)+W
units of work due at t′; note that OPT has done at most m(b− a) units of work due
at t′. Hence, we have the following conclusion:

L(b, t′) ≤ L(a, t′) −
(
ψs(b− a) + W

)
+ m(b− a)

≤ ψ(t′ − a) + W −
(
ψs(b− a) + W

)
+ m(b− a)

= ψ
(
t′ − a− s(b− a)

)
+ m(b− a)

<
m

s− 1

(
t′ − a− s(b− a)

)
+ m(b− a)

(by Lemma 14(i), (t′ − a− s(b− a)) > 0)

=
m

s− 1
(t′ − b).

In summary, no matter what the value of ψ is, L(b, t′) < m
s−1 (t′ − b). Thus, PARK is

t′-safe at time b.
With the observations on the quiet and hectic periods, proving that PARK is safe

at any time (i.e., Lemma 10) is straightforward.
Proof of Lemma 10. We first notice that, at time 0, L(0, t′) is equal to 0 for any

t′ > 0. Thus, PARK is safe at time 0. Let γ0 = 0 and let γ1 = min{γ > γ0 | at time γ,
PARK switches from a t′-quiet period to a t′-hectic period for some t′ > γ}. Consider
any time t ≤ γ1. For any t′ > t, [γ0, t] is a t′-quiet period and, by Lemma 13, PARK is
t′-safe. Thus, PARK is safe at any time t ≤ γ1. We can repeat the above argument to
show inductively that PARK is safe at any time. In general, let γi+1 = min{γ > γi | at
time γ, PARK switches from a t′-quiet period to a t′-hectic period for some t′ > γ,
or vice versa}. Consider any time t ≤ γi+1. For any t′ > t, let j ≤ i be the smallest
integer such that [γj , t] is entirely a t′-quiet period or a t′-hectic period. By Lemma
13 and 14, PARK is t′-safe.

It is worth mentioning that, at any γi, a job is either released or admitted by
PARK. Thus, in the course of scheduling I, there are only a finite number of γi’s.
The above argument will complete eventually to show that PARK is safe at any
time.

5. Remarks.
Lower bound. Consider the following job sequence: m + 1 identical jobs are

released at time 0, each with m units of work and deadline m+1. The set of jobs can
be completed by a migratory schedule on m speed-1 processors. For a nonmigratory
(online or offline) schedule to complete the jobs on m processors, some processor must
admit at least two jobs, and thus the speed requirement is at least 2m

m+1 = 2 − 2
m+1 .

Firm-deadline schedule. Recall that in the firm-deadline scheduling problem,
there may be too many jobs to be completed, and failing to complete a job causes
only a loss in value due to that job and does not cause a system failure. Given a set
I of such jobs, the objective of a scheduler is to maximize the value obtained from
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completing the jobs. An online algorithm is said to be c-competitive for some c ≥ 1
if, for any job sequence I, the algorithm can obtain at least a fraction of 1/c of the
value obtained by the optimal offline schedule on m speed-1 processors.

Consider the special case when the value of a job is proportional to its processing
time. If migration is allowed, EDF-AC (EDF with admission control) using m speed-
3 processors is 1-competitive [12]. Since EDF-AC decides whether to complete or
discard a job once the job is released, we can use it to select jobs for scheduling in
PARK without migration. The actual operation is as follows. Whenever EDF-AC
decides to complete a job J , we release J to PARK with p(J) scaled down to p(J)/3.
The job sequence selected by EDF-AC can be completed by m speed-3 processors,
so the scaled job sequence can be completed by m speed-1 processors and all jobs
in the scaled sequence have work-span ratio of at most 1/3. By Corollary 6 with
p = 1 and w = 1/3, the scaled job sequence can be completed by PARK using m
speed-( 10

3 ) processors. As any job in the scaled sequence has only one-third of the
original work, to complete the job actually selected by EDF-AC, we further increase
the speed of the processors by a factor of 3. In summary, EDF-AC plus PARK gives
a new algorithm which, using m speed-10 processors, is 1-competitive nonmigratory
for the firm-deadline scheduling problem.

Effect of laxity on ωm. Consider the offline scheduling problem. Recall that
ωm is the maximum ratio, over all possible inputs, between the value attained by the
optimal migratory schedule and that attained by the optimal nonmigratory schedule.
The analysis of PARK reveals some information about the value of ωm when all
jobs are assumed to have a certain amount of laxity. More precisely, if all jobs have
a work-span ratio no greater than w, where w < 1

4 , Corollary 6 shows that, for
any job sequence, the subset of jobs that can be completed by the optimal offline
migratory schedule on m processors can also be completed by �2/(1 − 4w)�m (unit-
speed) processors. By selecting the m processors that achieve the highest values, we
obtain a nonmigratory offline schedule attaining a value of at least 1

�2/(1−4w)� of the

value of the optimal migratory schedule. Hence, ωm ≤ �2/(1 − 4w)�.
Implementation of PARK. We notice that PARK admits a simple distributed

implementation which does not require a centralized scheduler. Instead, each proces-
sor can monitor the pool and admit a job according to its own status, i.e., each
processor does not need to inquire about the status of other processors. This is dif-
ferent from many other scheduling algorithms (e.g., EDF, LLF) in which the status
of all processors is needed in order to make a scheduling decision. Thus, PARK is
particularly useful when it is difficult to obtain complete information about all pro-
cessors.

Open problems. Let I be a job sequence that can be completed by some
migratory offline schedule on m speed-1 processors. Consider the processor speed
required to obtain a nonmigratory online schedule for I. There is a gap between the
upper bound of 5.828 and the lower bound of 2− 2

m+1 . The current analysis of PARK
seems to be quite loose and we believe that a better analysis could possibly reduce
the speed requirement to 4. We have shown that when extra processors are given,
the speed requirement of PARK can be reduced arbitrarily close to 1. However, we
do not know of any (migratory or nonmigratory) online algorithm that can guarantee
the completion of I using only f(m) speed-1 processors, where f(m) is a function
of m. For the problem of firm-deadline scheduling, the current analysis depends
on EDF-AC as the job selection module. In fact, we conjecture that PARK alone
(say, with m speed-9 processors) is sufficient to match the performance of any offline
schedule.
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ON EVEN TRIANGULATIONS OF 2-CONNECTED EMBEDDED
GRAPHS∗
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Abstract. Recently, Hoffmann and Kriegel proved an important combinatorial theorem [SIAM
J. Discrete Math., 9 (1996), pp. 210–224]: Every 2-connected bipartite plane multigraph G with-
out 2-cycle faces has a triangulation in which all vertices have even degree (this is called an even
triangulation). Combined with the classical Whitney’s theorem, this result implies that every such
graph has a 3-colorable plane triangulation. Using this theorem, Hoffmann and Kriegel significantly
improved the upper bounds of several art gallery and prison guard problems. A complicated O(n2)
time algorithm was obtained in [SIAM J. Discrete Math., 9 (1996), pp. 210–224] for constructing an
even triangulation of G. Hoffmann and Kriegel conjectured that there is an O(n3/2) time algorithm
for solving this problem.

In this paper, we develop a simple proof of the above theorem. Our proof reveals and relies on
a natural correspondence between even triangulations of G and certain orientations of G. Based on
this new proof, we obtain a very simple O(n) time algorithm for finding an even triangulation of
G. We also extend our proof to show the existence of even triangulations for similar graphs on high
genus surface.

Key words. plane graph, even triangulations, graph coloring, high genus graph
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1. Introduction. Let G = (V,E) be a 2-connected bipartite plane multigraph
without 2-cycle faces. A triangulation of G is a plane graph obtained from G by adding
new edges into the faces of G so that all of its faces are triangles. A triangulation
G′ of G is called even if all vertices of G′ have even degree. Recently, Hoffmann and
Kriegel proved an important combinatorial theorem [3, 4].

Theorem 1. Every 2-connected bipartite plane multigraph without 2-cycle faces
has an even triangulation.

Combined with the following classical Whitney’s theorem, Theorem 1 implies that
every 2-connected bipartite plane multigraph has a 3-colorable plane triangulation.

Theorem 2. A plane triangulation is 3-colorable iff all of its vertices have even
degree.

An elegant proof of Theorem 2 can be found in [10].
Note: In the statement of Theorem 1 in [3, 4], the phrase “without 2-cycle faces”

was not explicitly mentioned. It is implicitly used in their paper. However, without
this condition, Theorem 1 is not true. To be precise, we explicitly mention this
condition in Theorem 1.

In addition to its importance in graph theory, Hoffmann and Kriegel showed
that, based on Theorem 1, the upper bounds of several art gallery and prison guard
problems (a group of problems extensively studied in computational geometry; see
[11, 12]) can be significantly improved [4]. Theorem 1 was proved in [4] by showing
that a linear equation system derived from the input graph G has a solution. An
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even triangulation of G is found by solving this linear equation system. By using the
generalized nested dissection technique of Lipton, Rose, and Tarjan [9], Hoffmann and
Kriegel obtained a complicated algorithm with O(n2) runtime. This algorithm is the
bottleneck of the algorithms for solving the art gallery and prison guard application
problems discussed in [4]. By showing that another linear equation system derived
from G has a solution, Hoffmann and Kriegel discovered a relationship between all
even triangulations of G and certain closed walks in the dual graph of G.

It was conjectured in [4] that an even triangulation of G can be found in O(n1.5)
time. In this paper, we give a very different proof of Theorem 1 without relying on
the linear equation system derived in [4]. Our new proof is based on the discovery of a
natural one-to-one correspondence between the set of all even triangulations of G and
the set of certain orientations of G and its dual graph G∗. This new proof leads to a
very simple O(n) time algorithm for constructing an even triangulation of G. Thus,
all algorithms for solving the art gallery and prison guard problems discussed in [4]
can be uniformly improved to linear time. As a by-product, we also obtain a simple
formula for calculating the number of distinct even triangulations of G.

A natural question is whether these theorems hold true for similar graphs on high
genus surfaces. We show that our new proof of Theorem 1 and the algorithm for
constructing even triangulations of 2-connected bipartite plane multigraphs without
2-cycle faces also apply to similar graphs on high genus surfaces. However, because
a crucial property that is true for plane graphs does not hold for graphs on high
genus surfaces, we can only prove a lower bound on the number of distinct even
triangulations of such graphs. The problem of determining the exact value of this
number remains an open problem.

The rest of the paper is organized as follows. In section 2, we introduce the
definitions and preliminary results in [3, 4]. In section 3, we provide new proofs of
Theorem 1 and another key theorem in [3, 4]. In section 4, we present our algorithm for
finding even triangulations of plane graphs. In section 5, we investigate the problem
for graphs on high genus surfaces.

2. Preliminaries. In this section, we give definitions and preliminary results.
All definitions are standard and can be found in [1]. Let G = (V,E) be a graph
with n = |V | vertices and m = |E| edges. A multigraph is a graph where two edges
can share the same pair of end vertices. We will restrict ourselves to multigraph
without self loops in this paper, which will be simply called graph from now on,
unless otherwise specified. The degree of a vertex v ∈ V , denoted by degG(v), is the
number of edges incident to v. If G is clearly understood, we simply write deg(v)
for degG(v). For a subset V1 ⊆ V , G − V1 denotes the graph obtained from G by
deleting the vertices in V1 and their incident edges. A vertex v of a connected graph
G is called a cut vertex if G − {v} is disconnected. G is 2-connected if it has no cut
vertices. G = (V,E) is bipartite if its vertex set V can be partitioned into two subsets
V1 and V2 such that no two vertices in V1 are adjacent and no two vertices in V2 are
adjacent. A k-coloring of G is a coloring of V by k colors so that no two vertices with
the same color are adjacent to each other. Note that G is bipartite iff it’s 2-colorable.

A cycle C of G is a sequence of distinct vertices u1, u2, . . . , uk such that (ui, ui+1) ∈
E for 1 ≤ i < k and (uk, u1) ∈ E. We also use C to denote the set of the edges in
it. If C contains k edges, it is called a k-cycle. A 3-cycle is also called a triangle.
A closed walk is similarly defined except that it allows repeated vertices (but not
repeated edges).

A plane graph G is a graph embedded in the plane without edge crossings (i.e., an
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embedded planar graph). The embedding of a plane graph G divides the plane into
a number of regions. All regions are called faces. The unbounded region is called
the exterior face. Other regions are called interior faces. The degree of a face is the
number of edges on its boundary.

The dual graph G∗ = (V ∗, E∗) of a plane graph G is defined as follows: For
each face f of G, V ∗ contains a vertex vf . For each edge e in G, G∗ has an edge
e∗ = (vf1

, vf2
), where f1 and f2 are the two faces of G with e on their common

boundary. e∗ is called the dual edge of e. The mapping e ⇔ e∗ is a one-to-one
correspondence between E and E∗.

A diagonal of a plane graph G is an edge which does not belong to E and connects
two vertices of a facial cycle. G is triangulated if it has no diagonals. (Namely, all
of its facial cycles, including the exterior face, are triangles.) A triangulation of G
is obtained from G by adding a set of diagonals such that the resulting graph is
plane and triangulated. An even triangulation is a triangulation in which all vertices
have even degree. In this case, we also call the set of diagonals added into G an
even triangulation of G. The overloading of the term “even triangulation” makes our
discussion easier. The meaning of “even triangulation” is always clear from context.
Obviously, in order to triangulate a plane graph G, we cannot allow 2-cycle faces
in G. Therefore, we will exclude the existence of 2-cycle faces in G in this paper
from now on. Thus, a plane graph really means a plane multigraph without 2-cycle
faces.

For a 2-connected bipartite plane graph G, all of its facial cycles have even length.
In order to triangulate G, we first add diagonals into the faces of G so that all facial
cycles of the resulting graph are 4-cycles. This can be easily done in linear time. Thus,
without loss of generality, G always denotes a 2-connected bipartite plane graph all of
whose facial cycles have length 4. Such a graph will be called a 2-connected maximal
bipartite plane graph (2MBP graph, for short). By Euler’s formula, a 2MBP graph
with n vertices always has n− 2 faces and m = 2n− 4 edges. We denote the faces of
G by Q(G) = {q1, q2, . . . , qn−2}. When G is clearly understood, we simply use Q to
denote Q(G).

Since G is bipartite, we can fix a 2-coloring of G with colors 0 and 1. For any face
qi ∈ Q, the set of the four vertices on the boundary of qi is denoted by Vqi and we set
Qv = {qi ∈ Q|v ∈ Vqi}. Since every facial cycle of G is a 4-cycle, every face qi ∈ Q has
two diagonals: the diagonal joining the two 0-colored (1-colored, respectively) vertices
in Vqi is called the 0-diagonal (1-diagonal, respectively). Thus a triangulation of G
is nothing but choosing for each face qi either the 0-diagonal or the 1-diagonal and
adding it into qi. We associate each face qi ∈ Q with a {0, 1}-valued variable xi, and
each triangulation T of G with a vector �x = (x1, x2, . . . , xn−2) ∈ GF (2)n−2, where

T contains the 0-diagonal of the face qi ⇐⇒ xi = 1.

This mapping defines a one-to-one correspondence between the set of triangula-
tions of G and GF (2)n−2. We choose GF (2) because most calculations in this section
are interpreted in GF (2).

Observation. If c(v) is the color of a vertex v ∈ Vqi , then the term xi+c(v) (mod 2)
describes the increase of the degree of v after adding the diagonal of qi which cor-
responds to the value xi into the face qi. Based on this observation, Hoffmann and
Kriegel [3, 4] proved that a vector �x = (xi)1≤i≤n−2 ∈ GF (2)n−2 represents an even
triangulation of G iff �x is a solution of the following linear equation system (with n



686 HUAMING ZHANG AND XIN HE

equations and n− 2 variables) over GF (2):∑
qi∈Qv

xi = deg(v) + |Qv|c(v) (mod 2) (∀v ∈ V ).(1)

In [4], Hoffmann and Kriegel showed that (1) always has a solution, and hence
proved Theorem 1. Therefore, the term “a vector �x representing an even triangulation
of G” and the term “a solution vector of (1)” can be used interchangeably.

To obtain all solutions of (1) (i.e., all even triangulations of G), [4] introduced
the concept of straight walk. For a 2MBP graph G, its dual graph G∗ is 4-regular
and connected. Consider a walk S in G∗. Since G∗ is 4-regular, at every vertex of
S, we have four possible choices to continue the walk: go back, turn left, go straight,
or turn right. A closed walk of G∗ consisting of only straight steps at every vertex
is called a straight walk , or S-walk. The edge set of G∗ can be uniquely partitioned
into S-walks. We use S(G∗) = {S1, . . . , Sk} to denote this partition, where each Si

(1 ≤ i ≤ k) is an S-walk of G∗. Each vertex of G∗ (i.e., each face of G) occurs either
twice on one S-walk or on two different S-walks. If a face f occurs on one S-walk
twice, it is called a 1-walk face. If f occurs on two different S-walks, it is called a
2-walk face.

1S
1q

3q

2q w

S

S2

3

v

z

u

Fig. 1. A 2MBP graph G, the dual graph G∗, and one of its S-orientation O.

Figure 1 shows a 2MBP graph and its dual graph G∗. The edges of G are repre-
sented by solid lines. The edges of G∗ are represented by dotted lines. The vertices
of G∗ (i.e., the faces of G) are represented by small circles. S(G∗) contains 3 S-walks
S1, S2, and S3. The face q1 is a 1-walk face since it occurs on S3 twice. The face q2
is a 2-walk face since it occurs on both S2 and S3. (The S-walks in this figure are
directed. Its meaning will be discussed in the next section.)

Let S be an S-walk of G∗. Take an even triangulation of G. If we flip the diagonals
of every face on S, it’s easy to see that we get another even triangulation of G. (If a
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face f occurs on S twice, its diagonal is flipped twice and hence remains unchanged.)
Theorem 3. Let G be a 2MBP graph and let S(G∗) = {S1, . . . , Sk} be the

S-walks of G∗. The following statements hold:
1. If T is an even triangulation of G and the diagonals of T are flipped along

an S-walk Si, we obtain another even triangulation of G.
2. If T1 and T2 are two even triangulations of G, there is a collection of S-walks

such that by flipping the diagonals of T1 along these S-walks we obtain T2.
Statement 1 of Theorem 3 was proved in [4]. Statement 2 of Theorem 3 was

stated in [4]. Hoffmann and Kriegel mentioned that statement 2 can be proved by
showing that another linear equation system derived from G has a solution. However,
since “the arguments are much more involved,” its proof was omitted in [4] and was
given in the technical report [3].

3. Even triangulations of 2MBP graphs. In this section, we provide new
proofs of Theorems 1 and 3. First, we introduce a few definitions. An orientation of
an undirected graph is an assignment of directions to its edges.

Definition 1. Let G be a 2MBP graph.
1. A G-orientation of G is an orientation of G such that every facial cycle of

G is decomposed into two directed paths, one in a clockwise direction and
another in a counterclockwise direction, each of length 2.

2. Let G1,G2 be two G-orientations of G. If every edge of G has reverse direction
in G1 and G2, we say G2 is the reverse of G1. In this case, G1 and G2 are
called a G-orientation pair of G.

3. Fix a G-orientation G of G. For each face q of G, the starting and the ending
vertices of the two directed paths on the boundary of q are called the primary
vertices of q. The diagonal of q connecting the two primary vertices is called
its primary diagonal (with respect to G). The other diagonal of q is called its
secondary diagonal (with respect to G).

It is worth mentioning that G-orientation should not be confused with the well-
known st-orientation, which is widely used in graph theory and algorithms. (For its
definition and applications, see, for example, [8, 13].) First of all, any st-orientation
of a 2-connected plane graph has one and only one global source and sink, while this
is not necessarily true in the case of G-orientation (although in G-orientation, each
face has one source and one sink, which is similar to st-orientation). Second, in st-
orientation, every facial cycle is also decomposed into two directed paths, but their
source and sink could be adjacent, which is forbidden in G-orientation. We will see
that this requirement plays a crucial role in our construction of even triangulations
later on.

Note that for a G-orientation pair G1,G2 and any face q of G, the primary diagonal
of q with respect to G1 is the same as its primary diagonal with respect to G2. If G1,G2

do not form a G-orientation pair, then for some faces q of G, the primary diagonal of
q with respect to G1 is different from that with respect to G2.

Definition 2. Let G be a 2MBP graph and let G∗ be its dual graph with S(G∗) =
{S1, . . . , Sk}.

1. An S-orientation of G∗ is an orientation of G∗ such that every S-walk Si

( 1 ≤ i ≤ k) is a directed closed walk.
2. Let O1,O2 be two S-orientations of G∗. If every Si ( 1 ≤ i ≤ k) has reverse

direction in O1 and O2, we say O2 is the reverse of O1. In this case, O1 and
O2 are called an S-orientation pair of G∗.

3. Fix an S-orientation O of G∗. For each face q of G, if an S-walk Si of G∗
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steps out of (into, respectively) q through an edge e on the boundary of q, then
e is called an out-edge ( in-edge, respectively) of q (with respect to O).

We can assign two different directions to each S-walk. So, if G∗ has k S-walks,
it has 2k distinct S-orientations and 2k−1 distinct S-orientation pairs.

Consider an arbitrary S-orientation O of G∗. It is easy to check that every face q
of G has two out-edges and two in-edges with respect to O, and the two in-edges of q
are always incident to a common vertex on the boundary of q. Thus there are always
two nonadjacent vertices on the boundary of q that are incident to both in-edges and
out-edges of q. For example, consider the face q3 in Figure 1. An S-orientation O of
G∗ is shown in the figure. With respect to O, the edge (u, v) is an out-edge of q3 and
the edge (w, z) is an in-edge of q3. The vertices u and w are incident to both in-edges
and out-edges of q3.

Next we show that there exists a natural one-to-one mapping between the set
of S-orientations of G∗ and the set of G-orientations of G which preserves the pair
relation.

Definition 3. Let G be a 2MBP graph and let O be an S-orientation of G∗.
We define an orientation of G from O as follows. Let e be any edge of G and let e∗

be its dual edge in G∗. Let q1 and q2 be the two faces of G with e on their boundaries.
Suppose that e∗ is directed from q2 to q1 in O. When traveling e∗ from q2 to q1,
we direct e from right to left. (In other words, e is directed counterclockwise on the
boundary of q2 and clockwise on the boundary of q1.) This orientation of G will be
called the orientation induced from O and denoted by π(O).

An example of the induced orientation is shown in Figure 2(a). The S-walks
Si, Sj , Sm pass through the faces q1, q2 in the shown directions. The induced directions
of the edges on the boundaries of q1 and q2 are also shown.

Lemma 1. Let G be a 2MBP graph. If O is an S-orientation of G∗, then π(O) is
a G-orientation of G. If O and O′ form an S-orientation pair, then π(O) and π(O′)
form a G-orientation pair of G.

Proof. Let O be an S-orientation of G∗. For any face q of G, its two in-edges with
respect to O are incident and hence form a directed path of length 2, in a clockwise
direction, in π(O). Its two out-edges with respect to O are also incident and hence
form a directed path of length 2, in a counterclockwise direction, in π(O). Thus π(O)
is a G-orientation of G.

Let O and O′ be an S-orientation pair of G∗. Let G = π(O) and G′ = π(O′). The
direction of each S-walk in O′ is the reverse of that in O. So for any face q of G, its
two in-edges with respect to O are the two out-edges with respect to O′. Therefore,
the direction of each edge e in G′ is the reverse of that in G. Hence G and G′ form a
G-orientation pair.

Let O be an S-orientation of G∗ and G = π(O). For any face q of G, the primary
diagonal d of q with respect to G is the diagonal connecting the two vertices on the
boundary of q that are incident to both the in-edges and the out-edges of q with
respect to O. We also call d the primary diagonal of q with respect to O. For
example, consider the face q1 in Figure 2(a). The vertices v1 and v3 are incident to
both in-edges and out-edges of q1. Thus the primary diagonal of q1 with respect to
O is (v1, v3).

Note that if q is a 1-walk face that occurs on an S-walk Si twice and if the
direction of Si is reversed, the primary diagonal of q remains unchanged. On the
other hand, consider a 2-walk face q that occurs on two S-walks Si and Sj . If both Si

and Sj reverse directions, the primary diagonal of q remains unchanged. If only one
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Fig. 2. (a) An S-orientation O induces a G-orientation G. (b) A G-orientation G derives an
S-orientation O.

of the two S-walks reverses direction, then the primary and the secondary diagonals
of q swap.

Definition 4. Let G be a 2MBP graph and let G be a G-orientation of G. We
define an orientation of G∗ as follows. Consider any edge e∗ in G∗. Let e be the edge
in G corresponding to e∗. When traveling e along its direction in G, we direct e∗ from
the face q2 on the left to the face q1 on the right. This orientation of G∗ will be called
the orientation derived from G and will be denoted by δ(G).

Lemma 2. Let G be a 2MBP graph. If G is a G-orientation G, then δ(G) is an
S-orientation of G∗. If G,G′ form a G-orientation pair, then δ(G) and δ(G′) form an
S-orientation pair.

Proof. Let S(G∗) = {S1, S2, . . . , Sk} be S-walks of G∗. Let G be a G-orientation of
G. We want to show that every S-walk Si is a directed closed walk in the orientation
O = δ(G) of G∗. It is enough to show that any two consecutive edges on Si are
assigned consistent directions in O.

Consider any face q on Si. Let e1 and e2 be the two edges on the boundary of q
that are walked through by Si. Note that e1 and e2 are opposite on the boundary of
q. Let e∗1 and e∗2 be the dual edges corresponding to e1 and e2, respectively. Without
lose of generality, assume e∗1 is directed into q. We need to show e∗2 is directed out of
q (see Figure 2(b)).

By the definition of δ(G), e1 is clockwise on the boundary of q. Because G is
a G-orientation, e1 and e2 must have different direction, and hence e2 is directed
counterclockwise on the boundary of q. By the definition of δ(G), e∗2 is directed out
of q in O, as will be shown. Since this is true for any face q on Si, Si is indeed a
directed closed walk in O. Hence O is an S-orientation of G∗.

Let G and G′ be a G-orientation pair. For each edge e of G, the direction of e in
G′ is the reverse of that in G. Hence, the direction of its dual edge e∗ in O′ = δ(G′)
is the reverse of that in O = δ(G). Therefore O and O′ form an S-orientation pair
of G∗.

By Definitions 3 and 4, it’s straightforward to verify that π and δ are inverse
mappings of each other. Hence we have the following.

Theorem 4. For a 2MBP G, the mapping π (and δ) is a one-to-one correspon-
dence between the set of G-orientations of G and the set of S-orientations of G∗,
which preserves the pair relation.
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The following theorem describes how to obtain an even triangulation from a G-
orientation of G.

Theorem 5. Let G be a 2MBP graph.

1. Let G be a G-orientation of G. Then adding the primary diagonals into each
face of G results in an even triangulation of G, which is called the even
triangulation determined by G, denoted by T (G).

2. Let G and G′ be two G-orientations of G. If G,G′ form a G-orientation pair
of G, they determine the same even triangulation of G, i.e., T (G) = T (G′).
If G,G′ do not form a G-orientation pair of G, they determine different even
triangulations of G, i.e., T (G) �= T (G′).

Proof.

Statement 1. Let G′ be the graph resulting from adding the primary diagonals
(with respect to G) into the faces of G. Consider any vertex v of G. Let e1, e2, . . . , et
be the edges in G incident to v in a clockwise direction. Thus degG(v) = t. Let qi
(1 ≤ i ≤ t) be the face incident to v and with ei and ei+1 on its boundary (where
et+1 = e1).

We call ej a go-in (go-out, respectively) edge of v if ej is directed into (out of,
respectively) v in G. A face qi is called a gap face of v if one of the two edges ei and
ei+1 is a go-in edge of v and another is a go-out edge of v. qi is called a good face of
v if ei, ei+1 are both go-in edges of v or both go-out edges of v. Denote the number
of gap faces of v by gap(v). Since a gap face is always between a block of consecutive
go-out edges and a block of consecutive go-in edges around v, it is easy to see that
gap(v) is always an even number.

The primary diagonal (with respect to G) of each face q is the diagonal connecting
the starting and the ending vertices of the two directed paths on the boundary of q.
Thus v is incident to the primary diagonal of the face qi iff qi is a good face of v. Hence
degG′(v) = degG(v) + t− gap(v) = 2t− gap(v) is always even. Therefore G′ = T (G)
is an even triangulation of G.

Figure 3(a) shows an example of this construction. The solid lines are edges in
G. The dotted lines are primary diagonals which are added into G′. The black dots
indicate the gap faces. We have degG′(v) = 2 × 6 − 4 = 8.

Statement 2. Suppose G and G′ form a G-orientation pair of G. For any face q of
G, the primary diagonal of q with respect to G is the same as that with respect to G′.
So T (G) is the same as T (G′).

Suppose G,G′ do not form a G-orientation pair. Then they have different sets of
primary diagonals. So T (G) is different from T (G′).

Note that the fact that the source and the sink of each face in a G-orientation
are not adjacent plays a crucial role here. Only because of this, adding the primary
diagonal (which connects the source and sink for each face) splits the quadrangle
into two triangles. If the source and sink were adjacent, as possibly in the case of
st-orientation, this would be impossible.

If G is induced from an S-orientation O of G∗, we also call T (G) the even trian-
gulation determined by O, and denote it by T (O).

Based on the discussion above, we have the following.

New proof of Theorem 1. Let S(G∗) = {S1, S2, . . . , Sk} be the S-walks of G∗.
Arbitrarily assign a direction to each Si. This gives an S-orientation O of G∗. By
Lemma 1, we get a G-orientation G = π(O). By Theorem 5, we get an even triangu-
lation T (G) of G.

Theorem 5 states that every G-orientation pair determines an even triangula-
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Fig. 3. (a) Adding primary diagonals with respect to a G-orientation G results in even degree
at vertex v. (b) An even triangulation of G induces a G-orientation G on faces q1 and q2.

tion of G. Next we show that every even triangulation of G is determined by a
G-orientation pair of G.

Theorem 6. Let G be a 2MBP graph and let S(G∗) = {S1, S2, . . . , Sk} be the
S-walks of G∗.

1. Every even triangulation G′ of G is determined by a G-orientation pair of G.
2. G has exactly 2k−1 distinct even triangulations.

Proof.

Statement 1. Let G′ be any even triangulation of G. We want to show that there
exists a G-orientation G of G such that G′ = T (G).

Let G′∗ be the dual graph of G′. For each face q of G, the diagonal of q from
G′ splits q into two faces, which will be called the subfaces of G. So q contains two
subfaces.

Since each vertex has even degree in G′, each facial cycle of G′∗ is of even length.
Thus G′∗ is a bipartite plane graph. So we can color its vertices by two colors. In
other words, we can color the subfaces of G red and black so that no two red (black,
respectively) subfaces are adjacent. Note that each face q of G contains one red and
one black subface.

Consider any edge e of G. Let q1 and q2 be the two faces of G with e on their
common boundary. Let qr1 and qb1 be the red and the black subfaces contained in
q1, respectively. Let qr2 and qb2 be the red and the black subfaces contained in q2,
respectively. Note that exactly one red subface and one black subface from the four
subfaces qr1, q

b
1, q

r
2, q

b
2 have e on their boundaries. We direct e clockwise on its neigh-

boring red subface. (Hence, e is directed counterclockwise on its black neighboring
subface.) This way, each edge e of G is consistently assigned a direction. Let G denote
this orientation of G.

Consider any face q of G. Let qr and qb be the red and black subfaces contained in
q, respectively. Two boundary edges of q are the boundary edges of qr. Hence they are
directed clockwise and form a directed path of length 2 in G. The other two boundary
edges of q are the boundary edges of qb. Hence they are directed counterclockwise
and form another directed path of length 2 in G. Thus G is indeed a G-orientation
of G.

Figure 3(b) shows an example of this construction. Two faces q1 and q2 are shown
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in the figure as black squares. Each of them contains two subfaces. The red subfaces
are indicated by empty circles. The black subfaces are indicated by solid circles. The
edges of G are directed as described above.

For each face q of G, the diagonal d of q from the even triangulation G′ is the
diagonal which separates the red and the black subfaces of q. So it is the diagonal
of q connecting the starting and the ending vertices of the two directed paths on the
boundary of q. Hence d is the primary diagonal of q with respect to G. Therefore,
the even triangulation T (G) determined by G is exactly G′.

Statement 2. It follows directly from the following facts:

• We can assign two directions to each S-walk Si (1 ≤ i ≤ k). So G∗ has 2k dif-
ferent S-orientations and 2k−1 different S-orientation pairs. By Theorem 4,
there are exactly 2k−1 different G-orientation pairs of G.

• Each G-orientation pair determines a distinct even triangulation of G.
• Every even triangulation of G is determined by a G-orientation pair.

In order to provide a new proof of Theorem 3, we need the following.

Lemma 3. Let G be a 2MBP and let S(G∗) = {S1, . . . , Sk} be the S-walks of G∗.
Let O1 be an S-orientation of G∗. Let O2 be the S-orientation of G∗ obtained from
O1 by reversing the direction of an S-walk Si.

Then T (O2) can be obtained from T (O1) by flipping the diagonals of all faces
on Si. (If q occurs on Si twice, its diagonal is flipped twice and hence remains un-
changed.)

Proof. The proof directly follows from the following facts:

• If a face q does not occur on Si, its primary diagonal with respect to O1 is
the same as that with respect to O2.

• If a face q occurs on Si once, its primary diagonal with respect to O1 is its
secondary diagonal with respect to O2.

• If a face q occurs on Si twice, its primary diagonal with respect to O1 is the
same as that with respect to O2.

We are now ready to give the following.

New proof of Theorem 3.

Statement 1. Let T be an even triangulation of a 2MBP G. Then T is determined
by an S-orientation O of G∗ by Theorem 6, i.e., T = T (O). Let O′ be the S-
orientation obtained from O by reversing the direction of an S-walk Si. Let T ′ be the
even triangulation T (O′) of G determined by O′. By Lemma 3, T ′ is obtained from
T by flipping the diagonals of the faces on Si.

Statement 2. Let T1 and T2 be any two even triangulations of G. By Theorem 6,
T1 = T (O1) is determined by an S-orientation O1 and T2 = T (O2) is determined
by another S-orientation O2. Let Si1 , Si2 , . . . , Sit (t ≤ k) be those S-walks whose
directions in O1 and O2 are reversed. By repeated applications of Lemma 3, if we
start with T1 and flip the diagonals of the faces on the S-walks Sij (1 ≤ j ≤ t) one
by one we get T2.

4. Algorithm. Based on the discussion in section 3, we obtain the following:

Algorithm 1: Even triangulation.

Input: A 2-connected bipartite plane graph G.

Output: An even triangulation of G.

1. Add diagonals into G, if necessary, to make all facial cycles length 4. For
simplicity, we still use G to denote the resulting graph.

2. Construct the dual graph G∗.
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3. Travel the edges of G∗ to trace the S-walks of G∗. Each S-walk is assigned a
direction when being traveled.

4. For each face qi of G, identify its in-edges, out-edges, and the primary diag-
onal. Add the primary diagonal into qi.

Fig. 4. (a) A G-orientation G of G corresponding to the S-orientation O in Figure 1. (b) An
even triangulation of G determined by G.

Figure 4 shows the even triangulation constructed by Algorithm 1 for the graph
G in Figure 1.

Theorem 7. Given a 2-connected bipartite plane graph G, Algorithm 1 finds an
even triangulation of G in O(n) time.

Proof. The correctness of Algorithm 1 directly follows from Theorem 5. All of
the steps of Algorithm 1 can be easily implemented using elementary graph algorithm
techniques (for example, see [2]), each in O(n) time.

Algorithm 1 may yield multiple edges as in the case of a quadrangle. It is im-
possible to obtain an even triangulation from a single quadrangle without allowing
multiple edges.

5. Even triangulations of 2-connected graphs on high genus surfaces.
In this section, the term surface describes a closed, connected, orientable surface
without boundary. Informally, it describes a sphere with g (g ≥ 0) handles where g
is the genus of the surface. We denote it by Fg. A graph G is said to be embedded
on Fg if G is drawn on Fg such that no two edges cross. The drawing of G divides
Fg into a number of connected regions. Each region is called a face of G. In this
section, G always denotes a graph that can be embedded on Fg and each of its faces
is an open disc on Fg. (Such a graph G cannot be embedded on Fg−1 without edge
crossings. Although G can be embedded on Fg+1, some of its faces are not open discs
on Fg+1. See [6, 7].) Note that a plane graph is just a graph embedded on F0.

As for embedded planar graphs, an even triangulation G′ of G is obtained from
G by adding diagonals into the faces of G such that every face of G′ is a triangle
and every vertex of G′ has even degree. In this section, we investigate the problem
of determining the existence and the number of even triangulations of G. Note that,
we also require the graph G to be a multigraph without 2-cycle faces, which we will
simply call graph G.
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Fig. 5. (a) A 2MEF graph G1 on F1 with odd cycles. (b) An even triangulation of a 2MEF
graph G on F1 determined by its unique S-orientation pair. (c) An even triangulation of G not
determined by any S-orientation.

If all of the facial cycles of G are of even length, we call G a 2-connected even
face graph on Fg (or 2EF graph, for short). Obviously, if G is a 2EF graph, we can
add diagonals into its faces (if necessary) to make all of its facial cycles length 4. We
call such a graph a 2-connected maximal even face graph on Fg (or 2MEF graph, for
short). Note that 2MEF graphs are the counterpart of 2MBP graphs on high genus
surfaces.

Our question is, given a 2MEF graph G, does G always have an even triangula-
tion? If so, how many?

According to Euler’s formula, if G is a 2MEF graph with n vertices, m edges, and
f faces, we have n+f−m = 2−2g. Since each face of G is a 4-cycle, we have 4f = 2m
and f = n+ 2g − 2. The faces of G will be denoted by Q(G) = {q1, q2, . . . , qn+2g−2}.

We can construct Fg from a 4g regular polygon on the plane (see [6, 7]). For
example, to construct a torus F1 from a square (see Figure 5(a)), we glue the side
Si with the side S−1

i (i = 1, 2) along their directions without twisting. The resulting
surface is F1. Thus points p and p−1 in the figure become the same point on F1. The
four corner points of the square become the same point on F1. In the figure, the line
segment between point v1 and point p−1 and the line segment between point p and
point v3 form a continuous line segment on F1 between v1 and v3. Figure 5(a) shows
a 2MEF graph G on F1 with 6 vertices (indicated by black dots), 12 edges (indicated
by solid lines), and 6 faces. All the faces are 4-cycles. However, the three edges
(v1, v2), (v2, v3), (v3, v1) form a (nonfacial) cycle of length 3. So G is not bipartite.

This example demonstrates a crucial difference between graphs on the plane and
graphs on Fg:

• If every face of a plane graph G is an even cycle, then G is bipartite.
• In contrast, even if every face of a graph G embedded on Fg (g > 0) is an

even cycle, then G is not necessarily bipartite.
As we will see, this difference makes it much harder to determine the number of

distinct even triangulations of G.
Let G be a 2MEF graph. Since G is not necessarily bipartite, we cannot color

the vertices of G by two colors 0 and 1. So (1) does not make sense anymore. Hence
we cannot rely on the existence of the solutions of (1) to show the existence of even
triangulations of G. So the methods developed in [3, 4] cannot be used here at all.

On the other hand, most concepts and some theorems in sections 3 and 4 can
be easily adapted to handle graphs G on Fg. Specifically, we can still construct the
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dual graph G∗ of G, where each vertex of G∗ is a face of G, and each edge of G∗

corresponds to an edge in G. Obviously G∗ can be embedded on Fg. Moreover, since
Fg is an orientable surface, it has two continuous normal vectors, and each remains
consistent while traveling on Fg. If we fix one normal vector of Fg, we can still define
the notions of clockwise, counterclockwise, right, and left directions on Fg.

Thus the edge set of G∗ can still be partitioned into a set of S-walks. The
concepts of 1-walk face, 2-walk face, S-orientation, S-orientation pair, G-orientation,
G-orientation pair, the mappings π and δ, in-edge and out-edge, and primary diagonal
can all be defined as in section 3 without any change. Moreover, the 2MEF graph
versions of Lemmas 1 and 2 and Theorems 4 and 5 are still valid (whose proofs require
no change). In particular, we state the following 2MEF graph version of Theorem 5.

Theorem 8. Let G be a 2MEF graph on Fg.
1. Let G be a G-orientation of G. Then adding the primary diagonals to each

face of G results in an even triangulation of G, which is called the even
triangulation determined by G, denoted by T (G).

2. Let G and G′ be two G-orientations of G. If G,G′ form a G-orientation pair
of G, they determine the same even triangulation of G, i.e., T (G) = T (G′).
If G,G′ do not form a G-orientation pair of G, they determine different even
triangulations of G, i.e., T (G) �= T (G′).

Because of Theorem 8, Algorithm 1 still correctly constructs an even triangulation
of a 2EF graph G in linear time. So the 2EF graph version of Theorem 7 is also valid.

Given any even triangulation T of a 2MEF graph G, if we flip the diagonals of
every face on an S-walk S of G∗, we get another even triangulation. (If a face q
occurs twice on S, its diagonal is flipped twice and hence remains unchanged.) Thus
statement 1 of Theorem 3 is still true.

The proof of statement 1 of Theorem 6 relies on the assumption that if all facial
cycles of G are even cycles, then G is bipartite. Since this assumption is not true for
2MEF graphs, this proof is no longer valid. In fact, as we will show later, the two
statements of Theorem 6 and statement 2 of Theorem 3 are false for 2MEF graphs.

We have the following weaker version of statement 2 of Theorem 6.
Theorem 9. Let G be a 2MEF graph on Fg and let S(G∗) = {S1, . . . , Sk} be all

S-walks of G∗. Then G has at least max(2k−1, 22g−2) distinct even triangulations.
Proof. Since we can assign two directions to each S-walk Si (1 ≤ i ≤ k), G∗

has 2k−1 S-orientation pairs. Hence G has 2k−1 distinct G-orientation pairs. By
Theorem 8, G has at least 2k−1 distinct even triangulations.

Now fix an even triangulation T of G. We associate each face qi of G with a {0, 1}-
valued variable xi, and each triangulation T ′ of G with a vector �x = (x1, x2, . . . , xn+2g−2)
in GF (2)n+2g−2, where

T and T ′ contain different diagonals of the face qi ⇐⇒ xi = 1.

It is easy to see that (a) T ′ is an even triangulation of G iff its corresponding vector
�x is a solution of the following linear equation (2) over GF (2); and (b) distinct even
triangulations correspond to distinct solutions of (2) and vice versa:∑

qi∈Qv

xi = 0 (mod 2) (∀v ∈ V ).(2)

Since (2) has n equations and n + 2g − 2 variables, it has at least 2g − 2 free
variables. Thus, (2) has at least 22g−2 distinct solutions (see [5]) and G has at least
22g−2 distinct even triangulations.
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Figures 5(b) and (c) show an example that the number of even triangulations of
G can be strictly bigger than max(2k−1, 22g−2). These figures show a 2MEF graph G
on F1 (after gluing the side Si with Si

−1 for i = 1, 2). G has 7 vertices (indicated by
black dots and labeled v1, . . . , v7) and 14 edges (indicated by solid lines). It can be
verified that G∗ has a single S-walk on F1 and hence an unique S-orientation pair.
Figures 5(b) and (c) show two distinct even triangulations of G (where the added
diagonals are indicated by dotted lines). The even triangulation shown in Figure 5(b)
is determined by the unique S-orientation pair of G∗. So the even triangulation shown
in Figure 5(c) is not determined by any S-orientation of G∗. Therefore statement 2
of Theorem 3 and all of Theorem 6 are not valid for a 2MEF graph G.

We raise the following open problem to conclude this paper: What properties of
a 2MEF graph G determine all its even triangulations and how many are they?
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Abstract. We study fault-tolerant multiprocessor scheduling under the realistic assumption
that the occurrence of faults cannot be predicted. The goal in these problems is to minimize the
delay incurred by the jobs. Since this is an online problem we use competitive analysis to evaluate
possible algorithms. For the problems of minimizing the makespan and minimizing the average
completion time (for static release times), we give nonclairvoyant algorithms (both deterministic and
randomized) that have provably asymptotically optimal competitive ratios. The main tool used by
these algorithms to combat faults is redundancy. We also show that randomization has the same
effect as redundancy.
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1. Introduction.

1.1. Problem statement. The scheduling of tasks in a multiprocessor system
has been recognized as an important problem and has been extensively studied (see [6]
for a survey). In a large multiprocessor system, processor faults are inevitable and
fault-tolerance is a significant issue [11]. The vast majority of previous work on
scheduling either assumes that there are no faults, or gives minimal analysis. In this
paper we begin a theoretical investigation of the effect of processor faults on schedul-
ing by considering several standard scheduling problems modified to allow faults. We
assume that the pattern of faults cannot be predicted by the online scheduling al-
gorithm. We then compare the schedules produced by the online algorithm to the
schedules produced by an omniscient algorithm.

The setting for the generic multiprocessor scheduling problem is a collection
P1, . . . , Pm of processors. Each processor Pj has a speed sj . The processors are
given a collection J1, . . . , Jn of jobs. Each job Ji has a release time ri that is the time
that the online scheduling algorithm is first aware of Ji’s existence, and that is the
earliest time that Ji can begin execution. Furthermore, each Ji has a length xi, and
running Ji on Pj takes xi/sj units of time.

There are many variants of the multiprocessor scheduling problem depending on
what assumptions one makes about the jobs and processors and on how one measures
the desirability of a schedule. If all release times are 0, we say the release times
are static. Otherwise, the release times are said to be dynamic. In the identical
processors case all the processor speeds are equal. Otherwise, it is called the related
processors case. A scheduling algorithm is clairvoyant if it learns each xi at time ri,
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and is nonclairvoyant if xi cannot be deduced until Ji has been fully executed. A
preemptive algorithm is allowed to suspend an executing job and later restart the
job from the point of suspension. A preemptive-with-restart algorithm must begin
the job afresh after suspending it. The completion time ci of a job Ji is the time at
which Ji has been allocated enough time to finish execution. The completion time
of Ji is wi = ci − ri. In this paper we primarily consider two scheduling measures,
the makespan of a schedule, which is the maximum completion time, and the average
completion time, which is 1

n

∑n
i=1 wi.

We assume that when a processor Pj faults it is immediately detectable, and that
the job currently being run on Pj must be restarted from the beginning at some later
point in time. A fault at Pj can be classified as either permanent, in which case no
more jobs may be run on Pj , or transient, in which case Pj is inoperative for some
finite period of time [11]. Note that a nonclairvoyant algorithm (also known as online
algorithm) detects faults only at the time of their occurrence.

The competitiveness (or competitive ratio) of a deterministic algorithm for a par-
ticular problem and measure M is the supremum over all instances I, of the ratio of
the value of M for the schedule produced by the online algorithm given I as input
to the optimal value of M for a schedule of I [9]. We can assume that the optimal
value of M was computed by an offline algorithm with full advance knowledge of all
the information about the jobs and the pattern of faults. For randomized algorithms
we assume an oblivious adversary [2]; that is, the input (length of jobs and where,
when, and how long the fault happens) must be specified in advance and may not be
modified as a result of random events internal to the randomized algorithm. Thus the
competitive ratio of a randomized algorithm on a particular problem and measure M
is the supremum over all instances I, of the ratio of the expected value of M for the
schedule produced by the online algorithm given I as input to the optimal value of M
for a schedule of I.

The online algorithms that we give are nonclairvoyant; however, because our
lower bound constructions all use equal length jobs, we can conclude that clairvoyance
would not asymptotically help the online scheduling algorithm in the worst case. We
always assume preemption-with-restart. As in most settings where fault-tolerance is
an issue, the main tool available to combat faults is redundancy [11]. In this setting
this generally means running multiple copies of the same job on different processors.

1.2. Results. The main results for the case of identical processors and preemp-
tion-with-restart are summarized in the table below. We use λ to denote the total
number of faults the scheduler will see over the entire length of its schedule. In
the case of permanent faults we use η = m − λ to denote the number of nonfaulty
processors. The constant ε satisfies 0 < ε < 1. To determine the effect of the duration
of faults on competitiveness, we assume that the duration of each transient fault is 0.
That is, after a processor Pj experiences a transient fault, a job may immediately be
restarted on Pj . The results in this table suggest that for a moderate number (say,
less than εm) of faults, the duration of the faults does not asymptotically affect the
achievable competitive ratios. The function log∗ x is defined to be the minimum i such

that log
(i)
2 x ≤ 1, where log

(i)
2 is the log function iterated i times. The results for no

faults come from [10, 8]. If one expects that permanent faults are largely independent,
then the number of faults is likely to be approximately εm, where the constant ε is
the probability that a particular processor faults. So in practice the most relevant line
of the table is probably where λ = εm; note that the multiplicative constants here
depend on ε. These results show that the competitive ratios are effectively bounded
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in practice. The competitive ratio for average completion time is a constant, and the
randomized competitive ratio for makespan is effectively bounded since log∗ m is such
a slowly growing function.

In the general related processors case, almost all the optimal competitive ratios
listed in the table for permanent faults increase by a multiplicative factor of R, where
R is the ratio of the speed of the fastest processor to the speed of the slowest processor.
For no faults, [10] showed a Θ(min(logR, logm)) bound on the optimal deterministic
competitive ratio with respect to makespan, in the related processors case. In [8] it is
implicitly shown that there exists a constant competitive algorithm for minimizing the
average completion time in the general related processors case. The result is explicitly
stated only for the identical processors case. This shows that as the system becomes
more heterogeneous, the degradation of the optimal competitive ratio is much more
rapid in the case of permanent faults.

Optimal Competitive Ratios for Identical Processors
Makespan Average completion

time (static case)
Deterministic

Faults Deterministic Randomized and
randomized

λ = 0 Θ(1) [10] Θ(1) [10] Θ(1) [8]

λ > 0 Θ(max( log m

log(m log m
λ

)
, m

η
)) Θ(max(log∗ m− log∗ m

λ
, m

η
)) Θ(m

η
)

Permanent

λ = εm Θ( log m
log log m

) Θ(log∗ m) Θ(1)

Permanent

λ > 0 Θ(max( log m

log(m log m
λ

)
, λ
m

)) Θ(max(log∗ m− log∗ m
λ
, λ
m

)) Θ(max( λ
m
, 1))

Transient

The results for makespan with permanent faults are given in section 2, and the
results for average completion time with permanent faults are given in section 3. In
section 4, we consider transient faults for the identical processors case. In section 5,
we consider the effect of not allowing the online algorithm to run multiple copies
of the same job at the same time. It is at least possible that this may be required
in some situations where the programs have side effects or use external resources.
We show that this restriction really cripples deterministic algorithms in that the
optimal competitive ratio for both makespan and average completion time is Θ(λ)
for permanent faults. We also show that the bounds on the competitive ratio, with
respect to both makespan and average completion time, for randomized algorithms in
the case of no redundancy are exactly the same as for deterministic algorithms that
use redundancy.

We know of no previous theoretical investigations of this kind into fault-tolerant
scheduling. Nonclairvoyant scheduling without faults is discussed in [5, 7, 8, 10]. In [8]
it is shown that with dynamic release times and without faults, a nonclairvoyant deter-
ministic (randomized) algorithm cannot be better than Ω(n1/3)-competitive (Ω(log n)-
competitive), with respect to average completion time, even allowing preemptions.
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This shows that online scheduling algorithms face a much more daunting task when
trying to minimize the average completion time of jobs with dynamic release times.
For a general survey of fault-tolerant scheduling see [11].

2. Makespan.

2.1. Lower bounds. We use the following adversary to prove a lower bound on
the competitive ratio, with respect to makespan, of any deterministic online algorithm.
We define the multiplicity φ(J) of a job J at some point in time to be the number of
processors on which a copy of J is being run at that time.

2.1.1. Deterministic adversary. Adversary Deterministic-Deter(m,n, λ,
�,A). Here m is the number of unit speed processors, λ is the number of faults,
n is the number of jobs, � is the length of the jobs, and A is a deterministic online
algorithm. We assume that � is much larger than the length of a clock cycle. At time
zero, the adversary presents n jobs of length � to A. In the rest of the description,
time is divided into stages, where the duration of each stage is �. Let U(i), 1 ≤ i ≤ k,
be the collection of jobs that are not completed by A before the end of the ith stage.
So U(1) is the set of all n jobs. We denote the cardinality of U(i) by u(i). We use
f(i) to denote the number of faults during the ith stage; we set the value of each f(i)
later. Intuitively, the goal of the adversary is to fault f(i) working processors running
jobs with lowest multiplicity just before the end of every stage i (except possibly the
last stage), so that the number of unfinished jobs at the end of the stage is maximized
for A. Observe that in order to force A not to finish a job J , the adversary must fault
all of the machines running J .

We now show more formally how the adversary faults processors in each stage.
Consider the multiplicity of jobs in U(i) just before the end of the ith stage. Assume
that the jobs in U(i) are numbered and ordered such that φ(J1) ≤ φ(J2) ≤ · · · ≤
φ(Ju(i)). Find the largest number s such that

∑s
j=1 φ(Jj) ≤ f(i). Let U(i + 1) =

{Jx : 1 ≤ x ≤ s}. Note that s = u(i + 1). Just before the end of the ith stage,
the adversary faults every processor running a job in U(i + 1). Notice that since all
the copies of jobs in U(i + 1) are terminated just before the end of the ith stage, by
induction, no job in U(i + 1) can be completed before the end of the (i + 1)st stage.
Finally, let

D(i) =

{
U(i) − U(i + 1) if

∑s
j=1 φ(Jj) = f(i),

U(i) − U(i + 1) − {Js+1} otherwise.

We now explain how to set the value of the f(i)’s.

Case 1. If m − λ ≥ m log logm
logm , then each f(i) = �λ/ logm� for i ≤ logm, and

f(i) = 0 for i > logm.

Case 2. If m − λ < m log logm
logm , then f(1) = f(2) = m/4. In the permanent fault

case, f(3) = λ −m/2, and f(i) = 0 for i ≥ 4. In the transient fault case, f(i) = m
for 3 ≤ i ≤ 2 + �(λ−m)/m�, and f(i) = 0 for i > 2 + �(λ−m)/m�.

2.1.2. Analysis. We first prove two simple lemmas that we will use often.

Lemma 2.1. Let α1, . . . , αk be a collection of nonnegative reals such that
∑k

1 αi

= α. Then there are at least k/2 integers j such that 1 ≤ j ≤ k and αj ≤ 2α/k.

Proof. To reach a contradiction, assume that for at most k/2 of the j’s we have
αj ≤ 2α/k. Hence, there are at least k/2 j’s such that αj > 2α/k. Therefore, the
sum of those αj ’s must be strictly larger than (k2 )( 2α

k ) = α, a contradiction.
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Lemma 2.2. Let g(i) be the number of working processors at the start of the ith

stage. The adversary Deterministic-Deter guarantees that if u(i) ≥ g(i)
c + f(i)

c−1 ,

for some integer c ≥ 1, then u(i + 1) ≥ � f(i)
c−1�.

Proof. Consider some time just before the end of the ith stage. At this time there

can be at most g(i)/c jobs with multiplicity c or greater. Hence, since u(i) ≥ g(i)
c + f(i)

c−1 ,

there must be at least � f(i)
c−1� jobs with multiplicity c−1 or less. The result then follows

by the definition of Deterministic-Deter.
Lemma 2.3. Assume λ ≤ m − m log logm

logm and m ≥ n ≥ λ ≥ 1. Then for
any online deterministic algorithm A, the number of stages forced by the adversary
Deterministic-Deter(m,n, λ, 1,A) is Ω( logm

log(m log m
λ )

).

Proof. Notice that the faults occur just before the end of every stage. We will
assume that all m processors are available to A at the beginning of every stage even
if the faults are permanent. Therefore, the lower bound we will establish under this
strong assumption holds for both permanent and transient fault cases. Notice that
the required bound is constant if λ ≤

√
m. So it suffices to consider the case where

n ≥ λ ≥
√
m.

Consider the time just before the end of the ith stage. By the definition of
D(i), m − λ

logm ≥
∑

J∈D(i) φ(J) and |D(i)| ≥ [u(i) − (1 + u(i + 1))]. The minimum

multiplicity of a job in D(i) is at least the maximum multiplicity of a job in U(i+ 1),
which in turn is at least λ

logm · 1
1+u(i+1) . Therefore,

m− λ

logm
≥

∑
J∈D(i)

φ(J) ≥ [u(i) − (1 + u(i + 1))]
λ

logm

1

1 + u(i + 1)
.

Simplifying, we get 1+u(i+1) ≥ u(i)( λ
m logm ). By observing that 2u(i+1) ≥ 1+u(i+1)

for u(i+ 1) ≥ 1, we get u(i+ 1) ≥ u(i)( λ
2m logm ). Since u(1) = n, by induction we get

u(i + 1) ≥ n( λ
2m logm )i.

At the end of the last stage, say, k, we have u(k + 1) < 1 and u(k) ≥ 1. So

2 ≥ 1 + u(k + 1) ≥ u(k)

(
λ

m logm

)
≥ 2n

(
λ

2m logm

)k

.

Equivalently, we get k log( 2m logm
λ ) ≥ log n. Therefore, k = Ω( log n

log(m log m
λ )

). The result

follows since log n ≥ logm
2 .

Lemma 2.4. Assume that λ satisfies λ ≥ m− m log logm
logm . Then for all determinis-

tic online algorithms A, the number of stages forced by the adversary Deterministic-

Deter(m,m, λ, 1,A) is Ω(mη ) for the permanent fault case and Ω( λ
m ) for the tran-

sient fault case.
Proof. Note that f(1) = m/4 and that there are m working processors at the

start of the first stage. Applying Lemma 2.2 with c = 2, A has at least m/4 jobs not
completed by the start of the second stage. Note that f(2) = m/4 and that there are
at most m working processors at the start of the second stage. Applying Lemma 2.2
with c = 6, A has at least m/20 jobs not completed by the start of the third stage.
Now consider the permanent fault case. Since there are exactly η working processors
at the end of the third stage and at least m/20 unfinished jobs before the end of the
third stage, the number of stages is Ω(m/η). In the transient fault case, all processors
are faulting for the next Ω(λ/m) stages.
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Theorem 2.5. In the case of identical processors and static release times, the
competitive ratio, with respect to makespan, of any deterministic clairvoyant algo-
rithm A is Ω(max( logm

log(m log m
λ )

, m
η )) for λ ≥ 1 permanent faults.

Proof. Apply Deterministic-Deter(m,m, λ, 1,A). Observe that the adversary
faults a total of at most m/2 processors during the first two stages. As a consequence,
at least m/2 processors do not experience a fault during the first two stages. These
m/2 processors can complete m jobs at the end of the second stage. Therefore, OPT ,
the makespan of the offline optimal algorithm, is at most 2. The result follows from
Lemmas 2.3 and 2.4.

Theorem 2.6. In the case of identical processors and static release times, the
competitive ratio, with respect to makespan, of any deterministic clairvoyant algo-
rithm A is Ω(max( logm

log(m log m
λ )

, λ
m )) for λ ≥ 1 transient faults.

Theorem 2.7. In the case of related processors, the optimal deterministic com-
petitive ratio, with respect to makespan, is then Ω(R · max( logm

log(m log m
λ )

, m
η )) for λ ≥ 1

permanent faults.
Proof. Let A be the given online algorithm. First we assume that λ ≤

√
m,

where the lower bound we wish to establish is Ω(R). There are three processors with
speed R and m − 3 processors with speed 1. Initially, two jobs of length R arrive.
Just before the end of the first (unit time) stage, one speed R processor faults so that
there is an unfinished job at the end of the stage. At the end of the first stage, the
two remaining speed R processors fault. It is not hard to see that OPT = 1 and the
online makespan is Ω(R).

We now assume that λ >
√
m. There are λ/2 processors with speed R and m−λ/2

processors with speed 1. There are exactly λ/4 jobs of length R. Using Lemma 2.1,
one can see that the adversary can fault λ/4 speed R processors just before the end
of the first stage such that at least λ/16 jobs are unfinished by the given online
algorithm A. The remaining speed R processors fault right after time 1. Since λ/4
speed R processors work for one full stage, OPT = 1. Now apply Deterministic-

Deter(m− λ/2, λ/16, λ/16, R,A).
Note that in these lower bounds, the online algorithm is faced with a plethora of

faults after the optimal schedule has finished, a phenomenon that may not be quite
acceptable. It is not clear how to formulate an alternative reasonable model that
avoids this phenomenon.

2.1.3. Randomized case. Using Yao’s technique [3, 12], it suffices to prove
the lower bound on the expected competitive ratio of any deterministic algorithm
when faults occur according to a fixed probabilistic distribution. We first describe the
instance of the input and the probability distribution on the faults. It is important
to notice that the description of the following adversary is independent of the online
algorithm.

Adversary Oblivious-Deter(m,n, λ, �). Here m is the number of unit speed
processors, λ is the number of faults, n is the number of jobs, and � is the length of
the jobs. At time zero, the adversary releases n jobs of length �. In the rest of the
description, time is divided into stages, where the duration of each stage is �.

Case 1. Suppose m− λ ≥ m
log∗ m . Just before the end of every stage (except pos-

sibly the last stage), each working processor will fault independently with probability
λ

2m log∗ m .
Case 2. Suppose m − λ < m

log∗ m . Right before the end of the first two stages,

each working processor faults independently with probability 1/5. In the permanent
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fault case, just before the end of the third stage, all but an arbitrary m−λ processors
fault. In the transient fault case, all processors fault just before the end of stages 3
through 2 + �(λ−m)/m�.

2.1.4. Analysis. Before analyzing this adversary we need the following defini-
tions and facts.

Definition 2.8. For a nonnegative integer k, a real α ≥ 2, and a real z ≥ 1, we
inductively define

tower(α, k, z) =

{
z if k = 0,
αtower(α,k−1,z) otherwise.

Lemma 2.9. (k−1)+ log∗ αz ≤ log∗(tower(α, k, z)) ≤ 2(k−1)+ log∗ αz +O(1).
Proof. Notice that 22x ≥ αx if x ≥ α ≥ 2. Therefore, for k ≥ 2, we have

tower(2, (k − 1), αz) ≤ tower(α, k, z) = tower(α, k − 1, αz) ≤ tower(2, 2(k − 1), αz).

The result then follows since log∗(tower(2, k, z)) = k + log∗ z + O(1).
Fact 2.10. If p(x) is some fixed polynomially bounded function, then log∗ p(x) =

log∗ x + O(1).
Fact 2.11. Let y be a random variable with expectation µ and variance σ2.

Then Chebyshev’s inequality states that Prob[|y − µ| ≥ αµ] ≤ σ2

α2µ2 . If σ2 ≤ µ, then

Prob[|y − µ| ≥ αµ] ≤ 1
α2µ

.

Lemma 2.12. Assume λ ≤ m− m
log∗ m and n = Θ(m). Then for any deterministic

online algorithm A, the expected number of stages forced by the adversary Oblivious-

Deter(m,n, λ, 1) on A is Ω(log∗ m− log∗ m
λ ).

Proof. In this proof we will assume that all m processors are available to A at the
beginning of every stage. Therefore, the desired bound holds for both permanent and
transient fault cases. Notice that the required lower bound is Ω(1) if λ ≤ m/ logm.
So it suffices to consider the case where λ > m/ logm.

Consider a time just before the end of the ith stage. At this time let u(i) be a
random variable representing the number of jobs that are not completed by A before
the end of the ith stage. We say that an unfinished job J is weak if φ(J) ≤ 2m

u(i) at

this time. Using Lemma 2.1, one can see that there are at least u(i)/2 weak jobs
among these u(i) jobs. We now show that with very high probability u(i + 1) ≥
(u(i)

4 )( λ
m log∗ m )

2m
u(i) . Since processors fault independently with probability λ

2m log∗ m ,
the probability that no copy of a weak job J is completed at the end of the ith stage

is at least ( λ
2m log∗ m )φ(J) ≥ ( λ

2m log∗ m )
2m
u(i) . Hence by linearity of expectation,

E[u(i + 1)] ≥
(
u(i)

2

)
·
(

λ

2m log∗ m

) 2m
u(i)

.

Since u(i+1) is the sum of independent 0/1 valued random variables, the variance of
u(i + 1) is at most the expected value of u(i + 1) (see [1]). So applying Chebyshev’s
inequality,

Pr [|u(i + 1) − E[u(i + 1)]| ≥ E[u(i + 1)]/2] ≤ 4

E[u(i + 1)]
.

We define a stage i to be good if |u(i + 1) −E[u(i + 1)]| ≤ E[u(i + 1)]/2, and we
define a stage i to be correct if the number of faults during that stage does not exceed
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λ/ log∗ m. Assuming that all the stages are good and correct, we first show that there
are Ω(log∗ m− log∗ m

λ ) stages. We then show that with probability 1 − o(1) the first
Θ(log∗ m− log∗ m

λ ) stages are good and correct.
If all stages are good as well as correct, then

u(i + 1) ≥ E[u(i + 1)]

2
≥

(
u(i)

4

)
·
(

λ

2m log∗ m

) 2m
u(i)

.

Let r(i) = 2m/u(i); thus r(1) = 2m/u(1) = 2m/n ≥ 2. Furthermore,

r(i + 1) ≤ 4r(i) ·
(

2m log∗ m

λ

)r(i)

.

Since r(i) ≥ 2, λ ≤ m and we have

r(i + 1) ≤ 22+r(i)

(
2m log∗ m

λ

)r(i)

≤
(

2m log∗ m

λ

)3r(i)

.

Let α = ( 2m log∗ m
λ )3 ≥ 8. Therefore, we get r(i + 1) ≤ αr(i), and so by induction we

also get r(i + 1) ≤ tower(α, i, r(1)).
Let k be an integer such that E[u(k)] >

√
m and E[u(k + 1)] ≤

√
m. Our goal is

to show that k = Ω(log∗ m− log∗ m
λ ). Since |u(k + 1)−E[u(k + 1)]| ≤ E[u(k + 1)]/2,

we get u(k + 1) ≤ 3
√
m/2. As a consequence, r(k + 1) ≥ 4

√
m/3. Therefore, it must

be the case that tower(α, k, r(1)) ≥ 4
√
m/3. Applying Lemma 2.9 we get that

log∗(tower(α, k, r(1))) ≤ 2(k − 1) + log∗ αr(1) + O(1) and

log∗(tower(α, k, r(1))) ≥ log∗(4
√
m/3) ≥ log∗ m.

Then by Fact 2.10

k ≥ 1

2
(log∗ m− log∗ αr(1)) + O(1) =

1

2

(
log∗ m− log∗

m log∗ m

λ

)
+ O(1).

We now consider two cases. If λ ≤ m/ log∗ m, then m/λ ≥ log∗ m. Thus

log∗
m log∗ m

λ
≤ log∗

(
m

λ

)2

= log∗
m

λ
+ O(1).

If λ > m/ log∗ m, then log∗ m − log∗ m log∗ m
λ = Θ(log∗ m) and log∗ m − log∗ m

λ =
Θ(log∗ m).

Let us now fix an x such that x ≤ k and x = Θ(log∗ m − log∗ m
λ ). We now

complete our proof by showing that the probability that the first x stages are good
and correct is 1−o(1). The probability that there exists a stage between 1 and x that
is not good is at most

x∑
i=1

4

E[u(i + 1)]
≤ 4x/

√
m.

Hence, the probability that all the first x stages are good is at least 1 − o(1).
Since processors fault independently with probability λ/2m log∗ m, the expected

number of faults per stage is at most λ/2 log∗ m, and the variance does not exceed the
expected number of faults. Applying Chebyshev’s inequality, we get that the number
of faults per stage is at most λ/ log∗ m with probability at least 1− 2(log∗ m)/λ. The
probability that there is a stage between 1 and x that is not correct is thus at most
2x(log∗ m)/λ, which is o(1) since λ > m/ logm.
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We will use the following lemma repeatedly.
Lemma 2.13. Suppose that there are n = εm unfinished unit length jobs and

m idle working processors at some time t. Let A be an assignment of these jobs to these
processors. Further suppose that each processor faults independently with probability p
just before time t + 1, where p < 1 is a constant. Then with probability 1 −O(1/m),
the number of processors faulting just before time t + 1 is at most (1 + 1

4 )pm. Also,
with probability 1−O(1/m), the number of jobs unfinished before time t+2, using A,
is at least ε

4mp2/ε = Θ(m).
Proof. Since p is a constant, q = 1 − p is also a constant. Let x be the random

variable representing the number of successes in m Bernoulli trials, where the success
probability is p. The expected number of successes E(x) is mp and the standard
deviation σ(x) =

√
mpq ≤

√
E(x). Applying this to our case, the expected number

of faults E(x) is mp. Therefore, applying Chebyshev’s inequality, the number of faults
does not exceed (1 + 1

4 )pm with probability 1 − 16/(p2E(x)) = 1 −O(1/m).
Let K be the set of jobs with multiplicity at most 2/ε just before time t + 1

in A. Applying Lemma 2.1, we know that |K| ≥ n/2 = εm/2. Since processors
fault independently with probability p just before time t + 1, the probability that
a job J ∈ K is unfinished at time t + 1 is p2/ε. Moreover, the probability that a
job J ∈ K is unfinished is independent of the probability that some other job is
finished. Therefore, the expected number of jobs in K that are not finished at time
t+ 1 is at least F = ε

2mp2/ε = Θ(m). Since the variance is smaller than the expected
value, applying Chebyshev’s inequality (see Fact 2.11), we get that with probability
1−4/F = 1−O(1/m), the number of unfinished jobs just before time t+2 is at least
F/2 ≥ ε

4mp2/ε = Θ(m).
Lemma 2.14. Assume λ ≥ m − m

log∗ m and n = Θ(m). Then for every deter-
ministic online algorithm A, the expected number of stages forced by the adversary
Oblivious-Deter(m,n, λ, 1) on A is Ω(mη ) for the permanent fault case and Ω( λ

m )
for the transient fault case.

Proof. Notice that the adversary (applying Case 2) faults each working pro-
cessor independently with probability 1/5 during the first two stages. So applying
Lemma 2.13 twice, we get the following:

• With probability 1 − O(1/m), the number of faults does not exceed m/4
during each of the first two stages.

• With probability 1 − O(1/m), the number of jobs that cannot be finished
before the end of the second stage is Ω(m).

• With probability 1 −O(1/m), the number of jobs that cannot be completed
before the end of the third stage is Ω(m).

The desired bound for the permanent fault case follows, since with probability
1− o(1), there are exactly η working processors and Θ(m) unfinished jobs just before
the end of the third stage. In the transient fault case, just before the end of each of
the next �(λ−m)/m� stages all m processors fault.

Theorem 2.15. In the case of identical processors and static release times,
the competitive ratio, with respect to makespan, of any randomized clairvoyant algo-
rithm A is Ω(max(log∗ m− log∗ m

λ ,
m
η )) for λ ≥ 1 permanent faults.

Proof. In the arguments of Lemmas 2.12 and 2.14, we also showed that at least
m/2 processors are working during the first two stages with probability 1− o(1), and
hence OPT = 2 for these cases. For other cases, OPT is at most the makespan
of A. Therefore, E[ makespan of A

makespan of OPT ] = Ω(max(log∗ m − log∗ m
λ ,

m
η )). Applying Yao’s

principle (see [3]), it is the case that the competitive ratio (against the oblivious
adversary) of an online algorithm is not smaller than E[ makespan of A

makespan of OPT ].
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Theorem 2.16. In the case of identical processors and static release times,
the competitive ratio, with respect to makespan, of any randomized clairvoyant algo-
rithm A is Ω(max(log∗ m− log∗ m

λ ,
λ
m )) for λ ≥ 1 transient faults.

Theorem 2.17. In the case of related processors, the optimal randomized com-
petitive ratio, with respect to makespan, is Ω(R) for λ ≥ 1 permanent faults.

Proof. Once again we use Yao’s technique. There are three processors with
speed R and m − 3 processors with speed 1. Initially, two jobs of length R arrive.
Just before the end of the first unit length stage, the adversary faults one of the three
speed R processors uniformly at random. As a consequence, with probability 1/3
there is an unfinished job at the end of the first stage. Now, at the end of the first
stage, the remaining two speed R processors fault. It is not hard to see that OPT = 1
and the expected makespan of any online algorithm is Ω(R).

Theorem 2.18. In the case of related processors, the optimal randomized com-
petitive ratio, with respect to makespan, is Ω(Rmax(log∗ m, m

η )) for λ = Θ(m) per-
manent faults.

Proof. There are λ/2 processors with speed R and m− λ/2 with speed 1. There
are exactly λ/4 jobs of length R. Just before the end of the first stage, the adversary
faults each of the speed R processors independently with probability 1/3. Applying
Lemma 2.13 we get the following:

• With probability 1−O(1/λ), the number of faults does not exceed λ/4 during
the first stage.

• With probability 1 − O(1/λ), the number of jobs that cannot be finished
before the end of the second stage is Ω(λ).

Since λ = Θ(m), with probability 1 − o(1) the number of unfinished jobs at the
beginning of the second stage is n = Θ(λ) and at least λ/4 speed R processors run
without fault for one full stage; hence OPT = 1. At the end of the first stage,
the adversary faults the remaining speed R processors. Notice that n ≤ m. Now the
adversary applies the strategy Oblivious-Deter(m−λ,min(n, λ/2),min(n, λ/2), R).
Applying Lemmas 2.12 and 2.14, we get that with probability 1−o(1), the competitive
ratio is Ω(R ·max(log∗ m, m

η )). Otherwise, the competitive ratio is at least 1. We get

the desired result since the competitive ratio (against an oblivious adversary) is at
least E[ makespan of A

makespan of OPT ].

2.2. Upper bounds for makespan. We define a randomized algorithm, which
we call Rotary, and analyze its deterministic worst-case performance and expected
performance against permanent faults. We assume identical processors throughout
this section.

Definition 2.19. The algorithm Rotary breaks time into stages.
1. Let Si denote the ith stage.
2. Let u(i) denote the number of unfinished jobs at the beginning of Si.
3. Let g(i) denote the number of working processors at the beginning of Si.
4. Let c(i) denote the number of distinct jobs completed during Si.
5. Let f(i) denote the number of faults experienced during Si.
6. Let OPT be the optimal makespan.

2.2.1. Online algorithm. Algorithm Rotary. The algorithm divides time
into stages. The first stage starts when the first job is released. We maintain the
invariant that all working processors are idle at the start of a stage. At the beginning
of a stage Si, the algorithm initializes a queue Qi to contain the collection of jobs
that have been released but not finished by the start of Si. The ordering of the jobs
in Qi is arbitrary. The rest of the execution of Rotary depends on the relationship
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between u(i) and g(i).
Suppose u(i) > g(i). Whenever a processor P is idle, P removes a job at the front

of the queue Qi and runs it. If Qi is empty, P remains idle for the rest of this stage.
Stage Si ends at the earliest time such that every job in Qi has run to completion or
has experienced a fault.

Now, suppose u(i) ≤ g(i). The algorithm selects uniformly at random an ordering
of the g(i) working processors and then assigns jobs to processors in this order. When
considering a processor P , Rotary assigns P the job J currently at the front of Qi,
and then moves J to the back of Qi. No processor is assigned a second job. Stage Si

ends at the earliest time such that every processor has either finished a job or has
faulted.

2.2.2. Basic properties of ROTARY. Note that Rotary often forces a pro-
cessor to remain idle for the remainder of a stage after having completed a job. This
enables us to simplify many of our definitions and proofs. The asymptotic bounds do
not change if we allow some arbitrary collection of idle processors to run any unfin-
ished job. Observe that when a new job arrives in the middle of a stage, it will not
be added to the queue. It will be considered only during the following stages.

Our first goal is to show that by some reasonable time Rotary has reduced the
number of unfinished jobs to m.

Fact 2.20. For all jobs Ji, xi ≤ OPT.
Lemma 2.21. Rotary guarantees that the length of any stage i is at most

(mη + 1)OPT.

Proof. If u(i) ≤ g(i), then, applying Fact 2.20, the length of the stage is at most
OPT. Suppose u(i) > g(i). Since there are always at least η fault-free processors, a
simple counting argument shows that for every job J in the queue, some processor
must start executing a copy of J by at least time m · OPT/η after the start of the
stage. Using Fact 2.20, our claim follows.

Lemma 2.22. Rotary guarantees that there will be at most m jobs left unfinished
(2m

η + 2)OPT time units after the release of the last job.

Proof. By Lemma 2.21, a new stage S starts no later than (mη + 1)OPT time
units after the release of the last job. Since there are at most m faults in stage S, at
most m jobs are left unfinished after stage S, which lasts at most (mη + 1)OPT units
of time.

Now we focus our attention on the case where the number of unfinished jobs is
at most m. Intuitively, we will argue that for a stage in which the multiplicity of a
job is not too small and not too many processors fault, the online algorithm makes
good progress. On the other hand, we will also argue that there cannot be too many
stages with either small multiplicity or too many faults.

Definition 2.23.

1. Let φ(i) denote the minimum, over all unfinished jobs J at the start of stage
Si, of the number of processors that ran a copy of J in stage i.

2. Let stage Sβ be the first stage, after the release of the last job, for which the
number of jobs left unfinished at the start of this stage is at most m.

3. Let C = {Si : i ≥ β}.
4. Let F = {Si ∈ C : φ(i) ≤ 2}. F is the set of all stages in C such that the

algorithm ran at most two copies of some unfinished job during that stage.
5. Let H = {Si ∈ C−F : f(i) ≤ g(i)/4}. H is the set of all stages in C−F such

that the ratio of the number of working processors to the number of processors
experiencing a fault is at least 4.
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Lemma 2.24. Rotary guarantees that the number of copies of any unfinished
jobs that are started during Si is either φ(i) or φ(i) + 1.

Since η processors never experience a fault, for any stage in F , at least �η/3� jobs
will be completed. Therefore |F | ≤ 3�m

η �. On the other hand, we will derive a bound

on |C − F −H|, since the number of faults in each stage in C − F −H is large.
Lemma 2.25. Rotary guarantees that if the length of a stage Si ∈ F is α ·OPT,

then �α− 1� ≤ 3c(i)/η.
Proof. Assume that stage Si finished at time t. The last job assignment in this

stage cannot be made earlier than time t − OPT by Fact 2.20. Observe that any
processor that does not experience a fault during a stage cannot be idle for more than
OPT time units. Thus the η nonfaulty processors were all running jobs at all times
before t−OPT, and thus by Fact 2.20 each of these processors must complete at least
�α − 1� jobs. Since Si ∈ F , φ(i) ≤ 2 and so by applying Lemma 2.24 we conclude
that c(i) ≥ η�α− 1�/3.

Lemma 2.26. Rotary guarantees that the total length of the stages in F is at
most 9�m

η �.
Proof. First observe that η nonfaulty processors complete a job in each stage.

For a stage in F , at most three processors finish the same job. Since the number of
jobs in any of the stages in C is at most m, |F | ≤ 3�m

η �. Let αiOPT be the length of
stage Si ∈ F . Consider the sum∑

Si∈F

αiOPT ≤ OPT ·
∑
Si∈F

(�αi − 1� + 2).

Applying Lemma 2.25, this sum is at most OPT · (2|F | + 3
∑

Si∈F c(i)/η). Applying
the bound on |F |, the result follows since

∑
Si∈F c(i) ≤ m.

Lemma 2.27. Rotary guarantees that the length of a stage in C − F is at most
OPT.

Proof. Suppose Si ∈ C − F . By the definition of F , φ(i) > 3. This can happen
only when u(i) ≤ g(i). Under this situation, according to the description of Rotary,
no processor is assigned a second job during this stage. Applying Fact 2.20, the result
follows.

Lemma 2.28. Rotary guarantees that |C − F −H| is at most log4/3
m
η .

Proof. Observe that faults are permanent, and that initially there are m working
processors. Also, for any stage Si ∈ C − F − H, f(i) ≥ 1

4g(i). As a consequence,
after y stages in C − F −H, the number of remaining working processors is at most
m/(3/4)y. The result then follows, since η processors never fault.

Lemma 2.29. The cumulative length of the stages not in H is O(mη OPT ).
Proof. The result follows from Lemmas 2.22, 2.26, 2.27, and 2.28.
In order to prove the desired upper bound for Rotary, it now suffices to prove

that the cumulative length of the stages in H is not large. Since H ⊆ C − F , by
Lemma 2.27 it suffices to show an upper bound on the number of stages in H.

2.2.3. Deterministic bound. In this subsection, we will analyze the worst-case
deterministic performance of Rotary. We assume that the ordering of the processors
in Rotary is determined by some arbitrary deterministic procedure. We call the
resulting algorithm Deterministic Rotary.

Definition 2.30. For 1 ≤ j ≤ �1 + log m
η �,

1. let Nj = {Si ∈ H : m/2j < g(i) ≤ m/2j−1};
2. let λj be the total number of faults experienced during stages in Nj, i.e.,

λj =
∑

Si∈Nj
f(i);
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3. let nj = |Nj |.
Lemma 2.31. Rotary guarantees that λj ≤ m/2j−1.
Proof. This follows since faults are permanent and g(i) ≤ m/2j−1 for any stage

Si ∈ Nj .
Lemma 2.32. Deterministic Rotary guarantees that the cardinality of H is

O(max( logm

log(m log m
λ )

, m
η )).

Proof. We say that a stage Si ∈ Nj is good if f(i) ≤ 2λj/nj . By Lemma 2.1
there can be at most nj/2 stages in Nj that are not good. Hence, at least 1

2 |H| stages
in H are good. From now on, we consider only good stages in H. Let k be the total
number of good stages in H.

Consider a good stage Si ∈ Nj . The algorithm guarantees that φ(i) ≥ �g(i)/u(i)�.
Notice that H ∩F = ∅. So Si /∈ F , and as a consequence 2φ(i) ≥ φ(i)+1 ≥ g(i)/u(i).
Since m/2j < g(i) ≤ m/2j−1, we get φ(i) ≥ m/(2j+1u(i)).

Since the multiplicity of a job is at least φ(i), it must be the case that φ(i)u(i+1) ≤
f(i). Since Si is good, f(i) ≤ 2λj/nj and so u(i + 1) ≤ (

2λj

nj
)/φ(i). Now substituting

φ(i) ≥ m/(2j+1u(i)) into this inequality we get

u(i + 1) ≤ u(i)

(
2λj

nj

)(
2j+1

m

)
= u(i)8

(
λj

nj

)(
2j−1

m

)
.(1)

Let � = �1 + log2
m
η �. We now measure the progress made by good stages in H.

We set u′(i) to be equal to u(x), where Sx is the chronologically ith good stage.
Applying Definition 2.23, the number of unfinished jobs in any stage in H ⊂ C is at
most m. Therefore, we have u′(1) ≤ m. Since at least nj/2 stages in Nj are good,
applying induction we get

u′(k) ≤ m8k
�∏

j=1

(
λj

nj

2j−1

m

)nj/2

.(2)

Recall that k is the number of good stages in H. First assume that η > m/2.
Notice that then � = 1, λ1 ≤ λ, and k ≤ n1 ≤ 2k. Observe that u′(k) ≥ 1; otherwise
there will be at most k − 1 stages. Then (2) implies

m8k
(

λ

n1m

)k/2

≥ 1 or logm ≥ k

2
log

(
n1m

2λ

)
− 3k ≥ k

2
log

(
km

2λ

)
− 3k.

Therefore, k = O( logm

log( k log k
λ )

).

We now consider the case that m/2 ≥ η ≥ m/ logm. Call an nj big if nj ≥ k/(2�).
Observe that by Lemma 2.31, λj ≤ m

2j−1 . Notice that the u′(i)’s do not increase as
we move from one stage to another. As before, applying the fact that u′(k) ≥ 1, we
will show that k is not large. In order to estimate k, we consider the rate at which
the u′(i)’s decrease during a good stage where ni is big. So, applying u′(k) ≥ 1, we
can conclude that

m8k
∏

big nj

(
2�

k

)nj/2

≥ m8k
∏

big nj

(
λj

nj

2j−1

m

)nj/2

≥ m8k
�∏

j=1

(
λj

nj

2j−1

m

)nj/2

≥ 1.

(3)
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In the above expression, the first and the second inequalities follow since nj ≥ k/(2�)

and for any j in [1, �],
λj

nj

2j−1

m ≤ 1. Notice we can use Lemma 2.1 to show that∑
big nj

nj ≥ k/2. Therefore, (3) implies

m8k
∏

big nj

(
2�

k

)nj/2

= m8k
(

2�

k

)∑
big nj

nj/2

≤ m8k
(

2�

k

)k/4

.(4)

As a consequence, we get

m8k
(

2�

k

)k/4

≥ 1 or
k

4
log

k

4 · 84�
≤ logm.(5)

Then by the definition of �, � = O(log logm). Then (5) implies k = O(logm/ log logm).
Note that logm/ log logm = O( logm

log(m log m
λ )

) if m/2 ≥ η ≥ m/ logm.

Now assume η < m/ logm. Since � = O(k), statement (5) implies k = O(logm).
Note that logm = O(mη ) for η < m/ logm. The result follows since k ≥ 1

2 |H|.
Theorem 2.33. In the case of permanent faults and identical processors, the

competitive ratio of Deterministic Rotary is O(max( logm

log(m log m
λ )

, m
η )) for makespan.

Proof. The result follows from Lemmas 2.29, 2.32, and 2.27.

2.2.4. Randomized bound. We now examine the expected performance of the
randomized algorithm Rotary.

Lemma 2.34. The expected number of stages in H for Rotary is O(log∗ m −
log∗ m

λ ).
Proof. In the following proof, we will not use the fact that λ ≤ m. As a conse-

quence, this lemma is also true for the transient faults case where λ could be signifi-
cantly larger than m. We will appeal to this fact when we discuss transient faults.

Let Si be a stage in H. For 1 ≤ j ≤ φ(i), let Pj(i) be the set of processors that
were assigned a job from the jth time through the queue in Si; e.g., the first u(i)
processors assigned jobs are in P1(i). Let fj(i) be a random variable representing the
number of faults experienced by processors in Pj(i) during stage Si. Recall that f(i)
is the total number of faults during stage Si.

For 1 ≤ a ≤ u(i), let xa be a random variable equal to 1 if all copies of the ath
job starting Si experience a fault during stage Si, and 0 otherwise. Observe that
processors are randomly ordered before they start selecting a job from the queue. As
a consequence, the probability that a job Ja is not completed by a processor that

selected Ja during the jth time through the queue is
fj(i)
u(i) . Then

E[xa] = Pr [Ja not finished during Si] ≤
φ(i)∏
i=1

fj(i)

u(i)
.(6)

For a fixed number δ of faults during the stage Si and a = b, notice that

Pr [xa = 1 | xb = 1, f(i) = δ] ≤ Pr [xa = 1 | f(i) = δ].

Therefore, we can conclude that

Pr [xa = 1, xb = 1 | f(i) = δ] ≤ Pr [xa = 1 | f(i) = δ] · Pr [xb = 1 | f(i) = δ].
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Since the xi’s are 0/1-random variables, Cov[xa, xb] = Pr [xa = 1, xb = 1] −
Pr [xa = 1] · Pr [xb = 1]. As a consequence, for a = b, the covariance Cov[xa, xb] ≤ 0.
For 0/1-random variables xa (see [1]),

Var

⎡
⎣u(i)∑
j=1

xj

⎤
⎦ ≤ E

⎡
⎣u(i)∑
j=1

xj

⎤
⎦ +

∑
a�=b

Cov[xa, xb].(7)

As a consequence, we get

Var

⎡
⎣j=u(i)∑

j=1

xj

⎤
⎦ ≤ E

⎡
⎣j=u(i)∑

j=1

xj

⎤
⎦ .(8)

The product in (6) is maximum subject to
∑φ(i)

j=1 fj(i) ≤ f(i) if each fj(i) =
f(i)/φ(i). Hence for 1 ≤ a ≤ u(i),

E[xa] ≤
φ(i)∏
i=1

f(i)

u(i)φ(i)
.(9)

Note u(i)φ(i) ≥ u(i)( g(i)
u(i) − 1). Since Si /∈ F , it is the case that u(i) ≤ g(i)/2 and

u(i)( g(i)
u(i) − 1) ≥ g(i)/2. Hence,

E[xa] ≤
φ(i)∏
i=1

2f(i)

g(i)
.(10)

Let k be the number of stages in H, and let α be the number of faults experienced
during stages in H. Since f(i) ≤ g(i)/4 for any Si in H, we have 2f(i)/g(i) ≤ 1/2.
Call a stage Si ∈ H good if f(i) ≤ 2α

k . Using Lemma 2.1 we can show that at least
1
2 |H| stages in H are good. So, it suffices to find an upper bound on the expected
number of good stages in H. Let Si be a good stage under consideration. Hence,

E[xa] ≤
(

min

(
1

2
,

4α

g(i)k

))φ(i)

≤
(

min

(
1

2
,

4λ

g(i)k

))φ(i)

(11)

and, applying linearity of expectation, we get

E

⎡
⎣u(i)∑
j=1

xj

⎤
⎦ = E[u(i + 1)] =

u(i)∑
j=1

E[xj ] ≤ u(i)

(
min

(
1

2
,

8λ

g(i)k

))φ(i)

.(12)

Now, applying (8), we get

Var[u(i + 1)] ≤ u(i)

(
min

(
1

2
,

8λ

g(i)k

))φ(i)

.(13)

Call a stage Si in H unlucky if u(i + 1) > 3E[u(i + 1)]. Since

3u(i)

(
min

(
1

2
,

8λ

g(i)k

))φ(i)

≥ 3E[u(i + 1)],
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we have

u(i + 1) ≤ 3u(i)

(
min

(
1

2
,

8λ

g(i)k

))φ(i)

for any lucky stage. By Chebyshev’s inequality, the probability that a stage is unlucky
is at most Var[u(i + 1)]/(2E[u(i + 1)])2 ≤ 1/4. Since at least k/2 stages in H are
good, with probability 1 −O(1/k), at least k/4 good stages in H are lucky.

Let k′ = Θ(k) be the number of lucky stages in H. We ignore the progress made
by Rotary during stages in H that are unlucky. Suppose stage x is lucky. Then

u(x + 1) ≤ 3u(x)

(
min

(
1

2
,

8λ

g(x)k

))φ(x)

≤ 3u(x)

(
min

(
1

2
,

8λ

g(x)k

)) g(x)
u(x)

.(14)

Since φ(x) ≤ g(x)/u(x), by setting r(x) = g(x)
u(x) and observing that g(x) ≥ g(x+ 1) =

g(x) − f(x) ≥ 3
4g(x) for any stage Sx ∈ H, we get

r(x + 1) ≥ r(x)

4

(
max

(
2,

g(x)k

8λ

))r(x)

.(15)

Since r(1) ≥ 3, we have r(2) ≥ 4. Therefore, for x ≥ 2

r(x + 1) ≥
(

max

(
2,

g(x)k

8λ

))r(x)

.(16)

Observe that for all i, g(i) ≥ g(i + 1) (equality holds in the case of transient
faults). If k′ is the number of lucky stages, then by induction we get

r(k) ≥ tower

(
max

(
2,

g(k)k

32λ

)
, k′ − 2, r(2)

)
.

Notice that r(2) ≥ 1, r(k) ≤ m, and k ≥ k′. Notice that the required bound follows
if k ≤ 16. Now consider the case where k > 16. Therefore, we get

m ≥ tower

(
max

(
2,

g(k)k

8λ

)
, k′ − 1, 1

)
≥ tower

(
2, k′ − 2,max

(
2,

g(k)

λ

))
.

Taking the log∗ of both sides and applying Lemma 2.9, we get

log∗ m ≥ k′ + log∗
(

max

(
2,

g(k)

λ

))
+ O(1).

Suppose λ ≤ m/3; then g(k) ≥ 2m/3 and so g(k)
λ ≥ 2. On the other hand, if λ > m/3,

we have that max(2, g(k)
λ ) is in the range [2, 3]. Hence, the expected number of stages

in H is O(log∗ m− log∗(mλ )).
Theorem 2.35. The competitive ratio of Rotary is O(max(log∗ m−log∗ m

λ ,
m
η )).

Proof. The result follows from Lemmas 2.29 and 2.34.

3. Average completion time. We present a nonclairvoyant deterministic al-
gorithm that is O(mη )-competitive with respect to average completion time. We then
show that every randomized algorithm for this problem has a competitive ratio, with
respect to average completion time, that is, Ω(Rm

η ). We assume static release times
and m identical processors and consider only permanent faults. We also assume that
we have a lower bound of 1 on the length of any task. This is not an unreason-
able restriction since we could take our unit of length to be the time to execute one
instruction on the fastest processor.
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3.1. Online algorithm. Geometric Rotary. The algorithm consists of stag-
es. Stage S0 starts when all the jobs are released. Let u(i) denote the number of jobs
that have not yet been run to completion at the start of stage Si. We call Si full if
u(i) ≥ 2m.

We now define the stage Si. We first form a queue Q of unfinished jobs. For a
full stage, we add exactly one copy of each of the u(i) jobs to the queue. In the case
of a stage that is not full, we add �2m/u(i)� copies of each of these u(i) jobs to Q.

During the stage when a processor P becomes idle, the next job J on Q is removed
from Q and run from its beginning on P until one of the following three conditions
holds:

(a) job J is completed, or
(b) P ran J for 2i time units without completion, or
(c) a fault occurs while P is processing J .

If case (a) occurs, P immediately attempts to get another job from Q. If case (b)
occurs, P suspends J and then immediately attempts to get another job from Q. If
Q is empty, P idles until the end of the stage. Stage Si ends when all processors are
idle and Q is empty.

3.2. Analysis.

Fact 3.1. Suppose that n jobs of length �1, �2, . . . , �n arrive at time 0. Let �i ≤ �j
for 1 ≤ i ≤ j ≤ n. The optimal offline average completion time on a single unit speed
processor is 1

n

∑n
i=1(n− i + 1)�i.

First notice that doubling the size of jobs only doubles the average offline optimal
completion time. This also holds for the multiprocessor case since the shortest pro-
cessing time algorithm is optimal. So, for the purpose of our analysis, let us assume
that we round the execution time of each job up to the next highest integer power
of 2. Then for every job, if the length of the job is � = 2i, we assume that its length
is 2� (which may be up to 4 times its original length) when we calculate the optimal
total completion time. We do so for the ease of analysis, and it is important to observe
that the competitive ratio will be off by a factor of at most 2. This doubling idea has
been used before; see, for example, [10].

Observe that Geometric Rotary “estimates” the length of a job by running it
for a duration of at most 2i during the ith stage. Based on this estimated length, we
calculate a lower bound on the completion time for the offline optimal algorithm. As
we move from one stage to another, the estimated lower bound increases due to an
increase in the estimated length of some jobs from 2i to 2i+1.

We use the terminology “increase in completion time experienced by Geometric

Rotary during Si” to mean the sum over all jobs J of the portion of the competition
time for J that occurs during stage Si.

At the beginning of a stage Si, the estimated length of an unfinished job is 2i.
Assuming that this estimated length is correct, one can compute the optimal total
completion time. At the end of the stage Si, Geometric Rotary will increase the
estimated length of some unfinished jobs to 2i+1. As a consequence of this increase
in estimated lengths of some jobs, there will be an increase in our lower bound of the
optimal total competition time. This is what we call the “increase in the estimated
lower bound on the completion time of the offline algorithm during a stage.”

We will now compare the increase in completion time experienced by Geometric

Rotary during Si to the corresponding increase in the estimated lower bound on the
completion time of the offline optimal algorithm during this stage.
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Lemma 3.2. If we have k jobs of length x to be run on p processors, then ev-
ery schedule (that doesn’t unnecessarily idle the processors) is optimal and has total
completion time

�k/p�∑
i=1

ipx + (k mod p)�k/p�x = �k/p�(�k/p� + 1)px/2 + (k mod p)�k/p�x.

Proof. The ith term in the sum represents the sum of completion times of the ith
jobs executed on each of the p processors.

Lemma 3.3. If Si is full, then Geometric Rotary guarantees that the increase
in the total completion time experienced during Si is at most 2i+1u(i)2/η.

Proof. Since processors work in parallel, more processors imply less increase in
completion time. At least η processors work without fault during this stage. The
increase in the completion time is maximized if we have only η working processors.
Thus the length of Si is at most 2i�u(i)/η� ≤ 2i+1u(i)/η. If all jobs are delayed this
amount, then the increase in total completion time is 2i+1u(i)2/η.

Lemma 3.4. If Si is not full, then Geometric Rotary guarantees that the
increase in total completion time experienced during Si is at most 5u(i)m2i/η.

Proof. The length of Si is at most 2i�u(i)�2m/u(i)�/η� ≤ 2i�4m/η� ≤ 5m2i/η.
Since at most u(i) jobs are delayed by this amount, we get the desired bound.

Lemma 3.5. Assume we double the length of k jobs from x to 2x.
(a) If k ≥ m, then the increase in the offline optimal total completion time is at

least k2x/8m.
(b) If k < m, then the increase in the offline optimal total completion time is at

least kx.
Proof. Consider only the time required to run the additional x units of each job.

By Lemma 3.2 this is �k/m�(�k/m�+ 1)mx/2 + (k mod m)�k/m�x. Suppose k ≥ m;
substituting �k/m� ≥ k/2m we get the desired result. If k < m, we get the desired
bound since (k mod m)�k/m�x = kx.

Lemma 3.6. In every stage Si, Geometric Rotary guarantees that at least half
of the u(i) jobs have at least one copy run the full 2i time units on some processor.

Proof. Recall our assumption that the length of a job is a power of 2. If Si is
full, then this follows because there are at most m faults. If Si is not full, then the
number of jobs that can have all copies experience faults is at most m/�2m/u(i)� ≤
u(i)/2.

Theorem 3.7. Given static release times, Geometric Rotary is O(mη )-com-
petitive, with respect to average completion time, for λ = m− η permanent faults.

Proof. For stage Si, Lemma 3.6 shows that Geometric Rotary runs at least
half the jobs for their full 2i time slice. Also, recall our assumption that whenever
Geometric Rotary runs and completes a job J of length 2i, the length of J for the
adversary is 2i+1, and so J can be considered as a job whose length increases from 2i

to 2i+1 when we apply Lemma 3.5. As a consequence, when we apply Lemma 3.5, we
can set k ≥ u(i)/2.

Suppose u(i) ≥ 2m. Lemmas 3.3 and 3.5 show that the ratio of the increase
in the completion time experienced by Geometric Rotary and the optimal offline

algorithm is at most 2i+1u(i)2/η

k22i/8m
, where k ≥ u(i)/2 ≥ m. Therefore, the ratio is at

most 64m/η.
Suppose m ≤ u(i) < 2m. Lemmas 3.4 and 3.5 show that the ratio of the increase

in the completion time experienced by Geometric Rotary and the optimal offline



FAULT-TOLERANT SCHEDULING 715

algorithm is at most 5u(i)m2i/η

k22i/8m
≤ 160m2

u(i)η ≤ 160m/η.

Finally, suppose u(i) < m. Lemmas 3.4 and 3.5 show that the ratio of the increase
in the completion time experienced by Geometric Rotary and the optimal offline
algorithm is at most 10m/η.

Theorem 3.8. With static release times and related processors, every randomized
algorithm is Ω(Rm

η )-competitive with respect to average completion time.

Proof. Using Yao’s technique [12], it suffices to bound the expected competitive
ratio of any deterministic algorithm where the occurrence of fault is selected from
some fixed probability distribution.

First we assume that λ ≤ m/2. The desired lower bound is Ω(R). There are
three processors with speed R and m− 3 processors with speed 1. Initially, two jobs
of length R arrive. Just before the end of the first unit length stage, the adversary
faults one of the three speed R processors uniformly at random. As a consequence,
with probability 1/3 there is an unfinished job at the end of the first stage. Now,
at the end of the first stage, the remaining two speed R processors fault. One can
see that OPT = 1, and that the expected completion time of any online algorithm is
Ω(R).

We now assume that λ > m/2. There are λ processors with speed R and m− λ
with speed 1. There are exactly λ/2 jobs of length R. Just before the end of the
first stage, the adversary faults each of the speed R processor independently with
probability 1/3. Applying Lemma 2.13 we get the following:

• With probability 1−O(1/λ), the number of faults does not exceed λ/2 before
the end of the first stage.

• With probability 1 − O(1/λ), the number of jobs that cannot be finished
before the end of the second stage is Ω(λ).

Since λ > m/2, with probability 1 − o(1), the number of unfinished jobs at the
beginning of the second stage is Θ(λ) and at least λ/2 speed R processors ran without
fault for one full stage (and so OPT = 1).

At the end of the first stage, the adversary faults the remaining speed R proces-
sors. Now there are η = m − λ unit speed processors, x = Θ(λ) unfinished jobs of
length R. Therefore, the total completion time for any deterministic online algorithm
is at least

�x/η�∑
i=1

Riη = Θ

(
Rλ2

η

)

with probability 1 − o(1). Note that for the case under consideration, the number
of jobs is Θ(λ) and λ = Θ(m). Therefore average completion time is Ω(Rm

η ). The

result follows since the competitive ratio (against oblivious adversary) is at least
E[ makespan of A

makespan of OPT ].

4. Transient faults. In this section we analyze the effect of transient faults,
which by definition have duration 0. Here λ denotes the total number of faults. Note
that it is possible for the number of faults λ to exceed m. We assume identical proces-
sors. The lower bound for makespan with transient faults was handled in section 2.1,
so we begin with the upper bound for makespan.

We modify Rotary to immediately end a stage S; i.e., every processor suspends
its current job if more than m/2 faults occur during this stage. We call the new algo-
rithm Transient Rotary. Analogously, we also modify Deterministic Rotary

and call this new algorithm Deterministic Transient Rotary. Because of the
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great similarity with the case of permanent faults, we will be brief in our discussion.
Recall Definitions 2.19 and 2.23. Note that g(i) = m for all i.

Lemma 4.1. Transient Rotary guarantees that the length of any stage is at
most O(OPT ).

Proof. The proof is analogous to that of Lemma 2.21. It is important to observe
that all m (instead of at least η) processors are available at the start of the stage.
Also at least m/2 (instead of η) processors are working throughout a stage.

Lemma 4.2. Transient Rotary guarantees that the total number of stages Si

where f(i) ≥ m
4 is at most 4λ

m = O( λ
m ).

Proof. If more than 4λ
m stages have m

4 or more faults each, then the total number
of faults will exceed λ.

Lemma 4.3. Transient Rotary guarantees that there will be at most m/4 jobs
left unfinished after O( λ

m ) stages starting from the arrival of the last job.

Proof. After the arrival of the last job, consider a stage with total number of
faults less than m/4. Clearly, there are at most m/4 unfinished jobs after this stage.
Applying Lemmas 4.1 and 4.2, we get the desired result.

Theorem 4.4. The competitive ratio, with respect to makespan, of Determin-

istic Transient Rotary is O(max( logm

log(m log m
λ )

, λ
m )) for λ transient faults.

Proof. Given the previous three lemmas, it suffices to bound |H|. We ignore
the progress made by the online algorithm on stages that are not in H. Let H =
{S1, S2, . . . , Sk}. For 1 ≤ i ≤ k, the algorithm guarantees that φ(i) ≥ � m

u(i)� and

u(i + 1) ≤ f(i)/φ(i). Therefore, u(i + 1) ≤ 2u(i)f(i)/m. We say that a stage in H
is good if f(i) ≤ 2λ/k. By Lemma 2.1 at least |H|/2 stages are good. Suppose
8λ/k ≥ m; then k ≤ 8λ/m and so the result follows. From now on consider the case
2λ/k < m/4. So for a good stage Si we have u(i + 1) ≤ 4λ

kmu(i). Proceeding as in

the proof of Lemma 2.32, we are left solving the inequality m ≥ k log km
4λ for k, which

yields the fact that k = O( logm

log(m log m
λ )

).

Theorem 4.5. The competitive ratio, with respect to makespan, of Transient

Rotary is O(max(log∗ m− log∗ m
λ ,

λ
m )) for λ transient faults.

Proof. Given the three previous lemmas, it suffices to show that |H| =
O(max(log∗ m − log∗ m

λ ,
λ
m )). Observe the fact that all m processors are available

at the start of each stage. That is, for all i, g(i) = m in the proof of Lemma 2.34.
The result follows from Lemma 2.34.

As in the case of Rotary, we modify Geometric Rotary to repeat a stage
if it experiences more than m/2 faults during that stage. Call the new algorithm
Transient Geometric Rotary.

Theorem 4.6. For static release times, the competitive ratio, with respect to
average completion time, of Geometric Transient Rotary is O(max(1, λ/m))
for λ transient faults.

Proof. Notice that the increase in the completion time experienced by Geomet-

ric Transient Rotary during a stage is at most the total completion time of the
optimal offline algorithm. There can be at most 2λ/m stages that experience more
than m/2 faults. For a stage that experiences fewer than m/2 faults, we can apply
the analysis found in the permanent fault case where η ≥ m/2. The result then
follows.

5. No redundancy. In this section we look at the effect of not allowing more
than one copy of a job to be run at any one time. We consider only the case of
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identical processors. We first show that deterministic algorithms can have very high
competitive ratios.

Theorem 5.1. If no redundancy is allowed, then the competitive ratio with respect
to makespan and with respect to average completion time is Ω(λ) for λ permanent
faults or λ transient faults in a system of identical processors.

Proof. Assume that we have one job J . Allow a processor to run J and fault it
just before it is ready to complete the job. This process can be repeated λ times.

We say that an online algorithm A is stage-based if
1. the time spent by A is partitioned into stages;
2. at the start of each stage, all of the working processors are idle;
3. jobs considered for execution during a stage are exactly those that are released

before the start of the stage;
4. it is possible to determine, at the start of the stage, the number of copies of

each job that will be run during the stage;
5. the multiplicities of any two jobs during a stage differ by at most 1.

Lemma 5.2. Rotary, Transient Rotary, Geometric Rotary, and Geo-

metric Transient Rotary are stage-based algorithms.
For any stage-based deterministic algorithm A, we define a randomized algorithm

One-Copy-A that does not run multiple copies of a job simultaneously. At the start
of a stage S, assume that A plans to run k copies of a job Ji during S. One-Copy-A
selects an integer uniformly at random from the range 1 to k inclusive, and assigns
it to a variable αi. One-Copy-A then simulates A and when A makes the αith
assignment of Ji, One-Copy-A makes its only assignment of Ji during this stage.
The following lemma is the key to analyzing One-Copy-A.

Lemma 5.3. Let A be a deterministic stage-based online algorithm that starts a
stage Si with u(i) jobs. Assume that for any pattern of f(i) faults during this stage,
A guarantees that at most u′(i) jobs are unfinished at the end of the stage. Then the
expected number of unfinished jobs by One-Copy-A is O(u′(i)) and the variance of
the number of unfinished jobs is not greater than the expected value.

Proof. Let J = {J1, J2, . . . , Ju(i)} be the set of unfinished jobs at the start of the
stage Si. Let φ(Jj) be the number of copies of a job Jj ∈ J run by A in this stage.
Without loss of generality, let 0 < φ(Ja) ≤ φ(Jb) for 1 ≤ a ≤ b ≤ u. Let xa = 1
if Ja is not finished by One-Copy-A during the stage, and let xa = 0 otherwise.
Let x =

∑u
i=1 xa denote the number of jobs that are not completed during the stage

by One-Copy-A. Let fj(i) be the number of processors experiencing a fault while
running a copy of Jj using algorithm A. First,

E[x] =

u(i)∑
j=1

E[xj ] =

u(i)∑
j=1

fj(i)

φ(Jj)
≤

u(i)∑
j=1

fj(i)

φ(J1)
.

Note that since in the worst case the adversary for A will fault all the low multiplicity
jobs,

u′(i)+1∑
j=1

φ(Jj) > f(i) =

u(i)∑
j=1

fj(i).

Since the multiplicity of each job is at most φ(J1) + 1, we get that

E[x] ≤ 1

φ(J1)

u(i)∑
j=1

fj(i) ≤
1

φ(J1)

u′(i)+1∑
j=1

φ(Jj) ≤
1 + φ(J1)

φ(J1)
(u′(i) + 1) ≤ 4u′(i).
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For fixed fj(i)’s, the xj ’s are independent. As a consequence, the variance of x (the
sum of 0/1-random variables) does not exceed the expected value of x.

Theorem 5.4. The randomized competitive ratio, with respect to makespan,
of the algorithm One-Copy-Deterministic Rotary is O(max( logm

log(m log m
λ )

, m
η )) for

permanent faults and O(max( logm

log(m log m
λ )

, λ
m )) for transient faults in a system of iden-

tical processors.
Proof. The analysis is analogous to the analysis of Rotary. The major difference

is in applying the proof of Lemma 2.34, which establishes a bound on H.
Of course, the bound we wish to establish is different from the one proved in

Lemma 2.34. The recurrence relation established in (14) will be different in the current
proof. We continue to follow the notation established in the proofs of Lemmas 5.3
and 2.34. Notice that E(x) ≤ 1

φ(J1)
f(i). Let g(i) be the number of processors that did

not experience a fault during the ith stage (i.e., Si). Notice that g(i)/u(i) ≥ φ(J1) ≥
�g(i)/u(i)� ≥ 3. As a consequence, E(x) ≤ εu(i) f(i)

g(i) , where ε < 3/2.

Recall that a stage Si ∈ H is defined to be good (in the proof of Lemma 2.34)
if f(i) ≤ 2α/k ≤ 2λ/k. We define a stage to be unlucky if u(i + 1) > 2E[u(i + 1)].

Therefore, at the end of a lucky stage u(i + 1) ≤ 2εu(i) f(i)
g(i) . Therefore, u(i + 1) ≤

2εu(i) (min(1
4 ,

4λ
kg(i) )).

As before, at least k/2 stages in H are lucky. Consider the rate at which the
u(i)’s decrease on lucky stages. Applying the fact that u(1) ≤ m and u(k) ≥ 1, we
get 1 ≤ u(k) ≤ u(1)[2εmin(1

4 ,
4λ

kg(k) )]
k/2. Solving for k we get k = logm

log(m log m
λ )

.

Theorem 5.5. If no redundancy is allowed, then the optimal randomized compet-
itive ratio, with respect to makespan, is Ω(max( logm

log(m log m
λ )

, m
η )) for permanent faults

and Ω(max( logm

log(m log m
λ )

, λ
m )) for transient faults in a system of identical processors.

Proof. We convert Deterministic-Deter(m,m, λ, 1,A) into a randomized ad-
versary by selecting the faults in each stage uniformly at random among all working
processors.

Suppose λ ≤ m−m log logm
logm . Therefore, case 1 of the adversary applies. Let u(i) be

a random variable that represents the number of unfinished jobs at the start of the ith
stage. Since λ/ logm processors are chosen uniformly at random, the probability that
a given processor experiences a fault during this stage is at least λ

m logm . Therefore

E[u(i + 1)] ≥ u(i) λ
m logm and Var[u(i + 1)] ≤ E[u(i + 1)].

Let k be an integer such that E[u(k)] >
√
m and E[u(k + 1)] ≤

√
m. We

now argue that with probability 1 − o(1), k = Ω( logm

log(m log m
λ )

). As in the proof of

Lemma 2.14, we define a stage i to be good if |u(i+ 1)−E[u(i+ 1)]| ≤ E[u(i+ 1)]/2.
Applying Chebyshev’s inequality, with probability

∑x
i=1

4
E[(u(i+1)] ≤ 4x√

m
, we have

|u(i+1)−E[u(i+1)]| ≤ 1
2E[u(i+1)] for all i in the range 1 through x (≤ k). Substi-

tuting u(1) = m, we get u(i+1) ≥ u(i)
2

λ
m logm ≥ m( λ

2m logm )i. Since u(k+1) ≤
√
m/2,

we get k = Ω( logm

log(m log m
λ )

). The result follows since OPT is O(1).

Now, suppose λ > m − m log logm
logm . Notice that during the first two stages, the

probability that a working processor faults is Θ(1). Therefore with probability 1−o(1),
Θ(m) jobs will not be completed at the end of the second stage. The desired bound
for the permanent fault case follows, since there are exactly η working processors and
Θ(m) unfinished jobs. On the other hand, in the case of transient faults, no progress is
made for the next �(λ−m)/m� stages since all m processors fault just before the end
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of each of those stages. The result then follows. Note that the analysis is analogous
to that in the proof of Lemma 2.4.

Theorem 5.6. If no redundancy is allowed, then the optimal randomized compet-
itive ratio, with respect to average completion time, is Θ(max(mη , 1)) for permanent
faults.

Proof. The lower bound follows from Theorem 3.8. Applying Lemma 5.3, one can
use the analysis of Geometric Rotary to get the desired bound.
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CLASSIFYING THE COMPLEXITY OF CONSTRAINTS
USING FINITE ALGEBRAS∗

ANDREI BULATOV† , PETER JEAVONS‡ , AND ANDREI KROKHIN§

Abstract. Many natural combinatorial problems can be expressed as constraint satisfaction
problems. This class of problems is known to be NP-complete in general, but certain restrictions
on the form of the constraints can ensure tractability. Here we show that any set of relations used
to specify the allowed forms of constraints can be associated with a finite universal algebra and we
explore how the computational complexity of the corresponding constraint satisfaction problem is
connected to the properties of this algebra. Hence, we completely translate the problem of classifying
the complexity of restricted constraint satisfaction problems into the language of universal algebra.

We introduce a notion of “tractable algebra,” and investigate how the tractability of an algebra
relates to the tractability of the smaller algebras which may be derived from it, including its subal-
gebras and homomorphic images. This allows us to reduce significantly the types of algebras which
need to be classified. Using our results we also show that if the decision problem associated with a
given collection of constraint types can be solved efficiently, then so can the corresponding search
problem. We then classify all finite strictly simple surjective algebras with respect to tractability, ob-
taining a dichotomy theorem which generalizes Schaefer’s dichotomy for the generalized satisfiability
problem. Finally, we suggest a possible general algebraic criterion for distinguishing the tractable
and intractable cases of the constraint satisfaction problem.

Key words. constraint satisfaction problem, universal algebra, dichotomy theorem
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1. Introduction. In a constraint satisfaction problem the aim is to find an as-
signment of values to a given set of variables, subject to constraints on the values
which can be assigned simultaneously to certain specified subsets of the variables
[39, 43]. One common example of such a problem is the standard propositional sat-
isfiability problem [21], where the variables must be assigned Boolean values and the
constraints are specified by clauses.

The mathematical framework used to describe constraint satisfaction problems
has strong links with many other areas of computer science and mathematics. For
example, links with relational database theory [22, 23, 34], with some notions of logic
and group theory [1, 18, 20], and with universal algebra [31] have been investigated.
There is an early survey of these results in [46].

Throughout the paper we assume that P �= NP, and we call a problem tractable
only if it belongs to P. The constraint satisfaction problem is known to be NP-hard
in general [39, 43]. However, certain restrictions on the form of the constraints have
been shown to ensure tractability [8, 10, 30, 32, 33, 56].

One fundamental open research problem in this area is to characterize exactly the
forms of constraint relations that give rise to tractable problem classes. This prob-
lem is important from a theoretical perspective, as it helps to clarify the boundary

∗Received by the editors August 15, 2000; accepted for publication (in revised form) October 19,
2004; published electronically April 19, 2005. This work was supported by the UK EPSRC, under
grants GR/M12926 and GR/R29598.

http://www.siam.org/journals/sicomp/34-3/37667.html
†School of Computing Science, Simon Fraser University, Canada (abulatov@cs.sfu.ca).
‡Computing Laboratory, University of Oxford, Oxford, UK (Peter.Jeavons@comlab.ox.ac.uk).
§Department of Computer Science, University of Durham, Durham, UK (Andrei.Krokhin@

durham.ac.uk).

720



CLASSIFYING THE COMPLEXITY OF CONSTRAINTS 721

between tractability and intractability in a wide range of combinatorial search prob-
lems. It is also important from a practical perspective, as it allows the development
of constraint programming languages that exploit the existence of diverse families of
tractable constraints to provide more efficient solution techniques [38, 50].

The problem of characterizing the tractable cases was completely solved for the
important special case of Boolean constraint satisfaction problems by Schaefer in
1978 [52]. Schaefer established that for Boolean constraint satisfaction problems
(which he called “generalized satisfiability problems”), there are exactly six differ-
ent families of tractable constraints, and any problem involving constraints not con-
tained in one of these six families is NP-complete. This important result is known as
Schaefer’s dichotomy theorem. Similar dichotomy results have also been obtained for
other combinatorial problems over a Boolean domain that are related to the Boolean
constraint satisfaction problem [11].

Schaefer [52] raised the question of how the analysis of complexity could be ex-
tended to larger sets of possible values (that is, sets with more than two elements).
Some progress has been made with this question recently, and a number of tractable
families of constraints have been identified, over both finite and infinite sets. In partic-
ular, Feder and Vardi [20] used techniques from logic programming and group theory
to identify three broad families of tractable constraints, which include all of Schae-
fer’s six classes. A series of papers by Jeavons and coauthors has shown that any
individual tractable constraint class over a finite domain can be characterized using
algebraic properties of relations [28, 29, 30, 32]. This approach was used by Bulatov
to obtain a complete classification for the complexity of constraints on a three-element
set [3]. Finally, we note that for temporal and spatial reasoning problems involving
constraints over infinite sets of values, several tractable constraint classes have been
identified [17, 44, 51], and a dichotomy theorem has been obtained for qualitative tem-
poral reasoning problems over intervals expressed using Allen’s interval algebra [35].
It has also been shown recently that the complexity of certain forms of constraint over
infinite sets of values can be analyzed using algebraic properties [2].

However, there is still no complete classification for the complexity of constraints
over finite sets with more than three elements, and no dichotomy has so far been
established for arbitrary finite sets.

In our opinion, the main difficulty in addressing this question is the lack of a
powerful and convenient language in which the properties of constraint satisfaction
problems responsible for complexity can be expressed. Schaefer’s dichotomy theorem
is stated in terms of the syntactic properties of propositional forms, which is certainly
not an appropriate language for non-Boolean constraints. A number of different at-
tempts have been made to find such an appropriate language [13, 14, 20, 28, 30]; we
believe that the most fruitful of these is the one that uses the algebraic properties of
constraints [28, 30].

The first step in the algebraic approach exploits the well-known idea that, given an
initial set of constraint relations, there will often be further relations that can be added
to the set without changing the complexity of the associated problem class. In fact,
it has been shown that it is possible to add all the relations that can be derived from
the initial relations using certain simple rules. The larger sets of relations obtained
using these rules are known as relational clones [16, 48]. Hence the first step in the
analysis is to note that it is sufficient to analyze the complexity only for those sets of
relations which are relational clones.

The next step in the algebraic approach is to note that relational clones can be
characterized by their polymorphisms, which are algebraic operations on the same
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Structural properties of a finite universal algebra

�
Properties of polymorphisms

�
Properties of the corresponding relational clone

�
Complexity of a restricted constraint satisfaction problem

Fig. 1.1. Translating questions about the complexity of different forms of constraints into
questions about the properties of algebras.

underlying set [27, 30]. As well as providing a convenient and concise method for
describing large families of relations, the polymorphisms also reflect certain aspects
of the structure of the relations that can be used for designing efficient algorithms.
This link between relational clones and polymorphisms has already played a key role
in identifying many tractable constraint classes and developing appropriate efficient
solution algorithms for them [3, 4, 6, 7, 12, 28].

However, as we shall see later on in this paper, working directly with the polymor-
phisms of a set of relations is sometimes not the most convenient and powerful way
to investigate the complexity of the corresponding constraint satisfaction problems.
In this paper we take the algebraic approach one step further by linking constraint
satisfaction problems with finite universal algebras (see Figure 1.1). We show that the
language of finite algebras provides a number of very powerful new tools for analyzing
the complexity of constraint problems. In particular, using this language allows us
to suggest a simple criterion for distinguishing tractable and intractable cases. This
criterion makes extensive use of notions related to universal algebras, and is difficult
to formulate concisely without using this language. Another advantage of this new
translation is that it allows us to make use of the deep structural results developed
for classifying the structure of finite algebras [25, 42, 53].

As the first fruit of using this machinery we exhibit a new dichotomy theorem for
a class of algebras which properly includes all the two-element algebras, and hence
provide a true generalization of Schaefer’s dichotomy theorem.

The paper is organized as follows. In section 2 we define the class of constraint
satisfaction problems we are considering, where the constraints are chosen from a
specified set of relations. Then we define the way in which these sets of relations can
be classified according to the complexity of the corresponding constraint satisfaction
problems. We show how this question can be translated into an equivalent question
about relational clones, and hence further translated into a question about classifying
sets of operations. In section 3 we make the new step from sets of operations to finite
algebras, which is the real focus of this paper. Using this final translation we introduce
the notion of a tractable algebra. We are then able to restate Schaefer’s dichotomy
theorem in a much shorter and possibly clearer form, as a classification of two-element
algebras with respect to tractability. In section 4 we prove that, in this context, it
suffices to consider certain restricted classes of algebras. As a by-product we show
that, if the decision problem for a set of constraint types can be solved efficiently, then
so can the corresponding search problem. In section 5 we study how the tractability of
a finite algebra relates to the tractability of its smaller derived algebras. In section 6
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we use the results obtained to classify all strictly simple surjective algebras. Finally,
in section 7, we use the new algebraic terminology to state a conjecture about the
general structure of tractable algebras, and provide examples to illustrate and support
this conjecture.

2. Definitions and earlier results.

2.1. Constraint satisfaction problems. The central notion in the study of
constraints and constraint satisfaction problems is the notion of a relation.

Definition 2.1. For any set A, and any natural number n, the set of all n-tuples
of elements of A is denoted by An. Any subset of An is called an n-ary relation over
A. The set of all finitary relations over A is denoted by RA. A constraint language
over A is a subset of RA.

The “constraint satisfaction problem” was introduced by Montanari [43] in 1974
and has been widely studied [15, 20, 36, 39, 40, 41]. In this paper we study a parame-
terized version of the standard constraint satisfaction problem, in which the parameter
is a constraint language specifying the possible forms of the constraints.

Definition 2.2. For any set A and any constraint language Γ over A, the
constraint satisfaction problem CSP(Γ) is the combinatorial decision problem with

Instance: A triple (V,A, C), where
• V is a set of variables;
• C is a set of constraints, {C1, . . . , Cq}.

Each constraint Ci ∈ C is a pair 〈si, ρi〉, where
– si is a tuple of variables of length mi, called the constraint scope;
– ρi ∈ Γ is an mi-ary relation over A, called the constraint relation.

Question: Does there exist a solution, that is, a function ϕ, from V to A,
such that, for each constraint 〈si, ρi〉 ∈ C, with si = (xi1 , . . . , xim), the tuple
(ϕ(xi1), . . . , ϕ(xim)) belongs to ρi?

In this paper we shall consider only cases where the set A, specifying the possible
values for the variables, is finite. In such cases the size of a problem instance can be
taken to be the length of a string containing all constraint scopes and all tuples of all
constraint relations from the instance.

Example 2.3. An instance of the standard propositional 3-Satisfiability prob-
lem [21, 45] is specified by giving a formula in propositional logic consisting of a con-
junction of clauses, each of which contains at most three literals, and asking whether
there are values for the variables that make the formula true.

Suppose that Φ = F1 ∧ · · · ∧ Fn is such a formula, where the Fi are clauses. The
satisfiability question for Φ can be expressed as the constraint satisfaction problem
instance (V, {0, 1}, C), where V is the set of all variables appearing in the clauses Fi,
the values 0 and 1 represent the logical values False and True, and C is the set
of constraints {〈s1, ρ1〉, . . . , 〈sn, ρn〉}, where each constraint 〈sk, ρk〉 is constructed as
follows:

• sk = (xk
1 , x

k
2 , x

k
3), where xk

1 , x
k
2 , x

k
3 are the variables appearing in clause Fk;

• ρk = {0, 1}3 \ {(a1, a2, a3)}, where ai = 1 if xk
i is negated in Fk and ai = 0

otherwise (i.e., ρk contains exactly those 3-tuples that make Fk true).

The solutions of this instance are exactly the assignments which make the formula Φ
true.

If we define Γ
3-Sat

to be the constraint language over {0, 1} consisting of all rela-
tions expressible by 3-clauses, then any instance of 3-Satisfiability can be expressed
as an instance of CSP(Γ

3-Sat
) in this way, and vice versa.
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Example 2.4. An instance of Graph Unreachability consists of a graph G =
(V,E) and a pair of vertices, v, w ∈ V . The question is whether there is no path in G
from v to w.

This can be expressed as the constraint satisfaction problem instance defined by
(V, {0, 1}, C), where

C = {〈e, {={0,1}}〉 | e ∈ E} ∪ {〈(v), {(0)}〉, 〈(w), {(1)}〉},

where ={0,1} denotes the equality relation over the set {0, 1}.
If we define Γgu to be the constraint language over {0, 1} containing just the

relations ={0,1}, {(0)} and {(1)}, then any instance of Graph Unreachability can
be expressed as an instance of CSP(Γgu) in this way.

Example 2.5. An instance of Graph q-Colorability consists of a graph G. The
question is whether the vertices of G can be labelled with q colors so that adjacent
vertices are assigned different colors [21, 45].

This problem corresponds to the problem CSP({�=A}), where A is a q-element
set (of colors) and �=A is the disequality relation over A, defined by

�=A = {(a, b) ∈ A2 | a �= b}.

Example 2.6. Given a fixed graph H, an instance of H-Colorability consists
of a graph G. The question is whether there is a mapping from the vertices of G to
the vertices of H, such that adjacent vertices in G are mapped to adjacent vertices in
H [24]. (In the special case when H is the complete graph on q vertices, Kq, the H-

Colorability problem reduces to the Graph q-Colorability problem described
in Example 2.5.)

This problem corresponds to the problem CSP({EH}), where EH is the edge
relation of H, that is, the binary relation consisting of all adjacent pairs of vertices
from H.

Many other examples of standard combinatorial problems expressed as constraint
satisfaction problems can be found in [31]. For alternative formulations of the con-
straint satisfaction problem, such as the problem of deciding whether there is a ho-
momorphism from one relational structure to another, see [20, 31, 34].

2.2. Tractable constraint languages. Throughout this paper we shall say
that a problem is tractable if there exists a deterministic polynomial-time algorithm
solving all instances of that problem. We can use Definition 2.2 to classify constraint
languages according to the complexity of the corresponding constraint satisfaction
problem.

In order to be able to classify infinite, as well as finite, constraint languages, we
define the notion of a tractable constraint language in a way that depends on finite
subsets only.

Definition 2.7. For any set A, a finite constraint language Γ ⊆ RA is said to
be tractable if CSP(Γ) is tractable.

An infinite constraint language Γ ⊆ RA is said to be tractable if every finite
subset of Γ is tractable.

A constraint language Γ ⊆ RA is said to be NP-complete if CSP(Δ) is NP-
complete for some finite Δ ⊆ Γ.

Example 2.8. It is well known (see [21, 45]) that the Graph q-Colorability

problem described in Example 2.5 is tractable when q ≤ 2 and is NP-complete
otherwise. Hence, it follows from Example 2.5 that the finite constraint language
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containing just the single relation �=A is tractable when |A| ≤ 2 and is NP-complete
otherwise.

Example 2.9. The complexity of the H-Colorability problem for undirected
graphs H was completely characterized in [24], where it was shown that if an undi-
rected graph H is bipartite or has a loop, then the corresponding H-Colorability

problem is tractable; otherwise it is NP-complete.

Using this result, it follows from Example 2.6 that a constraint language Γ = {E},
consisting of a single symmetric binary relation E, is tractable if E is the edge relation
of a bipartite graph, or a graph with a loop. Otherwise Γ is NP-complete.

A finite or infinite constraint language Γ with the property that CSP(Γ) is
tractable will be called globally tractable. Clearly any constraint language that is
globally tractable is tractable in the sense of Definition 2.7, but it is not immediately
clear whether or not the converse holds for all infinite languages. This is because for
a certain infinite constraint language Γ, it may be the case that for each finite subset
Δ ⊆ Γ there exists a polynomial-time algorithm Alg(Δ) solving CSP(Δ), and yet
there is no uniform polynomial-time algorithm solving CSP(Γ). However, we know
of no examples where this is the case and we conjecture that any tractable constraint
language is also globally tractable.

Example 2.10. Let A be a finite field, and let Γ
Lin

be the constraint language
consisting of all relations over A which consist of all solutions to some system of linear
equations over A. Any relation from Γ

Lin
, and therefore any instance of CSP(Γ

Lin
),

can be represented by a system of linear equations over A. Indeed, if ρ ∈ Γ
Lin

, then
it is the solution space of the system of linear equations obtained by the following
procedure:

Step 1 Pick an arbitrary element a0 = (a01, . . . , a0n) ∈ ρ, and set

ρ0 = {b− a0 | b ∈ ρ}.
Step 2 For every member (a1, . . . , an) of ρ0, form the equation

a1x1 + · · · + anxn = 0, and find a basis, ρ⊥, of the solution space of
the resulting system of equations.

Step 3 For each (b1, . . . , bn) ∈ ρ⊥, output the equation
b1x1 + · · · + bnxn = b0, where b0 = b1a01 + · · · + bna0n.

Since any instance of CSP(Γ
Lin

) may be solved in polynomial time (e.g., by Gaussian
elimination), it follows that Γ

Lin
is a (globally) tractable constraint language.

A constraint language over the set A = {0, 1} is known as a Boolean constraint
language. The complexity of CSP(Γ) has been investigated [52] for all Boolean con-
straint languages Γ, and the following complete classification has been obtained.

Theorem 2.11 (see Schaefer [52]). A Boolean constraint language, Γ, is (glob-
ally) tractable if (at least) one of the following six conditions holds:

1. Every relation in Γ contains a tuple in which all entries are 0;
2. Every relation in Γ contains a tuple in which all entries are 1;
3. Every relation in Γ is definable by a formula in conjunctive normal form in

which each conjunct has at most one negated variable;
4. Every relation in Γ is definable by a formula in conjunctive normal form in

which each conjunct has at most one unnegated variable;
5. Every relation in Γ is definable by a formula in conjunctive normal form in

which each conjunct contains at most two literals;
6. Every relation in Γ is the set of solutions of a system of linear equations over

the finite field GF(2).

Otherwise it is NP-complete.
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In particular, Theorem 2.11 establishes that any Boolean constraint language can
be classified as either tractable or NP-complete, and hence this result is known as
Schaefer’s dichotomy theorem.

A similar dichotomy theorem has been obtained for constraint languages over any
set with three elements [3], using some of the algebraic methods described below. The
classification problem for languages over larger finite sets is still open [20], and is the
central topic of this paper.

Problem 2.12 (“tractable relations problem”). Characterize all tractable con-
straint languages over finite sets.

Example 2.13. One of the first non-Boolean tractable constraint languages to
be characterized was the set Γ

ZOA
of “0/1/all” relations described in [10]. The set

Γ
ZOA

contains all relations over some fixed set A of the following forms:

(i) all unary relations;
(ii) all binary relations of the form A1 ×A2 for subsets A1, A2 of A;
(iii) all binary relations of the form {(a, π(a)) | a ∈ A1} for some subset A1 of A

and some permutation π of A;
(iv) All binary relations of the form {(a, b) ∈ A1 ×A2 | a = a1 ∨ b = a2} for some

subsets A1, A2 of A and some elements a1 ∈ A1, a2 ∈ A2.

It was shown in [10] that CSP(Γ
ZOA

) is tractable, and that for any binary relation
ρ over A which is not in Γ

ZOA
, CSP(Γ

ZOA
∪ {ρ}) is NP-complete.

2.3. From arbitrary constraint languages to relational clones. To de-
scribe the tractable Boolean constraint languages, Schaefer used syntactic properties
of propositional formulas representing Boolean relations. In the non-Boolean case this
method can no longer be used. We therefore need an adequate language in which it
is possible to express the properties of constraint languages which are responsible for
the complexity of the corresponding constraint satisfaction problems.

A useful first step in tackling this problem is to consider what additional rela-
tions can be added to a constraint language without changing the complexity of the
corresponding problem class. This technique has been widely used in the analysis of
Boolean constraint satisfaction problems [11, 52], and in the analysis of temporal and
spatial constraints [17, 44, 51]; it was introduced for the study of constraints over
arbitrary finite sets in [27].

To use this technique we first define a method for deriving new relations from
given ones. The method we use involves defining the new relations using certain
kinds of logical formulas involving the given relations. To define such formulas we
use the standard correspondence between relations and predicates: a relation consists
of all tuples of values for which the corresponding predicate holds. (We will use the
same symbol for a predicate and its corresponding relation, since the meaning will
always be clear from the context.)

Definition 2.14 (see [48]). A constraint language Γ ⊆ RA is called a relational
clone if it contains every relation (predicate) expressible by a first-order formula in-
volving

(i) relations (predicates) from Γ ∪ {=A} (where =A is the equality relation on
the set A);

(ii) conjunction; and
(iii) existential quantification.

First-order formulas involving only conjunction and existential quantification are
often called primitive positive (pp) formulas.
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For any constraint language Γ, there is a unique smallest relational clone contain-
ing Γ, which is denoted 〈Γ〉 and is called the relational clone generated by Γ. The set
〈Γ〉 consists of all relations definable by pp-formulas over the relations in Γ together
with the equality relation.

Example 2.15. Consider the Boolean constraint language Γ = {R1, R2}, where
R1 = {(0, 1), (1, 0), (1, 1)} and R2 = {(0, 0), (0, 1), (1, 0)}.

It is straightforward to check that every binary Boolean relation can be ex-
pressed by a pp-formula involving R1 and R2. For example, the relation R3 =
{(0, 0), (1, 0), (1, 1)} can be expressed by the formula R3 = ∃yR1(x, y) ∧ R2(y, z).
Hence the relational clone generated by Γ, 〈Γ〉, includes all 16 binary Boolean rela-
tions.

In fact it can be shown that 〈Γ〉 consists of precisely those Boolean relations (of
any arity) that can be expressed as a conjunction of unary or binary Boolean relations
[49, 53].

There are a number of different but equivalent definitions of relational clones
[16, 48], and a different definition was used in [27] to establish the following theorem.
We give a proof here that uses Definition 2.14.

Theorem 2.16 (see [27]). For any set of relations Γ and any finite set Δ ⊆ 〈Γ〉,
there is a polynomial time reduction from CSP(Δ) to CSP(Γ).

Proof. Let Δ = {�1, . . . , �k} be a finite set of relations over the finite set A, where
each �i is expressible by a pp-formula involving relations from Γ and the equality
relation, =A. Note that we may fix these representations.

Any instance (V ;A; C) ∈ CSP(Δ) can be transformed as follows. For every
constraint 〈s, ρ〉 ∈ C, where s = (v1, . . . , vl) and ρ is representable by the pp-formula

ρ(v1, . . . , vl) = ∃u1, . . . , um (ρ1(w
1
1, . . . , w

1
l1) ∧ · · · ∧ ρn(wn

1 , . . . , w
n
ln)),

where w1
1, . . . , w

1
l1
, . . . , wn

1 , . . . , w
n
ln

∈ {v1, . . . , vl, u1, . . . , um},
(i) add the auxiliary variables u1, . . . , um to V (renaming if necessary so that

none of them occurs before);
(ii) add the constraints 〈(w1

1, . . . , w
1
l1

), ρ1〉, . . . , 〈(wn
1 , . . . , w

n
ln

), ρn〉 to C;
(iii) remove 〈s, ρ〉 from C.

It can easily be checked that the problem instance obtained by this procedure is
equivalent to (V ;A; C) and belongs to CSP(Γ ∪ {=A}). Moreover, since all the rep-
resentations of relations from Δ are fixed, this transformation can be carried out in
linear time in the size of the instance. Finally, all constraints of the form 〈(v1, v2),=A〉
can be eliminated by replacing all occurrences of the variable v1 with v2. This trans-
formation can also be carried out in polynomial time.

Corollary 2.17. A set of relations Γ is tractable if and only if the relational
clone 〈Γ〉 is tractable.

Similarly, Γ is NP-complete if and only if 〈Γ〉 is NP-complete.

This result reduces the problem of characterizing tractable constraint languages
to the problem of characterizing tractable relational clones.

Example 2.18. Reconsider the tractable constraint language of 0/1/all relations,
Γ
ZOA

, defined in Example 2.13.

Note that for any fixed finite set A, the set of 0/1/all relations over A contains
only unary and binary relations and is therefore finite. However, it follows from
Corollary 2.17 that the relational clone 〈Γ

ZOA
〉 is also tractable. This is an infinite

set of relations containing relations of every possible arity.
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In fact, the set 〈Γ
ZOA

〉 corresponds precisely to the implicational relations de-
fined in [33]. Moreover, the set of 0/1/all relations, Γ

ZOA
, is precisely the set of

unary and binary relations in the relational clone 〈Γ
ZOA

〉.
2.4. From relational clones to sets of operations. We have shown in the

previous section that to analyze the complexity of arbitrary constraint languages it
is sufficient to consider only relational clones. This considerably reduces the variety
of languages to be studied. However, it immediately raises the question of how to
represent and describe relational clones. For many relational clones the only known
generating sets are rather sophisticated, and in some cases no generating sets are
known [48].

Very conveniently, it turns out that there is a well-known alternative way to
represent and describe any relational clone, using operations. In our definitions we
follow [42] and [53].

Definition 2.19. For any set A, and any natural number n, a mapping f :
An → A is called an n-ary operation on A. The set of all finitary operations on A is
denoted by OA.

We first describe a fundamental algebraic relationship between operations and
relations. Note that any operation on a set A can be extended in a standard way
to an operation on tuples of elements from A, as follows. For any (m-ary) operation
f and any collection of tuples a1, . . . , am ∈ An, where ai = (a1i, . . . , ani), define
f(a1, . . . , am) to be (f(a11, . . . , a1m), . . . , f(an1, . . . , anm)).

Definition 2.20 (see [16, 48, 53]). An m-ary operation f ∈ OA preserves an
n-ary relation ρ ∈ RA (or f is a polymorphism of ρ, or ρ is invariant under f) if
f(a1, . . . , am) ∈ ρ for all choices of a1, . . . , am ∈ ρ.

For any given sets Γ ⊆ RA and F ⊆ OA, let

Pol(Γ) = {f ∈ OA | f preserves each relation from Γ},
Inv(F ) = {ρ ∈ RA | ρ is invariant under each operation from F}.

We remark that the operators Pol and Inv form a Galois correspondence between RA

and OA (see Proposition 1.1.14 of [48]). Introductions to this correspondence can be
found in [16, 47], and a comprehensive study in [48]. We note, in particular, that
Inv(F ) = Inv(Pol(Inv(F ))), for any set of operations F . Sets of the form Inv(F ) are
precisely the relational clones, as the next result indicates.

Proposition 2.21 (see [48]). For any set A, and any F ⊆ OA, the set Inv(F )
is a relational clone. Conversely, any relational clone can be represented in the form
Inv(F ) for some set F ⊆ OA. In particular, for any Γ ⊆ RA, 〈Γ〉 = Inv(Pol(Γ)).

Using Proposition 2.21 together with Corollary 2.17, we can now translate our
original problem of characterizing tractable sets of relations (Problem 2.12) into an
equivalent problem for sets of operations. First, we define what it means for a set of
operations to be tractable or NP-complete.

Definition 2.22. A set F ⊆ OA is said to be tractable if Inv(F ) is tractable. A
set F ⊆ OA is said to be NP-complete if Inv(F ) is NP-complete.

Using this definition, we obtain the following translation of Problem 2.12.
Problem 2.23 (“tractable operations problem”). Characterize all tractable sets

of operations on finite sets.
In many cases the description of a set of operations provides a compact, concise

way to describe the associated relational clone, as the next example indicates.
Example 2.24. Recall the constraint language Γ

ZOA
of 0/1/all relations which

was defined in Example 2.13 and extended to 〈Γ
ZOA

〉 in Example 2.18.
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It was shown in [30] that 〈Γ
ZOA

〉 is precisely the constraint language consisting
of all relations which are invariant under the ternary “dual discriminator” operation
d, defined as follows:

d(x, y, z) =

{
y if y = z,
x otherwise.

Hence this infinite tractable constraint language, which is rather complicated to de-
scribe in detail, may be represented very simply as the set of relations invariant under
the tractable set of operations {d}.

In many cases, it has been shown that the presence of a single operation satisfying
certain simple conditions is sufficient to ensure the tractability of a set of operations.

Example 2.25. A binary operation f(x, y) satisfying the following three condi-
tions is said to be a semilattice operation:1

(i) f(x, f(y, z)) = f(f(x, y), z) (associativity),
(ii) f(x, y) = f(y, x) (commutativity),
(iii) f(x, x) = x (idempotency).

Theorem 16 of [29] says that for any finite set A, any set of operations F ⊆ OA

containing a semilattice operation is tractable.

In contrast, we will now consider the properties of operations that are associated
with NP-complete constraint languages.

Definition 2.26. An operation f : An → A is called essentially unary if there
exists a (nonconstant) unary operation g : A → A and an index i ∈ {1, 2, . . . , n}
such that f(a1, a2, . . . , an) = g(ai) for all choices of a1, a2, . . . , an. If g is the identity
operation, then f is called a projection.

Any operation which is not essentially unary (including all constant operations)
will be called essentially nonunary.

Proposition 2.27 (see Jeavons [27]). For any finite set A and any Γ ⊆ RA, if
Pol(Γ) contains essentially unary operations only, then CSP(Γ) is NP-complete.

Example 2.28. Consider the relation N over the set {0, 1}, defined by

N = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}.

It can be shown that Pol({N}) contains essentially unary operations only [49], and
hence CSP({N}) is NP-complete, by Proposition 2.27.

We remark that the problem CSP({N}) was first shown to be NP-complete by
Schaefer [52]; it corresponds to a restricted form of the Not-All-Equal Satisfia-

bility problem [21, 45].

Boolean operations, that is, operations on A = {0, 1}, have been very well stud-
ied [49, 53]. In particular, it is known that if a Boolean constraint language is not
contained in one of Schaefer’s six tractable classes, then all of its polymorphisms are
essentially unary operations [53]. Hence we may reformulate Schaefer’s dichotomy
theorem to obtain the following complete classification for Boolean operations.

Corollary 2.29 (Schaefer’s dichotomy for operations). A set of Boolean op-
erations is tractable if it contains an essentially nonunary operation. Otherwise it is
NP-complete.

1Note that in some earlier papers [27, 30, 46] the term ACI operation is used.
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3. Algebras. We have shown in section 2 that the problem of analyzing the
complexity of a constraint language can be translated into the problem of analyzing
the complexity of the set of operations which preserve all of the relations in that
language. In the Boolean case, this is sufficient to obtain a complete classification of
complexity, but over larger sets we need to develop more powerful analytical tools, as
the next example indicates.

Example 3.1. Consider the binary operation ◦ on the set {0, 1, 2} defined by the
following Cayley table:

◦ 0 1 2
0 0 1 1
1 1 1 0
2 2 2 2

This operation does not fall into any known tractable class, nor is it essentially unary.
Hence we cannot determine the complexity of this operation using the tools of the
previous section (but see Example 5.5 below).

In this section we shall open the way to the use of a further set of powerful ana-
lytical tools by making the final translation step, from sets of operations to algebras.

Definition 3.2. An algebra is an ordered pair A = (A,F ) such that A is a
nonempty set and F is a family of finitary operations on A. The set A is called the
universe of A, and the operations from F are called basic. An algebra with a finite
universe is referred to as a finite algebra.

To make the translation from sets of operations to algebras we simply note that
any set of operations F on a fixed set A can be associated with the algebra (A,F ).
Hence, we will define what it means for an algebra to be tractable by considering the
tractability of the basic operations.

Definition 3.3. An algebra A = (A,F ) is said to be tractable if F is tractable.
An algebra A = (A,F ) is said to be NP-complete if F is NP-complete.
Using Definition 3.3 we can now translate our original tractable relations problem

(Problem 2.12) into the following equivalent problem for algebras.
Problem 3.4 (“tractable algebras problem”). Characterize all tractable alge-

bras.
Using Definition 3.3, we can reformulate Schaefer’s dichotomy theorem [52] in yet

another way, this time as a classification of the complexity of algebras defined on a
two-element set.

Corollary 3.5 (Schaefer’s dichotomy for algebras). An algebra with a two-
element universe is NP-complete if all of its basic operations are essentially unary.
Otherwise it is tractable.

The first advantage of using algebras instead of sets of operations is that we can
make use of some standard constructions on algebras to obtain new results about
the complexity of constraint languages. Another advantage is that finite algebras
have been extensively studied, and a considerable body of structural theory has been
developed [25, 42, 53]. We explore these ideas further in the remainder of the paper.

In our study it will be useful to describe an equivalence relation linking algebras
that correspond to the same constraint language. As we noted earlier, the mappings
Pol and Inv have the property that Inv(Pol(Inv(F ))) = Inv(F ), and so we can extend a
set of operations F to the set Pol(Inv(F )) without changing the associated invariant
relations. The set Pol(Inv(F )) consists of all operations that can be obtained from the
operations in F , together with the set of all projection operations, by forming arbitrary
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compositions of operations [16, 48]. (If f is an n-ary operation on A, and g1, g2, . . . , gn
are k-ary operations on A, then the composition of f and g1, g2, . . . , gn is the k-ary
operation h on A defined by h(a1, a2, . . . , ak) = f(g1(a1, . . . , ak), . . . , gn(a1, . . . , ak)).)
The set of operations obtained in this way is usually referred to in universal algebra
as the set of term operations over F [16], so we will make the following definition.

Definition 3.6. For any algebra A = (A,F ), an operation f on A will be called
a term operation of A if f ∈ Pol(Inv(F )).

The set of all term operations of A will be denoted Term(A).
Two algebras with the same universe are called term equivalent if they have

the same set of term operations. Note that, for any algebra A = (A,F ), we have
Inv(F ) = Inv(Term(A)), so two algebras are term equivalent if and only if they have
the same set of associated invariant relations. It follows that we need to characterize
tractable algebras only up to term equivalence.

Example 3.7. A group is an algebra with three basic operations: a binary multipli-
cation operation, a unary converse operation, and a constant unit operation (see [37]).
A coset of a group is a relation which is invariant under the ternary term operation
t(x, y, z) = xy−1z. It is stated in Theorem 33 of [20] that any constraint language con-
sisting of cosets of a finite group is tractable. Hence any finite group is tractable, and
moreover, any finite algebra with the ternary term operation t is also tractable.

4. Special classes of algebras. In this section we will show that, when study-
ing the tractability of finite algebras, we can restrict our attention to certain special
classes of algebras.

Definition 4.1. We call an algebra surjective if all of its term operations are
surjective.2

It is easy to verify that a finite algebra is surjective if and only if its unary term
operations are all surjective and hence form a group of permutations.

It was shown in [27] that any unary polymorphism can be applied to a set of
relations without changing the complexity of that set.

Proposition 4.2 (see [27]). For any set of relations Γ, and any unary operation
f ∈ Pol(Γ), let f(Γ) be the set of relations {f(ρ) | ρ ∈ Γ}, where f(ρ) = {f(a) | a ∈ ρ}.
The set Γ is tractable if and only if f(Γ) is tractable, and Γ is NP-complete if and
only if f(Γ) is NP-complete.

Any algebra A = (A,F ) which is not surjective will have a unary term operation
f which is not surjective, and hence has range U , where U is a proper subset of A. By
applying this operation to all of the relations in Inv(F ), as described in Proposition 4.2,
we can obtain a set of relations over U without changing the tractability. The algebra
corresponding to this new set of relations can be shown to be a term induced algebra
of A, which is defined as follows.

Definition 4.3 (see [55]). Let A = (A,F ) be an algebra, and let U be a nonempty
subset of A. The term induced algebra A|U is defined as (U,Term(A)|U ), where
Term(A)|U = {g|U : g ∈ Term(A) and g preserves U}.

By choosing a unary term operation f with a range U of minimal cardinality,
we can ensure that the term induced algebra A|U is surjective. Hence we have the
following theorem.

Theorem 4.4. For any finite algebra A, there exists a set U such that
(i) the algebra A|U is surjective, and

2Note that in [54] an algebra is said to be surjective if all of its basic operations are surjective.
However, such algebras can have nonsurjective term operations, so our definition is more restrictive.
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(ii) the algebra A is tractable if and only if A|U is tractable, and is NP-complete
if and only if A|U is NP-complete.

Theorem 4.4 shows that we can restrict our attention to surjective algebras. The
next theorem shows that for many purposes we need consider only those surjective
algebras with the additional property of being idempotent.

Definition 4.5. An operation f on A is called idempotent if it satisfies f(x, . . . , x) =
x for all x ∈ A.

The full idempotent reduct of an algebra A = (A,F ) is the algebra (A,Termid(A)),
where Termid(A) consists of all idempotent operations from Term(A).

Note that an operation f on a set A is idempotent if and only if it preserves
all the relations in the set Γcon = {{(a)} | a ∈ A}, consisting of all unary one-
element relations on A. Hence, Inv(Termid(A)) is the relational clone generated by
Inv(F ) ∪ Γcon.

To establish the next theorem we need an auxiliary lemma from [53].
Lemma 4.6. Let A = ({a1, a2, . . . , ak}, F ) be a finite algebra whose unary term

operations form a permutation group G. Then the relation ρG, defined by

ρG = {(g(a1), . . . , g(ak)) | g ∈ G},

belongs to Inv(F ).
Proof. Proposition 1.3 of [53] states that relations of the form ρG are preserved

by all operations of the algebra A and hence belong to Inv(F ).
Theorem 4.7. A finite surjective algebra A is tractable if and only if its full

idempotent reduct A0 is tractable. Moreover, A is NP-complete if and only if A0 is
NP-complete.

Proof. Let A = (A,F ) be a finite surjective algebra, and let A0 be the full
idempotent reduct of A.

As observed above, Inv(Term(A0)) is the relational clone generated by the set
Inv(F )∪Γcon, where Γcon = {{(a)} | a ∈ A}. By Corollary 2.17, it follows that A0

is tractable if and only if Inv(F ) ∪ Γcon is tractable, and A0 is NP-complete if and
only if Inv(F ) ∪ Γcon is NP-complete. In the remainder of the proof we will show
that CSP(Inv(F ) ∪ Γcon) is polynomial-time equivalent to CSP(Inv(F )).

Clearly, every instance of CSP(Inv(F )) may be considered as an instance of
CSP(Inv(F ) ∪ Γcon), so there is a constant-time reduction from CSP(Inv(F )) to
CSP(Inv(F ) ∪ Γcon).

For the converse result, let P = (V,A, C) be an instance of CSP(Inv(F ) ∪ Γcon)
and let P ′ be the problem instance (V ′, A, C′), where V ′ = V ∪ {va | a ∈ A} (each of
the variables va is a new variable not in V ). To obtain the constraints C′, take the
original constraints C of P, and replace each unary constraint of the form 〈v, {(a)}〉
in C with the constraint 〈(v, va),=A〉, where =A is the binary equality relation on A.
Finally, add the constraint 〈(va1

, . . . , vak
), �G〉, where a1, a2, . . . , ak are the elements

of A (in some order) and �G is the relation defined in Lemma 4.6. Note that P ′ is an
instance of CSP(Inv(F )) and that this construction can be carried out in polynomial
time.

We claim that if the problem P ′ has a solution ψ, then it has a solution φ such
that φ(va) = a for all a ∈ A. To establish this claim, note that, by the definition of
ρG, there is g ∈ G such that ψ(va) = g(a) for all a ∈ A. Since G is a group, the
inverse operation g−1 ∈ G, which means that it is a term operation of A. This implies
that every relation in Inv(F ) is invariant under g−1, so φ = g−1ψ is also a solution to
P ′, and has the property that g−1ψ(va) = a for all a ∈ A.
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Any solution φ satisfying this condition clearly satisfies all the constraints in C, so
the restriction of φ to V is a solution to P. Conversely, if ψ is any solution to P, then
its extension ψ′ to V ′ such that ψ′(va) = a, for all a ∈ A, is a solution to P ′. Hence
this construction establishes a polynomial-time reduction from CSP(Inv(F )∪ Γcon)
to CSP(Inv(F )).

Theorem 4.7 can be restated in terms of constraint languages, as follows.
Corollary 4.8. Let Γ be a constraint language over a finite set A, and let

Γcon = {{(a)} | a ∈ A} be the set of all unary one-element relations on A.
If all unary polymorphisms of Γ are permutations, then Γ is tractable if and

only if Γ ∪ Γcon is tractable, and Γ is NP-complete if and only if Γ ∪ Γcon is
NP-complete.

Corollary 4.8 has an interesting consequence connecting decision problems and
search problems. In this paper we have formulated the constraint satisfaction problem
as a decision problem (Definition 2.2), in which the question is to decide whether
or not a solution exists. However, the corresponding search problem, in which the
question is to find a solution, often arises in practice. We will now show that the
tractable cases of these two forms of the problem coincide. (Note that the tractable
cases of the search problem are those which belong to the complexity class FP.)

Corollary 4.9. A decision problem CSP(Γ) is tractable if and only if the
corresponding search problem can be solved in polynomial time.

Proof. Obviously, tractability of the search problem implies tractability of the
corresponding decision problem.

For the converse, let Γ be a tractable set of relations over a finite set A. By
choosing a unary polymorphism f of Γ, whose image set U is minimal, we can obtain
a corresponding set of relations Γ′ = f(Γ) over U , such that every unary polymorphism
of Γ′ is a permutation. By Proposition 4.2, Γ′ is also tractable.

Now consider any instance P = (V,A, C) of CSP(Γ). By the choice of Γ, we can
decide in polynomial time in the size of P whether this instance has a solution. Assume
that it has. Then the instance P ′ = (V,U, C′), obtained by replacing each constraint
relation ρ with the corresponding relation f(ρ), also has a solution. Furthermore,
every solution of P ′ is also a solution to P.

Since P ′ has a solution, it follows that for each v ∈ V there must be some a ∈ A
for which we can add the constraint 〈(v), {(a)}〉 and still have a solvable instance.
Hence, by considering each variable in turn, and each possible value a ∈ A for that
variable, we can add such a constraint to each variable in turn, and hence obtain
a solution to P ′. Checking for solvability for each possible value at each variable
requires us to solve an instance of the decision problem CSP(Γ′ ∪ Γcon) at most
|V | · |U | times, and hence can be completed in polynomial time in the size of P ′, by
Corollary 4.8.

5. Constructions on algebras. The results in this section link the complexity
of a finite algebra with the complexity of its subalgebras and homomorphic images
[9, 16, 42]. In many cases, we can use these results to reduce the problem of analyzing
the complexity of an algebra to a similar problem involving an algebra with a smaller
universe.

Definition 5.1. Let A = (A,F ) be an algebra and B a subset of A such that,
for any f ∈ F and for any b1, . . . , bn ∈ B, where n is the arity of f , we have
f(b1, . . . , bn) ∈ B. Then the algebra B = (B,F |B) is called a subalgebra of A, where
F |B consists of the restrictions of all operations in F to B. If B �= A, then B is said
to be a proper subalgebra.
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Theorem 5.2. Let A be a finite algebra.
(i) If A is tractable, then so is every subalgebra of A.
(ii) If A has an NP-complete subalgebra, then A is NP-complete.

Proof. Let B = (B,F |B) be a subalgebra of A = (A,F ). It is easy to check
that Inv(F |B) ⊆ Inv(F ). Hence, CSP(Inv(F |B)) can be reduced to CSP(Inv(F )) in
constant time.

Now (i) and (ii) follow immediately from the existence of this reduction.
Definition 5.3. Let A1 = (A1, F1) and A2 = (A2, F2) be such that F1 = {f1

i |
i ∈ I} and F2 = {f2

i | i ∈ I}, where both f1
i and f2

i are ni-ary, for all i ∈ I.
A map ϕ : A1 → A2 is called a homomorphism from A1 to A2 if

ϕf1
i (a1, . . . , ani) = f2

i (ϕ(a1), . . . , ϕ(ani
))

holds for all i ∈ I and all a1, . . . , ani
∈ A1.

If the map ϕ is surjective, then A2 is said to be a homomorphic image of A1.
Theorem 5.4. Let A be a finite algebra.

(i) If A is tractable, then so is every homomorphic image of A.
(ii) If A has an NP-complete homomorphic image, then A is NP-complete.

Proof. Let B = (B,FB) be a homomorphic image of A = (A,FA) and let ϕ be
the corresponding homomorphism. We will show that, for any finite Γ ⊆ Inv(FB),
CSP(Γ) is linear-time reducible to CSP(Γ′) for some finite Γ′ ⊆ Inv(FA).

For ρ ∈ Inv(FB), set ϕ−1(ρ) = {a | ϕ(a) ∈ ρ} where ϕ acts componentwise. It
is clear that ϕ−1(ρ) is a relation of the same arity as ρ. It can straightforwardly be
checked that ϕ−1(ρ) ∈ Inv(FA). Let Γ′ = {ϕ−1(ρ) | ρ ∈ Γ}. Then Γ′ is a finite subset
of Inv(FA).

Take an instance P = (V,B, C) of CSP(Γ) and construct an instance P ′ =
(V,A, C′) of CSP(Γ′) where C′ = {〈s, ϕ−1(ρ)〉 | 〈s, ρ〉 ∈ C}.

If ψ is a solution of P ′, then ϕψ is a solution of P. Conversely, if ξ is a solution of
P, then any function ψ : V → A such that ϕψ(v) = ξ(v) for any v ∈ V is a solution
of P ′.

We now give two examples to illustrate the use of Theorems 5.2 and 5.4. The
examples show that both of these results can be useful (independently) to establish the
complexity of certain algebras by reducing the question to an algebra over a smaller
set.

Example 5.5. Reconsider Example 3.1. Let A be the idempotent algebra ({0, 1, 2}, ◦),
where ◦ is the binary operation defined by the following Cayley table:3

◦ 0 1 2
0 0 1 1
1 1 1 0
2 2 2 2

By using Theorem 5.4, we will show that A is NP-complete even though all of its
proper subalgebras are tractable.

Notice that, as the equalities 0 ◦ 2 = 1, 1 ◦ 2 = 0, 0 ◦ 1 = 1 ◦ 0 = 1 show,
A has only one proper subalgebra having more than one element, the algebra B =
({0, 1}, ◦|{0,1}). It is easy to check that ◦|{0,1} is a semilattice operation on {0, 1}.
Hence, by Definition 3.3 and Theorem 16 of [29] (see Example 2.25), the algebra B is
tractable.

3Note that we write x ◦ y instead of ◦(x, y).



CLASSIFYING THE COMPLEXITY OF CONSTRAINTS 735

On the other hand, consider the algebra C = (C, ∗), where C = {a, b} and for all
x, y ∈ {a, b}, x ∗ y = x. It is easy to check that the mapping ϕ : {0, 1, 2} → C such
that ϕ(0) = ϕ(1) = a, ϕ(2) = b, is a homomorphism from A onto C. By Corollary 3.5,
C is NP-complete. Hence, by Theorem 5.4, A is NP-complete.

Example 5.6. Consider the idempotent algebra A = ({0, 1, 2}, ◦), where ◦ is the
binary operation defined by the following Cayley table:

◦ 0 1 2
0 0 1 1
1 0 1 1
2 1 1 2

By using Theorem 5.2, we will show that A is NP-complete even though all of its
smaller homomorphic images are tractable.

Since one-element algebras are certainly tractable, we need to consider only two-
element homomorphic images B of A. Let B = ({a, b}, ∗), where ∗ is a binary operation
on {a, b}, and assume that ϕ is a homomorphism from A onto B. Then we have
ϕ(x ◦ y) = ϕ(x) ∗ ϕ(y) for all x, y ∈ {0, 1, 2}.

Case 1. ϕ(0) = ϕ(1) = a, ϕ(2) = b. In this case we have

a ∗ a = ϕ(0) ∗ ϕ(0) = ϕ(0 ◦ 0) = ϕ(0) = a,

a ∗ b = ϕ(0) ∗ ϕ(2) = ϕ(0 ◦ 2) = ϕ(1) = a,

b ∗ a = ϕ(2) ∗ ϕ(0) = ϕ(2 ◦ 0) = ϕ(1) = a,

b ∗ b = ϕ(2) ∗ ϕ(2) = ϕ(2 ◦ 2) = ϕ(2) = b.

It is easy to check that ∗ is a semilattice operation on {a, b}. Hence, by Definition 3.3
and Theorem 16 of [29] (see Example 2.25), the algebra B is tractable.

Case 2. ϕ(0) �= ϕ(1).
It follows that ϕ(2) ∈ {ϕ(0), ϕ(1)}. If ϕ(2) = ϕ(0), then

ϕ(0) = ϕ(0 ◦ 0) = ϕ(0) ∗ ϕ(0) = ϕ(0) ∗ ϕ(2) = ϕ(0 ◦ 2) = ϕ(1).

Alternatively, if ϕ(2) = ϕ(1), then

ϕ(0) = ϕ(1 ◦ 0) = ϕ(1) ∗ ϕ(0) = ϕ(2) ∗ ϕ(0) = ϕ(2 ◦ 0) = ϕ(1).

Hence this second case is impossible, and we have shown that all smaller homo-
morphic images of A are tractable.

On the other hand, the algebra A has a subalgebra A′ = ({0, 1}, ◦) such that
x ◦ y = y for all x, y ∈ {0, 1}. By Corollary 3.5, A′ is NP-complete. Hence, by
Theorem 5.2, A is NP-complete.

6. Strictly simple surjective algebras. The results of the previous section
have established that a tractable algebra must have the property that all of its sub-
algebras and homomorphic images are tractable. Hence, a natural first question is
whether we can classify the complexity of all algebras which do not have any smaller
(nontrivial) subalgebras or homomorphic images. Classifying all such algebras can be
viewed as a possible “base case for induction” in the pursuit of a general classification.

Definition 6.1. A finite algebra is called simple if all of its smaller homomorphic
images are one-element; and strictly simple4 if it is simple and all of its proper
subalgebras are one-element.

4In some papers appearing before 1990 such algebras are called plain.
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By Theorem 4.4, it is sufficient to consider only surjective algebras. In this section
we obtain a complete classification for all strictly simple surjective algebras.5 We
show that any algebra of this type is either tractable or NP-complete, and we give a
complete characterization of the tractable cases. Such algebras include all surjective
two-element algebras, as well as many algebras over larger universes, so this dichotomy
result includes and generalizes Schaefer’s dichotomy for algebras with a two-element
universe (see Corollary 3.5 above).

To obtain the result, we make use of the complete description of finite strictly
simple surjective algebras obtained by Szendrei [54]. To formulate Szendrei’s result,
we first need to introduce some further standard algebraic concepts and notation (for
a general introduction to these algebraic concepts, see, for example, [37]).

Let G be a permutation group acting on a set A. By R(G) we denote the set
of operations on A preserving each relation of the form {(a, g(a)) | a ∈ A}, for some
g ∈ G. By Rid(G) we denote the set of idempotent operations in R(G).

A permutation group G acting on a set A is called regular if, for any a, b ∈ A,
there exists g ∈ G such that g(a) = b, and if each nonidentity member of G has no
fixed point. G is called primitive if the algebra (A,G) is simple.

Let A = (A,+) be a finite Abelian group, and let K be a finite field. The finite
dimensional vector space on A over K will be denoted KA = (A; +,K), the group of
translations {x+ a | a ∈ A} will be denoted T (A), and the endomorphism ring of KA
will be denoted End KA. Note that one can consider A as a module over End KA.
This module will be denoted by (End KA)A.

Finally, let F0
k denote the set of all operations preserving the relation

X0
k = {(a1, . . . , ak) ∈ Ak | ai = 0 for at least one i, 1 ≤ i ≤ k},

where 0 is some fixed element of A, and let F0
ω =

⋂∞
k=2 F0

k .
Theorem 6.2 (see [54]). Let A be a finite strictly simple surjective algebra.
• If A has no one-element subalgebras, then A is term equivalent to one of the

following algebras:
(a) (A,R(G)) for a regular permutation group G acting on A;
(b) (A,Termid((End KA)A) ∪ T (A)) for some vector space KA = (A; +,K)

over a finite field K;
(c) (A,G) for a primitive permutation group G on A.

• If A has one-element subalgebras, then A is idempotent and term equivalent
to one of the following algebras:
(a◦) (A,Rid(G)) for a permutation group G on A such that every nonidentity

member of G has at most one fixed point;
(b◦) (A,Termid((End KA)A)) for some vector space KA over a finite field K;

(d) (A,Rid(G) ∩ F0
k ) for some k ( 2 ≤ k ≤ ω), some element 0 ∈ A and

some permutation group G acting on A such that 0 is the unique fixed
point of every nonidentity member of G;

(e) (A,F ) where |A| = 2 and F contains a semilattice operation;
(f) a two-element algebra with an empty set of basic operations.

In the following theorem we determine all tractable finite strictly simple surjective
algebras by analyzing each of the cases listed in Theorem 6.2.

5Note that the full idempotent reduct of a strictly simple surjective algebra is not always strictly
simple. Hence we obtain a slightly stronger result by classifying all strictly simple surjective algebras,
rather than just the strictly simple idempotent algebras.
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Theorem 6.3. A finite strictly simple surjective algebra is NP-complete if all of
its term operations are essentially unary. Otherwise it is tractable.

Proof. If A is an algebra of type (c) or (f), then all of its term operations are
essentially unary. Hence Pol(Inv(Term(A))) contains essentially unary operations only,
so A is NP-complete, by Proposition 2.27.

If A = (A,F ) is an algebra of type (a) or (a◦), then we claim that the dual
discriminator operation d(x, y, z) defined in Example 2.24 is a term operation of A.
To establish this claim, it is easy to verify that d preserves every relation of the form
{(a, g(a)) | a ∈ A} where g is a permutation on A. Since d is an idempotent operation,
it belongs to both R(G) and Rid(G). Hence, in cases (a) and (a◦), every relation in
Inv(F ) is invariant under d. It follows from Theorem 5.7 of [30] that CSP(Inv(F )) is
tractable (see Example 2.24). Hence, in this case A is tractable.

If A is an algebra of type (b) or (b◦), then the affine operation f(x, y, z) = x−y+z
is a term operation of A. Tractability of A then follows from Theorem 33 of [20] (see
Example 3.7).

Now let A = (A,F ) be an algebra of type (d) corresponding to some k with
2 ≤ k ≤ ω. Consider the operation f(x, y) defined as follows:

f(x, y) =
{
x if x = y,
0 otherwise.

First, we show that f preserves any relation of the form g◦ = {(a, g(a)) | a ∈ A} where
g ∈ G. Let a = (a1, a2), b = (b1, b2) ∈ g◦. If a1 = b1, then a2 = g(a1) = g(b1) = b2,
and, by definition of f , we have that the pair f(a, b) is equal to (a1, g(a1)) and hence
belongs to g◦. If a1 �= b1, then, since g is a permutation, a2 �= b2 and the pair
f(a, b) equals (0, 0), which also belongs to g◦ because 0 is a fixed point of g. Hence
f ∈ Rid(G).

Next, we show that f ∈ F0
k . Let a = (a1, . . . , ak), b = (b1, . . . , bk) ∈ X0

k ; that is,
each of a, b contains 0. If, say, ai = 0, then f(ai, bi) = 0, so the tuple f(a, b) contains 0
and hence belongs to X0

k .
We have shown that f ∈ Rid(G) ∩ F0

k , and hence f is a term operation of A. It
is easy to check that f is a semilattice operation. By Theorem 16 of [29], this implies
that CSP(Inv(F )) is tractable (see Example 2.25). Hence, in this case A is tractable.

Finally, if A is an algebra of type (e), then tractability again follows from Theo-
rem 16 of [29].

7. Toward a general classification. Theorem 6.3 gives a straightforward cri-
terion to determine whether a finite strictly simple surjective algebra is tractable or
NP-complete. In this section we examine what can be said about more general finite
algebras.

Theorems 5.2 and 5.4 establish two separate necessary conditions for any finite
algebra to be tractable. We can combine these conditions by using the standard
algebraic notion of a factor [9].

Definition 7.1. A homomorphic image of a subalgebra of an algebra A is called
a factor of A. A factor whose universe contains only a single element is called a
trivial factor.

Corollary 7.2. If A is a tractable finite algebra, then so is every factor of A.
Theorems 5.2 and 5.4 also establish two separate sufficient conditions for any

finite algebra to be NP-complete. Using the notion of a factor, we can combine
these results, together with Proposition 2.27, to obtain a single sufficient condition
for NP-completeness.
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Corollary 7.3. A finite algebra A is NP-complete if it has a factor B all of
whose term operations are essentially unary.

However, the condition described in Corollary 7.3 is not a necessary condition for
an arbitrary algebra A to be NP-complete, as the next example shows.

Example 7.4. Consider the algebra A = ({0, 1, 2, 3}, {d, f, p}), where d is a binary
operation and f, p are unary operations, defined by the following tables:6

d 0 1 2 3
0 0 3 0 3
1 2 1 2 1
2 2 1 2 1
3 0 3 0 3

x f(x) p(x)
0 1 1
1 0 0
2 3 2
3 2 3

Since f(0) = 1, any subalgebra of A containing 0 also contains 1. Furthermore,
since f(1) = 0, any subalgebra containing 1 also contains 0. Similarly, any subalgebra
containing one of 2, 3 also contains the other. Finally, since d(0, 1) = 3 and d(2, 3) = 1,
it follows that the only subalgebra of A is A itself.

Now let φ be a homomorphism of A. If φ(0) = φ(1), then

φ(2) = φ(d(1, 0)) = d(φ(1), φ(0)) = d(φ(0), φ(0)) = φ(0), and

φ(3) = φ(d(0, 1)) = d(φ(0), φ(1)) = d(φ(0), φ(0)) = φ(0),

so φ maps all the elements of A to a single element. Furthermore, if φ(0) = φ(2), then

φ(0) = φ(2) = φ(p(2)) = p(φ(2)) = p(φ(0)) = φ(p(0)) = φ(1),

and we get the previous case. In all other cases a similar proof shows that if φ is not
injective, then it maps all the elements of A to a single element.

Hence we have shown that the only nontrivial factor of A is A itself, and clearly
not all the operations of A are essentially unary.

However, we will now show that A is NP-complete. (Note that this does not
contradict Theorem 6.3 because A is not surjective.) To establish this, consider the
ternary relation ρ, consisting of 36 tuples, defined as follows (where tuples are written
as columns):

ρ =

⎛
⎝0 0 0 3 3 3 0 0 0 3 3 3 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 0 0 0 3 3 3

0 3 3 0 0 3 1 1 2 1 2 2 0 0 3 0 3 3 1 2 2 1 1 2 0 0 3 0 3 3 1 1 2 1 2 2
1 1 2 1 2 2 0 3 3 0 0 3 0 3 0 3 0 3 0 0 3 0 3 3 1 2 2 1 1 2 1 2 1 2 1 2

⎞
⎠ .

It is straightforward to verify that this relation is invariant under the operations d, f ,
and p. However, if we set h(x) = d(f(x), p(x)), then h(ρ) = N , where N is the relation
defined in Example 2.28, and hence {h(ρ)} is NP-complete. By Proposition 4.2, it
follows that {ρ} is NP-complete, and hence A is NP-complete.

On the other hand, it was shown in Theorem 6.3 that the condition described in
Corollary 7.3 is both necessary and sufficient for a finite strictly simple surjective alge-
bra to be NP-complete (assuming that P �= NP). Furthermore, all previously known
forms of NP-complete constraint satisfaction problems (see [46, 52]) can be shown
to be NP-complete using Corollary 7.3. Hence, we conjecture that the condition de-
scribed in Corollary 7.3 is both necessary and sufficient for NP-completeness for any

6This algebra is, in fact, the matrix square [42] of ({0, 1};−), where − denotes the negation.
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finite surjective algebra. We state this conjecture for the special case of idempotent
algebras, where the only essentially unary operations are projections.

Conjecture 7.5 (“tractable algebras conjecture”). A finite idempotent algebra
A is NP-complete if it has a nontrivial factor B all of whose operations are projec-
tions. Otherwise it is tractable.

As shown in sections 2–4, the problem of determining the complexity of an ar-
bitrary constraint language can be reduced to an equivalent problem for a certain
idempotent algebra associated with the language. Therefore, this conjecture, if true,
would solve all the various forms of the “tractability problem” mentioned above, in-
cluding the original problem for arbitrary constraint languages, Problem 2.12.

The next examples show that Conjecture 7.5 is confirmed in a number of special
cases, by existing dichotomy results. Moreover, we will show that in each case the
existing dichotomy result can be obtained as a simple consequence of Conjecture 7.5.

Example 7.6. A dichotomy theorem for two-element algebras was given in Corol-
lary 3.5. In this example we will show that this result is equivalent to Conjecture 7.5
restricted to two-element algebras.

Let A be a two-element algebra.
If A is idempotent, then Corollary 3.5 implies that either A is tractable, or else it

is NP-complete and all of its operations are projections. Hence Corollary 3.5 implies
that Conjecture 7.5 holds for any two-element algebra.

Conversely, we will now establish that Conjecture 7.5 implies Corollary 3.5. If
A is not surjective, then it has a nonsurjective unary term operation, which must
be constant, and hence A is tractable, by Theorem 4.4. On the other hand, if A
is surjective, then by Theorem 4.7 we can consider its full idempotent reduct, A0.
Assuming Conjecture 7.5 holds for any two-element algebra, we have that either A0 is
tractable or else it is NP-complete and every operation of A0 is a projection. If every
operation of A0 is a projection, then we claim that every operation of A must be
essentially unary. To establish this claim, let f be any term operation of A. Since A
is surjective, the unary term operation g(x) = f(x, x, . . . , x) must be a permutation.
Now let h be the composition of the inverse permutation g−1 and f . It is easy to
check that h is an idempotent term operation of A and hence is an operation of A0. If
h is a projection, then f must depend on only one of its arguments, which establishes
the claim. Hence, we have shown that either A is tractable, or else every operation
of A is essentially unary, which establishes that Conjecture 7.5 implies Corollary
3.5.

Example 7.7. A dichotomy theorem for constraint languages on a three-element
set was given as Theorem 4 of [3]. This result is stated in a very similar form to
Conjecture 7.5, and is easily shown to be equivalent to this conjecture restricted to
three-element algebras.

Example 7.8. A constraint language containing all unary relations is called a
conservative constraint language [5]. (One example of a problem with a conservative
constraint language is the List H-Colorability problem, defined in [19].)

It was shown in Theorem 4 of [5] that, for any conservative constraint language
Γ on a finite set A, either Γ is tractable, or else there exists some two-element subset
B ⊆ A, such that for every polymorphism f of Γ, f |B is a projection. In this example
we will show that this result is equivalent to Conjecture 7.5 restricted to algebras
whose operations preserve all unary relations.

Let A = (A,F ) be any finite algebra such that the set of relations Γ = Inv(F )
contains all unary relations. Since Γ contains every relation {(a)}, for each a ∈ A, the
algebra A is idempotent. Furthermore, since Γ contains every relation {(a1), (a2)}, for
each two-element subset B = {a1, a2} ⊆ A, it follows that each of the corresponding
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algebras B = (B,F |B) is a subalgebra of A.
Hence, by Theorem 4 of [5], either Γ is tractable, or else there exists some two-

element subalgebra B of A, all of whose operations are projections. Hence this result
implies that Conjecture 7.5 holds for any algebra whose operations preserve all unary
relations.

Conversely, to show that Conjecture 7.5 implies Theorem 4 of [5], assume that
Conjecture 7.5 holds for the algebra A. This implies that either Γ is tractable, or else
there exists some nontrivial factor C of A all of whose operations are projections. In
the latter case, by the definition of a factor, C must be the image of some subalgebra B
of A under some homomorphism ϕ. Choose elements a1, a2 ∈ B such that their images
ϕ(a1), ϕ(a2) in C are distinct. Since every two-element subset of A is a subalgebra, for
any f ∈ F we have that f |{a1,a2} has range {a1, a2}. Furthermore, the corresponding
operation f ′ of C is a projection, so we have that for any tuple a over {a1, a2}, the tuple
ϕ(f(a)) = f ′(ϕ(a)) = the ith component of ϕ(a) for some i. Hence f |{a1,a2} is also a
projection, and we have shown that Conjecture 7.5 implies Theorem 4 of [5].

Finally, we note that if Conjecture 7.5 is true, then it yields an effective procedure
to determine whether any finite constraint language is tractable or NP-complete, as
the following result indicates.

Proposition 7.9. Let A be a finite set. If Conjecture 7.5 is true, then for any
finite constraint language Γ over A, it is possible to determine in polynomial time in
the size of Γ whether Γ is NP-complete or tractable.

Proof. First set Γ′ = f(Γ) ∪ Γcon, where f is a unary polymorphism of Γ whose
range f(A) = U is minimal and Γcon = {{(a)} | a ∈ U}. (Note that the number of
possible unary operations depends only on |A|, so Γ′ can be obtained in polynomial
time in the size of Γ.) By Proposition 4.2 and Corollary 4.8, Γ is NP-complete if and
only if Γ′ is NP-complete, and Γ is tractable if and only if Γ′ is tractable.

By Corollary 2.17 and Proposition 2.21, Γ is NP-complete if and only if the
idempotent algebra A = (U,Pol(Γ′)) is NP-complete, and Γ is tractable if and only
if A is tractable. By Conjecture 7.5, A is NP-complete if it has a nontrivial factor B
whose operations are all projections; otherwise it is tractable.

Assume first that A does have a nontrivial factor B whose operations are all
projections, and let B be the homomorphic image of the subalgebra A′ of A under the
homomorphism ϕ. We may assume, without loss of generality, that the universe of B
contains the set {0, 1}. The ternary NP-complete relation N , defined in Example 2.28,
is preserved by all operations of B, so the ternary relation R = ϕ−1(N) is preserved
by all operations of A′ and hence by all operations of A. By Proposition 2.21, this
implies that R ∈ 〈Γ′〉.

Conversely, assume that R = ϕ−1(N) ∈ 〈Γ′〉, where ϕ is an arbitrary unary
function from some subset A′ of U onto {0, 1}. By Proposition 2.21, R is preserved by
all operations of A, and hence A′ is the universe of a subalgebra A′ of A. Furthermore,
the relation ϕ−1(={0,1}) = ∃zR(x, z, z) ∧ R(y, z, z) ∈ 〈Γ′〉. Using standard algebraic
results (see Theorem 1.16 of [42]), this implies that ϕ is a homomorphism from A′ to
a two-element factor B of A whose operations preserve N . Moreover, B is idempotent,
so all its operations are projections.

It follows that Γ is NP-complete if there is a relation R ∈ 〈Γ′〉 where R is of the
form ϕ−1(N) for some unary function ϕ from some subset of A onto {0, 1}, and in all
other cases Γ is tractable. By Proposition 1.1.19 of [48], the presence of any relation
R in 〈Γ′〉 can be determined by checking whether R is preserved by all polymorphisms
of Γ′ of arity bounded by |R| (see [26] for an explicit construction). Since the number
of possible unary functions ϕ is less than 3|A|, and each |R| ≤ |A|3, this condition can
be checked in polynomial time in the size of Γ, for any fixed finite set A.
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Abstract. A fundamental problem in scheduling theory is that of scheduling a set of n tasks,
with precedence constraints, on m ≥ 1 identical and parallel processors so as to minimize the
makespan (schedule length). In the past, research has focused on the setting whereby all tasks
are available for processing at the beginning (i.e., at time t = 0). In this article we consider the
situation where tasks, along with their precedence constraints, are released at different times, and
the scheduler has to make scheduling decisions without knowledge of future releases. In other words,
the scheduler has to schedule tasks in an online fashion. We consider both preemptive and nonpre-
emptive schedules. We show that optimal online algorithms exist for some cases, while for others
it is impossible to have one. Our results give a sharp boundary delineating the possible and the
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1. Introduction. A fundamental problem in scheduling theory is that of sched-
uling a set of n tasks, with precedence constraints, on m ≥ 1 identical and parallel
processors so as to minimize the makespan (schedule length). In this setting we are
given n tasks, 1, 2, . . . , n, where each task j has a processing time pj . The tasks have
precedence constraints, ≺, in that i ≺ j signifies that task j cannot start until task
i is finished. The tasks, together with their precedence constraints, are described by
a directed acyclic graph G = (V,A), where V is a set of vertices representing the
tasks and A is a set of directed arcs representing the precedence constraints; there is
a directed arc from task i to task j if i ≺ j. We assume the graph has no transitive
edges. The tasks can be scheduled preemptively or nonpreemptively. In preemptive
scheduling, a task can be interrupted before it completes and later resumed on a
possibly different processor. We assume that there is no time loss in preemption.
By contrast, in nonpreemptive scheduling, a task, once begun, cannot be interrupted
until it completes. With respect to a schedule S, the completion time of task i is
denoted by Ci, and the makespan is denoted by Cmax = max{Ci}. The goal is to
schedule the set of tasks on m ≥ 1 identical and parallel processors so as to minimize
Cmax. In the three-field classification scheme introduced by Graham et al. [4], the
problems considered in this article are P | prec | Cmax and P | pmtn, prec | Cmax.

A task i is said to be an immediate predecessor of another task j if there is a
directed arc (i, j) in G; j is said to be an immediate successor of i. Task i is said to
be a predecessor of task j if there is a directed path from i to j in G; j is said to be a
successor of i. We say that G is an intree if each vertex, except the root, has exactly
one immediate successor. G is an outtree if each vertex, except the root, has exactly
one immediate predecessor. A chain is an outtree in which each vertex has at most
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one immediate successor. We use prec to denote an arbitrary directed acyclic graph.
In the past, research in scheduling theory has concentrated on these four classes

of precedence constraints: prec, intree, outtree, and chains. A number of polynomial-
time algorithms have been developed. In nonpreemptive scheduling, the famous
Coffman–Graham algorithm [1] is optimal for P2 | pj = 1, prec | Cmax, while the
well-known Hu algorithm [6] is optimal for P | pj = 1, intree | Cmax and P | pj =
1, outtree | Cmax; we will describe these two algorithms in detail in the next section. It
is known that P | pj = 1, prec | Cmax is strongly NP-hard [3], although the complexity
is still open for each fixed m ≥ 3. If the tasks have arbitrary processing times, then
the problem becomes NP-hard in the ordinary sense even if we have two processors
and the tasks are independent; i.e., P2 || Cmax is NP-hard in the ordinary sense [3].

For preemptive scheduling, the Muntz–Coffman algorithm [8, 9] is optimal for
P2 | pmtn, prec | Cmax, P | pmtn, intree | Cmax, and P | pmtn, outtree | Cmax; we
will describe this algorithm in detail in section 3. Again, P | pmtn, prec | Cmax is
strongly NP-hard [3], while the complexity is still open for each fixed m ≥ 3.

All of the algorithms mentioned above assume that all tasks are available for
processing at the beginning (i.e., at time t = 0). In this article, we consider the
situation where tasks, along with their precedence constraints, are released at different
times, and the scheduler has to make scheduling decisions without knowledge of future
releases. In other words, the scheduler has to schedule tasks in an online fashion. We
say that an online scheduling algorithm is optimal if it always produces a schedule
with the minimum Cmax, i.e., a schedule as good as any schedule produced by any
scheduling algorithm with full knowledge of future releases of tasks. Since an online
scheduling algorithm has to schedule tasks in an online fashion, it is not clear that an
optimal online scheduling algorithm necessarily exists. In this article, we show that
online scheduling algorithms exist for some cases, while for others it is impossible
to have one. Our results give a sharp boundary delineating the possible and the
impossible cases.

We extend the notation of Graham et al. [4] to online scheduling problems in a
natural way. For example, P2 | pj = 1, preci released at ri | Cmax refers to the case
where tasks with arbitrary precedence constraint, preci, are released at time ri. In
this case, there are two processors, each task has unit processing time, and preemption
is not allowed. As another example, P | pmtn, outtreei released at ri | Cmax refers
to the case where tasks with outtree precedence constraint, outtreei, are released at
time ri. In this case, there is an arbitrary number of processors, tasks have arbitrary
processing times, and preemption is allowed.

Hong and Leung [5] have given an optimal online scheduling algorithm for a
set of independent tasks on an arbitrary number of processors where preemption is
allowed. The idea of their algorithm is to schedule tasks using a modified McNaughton
wrap-around rule. (It is known that McNaughton’s wrap-around rule is optimal for
P | pmtn | Cmax [7].) Tasks will be executed according to the schedule until new tasks
arrive, at which time the algorithm will reschedule, by the same rule, the remaining
portions of the unfinished tasks along with the newly arrived tasks. This process is
repeated until all tasks are finished and no new tasks arrive.

Note that for nonpreemptive scheduling, it can be shown that it is impossible
to have an optimal online algorithm for a set of independent tasks with arbitrary
processing times, even if there are only two processors.

In this article, we show that optimal online scheduling algorithms exist for
(1) P2 | pj = 1, preci released at ri | Cmax;
(2) P | pj = 1, outtreei released at ri | Cmax;
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(3) P2 | pmtn, preci released at ri | Cmax;
(4) P | pmtn, outtreei released at ri | Cmax.

Using an adversary argument, we show that it is impossible to have optimal online
scheduling algorithms for

(1) P3 | pj = 1, intreei released at ri | Cmax;
(2) P2 | pj = p, chainsi released at ri | Cmax;
(3) P3 | pmtn, pj = 1, intreei released at ri | Cmax.
All of our optimal online scheduling algorithms follow the same format as the al-

gorithm given in Hong and Leung [5]. For P2 | pj = 1, preci released at ri | Cmax, we
use the Coffman–Graham algorithm to schedule tasks and follow the schedule to exe-
cute tasks until new tasks arrive, at which time we reschedule the remaining portions
of the unfinished tasks along with the newly arrived tasks. We use Hu’s algorithm
for P | pj = 1, outtreei released at ri | Cmax, and the Muntz–Coffman algorithm for
P2 | pmtn, preci released at ri | Cmax and P | pmtn, outtreei released at ri | Cmax.

The organization of this article is as follows. In the next section we consider
nonpreemptive scheduling, while preemptive scheduling will be considered in section 3.
We draw some conclusions in the last section.

2. Nonpreemtive schedules. In this section we consider nonpreemptive sched-
uling only. We first show that it is impossible to have optimal online algorithms for
P3 | pj = 1, intreei released at ri | Cmax and P2 | pj = p, chainsi released at ri |
Cmax. We then give an optimal online algorithm for P2 | pj = 1, preci released at ri |
Cmax in section 2.1 and an optimal online algorithm for P | pj = 1, outtreei released
at ri | Cmax in section 2.2.

Theorem 2.1. It is impossible to have an optimal online algorithm for P3 | pj =
1, intreei released at ri | Cmax.

Proof. We will use an adversary argument to prove the theorem. Consider the
intrees shown in Figure 2.1: the number of processors is three, intree1 is released at
r1 = 0, and intree2 is released at r2 = 4.
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released at r1=0

21
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29

21

22

23 24
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27 28

29

intree2
released at r2=4

Fig. 2.1. Example showing impossibility for P3|pj = 1, intreei released at ri|Cmax.

For intree1, the length of the longest path is nine, so the makespan cannot be
smaller than nine. To obtain the minimum makespan, task 10 must finish by time
t = 4, which means that all its predecessors must be finished by time t = 3. Since
task 10 has nine predecessors and since there are only three processors, all of the
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predecessors of task 10 must be executed in the first three time units. This means that
there must be an idle processor in the time interval [3, 4]. Now, if intree2 is released
at time t = 4, then the makespan must be larger than 10. As shown in Figure 2.2,
the optimal makespan is 10. On the other hand, if task 10 is not completed by time
t = 4, then the schedule is already not optimal for intree1.

2726232221963

28192524151311852

2920181716141210741

2726232221963

28192524151311852

2920181716141210741

1 2 3 4 5 6 7 8 9 10 11 120 1 2 3 4 5 6 7 8 9 10 11 120

S1

27282622249151311

2919252317218642

2018161412107531

27282622249151311

2919252317218642

2018161412107531

1 2 3 4 5 6 7 8 9 10 11 120 1 2 3 4 5 6 7 8 9 10 11 120

S2

Fig. 2.2. Schedule for the example in Figure 2.1.

Thus, the adversary first releases intree1 at time t = 0. If the online algorithm did
not finish task 10 by time t = 4, then the schedule produced by the online algorithm is
already not optimal for intree1. On the other hand, if the online algorithm completes
task 10 by time t = 4, then the adversary releases intree2 at time t = 4. The online
algorithm cannot finish both intrees by time t = 10, but the optimal makespan is 10.
Again, the online algorithm did not produce an optimal schedule.

Theorem 2.2. It is impossible to have an optimal online algorithm for P2 | pj =
p, chainsi released at ri | Cmax.

Proof. Consider the chains shown in Figure 2.3: two chains released at r1 = 0,
one chain released at r2 = 5; each task in the chains has two units of processing
time; and the number of processors is two. The minimum makespan for the first two
chains (released at time t = 0) is 6, which can be attained only if both chains execute
continuously from time t = 0 until time t = 6. Now, if the second chain is released
at time t = 5, then the makespan will be 16. However, as shown in Figure 2.3, the
optimal makespan is 15.

Thus, the adversary first releases the two chains at time t = 0. If the online
algorithm leaves a processor idle in the time interval [0, 5], then the schedule is already
not optimal for the two chains. On the other hand, if the online algorithm keeps both
processors busy during the interval [0, 5], then the adversary releases the second chain
at time t = 5. The online algorithm cannot finish all the chains by time 15, but the
optimal makespan is 15. Again, the online algorithm did not produce an optimal
schedule.

2.1. UET tasks, arbitrary precedence constraint, and two processors.
The Coffman–Graham algorithm is optimal for P2 | pj = 1, prec | Cmax. It works
by first assigning a label to each task which corresponds to the priority of the task;
tasks with higher labels have higher priority. Once the labels are assigned, tasks are
scheduled as follows: whenever a processor becomes free, assign it a task, all of whose
predecessors have already been executed and which has the largest label among those
tasks not yet assigned.
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Fig. 2.3. Example showing impossibility for P2 | pj = p, chainsi released at ri | Cmax.

Before we describe the labeling algorithm, we need to define a linear order on
decreasing sequences of positive integers, as follows.

Definition 2.3. Let N = (n1, n2, . . . , nt) and N ′ = (n′
1, n

′
2, . . . , n

′
t′) be two

decreasing sequences of positive integers. We say that N < N ′ if either of the following
hold:

1. For some i, 1 ≤ i ≤ t, we have nj = n′
j for all j satisfying 1 ≤ j ≤ i− 1 and

ni < n′
i.

2. t < t′ and nj = n′
j for all j satisfying 1 ≤ j ≤ t.

Example. (8, 6, 4, 3) < (8, 6, 5) and (9, 8, 6) < (9, 8, 6, 4, 3).
Let n denote the number of tasks in prec. The labeling algorithm assigns to each

task i an integer label α(i) ∈ {1, 2, . . . , n}. The mapping α is defined as follows.
Let IS(i) denote the set of immediate successors of task i and let N(i) denote the
decreasing sequence of integers formed by ordering the set {α(j) | j ∈ IS(i)}.

1. An arbitrary task i with IS(i) = ∅ is chosen and α(i) is defined to be 1.
2. Suppose for some k ≤ n that the integers 1, 2, . . . , k − 1 have been assigned.

From the set of tasks for which α has been defined on all elements of their
immediate successors, choose the task j such that N(j) ≤ N(i) for all such
tasks i. Define α(j) to be k.

3. Repeat the assignment in step 2 until all tasks of prec have been assigned
some integer.

Example. Figure 2.4 shows a set of tasks with their precedence constraints. The
number inside each circle represents the task’s index and the number next to each
circle represents the label assigned to the task by the Coffman–Graham labeling al-
gorithm. The schedule on two processors is also shown in Figure 2.4.

Our online algorithm utilizes the Coffman–Graham algorithm to schedule tasks.
When new tasks arrive, the new tasks along with the unexecuted portion of the
unfinished tasks will be rescheduled by the Coffman–Graham algorithm again.
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(1) (2)

76543210

Fig. 2.4. Example illustrating the Coffman–Graham algorithm.

Algorithm A.

Whenever new tasks arrive, do {
t ← the current time;
U ← the set of tasks active (i.e., not finished) at time t;
Call the Coffman–Graham algorithm to reschedule the tasks in U ;

}
Example. Figure 2.5 shows another set of tasks released at time r2 = 2 after the

tasks in Figure 2.4 were released at time r1 = 0. Note that tasks 4, 5, 7, 8, and 9
from the first release are unfinished at time t = 2. They are rescheduled, along with
the new tasks from the second release, by the Coffman–Graham algorithm. The final
schedule obtained by Algorithm A is also shown.

(9)(8)

(5)

(1) (2)

Tasks not finished at t=2

(3) (4)

(6) (7)

(10)

10 (11)

Tasks released at t=2

11

12 13

14 15

4

7

5

8 9

915124562

814713111031

915124562

814713111031
86543210 7 9

Fig. 2.5. Example illustrating Algorithm A.

The next lemma, whose proof will be omitted, is instrumental in proving that
Algorithm A is optimal.

Lemma 2.4. Let S be a schedule for a set of tasks with arbitrary precedence
constraints, where each task has unit processing time.

1. If S has the largest number of tasks completed at any time instant t, then S
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must be optimal for Cmax.
2. If S has the minimum idle processor time at any time instant t, then S must

be optimal for Cmax.
3. For two processors, the schedule S′ produced by the Coffman–Graham algo-

rithm has the largest number of tasks completed at any time instant t.

Theorem 2.5. Algorithm A is optimal for P2 | pj = 1, preci released at ri |
Cmax. Moreover, the schedule produced by Algorithm A has the largest number of
tasks completed at any time instant t.

Proof. We will prove the theorem by induction on the number, i, of release times.
The basis case of i = 1 follows from Lemma 2.4. Assume the theorem is true for
i = k − 1 release times; we will show that the theorem is true for i = k release times.

Let Sk−1 denote the schedule obtained by Algorithm A after the first k−1 releases.
By the induction hypothesis, Sk−1 is optimal for the tasks in the first k − 1 releases
and has the largest number of tasks completed at any time instant t. The release
time rk divides the tasks into two groups: (1) τ1, tasks completed by rk in Sk−1; and
(2) τ2, tasks completed after rk in Sk−1. Let Sk denote the schedule obtained by
Algorithm A after the kth release. By the nature of Algorithm A, Sk is identical to
Sk−1 from time 0 until rk. Thus, every task in τ1 is completed by rk in Sk as well.

Let Ŝk be any schedule (including optimal schedules) for k releases. The release
time rk divides the tasks into two groups: (1) τ̂1, tasks completed by rk in Ŝk; and
(2) τ̂2, tasks completed after rk in Ŝk. Let preck denote all the tasks in the kth release.
It is clear that the tasks in τ1 ∪ τ2 are the same as the tasks in τ̂1 ∪ τ̂2 \ preck.

We now construct another schedule S̄k from Ŝk as follows: (1) Delete all the tasks
in τ1 ∪ τ2 from Ŝk. (2) Schedule all the tasks in τ1 exactly as in Sk−1. The schedule
S̄k is identical to Sk−1 from time 0 until rk. After rk, it has tasks in preck scheduled
exactly as in Ŝk and idle processor times due to the deletion of the tasks in τ1 ∪ τ2.

We want to show that we can schedule the tasks in τ2 into the idle processor times
in S̄k in such a way that the number of tasks completed at each time instant t is not
smaller than that in Ŝk. By Lemma 2.4, S̄k has the same makespan as Ŝk.

Let L be the list of tasks in τ2 in ascending order of their completion times in
Sk−1. We schedule the tasks in τ2 as follows. Whenever there is an idle processor
time, scan the list L and assign the first ready task encountered in the scan to the
idle time.

We keep assigning tasks by the above method until we first encounter a time t∗

such that both processors are idle in the time interval [t∗, t∗ + 1], j is the only task
from τ2 that can be assigned in the interval, and the number of tasks completed by
t∗ + 1 in S̄k is smaller than that completed at the same time in Ŝk. Since we cannot
assign another task in the interval, the remaining unassigned tasks in τ2 must all be
successors of task j. There are two cases to consider.

Case I. There is a time t′, rk ≤ t′ < t∗, such that both processors are executing
some tasks in preck in the time interval [t′, t′ + 1]. If there are several such times, let
t′ be the largest.

Shown in Figure 2.6(a) is an example of Case I. In this figure, xj denotes a
task in preck and yj denotes a task in τ2. We transform the schedule to the one
shown in Figure 2.6(b). After the transformation, task j is completed by t∗ and an
immediate successor of j (task k shown in the figure) can now be scheduled in the
time interval [t∗, t∗ + 1]. It is clear that there is no precedence constraint violation in
the transformed schedule.

Case II. In every time interval [t, t + 1], rk ≤ t < t∗, at most one processor is
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Fig(a) An example of Case I
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Fig(b) The transformed schedule

Fig. 2.6. Example illustrating the proof of Case I.

executing some task in preck.

In this case we pull out all the tasks in preck that were scheduled in the time
interval [rk, t

∗ + 1] and reschedule all the tasks in τ2 as in Sk−1. By the induction
hypothesis, Sk−1 has the largest number of tasks completed at any time instant, and
hence it can complete all the tasks by t∗. The schedule will be rearranged so that in
every time interval [t, t + 1], rk ≤ t < t∗, at least one processor is executing a task in
τ2; i.e., there is no time interval [t, t + 1] such that both processors are idle. We now
schedule the tasks in preck into the idle processor times and an immediate successor
of j in the time interval [t∗, t∗ + 1]. It is clear that the schedule has no precedence
constraint violation.

After we perform the above operations, the number of tasks completed by time
t∗ + 1 in S̄k is identical to that in Ŝk. We can continue this operation until all tasks
in τ2 have been scheduled. Thus, the number of tasks completed at each time instant
t is not smaller than that in Ŝk.

Observe that Sk is identical to Sk−1 from time 0 until rk. Thus, it has the largest
number of tasks completed at each time instant t from time 0 up until rk. After rk,
the tasks are scheduled by the Coffman–Graham algorithm, and hence Sk has the
largest number of tasks completed at each time instant t.

2.2. UET tasks, outtrees, and arbitrary number of processors. Hu’s
algorithm is optimal for P | pj = 1, outtree | Cmax. Like the Coffman–Graham
algorithm, it first assigns a label to each task which corresponds to the priority of the
task; tasks with higher labels have higher priority. Once the labels are assigned, tasks
are scheduled as follows: whenever a processor becomes free, assign it a task, all of
whose predecessors have already been executed and which has the largest label among
those tasks not yet assigned. In Hu’s algorithm, the label of a task is a function of
the level of the task.

Definition 2.6. The level of a task i with no immediate successor is its processing
time pi. The level of a task with immediate successor(s) is its processing time plus
the maximum level of its immediate successor(s).

Hu’s labeling algorithm assigns higher labels to tasks at higher levels; ties are



ONLINE SCHEDULING OF PRECEDENCE CONSTRAINED TASKS 751

broken in an arbitrary manner.
Example. Figure 2.7 shows a set of tasks with outtree precedence constraint. The

number inside each circle is the task’s index and the number next to each circle is
the label given by Hu’s algorithm. A schedule on four processors produced by Hu’s
algorithm is also shown.
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Fig. 2.7. Example illustrating Hu’s algorithm.

Our online algorithm utilizes Hu’s algorithm to schedule tasks. Whenever new
tasks arrive, the new tasks along with the unexecuted portion of the unfinished tasks
will be rescheduled by Hu’s algorithm again.

Algorithm B.

Whenever new tasks arrive, do {
t ← the current time;
U ← the set of tasks active (i.e., not finished) at time t;
Call Hu’s algorithm to reschedule the tasks in U ;

}
Example. Figure 2.8 shows another outtree released at time r2 = 3 after the

outtree shown in Figure 2.7 was released at time r1 = 0. The schedule produced by
Algorithm B is also shown.

Theorem 2.7. Algorithm B is optimal for P | pj = 1, outtreei released at ri |
Cmax. Moreover, the schedule produced by Algorithm B has the largest number of
tasks completed at any time instant t.

Proof. Let S be the schedule produced by Algorithm B for an instance of the
P | pj = 1, outtreei released at ri | Cmax problem and let Ŝ be any schedule (in-
cluding optimal schedules). We will show, by contradiction, that the number of tasks
completed in S at each time instant t is not smaller than that in Ŝ. By Lemma 2.4,
S is an optimal schedule. Suppose this is not the case. Let t′ be the first time instant
such that the number of tasks completed in S is less than that in Ŝ. Then there must
be an idle processor in the time interval [t′ − 1, t′] in S.

Consider the schedule Ŝ. Let k be the earliest completed task executed in Ŝ in
the time interval [0, t′] that is not executed in S, and let k be completed at time t∗

in Ŝ. Assume that k is in outtreei. We claim that we can schedule k in the time
interval [t′ − 1, t′] in S as well. Suppose this is not the case. Then there must be a
predecessor of k, say j, executing in the time interval [t′ − 1, t′] in S. Let t be the
first time instant such that predecessors of k are continuously executing from time t
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Fig. 2.8. Example illustrating Algorithm B.

until t′ in S, but that no predecessor of k is executing in the time interval [t − 1, t].
We have two cases to consider.

Case I. t = ri.

In this case, it is clear that k must be completed after t′ in any schedule whatso-
ever, contradicting our assumption that k is completed by t′ in Ŝ.

Case II. t > ri.

Let l be the predecessor of k executed in the time interval [t, t+1] in S. According
to Hu’s algorithm, l was not executed in the time interval [t− 1, t] because the tasks
executed in that time interval in S all have levels greater than or equal to that of
l, and because all processors are busy in the time interval. Since we are considering
outtrees, every processor must be busy from time t− 1 until t′, contradicting the fact
that there is an idle processor in the time interval [t′ − 1, t′].

Repeating the above argument, we can show that the number of tasks completed
by t′ in S is not smaller than that in Ŝ.

3. Preemptive schedules. In this section we consider preemptive scheduling
only. We first show that it is impossible to have an optimal online algorithm for P3 |
pmtn, pj = 1, intreei released at ri | Cmax. We then give an optimal online algorithm
for P2 | pmtn, preci released at ri | Cmax and P | pmtn, outtreei released at ri |
Cmax.

Theorem 3.1. It is impossible to have an optimal online algorithm for P3 |
pmtn, pj = 1, intreei released at ri | Cmax.

Proof. The proof given in Theorem 2.1 also proves this theorem since preemption
won’t help.

The Muntz–Coffman algorithm is optimal for the problems P2 | pmtn, prec |
Cmax, P | pmtn, intree | Cmax, and P | pmtn, outtree | Cmax. It is essentially a
highest-level-first strategy; see section 2.2 for the definition of level.

Muntz–Coffman algorithm. Assign one processor each to the tasks at the
highest level. If there is a tie among y tasks (because they are at the same level) for
the last x (x < y) processors, then assign x

y processor to each of these y tasks. When-
ever either of the two events below occurs, reassign the processors to the unexecuted
portion of the unfinished tasks according to the above rule. These are the following:

1. A task is completed.
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2. We reach a point where, if we were to continue the present assignment, we
would be executing some lower level tasks at a faster rate than other higher
level tasks.

The schedule produced by the Muntz–Coffman algorithm is a processor-sharing
schedule. We can convert it to a preemptive schedule by marking the time instants
where processor assignment changes, and rescheduling the tasks executed between
two adjacent time instants by McNaughton’s wrap-around rule.

Example. Figure 3.1 shows a set of tasks with their precedence constraints. Inside
each circle is the name of the task and its processing time. The number next to
each circle is the level of the task. The processor-sharing schedule on two processors
produced by the Muntz–Coffman algorithm is shown. Finally, the preemptive schedule
constructed from the processor-sharing schedule is also shown.
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Fig. 3.1. Example illustrating the Muntz–Coffman algorithm.

Our online algorithm utilizes the Muntz–Coffman algorithm to schedule tasks.
When new tasks arrive, the new tasks along with the unexecuted portion of the
unfinished tasks will be rescheduled by the Muntz–Coffman algorithm again.

Algorithm C.

Whenever new tasks arrive, do {
t ← the current time;
U ← the set of tasks active (i.e., not finished) at time t;
Call the Muntz–Coffman algorithm to reschedule the tasks in U ;

}
Figure 3.2 shows another set of tasks released at time r2 = 6 after the tasks in

Figure 3.1 were released at time r1 = 0. Algorithm C reschedules the unfinished
portion of the unfinished tasks along with the new tasks. The processor-sharing
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Fig. 3.2. Example illustrating Algorithm C.

schedule and the preemptive schedule are also shown.

Before we give the proofs that Algorithm C is optimal for P2 | pmtn, preci
released at ri | Cmax and P | pmtn, outtreei released at ri | Cmax, we will give
an optimal offline algorithm for these two cases.

Algorithm D. Assign one processor each to the tasks at the highest level. If
there is a tie among y tasks (because they are at the same level) for the last x (x < y)
processors, then assign x

y processor to each of these y tasks. Whenever one of the
three events below occurs, reassign the processors to the unexecuted portion of the
unfinished tasks according to the above rule. These are the following:

1. A task is completed.
2. We reach a point where, if we were to continue the present assignment, we

would be executing some lower level tasks at a faster rate than other higher
level tasks.

3. New tasks arrive.

Algorithm D is essentially the Muntz–Coffman algorithm, except that another new
event—the arrival of new tasks—is added. In sections 3.1 and 3.2, we will prove that
Algorithm D is an optimal offline algorithm for P2 | pmtn, preci released at ri | Cmax

and P | pmtn, outtreei released at ri | Cmax, respectively. Shown in Figure 3.3 are the
processor-sharing schedule and the preemptive schedule constructed by Algorithm D
for the instance given in Figure 3.2.

Our proofs that Algorithm C is optimal for P2 | pmtn, preci released at ri | Cmax

and P | pmtn, outtreei released at ri | Cmax are based on the fact that Algorithm D
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Fig. 3.3. Example illustrating Algorithm D.

is an optimal offline algorithm for these two cases.

3.1. Arbitrary precedence constraint and two processors. We first show
that Algorithm D is an optimal offline algorithm for P2 | pmtn, preci released at ri |
Cmax, and then we show that Algorithm C is an optimal online algorithm for the same
case.

Lemma 3.2. Let S be the processor-sharing schedule produced by the Muntz–
Coffman algorithm for an instance of P2 | pmtn, prec | Cmax. Then S has the
minimum idle processor time at any time instant t.

Proof. We will prove the lemma by contradiction. Let S be the processor-
sharing schedule produced by the Muntz–Coffman algorithm for an instance of P2 |
pmtn, prec | Cmax, and let Ŝ be any schedule (including optimal schedules) for the
same instance. Let t′ be the first time instant such that the idle processor time in S
is larger than that in Ŝ. Then there must be an idle processor in the time interval
[t′, t′ + ε] in S for some small positive number ε. According to the Muntz–Coffman
algorithm, the reason that a processor is idle in [t′, t′ + ε] is that no task is ready in
the interval other than those that are already executing in the interval. Let k be the
earliest task executed in Ŝ in the time interval [0, t′ + ε] but not in S, and let k start
its execution at time t∗ in Ŝ. We assert that k can be scheduled in the time interval
[t′, t′ + ε] in S as well. Suppose this is not the case. Then there must be a predecessor
of k, say j, executing in the time interval [t′, t′+ε] in S. Let t be the first time instant
such that predecessors of k are continuously executing from time t until t′ + ε in S
but that no predecessor of k is executing in the time interval [t− δ, t] for some small
positive number δ. We have two cases to consider.

Case I. t = 0.
If the predecessors of k are continuously executed either by one full processor or

without sharing any processors with jobs that are not predecessors of k from time t
until t′ + ε, then it is clear that k cannot be scheduled before t′ + ε in any schedule
whatsoever, contradicting the assumption that k is scheduled by t′ + ε in Ŝ. On the
other hand, if some predecessors of k are sharing processors with a set of other tasks,
say U , then there must be at least one ready task at time t′ that is either a task in U
or a successor of task(s) in U , and hence there will be no idle processor in [t′, t′ + ε],
contradicting the assumption that there is at least one idle processor.

Case II. t > 0.
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Let l be the predecessor of k executed at time t in S. According to the Muntz–
Coffman algorithm, l was not executed in the time interval [t− δ, t] because the tasks
executed in that interval all have levels greater than that of l and all processors
are busy in the time interval. Since the tasks in the time interval [t − δ, t] are not
predecessors of k, there must be at least one job other than l that is ready at time t.
But this means that both processors are busy from time t until t′ + ε, contradicting
the fact that there is an idle processor in the time interval [t′, t′ + ε].

Repeating the above argument, we can show that the idle processor time in S at
each time instant t is less than or equal to that in Ŝ.

Using the same technique as in Theorem 2.5 and the property given in Lemma 3.2,
we can show that Algorithm D is an optimal offline algorithm for P2 | pmtn, preci
released at ri | Cmax. This is stated in the next theorem, whose proof we will omit.

Theorem 3.3. Algorithm D is an optimal offline algorithm for P2 | pmtn, preci
released at ri | Cmax.

Theorem 3.4. Algorithm C is an optimal online algorithm for P2 | pmtn, preci
released at ri | Cmax.

Proof. Let S be the schedule produced by Algorithm C for an instance of P2 |
pmtn, preci released at ri | Cmax, and let Ŝ be the schedule produced by Algorithm D
for the same instance. We will show, by induction on the number of release times, i,
that Ŝ can be converted into S without increasing the makespan and without violating
any precedence constraints. Thus, S is an optimal schedule as well.

The basis case, i = 1, is obvious, since S and Ŝ are identical schedules. Assuming
that the hypothesis is true for all i ≤ k − 1, we wish to show that the hypothesis is
true for i = k. Let t1 < t2 < · · · < tl be the time instants where event 1 or event 2
occurs in Ŝ. Let r1 and r2 denote the first and second release times, respectively.
There are two cases to consider.

Case I. r2 = tj for some 1 ≤ j ≤ l.

From time r1 until r2, S is identical to Ŝ. At time r2, the remaining portions of
the unfinished tasks in both schedules are identical. There are only k−1 releases from
r2 onward. By the induction hypothesis, Ŝ can be converted into S without violating
any precedence constraints.

Case II. r2 is in the time interval [tj , tj+1] for some 1 ≤ j < l.
There are two cases to consider.
Case II(a). Every task executing in the time interval [tj , tj+1] is executing on a

full processor.
The proof of this case is identical to that of Case I.
Case II(b). Some tasks are sharing processor(s) in the time interval [tj , tj+1].
Let x tasks be sharing y processor(s) (x > y) in the time interval [tj , tj+1].

Let i1, i2, . . . , ix be the tasks sharing the y processor(s). Since there are only two
processors, there must be at most one task, say j1, executing on a full processor. It
is easy to see that from time r1 until tj , S and Ŝ are identical schedules, but from tj
until r2, S and Ŝ may not be the same.

The second release time, r2, divides each task i1, i2, . . . , ix in S into two parts:
those that were executed before r2 and those that were executed after r2. Let the
level of a task, say j, at time r2 be denoted by level(j). We have level(j1) ≥ level(il)
for each 1 ≤ l ≤ x, but the tasks i1, i2, . . . , ix may have different levels. Consider now
the schedule Ŝ. We have level(j1) > level(i1) = level(i2) = · · · = level(ix). Note
that j1 may not exist if the tasks i1, i2, . . . , ix share two processors.

We now convert the schedule Ŝ into one such that it is identical to S in the interval
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[r1, r2] and such that the makespan is not increased and no precedence constraints are
violated. From time r2 and onward, there are k − 1 releases. Thus, by the induction
hypothesis, Ŝ can be converted into S from time r2 onward. Hence, S is an optimal
schedule as well.

From time r1 until tj , Ŝ and S are identical schedules, but they may not be the

same in the time interval [tj , r2]. We now show that we can convert Ŝ in the interval
[tj , r2] to be identical to S in the same interval without increasing the makespan and
without violating any precedence constraints. There are two cases to consider.

Case (i). Several tasks are sharing two processors in the time interval [tj , tj+1].

i1

i2 i3

tj tj+1

r2

i1

i2 i3

tj

tj+1r2

i1 i2 i3

i1 i2

i2
i3
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i2 i3

tj

tj+1

i2

i2

r2r1=0

r1=0

r1=0

Ŝ

S

'S

Fig. 3.4. Example illustrating Case (i).

An example of this case is shown in Figure 3.4: S′ is the schedule produced by Al-
gorithm C before tasks were released at r2, S is the schedule obtained by Algorithm C
after tasks were released at r2, and Ŝ is the schedule produced by Algorithm D. We
wish to show that the portions of the tasks scheduled in S′ in the interval [r2, tj+1] can

be rescheduled after time r2 in Ŝ without increasing the makespan of Ŝ and without
violating any precedence constraints.

Let t̂1 < t̂2 < · · · < t̂k be the time instants where event 1, 2, or 3 occurs in Ŝ.
We define Ii to be the time interval [t̂i, t̂i+1] in Ŝ for each 1 ≤ i < k. Consider how
the tasks i1, i2, and i3 are scheduled after r2 in Ŝ. There are three cases to consider:
(a) i1, i2, and i3 share one processor in the intervals Ii1 , Ii2 , . . . , Iip , but they are
not scheduled in any other intervals; (b) i1, i2, and i3 share two processors in the
intervals Ij1 , Ij2 , . . . , Ijq , but they are not scheduled in any other intervals; and (c) i1,
i2, and i3 share one processor in the intervals Ii1 , Ii2 , . . . , Iip and two processors with
other tasks in the intervals Ij1 , Ij2 , . . . , Ijq , and they are not scheduled in any other
intervals.

In case (a), it is clear that we can schedule the tasks in the interval [r2, tj+1] in S′

into the intervals Ii1 , Ii2 , . . . , Iip in Ŝ without increasing the makespan and without
violating any precedence constraints. In case (b), we can divide the schedule in the
interval [r2, tj+1] in S′ into q subintervals so that each subinterval will be scheduled

into one of the intervals Ijx , 1 ≤ x ≤ q, in Ŝ. Again, this will not increase the
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makespan or violate any precedence constraints. In case (c), let l0 be the total length
of all the intervals Ii1 , Ii2 , . . . , Iip , and let lx, 1 ≤ x ≤ q, be the total execution time
of the tasks i1, i2, and i3 scheduled in Ijx . We can schedule the tasks in the interval

[r2, r2 + l0
2 ] in S′ into the intervals Ii1 , Ii2 , . . . , Iip in Ŝ. We then divide the interval

[r2 + l0
2 , tj+1] in S′ into q subintervals: the xth subinterval, 1 ≤ x ≤ q, has length lx

2 .

We take the tasks executed in S′ in the xth subinterval and schedule them in Ijx in Ŝ,
along with the other tasks executed in the same interval. It is easy to see that we can
reschedule without increasing the makespan or violating any precedence constraints.

Using this approach, we can always convert Ŝ in [tj , r2] to be identical to S in

the same interval without increasing the makespan of Ŝ and without violating any
precedence constraints, no matter how many jobs are sharing the two processors in
the time interval [tj , tj+1].

Case (ii). One task is executing on a full processor while other tasks are sharing
one processor in the time interval [tj , tj+1].

j1

i1 i2 i3

tj tj+1

r2

j1

i1 i2 i3

tj
tj+1r2

i1 i2 i3

i1 i2

i2
i3

j1

i1 i2

tj

tj+1

r2r1=0

r1=0

r1=0

i1i2 i3

z
y

Ŝ

S

'S

Fig. 3.5. Example illustrating Case (ii).

An example of this case is shown in Figure 3.5: S′ is the schedule constructed by
Algorithm C before new tasks were released at r2, S is the schedule constructed by
Algorithm C after new tasks were released at r2, and Ŝ is the schedule produced by
Algorithm D. Again, we want to show that the portions of the tasks scheduled in S′

in the interval [r2, tj+1] can be rescheduled after time r2 in Ŝ without increasing the

makespan of Ŝ and without violating any precedence constraints.
As before, let t̂1 < t̂2 < · · · < t̂k be the time instants where event 1, 2, or 3

occurs in Ŝ. We define Ii to be the time interval [t̂i, t̂i+1] in Ŝ for each 1 ≤ i < k.
Consider how the tasks i1, i2, and i3 are scheduled after r2 in Ŝ. There are two cases
to consider: (a) i1, i2, and i3 share one processor in the intervals Ii1 , Ii2 , . . . , Iip , but
they are not scheduled in any other intervals; (b) i1, i2, and i3 share one processor
in the intervals Ii1 , Ii2 , . . . , Iip and two processors with other tasks in the intervals
Ij1 , Ij2 , . . . , Ijq , and they are not scheduled in any other intervals.

In case (a), it is clear that we can schedule the tasks on the second processor in
S′ in the interval [r2, tj+1] into the intervals Ii1 , Ii2 , . . . , Iip in Ŝ without increasing
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the makespan of Ŝ and without violating any precedence constraints. In case (b), let
y = tj+1 − r2. Assume that in the time interval [r2, tj+1], i1, i2, i3 have each executed

z units in Ŝ, 0 ≤ z ≤ y
3 . This means that y − 3z units of processor time are used by

the newly released tasks in the same interval. It is easy to see that in Ŝ, the remaining
portions of i1, i2, i3 at time tj+1 are all y

3 − z. On the other hand, the lengths of the
remaining portions of i1, i2, i3 in S′ in the interval [r2, tj+1] are all different. Thus,
after r2, when we reschedule the tasks i1, i2, i3 into the intervals Ij1 , Ij2 , . . . , Ijq , it
is quite possible that we create overlaps. It is clear that the total length of all the
overlaps is no more than y−3z

2 .
Assume that both processors are used by a task, say i3, in the time interval

[λ1, λ2]. From λ1 back to r2, we use the following method to eliminate the overlap:
Find the first time interval [t∗, t∗+ε] such that (1) one processor is used by i1, i2, i3, j1,
or the successors of j1, and the other processor, say the second processor, is used by
other jobs; or (2) both processors are not used by i1, i2, i3, j1 or the successors of j1. If
(1) holds, then we can interchange the schedule on the second processor in [t∗, t∗ + ε]
with the schedule on the second processor in [λ2 − ε, λ2], so the overlap is reduced
by ε. (Note that if i3 is executing in the interval [t∗, t∗ + ε], the interchange does
not reduce the overlap, but it has the effect of pushing backwards the time where
the overlap occurs.) If (2) holds, then we interchange the schedule on the second
processor in [t∗, t∗ + ε] with the schedule on the second processor in [λ2 − ε, λ2], and
we interchange the schedule on the first processor in [t∗, t∗ + ε] with the schedule on
the second processor in [λ2 − 2 ∗ ε, λ2 − ε]. Again, the overlap is reduced by ε and no
precedence constraints are violated.

We repeat the above operation until all of the overlaps are eliminated. Since
in the time interval [r2, tj+1], one processor has y − 3z processor time used by the
newly released tasks, we can always eliminate the overlap. Thus, we can convert the
schedule in [tj , r2] in Ŝ to be identical to S in the same interval without increasing

the makespan of Ŝ and without violating any precedence constraints.
Using this approach, we can always convert the schedule in [tj , r2] in Ŝ to be iden-

tical to S in the same interval without increasing the makespan and without violating
any precedence constraints, no matter how many jobs are sharing one processor in
the time interval [tj , tj+1].

3.2. Outtrees and arbitrary number of processors. We first state, without
proof, that Algorithm D is an optimal offline algorithm for P | pmtn, outtreei released
at ri | Cmax. The proof is similar to Lemma 3.2. We then prove that Algorithm C is
an optimal online algorithm for the same case.

Theorem 3.5. Algorithm D is an optimal offline algorithm for P | pmtn, outtreei
released at ri | Cmax.

Theorem 3.6. Algorithm C is an optimal online algorithm for P | pmtn, outtreei
released at ri | Cmax.

Proof. Let S be the schedule produced by Algorithm C for an instance of
P | pmtn, outtreei released at ri | Cmax and let Ŝ be the schedule produced by
Algorithm D for the same instance. We will show by induction on the number of
release times, i, that the idle processor time in S is less than or equal to that of Ŝ at
each time instant t. Thus, S is an optimal schedule as well.

The basis case, i = 1, is obvious, since S and Ŝ are identical schedules. Assuming
that the hypothesis is true for all i ≤ k − 1, we wish to show that the hypothesis is
true for i = k. Let t1 < t2 < · · · < tl be the time instants where event 1 or event 2
occurs in Ŝ. Let r1 and r2 denote the first and second release times, respectively.
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There are two cases to consider.

Case I. r2 = tj for some 1 ≤ j ≤ l.

From time r1 until r2, S is identical to Ŝ. At time r2, the remaining portions
of the unfinished tasks in both schedules are identical. There are only k − 1 releases
from r2 onward. By the induction hypothesis, the idle processor time in S is less than
or equal to that of Ŝ at each time instant t after r2.

Case II. r2 is in the time interval [tj , tj+1] for some 1 ≤ j < l.

There are two cases to consider.

Case II(a). Every task executing in the time interval [tj , tj+1] is executing on a
full processor.

The proof of this case is identical to that of Case I.

Case II(b). Some tasks are sharing processor(s) in the time interval [tj , tj+1].

Let x tasks be sharing y processor(s) (x > y) in the interval [tj , tj+1]. Since tasks
are sharing processors, the number of available tasks at time tj must be greater than
the number of processors. Let i1, i2, . . . , ix be the tasks sharing the y processor(s)
and let j1, j2, . . . , jz be the tasks executing on a full processor. We have m = y + z.
It is easy to see that from time r1 until tj , S and Ŝ are identical schedules, but from

tj until r2, S and Ŝ may not be the same.

The second release time, r2, divides each task i1, i2, . . . , ix in S into two parts:
those that were executed before r2 and those that were executed after r2. Let the
level of a task j at time r2 be denoted by level(j). Without loss of generality, assume
that level(j1) ≥ level(j2) ≥ · · · ≥ level(jz). Then we have level(jz) ≥ level(il) for
each 1 ≤ l ≤ x, but the tasks i1, i2, . . . , ix may have different levels. Without loss
of generality, assume that level(i1) ≥ level(i2) ≥ · · · ≥ level(ix). Then we have
level(j1) ≥ level(j2) ≥ · · · ≥ level(jz) > level(i1) ≥ level(i2) ≥ · · · ≥ level(ix).
Consider now the schedule Ŝ. We have level(j1) ≥ level(j2) ≥ · · · ≥ level(jz) >
level(i1) = level(i2) = · · · = level(ix).

Consider the schedule S′ obtained from S by scheduling the remaining portions
of the unfinished tasks at r2 by Algorithm D. Since there are only k− 1 release times
(including r2), by the induction hypothesis, the idle processor time in S is less than
or equal to that of S′ at each time instant t after r2. Thus, if we can show that the
idle processor time in S′ is less than or equal to that of Ŝ at each time instant t after
r2, then the theorem is proved. We will prove this assertion by contradiction.

Let t∗ be the first time instant where S′ has more idle processor time than Ŝ.
Clearly, t∗ ≥ r2. Let [t∗, t∗ + ε] be the time interval where S′ has more idle processor
time than Ŝ for some small positive number ε. Clearly, S′ must have some idle
processors in the interval [t∗, t∗ + ε]. Let i∗ be the earliest executed task that is
executed in the time interval [r1, t

∗ + ε] in Ŝ but not in S′. We claim that i∗ can also
be executed in the interval [t∗, t∗ + ε] in S′, contradicting the definition of i∗.

If i∗ cannot be executed in the interval [t∗, t∗ + ε] in S′, then it must have a
predecessor executed in the interval. Let i∗ be a task in outtreel, released at time rl.
We consider two cases.

Case (i). Task i∗ is not the successor of any of the task ih, 1 ≤ h ≤ x.

Since i∗ is not the successor of any of the task ih, 1 ≤ h ≤ x, the remaining
portions of the predecessors of i∗ after r2 in S′ must be identical to those in Ŝ. Since
Ŝ schedules i∗ by t∗ + ε while S′ did not, there must be a time interval [t′, t′ + δ]
such that either (1) in S′ the processors are all busy in the interval but none of the
predecessors of i∗ are executing in the interval; or (2) a predecessor of i∗ is assigned
fewer processors in the interval in S′ than in Ŝ. In both cases there must be more
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than m tasks ready for execution in the interval [t′, t′ + δ] in S′. This means that the
processors are all busy from t′ until t∗ + ε, contradicting our assumption that S′ has
some idle processors in the interval [t∗, t∗ + ε].

Case (ii). Task i∗ is the successor of the task ih for some 1 ≤ h ≤ x.
In this case, the remaining portions of the predecessors of i∗ after r2 in S′ may

not be the same as those in Ŝ. If there is a time interval [t′, t′ + δ] such that either
(1) in S′ the processors are all busy in the interval but none of the predecessors of i∗

are executing in the interval, or (2) a predecessor of i∗ is assigned less processor in the
interval in S′ than in Ŝ, then we can resort to the same argument as in Case (i). Thus,
we may assume that at each time instant after rl, the predecessors of i∗ are assigned
an equal or greater number of processors in S′ than in Ŝ. In this case the only reason
that i∗ is executed in Ŝ but not in S′ is that the remaining portion of task ih after r2
is larger in S′ than in Ŝ. Let ih be finished at time t̄ in S′. It is clear that every one of
the tasks i1, i2, . . . , ix must also be finished at t̄. Furthermore, the tasks j1, j2, . . . , jz
are either finished at t̄ or still active at t̄, since they have higher levels than ih. Thus,
there are more active tasks than the number of processors. But this means that the
processors are all busy from t̄ until t∗ + ε, contradicting our assumption that S′ has
some idle processors in the interval [t∗, t∗ + ε].

4. Conclusion. In this article we have given optimal online algorithms for the
following problems:

(1) P2 | pj = 1, preci released at ri | Cmax.
(2) P | pj = 1, outtreei released at ri | Cmax.
(3) P2 | pmtn, preci released at ri | Cmax.
(4) P | pmtn, outtreei released at ri | Cmax.
We also show that it is impossible to have optimal online algorithms for the

following problems:
(1) P3 | pj = 1, intreei released at ri | Cmax.
(2) P2 | pj = p, chainsi released at ri | Cmax.
(3) P3 | pmtn, pj = 1, intreei released at ri | Cmax.
Instead of the makespan objective, one wonders whether there are optimal online

algorithms for the mean flow time objective. In this regard, it can be shown that
Algorithm A is an optimal online algorithm for P2 | pj = 1, preci released at ri |∑

Cj , while Algorithm B is an optimal online algorithm for P | pj = 1, outtreei
released at ri |

∑
Cj . The proof in Theorem 2.1 also shows that it is impossible

to have optimal online algorithms for P3 | pj = 1, intreei released at ri |
∑

Cj

and P3 | pmtn, pj = 1, intreei released at ri |
∑

Cj . Relatively little is known about
preemptive scheduling. For example, is it possible to have an optimal online algorithm
for P2 | pmtn, pj = 1, preci released at ri |

∑
Cj? Recently, Coffman, Sethuraman,

and Timkovsky [2] gave an algorithm that simultaneously minimizes the makespan
and the mean flow time for P2 | pmtn, pj = 1, preci released at ri |

∑
Cj . Is it

possible to adapt their algorithm to yield an optimal online algorithm for this case?
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PRIMAL-DUAL MEETS LOCAL SEARCH:
APPROXIMATING MSTs WITH NONUNIFORM DEGREE BOUNDS∗
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Abstract. We present a new bicriteria approximation algorithm for the degree-bounded
minimum-cost spanning tree (MST) problem: Given an undirected graph with nonnegative edge
weights and a degree bound B, find a spanning tree of maximum node-degree B and minimum total
edge-cost. Our algorithm outputs a tree of maximum degree at most a constant times B and total
edge-cost at most a constant times that of a minimum-cost degree-B-bounded spanning tree.

While our new algorithm is based on ideas from Lagrangian relaxation, as is our previous
work [SIAM J. Comput., 31 (2002), pp. 1783–1793], it does not rely on computing a solution to
a linear program. Instead, it uses a repeated application of Kruskal’s MST algorithm interleaved
with a combinatorial update of approximate Lagrangian node-multipliers maintained by the algo-
rithm. These updates cause subsequent repetitions of the spanning tree algorithm to run for longer
and longer times, leading to overall progress and a proof of the performance guarantee. A second
useful feature of our algorithm is that it can handle nonuniform degree bounds on the nodes: Given
distinct bounds Bv for every node v ∈ V , the output tree has degree at most O(Bv + log |V |) for
every v ∈ V . As before, the cost of the tree is at most a constant times that of a minimum-cost tree
obeying all degree bounds.

Key words. approximation algorithms, network algorithms, bicriteria approximation, spanning
trees, degree-bounded spanning trees, Lagrangian relaxation
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1. Introduction.

1.1. Formulation. In this paper, we address a natural nonuniform budget ver-
sion of the degree-bounded minimum-cost spanning tree problem (nBMST). Given an
undirected graph G = (V,E), a cost function c : E → R

+, and positive integers
{Bv}v∈V all greater than 1, our goal is to find a spanning tree T of minimum total
cost such that for all vertices v ∈ V the degree of v in T is at most Bv.

1.2. Previous work and our result. In an n-node graph, Ravi et al. [11, 12]
showed how to compute a spanning tree T of degree O(Bv log n) for all v ∈ V and total
cost at most O(log n) opt , where opt is the minimum cost of any tree in which the
degree of node v is bounded by Bv for all v ∈ V . The authors generalized their ideas to
Steiner trees, generalized Steiner forests, and the node-weighted case. Subsequently,
Könemann and Ravi [8, 9] improved the results on the (edge-weighted) spanning tree
version of the problem with uniform degree bounds (i.e., Bv = B for all v). The main
theorem from [9] is as follows.

Theorem 1.1 (see [9]). There is an approximation algorithm that, given a graph
G = (V,E), a nonnegative cost function c : E → R

+, a constant B ≥ 2, and a
parameter ω > 1, computes a spanning tree T such that

1. Δ(T ) ≤ ω
ω−1 · bB + logb n, and
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2. c(T ) < ω · opt ,
where b > 1 is an arbitrary constant.

The contributions of this paper are twofold: First, we present improved approx-
imation algorithms for the nBMST problem in the presence of nonuniform degree
bounds. Second, our algorithm is direct in the sense that we do not solve linear pro-
grams. The algorithm in [9] uses Lagrangian relaxation and thus needs to solve a
linear program. The analysis in [9] relies crucially on the fact that we compute an
exact solution to this linear program.

On the other hand, our new algorithm integrates elements from the primal-dual
method for approximation algorithms for network design problems with local search
methods for minimum-degree network problems [5, 13]. The algorithm goes through
a series of spanning trees and improves the maximum deviation of any vertex degree
from its respective degree bound progressively. A practical consequence of this is
that we can terminate the algorithm at any point in time and still obtain a spanning
tree of the input graph (whose node-degrees, of course, may not meet the worst-case
guarantees we prove).

Theorem 1.2. There is a primal-dual approximation algorithm that, given a
graph G = (V,E), a nonnegative cost function c : E → R

+, integers Bv > 1 for all
v ∈ V , and a parameter ω > 1, computes a tree T such that

1. degT (v) ≤ ω
ω−1 · b ·Bv + 2 · logb n for all v ∈ V , and

2. c(T ) < ω · opt ,
where b > 1 is an arbitrary constant. The running time is O(|E||V |5 log |V |).

When B = Bv for all v ∈ V , we can replace the additive term 2 logb n in the
degree guarantee of Theorem 1.2 by logb n, matching Theorem 1.1 constructively.

The paper is organized as follows. First, we review the primal-dual interpretation
of the well-known algorithm for MST by Kruskal [10]. Subsequently, we show how to
use this algorithm for the nBMST problem and present an analysis of the performance
guarantee and the running time of our method.

2. A primal-dual algorithm to compute MSTs. In this section we review
Kruskal’s MST algorithm. More specifically, we discuss a primal-dual interpretation
of this method that follows from [2]. We start by giving a linear programming formu-
lation of the convex hull of incidence vectors of spanning trees.

2.1. The spanning tree polyhedron. In the following, we formulate the MST
problem as an integer program where we associate a (0, 1)-variable xe with every edge
e ∈ E. In a solution x, the value of xe is 1 if e is included in the spanning tree
corresponding to x and 0 otherwise. Our formulation relies on a complete formulation
of the convex hull of incidence vectors of spanning trees (denoted by SPG ) given by
Chopra [2].

Chopra’s formulation uses the notion of a feasible partition of vertex set V . A
feasible partition of V is a set π = {V1, . . . , Vk} such that the Vi are pairwise disjoint
subsets of V . Moreover, V = V1 ∪ · · · ∪ Vk and the induced subgraphs G[Vi] are
connected. Let Gπ denote the (multi-) graph that has one vertex for each Vi and in
which edge (Vi, Vj) occurs with multiplicity |{(vi, vj) : vi ∈ Vi, vj ∈ Vj}|. In other
words, Gπ results from G by contracting each Vi to a single node. Define the rank
r(π) of π as the number of nodes of Gπ and let Π be the set of all feasible partitions
of V . Chopra then shows that

SPG =

{
x ∈ R

m :
∑

e∈E(Gπ)

xe ≥ r(π) − 1 ∀π ∈ Π

}
.
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We now let δ(v) denote the set of edges e ∈ E that are incident to node v and obtain
an integer programming (IP) formulation for our problem:

min
∑
e∈E

cexe(IP)

s.t.
∑

e∈E[Gπ ]

xe ≥ r(π) − 1 ∀π ∈ Π,

x(δ(v)) ≤ Bv ∀v ∈ V,(2.1)

x integer.

The dual of the linear programming relaxation of (IP) is given by

max
∑
π∈Π

(r(π) − 1) · yπ −
∑
v∈V

λvBv(D)

s.t.
∑

π:e∈E[Gπ ]

yπ ≤ ce + λu + λv ∀e = uv ∈ E,(2.2)

y, λ ≥ 0.

We also let (IP-SP) denote (IP) without constraints of type (2.1). Let the linear
programming relaxation be denoted by (LP-SP) and let its dual be (D-SP).

2.2. A primal-dual interpretation of Kruskal’s MST algorithm. Kruskal’s
algorithm can be viewed as a continuous process over time: We start with an empty
tree at time 0 and add edges as we go along. The algorithm terminates at time t∗ with
a spanning tree of the input graph G. In this section we show that Kruskal’s method
can be interpreted as a primal-dual algorithm (see also [7]). For that reason, at any
time 0 ≤ t ≤ t∗ we keep a pair (xt, yt), where xt is a partial (possibly infeasible)
primal solution for (LP-SP) and yt is a feasible dual solution for (D-SP). Initially, we
let xe,0 = 0 for all e ∈ E and yπ,0 = 0 for all π ∈ Π.

Let Et be the forest corresponding to partial solution xt, i.e., Et = {e ∈ E :
xe,t = 1}. We then denote by πt the partition induced by the connected components
of G[Et]. At time t, the algorithm then increases yπt

until a constraint of type (2.2)
for edge e ∈ E \Et becomes tight. Assume that this happens at time t′ > t. The dual
update is

yπt,t′ = t′ − t.

We then include e in our solution, i.e., we set xe,t′ = 1. If more than one edge becomes
tight at time t′, we can process these events in any arbitrary order. Thus, note that
we can pick any such tight edge first in our solution.

Observe that the above primal-dual algorithm is indeed Kruskal’s algorithm: If
the algorithm adds an edge e at time t, then e is the minimum-cost edge connecting
two connected components of G[Et]. In the rest of this paper we use MST to refer to
Kruskal’s minimum-cost spanning tree algorithm.

The proof of the following lemma is folklore. We supply it for the sake of com-
pleteness.

Lemma 2.1. At time t∗, algorithm MST finishes with a pair (xt∗ , yt∗) of primal
and dual feasible solutions to (IP-SP) and (D-SP), respectively, such that∑

e∈E

cexe,t∗ =
∑
π∈Π

(r(π) − 1) · yπ,t∗ .
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Proof. Notice that for all edges e ∈ Et∗ we must have ce =
∑

π:e∈E[Gπ ] yπ,t∗ and
hence, we can express the cost of the final tree as follows:

c(Et∗) =
∑

e∈Et∗

∑
π:e∈E[Gπ ]

yπ,t∗ =
∑
π∈Π

|Et∗ ∩ E[Gπ]| · yπ,t∗ .

By construction Et∗ is a tree and we must have that the set Et∗∩E[Gπ] has cardinality
exactly r(π) − 1 for all π ∈ Π with yπ,t∗ > 0. We obtain that

∑
e∈E cexe,t∗ =∑

π∈Π(r(π) − 1) · yπ,t∗ and this finishes the proof of the lemma.

3. Minimum-cost degree-bounded spanning trees. In this section, we pro-
pose a modification of the above algorithm for approximating degree-bounded span-
ning trees of low total cost (for suitably weakened degree bounds). Our algorithm
goes through a sequence of spanning trees E0, . . . , Et and associated pairs of pri-
mal (infeasible) and dual feasible solutions xi, (yi, λi) for 0 ≤ i ≤ t. The idea is
to reduce the degree of nodes v ∈ V whose degree is substantially higher than their
associated bound Bv, as we proceed through this sequence, while keeping the cost of
the associated primal solution (tree) bounded with respect to the corresponding dual
solution.

To begin, our algorithm first computes a minimum-cost spanning tree using the
algorithm MST. This yields a feasible primal solution x0 for (LP-SP) and a feasible
dual solution y0 for (D-SP). Notice that y0 also induces a feasible solution for (D) by
letting λ0

v = 0 for all v ∈ V, while x0 potentially violates constraints of type (2.1).
We introduce the notion of normalized degree of a node v in a tree T and denote

it by

ndegT (v) = max{0,degT (v) − β ·Bv},(3.1)

where β ≥ 1 is a constant to be specified later. Our algorithm successively computes
pairs of spanning trees and associated dual solutions to (D), i.e.,

(x1, {y1, λ1}), (x2, {y2, λ2}), . . . , (xt, {yt, λt}).

From one such pair to the next, we try to reduce the degree of nodes of high normalized
degree. Specifically, our algorithm runs as long as there is a node in the current tree
with ndeg(v) ≥ 2 logb(n) for some constant b > 1.

Our algorithm keeps a cost c̃ie with each edge e ∈ E and for each iteration 1 ≤
i ≤ t. xi corresponds to an MST Ei for cost function c̃i, and yi is the associated dual
packing. Throughout the algorithm we maintain that

cuv ≤ c̃iuv ≤ cuv + λi
u + λi

v(3.2)

for all uv ∈ E. Hence, (yi, λi) is a feasible solution for (D).
Let Δi be the maximum normalized degree of any node in the tree Ei. The

central piece of our algorithm is a recompute step, where we raise the λ values of a
carefully chosen set Sd of nodes with high normalized degree. This introduces slack
in many of the constraints of type (2.2).

We now increase the c̃-cost of edges that are incident to nodes in Sd (while main-
taining (3.2)) and rerun MST on G using the new edge-costs. Our hope is that the
increased c̃-cost of edges incident to nodes of high normalized degree leads MST to use
edges that are incident to nodes of lower normalized degree in their place. We are
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able to show that the number of recompute steps is polynomial by arguing that we
make substantial progress in the normalized degree sequence of all nodes.

As mentioned, each recompute step takes a pair of primal infeasible and dual
feasible solutions (xi, (yi, λi)) and computes a new pair of primal (infeasible) and dual
feasible solutions (xi+1, (yi+1, λi+1)). In the following we use ndegi(v) as shorthand
for ndegEi(v). We then adapt the notation from [4, 5] and let

Si
d = {v ∈ V : ndegi(v) ≥ d}

be the set of all nodes whose normalized degree is at least d in the ith solution.

Algorithm 1 The algorithm for the nBMST problem attempts to reduce the maxi-
mum normalized degree of any node in a given spanning tree.

1: Given: primal feasible solution x0 to (LP-SP) and dual feasible solution y0 to
(D-SP)

2: λ0
v ← 0∀v ∈ V ; c̃0e ← ce,∀e ∈ E

3: i ← 0
4: while Δi > 2 logb(n) do
5: Choose di in {Δi − 2 logb(n) + 1, . . . ,Δi} s.t.

∑
v∈Si

di−1

Bv ≤ b ·
∑

v∈Si
di
Bv

6: Choose εi > 0
7: λi+1

v ← λi
v + εi∀v ∈ Si

di−1 and λi+1
v ← λi

v otherwise

8: c̃i+1(e) ← c̃i(e)+ εi if either e ∈ Ei and e∩Si
di 
= ∅ or e 
∈ Ei and e∩Si

di−1 
= ∅
9: (xi+1, yi+1) ← MST(G, c̃i+1)

10: i ← i + 1
11: end while

A detailed description of the procedure is given in Algorithm 1. In step 5 of this
algorithm, we choose a suitable set of nodes whose λ-values we increase. A simple
argument in [4] can be extended to guarantee the feasibility of the choice in step 5 of
the algorithm.

Lemma 3.1. There is a di ∈ {Δi − 2 logb(n) + 1, . . . ,Δi} such that∑
v∈Si

di−1

Bv ≤ b ·
∑

v∈Si
di

Bv

for a given constant b > 1.
Proof. Suppose for a contradiction that for all di ∈ {Δi − 2 logb(n) + 1, . . . ,Δi},

we have ∑
v∈Si

di−1

Bv > b ·
∑

v∈Si
di

Bv.

Note that since we may assume Bv ≤ (n−1) for all vertices, we must have
∑

v∈V Bv ≤
n(n− 1). However, since

∑
v∈Si

Δi
Bv ≥ 1, we have in this case that

∑
v∈Si

Δi−2 logb(n)

Bv ≥ b2 logb(n) = n2,

a contradiction.
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When Bv = B for all v ∈ V , the 2 logb n term in the above lemma can be
improved to logn using the previous arguments in [4]. This in turn leads to the slight
improvement of our results claimed right after the statement of Theorem 1.2.

Step 6 of Algorithm 1 hides the details of choosing an appropriate εi by which
edges in the current tree that are incident to nodes of normalized degree at least di

are lengthened. Our choice of εi and the following update of the c̃ costs of the edges
in G will ensure that Kruskal’s algorithm computes a new tree in which at least one
edge ei ∈ Ei that is incident to a node of Si

di is replaced by an edge ei 
∈ Ei that is
incident to nodes of low normalized degree.

In fact, we show that a careful choice of εi ensures that ei is incident to nodes of
normalized degree at most di−2, while ei is incident to at least one node of normalized
degree di or higher. The main idea here is to increase λv for nodes v ∈ Si

di−1 by εi and
increase the c̃-cost of nontree edges that are incident to nodes of normalized degree
at least di − 1 by εi as well. In other words, the cost of nontree edges incident to
nodes of normalized degree at least di − 1 increases by the same amount as the cost
of tree edges incident to nodes of normalized degree at least di. This way, we enforce
that the edge we swap in touches nodes of normalized degree at most di − 2. Once
we accomplish this, by adapting a potential function argument from [4] we can put a
polynomial upper bound on the number of such iterations (see section 3.3).

Lemma 3.1 plays a key role in the later analysis of the performance guarantee
achieved by Algorithm 1. Notice that step 7 of the algorithm increases the node
multipliers of all nodes in Si

di−1. On the other hand, in step 8, we increase only the

c̃-cost of those tree edges that are incident to nodes in Si
di . Roughly, Lemma 3.1

provides us with a bound on the number of tree edges that are incident to nodes of
normalized degree exactly di − 1.

We now describe how to choose εi so that the above conditions are satisfied.

3.1. Choosing εi. In this section we elaborate on the choice of εi in step 6 of
Algorithm 1. In step 8, we increase c̃uv by εi for all tree edges uv that are incident
to nodes of degree at least di and for all nontree edges that are incident to nodes of
degree at least di−1. We want to choose εi such that the subsequent update of c̃i and
the following run of MST yield a new tree Ei+1 that differs from Ei by a single edge
swap: Ei+1 = Ei \ {ei} ∪ ei. Here, the edge ei ∈ Ei is a tree edge that is incident to
a node from Si

di . On the other hand we want ei ∈ E \ Ei to be a nontree edge that
is not incident to any node from Si

di−1.

As indicated in the previous section, we want Ei+1 to be an MST of G for cost
function c̃i+1. In order to achieve this, ei must be on the unique cycle in Ei ∪ {ei}
and we also must have

c̃i+1(ei) = c̃i(ei) + εi = c̃i+1(ei).

In other words, the update of λv for v ∈ Si
di−1 creates one more beneficial swap.

We let Ki be the set of connected components of the forest Ei \Si
di , i.e., the forest

that results from removing nodes of normalized degree at least di from Ei. We say
that an edge e = uv ∈ E is a cross-edge if

1. e is a nontree edge, i.e., e ∈ E \ Ei,
2. u ∈ K1, v ∈ K2 for K1,K2 ∈ Ki, and K1 
= K2, and
3. {u, v} ∩ Si

di−1 = ∅.
We denote the set of cross-edges in iteration i by Ci. Observe that if Ci = ∅, then the
set Sdi−1 provides a witness to the infeasibility of the degree bounds imposed on the
nodes in this set.
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It is now clear that Ei + e contains a unique cycle Ci
e for each cross-edge e ∈ Ci.

Furthermore, there must be at least one vertex v on Ci
e that has normalized degree

at least di.
For each cross-edge e ∈ Ci, we now let

εie = min
e′∈Ci

e,e
′∩Si

di
�=∅

(
c̃i(e) − c̃i(e′)

)
.

Note that it follows from the fact that Ei is an MST for cost function c̃i that εie ≥ 0
for all e ∈ Ci. Finally, we let εi = mine∈Ci εie.

In the following, we let 〈ei, ei〉 be the witness pair for εi. In other words, let 〈f, f〉
be a pair of edges where f ∈ E \ Ei is a nontree edge and f ∈ Ci

f
is a tree edge that

is incident to a node from Si
di and that lies on the unique cycle in Ei + f . Then, we

must have that

c̃i(f) + εi ≤ c̃i(f),

and equality holds for f = ei and f = ei. Notice that ei is incident to nodes of
normalized degree at most di − 2 by the definition of cross-edges.

An important observation is that εi can be 0. Such a step can be viewed as a
local-improvement step along the lines of [5]. We do not modify the dual solution but
decrease the normalized degree of a node of high normalized degree.

3.2. Analysis: Performance guarantee. Assume that Algorithm 1 termi-
nates after iteration t∗. Recall that Theorem 1.2 requires us to show

c(Et∗) ≤ ω · opt .(3.3)

In this section we prove

c(Ei) =
∑
e∈Ei

ce ≤ ω
∑
π∈Π

(r(π) − 1) · yiπ − ω ·
∑
v∈V

Bv · λi
v(3.4)

for all 1 ≤ i ≤ t∗. Observe that (yi, λi) is a feasible solution for (D) and that the
right-hand side of (3.4) is ω times the dual objective function induced by (yi, λi).
Inequality (3.4) for i = t∗ together with weak duality implies (3.3). This line of
proof extends that used in the analysis of primal-dual algorithms for minimum-cost
networks developed in [1, 6].

In order to facilitate the proof of (3.4) for all 1 ≤ i ≤ t∗, we maintain the following
invariant inductively for all 0 ≤ i ≤ t∗:

ω ·
∑
v∈V

Bvλ
i
v ≤ (ω − 1) ·

∑
π∈Π

(r(π) − 1) · yiπ.(Inv)

Recall that we assumed ω > 1 in Theorem 1.2.
We now use the above invariant to provide a short proof of (3.4). Later in section

3.2.2, we prove (Inv) itself.

3.2.1. Bounding the cost of Ei. Recall that we have ce ≤ c̃ie for all e ∈ E
and for all 1 ≤ i ≤ t. As MST finishes we obtain from Lemma 2.1 that

c(Ei+1) ≤ c̃i+1(Ei+1) =
∑

e∈Ei+1

c̃i+1
e =

∑
π∈Π

(r(π) − 1) · yi+1
π .
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Adding (Inv) for iteration (i + 1) to the last inequality, we get

c(Ei+1) ≤ ω ·
(∑

π∈Π

(r(π) − 1) · yi+1
π −

∑
v∈V

Bvλ
i+1
v

)
.

This finishes the proof of the performance guarantee claimed in Theorem 1.2. It
remains to prove the invariant (Inv) for all 0 ≤ i ≤ t∗.

3.2.2. Proof of invariant (Inv). We prove the validity of (Inv) for all 1 ≤ i ≤
t∗ by induction over i. First, notice that (Inv) holds for i = 0 since λ0

v = 0 for all
v ∈ V . To see the induction step of (Inv) we use the following lemma that ultimately
yields (3.4). Recall the definition of normalized degree in (3.1) and the role of the
parameter β > 0 in it.

Lemma 3.2. Let b > 1 be the constant chosen in Theorem 1.2. We must have

∑
π∈Π

(r(π) − 1) · yi+1
π ≥

∑
π∈Π

(r(π) − 1) · yiπ +
εiβ

b
·

∑
v∈Si

di−1

Bv

for all 0 ≤ i ≤ t∗.
The lemma quantifies the increase in the dual objective function value as our

algorithm moves from yi to yi+1. Intuitively, the lemma shows that the increase in the
dual objective function value is proportional to the total slack created by lengthening
tree edges of Ei that are incident to nodes of normalized degree at least di − 1.

Before presenting the proof of Lemma 3.2 we will use it to prove (Inv). Observe
that the left-hand side of (Inv) increases by ωεi

∑
v∈Si

di−1

Bv as a consequence of

increasing the λ-values of nodes in Si
di−1. Lemma 3.2 implies that the right-hand side

of (Inv) increases by at least

(ω − 1) · βε
i

b
·

∑
v∈Si

di−1

Bv.

Choosing

β ≥ b · ω

ω − 1
(3.5)

completes the proof of invariant (Inv). Notice that this choice of β together with the
definition of normalized degree in (3.1) implies the degree-bound stated in Theorem
1.2.

We now prove Lemma 3.2.
Proof of Lemma 3.2. Let Ei = {ei1, . . . , ein−1} and let tij be the time at which MST

included edge eij . W.l.o.g., assume that ti1 ≤ · · · ≤ tin−1. From the description of MST
we can rewrite

∑
π∈Π

(r(π) − 1) · yiπ =

n−1∑
j=1

(tij − tij−1) · (n− j) =

n−1∑
j=1

tij ((n− j + 1) − (n− j)) =

n−1∑
j=1

tij ,

(3.6)

where we define ti0 = 0.
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Fig. 3.1. The figure shows two runs of MST in two consecutive iterations, i and i + 1. The
horizontal line is the time axes while the vertical lines denote the times at which different edges
become tight and are included. In the ith run edge el becomes tight at time til. In this example, edge

e3 is the only edge incident to a vertex of normalized degree at least di. Its length increases and the
time at which it becomes tight during MST’s execution is postponed by εi time units.

Figure 3.1 illustrates the effect of iteration i. Observe that, by our choice of εi,
Ei is an MST even for cost function c̃i+1. However, recall that there is a way to break
ties such that step 9 in iteration i correctly outputs Ei+1 = Ei \ {ei} ∪ {ei}. This
observation together with (3.6) enables us to quantify the change in dual in iteration
i:

∑
π∈Π

(r(π) − 1) ·
(
yi+1
π − yiπ

)
=

n−1∑
j=1

(
ti+1
j − tij

)
.(3.7)

In iteration i, we increase the c̃-cost of all edges e ∈ Ei that are incident to nodes
of normalized degree at least di by εi while the c̃-costs of all other tree edges remain
unchanged. It is not hard to see that the time an edge becomes tight equals its c̃-cost.
In other words, all edges in Ei that are incident to nodes of normalized degree at least
di become tight εi time units later. Together with (3.7) we obtain

∑
π∈Π

(r(π) − 1) ·
(
yi+1
π − yiπ

)
= εi ·

∣∣E (
Si
di

)
∩ Ei

∣∣ ,(3.8)

where E
(
Si
di

)
denotes the set of edges in E that are incident to nodes from Si

di . (Note
that we include in E(S) edges with both endpoints in S.)

Recall the definition of normalized degree in (3.1). Notice that it follows from the
termination condition in step 4 of Algorithm 1 that Δi > 2 logb(n) and hence di > 0.
Therefore, the real degree of any node v ∈ Si

di must be at least

β ·Bv + di ≥ β ·Bv + 1.

Finally, notice that it follows from the fact that Ei is a tree that there are at most
|Si

di | − 1 edges in E
(
Si
di

)
that are incident to two nodes from Si

di . We can use these
observations to lower-bound the right-hand side of (3.8):

∑
π∈Π

(r(π)−1) ·
(
yi+1
π − yiπ

)
≥ εi ·

⎛
⎜⎝
⎛
⎜⎝ ∑

v∈Si
di

β ·Bv + 1

⎞
⎟⎠− (|Si

di | − 1)

⎞
⎟⎠ ≥ εiβ ·

∑
v∈Si

di

Bv.

An application of Lemma 3.1 yields the lemma.
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3.3. Analysis: Running time. In this section, we show that Algorithm 1
terminates in polynomial time. We accomplish this by showing that there will be
only a polynomial number of iterations of the main loop in Algorithm 1.

Lemma 3.3. Algorithm 1 terminates after O(n4) iterations.
Proof. Following [4], we define the potential of spanning tree Ei as

Φi =
∑
v∈V

3ndegi
(v),

where ndegi(v) denotes again the normalized degree of node v in the tree Ei.
Notice that an iteration of Algorithm 1 swaps out a single edge ei that is incident

to at least one node of normalized degree at least di. On the other hand, we swap in
one edge ei that is incident to two nodes of normalized degree at most di − 2. Hence,
the reduction in the potential is at least

(3d
i

+ 2 · 3di−2) − 3 · 3di−1 ≥ 2 · 3di−2.

Using the range of di, we can lower-bound the right-hand side of the last inequality
by

2 · 3Δi−2 logb(n)−2 = Ω

(
3Δi

n2

)
.

The initial potential Φi is at most n · 3Δi

and the decrease in the potential Φi in
iteration i is at least Ω

(
Φi

n3

)
.

In other words, in O(n3) iterations, we reduce Φ by a constant factor. Since
the initial potential is at most n · 3n and the final potential is at least n · 32, we
obtain that Algorithm 1 terminates in O(log(n · 3n/(n · 32))) = O(n) phases of
O(n3) iterations each. Hence, the algorithm runs for O(n4) iterations total. Ob-
serving that each iteration can be implemented in time O(m log n) using standard
priority-queue techniques (e.g., see [3]), we see that the whole algorithm runs in time
O(mn5 log n).
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[4] M. Fürer and B. Raghavachari, An NC approximation algorithm for the minimum degree

spanning tree problem, in Proceedings of the 28th Annual Allerton Conference on Com-
munication, Control, and Computing, University of Illinois, Urbana-Champaign, IL, 1990,
pp. 274–281.
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THE COMPLEXITY OF THE UNION OF (α, β)-COVERED OBJECTS∗

ALON EFRAT†

Abstract. An (α, β)-covered object is a simply connected planar region c with the property that
for each point p ∈ ∂c there exists a triangle contained in c and having p as a vertex, such that all its
angles are at least α > 0 and all its edges are at least β ·diam(c)-long. This notion extends that of fat
convex objects. We show that the combinatorial complexity of the union of n (α, β)-covered objects
of “constant description complexity” is O(λs+2(n) log2 n log logn), where s is the maximum number
of intersections between the boundaries of any pair of given objects, and λs(n) denotes the maximum
length of an (n, s)-Davenport–Schinzel sequence. Our result extends and improves previous results
concerning convex α-fat objects.
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1. Introduction. A planar object c is (α, β)-covered if the following conditions
are satisfied:

1. c is a compact simply connected set.
2. For each point p ∈ ∂c we can place a triangle Δ fully inside c, such that p is

a vertex of Δ, each angle of Δ is at least α, and the length of each edge of Δ
is at least β · diam(c). We call such a triangle Δ a good triangle for c at p.

The notion of an (α, β)-covered object generalizes that of a convex fat object. A
planar convex object c is α-fat if the ratio between the radii of the disks s+ and s−

is at most α, where s− is the smallest disk containing c and s+ is a largest disk a
contained in c; see [7]. It is easy to show that if c is an α-fat convex object, then it is
also an (α′, β′)-covered object for appropriate constants α′, β′ that depend only on α.
Indeed, let p be a point on ∂c and let q1, q2 be the two antipodal points on ∂s+ such
that |pq1| = |pq2|. Clearly the isosceles triangle Δq1q2p is at least arctan(1/2α)-fat,
and that the length of its edges is at least diam(c)/2α.

In this paper we also make the additional assumption that all the objects un-
der consideration have constant description complexity, meaning that each object is a
semialgebraic set defined by a constant number of polynomial equalities and inequal-
ities of constant maximum degree. This assumption is critical, since even two convex
m-gons (for any m) can create 2m vertices on their union.

The goal of this paper is to obtain sharp bounds for the maximum combinato-
rial complexity of the union of a collection C of n (α, β)-covered objects of constant
description complexity for constant parameters α, β > 0.

There are not too many previous results of this kind. If C is a collection of
α-fat triangles,1 then the complexity of

⋃
C is O(n log log n) (with the constant of

proportionality depending on α) [15, 16], and this bound improves to O(n) if the
triangles are nearly of the same size [2] or are infinite wedges. See also [14] and more

∗Received by the editors May 13, 2002; accepted for publication (in revised form) October 11,
2004; published electronically April 29, 2005. A preliminary version of this paper appeared in [6].

http://www.siam.org/journals/sicomp/34-4/40751.html
†Department of Computer Science, University of Arizona, Tucson, AZ 85721 (alon@cs.arizona.

edu). This work has been supported by a Rothschild Fellowship and by NSF grant CCR-9623851.
1For triangles, there is an equivalent definition of fatness that requires all angles to be at least

some fixed constant α0; in [15, 16], this is called α0-fatness.
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recently [16] for additional results concerning fat polygons. If C is a collection of n
pseudodisks (arbitrary simply connected regions bounded by closed Jordan curves,
each pair of whose boundaries intersect at most twice), then the complexity of

⋃
C

is O(n) [13]. Of course, if we drop the fatness condition, the complexity of
⋃
C can

be Θ(n2), even for the case of (nonfat) triangles. Even for fat convex objects, some
bound on the description complexity of each object must be assumed, or else the
complexity of the union might be arbitrarily large.

In three dimensions, there are several relevant results about the union of objects.
Agarwal and Sharir [1] showed that if C is the Minkowski sum of a ball and a set of n
disjoint triangles or lines in three dimensions, then the complexity of the boundary of⋃
C is O(n2+ε).2 Among fat objects in three dimensions, one might consider balls and

cubes as “basic cases” of fat objects in three dimensions. Pach, Safruti, and Sharir
[17] showed that if C is the union of n wedges, each determined by the intersection of
two halfspaces with a dihedral angle at least α, then the complexity of their union is
O(n2+ε). They also show that if each wedge of S is the intersection of three halfspaces,
each pair creating a solid angle at least α and the sum of the three face angles is at
least 4π/3, then the complexity of the union of these wedges is O(n2+ε). The constant
of proportionality depends on ε, α, and in the latter case, γ. They also proved that
the union of n cubes in three dimensions, whose edge lengths are the same, up to a
constant, is also O(n2+ε).

Concerning fat nonpolygonal shapes in the plane, it was shown in [7] that if C
is a collection of n convex α-fat objects of constant description complexity, then the
complexity of

⋃
C is O(n1+ε), for any ε > 0, where the constant of proportionality

depends on ε, on the fatness parameter, and on the maximum description complexity
of the given objects. In an attempt to remove the convexity restriction, the notion of
κ-curviness was introduced in [8]. An object c is κ-curved (for a parameter κ > 0)
if for each point p on its boundary there is a ball B ⊆ c whose radius is at least
κ · diam(c), and which contains p on its boundary. It was shown in [8] that if C is a
collection of n κ-curved objects in the plane of constant description complexity, then
the complexity of

⋃
C is O(λs′(n) log2 n), where s′ is a constant that depends on κ and

on the description complexity of the objects, and λs(n) denotes the maximum length
of an (n, s)-Davenport–Schinzel sequence [18]. This result was recently extended [3],
where it was shown that if C is a collection of n κ-curved objects in R

d, for d = 3
and d = 4, then the complexity of the boundary of their union is O(n2+ε) in R

3

and O(n3+ε) in R
4. However, the class of κ-curved objects is rather restricted. For

example, an α-fat triangle is not a κ-curved object for any κ. On the other hand, the
notion of (α, β)-covered objects clearly generalizes the notion of κ-curved objects, as
well as that of fat convex objects.

Let C be a collection of n (α, β)-covered objects of constant description complexity
in general position; that is, no points lie on the boundaries of three objects, and the
boundaries of each pair of objects of C have at most some constant number, s, of
intersection points. In addition we assume that s also bounds the number of points
at which the boundary of an object in C is not C1 or C2, as well as the number of
inflection points and locally x- and y-extremal points of any such boundary.

The following is the main result of this paper.

Theorem 1.1. Under the above assumptions, the combinatorial complexity of
the union of C is O(λs+2(n) log2 n log log n).

2In this paper ε stands for an arbitrary small positive constant.
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The proof of Theorem 1.1 is given in the following sections. It is worth mentioning
that if all objects of C are roughly of the same size, then the bound of Theorem 1.1
can be improved to O(λs+2(n)); see section 4 for further discussion.

Theorem 1.1, together with the previous works cited above, contribute to the
study of the union of planar objects, an area that has many algorithmic applications,
such as finding the maximal depth in an arrangement of fat objects (see [10]), hidden
surface removal in a collection of fat objects in 3-space [12], point-enclosure queries
in a collection of fat objects in the plane [11], and more; see [20] for more applica-
tions and other definitions of fat nonconvex objects. Theorem 1.1 both extends these
results to the more general class of (α, β)-covered objects and slightly improves the
corresponding complexity bounds.

The contributions of this paper are as follows: (a) the introduction of a new
class of “fat” nonconvex objects (namely, (α, β)-covered objects), which, we believe,
captures the characteristics of the input data in most realistic scenes; (b) a sharper
bound on the union complexity than the bounds obtained in [7] (bringing them to
within a polylogarithmic factor of the best-known lower bounds); and (c) the proof
technique, which is much simpler than the analysis given in [7].

p

e
Δ

c

Fig. 1. The point p is 3π/2-oriented.

2. Preliminaries. Let C be a collection of n (α, β)-covered objects, as in the
introduction. Let c ∈ C, and let p be a point on ∂c. We say that p is θ-oriented if
there is a good triangle Δ for c with p as a vertex, such that the ray e emerging from
p at orientation θ intersects the interior of Δ. In this case we call Δ a θ-oriented
triangle at p. See Figure 1. Note that p might be θ-oriented for more than one value
of θ.

The idea behind our proof is as follows. We define, for each object c, a collection
of subobjects so that every vertex of ∂

⋃
C is a vertex of the union of the subobjects of

all objects c ∈ C. Moreover, we classify such vertices into O(log2 n) disjoint families
and argue that the size of each family is only O(λs+2(n) log log n).

Let Ψ be the set of orientations {α
4 ,

2α
4 , . . . , α�8π/α�

4 }. We call a triangle Δ a
θ-critical triangle at p for c if Δ is a good triangle at p for c, and Δ is (θ− α

4 )-oriented
at p, θ-oriented at p, and (θ + α

4 )-oriented at p. We say that a point p ∈ ∂c is θ-
critical for c if there exists a θ-critical triangle Δ at p for c. For each c ∈ C and
each θ ∈ Ψ let γθ(c) denote the portion of ∂c consisting of θ-critical points. By the
constant description complexity assumption made in the introduction, γθ(c) consists
of at most a constant (depending on s and α) connected portions of ∂c. We further
divide these portions of γθ(c) into a constant number of not-too-long subarcs (that
might overlap), called primitive arcs, or p-arcs for short. Each p-arc δ is required
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(i) to be differentiable (that is, there exists a well-defined tangent at each point
of the relative interior of δ);

(ii) not to contain in its relative interior any inflection point of ∂c;
(iii) to satisfy the property that the difference in the orientations of the tangents

at any pair of points of δ is at most π/t, where t > 10 is a constant to be
specified in Claim 2.1 below that depends only on α and β, and such that
π/t < α;

(iv) to have length no more than diam(c)/t′, where t′ is a constant to be specified
in Claim 2.1 below and depends only on α and β.

A p-arc along the boundary of an object c is convex if the segment connecting the
endpoints of the arc is contained in c. Otherwise, we say that the p-arc is concave.
See Figure 2.

a (convave) p-arc γa (convex) p-arc γ

Fig. 2. Example of convex and concave p-arcs.

For each c ∈ C and for every θ ∈ Ψ, we place a θ-oriented triangle at each endpoint
of every p-arc of γθ(c), and we let Pc denote the collection of these triangles.

Claim 2.1. We can choose t′, t so that the boundary of each connected component
of c \

⋃
Pc contains at most a single p-arc. In other words, there is no path in c that

connects two p-arcs of c and does not intersect
⋃
Pc.

Proof. Assume diam(c) = 1 (otherwise, we rescale c). We say that a point p is
higher than (resp., lower than, to the left of, to the right of) a point q, if p.y ≥ q.y
(resp., p.y ≤ q.y, p.x ≤ q.x, p.x ≥ q.x). Let γ be a portion of ∂c satisfying (i), (ii),
(iii), and (iv). Assume without loss of generality that the tangent to the rightmost
point of γ is horizontal. We locate two 3π/2-critical triangles Δ′

1,Δ
′
2, where pi is a

vertex of Δ′
i (for i = 1, 2). Clearly Δ′

i contains a triangle Δi ⊆ Δ′
i such that the angle

at pi equals exactly α/2, the edge opposite pi is horizontal (see Figure 3), and the
edges adjacent to pi have length exactly β (for i = 1, 2). Assume that p1 is to the left
of and lower than p2.

We show that if t′ ≥ 2
3β sin(α

4 ) and t ≥ π/ arcsin(β cos(α4 )/2), then Δ1 and Δ2

must intersect. Let u and z be the other two vertices of Δ1 (u to the left of z). Let
u′ be the middle point of uz and let w be the middle point of u′z. Let w′ be the
point on ∂Δ1 vertically above w, and let R be the axis-parallel rectangle whose two
diagonal vertices are u′ and w′. Let μ be the left vertex of the lower edge of Δ2.

Note that if μ is to the left of u′, then clearly Δ1 and Δ2 intersect, since they are
congruent triangles, p2 is to the right of p1, and γ is x-monotone. So assume that μ
is to the right of u′. To conclude that μ ∈ R and thus Δ1 and Δ2 intersect, we need
to show only that μ is below and to the left of w′. Indeed

|ww′| = |p1u′|/2 = |p1z| cos
(α

4

)
/2 = β cos

(α
4

)
/2 and |u′w| = β sin

(α
4

)
/2 .
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Δ1

Δ2

p1
p2

γ

x0

y0

α/2
α/2

β

β
2 cos(α

4 )

u zw

w′

u′

R

μ

Fig. 3. Illustration of Claim 2.1.

Let x0 = p2.x− p1.x. Since we set t′ ≥ 2
3β sin(α/4) , it follows that

x0 ≤ |γ| ≤ diam(c)

t′
≤ 3

2
βdiam(c) sin

(α
4

)
=

3

2
β sin

(α
4

)
,

where we make use of the assumption that diam(c) = 1. Hence

μ.x− u′.x = x0 − β sin
(α

4

)
≤ 1

2
β sin

(α
4

)
≤ w.x− u′.x,

implying that μ is to the left of w. Finally, π/t ≤ arcsin
(
β cos

(
α
4

)
/2
)
. Hence

μ.y − u′.y ≤ |p1p2| sin
(π
t

)
≤ sin

(π
t

)
≤ β cos

(α
4

)
/2 ≤ |w′w| ,

where we have used the assumption that |p1p2| ≤ diam(c) = 1. Thus μ is below w′,
implying that μ ∈ R, as claimed.

We call a maximally connected component of c \
⋃
Pc a cap, and the segment

connecting the endpoints of its p-arc a chord. The union of a cap and the two triangles
of Pc adjacent to the endpoints of its p-arc is called a subobject. Figure 2 shows two
subobjects. If a subobject is not simply connected, we “fill in” its holes and add
them to the subobject. The boundary of a subobject consists of a single p-arc and of
portions of edges of the good triangles of Pc adjacent to the p-arc’s endpoints. Note
that the chord of the subobject is not always a part of the subobject. The collection of
all subobjects of c that are adjacent to p-arcs that are θ-oriented is denoted by cθ. See
Figure 4. Clearly cθ consists of a constant number of subobjects. Let Cθ =

⋃
c∈C cθ.

Fix θ ∈ Ψ, which we assume for simplicity to be the negative vertical direction;
otherwise, rotate the plane. Define a segment tree Tθ (see [5] for a discussion of
segment trees) over the set of intervals on the y-axis obtained by projecting each
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e
I(2)
μ

I(1)
μ

I(3)
μ

p

g
(1)
c (x̃)

e

c

x̃

Δ

Fig. 4. A subobject c, a slab and the strips it contains, and the graph of the function g
(i)
c (x).

subobject of Cθ on the y-axis. Each node μ ∈ Tθ is associated with a subset Sμ ⊆ Cθ

and with a horizontal slab Iμ. See Figure 4. That is, a subobject c ∈ Cθ is in Sμ if
and only if its y-projection contains the y-projection of Iμ but does not contain the
y-projection of Iparent(μ).

Let L(Tθ, i), the ith level of Tθ, denote the collection of nodes of Tθ whose distance
from the root of Tθ is i. Fix θA, θB ∈ Ψ (not necessarily distinct) and levels iA of
TθA and iB of TθB . Note that there are O(log2 n) quadruples (θA, θB , iA, iB) of this
form. Define A =

⋃
μ∈L(TθA

,iA) Sμ and B =
⋃

μ∈L(TθB
,iB) Sμ. That is, A (resp., B)

is the collection of subobjects in Sμ for μ on the iAth level of TθA (resp., the iBth
level of TθB ). Let U(θA, θB , iA, iB) denote the set of “mixed” vertices of ∂

⋃
(A ∪B)

that lie on γθA(a) for some a ∈ A, and on γθB (b) for some b ∈ B. The next section is
dedicated to the proof of the following lemma.

Lemma 2.1. The size of U(θA, θB , iA, iB) is O(λs+2(n) log log n).

The proof of Theorem 1.1 follows immediately from Lemma 2.1. Indeed, for each
vertex v ∈ ∂

⋃
C which lies on the boundaries of objects a, b ∈ C there is a direction

θA ∈ Ψ (resp., θB ∈ Ψ) such that v is θA-critical for a at v (resp., θB-critical for b at v).
Hence there is a subobject a′ ⊂ a containing v on its boundary, and a node μa ∈ TθA
with a′ ∈ Sμa′ . Hence v ∈ ∂

⋃
A, where A =

⋃
μ∈L(TθA

,iA) Sμ, and L(TθA , iA) is the

level of TθA containing a′. Similarly there exist θB and iB such that v ∈ ∂
⋃
B, where

B =
⋃
Sμ∈L(TθB

,iB)Sμ. Thus v ∈ U(θA, θB , iA, iB). Since there are only O(log2 n)

quadruples (θA, θB , iA, iB), Theorem 1.1 follows immediately from Lemma 2.1.

3. Proof of Lemma 2.1. We fix a quadruple (θA, θB , iA, iB), as above. We
assume that θA = 3π/2 (the negative y-direction) by rotating the plane if necessary.
Let μ be a node in the iAth level of T3π/2, and let Iμ be the horizontal slab associated
with μ. Let c be a subobject of Sμ, let p ∈ γ3π/2(c)∩Iμ, and let Δ be a (3π/2)-oriented
triangle of c at p. Note that Δ is an α-fat triangle, and the length of the y-span of c
is at least the width of Iμ. Hence there is a constant integer h (that depends only on
α and β), such that the length of the y-span of each edge of Δ is at least 1/h times

the width of Iμ. We divide Iμ into h interior-disjoint strips, I
(1)
μ , . . . , I

(h)
μ , of equal

width. Thus, p lies in a different strip from the other two vertices of Δ; see Figure 4.

Therefore, for each strip I
(i)
μ , we can express all points of I

(i)
μ ∩ γ3π/2(c) as a graph
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I
(i)
μ

E
(i)
μ

Fig. 5. The upper envelope E
(i)
μ and some new subobjects defined by its vertices. One of the

subobjects is shaded.

g
(i)
c (x̃) of a (partial) function defined on the lower boundary of the strip I

(i)
μ , with

the property that the segment connecting the points x̃ to g
(i)
c (x̃) is fully contained

inside c.

For each strip I
(i)
μ , consider the upper envelope E

(i)
μ (see Figure 5) of the functions

g
(i)
c (x̃) for c ∈ Sμ. Let Eμ denote the union of these upper envelopes for all strips of
Iμ, and let EA denote the union of all these envelopes taken over all nodes μ in the
iAth level of TθA . Repeat the same analysis for θB , and obtain a corresponding union
EB of upper envelopes (relative to the θB-direction).

Let v be a vertex of EA incident to the boundaries of subobjects c1, c2 ∈ A. We
add to Pc1 a θA-critical triangle for c1 at v, and to Pc2 a θA-critical triangle for c2 at v
(it is possible that these are similar triangles with a common vertex and overlapping
edges). For each c ∈ Sμ and each p-arc γ of c we also add θA-critical triangles at each
point where γ crosses a boundary of a strip of Iμ. We further refine the splitting of
arcs into p-arcs, so that no p-arc γ contains a vertex of a new triangle in the p-arc’s
interior. Subobjects are split as well, so that each subobject contains exactly one new
p-arc on its boundary. Observe that now each p-arc is contained in at most one strip
of Iμ.

We next remove from A all subobjects that do not participate in EA. Thus each
p-arc of a remaining subobject of A is fully contained in EA, and also fully contained
in a single strip of some Iμ. Analogously, we restructure the subobjects and p-arcs for
B, the collections {Pb}b∈B and the union of envelopes EB . We list several important
properties of this construction:

(A1) Two p-arcs of A either are disjoint or intersect only at their endpoints. More-
over, a p-arc γ of a subobject a1 ∈ A may intersect the boundary of a different
subobject a2 ∈ A only at an endpoint of γ or at a point of ∂

⋃
Pa2 . Similar

properties hold for B.
(A2) A necessary condition for a vertex v to belong to U(θA, θB , iA, iB) is that v

lies on EA and on EB .
(A3) The complexities of EA and of EB are each O(λs+2(n)); see [18] for a discus-

sion on the complexity of an upper envelope.

Recall that the parameter t used in property (iii) satisfies π/t ≤ α. We next state
a slightly modified version of a lemma that appeared in [7].

Lemma 3.1 (Efrat and Sharir [7]). Let Ka be the portion of a cap of some
subobject a ∈ Cθ, enclosed between its convex p-arc γa and its chord ea. Let Δb ∈ Pb

be a good triangle for some object b ∈ C, such that an edge eb of Δb crosses γa. Then
one of the following cases must occur:

(i) ea crosses ∂Δb (as in Figure 6(i)).
(ii) Ka contains a vertex of Δb that is an endpoint of eb (as in Figure 6(ii)).
(iii) Δb contains a vertex of Ka (as in Figure 6(iii)).
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Ka

ea

eb

Δb

(i)

Δb

Ka

(ii)

Δb

Ka

(iii)

eb

Δb

(iv)

eaea

ea

ea

eb

eb

γa

γa

γa

γa

Ka

Fig. 6. Illustrating the various cases in Lemma 3.1.

(iv) ∂Ka and ∂Δb cross exactly twice, at two points that lie on ∂a and on eb, and
ea is disjoint from Δb (as in Figure 6(iv)).

So, for example, it cannot happen that γa intersects two edges of Δb, each edge
in two points, and all vertices of Δb lie in the same side of the line containing ea.

Proof. The proof is essentially identical to the one given in [7], with obvious
modifications that are left to the reader.

Consider the collections PA =
⋃

a∈A Pa, PB =
⋃

b∈B Pb. The result of [15,
16] implies that the complexity of

⋃
PA, of

⋃
PB , and of

⋃
(PA ∪ PB) are each

O(λs+2(n) log log n), as each triangle in these collections is an α-fat triangle. The
constants of proportionality depend on α.

Our strategy in proving Lemma 2.1 is to proceed in several steps. First, we define
below sets of new types of vertices, namely, UP(A) and UP(B). We obtain bounds
on the cardinality of these sets, by charging (roughly speaking) each vertex v of these
sets to a vertex u of

⋃
(PA∪PB), in a way that u is not charged more than a constant

number of times. Later on, we charge each vertex w of U(θA, θB , iA, iB) to a vertex
of

⋃
(PA ∪ PB), or a vertex of UP(A) or UP(B).

We define UP(A) as the set of all vertices of EA∩∂
⋃

(A∪PB). We define UP(B)
symmetrically, interchanging A and B.

Lemma 3.2. The number of vertices of UP(A) and of UP(B) is O(λs+2(n) log log n).

Proof. It suffices to prove the lemma for UP(B). Consider a p-arc γb = γθB (b)
containing a vertex v of UP(B), defined by the intersection of γb and an edge e of
∂
⋃

(PA ∪PB). Let Δ be the triangle adjacent to e (note that e might be a portion of
an edge of Δ) and let ê be the edge of Δ containing e.

Let u1, u2 be the endpoints of γb; see Figure 7. Assume again that θB = 3π/2,
so the slabs of TθB are horizontal, and suppose u1 is to the left of u2. Let μ be the
node of TθB , on the iBth level, associated with the subobject b containing v on its
boundary. Let t1 and t2 be the triangles of Pb, which are θB-critical for b at u1 and

at u2. Let F = F (γb) be the axis-parallel rectangle formed by intersecting I
(i)
μ with

the vertical strip spanned by γb (the shaded area in Figure 7). Clearly v lies in F .
Note that if γb, γb′ are two distinct p-arcs of A, then the rectangles F (γb) and F (γb′)
are interior disjoint.

If Δ ∩ γb fully contains one of the two portions of γb connecting v to one of
the endpoints of γb, we charge v to this endpoint. Since the number of endpoints is
O(λs+2(n)) and each can be charged at most twice, from each direction, the number
of vertices v of this type is within the asserted bound. So assume this is not the case.

Recall that γb is either concave or convex; so e intersects γb either once or twice.
We call e a long edge if both its endpoints are outside F ; otherwise, e is a short edge.
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Iμ

e

u1 u2

γb

F

v

t1
t2

Fig. 7. Illustrating the proof of Lemma 3.2; e is long.

If e is short, we charge v to an endpoint of e inside F (which in turn can be charged
at most twice); again, the number of such endpoints is within the asserted bound. So
let us assume that e is long.

If e intersects γb once, then e must intersect t1, t2, or some other triangle of
PA ∪PB , at a point inside F and on ∂

⋃
(PA ∪PB). Hence by following e inward into

b, we must reach a vertex x of
⋃

(PA ∪PB) that we can charge to v. So assume that e
intersects γb twice. If γb is concave, then if we trace e from v into b, we reach a vertex
of ∂

⋃
(PA ∪ PB), to which we can charge v. So we may assume that γb is convex, as

depicted in Figure 7.

Let z be the vertex of Δ that lies opposite e. We say that e is special if z lies
inside F . We charge v in this case to z, and z could be charged at most twice (by
the two vertices which lie on the edge of Δ, and contained in F ). Hence it suffices to
consider the case where e is nonspecial and long.

Applying Lemma 3.1 to the edge ê of Δ, and the appropriate cap portion, we see
that if any of the cases (i)–(iii) arises, we can charge v to a vertex of

⋃
(PA ∪ PB)

inside the cap, as done above. So we may assume that case (iv) arises.

We now claim that the number of long nonspecial edges e1, . . . , el of
⋃

(PA ∪PB)
incident to vertices of U(θA, θB , iA, iB) on γb, satisfying property (iv) of Lemma 3.2, is
at most two. Indeed, let Γ(ei) be the portion of γb spanned between its two intersection
points with ei.

It is impossible that Γ(ei) and Γ(ej) intersect. Indeed if Γ(ei) ∩ Γ(ej) 	= ∅, but
neither Γ(ei) ⊆ Γ(ej) nor Γ(ej) ⊆ Γ(ej), then ei and ej must intersect inside F (by the
convexity of γ), and thus they are not long. On the other hand, it is impossible that
one of them, say Γ(ei), is fully contained in Γ(ej), since they both satisfy property
(iv), implying that then Γ(ei) is fully contained inside the triangle adjacent to ej , and
preventing ei from determining vertices of U(θA, θB , iA, iB) on γb. Moreover, if Γ(ei)
and Γ(ej) are disjoint (see Figure 8), then it is easily verified that ei and ej intersect
different pairs of edges of F ; thus there are only two such pairs that intersect γ. This
concludes the proof of the Lemma 3.2.

We can now return to the proof of Lemma 2.1.

Proof of Lemma 2.1. Let v be a vertex of U = U(θA, θB , iA, iB), incident to a
p-arc γa and to another p-arc γb, for some a ∈ A, b ∈ B. Let Iμ (for μ ∈ TθB ) be the
strip containing b and assume again that θB = 3π/2; otherwise, rotate the plane. As
in Lemma 3.2, let F be the rectangle formed by the intersection of Iμ with the vertical
strip spanned by γb. We call γa favorable if γa ∩F contains either an endpoint of γa,
or a locally highest point, lowest point, rightmost point, or leftmost point of γa. Note
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u1 u2

Γ(ei)

F

v

Γ(ej)

eiej

Fig. 8. If Γ(ei) and Γ(ej) are disjoint, then ei and ej cross different pairs of edges of F .

that if γa is favorable, we can charge v, and the rest of the (at most s− 1) vertices of
U ∩ γa ∩ γb to one of the extreme points listed above, since there is only a constant
number of them on each object of C.

Let μa and μb be the normals at v to γa and γb, pointing into a and b, respectively.
Let φ be the smaller angle between μa and μb. Let φ0 < π/10 denote the maximal
turning angle of any p-arc. See property (iii).

We distinguish among three cases:

Case (i). φ0 ≤ φ < π− 2φ0 (see Figure 9(i)). Clearly, in this case γa and γb have
at most one intersection point, which must be v itself. Indeed, construct a line  that
passes through v and forms angles φ and −φ/2 with γa and γb, respectively. Since
neither γa nor γb can turn by more than φ, it follows that, except at v,  is disjoint
from both γa and γb. Hence, except at v,  separates γa from γb.

We follow γa from v in the direction in which it enters b. Since γa has entered the
cap of b bounded by γb and it does not intersect γb again, it either ends within the
cap or meets a triangle in PA ∪ PB . In either case we can charge v to this endpoint
or intersection point. (Note that in the latter case, this intersection must be a vertex
of UP(A), whose number was bounded in Lemma 3.2.)

Case (ii). φ ≥ π − 2φ0 (see Figure 9(ii)). Without loss of generality, assume that
the situation is as shown in Figure 9(ii). That is, a lies above γa near v and b lies
below γb near v, and as we trace γa and γb to the left, each of them enters into the
other object. If we reach in any of these tracings a point on

⋃
(PA ∪PB), then this is

a vertex of either UP(A) or UP(B), to which we can charge v. So assume this is not
the case. Hence, γa and γb must intersect again.

If one of the connected components of γa∩F intersects the same edge of F twice,
then it must contain an extreme point (lowermost, uppermost, rightmost, or leftmost)
which is inside F , and hence γa is favorable. We charge the s or fewer intersection
points of γa and γb inside F to this extreme point. So again assume this is not
the case. Assume that γ1, . . . , γl are all the nonfavorable p-arcs belonging to (not
necessarily distinct) respective subobjects a1, . . . , al of A, that each defines a vertex
vi of U(θA, θB , iA, iB) that lies on γb, and that each vi is of the type discussed in case
(ii) of Lemma 2.1. For each i, define Γ(γi) as the portion of γb ∩ ai incident to vi.

Note that γi cannot intersect γj inside F (for any 1 ≤ i < j ≤ l) because each γi is
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Fig. 9. Illustration of the proof of Lemma 2.1.
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Fig. 10. The third case of the proof of Lemma 2.1.

a nonfavorable p-arc, and the p-arcs of A (resp., B) intersect only at their endpoints.
It is not hard to show that there can be at most 2 nonfavorable p-arcs γi, γj of
this type, such that Γ(γi) ∩ Γ(γj) = ∅. Similarly there is no pair γi, γi such that
Γ(γi) ∩ Γ(γj) partially overlap (that is, Γ(γi) ∩ Γ(γj) 	= ∅ but neither Γ(γi) ⊆ Γ(γj)
nor Γ(γj) ⊆ Γ(γi)). On the other hand, it is impossible that Γ(γi) ⊆ Γ(γj), since in
this case Γ(γi) ⊆ aj cannot be adjacent to a vertex of U(θA, θB , iA, iB).

Case (iii). φ < φ0 (see Figure 9(iii)). Observe that both γa and γb are y-monotone
inside F . We follow γa from v in the direction inward b—say to the left (see Figure 10).
If we reach a triangle of PA ∪ PB , then this is a vertex w of UP(A) that we charge.
Thus we assume that we reach another vertex v2 on γb ∩ γa, to the left of v. By
property A1 we are guaranteed that we have not entered a subobject a′ ∈ A so far
in the portion of γa between v and v2. Hence we deduce that v2 is also a vertex of
U(θA, θB , iA, iB). We continue following the portion of γb to the left of v2. As before
if we do not reach a vertex of UP(A), we reach a vertex v3 which is also a vertex of
U(θA, θB , iA, iB). We can repeat this process at most s times, discovering the vertices
v, v2, v3, . . . . This process must terminate when we reach a vertex w of UP(A) or of
UP(B) (which may be the left endpoint of γb). Note that by the manner in which we
reach w, it is obvious that it is charged only to the at most s vertices v, v2, v3, . . . ,
which concludes the proof of Lemma 2.1.
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4. Concluding remarks.

1. The bound of Theorem 1.1 improves if the objects of C have roughly the same
size. Assume that there are constants d, κ, such that d ≤ diam(c) ≤ κd for
each object of c ∈ C. Then the bounds of Theorem 1.1 improve to O(λs+2(n)),
with constant of proportionality depending on κ. This follows by modifying
the preceding proof, and we will comment on only a few of the less trivial
modifications that are required. In particular we do not need to use segment

trees to determine the strips I
(j)
μ , since these strips have the same width.

For each orientation θA ∈ Ψ, we divide the plane into infinite parallel strips
of width μd (for a sufficiently small constant μ that depends on s, α, κ, and
β), orthogonal to the θA direction, such that (as above) if Δ is a θA-critical
triangle for an object c at a point p ∈ ∂c, then the other two vertices of Δ do
not lie in the strip containing p. We define A as the collection of subobjects
incident to p-arcs of γθA(c) over all c ∈ C. The definitions of B and of all the
other notation used in the proof are analogous. We also use the fact that all
the oriented triangles in PA and PB are roughly of the same size, and thus
the complexity of their union is only O(n), as shown in [2].

2. The definition of an (α, β)-covered object is not the first attempt to define
fatness for nonconvex objects. In [20], van der Stappen gives the following
definition to fatness. An object c ⊆ R

d with bounded-description complexity
is δ-fat (for 0 < δ < 1) if for each d-dimensional ball B, the center of which
is inside c but which does not contain c completely, the volume of B ∩ c is
at least δ times the volume of B. Two questions naturally arise: (i) What
is the relation between the class of (α, β)-covered objects and δ-fat objects?
(ii) Can one show a bound on the complexity of the union of δ-fat objects?
Recently van der Stappen [19] answered both questions: He showed that the
definition of a δ-fat object is more general than the definition of an (α, β)-
objects by showing that each (α, β)-covered object is also a δ-fat object for
an appropriate parameter δ (that depends on α and β). He also answered the
second question by presenting a construction showing that the boundary of
the union of n δ-fat objects can have Ω(n2) vertices, implying that δ-fatness
does not suffice to provide subquadratic union complexity in the plane.

Acknowledgments. We wish to thank Micha Sharir for helpful discussions and
many useful ideas regarding the results of this paper. Thanks also to anonymous
referees for numerous important remarks.
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1. Introduction. This paper addresses stochastic parallel machine scheduling
problems with the objective of minimizing the expected value of the total weighted
completion time. Machine scheduling problems have attracted researchers for decades
since such problems play an important role in various applications from the areas of
operations research, management science, and computer science. The total weighted
completion time objective is of particular importance in parallel processing, where
many jobs are to be scheduled on a limited number of machines and a good average
performance is desired. Prominent examples for such a scheduling situation are prob-
lems that arise, e.g., in compiler optimization [4] and in parallel computing [2]. The
main characteristic of stochastic scheduling problems is the fact that the processing
times of the jobs may be subject to random fluctuations. Hence, the effective process-
ing times are not known with certainty in advance. This characteristic is of particular
practical relevance in many applications.

Problem definition. Denote by V = {1, . . . , n} a set of jobs which must be
scheduled on m parallel, identical machines. Each machine can handle only one job
at a time, and the jobs can be scheduled on any of the machines. Once the processing
of a job is started on one machine, it must be processed without preemption on this
machine. Precedence constraints are given by an acyclic digraph G = (V,A), where
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any arc (i, j) ∈ A restricts the start time of job j to be not earlier than the completion
time of job i. We consider problems with and without release dates rj for the jobs,
with the intended meaning that job j must not start earlier than rj . In the classical
(deterministic) setting, the objective is to minimize the total weighted completion time∑

j∈V wj Cj , where wj is a nonnegative weight and Cj denotes the completion time of
job j. In the stochastic model, it is assumed that the processing time pj of a job j is
not known in advance. It becomes known only upon completion of the job. However,
the distribution of the corresponding random variable Pj is given beforehand. Let
P = (P1, . . . , Pn) denote the vector of random variables for the processing times, and
denote by p = (p1, . . . , pn) a particular realization of the processing times. By E[Pj ]
we denote the expected processing time of a job j. We assume throughout that the
processing times of the jobs are stochastically independent. In the classical α |β | γ
notation of Graham et al. [9], the problem of minimizing the expected total weighted
completion time can be denoted by P| prec, rj |E [

∑
wj Cj ]. Here, P stands for the

parallel machine environment, prec and rj the existence of precedence constraints and
release dates, respectively, and E [

∑
wj Cj ] the objective of minimizing the expected

total weighted completion time.

Dynamic view on stochastic scheduling. The twist from deterministic to
stochastic processing times changes the nature of the scheduling problem considerably.
The solution of a stochastic scheduling problem is no longer a simple schedule, but a
so-called scheduling policy. We adopt the notion of scheduling policies as defined by
Möhring, Radermacher, and Weiss [14]. In the following, we briefly summarize what
that means.

Apart from the data that specifies the input of the problem, the state of the
system at any time t � 0 is determined by the time t itself, as well as the (conditional)
probability distributions of the jobs’ processing times. At any time t > 0, the state
thus depends on the observed past up to time t. This includes the start and completion
times of the jobs already completed by t, together with the start times of the jobs
in process at time t. The action of a scheduling policy at time t is given by a set
of jobs B(t) ⊆ V that is started at t, together with a tentative next decision time
ttent > t. The tentative decision time ttent is the latest point in time when the next
action of the policy takes place, subject to the condition that no other job is released
or ends before ttent. Notice that B(t) may be empty, and ttent = ∞ implies that
the next action of the policy takes place when the next job is released or some job
ends, whatever occurs first. Of course, the definition of B(t) must respect potential
release dates, precedence constraints, and the number of available machines. A policy
is required to be nonanticipatory, meaning that the action of a policy at any time t
must depend only on the state of the system at time t (together with the given input
data, of course). The time instances at which a policy takes its actions are called
decision times. Given an action of a policy at a decision time t, the next decision
time is ttent, or the time of the next job completion, or the time when the next job is
released, whatever occurs first. Depending on the action of the policy, the state at the
next decision time is realized according to the (conditional) probability distributions
of the jobs’ processing times.

A given policy eventually yields a feasible m-machine schedule for each realiza-
tion p of the processing times. For a given policy, denoted by Π, let SΠ

j (p) and CΠ
j (p)

denote the start and completion times, respectively, of job j for a given realization p,
and let SΠ

j (P ) and CΠ
j (P ) denote the associated random variables.
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Approximation. It follows from simple examples that, in general, a scheduling
policy cannot yield the optimal schedule for each possible realization of the process-
ing times; see, e.g., [21]. Hence, our goal is to find a policy Π which minimizes the
objective, say ZΠ(P ), in expectation. But even under this mild notion of optimality,
few special cases exist for which optimal scheduling policies are known to be effi-
ciently computable. One example is the optimality of list scheduling according to
SEPT (shortest expected processing time first) for the problem without precedence
constraints or release dates, with unit weights, and with exponentially distributed
processing times, P| pj ∼ exp(λj)|E [

∑
Cj ] [1, 24]. This result was extended by

Kämpke [12] to the case where the weights wj are compliant with the expected pro-
cessing times. In general, however, there exist examples which show that optimal
policies can be rather complicated in the sense that they must indeed utilize the
full information on the conditional distributions of the jobs’ processing times; see,
e.g., [22]. In this paper, we therefore concentrate on approximation algorithms. In
stochastic scheduling, a scheduling policy Π is said to be an α-approximation if its
expected performance E[ZΠ(P )] is within a factor of α of the expected performance
E[ZΠ∗

(P )] of an optimal (nonanticipatory) scheduling policy Π∗. The value α is called
the performance guarantee.

List scheduling policies. There exist essentially three different classes of list
scheduling policies, all of which have in common that there is a fixed priority list L
of jobs which determines the order in which the jobs are considered. We call a job j
available with respect to a partial schedule at time t if all predecessors of j are
completed by t and if rj � t.

Graham’s list scheduling. This is perhaps the most natural class of policies, often
referred to as the list scheduling algorithm of Graham [7, 8]. Iterating over decision
times, it greedily starts as many available jobs as possible, always in the order of the
list L. It always holds that ttent = ∞, and jobs are thus started only at release dates
or upon completion of other jobs. If precedence constraints or release dates exist, it
may happen that the order of start times of jobs differs from the order of the jobs in
the priority list L; the jobs are scheduled “out of order” with respect to the priority
list L. For the deterministic problem with makespan objective, P|prec|Cmax, it is well
known that Graham’s list scheduling achieves a performance guarantee of 2 − 1/m
for any priority list of the jobs [7]. This result straightforwardly extends to stochastic
processing times and the expected makespan objective, P| prec|E [Cmax] [3]. For the
expected total weighted completion time, Graham’s list scheduling in the WSEPT
order1 yields a constant-factor approximation for the problem without precedence
constraints or release dates, P||E [

∑
wjCj ] [15]. In the presence of release dates or

precedence constraints, even in the deterministic setting, there are examples which
show that the performance of Graham’s algorithm can be arbitrarily bad. For an
example with precedence constraints, see [18].

Job-based list scheduling. This is, in fact, the same list scheduling policy as before,
only with the additional constraint that no job is started earlier than any of its prede-
cessors in the priority list L. Hence, this policy preserves the order of the jobs in the
priority list L at the cost of deliberate idle times on the machines. For the determin-
istic problem P|rj , prec|

∑
wjCj , the currently best known performance guarantee

of 4 relies on (a slight variation of) job-based list scheduling, and the priority list is
defined on the basis of an optimal solution to a linear programming relaxation [16].

1In the WSEPT order, jobs appear in nonincreasing order of the ratios wj/E[Pj ].



STOCHASTIC SCHEDULING WITH PRECEDENCE CONSTRAINTS 791

For the stochastic problem without precedence constraints, P|rj |E [
∑

wjCj ], job-
based list scheduling yields a constant performance guarantee, too. This result is
also based on a priority list that is defined on the basis of an optimal solution to an
LP-relaxation [15].

Delayed list scheduling. As a matter of fact, approximation results for stochastic
parallel machine scheduling were previously known only for problems without prece-
dence constraints [23, 15]. In this paper, we close this gap, relying on yet another
class of list scheduling policies which generalizes both Graham’s and job-based list
scheduling algorithms. It has been suggested in a paper by Chekuri et al. [5] to ob-
tain a 5.828-approximation for the deterministic problem P|rj , prec|

∑
wj Cj . We

consider the analogous stochastic variant of this algorithm. The basic idea is to ex-
tend Graham’s list scheduling in such a way that a job may be scheduled out of order
only if a certain amount of deliberate idle time has accumulated before. Thus, in
this algorithm we use values ttent < ∞, and jobs may be started at times different
from release dates or completion times of other jobs. The algorithm is parametric
on a parameter β � 0 that controls the tradeoff between the amount of out-of-order
processing of jobs and the desire to adhere to the order of the given priority list L.
For β = 0 and β = ∞ we get Graham’s and job-based list scheduling algorithms,
respectively. The algorithm will be described in more detail in section 2.

Contribution of this paper. We derive the first constant performance guar-
antees for stochastic parallel machine scheduling with precedence constraints. The
results are derived by borrowing heavily from two previous approaches. On the one
hand, we use (an appropriate adaptation of) the delayed list scheduling algorithm
of Chekuri et al. [5]. On the other hand, the priority list is derived from an opti-
mal solution for (a generalized version of) the LP-relaxation by Möhring, Schulz, and
Uetz [15]. It seems, however, that only this combination of the previous techniques is
capable of yielding the desired approximation results.

Table 1 gives an overview of performance guarantees for stochastic parallel ma-
chine scheduling problems with the total weighted completion time objective. The
last column indicates which of the results are proved in [15]; the asterisk [∗] indicates
that the results are derived in this paper. The term Δ denotes some common upper
bound on the values Var[Pj ]/(E [Pj ])

2 for all jobs j ∈ V . In other words,
√

Δ is a

common upper bound on the coefficient of variation CV [Pj ] =
√

Var[Pj ]/E [Pj ] for
all processing time distributions Pj , j ∈ V . Moreover, the number of machines is
denoted by m, and β is the nonnegative parameter used to control the delayed list
scheduling algorithm. The third column shows the respective performance bounds for
processing time distributions where the coefficient of variation is bounded by 1, which
is the case for exponential, uniform, or Erlang distributions, to name a few.

Relations to online optimization and other models. Compared to the
model described above, online optimization is another way of coping with the fact
that the future is uncertain. We refer to Fiat and Woeginger [6] for details about
online optimization. There is, however, a significant difference between the under-
lying paradigms of the above described analysis and the usual competitive analysis
that prevails in online optimization. First, competitive analysis is based upon the a
posteriori comparison, “What was achieved under uncertainty about the future, and
what could have been achieved if the future would not have been uncertain?” This is
expressed by the fact that the adversary is generally an oracle that knows the optimal
solution. In contrast, stochastic scheduling addresses the a priori question, “What is
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Table 1

Performance bounds for stochastic scheduling problems. Asterisks [∗] mark results of this paper.

Scheduling model Performance guarantee
Arbitrary Pj CV[Pj ] � 1

1|prec|E [
∑

wjCj ] 2 2 [15]

1|rj , prec|E [
∑

wjCj ] 3 3 [15]

P| |E [
∑

wjCj ] 1 + (m−1)(Δ+1)
2m

2 − 1
m

[15]

P|rj |E [
∑

wjCj ] 3 − 1
m

+ max{1, m−1
m

Δ} 4 − 1
m

[15]

P|in-forest|E [
∑

wjCj ] 2 − 1
m

+ max{1, m−1
m

Δ} 3 − 1
m

[∗]

P|prec|E [
∑

wjCj ] (1 + β)
(
1 + m−1

mβ
+ max{1, m−1

m
Δ}

)
3 + 2

√
2 − 1+

√
2

m
[∗]

P|rj , prec|E [
∑

wjCj ] (1 + β)
(
1 + 1

β
+ max{1, m−1

m
Δ}

)
3 + 2

√
2 [∗]

the best that can be achieved under the given uncertainty about the future?” Here, the
underlying adversary is much weaker: the adversary must not anticipate future in-
formation, just like the policy itself. Second, in competitive analysis the adversary is
allowed to determine, to a certain extent, the input distribution. This is not the case
in the stochastic model considered here, since the input distributions are considered
exogenous. It is interesting to note that two generalized online frameworks were sug-
gested by Koutsoupias and Papadimitriou [13]. They restrict the adversary’s power in
two ways: its ability to choose an input distribution, and its ability to find an optimal
solution. To some extent, the stochastic scheduling model incorporates both ideas,
too. We refer to [13] for details and to [21] for a brief discussion. Another type of
analysis for stochastic models has been proposed recently by Scharbrodt, Schickinger,
and Steger [17]. They analyze the expected competitive ratio E[ZΠ(P )/ZOPT(P )],
where ZOPT(p) is the optimal solution value for a realization p. In this type of analy-
sis the adversary is again an oracle that knows the optimal solution. We refer to [17]
for a more detailed discussion of the benefits of their approach in comparison to the
approach of this paper.

2. List scheduling with deliberate idle times. We start with a few pre-
liminaries that will be used later in the analysis. First, recall that we refer to a
job j available with respect to a partial schedule at time t if all predecessors of j are
completed by t and if rj � t.

Assumption 2.1. For any instance of P|rj , prec| γ , assume that rj � ri when-
ever job i is a predecessor of job j in the precedence constraints.

(Here, γ is used to denote an arbitrary objective function.) Obviously, Assump-
tion 2.1 can be made without loss of generality. Additionally, we use the following
definitions.

Definition 2.2 (critical predecessor). Let some realization p of the processing
times and a feasible schedule be given. For any job j, a critical predecessor of j is
a predecessor i of j (with respect to the precedence constraints) with Ci > rj and Ci

maximal among all predecessors.
Definition 2.3 (critical chain). Let some realization p of the processing times

and a feasible schedule be given. For a given job j, a critical chain for job j and its
length �j(p) is defined backwards recursively: If j has no critical predecessor, j is the
only job in the critical chain, and �j(p) = rj + pj. Otherwise, �j(p) = pj + �k(p),
where job k is a critical predecessor of job j.

Definition 2.3 is illustrated in Figure 1. Notice that the critical chain as well
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jh = j

Cjrj1

j1

j2

j3

Fig. 1. Example of a critical chain for job j. Its length is �j(p) = rj1 +
∑h

i=1 pji .

as its length �j(p) depend on both the realization of the processing times p and the
underlying schedule. Moreover, since a critical predecessor is not necessarily unique,
the critical chain and its length also depend on a tie-breaking rule for choosing critical
predecessors. This is not relevant for our analysis, but in order to make the above
definition unique, let us suppose that some arbitrary but fixed tie-breaking rule is
used. Notice further that the first job j1 of a critical chain is available at its release
date rj1 . This follows directly from the definition.

Like Graham’s list scheduling, the algorithm we use iterates over decision times
until all jobs have been scheduled. Assume a priority list L is given. As with job-based
list scheduling, the algorithm strives to schedule the jobs in the order of the list L by
leaving deliberate idle times. But if the accumulating deliberate idle time exceeds a
certain threshold, the algorithm “panics” and schedules the first available job from
the list. The algorithm is parametric on a parameter β � 0 that controls the tradeoff
between the amount of out-of-order processing of jobs and the desire to adhere to the
order of the given priority list L. At each stage of the algorithm, the sublist of L
containing all jobs that are not yet scheduled is referred to as the residual list. The
following is a direct adaptation of the algorithm introduced by Chekuri et al. [5].

Algorithm CMNS (Chekuri–Motwani–Natarajan–Stein).
2

Whenever a machine is idle and the first job in the residual list is
available, the job is scheduled. Otherwise, if the first job is not
available, the first available job j in the residual list (if any) is de-
liberately delayed. If j was deliberately delayed for an accumulated
time of βE[Pj ], it is scheduled out of order.

We emphasize that deliberate idle time accumulates m′ times faster when a job
is deliberately delayed while m′ machines are idle. For the purpose of analyzing the
performance of Algorithm CMNS, any job j gets charged the amount of deliberate
idle time that accumulates during time intervals when j is deliberately delayed. An
alternative interpretation is the following: whenever a job j is deliberately delayed,
the tentative next decision time ttent is that point in time where the accumulated
deliberate idle time charged to job j would equal βE[Pj ].

Analogous to [5], we introduce some additional notation. For a given job j, denote
by Bj and Aj the sets of jobs that come before and after job j in the priority list L,
respectively; by convention, Bj also includes job j. For the remaining definitions,
we consider a fixed realization p of the processing times and the resulting schedule
constructed by Algorithm CMNS. Then, rj(p) � rj denotes the earliest point in time
when job j becomes available; let j1, j2, . . . , jh = j be the critical chain for job j and

2The only difference between CMNS and the algorithm presented in [5] is the use of the thresh-
old βE[Pj ] instead of βpj . CMNS coincides with the classical list scheduling algorithm of Graham [7]
if we choose β = 0 and coincides with the job-based list scheduling algorithm if we choose β = ∞.
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define Bj(p) := Bj \ {j1, . . . , jh}. That is, the set Bj(p) contains all jobs that come
before job j in the priority list L, except for those which belong to the critical chain.
Moreover, let Oj(p) ⊆ Aj be the jobs in Aj that are started out of order, that is,
before j.

The following observation is the analogue to the results for the deterministic
setting by Chekuri et al. [5, Fact 4.6, Lemma 4.7].

Observation 2.4. For any realization p of the processing times and any job j,
(i) job j is charged no more than β E[Pj ] deliberate idle time;
(ii) the deliberate idle time in [rj(p), Sj(p)[ is charged only to jobs in Bj ;
(iii) there is no uncharged deliberate idle time.

Proof. Part (i) follows by construction of the algorithm and part (iii) by definition
of deliberate idle time. Finally, for (ii), observe that no job from Aj is the first
available job from the residual list in the time interval [rj(p), Sj(p)[, since job j is
available from rj(p) on, and j has higher priority than any job in Aj .

The following analysis of Algorithm CMNS closely resembles the analysis per-
formed in [5] for the deterministic case. We first derive an upper bound on the
completion time of any job for a fixed realization p.

Lemma 2.5. Consider the schedule constructed by Algorithm CMNS for any β �
0, any realization p of the processing times, and any priority list L which is a linear
extension of the precedence constraints. Let Cj(p) denote the resulting completion
time of any job j, and let �j(p) denote the length of the critical chain for job j. Then

Cj(p) � m− 1

m
�j(p) +

1

m
rj +

1

m

⎛
⎝∑

i∈Bj

(pi + β E[Pi]) +
∑

i∈Oj(p)

pi

⎞
⎠ .(2.1)

Proof. The basic idea resembles Graham’s analysis for the makespan objec-
tive [7]. Consider the critical chain for job j with total length �j(p), consisting of
jobs j1, j2, . . . , jh = j. Now partition the interval [rj1 , Cj(p)[ into time intervals,
where some job from the critical chain is in process, and the remaining time intervals.
The latter are exactly [ri(p), Si(p)[, i = j1, . . . , jh. (Recall that rj1 = rj1(p) due to
the definition of the critical chain.) By definition,

Cj(p) = �j(p) +

jh∑
i=j1

(
Si(p) − ri(p)

)
.(2.2)

To bound the total length of the intervals [ri(p), Si(p)[, i = j1, . . . , jh, observe that
in each of these intervals there is no idle time except (possibly) deliberate idle time,
since job i is available in [ri(p), Si(p)[. Hence, the total processing in these intervals
can be partitioned into three categories as follows:

– processing of jobs from Bj which do not belong to the critical chain, i.e., jobs
in Bj(p);

– deliberate idle time;
– processing of jobs from Aj which are scheduled out of order, i.e., jobs in Oj(p).

Due to Observation 2.4(ii), all deliberate idle time in the interval [ri(p), Si(p)[
is charged only to jobs in Bi, i = j1, . . . , jh. Since the priority list L is a linear
extension of the precedence constraints, we have Bj1 ⊂ Bj2 ⊂ · · · ⊂ Bjh = Bj . Hence,
all deliberate idle time in the intervals [ri(p), Si(p)[, i = j1, . . . , jh, is charged only to
jobs in Bj . Since there is no uncharged deliberate idle time (Observation 2.4(iii)), and
since each job i ∈ Bj gets charged no more than β E[Pi] idle time (Observation 2.4(i)),



STOCHASTIC SCHEDULING WITH PRECEDENCE CONSTRAINTS 795

the total amount of deliberate idle time in the intervals [ri(p), Si(p)[, i = j1, . . . , jh,
is bounded from above by β

∑
i∈Bj

E[Pi]. This yields

jh∑
i=j1

(
Si(p) − ri(p)

)
� 1

m

⎛
⎝ ∑

i∈Bj(p)

pi +
∑
i∈Bj

β E[Pi] +
∑

i∈Oj(p)

pi

⎞
⎠ .(2.3)

Finally, due to Assumption 2.1 we have rj1 � rj ; thus∑
i∈Bj(p)

pi �
∑
i∈Bj

pi −
(
�j(p) − rj

)
.(2.4)

Now put (2.4) into (2.3), and then (2.3) into (2.2), and the claim follows.
Before we take expectations in (2.1), we concentrate on the term

∑
i∈Oj(p)

pi. The

following lemma shows that the expected total processing time of the jobs in Oj(p)—
the jobs that are scheduled out of order with respect to j (and p)—is independent of
their actual processing times.

Lemma 2.6. We have

E

⎡
⎣ ∑

i∈Oj(P )

Pi

⎤
⎦ = E

⎡
⎣ ∑

i∈Oj(P )

E[Pi]

⎤
⎦ .

Proof. We can write
∑

i∈Oj(P ) Pi equivalently as
∑

i∈Aj
δi(P )Pi, where δi(P ) is

a binary random variable which is 1 if and only if i ∈ Oj(p). Linearity of expectation
yields

E

⎡
⎣ ∑

i∈Oj(P )

Pi

⎤
⎦ = E

⎡
⎣ ∑

i∈Aj

δi(P )Pi

⎤
⎦ =

∑
i∈Aj

E[δi(P )Pi].

Notice that δi(P ) is dependent on βE[Pi] but stochastically independent of Pi, as the
decision to process job i out of order is made before it is actually processed. (Here
we require that the processing times be stochastically independent and that policies
be nonanticipatory.) Hence,

∑
i∈Aj

E[δi(P )Pi] =
∑
i∈Aj

E[δi(P )]E[Pi] =
∑
i∈Aj

E
[
δi(P )E[Pi]

]
= E

⎡
⎣ ∑

i∈Oj(P )

E[Pi]

⎤
⎦ .

This concludes the proof.
The following lemma bounds the expected amount of processing time of jobs

from Aj which are scheduled out of order in terms of the expected length of the
critical chain for job j; compare to [5, Lemma 4.8].

Lemma 2.7. We have

1

m
E

⎡
⎣ ∑

i∈Oj(P )

E[Pi]

⎤
⎦ � 1

β
E[�j(P )].

Proof. Consider a fixed realization p of the processing times. If some job i ∈ Aj

is scheduled out of order, i gets charged exactly β E[Pi] deliberate idle time. Hence,
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the total amount of deliberate idle time in [0, Sj(p)[ that is charged to jobs in Oj(p)
is β

∑
i∈Oj(p)

E[Pi]. Now consider the critical chain j1, . . . , jh = j for job j with total

length �j(p). From the proof of Lemma 2.5, we know that all deliberate idle time in the
intervals [ri(p), Si(p)[, i = j1, . . . , jh, is charged only to jobs in Bj . In other words, all
deliberate idle time in [0, Sj(p)[ that is charged to jobs in Aj lies in the complementary
intervals [0, rj1 [ and [Si(p), Ci(p)[, i = j1, . . . , jh−1. (Recall that rj1 = rj1(p) due to the
definition of a critical chain.) The total length of these intervals is exactly �j(p)− pj .
Hence, the total amount of deliberate idle time in [0, Sj(p)[ that is charged to jobs
in Aj is at most m (�j(p)−pj) � m�j(p). Hence, we obtain β

∑
i∈Oj(p)

E[Pi] � m�j(p)
for any realization p of the processing times. Taking expectations yields the claimed
result.

Finally, we obtain an upper bound on the expected completion time of any job
under Algorithm CMNS; compare to [5, Theorem 4.9].

Theorem 2.8. For any instance of a stochastic scheduling problem P|rj , prec| γ
and any priority list L, which is a linear extension of the precedence constraints,
the expected completion time of any job j under Algorithm CMNS (with parameter
β � 0) fulfills

E[Cj(P )] �
(
m− 1

m
+

1

β

)
E[�j(P )] +

1 + β

m

∑
i∈Bj

E[Pi] +
1

m
rj .(2.5)

(Again, γ is used to denote an arbitrary objective function.)
Proof. Taking expectations in (2.1) together with Lemma 2.6 yields

E[Cj(P )] � m− 1

m
E[�j(P )] +

1

m

⎛
⎝rj + (1 + β)

∑
i∈Bj

E[Pi] + E

⎡
⎣ ∑

i∈Oj(P )

E[Pi]

⎤
⎦
⎞
⎠ .

Plugging in the inequality from Lemma 2.7 gives the desired result.

3. LP-relaxation. To obtain a priority list L as input for Algorithm CMNS,
and to obtain a lower bound on the optimum, Chekuri et al. [5] use a single ma-
chine relaxation. This approach does not help in the stochastic setting, since the
single machine problem does not necessarily provide a lower bound for the parallel
machine problem; see [15, Ex. 4.1] for an example. Instead, we use LP-relaxations,
which extend those used by Möhring, Schulz, and Uetz [15], adding inequalities which
represent the precedence constraints. First, define f : 2V → R by

f(W ) :=
1

2m

⎛
⎜⎝
⎛
⎝∑

j∈W

E[Pj ]

⎞
⎠

2

+
∑
j∈W

E[Pj ]
2

⎞
⎟⎠− (m− 1)(Δ − 1)

2m

⎛
⎝∑

j∈W

E[Pj ]
2

⎞
⎠

(3.1)

for W ⊆ V . Here, Δ � 0 is a common upper bound on Var[Pj ]/E[Pj ]
2 for all jobs

j ∈ V , where Var[Pj ] = E[P 2
j ] − E[Pj ]

2 is the variance of Pj . In other words, the
coefficient of variation

CV[Pj ] :=

√
Var[Pj ]

E[Pj ]

of the distributions Pj is bounded by
√

Δ for all j ∈ V . The following load inequalities
are crucial for the derivation of our results.
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Theorem 3.1 (see [15, Cor. 3.1]). If CV[Pj ] �
√

Δ for all Pj and some Δ � 0,
the load inequalities ∑

j∈W

E[Pj ] E[CΠ
j (P )] � f(W )(3.2)

are valid for all W ⊆ V and any nonanticipatory scheduling policy Π.
In fact, as mentioned in [15], assuming that an upper bound exists on the co-

efficients of variation of the processing time distributions Pj can be a reasonable
assumption for many scheduling problems. For instance, assume that job processing
times follow so-called NBUE distributions.

Definition 3.2 (NBUE). A nonnegative random variable X is “new better than
used in expectation” (NBUE) if E [X − t|X > t] � E [X] for all t � 0.

Here, E [X − t|X > t] is the conditional expectation of X−t under the assumption
that X > t. Roughly speaking, when processing times are NBUE, on average it is not
disadvantageous to process a job. Examples for NBUE distributions are, among oth-
ers, exponential, uniform, and Erlang distributions. A result of Hall and Wellner [11]
states that the coefficient of variation CV[X] of any NBUE distribution X is bounded
by 1. Hence, by choosing Δ = 1 the second term of the right-hand side of (3.2) can be
neglected for NBUE distributions, which leads to simplified performance guarantees
in section 4.

Observe that under any scheduling policy Π the trivial inequalities

E[CΠ
j (P )] � E[CΠ

i (P )] + E[Pj ], (i, j) ∈ A,

and

E[CΠ
j (P )] � E[Pj ], j ∈ V,

are valid, since they even hold pointwise for any realization of the processing times.
Due to Theorem 3.1, the following is thus an LP-relaxation for the problem
P|rj , prec|E [

∑
wj Cj ]:

Minimize
∑
j∈V

wj C
LP
j

subject to
∑
j∈W

E[Pj ]C
LP
j � f(W ), W ⊆ V,

CLP
j � CLP

i + E[Pj ], (i, j) ∈ A,

CLP
j � E[Pj ], j ∈ V,

where f : 2V → R is the set function defined in (3.1). It is known that the load
inequalities

∑
j∈W E[Pj ]C

LP
j � f(W ), W ⊆ V, can be separated in time O(n log n )

[15, 21]. Hence, due to the fact that the remaining number of inequalities is poly-
nomial in terms of n, this LP-relaxation can be solved in time polynomial in n by
the equivalence of separation and optimization [10]. The following technical lemma
of Möhring, Schulz, and Uetz [15] is required later in the analysis.

Lemma 3.3 (see [15, Lemma 4.2]). Let CLP ∈ R
n be any point that satisfies the

first and the last set of inequalities from the LP-relaxation. Assuming CLP
1 � CLP

2 �
· · · � CLP

n , we then have for all j ∈ V

1

m

j∑
k=1

E[Pk] �
(

1 + max

{
1,

m− 1

m
Δ

})
CLP

j .
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4. Results. We are now ready to prove approximation results for stochastic
machine scheduling problems with precedence constraints.

General precedence constraints. We consider the general problem with prece-
dence constraints and release dates, P|rj , prec|E [

∑
wj Cj ] . From an optimal so-

lution for the LP-relaxation, we define a priority list L according to nondecreas-
ing “LP completion times” CLP

j . It is perhaps interesting to note that inequalities

CLP
j � CLP

i + E[Pj ], (i, j) ∈ A, are required only to ensure that the order according

to nondecreasing LP completion times CLP
j is a linear extension of the precedence

constraints. They are not required elsewhere in the analysis. Moreover, instead of
the weaker inequalities CLP

j � E[Pj ] we could use CLP
j � rj + E[Pj ] as well, but this

does not yield an improvement of our results.
Theorem 4.1. Consider an instance of the stochastic machine scheduling prob-

lem P|rj , prec|E [
∑

wj Cj ] with CV[Pj ] �
√

Δ for all processing times Pj and some
Δ � 0. Let L be a priority list according to an optimal solution CLP of the LP-
relaxation. Then Algorithm CMNS (with parameter β > 0) is an α-approximation
with

α = (1 + β)

(
1 +

1

β
+ max

{
1,

m− 1

m
Δ

})
.

Proof. Since L is a linear extension of the precedence constraints, Theorem 2.8
yields

E[Cj(P )] �
(
m− 1

m
+

1

β

)
E[�j(P )] +

1 + β

m

∑
i∈Bj

E[Pi] +
1

m
rj

for any job j ∈ V . (Recall that Bj denotes the jobs that come before job j in the
priority list L.) Lemma 3.3 yields

1

m

∑
i∈Bj

E[Pi] �
(

1 + max

{
1,

m− 1

m
Δ

})
CLP

j

for all j ∈ V . Hence,∑
j∈V

wj E[Cj(P )] �
(
m− 1

m
+

1

β

) ∑
j∈V

wj E[�j(P )]

+ (1 + β)

(
1 + max

{
1,

m− 1

m
Δ

}) ∑
j∈V

wj C
LP
j +

1

m

∑
j∈V

wj rj .

Now, for any job j and any realization p of the processing times, the length �j(p) of
a critical chain for job j is a lower bound for job j’s completion time, �j(p) � Cj(p).
This is true by definition of a critical chain. Hence, the value E[�j(P )] is a lower
bound on the expected completion time E[Cj(P )] of any job j for any scheduling
policy. (Notice that the critical chain may be different for different realizations of the
processing times, and thus the fact that E[�j(P )] � E[Cj(P )] cannot be derived from
the precedence constraints in the LP-relaxation.) Thus,

∑
j∈V wj E[�j(P )] is a lower

bound on the expected performance of an optimal scheduling policy. Moreover, both
terms

∑
j∈V wj C

LP
j and

∑
j∈V wj rj are lower bounds on the expected performance

of an optimal scheduling policy as well. This gives a performance bound of(
m− 1

m
+

1

β

)
+ (1 + β)

(
1 + max

{
1,

m− 1

m
Δ

})
+

1

m
.
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Rearranging the terms yields the desired result.
Notice that Theorem 4.1 implies a performance bound of 3 + 2

√
2 ≈ 5.828 if

β = 1/
√

2 and if the jobs’ processing times are distributed according to NBUE distri-
butions (see Definition 3.2). This matches the performance guarantee achieved in [5]
for the corresponding deterministic scheduling problem P|rj , prec|

∑
wj Cj . The per-

formance bound in Theorem 4.1 can be slightly improved if release dates are absent.
Theorem 4.2. Consider an instance of the stochastic machine scheduling prob-

lem P|prec|E [
∑

wj Cj ] with CV[Pj ] �
√

Δ for all processing times Pj and some
Δ � 0. Let L be a priority list according to an optimal solution CLP of the LP-
relaxation. Then Algorithm CMNS (with parameter β > 0) is an α-approximation
with

α = (1 + β)

(
1 +

m− 1

mβ
+ max

{
1,

m− 1

m
Δ

})
.

The tighter bound follows from two modifications in the proof of Theorem 4.1.
On the one hand, in the proof of Lemma 2.7, one can show that

1

m
E

⎡
⎣ ∑

i∈Oj(P )

E[Pi]

⎤
⎦ � m− 1

mβ
E[�j(P )].

The reason is that there are only m − 1 machines available for the deliberate idle
time that is charged to jobs which are scheduled out of order: Simultaneous to the
deliberate idle time, at least one job from the critical chain j1, j2, . . . , jh is in process.
(This argument does not hold if release dates are present, since deliberate idle time
could possibly accumulate before rj1 .) On the other hand, it is immediate that the last
term (1/m) rj on the right-hand side of (2.5) disappears. With these modifications,
the claim follows exactly as in Theorem 4.1.

In-forest precedence constraints. Let us now turn to the special case of the
problem denoted by P|in-forest|E [

∑
wj Cj ] . In-forest precedence constraints are

characterized by the fact that each job has at most one successor. Moreover, we
assume that there are no release dates. For this problem, the results of the preceding
section can be further improved.

We start with the following observation which is also contained in [5, Lemma 4.16];
we nevertheless give a short proof for the sake of completeness.

Lemma 4.3. Consider the schedule constructed by Graham’s list scheduling for
an arbitrary priority list L, which is a linear extension of the (in-forest) precedence
constraints, and any realization p of the processing times. Then, in the interval
[rj(p), Sj(p)[ there is no processing of jobs in Aj.

Proof. Suppose the claim is false and, among all jobs which violate it, let job j be
one that is scheduled earliest. Obviously, Sj(p) > rj(p); otherwise the claim is trivially
true. In the interval [rj(p), Sj(p)[ no job from Aj is started, since j is available from
time rj(p) on. Hence, there must be some job k ∈ Aj that has been started before
rj(p) and that is still in process at rj(p). Thus rj(p) > 0. Denote by h the number
of jobs that are started at time rj(p). All of these jobs i have higher priority than j,
and the fact that j is the first job that violates the claim yields ri(p) = rj(p). (At
this point it is crucial that the priority list extends the precedence constraints.) In
other words, for each of these jobs a critical predecessor ends at time rj(p) and, due
to the fact that the precedence constraints form an in-forest, all of these predecessors
are different. Hence, including j’s critical predecessor, h+1 different jobs end at time
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rj(p), but only h are started. This is a contradiction since job j is available at time
rj(p).

Lemma 4.4. For any instance of the stochastic scheduling problem P|in-forest| γ
and any priority list L, which is a linear extension of the precedence constraints, the
expected completion time of any job j under Graham’s list scheduling fulfills

E[Cj(P )] � m− 1

m
E[�j(P )] +

1

m

∑
i∈Bj

E[Pi].(4.1)

(Again, γ is used to denote an arbitrary objective function.)
Proof. Consider any realization p of the processing times. Given any job j,

consider a critical chain for j, consisting of jobs j1, j2, . . . , jh = j and with total
length �j(p). The time interval [0, Cj(p)] can be partitioned into time intervals, where
a job from a critical chain for j is in process, and the remaining time intervals. Due
to Lemma 4.3, in each time interval [ri(p), Si(p)[ there is no job from Ai in process
for all i = j1, . . . , jh. Moreover, there is no idle time on any of the machines in these
time intervals (we consider Graham’s list scheduling, and there are no release dates).
Since Aj1 ⊃ Aj2 ⊃ · · · ⊃ Ajh = Aj , it follows that the only jobs processing in these
time intervals are the jobs in Bj , or more precisely, in Bj(p). In other words, the total
processing time of jobs in these time intervals is at most

∑
i∈Bj

pi − �j(p). Hence,

Cj(p) � m− 1

m
�j(p) +

1

m

∑
i∈Bj

pi

for any realization p. Taking expectations, we see that the claim follows.
Theorem 4.5. Consider an instance of P|in-forest|E[

∑
wj Cj ] with CV[Pj ] �√

Δ for all processing times Pj and some Δ � 0. Let L be a priority list according to
an optimal solution CLP of the LP-relaxation. Then Graham’s list scheduling is an
α-approximation with

α = 2 − 1

m
+ max

{
1,

m− 1

m
Δ

}
.

Proof. Graham’s list scheduling coincides with Algorithm CMNS for β = 0. The
proof is therefore exactly the same as that of Theorem 4.1, except that Lemma 4.4 is
used instead of Theorem 2.8.

For NBUE distributions (see Definition 3.2), Theorem 4.5 yields a performance
guarantee of 3 − 1/m.

Single machine problems. Theorem 4.2 implies a 2-approximation for the spe-
cial case of a single machine: In this case the term (m − 1)/(mβ) disappears, and
we can choose β = 0 to obtain performance guarantee 2. (For β = 0, the algorithm
corresponds to Graham’s list scheduling.) This holds for arbitrarily distributed, in-
dependent processing times. In fact, this matches the best bound currently known
in the deterministic setting; see Open Problem 9 in the collection of Schuurman and
Woeginger [19].

5. Further remarks. A scheduling policy defines a mapping of processing times
to start times of jobs. This mapping has to be universally measurable in order to grant
existence of the expected objective function value [14]. Without going into further
detail we just mention that the scheduling policies discussed in this paper fulfill this
requirement; refer to [21, Cor. 3.6.15] for further details.
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We point out that, apart from the expected processing times of the jobs, a uni-
form upper bound on their coefficients of variation is the sole stochastic information
required as input for the presented scheduling policy. Nevertheless, in our analysis we
compare its performance to a lower bound on the performance of any nonanticipatory
scheduling policy. This refers to the broadest possible sense of scheduling policies as
defined by Möhring, Radermacher, and Weiss [14]. In particular, an optimal schedul-
ing policy is therefore allowed to take advantage of the complete knowledge of the
conditional distributions of the processing times, at any time.

Finally, we mention that our analysis indeed requires policies to be nonanti-
cipatory, because the LP lower bound does not hold otherwise. This can be seen from
the observation that an anticipatory “scheduling policy” could, for instance, compute
an optimal schedule for any realization of the processing times. Theorem 3.1, however,
is no longer valid in this case; see [21]. In other words, our analysis is based upon
an adversary that is just as powerful as the scheduling policy itself. This constitutes
a major difference compared to the rather “unfair” competitive analysis known from
online optimization.

Acknowledgment. We thank the anonymous referee for many valuable com-
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[12] T. Kämpke, On the optimality of static priority policies in stochastic scheduling on parallel
machines, J. Appl. Probab., 24 (1987), pp. 430–448.

[13] E. Koutsoupias and C. H. Papadimitriou, Beyond competitive analysis, SIAM J. Comput.,
30 (2000), pp. 300–317.

[14] R. H. Möhring, F. J. Radermacher, and G. Weiss, Stochastic scheduling problems I: General
strategies, ZOR—Math. Methods Oper. Res., 28 (1984), pp. 193–260.



802 MARTIN SKUTELLA AND MARC UETZ
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Montréal, QB, 2002, pp. 170–178.

[18] A. S. Schulz, Polytopes and Scheduling, Ph.D. thesis, Institut für Mathematik, Technische
Universität Berlin, Germany, 1996.

[19] P. Schuurman and G. J. Woeginger, Polynomial time approximation algorithms for machine
scheduling: Ten open problems, J. Scheduling, 2 (1999), pp. 203–213.

[20] M. Skutella and M. Uetz, Scheduling precedence-constrained jobs with stochastic processing
times on parallel machines, in Proceedings of the 12th Annual ACM-SIAM Symposium on
Discrete Algorithms, SIAM, Philadelphia, ACM, New York, 2001, pp. 589–590.

[21] M. Uetz, Algorithms for Deterministic and Stochastic Scheduling, Cuvillier Verlag, Göttingen,
Germany, 2002.

[22] M. Uetz, When greediness fails: Examples from stochastic scheduling, Oper. Res. Lett., 31
(2003), pp. 413–419.

[23] G. Weiss, Turnpike optimality of Smith’s rule in parallel machines stochastic scheduling, Math.
Oper. Res., 17 (1992), pp. 255–270.

[24] G. Weiss and M. Pinedo, Scheduling tasks with exponential service times on non-identical
processors to minimize various cost functions, J. Appl. Probab., 17 (1980), pp. 187–202.



SIAM J. COMPUT. c© 2005 Society for Industrial and Applied Mathematics
Vol. 34, No. 4, pp. 803–824

IMPROVED COMBINATORIAL ALGORITHMS FOR FACILITY
LOCATION PROBLEMS∗

MOSES CHARIKAR† AND SUDIPTO GUHA‡

Abstract. We present improved combinatorial approximation algorithms for the uncapacitated
facility location problem. Two central ideas in most of our results are cost scaling and greedy
improvement. We present a simple greedy local search algorithm which achieves an approximation
ratio of 2.414+ε in Õ(n2/ε) time. This also yields a bicriteria approximation tradeoff of (1+γ, 1+2/γ)
for facility cost versus service cost which is better than previously known tradeoffs and close to the
best possible. Combining greedy improvement and cost scaling with a recent primal-dual algorithm
for facility location due to Jain and Vazirani, we get an approximation ratio of 1.853 in Õ(n3)
time. This is very close to the approximation guarantee of the best known algorithm which is linear
programming (LP)-based. Further, combined with the best known LP-based algorithm for facility
location, we get a very slight improvement in the approximation factor for facility location, achieving
1.728. We also consider a variant of the capacitated facility location problem and present improved
approximation algorithms for this.
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1. Introduction. In this paper, we present improved combinatorial algorithms
for some facility location problems. Informally, in the (uncapacitated) facility location
problem we are asked to select a set of facilities in a network to service a given set of
customers, minimizing the sum of facility costs as well as the distance of the customers
to the selected facilities. (The precise problem definition appears in section 1.2). This
classical problem, first formulated in the early 1960s, has been studied extensively in
the operations research and computer science communities and has recently received
a lot of attention (see [13, 33, 16, 9, 10, 11, 23]).

The facility location problem is NP-hard, and recent work has focused on ob-
taining approximation algorithms for the problem. The version where the assignment
costs do not form a metric can be shown to be as hard to approximate as the set-cover
problem. Shmoys, Tardos, and Aardal [33] gave the first constant factor approxima-
tion algorithm for metric facility location, where the assignment costs are based on a
metric distance function.1 This was subsequently improved by Guha and Khuller [16],
Chudak [9], and Chudak and Shmoys [10], who achieved the currently best known ap-
proximation ratio of 1 + 2/e ≈ 1.736. All of these algorithms are based on solving
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linear programming (LP) relaxations of the facility location problem and rounding the
solution obtained. Korupolu, Plaxton, and Rajaraman [23] analyzed a well-known lo-
cal search heuristic and showed that it achieves an approximation guarantee of (5+ε).
However, the algorithm has a fairly high running time of O(n4 log n/ε).

The facility location problem has also received a lot of attention due to its con-
nection with the k-median problem. Lin and Vitter [25] showed that their filtering
technique [26] can be used to round a fractional solution to the LP relaxation of
the (metric) k-median problem, obtaining an integral solution of cost 2(1 + 1

ε ) times
the fractional solution while using (1 + ε)k medians (facilities). Their algorithm is
based on a technique called filtering, which was also used in [33], and has since found
numerous other applications.

Jain and Vazirani [19] gave primal-dual algorithms for the facility location and
k-median problems, achieving approximation ratios of 3 and 6 for the two problems.
The running time of their algorithm for facility location is O(n2 log n). The running
time of the result can be made linear with a loss in the approximation factor using
results in [18] if the distance function is given as an oracle. For results regarding the
k-median problem, see [21, 25, 35, 38, 37, 4, 5, 6, 1, 8, 7, 30, 2]. See section 7 for work
subsequent to this paper.

1.1. Our results. We present improved combinatorial algorithms for the facility
location problem. The algorithms combine numerous techniques based on two central
ideas. The first idea is that of cost scaling, i.e., to scale the costs of facilities relative
to the assignment costs. The scaling technique exploits asymmetric approximation
guarantees for the facility cost and the service cost. The idea is to apply the algorithm
to the scaled instance and then scale back to get a solution for the original instance.
On several occasions, this technique alone improves the approximation ratio signifi-
cantly. The second idea used is greedy local improvement. If either the service cost
or the facility cost is very high, greedy local improvement decreases the total cost by
balancing the two. We show that greedy local improvement by itself yields a very
good approximation for facility location in Õ(n2) time.

We first present a simple local search algorithm for facility location. This differs
from (and is more general than) the heuristic proposed by Kuehn and Hamburger [24]
and analyzed by Korupolu, Plaxton, and Rajaraman [23]. Despite the seemingly more
complex local search step, each step can still be performed in O(n) time. We are not
aware of any prior work involving the proposed local search algorithm. We show that
the (randomized) local search algorithm together with scaling yields an approximation
ratio of 2.414+ε in expected time O(n2(log n+ 1

ε )) (with a multiplicative logn factor in
the running time for a high probability result). This improves significantly on the local
search algorithms considered by Korupolu, Plaxton, and Rajaraman, both in terms
of running time and approximation guarantee. It also improves on the approximation
guarantee of Jain and Vazirani, while still running in Õ(n2) time. We can also use the
local search algorithm with scaling to obtain a bicriteria approximation for the facility
cost and the service cost. We get a (1 + γ, 1 + 2/γ) tradeoff for facility cost versus
service cost (within factors of (1 + ε) for arbitrarily small ε). Moreover, this holds
even when we compare it with the cost of an arbitrary feasible solution to the facility
location LP. Thus this yields a better tradeoff than that obtained by the filtering
technique of Lin and Vitter [25] and the tradeoffs in [33, 23]. This gives bicriteria
approximations for budgeted versions of facility location where the objective is to
minimize either the facility cost or service cost subject to a budget constraint on the
other. Further, our tradeoff is close to the best possible. We show that it is not
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possible to obtain a tradeoff better than (1 + γ, 1 + 1/γ).
Using both the local search algorithm and the primal-dual algorithm of [19] results

in a 21
3 approximation for facility location in Õ(n2) time. We prove that a modified

greedy improvement heuristic as in [16], along with the primal-dual algorithm in [19],
together with scaling, yields an approximation ratio of 1.853 in Õ(n3) time. Interest-
ingly, applying both this combinatorial algorithm (with appropriate scaling) and the
LP-based algorithm of [9, 10] and taking the better of the two gives an approximation
ratio of 1.728, marginally improving the best known approximation result for facility
location. We construct an example to show that the dual constructed by the primal-
dual facility location algorithm can be a factor 3− ε away from the optimal solution.
This shows that an analysis that uses only this dual as a lower bound cannot achieve
an approximation ratio better than 3 − ε.

Jain and Vazirani [19] show how a version of facility location with capacities
(where multiple facilities are allowed at the same location) can be solved by reducing
it to uncapacitated facility location. They obtain a 4 approximation for the capac-
itated problem in Õ(n2) time. Using their idea, from a ρ approximation algorithm
for the uncapacitated case, one can obtain an approximation ratio of 2ρ for the ca-
pacitated case. This was also observed by Shmoys [31]. This fact therefore implies
approximation ratios of 3.7 in Õ(n3) time and 3.46 using LP-based techniques for the
capacitated problem.

1.2. Problem definition. The uncapacitated facility location problem is defined
as follows: Given a graph with an edge metric c and cost fi of opening a center (or
facility) at node i, select a subset of facilities to open so as to minimize the cost
of opening the selected facilities plus the cost of assigning each node to its closest
open facility. The cost of assigning node j to facility i is djcij , where cij denotes the
distance between i and j. The constant dj is referred to as the demand of the node j.

Due to the metric property, this problem is also referred to as the metric unca-
pacitated facility location problem. In this paper we will refer to this problem as the
facility location problem. We will denote the total cost of the facilities in a solution
as the facility cost and the rest as the service cost. These costs will be denoted by F
and C, subscripted appropriately to define the context. For the LP relaxations of the
problem and its dual, see section 4.

The k-median problem is defined as follows: given n points in a metric space, we
must select k of these to be centers (facilities) and then assign each input point j
to the selected center that is closest to it. If location j is assigned to a center i, we
incur a cost djcij . The goal is to select the k centers so as to minimize the sum of the
assignment costs.

We will mostly present proofs assuming unit demands; however, since the argu-
ments will be on a node by node basis, the results will extend to arbitrary demands
as well.

2. Facility location and local search. In this section we describe and analyze
a simple greedy local search algorithm for facility location.

Suppose F is the facility cost and C is the service cost of a solution. The objective
of the algorithm is to minimize the cost of the solution F + C. The algorithm starts
from an initial solution and repeatedly attempts to improve its current solution by
performing local search operations.

The initial solution is chosen as follows. The facilities are sorted in increasing
order of facility cost. Let Fi be the total facility cost and let Ci be the total service
cost for the solution consisting of the first i facilities in this order. We compute the
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Fi and Ci values for all i and choose the solution that minimizes Fi +Ci. Lemma 2.1
bounds the cost of the initial solution in terms of the cost of an arbitrary solution
SOL, and Lemma 2.2 shows that the initial solution can be computed in O(n2) time.

Let F be the set of facilities in the current solution. Consider a facility i. We will
try to improve the current solution by incorporating i and possibly removing some
centers from F . (Note that it is possible that i ∈ F . In fact, this is required for
reasons that will be made clear later.) Some nodes j may be closer to i than their
currently assigned facility in F . All such nodes are reassigned to i. Additionally,
some centers in F are removed from the solution. If we remove a center i′ ∈ F , then
all nodes j that were connected to i′ are now connected to i. Note that the total
change in cost depends on which nodes we choose to connect to i and which facilities
we choose to remove from the existing solution. The gain associated with i (referred
to as gain(i)) is the largest possible decrease in F +C as a result of this operation. If
F +C only increases as a result of adding facility i, gain(i) is said to be 0. Lemma 2.3
guarantees that gain(i) can be computed in O(n) time.

The algorithm chooses a random node i and computes gain(i). If gain(i) > 0, i
is incorporated in the current solution and nodes are reassigned as well as facilities
removed, if required, so that F + C decreases by gain(i). This step is performed
repeatedly. Note that at any point, demand nodes need not be assigned to the closest
facility in the current solution. This may happen because the only reassignments
we allow are to the newly added facility. When a new facility is added and existing
facilities removed, reassigning to the new facility need not be the optimal thing to
do. However, we do not reoptimize at this stage as this could take O(n2) time. Our
analysis goes through for our seemingly suboptimal procedure. The reoptimization,
if required, will be performed later if a facility i already in F is added to the solution
by the local search procedure. In fact, this is the reason that node i is chosen from
amongst all the nodes, instead of nodes not in F .

We will compare the cost of the solution produced by the algorithm with the cost
of an arbitrary feasible solution to the facility location LP (see [33, 9, 19]). The set
of all feasible solutions to the LP includes all integral solutions to the facility location
problem.

Lemma 2.1. The cost F +C for the initial solution is at most n2FSOL +nCSOL,
where FSOL and CSOL are the facility cost and service cost of an arbitrary solution
SOL to the facility location LP.

Proof. Consider the solution SOL. Let F be the set of facilities i such that
yi ≥ 1/n. Note that F must be nonempty. Suppose the most expensive facility in F
has cost f . Then FSOL ≥ f/n. We claim that every demand node j must draw at
least 1/n fraction of its service from the facilities in F . Let CF (j) be the minimum
distance of demand node j from a facility in F and let CSOL(j) be the service cost of
j in the solution SOL. Then CSOL(j) ≥ 1

nCF (j). Examine the facilities in increasing
order of their facility cost and let x be the last location in this order where a facility
of cost ≤ f occurs. Then the solution that consists of the first x facilities in this
order contains all the facilities in F . Thus, the service cost of this solution is at most∑

j CF (j) ≤ n
∑

j CSOL(j) = nCSOL. Also, the facility cost of this solution is at

most x · f ≤ n · f ≤ n2FSOL. Hence the cost C + S for this solution is at most
n2FSOL + nCSOL. Since this is one of the solutions considered in choosing an initial
solution, the lemma follows.

Lemma 2.2. The initial solution can be chosen in O(n2) time.
Proof. First, we sort the facilities in increasing order of their facility cost. This

takes O(n log n) time. We compute the costs of candidate solutions in an incremental
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fashion as follows. We maintain the cost of the solution consisting of the first i
facilities in this order (together with assignments of nodes to facilities). From this,
we compute the cost of the solution consisting of the first i + 1 facilities (together
with assignments of nodes to facilities). The idea is that the solutions for i and i + 1
differ very slightly and the change can be computed in O(n) time. Consider the effect
of including the (i + 1)st facility in the solution for i. Some nodes may now have
to be connected to the new facility instead of their existing assignment. This is the
only type of assignment change which will occur. In order to compute the cost of
the solution for i + 1 (and the new assignments), we examine each demand node j
and compare its current service cost with the distance of j to the new facility. If
it is cheaper to connect j to the new facility, we do so. Clearly, this takes O(n)
time.

The initial solution consists of just the cheapest facility. Its cost can be computed
in O(n) time. Thus, the cost of the n candidate solutions can be computed in O(n2)
time. The lemma follows.

Lemma 2.3. The function gain(i) can be computed in O(n) time.

Proof. Let F be the current set of facilities. For a demand node j, let σ(j) be
the facility in F assigned to j. The maximum decrease in F + C resulting from the
inclusion of facility i can be computed as follows. Consider each demand node j. If
the distance of j to i is less than the current service cost of j, i.e., cij < cσ(j)j , mark
j for reassignment to i. Let D be the set of demand nodes j such that cij < cσ(j)j .
The above step marks all the nodes in D for reassignment to the new facility i.
(Note that none of the marked nodes are actually reassigned; i.e., the function σ
is not changed in this step. The actual reassignment will occur only if gain(i) is
positive.) Having considered all the demand nodes, we consider all the facilities in
F . Let i′ be the currently considered facility. Let D(i′) be the set of demand nodes
j that are currently assigned to i′, i.e., D(i′) = {j : σ(j) = i′}. Note that some
of the nodes that are currently assigned to i′ may have already been marked for
reassignment to i. Look at the remaining unmarked nodes (possibly none) assigned
to i′. Consider the change in cost if all these nodes are reassigned to i and facility
i′ removed from the current solution. The change in the solution cost as a result of
this is −fi′ +

∑
j∈D(i′)\D(cij − ci′j). If this results in a decrease in the cost, mark all

such nodes for reassignment to i and mark facility i′ for removal from the solution.
After all the facilities in F have been considered as above, we actually perform all the
reassignments and facility deletions, i.e., reassign all marked nodes to i and delete all
marked facilities. Then gain(i) is simply (C1 + S1)− (C2 + S2), where C1, S1 are the
facility and service costs of the initial solution and C2, S2 are the facility and service
costs of the final solution. If this difference is < 0, gain(i) is 0.

Now we prove that the above procedure is correct. Suppose that there is some
choice of reassignments of demand nodes and facilities in F to remove such that the
gain is more than gain(i) computed above. It is easy to show that this cannot be the
case.

Lemmas 2.6 and 2.7 relate the sum of the gains to the difference between the
cost of the current solution and that of an arbitrary fractional solution. For ease of
understanding, before proving the results in their full generality, we first prove simpler
versions of the lemmas where the comparison is with an arbitrary integral solution.

Lemma 2.4.

∑
gain(i) ≥ C − (FSOL + CSOL), where FSOL and CSOL are the

facility and service costs for an arbitrary integral solution.

Proof. Let FSOL be the set of facilities in solution SOL. For a demand node j,



808 MOSES CHARIKAR AND SUDIPTO GUHA

let σ(j) be the facility assigned to j in the current solution and let σSOL(j) be the
facility assigned to j in SOL. We now proceed with the proof.

With every facility i ∈ FSOL, we will associate a modified solution as follows.
Let DSOL(i) be the set of all demand nodes j which are assigned to i in SOL.
Consider the solution obtained by including facility i in the current solution and
reassigning all nodes in DSOL(i) to i. Let gain′(i) be the decrease in cost of the
solution as a result of this modification, i.e., gain′(i) = −fi+

∑
j∈DSOL(i)(cσ(j)j−cij).

Note that gain′(i) could be < 0. Clearly, gain(i) ≥ gain′(i). We will prove that∑
i∈FSOL

gain′(i) = C − (FSOL + CSOL). Notice that for j ∈ DSOL(i), we have
i = σSOL(j). Therefore

∑
i∈FSOL

gain′(i) =
∑

i∈FSOL

−fi +
∑

i∈FSOL

∑
j∈DSOL(i)

(cσ(j)j − cσSOLj).

The first term evaluates to −FSOL. The summation over the indices i, j ∈ DSOL(i)
can be replaced simply by a sum over the demand points j. The summand therefore
simplifies to two terms,

∑
j cσ(j)j , which evaluates to C, and −

∑
j cσSOLj , which

evaluates to −CSOL. Putting it all together, we get
∑

i gain′(i) = −FSOL+C−CSOL,
which proves the lemma.

Lemma 2.5.

∑
gain(i) ≥ F − (FSOL + 2CSOL), where FSOL and CSOL are the

facility and service costs for an arbitrary integral solution.

Proof. The proof will proceed along lines similar to the proof of Lemma 2.4. As
before let F be the set of open facilities in the current solution. Let FSOL be the set
of facilities in solution SOL. For a demand node j, let σ(j) be the facility assigned
to j in the current solution and let σSOL(j) be the facility assigned to j in SOL. For
a facility i ∈ F , let D(i) be the set of demand nodes assigned to i in the current
solution. For a facility i ∈ FSOL, let DSOL(i) be the set of all demand nodes j which
are assigned to i in SOL.

First, we associate every node i′ ∈ F with its closest node m(i′) ∈ FSOL. For
i ∈ FSOL, let R(i) = {i′ ∈ F|m(i′) = i}. With every facility i ∈ FSOL, we will
associate a modified solution as follows. Consider the solution obtained by including
facility i in the current solution and reassigning all nodes in DSOL(i) to i. Further,
for all facilities i′ ∈ R(i), the facility i′ is removed from the solution and all nodes in
D(i′)\DSOL(i) are reassigned to i. Let gain′(i) be the decrease in cost of the solution
as a result of this modification, i.e.,

gain′(i) = −fi +
∑

j∈DSOL(i)

(cσ(j)j − cij) +
∑

i′∈R(i)

⎛
⎝fi′ +

∑
j∈D(i′)\DSOL(i)

(cσ(j)j − cij)

⎞
⎠ .

(2.1)

Note that gain′(i) could be < 0. Clearly, gain(i) ≥ gain′(i). We will prove that∑
i∈FSOL

gain′(i) ≥ F − (FSOL + 2CSOL). In order to obtain a bound, we need
an upper bound on the distance cij . From the triangle inequality, cij ≤ ci′j + ci′i.
Since i′ ∈ R(i), m(i′) = i; i.e., i is the closest node to i′ in FSOL. Hence, ci′i ≤
ci′σSOL(j) ≤ ci′j + cσSOL(j)j , where the last inequality follows from triangle inequality.
Substituting this bound for ci′i in the inequality for cij , we get cij ≤ 2ci′j+cσSOL(j)j =
2cσ(j)j+cσSOL(j)j , where the equality comes from the fact that i′ = σ(j). Substituting
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this bound for cij in the last term of (2.1), we get

gain′(i) ≥ −fi +
∑

j∈DSOL(i)

(cσ(j)j − cij)

+
∑

i′∈R(i)

(
fi′ +

∑
j∈D(i′)\DSOL(i)

−(cσ(j)j + cσSOL(j)j)

)
.

The last term in the sum is a sum over negative terms, so if we sum over a larger set
j ∈ D(i′) instead of j ∈ D(i′) \DSOL(i), we will still have a lower bound on gain′(i):

gain′(i) ≥ −fi +
∑

j∈DSOL(i)

(cσ(j)j − cij) +
∑

i′∈R(i)

fi′ −
∑

i′∈R(i)

∑
j∈D(i′)

(cσ(j)j + cσSOL(j)j).

The first term in the expression
∑

i gain′(i) is equal to −FSOL, the second is
C−CSOL since the double summation over indices i and j ∈ DSOL(i) is a summation
over all the demand nodes j, and

∑
j cσ(j)j is C and

∑
j cσSOL(j)j is CSOL. The

third term is the sum of the facility costs of all the nodes in the current solution,
which is F . The fourth term (which is negative) is equal to −(C + CSOL) since the
summation over the indices i, i′ ∈ R(i) and j ∈ D(i′) amounts to a summation over
all the demand nodes j. Therefore we have∑

i∈FSOL

gain′(i) ≥ −FSOL + (C − CSOL) + F − (C + CSOL),

which proves the lemma.
We now claim Lemmas 2.6 and 2.7 to compare with the cost of an arbitrary

fractional solution to the facility location LP instead of an integral solution. We
present the proofs in section 6 for a smoother presentation.

Lemma 2.6.

∑
gain(i) ≥ C − (FSOL + CSOL), where FSOL and CSOL are

the facility and service costs for an arbitrary fractional solution SOL to the facility
location LP.

Similar to the above lemma, we generalize Lemma 2.5 to apply to any fractional
solution of the facility location LP. See section 6 for the proof of the lemma.

Lemma 2.7.

∑
gain(i) ≥ F − (FSOL + 2CSOL), where FSOL and CSOL are

the facility and service costs for an arbitrary fractional solution SOL to the facility
location LP.

Therefore if we are at a local optimum, where gain(i) = 0 for all i, the previous
two lemmas guarantee that the facility cost F and service cost C satisfy

F ≤ FSOL + 2CSOL and C ≤ FSOL + CSOL.

Recall that a single improvement step of the local search algorithm consists of
choosing a random vertex and attempting to improve the current solution; this takes
O(n) time. The algorithm will be: at every step choose a random vertex, compute the
possible improvement on adding this vertex (if the vertex is already in the solution, it
has cost 0), and update the solution if there is a positive improvement. We can easily
argue that the process of computing the gain(i) for a vertex can be performed in
linear time. We now bound the number of improvement steps the algorithm needs to
perform until it produces a low cost solution, which will fix the number of iterations
we perform in the above steps. We will start by proving the following lemma.
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Lemma 2.8. After O(n log(n/ε)) iterations we have C + F ≤ 2FSOL + 3CSOL +
ε(FSOL + CSOL) with probability at least 1

2 .
Proof. Suppose that after s steps C +F ≥ 2FSOL + 3CSOL + ε(FSOL +CSOL)/e.

Since the local search process decreases the cost monotonically, this implies that in
all the intermediate iterations, the above condition on C + F holds.

From Lemmas 2.4 and 2.5, we have

∑
i

gain(i) ≥ 1

2
(C + F − (2FSOL + 3CSOL)).

Let g(i) = gain(i)/(C + F − (2FSOL + 3CSOL)). Then in all intermediate iterations∑
i g(i) ≥ 1

2 . Let Pt be the value of C + F − (2FSOL + 3CSOL) after t steps. Let
gaint(i) and gt(i) be the values of gain(i) and g(i) at the tth step. Observe that
E[gt(i)] ≥ 1

2n .
Suppose i is the node chosen for step t + 1. Then, assuming Pt > 0,

Pt+1 = Pt − gaint(i) = Pt(1 − gt(i)),

ePt+1

ε(FSOL + CSOL)
=

ePt

ε(FSOL + CSOL)
(1 − gt(i)),

ln

(
ePt+1

ε(FSOL + CSOL)

)
= ln

(
ePt

ε(FSOL + CSOL)

)
+ ln(1 − gt(i))

≤ ln

(
ePt

ε(FSOL + CSOL)

)
− gt(i).

Let Qt = ln((ePt)/(ε(FSOL + CSOL))). Then Qt+1 ≤ Qt − gt(i). Note that the node
i is chosen uniformly and at random from amongst n nodes. Our initial assumption
implies that Pt > ε(FSOL + CSOL)/e for all t ≤ s; hence, Qt > 0 for all t ≤ s.
Applying linearity of expectation,

E[Qs+1] ≤ E[Qs] −
1

2n
≤ · · · ≤ Q1 −

s

2n
.

Note that the initial value Q1 ≤ ln(en/ε). So if s = 2n ln n
ε −n, then E[Qs+1] ≤ 1

2 .
By the Markov inequality, Prob[Qs+1 ≥ 1] ≤ 1

2 . If Qs+1 ≤ 1, then Ps+1 ≤ ε(FSOL +
CSOL), which proves the lemma.

Theorem 2.9. The algorithm produces a solution such that F ≤ (1 + ε)(FSOL +
2CSOL) and C ≤ (1 + ε)(FSOL + CSOL) in O(n(log n + 1

ε )) steps (running time
O(n2(log n + 1

ε ))) with constant probability.
Proof. We are guaranteed by Lemma 2.8 that after O(n log(n/ε)) steps we have

the following:

C + F ≤ 2FSOL + 3CSOL + ε(FSOL + CSOL).

Once the above condition is satisfied, we say that we begin the second phase. We
have already shown that with probability at least 1/2, we require O(n log(n/ε)) steps
for the first phase.

We stop the analysis as soon as both C ≤ FSOL + CSOL + ε(FSOL + CSOL) and
F ≤ FSOL + 2CSOL + ε(FSOL + CSOL). At this point we declare that the second
phase has ended.

Suppose one of these is violated. Then applying either Lemma 2.4 or Lemma 2.5,
we get

∑
i gain(i) ≥ ε(FSOL + CSOL).
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Define gaint(i) to be value of gain(i) for a particular step t. Assuming the condi-
tions of the theorem are not true for a particular step t in the second phase, we have
E[gaint(i)] ≥ ε

n (FSOL + CSOL). Let the assignment and facility costs be Ct and Ft

after t steps into the second phase. Assuming we did not satisfy the conditions of the
theorem in the tth step,

Ct+1 + Ft+1 ≤ Ct + Ft − gaint(i).

At the beginning of the second phase, we have

F1 + C1 ≤ 2FSOL + 3CSOL + ε(FSOL + CSOL)

≤ 3(FSOL + CSOL) + ε(FSOL + CSOL).

Conditioned on the fact that the second phase lasts for s steps,

E[Cs+1 + Fs+1] ≤ 3(FSOL + CSOL) − sε

n
(FSOL + CSOL).

Setting s = n + 5n/(2ε), we get E[Cs+1 + Fs+1] ≤ (FSOL + CSOL)/2.
Observe that if FSOL, CSOL are the facility and service costs for the optimum

solution, we have obtained a contradiction to the fact that we can make s steps
without satisfying the two conditions. However, since we are claiming the theorem
for any feasible solution SOL, we have to use a different argument.

If E[Cs+1 + Fs+1] ≤ (FSOL + CSOL)/2, and since C + F is always positive, with
probability at least 1

2 we have Cs+1 + Fs+1 ≤ (FSOL + CSOL). In this case both
conditions of the theorem are trivially true.

Thus with probability at least 1/4 we take O(n log(n/ε) + n/ε) steps. Assuming
1/ε > ln(1/ε), we can drop the ln ε term and claim the theorem.

Following standard techniques, the above theorem yields a high probability result,
losing another factor of logn in running time. The algorithm can be derandomized
very easily, at the cost of a factor n increase in the running time. Instead of picking a
random node, we try all the n nodes and choose the node that gives the maximum gain.
Each step now takes O(n2) time. The number of steps required by the deterministic
algorithm is the same as the expected number of steps required by the randomized
algorithm.

Theorem 2.10. The deterministic algorithm produces a solution such that F ≤
(1 + ε)(FSOL + 2CSOL) and C ≤ (1 + ε)(FSOL +CSOL) in O(n(log n+ 1

ε )) steps with
running time O(n3(log n + 1

ε )).

3. Scaling costs. In this section we will show how cost scaling can be used to
show a better approximation guarantee. The idea of scaling exploits the asymmetry
in the guarantees of the service cost and facility cost.

We will scale the facility costs uniformly by some factor (say δ). We will then solve
the modified instance using local search (or in later sections by a suitable algorithm).
The solution of the modified instance will then be scaled back to determine the cost
in the original instance.

Remark. Notice that the way the proof of Theorem 2.9 is presented, the termina-
tion condition of the algorithm that runs on the scaled instance is not obvious. We will
actually run the algorithm for O(n(log n + 1/ε)) steps and construct that many dif-
ferent solutions. The analysis shows that with constant probability we find a solution
such that both of the conditions are satisfied for at least one of these O(n(log n+1/ε))
solutions. We will scale back all of these solutions and use the best solution. The
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same results will carry over with a high probability guarantee at the cost of another
O(log n) in the running time. We first claim the following simple theorem.

Theorem 3.1. The uncapacitated facility location problem can be approximated
to factor 1 +

√
2 + ε in randomized O(n2/ε + n2 log n) time.

Proof. Assume that the facility cost and the service costs of the optimal solution
are denoted by FOPT and COPT . Then after scaling, there exists a solution to the
modified instance of modified facility cost δFOPT and service cost COPT . For some
small ε′ we have a solution to the scaled instance, with service cost C and facility cost
F such that

F ≤ (1 + ε′)(δFOPT + 2COPT ), C ≤ (1 + ε′)(δFOPT + COPT ).

Scaling back, we will have a solution of the same service cost and facility cost F/δ.
Thus the total cost of this solution will be

C + F/δ ≤ (1 + ε′)

[
(1 + δ)FOPT +

(
1 +

2

δ

)
COPT

]
.

Clearly setting δ =
√

2 gives a 1 +
√

2 + ε approximation, where ε = (1 +
√

2)ε′.
Actually the above algorithm used only the fact that there existed a solution

of a certain cost. In fact, the above proof will go through for any solution, even
fractional. Let the facility cost of such a solution be FSOL and its service cost CSOL.
The guarantee provided by the local search procedure after scaling back yields facility
cost F̂ and service cost Ĉ such that

F̂ ≤ (1 + ε)(FSOL + 2CSOL/δ), Ĉ ≤ (1 + ε)(δFSOL + CSOL).

Setting δ = 2CSOL/(γFSOL), we get that the facility cost is at most (1+γ)FSOL and
the service cost is (1 + 2/γ)CSOL up to factors of (1 + ε) for arbitrarily small ε.

In fact, the costs FSOL, CSOL can be guessed up to factors of 1 + ε′, and we will
run the algorithm for all the resulting values of δ. We are guaranteed to run the
algorithm for some value of δ which is within a 1 + ε′ factor of 2CSOL/(γFSOL). For
this setting of δ we will get the result claimed in the theorem. This factor of (1 + ε′)
can be absorbed by the 1 + ε term associated with the tradeoff.

Notice that we can guess δ directly and run the algorithm for all guesses. Each
guess would return O(n(log n+ 1

ε )) solutions, such that one of them satisfies both the
bounds (for that δ). Thus if we consider the set of all solutions over all guesses of δ,
one of the solutions satisfies the theorem—in some sense we can achieve the tradeoff
in an oblivious fashion. Of course this increases the running time of the algorithm
appropriately. We need to ensure that, for every guess δ, one of the O(n(log n + 1

ε ))
solutions satisfies the bounds on the facility cost and service cost.

Theorem 3.2. Let SOL be any solution to the facility location problem (possibly
fractional) with facility cost FSOL and service cost CSOL. For any γ > 0, the local
search heuristic proposed (together with scaling) gives a solution with facility cost at
most (1 + γ)FSOL and service cost at most (1 + 2/γ)CSOL. The approximation is up
to multiplicative factors of (1 + ε) for arbitrarily small ε > 0.

The known results on the tradeoff problem use a (p, q) notation where the first
parameter p denotes the approximation factor of the facility cost and q denotes the
approximation factor for the service cost. This yields a better tradeoff for the k-
median problem than the tradeoff (1+γ, 2+2/γ) given by Lin and Vitter [25] as well
as the tradeoff (1 + γ, 3 + 5/γ) given by Korupolu, Plaxton, and Rajaraman [23]. For
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facility location, our tradeoff is better than the tradeoff of (1+γ, 3+3/γ) obtained by
Shmoys, Tardos, and Aardal [33]. We note that the techniques of Marathe et al. [29]
for bicriteria approximations also yield tradeoffs for facility cost versus service cost.
Their results are stated in terms of tradeoffs for similar objectives, e.g., (cost, cost)
or (diameter, diameter) under two different cost functions. However, their parametric
search algorithm will also yield tradeoffs for different objective functions provided
there exists a ρ approximation algorithm to minimize the sum of the two objectives.
By scaling the cost functions, their algorithm produces a tradeoff of (ρ(1 + γ), ρ(1 +
1/γ)). For tradeoffs of facility cost versus service cost, ρ is just the approximation
ratio for facility location.

The above tradeoff is also interesting since the tradeoff of (1 + γ, 1 + 1/γ) is the
best tradeoff possible; i.e., we cannot obtain a (1 + γ− ε, 1 + 1/γ− δ) tradeoff for any
ε, δ > 0. This is illustrated by a very simple example.

3.1. Lower bound for tradeoff. We present an example to prove that the
(1 + γ, 1 + 2/γ) tradeoff between facility and service costs is almost the best possible
when comparing with a fractional solution of the facility location LP. Consider the
following instance. The instance I consists of two nodes u and v, cuv = 1. The facility
costs are given by fu = 1, fv = 0. The demands of the nodes are du = 1, dv = 0.

Theorem 3.3. For any γ > 0, there exists a fractional solution to I with facility
cost FSOL and service cost CSOL such that there is no integral solution with facility
cost strictly less than (1+ γ)FSOL and service cost strictly less than (1+1/γ)CSOL.

Proof. Observe that there are essentially two integral solutions to I. The first,
SOL1, chooses u as a facility, FSOL1 = 1, CSOL1 = 0. The second, SOL2, chooses v as
a facility, FSOL2

= 0, CSOL2
= 1. For γ > 0, we will construct a fractional solution for

I such that FSOL = 1/(1+ γ), CSOL = γ/(1+ γ). The fractional solution is obtained
by simply taking the linear combination (1/(1 + γ))SOL1 + (γ/(1 + γ))SOL2. It is
easy to verify that this satisfies the conditions of the lemma.

Theorem 3.3 proves that a tradeoff of (1+γ, 1+1/γ) for facility cost versus service
cost is the best possible.

3.2. Scaling and capacitated facility location. The scaling idea can also be
used to improve the approximation ratio for the capacitated facility location problem.
Chudak and Williamson [12] prove that a local search algorithm produces a solution
with the following properties (modified slightly from their exposition):

C ≤ (1 + ε′)(FOPT + COPT ),

F ≤ (1 + ε′)(5FOPT + 4COPT ).

This gives a 6 + ε approximation for the problem. However, we can exploit the
asymmetric guarantee by scaling. Scaling the facility costs by a factor δ, we get a
solution for the scaled instance such that

C ≤ (1 + ε′)(δFOPT + COPT ),

F ≤ (1 + ε′)(5δFOPT + 4COPT ).

Scaling back, we get a solution of cost C + F/δ. But

C + F/δ ≤ (1 + ε′)

[
(5 + δ)FOPT +

(
1 +

4

δ

)
COPT

]
.

Setting δ = 2
√

2 − 2, we get a 3 + 2
√

2 + ε approximation.
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4. Primal-dual algorithm and improvements. In this section we will show
that the ideas of a primal-dual algorithm can be combined with augmentation and
scaling to give a result better than those obtained by the pure greedy strategy and
the primal-dual algorithm itself.

We will not be presenting the details of the primal-dual algorithm here, since
we would be using the algorithm as a “black box.” See [19, 7] for the primal-dual
algorithm and its improvements. The following lemma is proved in [19].

Lemma 4.1 (see [19]). The primal-dual algorithm returns a solution with facility
cost F and a service cost S such that 3F + S ≤ 3OPT , where OPT denotes the cost
of the optimal dual solution. The algorithm runs in time O(n2 log n).

In itself the primal-dual algorithm does not yield a better result than factor 3.
In fact, a simple example shows that the dual constructed, which is used as a lower
bound to the optimum, can be factor 3 away from the optimum. We will further
introduce the notation that the facility cost of the optimal solution be FOPT and the
service cost be COPT . We would like to observe that these quantities are only used in
the analysis.

Let us first consider a simpler algorithm before presenting the best known com-
binatorial algorithm. If in the primal-dual algorithm we were to scale facility costs
by a factor of δ = 1/3 and use the primal-dual algorithm on this modified instance,
we would have a feasible primal solution of cost FOPT /3 + COPT . The primal-dual
algorithm giving a solution with modified facility cost F and service cost C will guar-
antee that 3F + S is at most 3 times the feasible dual constructed which is less than
the feasible primal solution of FOPT /3 + COPT . After scaling back the solution, the
cost of the final solution will be 3F + S due to the choice of δ, which is at most
FOPT + 3COPT .

Now along with this compare the local search algorithm with δ = 2 for which
the cost of the final solution is 3FOPT + 2COPT from the proof of Theorem 3.1. The
smaller of the two solutions can be at most 2 1

3 times the optimum cost, which is
FOPT + COPT .

Corollary 4.2. Using augmentation and scaling along with the primal-dual
algorithm, the facility location problem can be approximated within a factor of 2 1

3 + ε
in time O(n2/ε + n2 log n).

4.1. Gap examples for dual solutions of the primal-dual algorithm. We
present an example to show that the primal-dual algorithm for facility location can
construct a dual whose value is 3 − ε away from the optimal for arbitrarily small ε.
This means that it is not possible to prove an approximation ratio better than 3 − ε
using the dual constructed as a lower bound. This lower bound for the primal-dual
algorithm is the analog of an integrality gap for LPs.

The example is shown in Figure 4.1. Here r is a parameter. The instance is
defined on a tree rooted at w′. w′ has a single child w at unit distance from it. w
has r2 children v1, . . . , vr2 , each at unit distance from w. Further, each vi has a single
child v′i at unit distance from it. All other distances are shortest path distances along
the tree. Node w′ has a facility cost of 2, and the nodes vi have facility costs of
2 + 2/r; all other nodes have facility cost of ∞. The node w has demand 2r. Each v′i
has unit demand, and the rest of the nodes have zero demand. In the dual solution
constructed by the algorithm, the α value of w is 2r(1+1/r) and the α value for each
v′i is 1 + 2/r. The value of the dual solution is r2 + 4r + 2. However, the value of
the optimal solution is 3r2 + 2r + 2/r (corresponding to choosing one of the facilities
vi). The ratio of the optimal solution value to dual solution value exceeds 3− ε for r
suitably large.
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Fig. 4.1. Lower bound example for the primal-dual facility location algorithm.

4.2. Greedy strategy. We will use a slightly different augmentation technique
as described in [16] and improve the approximation ratio. We will use a lemma proved
in [16] about greedy augmentation; however the lemma proved therein was not cast in
a form which we can use. The lemma as stated was required to know the value of the
optimal facility cost. However, the lemma can be proved for any feasible solution by
only assuming its existence. This also shows that the modification to the LP in [16]
is not needed. We provide a slightly simpler proof.

The greedy augmentation process proceeds iteratively. At iteration i we pick a
node u of cost fu such that if the service cost decreases from Ci to C ′ after opening

u, the ratio Ci−C′−fu
fu

is maximized. Notice that this is gain(u)/fu, where gain(u) is
defined as in section 2. That section used the node with the largest gain to get a fast
algorithm; here we will use the best ratio gain to get a better approximation factor.

Assume we start with a solution of facility cost F and service cost C. Initially
F0 = F and C0 = C. The node which has the maximum ratio can be found in time
O(n2), and since no node will be added twice, the process will take time at most
O(n3). We assume that the cost of all facilities is nonzero, since facilities with zero
cost can always be included in any solution as a preprocessing step.

Lemma 4.3 (see [16]). If SOL is a feasible (fractional) solution and the initial
solution has facility cost F and service cost C, then after greedy augmentation the
solution cost is at most

F + FSOL max

[
0, ln

(
C − CSOL

FSOL

)]
+ FSOL + CSOL.

Proof. If the initial service cost is less than or equal to FSOL +CSOL, the lemma
is true by observation.

Assume that at a point the current service cost Ci is more than FSOL + CSOL.
The proof of Lemma 2.6 shows that if

∑
i yigain(i) ≥ Ci−CSOL−FSOL and

∑
i yifi =

FSOL, we are guaranteed to have a node with ratio at least Ci−CSOL−FSOL

FSOL
. Let the

facility cost be denoted by Fi at iteration i. We are guaranteed

Ci − Ci+1 − (Fi+1 − Fi)

Fi+1 − Fi
≥ Ci − CSOL − FSOL

FSOL
.

This equation rearranges to (assuming Ci > CSOL + FSOL)

Fi+1 − Fi ≤ FSOL

(
Ci − Ci+1

Ci − CSOL

)
.
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Suppose that at the mth iteration Cm was less than or equal to FSOL +CSOL for
the first time. After this point the total cost only decreased. We will upper bound
the cost at this step, and the result will hold for the final solution. The cost at this
point is

Fm + Cm ≤ F +

m∑
i=1

(Fi − Fi−1) + Cm ≤ F + FSOL

(
m∑
i=1

Ci−1 − Ci

Ci−1 − CSOL

)
+ Cm.

The above expression is maximized when Cm = FSOL + CSOL. The derivative
with respect to Cm (which is 1− FSOL

Cm−1−CSOL
) is positive since Cm−1 > CSOL +FSOL.

Thus since Cm ≤ FSOL +CSOL, the boundary point of Cm = FSOL +CSOL gives the
maxima. In the following discussion we will assume that Cm = CSOL + FSOL.

We use the fact that for all 0 < x ≤ 1, we have ln(1/x) ≥ 1 − x. The cost is
therefore

F + FSOL

m∑
i=1

Ci−1 − Ci

Ci−1 − CSOL
+ Cm = F + FSOL

m∑
i=1

(
1 − Ci − CSOL

Ci−1 − CSOL

)
+ Cm

≤ F + FSOL

m∑
i=1

ln

(
Ci−1 − CSOL

Ci − CSOL

)
+ Cm.

The above expression for C0 = C and Cm = FSOL+CSOL proves the lemma.

4.3. Better approximations for the facility location problem. We now
describe the full algorithm. Given a facility location problem instance we first scale
the facility costs by a factor δ such that ln(3δ) = 2/(3δ) as in section 3. We run
the primal-dual algorithm on the scaled instance. Subsequently, we scale back the
solution and apply the greedy augmentation procedure given in [16] and described
above. We claim the following.

Theorem 4.4. The facility location problem can be approximated within factor
≈ 1.8526 in time O(n3).

Proof. There exists a solution of cost δFOPT + COPT to the modified problem.
Applying the primal-dual algorithm to this gives us a solution of (modified) facility
cost F ′ and service cost C ′. If we consider this as a solution to the original problem,
then the facility cost is F = F ′/δ and the service cost C = C ′. Now from the analysis
of the primal-dual method we are guaranteed

3δF + C = 3F ′ + C ′ ≤ 3(δFOPT + COPT ).

If at this point we have C ≤ FOPT + COPT , then

F + C ≤ 3δF + C

3δ
+

(
1 − 1

3δ

)
C ≤

(
2 − 1

3δ

)
FOPT +

(
1 +

2

3δ

)
COPT .

In the case when C > FOPT +COPT , we also have C ≤ 3δFOPT − 3δF + 3COPT .
Since there is a solution of service cost COPT and facility cost FOPT , by Lemma 4.3,
the cost after greedy augmentation is at most

F + FOPT ln

(
3δFOPT − 3δF + 2COPT

FOPT

)
+ FOPT + COPT .
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Over the allowed interval of F the above expression is maximized at F = (2COPT )/(3δ),
with cost

(1 + ln(3δ))FOPT +

(
1 +

2

3δ

)
COPT .

Now for δ > 1/3 the term 1 + ln(3δ) is larger than 2 − 1/(3δ). Thus the case C >
FOPT + COPT dominates. Consider the value of δ such that ln(3δ) = 2/(3δ), which
is δ ≈ 0.7192, and the approximation factor is ≈ 1.8526. The greedy augmentation
takes maximum O(n3) time and the primal-dual algorithm takes O(n2) time. Thus,
the theorem follows.

It is interesting, however, that this result which is obtained from the above greedy
algorithm can be combined with the algorithm of [9, 10] to obtain a very marginal
improvement in the approximation ratio for the facility location problem. The results
of [9, 10] actually provide a guarantee that if ρ denotes the fraction of the facility cost
in optimal solution returned by the LP formulation of the facility location problem,
then the fractional solution can be rounded within a factor of 1+ρ ln 2

ρ when ρ ≤ 2/e.

The above primal-dual plus greedy algorithm when run with δ = 2/(3(e−1)) gives an
algorithm with approximation ratio e−ρ(e−1− log 2

e−1 ). It is easy to verify that the
smaller of the two solutions has an approximation of 1.728. This is a very marginal
(≈ 0.008) improvement over the LP-rounding algorithm. However, it demonstrates
that the facility location problem can be approximated better.

Theorem 4.5. Combining the LP approach and the scaled, primal-dual plus
greedy algorithms, the facility location problem can be approximated to a factor of
1.728.

5. Capacitated facility location. We consider the following capacitated vari-
ant of facility location: A facility at location i is associated with a capacity ui. Mul-
tiple facilities can be built at location i; each can serve a demand of at most ui. This
was considered by Chudak and Shmoys [11] who gave a 3 approximation for the case
when all capacities are the same. Jain and Vazirani [19] extended their primal-dual
algorithm for facility location to obtain a 4 approximation for the capacitated problem
for general capacities. We use the ideas in [19] to improve the approximation ratio
for this capacitated variant.

Given an instance I of capacitated facility location, we construct an instance I ′

of uncapacitated facility location with a modified distance function

c′ij = cij +
fi
ui

.

The facility costs in the new instance are the same as the facility costs fi in the
capacitated instance.2 This construction is similar to the construction in [19].

The folowing lemma relates the assignment and facility costs for the original
capacitated instance I to those for the modified uncapacitated instance I ′.

Lemma 5.1. Given a solution SOL to I of assignment cost CSOL and facility
cost FSOL, there exists a solution of I ′ of assignment cost at most CSOL +FSOL and
facility cost at most FSOL.

Proof. Let yi be the number of facilities built at i in SOL. Let xij be an indicator
variable that is 1 if and only if j is assigned to i in SOL. CSOL =

∑
ij xijcij and

FSOL =
∑

i yifi. The capacity constraint implies that
∑

j xij ≤ ui · yi. Using SOL,

2As pointed out by a reviewer, setting c′ji = c′ij preserves metric properties.
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we construct a feasible solution SOL′ of I ′ as follows: The assignments of nodes to
facilities is the same as in SOL. A facility is built at i if and only if at least one
facility is built at i in SOL.

Clearly the facility cost of SOL′ is at most FSOL. The assignment cost of SOL′

is ∑
ij

xijc
′
ij =

∑
ij

xij

(
cij +

fi
ui

)

=
∑
ij

xijcij +
∑
i

fi

∑
j xij

ui

≤
∑
ij

xijcij +
∑
i

fiyi

= CSOL + FSOL.

The following lemma states that given a feasible solution to I ′, we can obtain a
solution to I of no greater cost.

Lemma 5.2. Given a feasible solution SOL′ to I ′, there exists a feasible solution
SOL to I such that the cost of SOL is at most the cost of SOL′.

Proof. Let Yi be an indicator variable that is 1 if and only if a facility is built at
i in SOL′. Let xij be an indicator variable that is 1 if and only if j is assigned to i
in SOL′. The solution SOL for instance I is obtained as follows: The assignment of
nodes to facilities is exactly the same as in SOL′. The number of facilities built at i
is

yi =

⌈∑
j xij

ui

⌉
.

Thus yi ≤
∑

j xij

ui
+ Yi. The cost of SOL′ is

∑
ij

xijc
′
ij +

∑
Yifi =

∑
ij

xij

(
cij +

fi
ui

)
+
∑
i

Yifi

=
∑
ij

xijcij +
∑
i

fi

(∑
j xij

ui
+ Yi

)

≥
∑
ij

xijcij +
∑
i

fiyi.

Note that the last expression denotes the cost of SOL. Thus the cost of SOL is at
most the cost of SOL′.

Suppose we have instance I of capacitated facility location. We first construct the
modified instance I ′ of uncapacitated facility location as described above. We will use
an algorithm for uncapacitated facility location to obtain a solution to I ′ and then
translate it to a solution to I. Let OPT (I) (resp., OPT (I ′)) denote the cost of the
optimal solution for instance I (resp., I ′). First, we show that a ρ approximation for
uncapacitated facility location gives a 2ρ approximation for the capacitated version.

Lemma 5.3. Given a ρ approximation for uncapacitated facility location, we can
get a 2ρ approximation for the capacitated version.

Proof. Lemma 5.1 implies that OPT (I ′) ≤ 2OPT (I). Since we have a ρ approx-
imation algorithm for uncapacitated facility location, we can obtain a solution to I ′
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of cost at most ρOPT (I ′) ≤ 2ρOPT (I). Now, Lemma 5.2 guarantees that we can
obtain a solution to I of cost at most 2ρOPT (I), yielding a 2ρ approximation for the
capacitated version.

The above lemma implies an approximation ratio of ≈ 3.705 in O(n3) time using
the combinatorial algorithm of section 4.3 and an approximation ratio of ≈ 3.456 in
polynomial time using the guarantee of Theorem 4.5, combining the LP rounding and
combinatorial algorithms.

By performing a more careful analysis, we can obtain a slightly better approxi-
mation guarantee for the combinatorial algorithm. Let FOPT and COPT denote the
facility and assignment costs for the optimal solution to I. Let F ′ and C ′ be the
facility and assignment costs of the solution to I ′ guaranteed by Lemma 5.1. Then
F ′ ≤ FOPT and C ′ ≤ FOPT + COPT .

Lemma 5.4. The capacitated facility location problem can be approximated within
factor 3 + ln 2 ≈ 3.693 in time O(n3).

Proof. We use the approximation algorithm described in section 4.3 and analyzed
in Theorem 4.4. We have a feasible solution to I ′ of facility cost F ′ and assignment
cost C ′. The proof of Theorem 4.4 bounds the cost of the solution obtained to I ′ by

(1 + ln(3δ))F ′ +

(
1 +

2

3δ

)
C ′.

Here δ is a parameter for the algorithm. Substituting the bounds for F ′ and C ′ and
rearranging, we get the bound(

2 + ln(3δ) +
2

3δ

)
FOPT +

(
1 +

2

3δ

)
COPT .

Setting δ = 2
3 , so as to minimize the coefficient of FOPT , we obtain the bound (3 +

ln 2)FOPT +2COPT . This yields the claimed approximation ratio. Also, the algorithm
runs in O(n3) time.

6. Proofs of lemmas in section 2. We present the proofs of the lemmas we
omitted to avoid discontinuity in the presentation. Recall that the facility location
LP is as follows:

min
∑
i

yifi +
∑
ij

xijcij

∀ij xij ≤ yi,

∀j
∑
i

xij ≥ 1,

xij , yi ≥ 0.

Here yi indicates whether facility i is chosen in the solution, and xij indicates whether
node j is serviced by facility i.

Lemma 2.6.

∑
gain(i) ≥ C − (FSOL + CSOL), where FSOL and CSOL are

the facility and service costs for an arbitrary fractional solution SOL to the facility
location LP.

Proof. Consider the fractional solution SOL to the facility location LP. FSOL =∑
i yifi and CSOL =

∑
ij xijcij . We will prove that

∑
i yi · gain(i) ≥ C − (FSOL +

CSOL). Assume without loss of generality that yi ≤ 1 for all i and
∑

i xij = 1 for
all j.
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We first modify the solution (and make multiple copies of facilities) so as to
guarantee that for all ij, either xij = 0 or xij = yi. The pair ij for which this
condition is violated is said to be a violating ij. The modification is done as follows:
Suppose there is a violating ij, i.e., there are a facility i and demand node j in our
current solution such that 0 < xij < yj . Let x = minj{xij |xij > 0}. We create a
copy i′ of node i (i.e., ci′i = 0, ci′j = cij for all j and fi′ = fi.) We set yi′ = x and
decrease yi′ by x. Further, for all j such that xij > 0, we decrease xij by x and set
xi′j = x. For all the remaining j, we set xi′j = 0. Note that the new solution we
obtain is a fractional solution with the same cost as the original solution. Also, all
i′j satisfy the desired conditions. Further, the number of violating ij decreases. In
at most n2 such operations, we obtain a solution that satisfies the desired conditions.
Suppose i1, . . . , ir are the copies of node i created in this process; then the final value
of

∑r
l=1 yil is the same as the initial value of yi.

We now proceed with the proof. For a demand node j, let σ(j) be the facility
assigned to j in the current solution. With every facility i, we will associate a modified
solution as follows. Let DSOL(i) be the set of all demand nodes j such that xij > 0.
Note that xij = yi for all i ∈ DSOL(i). Consider the solution obtained by including
facility i in the current solution and reassigning all nodes in DSOL(i) to i. Let gain′(i)
be the decrease in cost of the solution as a result of this modification, i.e.,

gain′(i) = −fi +
∑

j∈DSOL(i)

(cσ(j)j − cij).

Note that gain′(i) could be < 0. Clearly, gain(i) ≥ gain′(i). We will prove that∑
i yi · gain′(i) = C − (FSOL + CSOL). Since yi = xij if j ∈ DSOL(i) (also using the

fact that xij = 0 if j 	∈ DSOL(i) to simplify the index of the summation to j), we get

yi · gain′(i) = −yifi +
∑
j

xijcσ(j)j −
∑
j

xijcij .

Summing over all i ∈ F , the first term evaluates to −FSOL and the third term to
−CSOL. The second term, if we reverse the order of the summation indices, using∑

i xij = 1, simplifies to
∑

j cσ(j)j , which evaluates to C, which proves
∑

gain(i) ≥
−FSOL + C − CSOL.

Lemma 2.7.

∑
gain(i) ≥ F − (FSOL + 2CSOL), where FSOL and CSOL are

the facility and service costs for an arbitrary fractional solution SOL to the facility
location LP.

Proof. Consider the fractional solution SOL to the facility location LP. Let yi
denote the variable that indicates whether facility i is chosen in the solution and let xij

be the variable that indicates whether node j is serviced by facility i. FSOL =
∑

i yifi
and CSOL =

∑
ij xijcij . We will prove that

∑
i yi · gain(i) ≥ F − (FSOL + 2CSOL).

As before, assume without loss of generality that yi ≤ 1 for all i and
∑

i xij = 1 for
all ij.

Let F be the set of facilities in the current solution. Mimicking the proof of
Lemma 2.5, we will match each node i′ ∈ F to its “nearest” node in the fractional
solution. However, since we have a fractional solution, this matching is a fractional
matching, given by variables mii′ ≥ 0, where the value of mii′ indicates the extent to
which i′ is matched to i. The variables satisfy the constraints mii′ ≤ yi,

∑
i mii′ = 1,
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and the values are chosen so as to minimize
∑

i mii′cii′ . So for any j,∑
i

mii′cii′ ≤
∑
i

xijcii′ ≤
∑
i

xij(ci′j + cij)

≤ ci′j +
∑
i

xijcij .

In particular, for i′ = σ(j), we get∑
i

miσ(j)ciσ(j) ≤ cσ(j)j +
∑
i

xijcij .(6.1)

As in the proof of Lemma 2.5, we modify the fractional solution by making multi-
ple copies of facilities such that for every ij, either xij = 0 or xij = yi and additionally,
for every i, i′, either mii′ = 0 or mii′ = yi. (The second condition is enforced in exactly
the same way as the first, by treating the variables mii′ just as the variables xij .)

For a demand node j, let σ(j) be the facility assigned to j in the current solution.
Let D(i′) be the set of demand nodes j assigned to facility i′ in the current solution.
With every facility i, we will associate a modified solution as follows. Let DSOL(i)
be the set of all demand nodes j such that xij > 0. Let R(i) be the set of facilities
i′ ∈ F such that mii′ > 0. Note that xij = yi for all j ∈ DSOL(i) and mii′ = yi
for all i′ ∈ R(i). Consider the solution obtained by including facility i in the current
solution and reassigning all nodes in DSOL(i) to i. Further, for all facilities i′ ∈ R(i),
the facility i′ is removed from the solution and all nodes in D(i′) \ DSOL(i) are
reassigned to i. Let gain′(i) be the decrease in cost of the solution as a result of this
modification, i.e.,

gain′(i) = −fi +
∑

j∈DSOL(i)

(cσ(j)j − cij) +
∑

i′∈R(i)

⎛
⎝fi′ +

∑
j∈D(i′)\DSOL(i)

(cσ(j)j − cij)

⎞
⎠ .

Clearly, gain(i) ≥ gain′(i). We will prove that
∑

i yi · gain′(i) ≥ F − (FSOL +
2CSOL). We also know that if i′ ∈ R(i), then mii′ = yi. Since mii′ = 0 if i′ is not in
R(i), we will drop the restriction on i′ in the summation:

yi · gain′(i) = −yifi +
∑

j∈DSOL(i)

xij(cσ(j)j − cij)

+
∑
i′

mii′

⎛
⎝fi′ +

∑
j∈D(i′)\DSOL(i)

(cσ(j)j − cij)

⎞
⎠ .

From triangle inequality we have −ci′i ≤ ci′j − cij . We also replace i′ by σ(j)
wherever convenient. Therefore we conclude that

yi · gain′(i) ≥ −yifi +
∑

j∈DSOL(i)

xij(cσ(j)j − cij)

+
∑
i′

⎛
⎝mii′fi′ +

∑
j∈D(i′)\DSOL(i)

−miσ(j)ciσ(j)

⎞
⎠ .

Once again evaluating the negative terms in the last summand over a larger set
(namely, all i′, j ∈ D(i′) instead of i′, j ∈ D(i′) \ DSOL(i); but since the D(i′)’s are
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disjoint this simplifies to a sum over all j) and summing the result over all i, we have∑
i

yi · gain′(i) ≥−
∑
i

yi · fi +
∑
i

∑
j∈DSOL(i)

xij(cσ(j)j − cij)

+
∑
i

∑
i′

mii′fi′ −
∑
i

∑
j

miσ(j)cσ(j)i.

The first term in the above expression is equal to −FSOL. The second term has
two parts, the latter of which is

∑
i,j xijcij , which evaluates to the fractional service

cost, CSOL. The first part of the second term evaluates to
∑

j cσ(j)j since, if we
reverse the order of the summation,

∑
i,j∈DSOL(i) xij = 1, since node j is assigned

fractionally. This part evaluates to C.
The third term is equal to

∑
i′ fi′ , again reversing the order of the summation

and using the fact that
∑

i mii′ = 1 from the fractional matching of the nodes i′ in
the current solution.

We now bound the last term in the expression. Notice the sets R(i) may not be dis-
joint and we require a slightly different approach than that in the proof of Lemma 2.5.
We use the inequality (6.1), and the term (which is now −

∑
i

∑
j miσ(j)cσ(j)i) is at

least −
∑

j cσ(j)j −
∑

i,j xijcij . The first part evaluates to −C and the second part to
−CSOL. Substituting these expressions, we get∑

i

yi · gain′(i) ≥ −FSOL + F + C − CSOL + F − C − CSOL,

which proves the lemma.

Implementing local search. We ran some preliminary experiments with an
implementation of the basic local search algorithm as described in section 2. We tested
the program on the data sets at the OR-Library (http://people.brunel.ac.uk/˜mastjjb/
jeb/info.html). The results were very encouraging, and the program found the op-
timal solution for 10 of the 15 data sets. One set had 3.5% error, and the others
had less than 1% error. The program took less than 10 seconds (on a PC) to run in
all cases. This study is by no means complete, since we did not implement scaling,
primal-dual algorithms, and the other well-known heuristics in the literature.

The heuristic deleted three nodes a few times and two nodes several times upon
insertion of a new facility. Thus it seems that the generalization of deleting more
than one facility (cf. add and drop heuristics; see Kuehn and Hamburger [24] and
Korupolu, Plaxton, and Rajaraman [23]) was useful in the context of these data sets.

7. Concurrent and subsequent results. Subsequent to the publication of
the extended abstract of this paper [7], several results have been published regarding
the facility location problem. The result in [27] provides a 1.86 approximation while
running in time O(m logm) in a graph with m edges using dual fitting. [36] also
proves results in a similar vein. [20] gives a 1.61 approximation for the uncapaci-
tated facility location problem, which is improved to 1.52 in [28]. [28] also gives a
2.88 approximation for the soft capacitated problem discussed in this paper.

Although this paper concentrates on the facility location problem, two results on
the related k-median problem are of interest to the techniques considered here. The
first is the result of Mettu and Plaxton [30], which gives an O(1) approximation to
the k-median problem, using combinatorial techniques. They output a list of points
such that for any k, the first k points in the output list give an O(1) approximation
to the k-median problem.
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The second result is of Arya et al. in [2] where the authors present a 3 + ε ap-
proximation algorithm for the k-median problem based on local search. They show
how to use exchanges as opposed to the general delete procedure considered here to
prove an approximation bound.
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Ŕıos-Mercado, eds., Lecture Notes in Comput. Sci. 1412, Springer-Verlag, Berlin, 1998,
pp. 180–194.

[10] F. A. Chudak and D. B. Shmoys, Improved approximation algorithms for the uncapacitated
facility location problem, SIAM J. Comput., 33 (2003), pp. 1–25.

[11] F. A. Chudak and D. B. Shmoys, Improved approximation algorithms for a capacitated facility
location problem, in Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete
Algorithms, 1999, pp. S875–S876.

[12] F. A. Chudak and D. P. Williamson, Improved approximation algorithms for capacitated
facility location problems, in Proceedings of Integer Programming and Combinatorial Op-
timization, Lecture Notes in Comput. Sci. 1610, Springer-Verlag, Berlin, 1999, pp. 99–113.
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ON THE RELATIONSHIP BETWEEN CLIQUE-WIDTH
AND TREEWIDTH∗
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Abstract. Treewidth is generally regarded as one of the most useful parameterizations of a
graph’s construction. Clique-width is a similar parameterization that shares one of the powerful
properties of treewidth, namely: if a graph is of bounded treewidth (or clique-width), then there is
a polynomial time algorithm for any graph problem expressible in monadic second order logic, using
quantifiers on vertices (in the case of clique-width you must assume a clique-width parse expression
is given). In studying the relationship between treewidth and clique-width, Courcelle and Olariu
[Discrete Appl. Math., 101 (2000), pp. 77–114] showed that any graph of bounded treewidth is also
of bounded clique-width; in particular, for any graph G with treewidth k, the clique-width of G is
at most 4 ∗ 2k−1 + 1.

In this paper, we improve this result by showing that the clique-width of G is at most 3 ∗ 2k−1

and, more importantly, that there is an exponential lower bound on this relationship. In particular,
for any k, there is a graph G with treewidth equal to k, where the clique-width of G is at least
2�k/2�−1.

Key words. clique-width, treewidth
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1. Introduction. One of the most fruitful graph theoretical developments of
the last few decades has been the concept of treewidth, pioneered by Robertson and
Seymour. Loosely speaking, the treewidth of a graph captures a way of constructing
the graph in a “tree-like” fashion. The lower the treewidth of a graph, the closer
it is to being a tree (connected treewidth one graphs are precisely trees). One of
the major results in this area is that any problem expressible in monadic second
order logic (which includes many NP-complete graph problems), when restricted to
graphs of bounded treewidth k, has a linear time algorithm (albeit with a constant
that grows exponentially with k). Although this result is very far reaching, it is still
somewhat dissatisfying since many classes of “tame” graphs, for example, cliques,
have arbitrarily high treewidth, yet have simple linear time algorithms for most of the
problems mentioned above.

The clique-width of a graph is another attempt to parameterize the construction
of a graph so that sweeping claims can be made about the graph’s tractability for
polynomial time solutions to difficult problems. The clique-width of a graph G, de-
noted by cwd(G), is defined as the minimum number of labels needed to construct G,
using the following four graph operations: creation of a new vertex v with label i
(denoted i(v)), disjoint union (⊕), connecting vertices with specified labels (η), and
renaming labels (ρ). The construction of a graph G using the above four operations
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is represented by an algebraic expression called a k-expression, where k is the number
of labels used in the expression. More details are given in section 2. This notion was
first introduced by Courcelle, Engelfriet, and Rozenberg in [5] and has been studied
extensively in recent years.

For example, cographs (graphs with no induced P4’s) are exactly the graphs of
clique-width at most two, and trees have clique-width at most three [8]. P4-sparse
(every five vertices have at most one P4) and P4-tidy graphs (no induced P4 has more
than one partner, where a partner is a vertex whose inclusion in the P4 results in at
least two distinct P4’s) have clique-width at most four [6]. The (q, q−4) graphs for q at
least four and (q, q−3) graphs for q at least seven have clique-width at most q [6, 12].
A (q, t) graph is a graph in which every subgraph induced by q vertices contains at
most t induced P4’s.

As mentioned above, the motivation for studying clique-width is analogous to that
of treewidth. In particular, problems defined by monadic second order logic formulas,
using quantifiers on vertices but not on edges, can be solved in polynomial time on
any class of graphs C of clique-width at most k, for some fixed k, assuming that the
k-expression defining the input graph is given. For details, see [6, 7]. In addition,
polynomial time algorithms can be obtained for other problems such as chromatic
number, edge dominating set [11], and IDq-partition problems [10], on any class of
graphs C of clique-width at most k, for some fixed k, assuming that the k-expression
defining the input graph is given.

This raises the obvious question about the relationship between treewidth and
clique-width. Courcelle and Olariu [8] proved the following theorem.

Theorem 1.1 (see [8]). If the treewidth of G is k, then cwd(G) ≤ 2k+1 + 1 (=
4 ∗ 2k−1 + 1).

This theorem guarantees that any class of graphs of bounded treewidth is also
of bounded clique-width and thus, from the perspective of algorithmic tractability,
clique-width is a more powerful concept. Note that since the clique-width of a clique on
n vertices is at most two and its treewidth is n−1, the gap between a graph’s treewidth
and clique-width can be arbitrarily high. The above theorem also raises the questions
of whether the bound can be improved (note that for trees, k equals one, and the
theorem guarantees that the clique-width of a tree is at most five, whereas it is known
that the clique-width of a tree is at most three) and more importantly, whether the
exponential bound represented in the theorem can be replaced by a polynomial bound.
To make this more precise, we let Gk = {G : twd(G) = k}, where twd(G) denotes the
treewidth of G, and want to determine whether f(Gk) = max{cwd(G) : G ∈ Gk} can
grow polynomially with k.

In answer to these two questions, our paper proves the following two theorems.
Theorem 1.2. If the treewidth of G is k, then cwd(G) ≤ 2k +2k−1 (= 3∗2k−1).
Theorem 1.3. For any k, there is a graph G where twd(G) = k and cwd(G) ≥

2�k/2�−1 (i.e., f(Gk) ≥ 2�k/2�−1).
Overview of the paper. The second section of the paper introduces the notation

and definitions used throughout the paper. In particular, we present the concept
of k-trees and partial k-trees. (Note that partial k-trees encompass an alternative
definition of graphs having treewidth at most k.) We also describe how to construct
the k-trees that will be used in the proofs of the two theorems. Sections 3 and 4 are
devoted to the proofs of Theorems 1.2 and 1.3, respectively. The paper ends with
concluding remarks and directions for further research.

2. Notation and definitions. The graphs we consider in this paper are undi-
rected and loop-free. For a graph G and a vertex u of G, we denote by NG(u) the
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Fig. 1. A graph G of clique-width three.

t1 = ρc→b(ηb,c(ηa,b(a(1) ⊕ b(2)) ⊕ ηa,c(a(5) ⊕ c(6))))

t2 = ρb→c(ηb,c (ηa,b(a(4) ⊕ b(3)) ⊕ ηa,c(a(8) ⊕ c(7))))

t = ηb→c(t1 ⊕ t2)

Fig. 2. A 3-expression defining the graph of Figure 1.

neighborhood of u in G, which is the set of all vertices in G that are adjacent to u.
We denote by NG[u] the closed neighborhood of u in G which is equal to NG(u)∪{u}.

We first give more details on the definition of clique-width presented above. The
clique-width of a graph G, denoted by cwd(G), is defined as the minimum number of
labels needed to construct G, using the following four graph operations: creation of a
new vertex v with label i (denoted i(v)), disjoint union (⊕), connecting vertices with
specified labels (η), and renaming labels (ρ). The operation ηi,j (i �= j) adds all edges
(that are not already present) between every vertex of label i and every vertex of
label j. The operation ρi→j renames all vertices of label i with label j. An expression
built from the above four operations is called a clique-width expression. A clique-
width expression using k labels is called a k-expression. Each k-expression t uniquely
defines a labeled graph val(t), where the labels are integers 1, . . . , k associated with
the vertices and each vertex has exactly one label. We say that a k-expression t
defines a graph G if G is equal to the graph obtained from the labeled graph val(t)
after removing its labels. The clique-width of a graph G is equal to the minimum
k such that there exists a k-expression defining G.

For a k-expression t defining a graph G, we denote by tree(t) the parse tree
constructed from t in the usual way. The leaves of this tree are the vertices of G with
their initial labels, and the internal nodes correspond to the operations of t and can
be either binary corresponding to ⊕, or unary corresponding to η or ρ. If k equals
cwd(G), we say that k-expression t is an optimum clique-width expression of G and
we say that tree(t) is an optimum clique-width parse tree for G. For a vertex u of
G and an internal node a of tree(t), such that u occurs (as a leaf) in the subtree of
tree(t) rooted at a, the label of u at a is defined as the label that u has immediately
before the operation a is applied on the subtree of tree(t) rooted at a.

Example 2.1. Figure 1 illustrates a graph G of clique-width three. The 3-
expression t presented in Figure 2 defines the graph G of Figure 1. Note that the
labeled graph val(t) can be obtained from the graph G by adding label a to ver-
tices 1, 4, 5, and 8, label b to vertices 2 and 3, and label c to vertices 6 and 7.
The 3-expression t shows that G is of clique-width at most three. Since G has an
induced P4 and cographs (the graphs with no induced P4’s) are exactly the graphs of
clique-width at most two [8], it follows that the clique-width of G is exactly three. Fig-
ure 3 presents the optimum clique-width parse tree, denoted tree(t), that corresponds
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a (1) b (2) c (6)a (5) a (4) b (3) a (8) c (7)

ηa,b ηa,c ηa,b ηa,c 

ηb,c ηb,c 

ρc   b ρb   c 

ηb,c 

Fig. 3. The optimum clique-width parse tree for the graph of Figure 1 corresponding to the
3-expression of Figure 2.

to the 3-expression t presented in Figure 2.

As mentioned above, G being a partial k-tree is equivalent to G having treewidth
at most k. We now define k-trees and present notation for the k-tree that will be used
to establish the upper and lower bounds presented in sections 3 and 4.

We denote by Kk the clique with k vertices. For a vertex v and a set of vertices S
we say that v is universal to S if v is adjacent to all the vertices in S. A graph G
is a k-tree if G is either a Kk or is formed from a k-tree G′, by adding a new vertex
that is universal to a Kk in G′. Thus, a k-tree G can be constructed by taking an
initial Kk of G and adding the other vertices of G one after the other. At each step
a new vertex x is added to G that is universal to a k-clique (denoted by Qx) in G,
consisting of k vertices that were added to G before x.

Note that 1-trees are precisely trees. G is a partial k-tree (i.e., twd(G) ≤ k) if
G is a partial subgraph of a k-tree. This recursive definition of k-trees immediately
suggests that the construction of a given k-tree G can be represented by a tree TG as
defined below.

We let the initial Kk be on the vertices {1, 2, . . . , k} and assume that the rest of
the vertices of G are numbered k + 1, k + 2, . . . , n in the order in which they were
added to G. The nodes of the tree TG correspond to vertices k, k + 1, . . . , n of G,
where each node i of TG corresponds to vertex i of G. The root of TG, denoted by R,
corresponds to vertex k of G. As mentioned above, when a vertex i is added to the
graph G, it is made universal to Qi, a k-clique that consists of k vertices that were
added to G before i. We denote by p(i) the largest (according to the numbering of
the vertices) vertex in Qi. The tree TG is constructed by making each node i, i > k,
of TG, a child of p(i).
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Fig. 4. A 2-tree.
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5 (-1)

10 (-2)

7 (-3)

9 (-2)6 (-1)

8 (-2)

Fig. 5. The construction tree for the graph of Figure 4.

If i is not a child of the root R, then Qi can be obtained from Qp(i) by removing
vertex j for some j in Qp(i), 1 ≤ j < p(i), and replacing it with vertex p(i). In this
case we will say that node i is a −j child of node p(i) in the tree TG. (Figure 4
contains an example of a 2-tree, and Figure 5 contains its construction tree.) If i is
a child of R, then Qi must be equal to {1, 2, . . . , k}. Note that for the root R, QR is
not defined.

For a node i of TG other than the root R, we call the k− 1 vertices of Qi−{p(i)}
the sources of i. Clearly, the sources of i that are not in {1, 2, . . . , k} are ancestors
of i in the tree TG.

3. Upper bound. We now turn our attention to establishing the upper bound
stated in Theorem 1.2.

Theorem 1.2. If the treewidth of G is k, then cwd(G) ≤ 2k+2k−1 (= 3∗2k−1).
The bound is achieved for a k-tree, and in our proof, we will first prove it for

G a k-tree and then indicate the modifications for partial k-trees. We present an
algorithm that is guaranteed to generate a clique-width expression that uses at most
3 ∗ 2k−1 labels. It should be clear to the reader that this algorithm is an extension of
the standard algorithm that shows that the clique-width of a tree (i.e., a 1-tree) is at
most three.

Given G, let TG be a construction tree for it. For x, a node in TG, we let Tx

denote the subtree of TG rooted at x. In the algorithm we will use the following two
“metaoperations”:

• Let L = {l1, l2, . . . , lh} be a set of labels and let l∗ be another label. Then ηl∗,L
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denotes the following sequence of η operations: ηl∗,l1 ηl∗,l2 · · · ηl∗,lh . (Note
that since there are no ρ or ⊕ operations in the sequence, the order of these
η operations is not important.)

• Let P = {(l1, l′1), (l2, l′2), . . . , (lh, l′h)} be a set of pairs of labels such that
no label in {l1, l2, . . . , lh} is equal to a label in {l′1, l′2, . . . , l′h} and li �= lj
for i �= j. Then ρP denotes the following sequence of ρ operations: ρl1→l′1
ρl2→l′2

· · · ρlh→l′h
. (Note the requirements that no label in {l1, l2, . . . , lh} is

equal to a label in {l′1, l′2, . . . , l′h} and li �= lj imply that the order of these
ρ operations is not important.)

Algorithm 1.

Overview. The algorithm will proceed by bottom-up dynamic programming
on TG. Let x be an arbitrary nonroot vertex in TG where the sources of x are
{s1, s2, . . . , sk−1} and p(x) is sk. Each child of x will be a −si node for some
i in {1, 2, . . . , k} (i.e., such a node will be universal to the k-clique consisting of
{s1, s2, . . . , sk} − {si} ∪ {x}). Note that the subtree rooted at a −si child of x could
contain vertices universal to any subset of {s1, s2, . . . , sk}−{si}∪{x}. When process-
ing x it will be assumed that the subtrees rooted at children of x have a corresponding
clique-width expression whose generation required at most 3 ∗ 2k−1 labels and that
each vertex in the subtree rooted at a −si child of x is labeled with one of 2k labels
indicating the subset of {s1, s2, . . . , sk} − {si} ∪ {x} to which it is universal (clearly
this assumption holds for the leaves of TG).

The algorithm, using at most 3 ∗ 2k−1 labels, will construct the clique-width
expression tx for Tx so that each vertex in Tx is assigned one of 2k labels indicating
the subset of {s1, s2, . . . , sk} to which it is adjacent. For 1 ≤ i ≤ k, let yi denote a
−si child of x. Let set Ti be {Tyi : yi is a −si child of x}. All vertices in Ti adjacent to
the same subset of {s1, s2, . . . , sk}−{si}∪{x} will be assumed to have the same label.
In particular, we let ti denote the clique-width expression for Ti, constructed by the
algorithm. We assume that the graph val(ti) has 2k labels, each label corresponding
to a subset of {s1, . . . , sk}−{si}∪{x}. For each vertex w in val(ti), its label indicates
the set of vertices in {s1, . . . , sk}− {si} ∪ {x} to which it is adjacent. The labeling of
the vertices in val(t1), val(t2), . . . , val(tk) is unique in the sense that the same label
will be used in the various val(ti) to indicate a particular subset of {s1, . . . , sk}∪{x}.

We now describe the steps of the algorithm. Steps 1 and 2 create tx, the clique-
width expression of Tx, for x a nonroot vertex. Step 3 processes the root.
Step 1. Let X be an arbitrary subset of {s2, . . . , sk} and let lX (respectively, lX∪{x})

denote the label corresponding to X (respectively, X∪{x}). The set {lX∪{x} :
X ⊆ {s2, . . . , sk}} will be represented by L1, and the set of pairs {(lX∪{x}, lX):
X ⊆ {s2, . . . , sk}} will be represented by P1. The following operation will
form the new clique-width expression t′1 that introduces vertex x where ver-
tex x is assigned a label (denoted l∗) that corresponds to the set {s1, . . . , sk};
note that since x is the only vertex in Tx adjacent to {s1, s2, . . . , sk}, its la-
bel will not appear in any ti, 1 ≤ i ≤ k. Recall that t1 is the clique-width
expression for T1:

t′1 = ρP1 (ηl∗,L1 (l∗(x) ⊕ t1)).

This operation constructs a new union node with the two children being x and
the clique-width expression for T1. The ηl∗,L1 operation adds all appropriate
edges to x, and the ρP1 operation “collapses” label class X ∪ {x} into X for
each X ⊆ {s2, s3, . . . , sk}.
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Step 2. For i from 2 to k consider the subtrees Ti rooted at the −si children of
x. We let t′i−1 denote the clique-width expression formed after considering
T1 ∪ · · · ∪ Ti−1. For each i, let Li be the set of labels {lX∪{x} : X ⊆ {s1, s2,
. . . , si−1, si+1, . . . , sk}} and let Pi be the set of pairs of labels {(lX∪{x}, lX) :
X ⊆ {s1, s2, . . . , si−1, si+1, . . . , sk}}. The following operation will form t′i
from the clique-width expression t′i−1 by incorporating ti, the clique-width
expression for Ti (recall that l∗ is the label of x):

t′i = ρPi
(ηl∗,Li

(t′i−1 ⊕ ti)).

This operation constructs a new union node with the two children being
t′i−1 and the clique-width expression for Ti. As in Step 1, via a series of
η operations we add all the edges from appropriate vertices in Ti to vertex x
and then “collapse” label class X ∪{x} into X for each X ⊆ {s1, s2, . . . , si−1,
si+1, . . . , sk}.
After the loop ends, we set tx = t′k.

Step 3. Suppose that the children of the root R are {x1, x2, . . . , xj} and that each
of Tx1 , Tx2

, . . . , Txj has been processed as above, resulting in clique-width
expressions tx1 , tx2 , . . . , txj , respectively. Each vertex in Tx1 ∪ Tx2 ∪ · · · ∪ Txj

is adjacent to some subset of {1, 2, . . . , k}, where all vertices adjacent to a
particular subset have the same label. Let l∗1, l

∗
2, . . . , l

∗
k denote new labels

(they will be used in the creation of the vertices 1, 2, . . . , k) and define set Li,
1 ≤ i ≤ k, to be the union of {l∗h : i < h ≤ k} and the labels corresponding
to subsets of {1, . . . , k} that contain vertex i. (Note that Li represents the
vertices that are adjacent to i.)
The clique-width expression for the entire graph is

tR = ηl∗k,Lk
(· · · ηl∗2 ,L2 (ηl∗1 ,L1 (l∗1(1) ⊕ · · · ⊕ l∗k(k) ⊕ tx1 ⊕ · · · ⊕ txj )) · · ·).

Note that this operation forms the vertices in the clique K with the l∗i (i)
operations and forms the union of all these vertices and the {txi} expressions.
Finally, the ηl∗i ,Li metaoperations add the edges in K as well as the edges
between K and the rest of the graph.

Example 3.1. Consider the graph in Figure 4 and its construction tree presented
in Figure 5. The 3∗22−1 = 6 labels used by the algorithm will be denoted a, b, c, d, e, f .
We construct the clique-width expression for the graph as indicated by the algorithm
from bottom to top. At each step we indicate the set of vertices corresponding to
the labels a, b, . . . , f . Note that the same label (e.g., a) can correspond to different
subsets of vertices at different stages of the algorithm.

When the algorithm processes T10 (i.e., the leaf 10) it creates vertex number 10
and gives it label a. That is, the clique-width expression corresponding to T10 is
a(10), where label a corresponds to the set {5, 7} consisting of 5 (the source of 10)
and 7 (the parent of 10). When the algorithm processes T7 (in Step 1) the clique-
width expression for T7 will be t′1 = ρP1 (ηl∗,L1

(l∗(7) ⊕ t1)). In the last formula t1 is
the clique-width expression for T10, which is a(10), and the label l∗ is a new label
corresponding to the set {2, 5} that we denote by b. The sequence ηl∗,L1

will reduce to
ηb,a, and the sequence ρP1

will reduce to renaming the label corresponding to the set
{5, 7} to the label corresponding to the set {5}. Since we do not have (in the current
expression) a label corresponding to the set {5} we can omit the ρP1 from the formula
and remember that label a now corresponds to the set {5}. Thus the clique-width
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expression for T7 is ηa,b (b(7) ⊕ a(10)), where label a corresponds to the set {5} and
label b corresponds to the set {2, 5}.

Similarly, the clique-width expression obtained by the algorithm for T5 is
ηa,c (ηb,c (c(5) ⊕ ηa,b (b(7) ⊕ a(10)))), where label c corresponds to {2, 3}, label a
corresponds to {}, and label b corresponds to {2}. We denote the last expression
by z5.

When the algorithm processes T6, the clique-width expression obtained is
ηa,b (b(6) ⊕ a(8)), where a corresponds to {3} and b corresponds to {2, 3}. We de-
note the last expression by z6. Since T6 and T5 have the same parent, the vertices
in val(z6) are renamed in order to follow the assumption of the algorithm that labels
corresponding to the same subset of vertices in val(z5) and in val(z6) are unique.
Since label b of val(z6) is the same as label c of val(z5), label b of val(z6) is renamed
to c. Since label a of val(z6) is different from label a of val(z5), label a of val(z6) is
renamed to d. Thus the algorithm sets z6 = ρb→c (ρa→d (z6)), where labels c and d
of val(z6) correspond to the sets {2, 3} and {3}, respectively.

We now consider the actions of Steps 1 and 2 on T3. The source of 3 is 1 and
p(3) = 2. By definition, T1 = T5 ∪ T6 and T2 = T9, and t1 and t2 are the clique-
width expressions of T1 and T2, respectively. The clique-width expression t1 is the
union of the clique-width expressions corresponding to T5 and T6. Thus t1 = z5 ⊕ z6,
where labels a, b, c, and d of val(t1) correspond to the sets {}, {2}, {2, 3}, and {3},
respectively. Similarly, t2 = e(9), where label e corresponds to the set {1, 3}.

Now in Step 1, vertex 3 is processed together with t1, yielding t′1 =
ρc→b (ρd→a (ηf,d (ηf,c (f(3) ⊕ t1)))), where labels a, b, and f correspond to sets
{}, {2}, and {1, 2}, respectively.

Step 2 yields t3 = t′2 = ηf,e (t′1 ⊕ e(9)), where labels a, b, e, and f correspond to
the sets {}, {2}, {1}, and {1, 2}, respectively.

Finally, we examine the outcome of Step 3, which calculates the clique-width
expression of the graph. Note that t4 = f(4), where the label f corresponds to the
set {1, 2}:

tR = ηb,c (ηe,d (ηf,c (ηf,d (ηc,d (c(2) ⊕ d(1) ⊕ t3 ⊕ t4))))).

Proof of correctness. We now show that the above algorithm will construct an
expression tree for G and will use no more than 3 ∗ 2k−1 labels. The fact that G is
the value of the clique-width expression constructed by the algorithm follows by a
straightforward induction argument.

Lemma 3.2. The algorithm requires at most 3 ∗ 2k−1 labels.
Proof. First we note that a clique-width expression t uses at most h labels if and

only if every subexpression t′ of t uses at most h labels. So, we assume by induction
that for a nonroot vertex x ∈ TG, all subexpressions t1, t2, . . . , tk use at most 3 ∗ 2k−1

labels and show that this is also true for the clique-width expression built for tx by the
above algorithm. We also assume by induction that for 1 ≤ i ≤ k, val(ti) has at most
2k labels, and that these labels correspond to subsets of {s1, . . . , si−1, si, . . . , sk, x}.
Clearly these assumptions hold for the leaves of TG.

We will show that val(tx) has at most 2k labels and that these labels correspond to
subsets of {s1, . . . , sk}. We will also show that tx does not use more than 2k+2k−1 (=
3 ∗ 2k−1) labels.

First by induction we assume that t1 does not use more than 3 ∗ 2k−1 labels and
that the val(t1) labels correspond to the subsets of {s2, . . . , sk, x}. Thus val(l∗(x)⊕t1)
has at most 2k + 1 labels. Due to the ρP1

operation in Step 1 of the algorithm, all
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the labels of val(t′1) correspond to some (but not all) subsets of {s1, . . . , sk}. Now
examine the clique-width expression ti, i > 1 (Step 2). By induction, all val(ti) labels
correspond to subsets of {s1, . . . , si−1, si+1, . . . , sk, x}. All val(t′i−1) labels correspond
to subsets of {s1, . . . , sk}. Thus the only new labels that val(t′i−1) can add (to the
labels of val(ti)) are those labels that contain si and there are at most 2k−1 such
labels. Thus the graph val(t′i−1 ⊕ ti) has at most 2k + 2k−1 labels. Again, due
to the ρPi

operation, all the labels of val(t′i) are subsets of {s1, . . . , sk}. Thus the
subexpression t′k (= tx) uses at most 3∗2k−1 labels and val(tx) has at most 2k labels,
corresponding to the subsets of {s1, . . . , sk}, as required.

We now turn our attention to the root (Step 3 of the algorithm). In particular
we show that the algorithm uses no more than 3 ∗ 2k−1 labels. The fact that the
algorithm requires no more than 3 ∗ 2k−1 labels to process the children of the root
follows immediately from the argument above. Note that equality may be achieved
when i = k. To process the root, we note that 2k labels (i.e., corresponding to all
subsets of {1, 2, . . . , k}) are needed in tx1 ∪ tx2 ∪ · · · ∪ txj . Similarly, k different labels
(i.e., l∗1, l

∗
2, . . . , l

∗
k) are needed to label 1, 2, . . . , k. Since 2k + k ≤ 3 ∗ 2k−1 for k ≥ 1,

the result follows.
To finish the proof of Theorem 1.2 we just have to show that the algorithm will

also work for partial k-trees. To see this, we first note that a partial k-tree may
be constructed in a similar way as a k-tree. In particular, given a partial k-tree G,
consider the construction tree TG′ for G′, a k-tree that contains G. Since any initial
graph on k vertices, or fewer, can be formed using at most k labels and the algorithm
does not depend on the subset of existing vertices to which a vertex is adjacent being a
clique, we see that a slight modification to the algorithm (namely, allowing each vertex
to be adjacent to at most k, rather than exactly k, ancestors) solves the problem for
partial k-trees as well.

4. Lower bound. The purpose of this section is to establish the lower bound
stated in Theorem 1.3.

Theorem 1.3. For any k, there is a graph G where twd(G) = k and cwd(G) ≥
2�k/2�−1.

Since the clique-width of any graph is at least one, the theorem is clearly true for
k at most three. Our proof assumes k is at least four, and in particular, we define a
k-tree F and prove that cwd(F ) ≥ 2�k/2�−1.

Using the notation of section 2, we define the k-tree F by its construction tree TF .
Let the vertices of F be numbered {1, . . . , n}. Like any k-tree, F can be constructed
by starting with the initial k-clique {1, . . . , k} and at each step adding a new vertex i
that is universal to a k-clique in the intermediate graph, which we denote by Qi.

The tree TF corresponds to the construction mentioned above. In the following
we denote TF by T . Each node i of the tree T corresponds to vertex i of F . The root
of T is denoted by R and corresponds to vertex k of F . The root R has one child
denoted by B that corresponds to vertex k + 1 of F . Clearly, QB = {1, 2, . . . , k}.

Let Lj denote the set of all nodes of the tree T that are at distance j from the
root R. We call Lj the jth level of the tree T . Clearly L0 = {R} and L1 = {B}. The
tree T has α levels, where α = (2k + 1)2�k/2�+1. For 2 ≤ l ≤ α, the lth level of the
tree T , Ll is defined as follows:

• For every node x of the (l− 1)st level Ll−1, add k new nodes {x1, x2, . . . , xk}
to the lth level Ll, all of which are children of x such that the following holds:

– Let Qx = {y1, . . . , yk} be the k-clique to which x is universal. Then for
1 ≤ i ≤ k, xi is the −yi child of x. In other words, xi is universal to the
k-clique Qxi = Qx ∪ {x} − {yi}.
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Fig. 6. The beginning of the construction tree T for the graph F when k is three.

Note that all the leaves of T are in level Lα and all internal nodes of T , except
the root R, have exactly k children.

Example 4.1. Figure 6 illustrates the beginning of the construction tree T for the
graph F when k is three. The root of this tree is R which corresponds to vertex 3 of F .
The root R has one child B which corresponds to vertex 4 of F . Level L0 = {R},
level L1 = {B}, level L2 = {5, 6, 7}, and level L3 = {8, 9, . . . , 16}. We omit from the
figure the k-clique to which each node of the tree is universal. Instead, we employ a
(−i) label for a node u indicating that u is the −i child of its parent. For example,
node 12 is the −3 child of node 6, which is the −2 child of node 4. The k-clique to
which node 12 is universal is Q12 = {1, 4, 6}. The parent of vertex 12 is p(12) = 6.
Figure 7 illustrates the graph corresponding to the construction tree T of Figure 6.
Note that the graph of Figure 7 is the subgraph of the graph F for k equals three,
induced by the vertices {1, 2, . . . , 16}.

The following four facts follow from the above definitions.

Fact 4.2. Let u, v be any two vertices of F not in QB = {1, . . . , k}, such that u
is adjacent to v in F . Then u is either an ancestor or a descendant of v in T .

Proof. In the construction of F , whenever a new vertex (say x) is added it is
made universal to a k-clique of vertices (denoted Qx) that were already added to F .
If a vertex y was added to F before x, then x is adjacent to y if and only if y is in Qx.
An easy induction on the construction of the tree T shows that for every node x of T
that is not in QB , all the vertices of Qx that are not in QB are ancestors of x in T .
Let u and v be two nodes of T that are not in QB , such that vertices u and v are
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Fig. 7. The graph corresponding to the construction tree of Figure 6.

adjacent in F . Assume without loss of generality that u was added to F before v.
Since u is adjacent to v, u must be in Qv. By the above argument, all vertices of Qv

are ancestors of v. Thus, u must be an ancestor of v.
Fact 4.3. Let u,w be any two adjacent vertices of F not in QB = {1, . . . , k},

such that w is a descendant of u in T . Then u is in Qw.
Proof. From the construction of F , vertex u is added to F before w. When w

is added to F , it is made adjacent to all vertices of the k-clique Qw. All the vertices
of F that are not in Qw and were added to F before w cannot be adjacent to w. Since
u is adjacent to w we conclude that u must be in Qw.

Fact 4.4. Let u, v, w be any three different vertices of F not in QB = {1, . . . , k},
such that v is a descendant of u in T , w is a descendant of v in T , v is not adjacent
to u in F , and w is adjacent to v in F . Then w is not adjacent to u in F .

Proof. Suppose w is adjacent to u in F . By Fact 4.3, both v and u belong to Qw.
Thus since Qw is a clique, u must be adjacent to v in F , a contradiction.

Fact 4.5. Let u,w be any two vertices of F not in QB = {1, . . . , k}, such that w
is a child of u in T . Then Qu − {p(u)} = Qw − {p(w)} if and only if w is the −p(u)
child of u.

Proof. Suppose w is the −p(u) child of u. By definition, Qw = Qu∪{u}−{p(u)}.
Since u = p(w) we conclude that Qw − {p(w)} = Qu − {p(u)}.

Suppose Qu − {p(u)} = Qw − {p(w)}. If w is not the −p(u) child of u, then
Qw = Qu∪{u}−{t} for some vertex t ∈ Qu different from p(u). Substituting u = p(w),
we see that Qw −{p(w)} = Qu −{t}, which contradicts Qu −{p(u)} = Qw −{p(w)}.
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u  =  r 0'

r0 (-p(u))

r1' (-u 1)

r1 (-r0)

r2' (-u 2)

r
2
 (-r

1
)

rh' (-u h)

rh (-rh-1)

Fig. 8. The nodes of the tree Tu defined in the proof of Claim 4.6.

Thus, w must be the −p(u) child of u.
For a node x of T , we denote by Tx the subtree of T rooted at x. We denote

by Lj
x the jth level of the tree Tx. We say that Tx is a complete tree if L2k+1

x is not
empty (i.e., the distance in T between x and the root R is at most α − (2k + 1)).
We now establish some properties of complete trees that will be used in subsequent
arguments.

Claim 4.6. Let u be a node of T other than the root R, such that Tu is a complete
tree in T . Then for every S ⊆ Qu − {p(u)}, there exists vertex rS ∈ NF [u] ∩ Tu such
that (QrS − {p(rS)}) ∩ (Qu − {p(u)}) = S. Furthermore, these rS vertices can be
chosen such that the set S = {rS : S ⊆ Qu − {p(u)}} − {u} is an independent set.

Proof. If S = Qu − {p(u)}, then we take rS = u. Now let {u1, u2, . . . , uh} =
Qu − ({p(u)} ∪ S). We define nodes in the subtree Tu as presented in Figure 8. Let
r0 be the −p(u) child of u. By Fact 4.5, Qr0 − {u} = Qu − {p(u)}. For i from 1
to h, we let r′i be the −ui child of ri−1 and we let ri be the −ri−1 child of r′i. Since
ri−1 = p(r′i), by Fact 4.5, Qri −{p(ri)} = Qr′i

−{p(r′i)}. We set rS = rh and we show
that rS satisfies the required properties. Let r′0 = u. Now, by an easy induction on i,
where 1 ≤ i ≤ h,

Qri − {p(ri)} = Qu ∪ {r′j : 0 ≤ j < i} − ({p(u)} ∪ {u1, . . . , ui}).

Thus, setting rS = rh we see that rS satisfies the required properties.
We now show that S is an independent set. Suppose there exist two adjacent

vertices rS1 and rS2 in S. By Fact 4.2, rS1 is either an ancestor or a descendant
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Fig. 9. The nodes of the tree Tu defined in the proof of Claim 4.7.

of rS2 in T . Assume without loss of generality that rS1
is an ancestor of rS2

(i.e.,
S2 ⊂ S1). By Fact 4.3, rS1 ∈ QrS2

. By the above construction, there exist integers x
and y such that 1 ≤ y < x, Qu − ({p(u)} ∪ S2) = {u1, u2, . . . , uy, . . . , ux}, rS2

= rx,
Qu − ({p(u)} ∪ S1) = {u1, u2, . . . , uy}, and rS1

= ry. From the above formula

QrS2
− {p(rS2

)} = Qu ∪ {u, r′1, . . . , r′x−1} − ({p(u)} ∪ {u1, . . . , ux}),

which implies that rS1 /∈ QrS2
, a contradiction.

Claim 4.7. Let u be a node of T other than the root R, such that Tu is a complete
tree. Then for any W ⊂ Qu−{p(u)} with w1, w2 ∈ W , there exist vertices u1, u2 ∈ Tu,
at level at most 2k + 1 of Tu, such that u1 is neither an ancestor nor a descendant
of u2, Qui − {p(ui)} = (W − {wi}) ∪ Yui , where i = 1, 2, Yui ∩ W = ∅, all vertices
of Yui

are in Tu, Yu1
∩ Yu2

= ∅, and no vertex of Yu1
is an ancestor or a descendant

of a vertex in Yu2
.

Proof. Let Qu − {p(u)} −W = {x1, . . . , xh}. Thus,

W − {w1} = Qu − {p(u), w1, x1, . . . , xh},(1)

W − {w2} = Qu − {p(u), w2, x1, . . . , xh}.(2)

We now define nodes in the subtree Tu as presented in Figure 9. Let r0 be the −p(u)
child of u. Let a′1 be the −w1 child of r0 and let a1 be the −r0 child of a′1. Let b′1 be
the −w2 child of r0 and let b1 be the −r0 child of b′1. For i from 2 to h + 1, let a′i be
the −xi−1 child of ai−1, let b′i be the −xi−1 child of bi−1, let ai be the −ai−1 child
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of a′i, and let bi be the −bi−1 child of b′i. We set u1 as the −u child of ah+1 and u2 as
the −u child of bh+1. As in the proof of Claim 4.6 we get the following formulas:

Qah+1
− {p(ah+1)} = Qu ∪ {u, a′1, . . . , a′h} − ({p(u)} ∪ {w1, x1, . . . , xh}),(3)

Qbh+1
− {p(bh+1)} = Qu ∪ {u, b′1, . . . , b′h} − ({p(u)} ∪ {w2, x1, . . . , xh}).(4)

Since Qu1 = Qah+1
∪ {ah+1} − {u} we obtain from formula (3) that

Qu1 − {p(u1)} = Qu ∪ {a′1, . . . , a′h+1} − ({p(u)} ∪ {w1, x1, . . . , xh}).(5)

From formulas (1) and (5) we get

Qu1 − {p(u1)} = (W − {w1}) ∪ {a′1, . . . , a′h+1}.(6)

Similarly, from formulas (2) and (4),

Qu2 − {p(u2)} = (W − {w2}) ∪ {b′1, . . . , b′h+1}.(7)

Thus, setting Yu1 = {a′1, . . . , a′h+1} and Yu2 = {b′1, . . . , b′h+1} we get from formulas (6)
and (7) that Qui −{p(ui)} = (W −{wi})∪ Yui , i = 1, 2. Since all the vertices of Yui ,
i = 1, 2, are below u and all vertices of W are above u in the tree T , W ∩ Yui

= ∅,
i = 1, 2. Clearly, Yu1 ∩Yu2

= ∅ and no vertex of Yu1 is an ancestor or a descendant of
a vertex in Yu2 .

For a node x of T other than the root R, we let Px denote a path (x = x0, x1,
. . . , xβ) of Tx, where xβ is a leaf and
(�) • Qxi − {p(xi)} = Qxi−1 − {p(xi−1)}, i > 0,

• p(xi) = xi−1, i > 0.
Fact 4.8. Let x be a node of T other than the root R and let u and v be two

nonadjacent nodes on the path Px (that satisfies (�)). Then u and v are not adjacent
in F .

Proof. We prove the claim by induction on the distance between u and v on the
path Px. Since u and v are not adjacent on the path, their distance on the path must
be at least two. Assume without loss of generality that v is a descendant of u.

Suppose the distance between u and v on the path Px is two. Since Px satisfies (�),
v is the −u child of p(v), which implies that u is not in Qv. By Fact 4.3, v cannot be
adjacent to u in F .

Suppose the distance between u and v on the path Px is greater than two. We
can assume, by the induction hypothesis, that p(v) is not adjacent to u in F . Now
since v is adjacent to p(v) in F and p(v) is not adjacent to u in F we get by Fact 4.4
that v is not adjacent to u in F .

For any node x of T other than the root R, where Tx is a complete tree and
Q ⊆ Qx − {p(x)}, we let XQ

x = {y : y ∈ L2k+1
x ∧ (Qy − {p(y)}) ∩ (Qx − {p(x)}) = Q}

(i.e., XQ
x denotes the set of vertices at level 2k + 1 whose sources contain Q and

no vertices in Qx − {p(x)} − Q). Furthermore, we let PQ
x = {Py : y ∈ XQ

x } (i.e.,
PQ
x denotes the paths rooted at y ∈ XQ

x that satisfy (�) above).
Claim 4.9. Let x be a node in T other than the root R, such that Tx is a complete

tree, and let Q ⊆ Qx − {p(x)}. Then |XQ
x | ≥ (k − |Q|)k+1.

Proof. Let Y j , 1 ≤ j ≤ k + 1, denote the set of all vertices at level j (of Tx)
that include all the vertices of Q in their sources. In other words, Y j = {y :
y ∈ Lj

x ∧Q ⊆ Qy − {p(y)}}. Note that any vertex z at level j, where 1 ≤ j < k + 1,
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is created by making it adjacent to k vertices, |Q| of which are forced. Thus z has
k− |Q| children that are in Y j+1. It follows by a straightforward induction on j that
|Y j | = (k − |Q|)j , 1 ≤ j ≤ k + 1.

Let y be a vertex of Y k+1. It is easy to see that we can construct a path of length k
from y to a vertex y′ of level 2k + 1 of Tx such that Qy′ −{p(y′)} ∩Qx −{p(x)} = Q.
Thus, each vertex y of Y k+1 corresponds to a unique vertex y′ of XQ

x , implying that
|XQ

x | ≥ |Y k+1| = (k − |Q|)k+1.

In order to argue about the clique-width of F , we let T denote an optimum
clique-width parse tree for F . For a an internal node of T , we let Ta denote the
subtree of T rooted at a and let Va represent the leaves (i.e., vertices of F ) of Ta. As
the following claim shows, having a set of vertices outside Va together with certain
neighbors inside Va establishes a lower bound on the number of distinct labels required
at a (i.e., to label the vertices of Va at node a of T ).

Claim 4.10. Let X be a set of l vertices in V − Va, where for each subset Y of
these vertices, there is a vertex inside Va adjacent to all vertices of Y and to no other
vertices in X. Then at least 2l labels are required to label the vertices of Va.

Proof. For any two vertices x, y inside Va adjacent to different subsets of X, there
is at least one vertex outside Va that is adjacent to x and not to y. Thus x and y must
have different labels at position a of the parse tree. Since there are 2l such vertices,
the result follows.

For T1 a subtree of T and Py a path of T satisfying (�), we say that Py is full
with respect to T1 if all vertices of Py are in T1. Given a set PQ

x , we will often choose
a lowest possible internal node of T , say a, such that some path in PQ

x is full with
respect to Ta (i.e., for some path P ∈ PQ

x all of its vertices are in Va; P is said to be
full with respect to a). If Tu ∩Va = ∅ for some u, we say that Tu is empty with respect
to a.

Claim 4.11. Assume cwd(F ) < 2�k/2�−1. Let x be a node in T other than the
root R, where Tx is a complete tree, let Q be a strict subset of Qx −{p(x)}, and let a
be a lowest node in T such that some path in PQ

x is full with respect to a. Then there
is a vertex y ∈ XQ

x such that Ty is empty with respect to a.

Proof. From the definition of a it follows that a must be an ⊕ node. Let l and r
be the left and the right child of a in the tree T , respectively. From the definition
of a it follows that for each path P in PQ

x that is full with respect to a, the vertices
of P are split between the two subtrees Tl and Tr. Thus, for each path in PQ

x that is a
full path with respect to a in T , at least one edge of the path (in F ) must be created
by an operation above a. Thus each such full path requires at least two new labels
and these labels cannot be shared by other full paths with respect to a in PQ

x . Since
cwd(F ) < 2�k/2�−1, there are fewer than 2�k/2�−2 full paths with respect to a in PQ

x .
If a tree rooted at z ∈ XQ

x is neither empty nor has a full path with respect to a, then
there is some vertex w ∈ Tz that is in Va, but w′, a neighbor of w (in Tz), is not in Va.
Thus w must have a new label and its label must be different from all of the pairs
of labels required for the full paths and all of the labels required for other “partially
present” trees. Now, the number of such partially present trees is less than 2�k/2�.

Thus in XQ
x fewer than 2�k/2�−2 vertices are the roots of full paths and fewer than

2�k/2� are the roots of partially present trees. By Claim 4.9, |XQ
x | ≥ 2k+1 and thus

there is at least one vertex that is the root of an empty tree with respect to a.

In order to prove Theorem 1.3 we will examine the k-tree F and proceed by
assuming cwd(F ) < 2�k/2�−1 until we finally reach a contradiction.

Initially we will examine the vertices in X2,...,k−1
B and let a be a lowest node in T
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such that some path in P 2,...,k−1
B is full with respect to a. We will then show that at

least �k/2� vertices of {2, . . . , k − 1} are in Va and have unique labels (unique in the
sense that no two such vertices can have the same label) at a. We then proceed by
induction by identifying other vertices in T and looking at b, a lowest node in T such
that some path rooted at one of these vertices is full with respect to b. We show that
Va ⊆ Vb and that the set of vertices requiring unique labels at a also requires unique
labels at b and that this set must be augmented by a new vertex that requires a new
label. This augmentation continues until eventually this set has cardinality equal to
2�k/2�−1, contradicting the assumption that cwd(F ) < 2�k/2�−1, and thereby proving
the theorem. The depth of T , α is chosen so that all subtrees used to generate full
paths are complete and have depth of at least 2�k/2� + 2k + 1. The length of the full
paths generated by these subtrees will be at least 2�k/2�, since the root of each such
path is at level 2k + 1 of its corresponding subtree.

Following the above outline, we start by establishing some claims about Ta.
Claim 4.12. At least �k/2� vertices of QB−{1, k} (i.e., {2, . . . , k−1}) are in Va

and each must have a unique label at a.

Proof. Suppose there is a full path P with respect to a rooted at z ∈ X
QB−{1,k}
B .

Since such a path has more than 2�k/2� vertices, at least two vertices x and y on
this path must have the same label at a. Suppose x is closer to z than is y. Since

z ∈ X
QB−{1,k}
B , by definition (Qz − {p(z)}) ∩ (QB − {p(B)}) = QB − {1, k}. Note

that p(B) = k (i.e., R). Since P is a full path, Qz − {p(z)} = Qx − {p(x)} and
thus (Qx − {p(x)}) ∩ (QB − {k}) = QB − {1, k}. By Claim 4.6, for every subset S
of Qx − {p(x)}, there exists vertex rS ∈ NF [x] ∩ Tx such that (QrS − {p(rS)}) ∩
(Qx − {p(x)}) = S. Let S = {rS : S ⊆ (Qx − {p(x)}) ∩ (QB − {k})}.

From the construction of the rS vertices given in the proof of Claim 4.6 it is
clear that all the vertices in S − {x} are not on the path P and therefore are neither
ancestors nor descendants of y. By Fact 4.2 all these vertices are not adjacent to y
and thus must be in Va since they are adjacent to x but not to y, and x and y have
the same label at a. We have shown that all vertices of S must be in Va.

Now suppose that fewer than �k/2� vertices of QB − {1, k} = (Qx − {p(x)}) ∩
(QB − {k}) are in Va. Thus there are at least �(k− 1)/2� vertices of (Qx − {p(x)})∩
(QB − {k}) that are outside Va. Let W ′ denote the set of these vertices and let
W = {rS : S ⊆ W ′}. Since W ⊆ S we have shown above that all the vertices of W
are in Va. For every S ⊆ W ′ the vertex rS is in Va and is adjacent to all the vertices
of S and to no other vertices in W ′. Thus by Claim 4.10, all the vertices of W must
have different labels at a. Now at least |W| ≥ 2�(k−1)/2� different labels are needed
at a. Since 2�(k−1)/2� ≥ 2�k/2�−1 we have contradicted cwd(F ) < 2�k/2�−1.

Let W denote the subset of QB − {1, k} that is in Va, where |W | ≥ �k/2�. We
now show that all vertices in W have unique labels at a. By Claim 4.11, there exists

vertex u ∈ X
QB−{1,k}
B such that Tu is empty with respect to a. By Claim 4.6, for

each vertex w ∈ W there is a vertex rS in Tu corresponding to the set S = {w}, such
that rS is adjacent to w and to no other vertex in W . Since rS is outside Va, the label
of the vertex w at a must be different from the labels at a of all the other vertices
of W .

We now prepare for the general induction step, each execution of which will add
one more vertex requiring a new unique label. Thus executing the induction step
2�k/2�−1 −�k/2� times will complete the proof of the theorem. First we let W denote
a subset of QB − {1, k} such that all elements of W are in Va and |W | = �k/2�.
(Note that there may be more elements of QB − {1, k} that are in Va, but we only
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consider �k/2� of them.) By Claim 4.12 the set W exists and all the vertices of W
have different labels at a.

Let u be a vertex in X
QB−{1,k}
B where Tu is empty with respect to a. (Vertex u

is guaranteed by Claim 4.11.) Let w1 and w2 be arbitrary vertices in W . (Note that
we require k to be at least four in order to guarantee the existence of w1 and w2.) By
Claim 4.7, Tu contains vertices u1 and u2, at level at most 2k + 1 of Tu, such that u1

is neither an ancestor nor a descendant of u2 and

• Qui − {p(ui)} = Wui ∪ Yui , i = 1, 2, where Wui = W − {wi}, Yui ∩W = ∅,
and Yu1 ∩ Yu2 = ∅.

Note that |Wui | = �k/2�−1. Let u′
i be an arbitrary element in Yui for i = 1, 2 and set

U = {u1, u2}. Clearly, W =
⋃
{Wui

: ui ∈ U}. Let PU =
⋃
{PQui

−{u′
i,p(ui)}

ui : ui ∈ U}
and define b to be a lowest vertex in T such that some path in PU is full with respect
to b.

Note that since at least one path of PU must be in Vb and all these paths are
in Tu and thus are not in Va, we conclude that b is not a descendant of a.

Claim 4.13. b is an ancestor of a.

Proof. Suppose not and suppose z ∈ X
Qu1−{u′

1,p(u1)}
u1 is the root of a full path P

with respect to b, where b is not an ancestor of a. Since such a path has more than
2�k/2� vertices, at least two vertices x and y on this path must have the same label at b.
Suppose x is closer to z than is y. Since P is a full path, Qz − {p(z)} = Qy − {p(y)}
and thus Wu1 ⊂ Qy − {p(y)}. By Claim 4.6, for every subset S of Wu1 , there exists
a vertex rS ∈ NF [y] ∩ Ty such that (QrS − {p(rS)}) ∩ (Qy − {p(y)}) = S. Let
S = {rS : S ⊆ Wu1

} denote the set of all these vertices. From the construction of the
rS vertices given in the proof of Claim 4.6 it is clear that all the vertices in S − {y}
are adjacent to y and are not adjacent to p(y). We claim that all these vertices are
not adjacent to x. If x is the parent of y, then all these vertices are not adjacent to x,
since x = p(y) in this case. If x is not the parent of y, then by Fact 4.8, x and y are
not adjacent. Since all vertices of S−{y} are adjacent to y and y is not adjacent to x,
it follows by Fact 4.4 that all these vertices are not adjacent to x. Thus, all vertices
of S − {y} must be in Vb, since they are adjacent to y but not to x. By definition,
y is in Vb too. We have shown that all vertices of S must be in Vb.

By definition, all the vertices of Wu1 are in Va. Since we assume that b is not
an ancestor of a and since b cannot be a descendant of a (as noted above) we see
that all these vertices are not in Vb. For every S ⊆ Wu1

there is a vertex rS in Vb

that is adjacent to all the vertices of S and to no other vertices in Wu1 , and thus by
Claim 4.10 all the vertices of S must have different labels at b. Since |Wu1 | = �k/2�−1,
|S| = 2�k/2�−1, contradicting cwd(F ) < 2�k/2�−1.

Claim 4.14. For all ui ∈ U , there is a vertex y ∈ X
Qui

−{u′
i,p(ui)}

ui such that Ty

is empty with respect to b.

Proof. If there is a path in P
Qui

−{u′
i,p(ui)}

ui that is full with respect to b, this follows

immediately from Claim 4.11. Otherwise, all trees rooted at vertices in X
Qui

−{u′
i,p(ui)}

ui

are mixed in the sense that some vertices are in Vb and some are not. As in the proof
of Claim 4.11, each such tree requires at least one label and these labels must all be
different. Now, by Claim 4.9, the number of such trees is at least 2k+1, contradicting
cwd(F ) < 2�k/2�−1.

Claim 4.15. All W vertices have different labels at b.

Proof. By the definitions, for all w ∈ W , there exists ui ∈ U such that w ∈ Wui .
Now consider two arbitrary vertices w′, w′′ in W , and suppose w′ ∈ Wu1 . (We
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will show that w′ and w′′ must have different labels at b.) Let y be a vertex

in X
Qu1

−{u′
1,p(u1)}

u1 such that Ty is empty with respect to b (guaranteed by Claim
4.14). By definition, (Qy − {p(y)}) ∩ (Qu1 − {p(u1)}) = Qu1 − {u′

1, p(u1)}. Since
w′ ∈ Qu1 − {p(u1)} and w′ is not equal to u′

1, we get from the last formula that
w′ ∈ Qy − {p(y)}.

Suppose w′′ ∈ Qy − {p(y)}. By Claim 4.6, there is a vertex rS in Ty correspond-
ing to the set S = {w′}, such that rS is adjacent to w′ and to no other vertex in
Qy − {p(y)}. Since rS is outside Vb and is adjacent to w′ but not to w′′, w′ and w′′

must have different labels at b.

Suppose w′′ /∈ Qy − {p(y)}. Again, let rS be a vertex (guaranteed by Claim 4.6)
in Ty corresponding to the set S = {w′}, such that rS is adjacent to w′ and to no
other vertex in Qy − {p(y)}. From the definition of rS in the proof of Claim 4.6 it
is clear that except for w′, rS is adjacent just to vertices in Ty and thus rS is not
adjacent to w′′. Since rS is outside Vb and is adjacent to w′ but not to w′′, w′ and w′′

must have different labels at b.

Let u1 ∈ U satisfy the existence of a vertex z ∈ X
Qu1−{u′

1,p(u1)}
u1 such that z is

the root of a full path with respect to b.

Claim 4.16. There are at least �k/2� vertices of Qu1−{u′
1, p(u1)} that are in Vb.

Proof. This proof is similar to that of Claim 4.12. As mentioned above, we assume

that there is a full path P with respect to b rooted at z ∈ X
Qu1

−{u′
1,p(u1)}

u1 . Since the
path P has more than 2�k/2� vertices, at least two vertices x and y on the path P must

have the same label at b. Suppose x is closer to z than is y. Since z ∈ X
Qu1−{u′

1,p(u1)}
u1 ,

by definition (Qz − p(z))∩ (Qu1 − p(u1)) = Qu1 − {u′
1, p(u1)}. Since P is a full path,

Qz −{p(z)} = Qx−{p(x)} and thus (Qx−p(x))∩ (Qu1 −p(u1)) = Qu1 −{u′
1, p(u1)}.

By Claim 4.6, for every subset S of Qx − {p(x)}, there exists vertex rS ∈ NF [x] ∩ Tx

such that (QrS −{p(rS)})∩ (Qx −{p(x)}) = S. Let S = {rS : S ⊆ Qu1
−{u′

1, p(u1)}.
From the construction of the rS vertices given in the proof of Claim 4.6 it is

clear that all the vertices in S − {x} are not on the path P and therefore are neither
ancestors nor descendants of y. By Fact 4.2 all these vertices are not adjacent to y
and thus must be in Vb since they are adjacent to x but not to y, and x and y have
the same label at b. We have shown that all vertices of S must be in Vb.

Now suppose that fewer than �k/2� vertices of Qu1 − {u′
1, p(u1)} are in Vb. Thus

there are at least �(k−1)/2� vertices of Qu1
−{u′

1, p(u1)} that are outside Vb. Let M ′

denote the set of these vertices and let M = {rS : S ⊆ M ′}. Since M ⊆ S, we have
shown above that all the vertices of M are in Vb. For every set of vertices S ⊆ M ′

the vertex rS is in Vb and is adjacent to all the vertices of S and to no other vertices
in M ′. Thus by Claim 4.10 all the vertices of M must have different labels at b. Thus
at least |M| ≥ 2�(k−1)/2� different labels are needed at b. Since 2�(k−1)/2� ≥ 2�k/2�−1,
we have contradicted cwd(F ) < 2�k/2�−1.

Let M denote the subset of Qu1−{u′
1, p(u1)} that is in Vb where |M | ≥ �k/2�. We

now show that all vertices in M have unique labels at b. By Claim 4.11, there exists

vertex s ∈ X
Qu1−{u′

1,p(u1)}
u1 such that Ts is empty with respect to b. By Claim 4.6,

for each vertex m ∈ M there is a vertex rS in Ts corresponding to the set S = {m},
such that rS is adjacent to m and to no other vertex in M . Since rS is outside Vb,
the label of the vertex m at b must be different from the labels at b of all the other
vertices of M .

Since |Wu1 | = �k/2� − 1, there is a vertex ũ1 ∈ Yu1 − {u′
1} that is in Vb. We now

show that at b, ũ1 has a different label from all the vertices in W .
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Claim 4.17. At b, the label of ũ1 is different from the labels needed for the
W vertices.

Proof. Suppose ũ1 and w ∈ W have the same label at b. By Claim 4.14, there is

a y ∈ X
Qu1−{u′

1,p(u1)}
u1 such that Ty is empty with respect to b. By the definition of y,

Qu1
− {u′

1, p(u1)} ⊂ Qy − {p(y)} and thus ũ1 ∈ Qy − {p(y)}. By Claim 4.6, there is
a vertex rS in Ty corresponding to the set S = {ũ1}, such that rS is adjacent to ũ1

and to no other vertex in Qy −{p(y)}. Now, as in the proof of Claim 4.15, regardless
of whether w ∈ Qy − {p(y)}, it follows that rS is adjacent to ũ1 but not to w. Since
rS is outside Vb, it follows that ũ1 and w must have different labels at b.

Thus this step has shown that at least �k/2�+ 1 distinct labels are required at b.
To continue the process, we will augment W with ũ1 and we will augment the set U
(as shown below) and define c to be a lowest vertex in T such that some path in PU

is full with respect to c. It will then be shown that c is an ancestor of b and that
all vertices in W must have different labels at c. A new vertex will be identified that
must have a different label at c from all vertices in W , and it will be added to W .
This process continues by renaming c to be b and augmenting U .

From now on we assume that W is augmented with ũ1. (Note that Wu1
and Wu2

are not changed.) Thus, the size of W is now �k/2� + 1. For augmenting U we shall
use the two vertices u1,1 and u1,2 guaranteed by the following claim.

Claim 4.18. Let w̃ be an arbitrary vertex in Wu1 . Then there exist vertices u1,1

and u1,2 in Tu1 such that u1,1 is neither an ancestor nor a descendant of u1,2 and
• Qu1,1 − {p(u1,1)} = Wu1,1 ∪ Yu1,1

, where Wu1,1 = Wu1 , and Yu1,1
∩W = ∅;

• Qu1,2−{p(u1,2)} = Wu1,2∪Yu1,2 , where Wu1,2 = Wu1∪{ũ1}−{w̃}, Yu1,2∩W =
∅, Yu1,1 ∩ Yu1,2 = ∅, and no vertex of Yu1,1 is an ancestor or a descendant of
a vertex in Yu1,2

.
Proof. Using Claim 4.7 for u = u1, W = Wu1

∪ {ũ1}, w1 = ũ1, and w2 = w̃,
there exist u1,1 and u1,2 in Tu1 such that u1,1 is neither an ancestor nor a descendant
of u1,2 and

• Qu1,1−{p(u1,1)} = Wu1,1∪Yu1,1 , where Wu1,1 = Wu1 , Yu1,1∩(Wu1∪{ũ1}) = ∅,
and Yu1,1 is in Tu1 ;

• Qu1,2 − {p(u1,2)} = Wu1,2 ∪ Yu1,2 , where Wu1,2 = Wu1
∪ {ũ1} − {w̃}, Yu1,2 ∩

(Wu1
∪ {ũ1}) = ∅, Yu1,2

is in Tu1
, Yu1,1

∩ Yu1,2
= ∅, and no vertex of Yu1,1

is
an ancestor or a descendant of a vertex in Yu1,2

.
To complete the proof of the claim we need to show that Yu1,i ∩W = ∅, i = 1, 2.

We shall prove it for i = 1 (the case for i = 2 is the same). Suppose not, and let
t be a vertex in Yu1,1 ∩ W . Since Yu1,1 ∩ (Wu1 ∪ {ũ1}) = ∅, it follows that t is in
W − (Wu1 ∪ {ũ1}). By definition of W , t ∈ Wua for some vertex ua in U other
than u1. (Note that at the beginning there are just u1 and u2 in U and thus in
this case ua = u2. However, we use ua rather than u2 so that the proof can be also
applied for the more general case when the size of U is greater than two.) Thus, t is an
ancestor of ua. Now since t ∈ Yu1,1 and all vertices of Yu1,1 are in Tu1 , it follows that
t is a descendant of u1. We conclude that ua is a descendant of u1, a contradiction
since no two vertices of U are descendants of each other.

Augmenting U . Vertex u1 (a vertex in U such that there is vertex z ∈
X

Qu1−{u′
1,p(u1)}

u1 , where z is the root of a full path with respect to b) will be replaced
by the vertices u1,1 and u1,2 satisfying the conditions of Claim 4.18. As before, we let
u′

1,1 and u′
1,2 be arbitrary elements in Yu1,1 and Yu1,2 , respectively. After reindexing

the elements of U to be u1, u2, . . . , we define

• PU =
⋃
{PQui

−{u′
i,p(ui)}

ui : ui ∈ U}.
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We now establish various claims about U .

Claim 4.19. The following hold for U :

1. No vertex in U is an ancestor (in T ) of any other vertex in U .
2. For every vertex u in U , we have Qu − {p(u)} = Wu ∪ Yu, where |Wu| =

�k/2� − 1, Wu ⊂ W , and Yu ∩W = ∅.
3. Set W equals

⋃
{Wu : u ∈ U}.

4. For every pair u, s of distinct vertices in U , Yu ∩ Ys = ∅, and there is no
vertex of Yu that is an ancestor or a descendant of a vertex of Ys.

5. For every vertex u in U , there is a vertex y ∈ P
Qu−{u′,p(u)}
u such that Ty is

empty with respect to b.
6. All vertices in W have different labels at b.

Proof.

1. This follows by an easy induction argument and the fact that the new vertices
u1,1 and u1,2 are descendants of u1 and are not ancestors of each other.

2. Again we use an easy induction argument and the fact that the new vertices
u1,1 and u1,2 satisfy the conditions of Claim 4.18.

3. This follows by an induction argument where it is assumed to be true for
the unaugmented U and W (i.e., before u1 was replaced by u1,1 and u1,2

and before W was augmented with ũ1). Let u1,1 and u1,2 be the two new
vertices replacing u1. From the formula of Claim 4.18, it is clear that Wu1,1

∪
Wu1,2 = Wu1

∪ ũ1. Thus, replacing Wu1
with Wu1,1

∪ Wu1,2
in the formula⋃

{Wu : u ∈ U}, we see that this formula is now equal to the augmented W .
4. Here the induction argument assumes it to be true for the unaugmented U .

Let u1,1 and u1,2 be the two new vertices replacing u1. If neither u nor s is
in {u1,1, u1,2}, then the claim follows by the induction hypothesis. If both u
and s are in {u1,1, u1,2}, then the claim follows from the formula of Claim 4.18.
Suppose u is in {u1,1, u1,2} (say u is equal to u1,1) and s is not in this set.
By the formula of Claim 4.18, all vertices of Yu1,1 are in Tu1 , which implies
that they are all descendants of Yu1 . By the induction hypothesis, no vertex
of Yu1

is an ancestor or a descendant of a vertex in Ys. Thus, no vertex of
Yu1,1 = Yu is an ancestor or a descendant of a vertex in Ys. This also implies
that Yu ∩ Ys = ∅.

5. For u being neither u1,1 nor u1,2, this follows from Claim 4.14. For ver-
tices u1,1 or u1,2, an argument almost identical to that used in the proof of
Claim 4.11 suffices.

6. Immediate from Claims 4.15 and 4.17.

We now define c to be a lowest vertex in T such that some path in PU is full with
respect to c. Note that c could be b, but from the definition of c it is clear that c
cannot be a proper descendant of b. In order for the process to continue, the following
analogues to Claims 4.13, 4.14, 4.15, 4.16, and 4.17 must hold. In all cases the proofs
are the same as the proofs of the analogous claim and where appropriate use the facts
established in Claim 4.19.

Claim 4.20 (analogue of Claim 4.13). Vertex c is an ancestor of b (possibly a
trivial ancestor of b).

Proof. Suppose not and suppose z ∈ X
Qu1

−{u′
1,p(u1)}

u1 is the root of a full path P
with respect to c, where c is not an ancestor of b. Since such a path has more than
2�k/2� vertices, at least two vertices x and y on this path must have the same label at c.
Suppose x is closer to z than is y. Since P is a full path, Qz−{p(z)} = Qy−{p(y)} and
thus Wu1 ⊂ Qy −{p(y)}. By Claim 4.6, for every subset S of Wu1 , there exists vertex
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rS ∈ NF [y]∩Ty such that (QrS−{p(rS)})∩(Qy−{p(y)}) = S. Let S = {rS : S ⊆ Wu1
}

denote the set of all these vertices. Using the same argument as in the proof of
Claim 4.13, we conclude that all vertices of S − {y} must be in Vc, since they are
adjacent to y but not to x. Thus all vertices of S must be in Vc.

By definition, all the vertices of Wu1 are in Vb. Since we assume that c is not an
ancestor of b and since c cannot be a proper descendant of b (as noted above) we see
that all these vertices are not in Vc. For every S ⊆ Wu1 there is a vertex rS in Vc

that is adjacent to all the vertices of S and to no other vertices in Wu1 , and thus
by Claim 4.10, all the vertices of S must have different labels at c. By Claim 4.19
|Wu1 | = �k/2� − 1. Thus, |S| = 2�k/2�−1, contradicting cwd(F ) < 2�k/2�−1.

Claim 4.21 (analogue of Claim 4.14). For all ui ∈ U , there is a vertex y ∈
X

Qui
−{u′

i,p(ui)}
ui such that Ty is empty with respect to c.

Proof. The proof of this claim is obtained by rewriting the proof of Claim 4.14
replacing b with c everywhere.

Claim 4.22 (analogue of Claim 4.15). All W vertices have different labels at c.
Proof. By Claim 4.19, for all w ∈ W , there exists ui ∈ U such that w ∈ Wui

.
Now consider w′, w′′ two arbitrary vertices in W , and suppose w′ ∈ Wu1 . Let y be

a vertex in X
Qu1−{u′

1,p(u1)}
u1 such that Ty is empty with respect to c (guaranteed by

Claim 4.21). The proof now continues as in the proof of Claim 4.15, replacing b with c
everywhere to conclude that w′ and w′′ must have different labels at c.

As before, we let vertex u1 ∈U satisfy the existence of a vertex z∈X
Qu1

−{u′
1,p(u1)}

u1 ,
such that z is the root of a full path with respect to c.

Claim 4.23 (analogue of Claim 4.16). At least �k/2� vertices of Qu1−{u′
1, p(u1)}

are in Vc.
Proof. The proof of this claim is obtained by rewriting the proof of Claim 4.16,

replacing b with c everywhere.
By Claim 4.19, |Wu1 | = �k/2� − 1 and Qu1 − {p(u1)} = Wu1 ∪ Yu1 . Thus, by

Claim 4.23, there is a vertex ũ1 ∈ Yu1 − {u′
1} that is in Vc.

Claim 4.24 (analogue of Claim 4.17). At c, the label of ũ1 is different from the
labels needed for the W vertices.

Proof. Suppose ũ1 and w ∈ W have the same label at c. By Claim 4.21, there is

a y ∈ X
Qu1−{u′

1,p(u1)}
u1 such that Ty is empty with respect to c. By the definition of y,

Qu1 − {u′
1, p(u1)} ⊂ Qy − {p(y)} and thus ũ1 ∈ Qy − {p(y)}. By Claim 4.6, there is

a vertex rS in Ty corresponding to the set S = {ũ1}, such that rS is adjacent to ũ1

and to no other vertex in Qy −{p(y)}. Now, as in the proof of Claim 4.22, regardless
of whether w ∈ Qy − {p(y)}, it follows that rS is adjacent to ũ1 but not to w. Since
rS is outside Vc, it follows that ũ1 and w must have different labels at c.

Finally, we rename c to be b and again augment W by adding ũ1 to W and
augment U by replacing u1 with the vertices u1,1 and u1,2 guaranteed by Claim 4.18.
This augmentation continues until |W | > 2�k/2�−1, thereby completing the proof of
Theorem 1.3.

Note that these augmentation steps are based on the above claims where it is
assumed that for every vertex u in U , the depth of the tree Tu is at least 2k+1+2�k/2�.
We now prove the correctness of this assumption. The vertex u selected at the initial

step is in X
QB−{1,k}
B and thus is at level 2k + 1 of TB . The set of vertices U at the

initial step is {u1, u2}, where, as indicated above, u1 and u2 are at level at most 2k+1
of Tu. Thus, the vertices in the initial set U are at level at most 2(2k + 1) of TB . By
Claim 4.7, at each augmentation step the vertices u1,1 and u1,2 selected to replace u1

in U are at level at most 2k + 1 of Tu1 . Thus, after 2�k/2�−1 augmentation steps, all
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the vertices in U are at level at most (2k + 1)2�k/2� of TB . Now the claim follows
since α, the depth of T , is equal to (2k + 1)2�k/2�+1.

5. Concluding remarks. The most important result in this paper is the fact
that the clique-width of a graph can be exponentially higher than its treewidth. We
fully expect that the bound expressed in Theorem 1.3 can be improved; the most in-
teresting question, however, is to find a lower bound that confirms the bound achieved
through some algorithm. In particular, we expect that the upper bound expressed
in Theorem 1.2 is the best possible. Note that it is correct for k equals one (trees)
and for k equals two (shown by a tedious exhaustive argument). Recently, Espelage,
Gurski, and Wanke [9] have shown the existence of a linear time algorithm to de-
termine whether a graph of bounded treewidth has clique-width at most k. Thus
by using the result of Theorem 1.2 and running their algorithm for all values of k
from 1 to 3 ∗ 2twd(G)−1, they have shown the existence of a linear time algorithm to
determine the clique-width of a graph of bounded treewidth.

It is well appreciated that the most important open problems in the study of
clique-width are the resolution of the general recognition problem (given graph G
and integer k, is cwd(G) ≤ k?—strongly believed to be NP-complete) and the fixed k
recognition problem for k ≥ 4. (The fixed k recognition problem can be solved in poly-
nomial time for k ≤ 3; in particular the case when k = 1 is trivial, for k = 2 these are
the cographs [8] which can be recognized in linear time [4], and for k = 3 an O(n2m)
algorithm is presented in [3].) It is interesting to note that the corresponding prob-
lems for treewidth are resolved. In particular, Arnborg, Corneil, and Proskurowski [1]
showed that the general treewidth recognition problem (given graph G and integer k,
is twd(G) ≤ k?) is NP-complete whereas the fixed recognition problem is in P. Bod-
laender [2] later presented a linear time algorithm for the fixed k treewidth recognition
problem.

It seems as though the stumbling block for both problems is the difficulty in
developing good arguments to provide strong lower bounds on the clique-width of a
graph. Hopefully the techniques presented in section 4 can assist.

Another avenue of promising research is the development of polynomial time al-
gorithms to determine the clique-width of restricted families of graphs, especially
those where the clique-width can be arbitrarily large. Such families include permu-
tation graphs, planar graphs, interval graphs, and even unit interval graphs. Again
progress in this area depends on lower bound arguments that show that the clique-
width achieved by a particular algorithm is the best possible.
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WORK-COMPETITIVE SCHEDULING FOR
COOPERATIVE COMPUTING WITH DYNAMIC GROUPS∗
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Abstract. The problem of cooperatively performing a set of t tasks in a decentralized computing
environment subject to failures is one of the fundamental problems in distributed computing. The
setting with partitionable networks is especially challenging, as algorithmic solutions must accom-
modate the possibility that groups of processors become disconnected (and, perhaps, reconnected)
during the computation. The efficiency of task-performing algorithms is often assessed in terms of
work : the total number of tasks, counting multiplicities, performed by all of the processors during the
computation. In general, the scenario where the processors are partitioned into g disconnected com-
ponents causes any task-performing algorithm to have work Ω(t · g) even if each group of processors
performs no more than the optimal number of Θ(t) tasks.

Given that such pessimistic lower bounds apply to any scheduling algorithm, we pursue a com-
petitive analysis. Specifically, this paper studies a simple randomized scheduling algorithm for p
asynchronous processors, connected by a dynamically changing communication medium, to com-
plete t known tasks. The performance of this algorithm is compared against that of an omniscient
off-line algorithm with full knowledge of the future changes in the communication medium. The paper
describes a notion of computation width, which associates a natural number with a history of changes
in the communication medium, and shows both upper and lower bounds on work-competitiveness
in terms of this quantity. Specifically, it is shown that the simple randomized algorithm obtains the
competitive ratio (1 + cw/e), where cw is the computation width and e is the base of the natural
logarithm (e = 2.7182 . . . ); this competitive ratio is then shown to be tight.

Key words. on-line algorithms, competitive analysis, partitionable networks, distributed com-
putation, independent tasks, randomized algorithms, work complexity
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1. Introduction. The problem of cooperatively performing a known set of tasks
in a decentralized computing environment subject to failures is one of the fundamental
problems in distributed computing. Variations on this problem have been studied in
a variety of different settings, including, for example, message-passing models [7, 8,
11], shared-memory models [18, 17, 2, 21, 19], and partitionable network models [10,
20]. In the settings where network partitions may interfere with the progress of
computation, the challenge is to maintain efficiency despite dynamically changing
processor connectivity.

This problem is normally abstracted in terms of a set of t tasks that must be per-
formed in a distributed environment consisting of p processors, subject to processor
failures and communication disruptions. Algorithmic solutions for this problem are
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typically evaluated by bounding their worst-case work : the total number of compu-
tation steps performed by all processors during the computation. We consider the
situation where the tasks are similar, that is, completion of each task requires the
same number of computation steps, and where task-oriented work dominates local
bookkeeping. In this case the work incurred by an algorithm is simply the total
number of tasks, counting multiplicities, completed by the processors.

The details of the computation model naturally have a dramatic impact on the
existence of efficient (or even interesting) algorithms for the problem. In this paper,
we consider the partitionable network scenario consisting of p asynchronous processors
with a communication medium that is subject to arbitrary partitions during the life
of the computation. This model is motivated by the abstraction provided by a typical
group communication scheme; see, for example, the surveys in [23]. Specifically, at
each point of the computation, the communication medium effectively partitions the
processors into nonoverlapping groups: communication within a group is instanta-
neous and reliable, communication across groups is impossible. Naturally, processors
in the same group can share their knowledge of completed tasks and, while they re-
main connected, avoid doing redundant work. For the remainder of the paper we refer
to a transition from one network partition to another as a reconfiguration.

We do not charge for coordination within a group, simply treating grouped proces-
sors as a single (virtual) asynchronous processor. In particular, if a group of processors
performs a set of t tasks during the lifetime of that group, we charge this group t units
of work, ignoring, for example, partially completed tasks which may remain at the
group’s demise or the cost of synchronizing processors’ knowledge during the group’s
inception. Each processor may cease executing tasks only when it knows the results
of all tasks. While processors are asynchronous, they do not crash.

An algorithm in this model is a rule which, given a group of processors and a
set of tasks known by this group to be completed, determines a task for the group
to complete next. In the case where all processors are disconnected during the en-
tire computation, any algorithm must incur Ω(t · p) work. On the other hand, any
reasonable algorithm should attain O(t) work in the case where all processors remain
connected during the computation. Considering that every algorithm performs poorly
in the totally disconnected case, it seems reasonable to treat the problem as an on-line
problem and pursue competitive analysis.

Fix, for the moment, an algorithm A. For expository purposes, let us treat
both the processors’ asynchrony and the dynamics of the network as if they were
determined by an adversary A. The adversary determines an initial partition P1 of
the processors into groups and determines how many tasks each group of this partition
P1 completes before the next reconfiguration; while the number of tasks completed
by each group is determined by the adversary, the actual subset of tasks (that is,
the identity of the tasks) completed by each group is determined by the algorithm
A. The adversary then determines a reconfiguration of the processors, giving rise to
a new partition P2, and, as before, determines how many tasks each of the newly
created groups of P2 completes before the next reconfiguration. Any group created
during such a reconfiguration is assumed to have the combined knowledge of all its
members: any task known to be completed by a processor of the group G is known to
be completed by all processors of G. This process of reconfiguration and computation
continues until every processor is aware of the outcome of every task. Groups with
knowledge of the outcome of all tasks cause no work: in effect, they may “idle” until
the next reconfiguration. Note that for this algorithm A, the work caused by the
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adversary A is completely determined by (i) the collection of groups that existed
during the computation, (ii) the number of tasks A permits each group to perform,
and (iii) for each group G, the identities of all those groups in which processors of
G have previously been members. (Note that the initial knowledge of the group G
is determined in part by (iii).) These characteristics can be captured by a certain
directed acyclic graph, to which we refer as a computation pattern. This is formally
defined in the next section. Note that different sequences of reconfigurations can in
fact give rise to the same computation pattern.

As an example, consider the scenario with 3 processors which, starting from iso-
lation, are permitted to proceed synchronously until each has completed t/2 tasks; at
this point an adversary chooses a pair of processors to merge into a group. It is easy
to show that if T1, T2, and T3 are subsets of [t] of size t/2, then there is a pair (Ti, Tj)
(where i �= j) so that |Ti ∩ Tj | ≥ t/6: in particular, for any scheduling algorithm,
there is a pair of processors which, if merged at this point, will have t/6 duplicated
tasks; this pair alone must then expend t + t/6 work to complete all t tasks. The
optimal off-line algorithm that schedules tasks with full knowledge of future merges,
of course, accrues only t work for the merged pair, as it can arrange for zero overlap.
Furthermore, if the adversary partitions the two merged processors immediately after
the merge (after allowing the processors to exchanged information about task execu-
tions), then the work performed by the merged and then partitioned pair is t + t/3;
the work performed by the optimal algorithm remains unchanged, since it terminates
at the merge.

Contributions. We study upper and lower bounds on the competitiveness of
scheduling algorithms for the task-performing problem in partitionable networks. We
analyze the natural randomized algorithm for p processors and t tasks, called random

select (RS), in which each processor (or group) determines the next task to complete
by randomly selecting the task from the subset of tasks this group does not know to
be completed. We compare the expected work of this algorithm to the work of an
optimal off-line algorithm, which may schedule tasks with full knowledge of future
partitions.

In order to precisely state the results of the paper, we pause to introduce some
notation. In the literature, groups of processors are given structured names, such that
a group G is a pair 〈G.id,G.set〉, where G.id is the unique identifier of G and G.set
is the set of processor identifiers in [p] that determine the members of the group. To
reduce notational clutter, given a group named G, we use G to stand for G.set in this
paper (e.g., if two, possibly distinct, groups G and G′ have identical membership, we
express this by G = G′).

As discussed previously, an adversary determines a computation pattern C in a
natural way; this is a directed acyclic graph (DAG), each vertex corresponding to
a group of processors that exists during some point of the computation; a directed
edge is placed from group G to group G′ if G ∩ G′ �= ∅ and G′ was formed by a
reconfiguration involving processors in G (this is discussed and formally defined in
section 2). We say that two groups G and G′ are independent if there is no directed
path connecting one to the other. For such a pattern C, the computation width of
C, denoted cw(C), is the maximum number of independent groups reachable (along
directed paths) in this DAG from any vertex. We show the following:

• (Upper bound.) For any computation pattern C, the randomized algorithm
RS discussed above is (1 + cw(C)/e)-work competitive.

• (Lower bound.) For any scheduling algorithm A(p, t), any ε > 0, and any
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nonzero k ∈ N, there exist p, t, and a computation pattern C so that cw(C) =
k and the work performed by algorithm A(p, t) is at least (1 + k/e− ε) times
that of the off-line algorithm.

In particular, RS achieves the optimal competitive ratio over the set of all computation
patterns with a given computation width.

Prior and related work; motivation. The problem of distributed coopera-
tion for message-passing models was introduced and studied by Dwork, Halpern, and
Waarts [11], who defined the notion of (task-oriented) work. The current problem of
cooperation in partitionable networks has been the subject of active research. How-
ever, known solutions address narrow special cases, or provide substantially weaker
bounds. Dolev, Segala, and Shvartsman [10] performed the first study of the problem
in the partitionable setting. They model reconfiguration patterns for which the termi-
nation time of any on-line task-performing algorithm is greater than the termination
time of an off-line task-performing algorithm by a factor linear in p. Malewicz, Russell,
and Shvartsman [20] introduced the notion of h-waste that measures the worst-case
redundant work performed by h groups (or processors) when started in isolation and
merged into a single group at some later time. While these results are deterministic,
they only adequately describe such computation to the point of the first reconfigura-
tion, where the reconfiguration is further assumed to simply merge groups together.
Georgiou and Shvartsman [16] give upper bounds on work for an algorithm that per-
forms work in the presence of network fragmentations and merges (i.e., limited pat-
terns of reconfigurations) using a group communication service where processors ini-
tially start in a single group. They establish an upper bound of O(min(t·p, t+t·g(C))),
where g(C) is the total number of new groups formed during the computation pattern
C. Note that cw(C) ≤ g(C), and there can be an arbitrary gap between cw(C) and
g(C).

Thus prior work established reasonably tight (in the length of the processor sched-
ule) results for a single first merge [20], illustrated the fact that on-line algorithms
subject to diverging reconfiguration patterns incur linear (in p) overhead relative to
an off-line algorithm [10], and showed an upper bound for an algorithm using group
communication services for a limited pattern of reconfigurations starting with a single
group [16].

The problem of cooperation on a common set of tasks in distributed settings has
been studied in message-passing models [7, 8, 11]. These studies present various load-
balancing techniques for structuring the work for computing devices that are able
to communicate by means of point-to-point messages. The studies of Georgiades,
Mavronicolas, and Spirakis [13] and Papadimitriou and Yannakakis [22] investigated
the impact of communication topology on the effectiveness of load-balancing.

The notion of competitiveness was introduced by Sleator and Tarjan [26] (see also
Bartal, Fiat, and Rabani [5], Awerbuch, Kutten, and Peleg [3], and Ajtai et al. [1]).

Group communication services have become important as building blocks for
fault-tolerant distributed systems. Such services enable processors located in a failure-
prone network to operate collectively as a group, using the services to multicast mes-
sages to group members (see the special issue [23]). To evaluate the effectiveness of
partitionable group communication services, Sussman and Marzullo [27] proposed a
measure (cushion) precipitated by a simple partition-aware application. Babaoglu
et al. [4] studied systematic support for partition awareness based on group com-
munication services in a wide range of application areas. As we mentioned earlier,
cooperation on a common set of tasks has also been studied for algorithms using group
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communications [10, 16].

A related problem, referred to as Write-All, has been studied in the shared-
memory model. Early work in this area was reported by Kanellakis and Shvarts-
man [18], Martel and Subramonian [21], Kedem, Palem, and Spirakis [19], and An-
derson and Woll [2]. In this setting the processors cooperate on updating locations
in shared memory. The algorithmic techniques and analysis found there are quite
different from the ones we present in this paper. Another related shared-memory
problem, called Collect, requires that each processor learn the private values of all
other processors. This problem was introduced by Shavit [25] and studied by Saks,
Shavit, and Woll [24].

The structure of this paper is as follows. In section 2 we define the problem and
model of computation. In section 3 we present and analyze the randomized algorithm
RS. In section 4 we prove a lower bound for the problem. We conclude in section 5.

Abstracts describing preliminary versions of the results in this paper appear in [14,
15].

2. Model and definitions. We consider a distributed system consisting of p
asynchronous processors connected by communication links; each processor has a
unique identifier from the set [p] = {1, 2, . . . , p}; the value p is known to all processors.
The problem is then defined in terms of t tasks with unique identifiers, initially known
to all processors. The tasks are independent and idempotent—multiple executions
of the same task have the same effect as a single execution. Processors may cease
executing tasks only when they know the results of all tasks. This general problem is
often referred to as Do-All.

The model is complicated by subjecting the processors to dynamic changes in
the communication medium. In particular, at each instant of time, the network is
partitioned into a collection of groups. Communication between processors in the
same group is instantaneous and reliable, so that grouped processors may perfectly
cooperate to complete tasks; communication across groups, however, is not possible.
We consider the dynamic case where communication can be arbitrarily lost and re-
established. In particular, the computation of the processors is punctuated by a
sequence of reconfigurations; each reconfiguration may induce an arbitrary change in
the partition of the processors into groups. We shall assume that task executions are
atomic with respect to reconfigurations. That is, a reconfiguration does not occur
when some tasks are “halfway” through execution.

In order to focus on scheduling issues, we assume that processors in a single group
work as a single virtual unit; indeed, we will treat them as a single asynchronous
processor. In particular, upon the establishment of a new group by a reconfiguration,
the processors in the group share their knowledge (of completed tasks) before they
continue processing. A deterministic algorithm D in this model is a rule which, given
a processor (or group of processors) and a collection of tasks known to be completed,
determines the next task for this processor (or group) to complete. Specifically, an
algorithm is a function D : 2[p] × 2[t] → [t]; we note that the lower bounds proved
in this paper actually apply to a wider class of algorithms that may in fact take into
account the entire history of the computation of the group in question. For simplicity,
we assume that ∀P ⊂ [p],∀T � [t], D(P, T ) �∈ T , which is to say that the algorithm
never chooses to complete a task it already knows to be completed. Our goal will be to
design algorithms that schedule the execution of the tasks to minimize the total work,
where work is defined to be the number of tasks executed by all the processors during
the entire computation (counting multiplicities). Ideally, the sets of tasks completed
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by two groups of processors when these groups are merged should be disjoint to avoid
wasted effort. This is impossible in general, as processors must schedule their work in
ignorance of future reconfigurations and, moreover, circumstances where two groups
of processors merge that have collectively completed more than t tasks will necessitate
wasted work. A processor may cease executing tasks only when it knows the results
of all tasks. We refer to this version of the Do-All problem as Omni-Do.

We will consider the behavior of an algorithm in the face of an adversary (which
is oblivious in the sense of [6]) that determines both the sequence of reconfigurations
and the number of tasks completed by each group before it is involved in another
reconfiguration. Taken together, this information determines a computation pattern:
this is a DAG, each vertex of which corresponds to a group G of processors that
existed during the computation; a directed edge is placed from G1 to G2 if G2 was
created by a reconfiguration involving G1. We label each vertex of the DAG with the
group of processors associated with that vertex and the total number of tasks that the
adversary allows the group of processors to perform before the next reconfiguration
occurs. As mentioned before, different adversaries (causing different sequences of
reconfigurations) may give rise to the same computation pattern; the work caused by
an adversary, however, depends only on the computation pattern determined by that
adversary.

Specifically, if t is the number of tasks and p the number of processors, then such
a computation pattern is a labeled and weighted DAG, which we call a (p, t)-DAG.

Definition 2.1. A (p, t)-DAG is a DAG C = (V,E) augmented with a weight
function h : V → [t] ∪ {0} and a labeling g : V → 2[p] \ {∅} so that the following hold.

• For any maximal path P = (v1, . . . , vk) in C,
∑

h(vi) ≥ t. (This guarantees
that any algorithm terminates during the computation described by the DAG.)

• g possesses the following “initial conditions”:

[p] =
⋃̇

v: in(v)=0
g(v).

• g respects the following “conservation law”:
there is a function φ : E → 2[p] \ {∅} so that for each v ∈ V with in(v) > 0,

g(v) =
⋃̇

(u,v)∈E
φ
(
(u, v)

)
,

and for each v ∈ V with out(v) > 0,

g(v) =
⋃̇

(v,u)∈E
φ
(
(v, u)

)
.

In the above definition, ∪̇ denotes disjoint union, and in(v) and out(v) denote
the in-degree and out-degree of v, respectively. Finally, for two vertices u, v ∈ V , we
write u ≤ v if there is a directed path from u to v; we then write u < v if u ≤ v and
u and v are distinct.

Example. As an example, consider the (12, t)-DAG shown on Figure 2.1. Here we
have g1 = {p1}, g2 = {p2, p3, p4}, g3 = {p5, p6}, g4 = {p7}, g5 = {p8, p9, p10, p11, p12},
g6 = {p1, p2, p3, p4, p6}, g7 = {p8, p10}, g8 = {p9, p11, p12}, g9 = {p1, p2, p3, p4,
p6, p8, p10}, g10 = {p5, p11}, and g11 = {p9, p12}.

This computation pattern models all asynchronous computations (adversaries)
with the following behavior: (i) The processors in groups g1 and g2 and processor p6 of
group g3 are regrouped during some reconfiguration to form group g6. Processor p5 of
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Fig. 2.1. An example of a (12, t)-DAG.

group g3 becomes a member of group g10 during the same reconfiguration (see below).
Prior to this reconfiguration, processor p1 (the singleton group g1) has performed
exactly 5 tasks, the processors in g2 have cooperatively performed exactly 3 tasks,
and the processors in g3 have cooperatively performed exactly 8 tasks (assuming that
t > 8). (ii) Group g5 is partitioned during some reconfiguration into two new groups,
g7 and g8. Prior to this reconfiguration, the processors in g5 have performed exactly
2 tasks. (iii) Groups g6 and g7 merge during some reconfiguration and form group
g9. Prior to this merge, the processors in g6 have performed exactly 4 tasks (counting
only the ones performed after the formation of g6 and assuming that there are at
least 4 tasks remaining to be done) and the processors in g7 have performed exactly
5 tasks. (iv) The processors in group g8 and processor p5 of group g3 are regrouped
during some reconfiguration into groups g10 and g11. Prior to this reconfiguration, the
processors in group g8 have performed exactly 6 tasks (assuming that there are at least
6 tasks remaining, otherwise they would have performed the remaining tasks). (v) The
processors in g9, g10, and g11 run until completion with no further reconfigurations.
(vi) Processor p7 (the singleton group g4) runs in isolation for the entire computation.

Let D be a deterministic algorithm for Omni-Do and C a computation pattern.
We then let WD(C) denote the total work expended by algorithm D, where recon-
figurations are determined according to the computation pattern C. WD is formally
defined as follows.

Definition 2.2. Let C be a (p, t)-DAG and D a deterministic algorithm for
Omni-Do. WD(C) is defined inductively as follows.

• For a vertex v of C with in(v) = 0, define Lv to be the set containing the first
h(v) tasks completed by group g(v) according to D.

• Otherwise, in(v) > 0; in this case, let Ľv =
⋃

u<v Lu denote the collection of
all tasks known to be complete at the inception of group g(v). Then let Lv

be the first h(v) tasks completed by group g(v) according to D starting with
knowledge Ľv. If h(v) > t− |Ľv|, define Lv = [t] \ Ľv.

Then WD(C) =
∑

v∈C |Lv|.
We treat randomized algorithms as distributions over deterministic algorithms;

for a set Ω and a family of deterministic algorithms {Dr | r ∈ Ω} we let R = R({Dr |
r ∈ Ω}) denote the randomized algorithm where r is selected uniformly at random
from Ω and scheduling is done according to Dr. For a real-valued random variable
X, we let E[X] denote its expected value. We let OPT denote the optimal (off-line)
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algorithm. Specifically, for each C we define WOPT(C) = minD WD(C).
Definition 2.3 (see [26, 12, 6]). Let α be a real-valued function defined on the

set of all (p, t)-DAGs (∀ p and t). A randomized algorithm R is α-competitive if for
all computation patterns C,

E[WDr
(C)] ≤ α(C)WOPT(C),

this expectation being taken over uniform choice of r ∈ Ω.
Presently, we will introduce a function α that depends on a certain parameter

(see Definition 2.7) of the graph structure of C. We note that, by definition, α ≥ 1.
We pause to develop some terminology that we will use in the rest of the paper.
Definition 2.4. A partially ordered set, or poset, is a pair (P,≤), where P is

a set and ≤ is a binary relation on P for which (i) ∀x ∈ P , x ≤ x; (ii) if x ≤ y and
y ≤ x, then x = y; and (iii) if x ≤ y and y ≤ z, then x ≤ z. For a poset (P,≤) we
overload the symbol P , letting it denote both the set and the poset.

Definition 2.5. Let P be a poset. We say that two elements x and y of P are
comparable if x ≤ y or y ≤ x; otherwise x and y are incomparable. A chain is a
subset H of P such that any two elements of H are comparable. An antichain is a
subset A of P such that any two distinct elements of A are incomparable. The width
of P , denoted w(P ), is the size of the largest antichain of P .

Associated with any DAG C = (V,E) is the natural vertex poset (V,≤), where
u ≤ v if and only if there is a directed path from u to v. Then the width of C, denoted
w(C), is the width of the poset (V,≤).

Definition 2.6. Given a DAG C = (V,E) and a vertex v ∈ V , we define the
predecessor graph at v, denoted PC(v) (or P (v) when C is implied), to be the subgraph
of C that is formed by the union of all paths in C terminating at v. Likewise, the
successor graph at v, denoted SC(v) (or S(v) when C is implied), is the subgraph of
C that is formed by the union of all the paths in C originating at v.

Definition 2.7. The computation width of a DAG C = (V,E), denoted cw(C),
is defined as

cw(C) = max
v∈V

w(S(v)).

Note that the processors that comprise a group formed during a computation
pattern C may be involved in many different groups at later stages of the computation,
but no more than cw(C) of these groups will be forced to compute in ignorance of
each other’s progress.

In the (12, t)-DAG of Figure 2.1, the maximum width among all successor graphs
is 3: w(S((g5, 2))) = 3. Hence, the computational width of this DAG is 3. Note that
the width of the DAG is 6 (nodes (g1, 5), (g2, 3), (g3, 8), (g4, t), (g7, 5), and (g8, 6)
form an antichain of maximum size).

3. Algorithm RS and its analysis. In this section we present the random

select (RS) algorithm and its analysis.

3.1. Description of algorithm RS. We consider the natural randomized al-
gorithm RS, where a processor (or group), with knowledge that the tasks in a set
K ⊂ [t] have been completed, selects to next complete a task at random from the set
[t] \K. More formally, let Π = (π1, . . . , πp) be a p-tuple of permutations, where each
πi is a permutation of [t]. We describe a deterministic algorithm DΠ so that

RS = R
(
{DΠ | Π ∈ (St)

p}
)
;
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here St is the collection of permutations on [t]. Let G be a group of processors and
γ ∈ G the processor in G with the lowest processor identifier. Then the deterministic
algorithm DΠ specifies that the group G, should it know that the tasks in K ⊂ [t]
have been completed, next completes the first task in the sequence πγ(1), . . . , πγ(t)
which is not in K.

3.2. Analysis of algorithm RS. We now analyze the competitive ratio (in
terms of work) of algorithm RS. We write WRS(C) = E [WRS(C)], this expectation
taken over the random choices of the algorithm. Where C can be inferred from
context, we simply write WRS and WOPT.

We first recall Dilworth’s lemma [9], a duality theorem for posets.
Lemma 3.1 (see [9]). The width of a poset P is equal to the minimum number of

chains needed to cover P . (A family of nonempty subsets of a given set S is said to
cover S if their union is S.)

We will also use a generalized degree-counting argument.
Lemma 3.2. Let G = (U, V,E) be an undirected bipartite graph with no isolated

vertices and h : V → R a nonnegative weight function on G. For a vertex v, let Γ(v)
denote the vertices adjacent to v. Suppose that for some A > 0 and for every vertex
u ∈ U we have

∑
v∈Γ(u) h(v) ≤ A and that for some B > 0 and for every vertex v ∈ V

we have
∑

u∈Γ(v) h(u) ≥ B. Then

∑
u∈U h(u)∑
v∈V h(v)

≥ B

A
.

Proof. We compute the quantity
∑

(u,v)∈E h(u)h(v) by expanding according to
each side of the bipartition:

A
∑
u∈U

h(u) ≥
∑
u∈U

(
h(u) ·

∑
v∈Γ(u)

h(v)
)

=
∑

(u,v)∈E

h(u)h(v)

=
∑
v∈V

(
h(v) ·

∑
u∈Γ(v)

h(u)
)
≥ B

∑
v∈V

h(v).

As A > 0 and
∑

v h(v) ≥ B > 0, we conclude that∑
u∈U h(u)∑
v∈V h(v)

≥ B

A
,

as desired.
We now establish an upper bound on the competitive ratio of algorithm RS.
Theorem 3.3. Algorithm RS is (1 + cw(C)/e)-competitive for any (p, t)-DAG

C = (V,E).
Proof. Let C be a (p, t)-DAG; recall that associated with C are the two functions

h : V → [t] ∪ {0} and g : V → 2[p] \ {∅}. For a subgraph C ′ = (V ′, E′) of C,
we let H(C ′) =

∑
v∈V ′ h(v). Recall that PC(v) and SC(v) denote the predecessor

and successor graphs of C at v. Then we say that a vertex v ∈ V is saturated if
H(PC(v)) ≤ t; otherwise, v is unsaturated. Note that if v is saturated, then the group
g(v) must complete h(v) tasks regardless of the scheduling algorithm used. Along these
same lines, if v is an unsaturated vertex for which t >

∑
u<v h(u), the group g(v) must

complete at least max(h(v), t−
∑

u<v h(u)) tasks under any scheduling algorithm. As
these portions of C which correspond to computation that must be performed by
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any algorithm will play a special role in the analysis, it will be convenient for us to
rearrange the DAG so that all such work appears on saturated vertices. To achieve
this, note that if v is an unsaturated vertex for which

∑
u<v h(u) < t, we may replace

v with a pair of vertices, vs and vu, where all edges directed into v are redirected to
vs, all edges directed out of v are changed to originate at vu, the edge (vs, vu) is added
to E, and h is redefined so that

h(vs) = t−
∑
u<v

h(u) and h(vu) = h(v) − h(vs).

Note that the graph C ′ obtained by altering C in this way corresponds to the same
computation, in the sense that WD(C) = WD(C ′) for any algorithm D. For the
remainder of the proof we will assume that this alteration has been made at every
relevant vertex, so that the graph C satisfies the condition

v unsaturated ⇒
∑
u<v

h(u) ≥ t.(3.1)

Finally, for a vertex v, we let Tv be the random variable equal to the number of tasks
that RS completes at vertex v. Note that if v is saturated, then Tv = h(v). Let S
and U denote the sets of saturated and unsaturated vertices, respectively. Given the
above definitions, we immediately have

WOPT ≥
∑
s∈S

h(s)

and, by linearity of expectation,

WRS = E

[∑
v

Tv

]
=

∑
s∈S

h(s) +
∑
u∈U

E[Tu] ≤ WOPT +
∑
u∈U

E[Tu].(3.2)

Our goal is to conclude that for some appropriate β,

E

[∑
u∈U

Tu

]
≤ β ·

∑
s∈S

h(s) ≤ β ·WOPT

and hence that RS is 1 + β competitive. We will obtain such a bound by applying
Lemma 3.2 to an appropriate bipartite graph, constructed next.

Given C = (V,E), construct the (undirected) bipartite graph G = (S,U , EG),
where EG = {(s, u) | s < u}. As in Lemma 3.2, for a vertex v, we let Γ(v) denote the
set of vertices adjacent to v. Now assign weights to the vertices of G according to the
rule h∗(v) = E[Tv]. Note that for s ∈ S, h∗(s) = h(s) and hence by condition (3.1)
above, we immediately have the bound

∀u ∈ U ,
∑

s∈Γ(u)

h∗(s) ≥ t.(3.3)

We now show that ∀s ∈ S,
∑

u∈Γ(s)

h∗(u) ≤ cw(C) · t
e
.(3.4)
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Before proceeding to establish this bound, note that (3.3) and (3.4), together with
Lemma 3.2, imply that

WRS(C) ≤
∑
s∈S

h(s) +
∑
u∈U

h∗(u) ≤
(
1 +

cw(C)

e

)∑
s∈S

h(s)

≤
(
1 +

cw(C)

e

)
WOPT(C),

as desired.
Returning now to (3.4), let s ∈ S be a saturated vertex and consider the suc-

cessor graph (of C) at s, SC(s). By Lemma 3.1 (Dilworth’s lemma), there exist
w � w(SC(s)) ≤ cw(C) paths in SC(s), P1, P2, . . . , Pw, so that their union covers
SC(s). Let Xi be the random variable whose value is the number of tasks performed
by RS on the portion of the path Pi consisting of unsaturated vertices. Note that if
u ∈ V is unsaturated and u ≤ v, then v is unsaturated and hence, for each path Pi,
there is a first unsaturated vertex u0

i after which every vertex of Pi is unsaturated.
Note now that for a fixed individual task τ , conditioned upon the event that τ is not
yet complete, the probability that τ is not chosen by RS for completion at a given
selection point in PC(u0

i ) is no more than (1 − 1/t). Let Li be the random variable
whose value is the set of tasks left incomplete by RS at the formation of the group
g(u0

i ). As u0
i is unsaturated,

∑
v<u0

i
h(v) ≥ t by condition (3.1) and hence, for each i,

Pr[τ ∈ Li] ≤ (1 − 1/t)t ≤ 1/e.

As there are a total of t tasks,

E[|Li|] ≤ t/e.

Of course, since RS completes a new task at each step, Xi ≤ |Li| so that E[Xi] ≤ t/e,
and by linearity of expectation

E

[∑
i

Xi

]
≤ w · t/e.

Now every unsaturated vertex in SC(s) appears in some Pi and hence∑
u∈Γ(s)

h∗(u) ≤ E

[∑
i

Xi

]
≤ wt/e ≤ cw(C) · t/e,

as desired.
Theorem 3.3 implies a constant upper bound for patterns that consist entirely

of merges (that is, where all reconfigurations are given by taking unions of existing
groups). This subsumes the results reported in [14].

Corollary 3.4. Algorithm RS is
(
1 + 1

e

)
-competitive for any (p, t)-DAG C with

cw(C) = 1.
Remark. The proof of Theorem 3.3 can be slightly modified to yield an interesting

result for deterministic scheduling algorithms. Let D be a deterministic scheduling
algorithm for Omni-Do. In the proof of Theorem 3.3, h∗(v) was defined as the ex-
pected number of tasks performed by algorithm RS at node v. For algorithm D,
if we define h∗(v) to be the actual number of tasks performed by the algorithm at
node v, then it is not difficult to see that (3.4) becomes

∑
u∈Γ(s) h

∗(u) ≤ cw(C) · t
(provided that no processor in D performs a task that already knows its result). This
leads to the conclusion that any (nontrivial) deterministic algorithm for Omni-Do is
(1 + cw(C))-competitive for any computation pattern C.
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4. A lower bound. We begin with a lower bound for deterministic algorithms.
This is then applied to give a lower bound for randomized algorithms in Corollary 4.2.

Theorem 4.1. Let a : N → R and D be a deterministic scheduling algorithm
for Omni-Do so that D is a(cw(·))-competitive (that is, D is α-competitive, for a
function α = a ◦ cw)). Then a(c) ≥ 1 + c/e.

Proof. Fix k ∈ N. Consider the case when t = p = g � k and t mod k = 0, g being
the number of initial groups. We consider a computation pattern CG determined by
a tuple G = (G1, . . . , Gt/k), where each Gi ⊂ [t] is a set of size k and

⋃
i Gi = [t].

Initially, the computation pattern CG has the processors synchronously proceed until
each has completed t/k tasks; at this point, the processors in Gi are merged and
allowed to exchange information about task executions. Each Gi is then immediately
partitioned into c groups (this establishes that the computation width is c). Note that
the off-line optimal algorithm accrues exactly t2/k work for this computation history
(it terminates prior to the partitions of the Gi).

We will show that for any scheduling deterministic Omni-Do algorithm D, there
is a selection of the Gi so that

WD(CG) ≥ t2/k

[
1 + c

(
1 − 1

k

)k

− o(1)

]
,

and hence that a(c) ≥ 1 + c/e. Consider the behavior of D when G is selected at
random, uniformly among all such tuples. Let Pi ⊂ [t] be the subset of t/k tasks
completed by processor i before the merges take place; these sets are determined by
the algorithm D. We begin by bounding

EG

[∣∣∣ ⋃
i∈G1

Pi

∣∣∣
]
.

To this end, consider an experiment where we select k sets Q1, . . . , Qk, each Qi selected
independently and uniformly from the set {Pi}. Now, for a specific task τ , let pτ =
PrQ1 [τ �∈ Q1], so that PrQi [τ �∈

⋃
i Qi] = pkτ . As the Qi are selected independently,

EQi

[∣∣∣[t] −⋃
i

Qi

∣∣∣
]

=
∑
τ

pkτ .

Observe now that ∑
τ

(1 − pτ ) =
∑
τ

Pr
Q1

[τ ∈ Q1] = EQ1 [|Q1|] = t/k

and hence
∑

τ pτ = t(1− 1/k). As the function x �→ xk is convex on [0,∞),
∑

τ p
k
τ is

minimized when the pτ are equal, and we must have

EQi

[∣∣∣[t] −⋃
i

Qi

∣∣∣
]
≥ t ·

(
1 − 1

k

)k

.

Now observe that, conditioned on the Qi being distinct, the distribution of
(Q1, . . . , Qk) is identical to that of (Pg1

1
, . . . , Pg1

k
), where the random variable G1 =

{g1
1 , . . . , g

1
k}. Considering that Pr[∃i �= j,Qi = Qj ] ≤ k2/t, we have

EQi

[∣∣∣[t] −⋃
i

Qi

∣∣∣
]
≤

(
1 − k2

t

)
EG

[
t−

∣∣∣ ⋃
i∈G1

Pi

∣∣∣
]

+ 1 · k
2

t
,
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and hence as t → ∞, we see that the expected number of tasks remaining for those
processors in group G1 is

EG

[
t−

∣∣∣ ⋃
i∈G1

Pi

∣∣∣
]
≥ t(1 − 1/k)k − o(1).

Of course, the distribution of each Gi is the same, so that

EG

⎡
⎣ t/k∑

i=1

⎛
⎝t−

∣∣∣ ⋃
j∈Gi

Pj

∣∣∣
⎞
⎠
⎤
⎦ = [1 − o(1)]

(
t

k

)
· t

(
1 − 1

k

)k

.

In particular, there must exist a specific selection of G = (G1, . . . , Gt/k) which
achieves this bound. Recall that every Gi is partitioned into c groups. Therefore,
for such G, the total work is at least

t2

k
·
(

1 + [1 − o(1)] · c ·
(

1 − 1

k

)k
)
.

As limk→∞(1 − 1
k )k = 1

e , this completes the proof.
As the above stochastic computation pattern CG is independent of the deter-

ministic algorithm D, this immediately gives rise to a lower bound for randomized
algorithms.

Corollary 4.2. Let R
(
{Dr | r ∈ Ω}

)
be a randomized scheduling algorithm for

Omni-Do that is (a ◦ cw)-competitive. Then a(c) ≥ 1 + c/e.
Proof. Assume for contradiction that for some c, a(c) < 1 + c/e, and let k be

large enough so that (1− 1
k )k > a(c)− 1. For this k we proceed as in the proof above,

considering a random G and the computation pattern CG with t = g = p congruent
to 0 mod k, g being the number of initial groups. Then, as above,

EG [Er [WDr (CG)]] = Er [EG [WDr (CG)]]

≥ min
r

[EG [WDr (CG)]]

≥ t2

k
·
(

1 + [1 − o(1)] · c ·
(

1 − 1

k

)k
)
.

Hence there exists a G so that Er [WDr
(CG)] ≥ t2

k ·
(
1 + [1 − o(1)] ce

)
, which completes

the proof.

5. Conclusions and open problems. We established bounds on the competi-
tive ratio of a natural randomized algorithm for scheduling in partitionable networks
and show, furthermore, that for the relevant gradation of computation patterns these
bounds are tight. We showed how to characterize algorithm competitiveness in terms
of computation width, a precise property of a DAG that describes the computation
history. These results lead to a better understanding of the effectiveness of compu-
tation in group communication schemes, a widely used paradigm for computing in
distributed environments.

One outstanding open question is how to derandomize the schedules used by task-
performing algorithms in this work. Specifically, we would like to construct determin-
istic scheduling algorithms that are (1 + cw(C)/e)-competitive for any computation
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pattern C. Another promising direction is to study the task-performing paradigm
in the models of computation that combine network reconfigurations with processor
failures. The goal is to establish complexity results that show how performance of
task-performing algorithms depends both on the extent of the network reconfiguration
and on the number of processor failures.

REFERENCES

[1] M. Ajtai, J. Aspnes, C. Dwork, and O. Waarts, A theory of competitive analysis for dis-
tributed algorithms, in Proceedings of the 35th Symposium on Foundations of Computer
Science (FOCS 1994), IEEE, Los Alamitos, CA, 1994, pp. 401–411.

[2] R. J. Anderson and H. Woll, Algorithms for the certified write-all problem, SIAM J. Com-
put., 26 (1997), pp. 1277–1283.

[3] B. Awerbuch, S. Kutten, and D. Peleg, Competitive distributed job scheduling, in Proceed-
ings of the 24th ACM Symposium on Theory of Computing (STOC 1992), ACM, New
York, 1992, pp. 571–580.

[4] O. Babaoglu, R. Davoli, A. Montresor, and R. Segala, System support for partition-
aware network applications, in Proceedings of the 18th IEEE International Conference
on Distributed Computing Systems (ICDCS 1998), IEEE, Los Alamitos, CA, 1998, pp.
184–191.

[5] Y. Bartal, A. Fiat, and Y. Rabani, Competitive algorithms for distributed data management,
in Proceedings of the 24th ACM Symposium on Theory of Computing (STOC 1992), ACM,
New York, 1992, pp. 39–50.

[6] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson, On the power of
randomization in on-line algorithms, Algorithmica, 11 (1994), pp. 2–14.

[7] B. Chlebus, R. De Prisco, and A. A. Shvartsman, Performing tasks on restartable message-
passing processors, Distributed Comput., 14 (2001), pp. 49–64.

[8] R. De Prisco, A. Mayer, and M. Yung, Time-optimal message-efficient work performance
in the presence of faults, in Proceedings of the 13th ACM Symposium on Principles of
Distributed Computing (PODC 1994), ACM, New York, 1994, pp. 161–172.

[9] R. P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math., 51 (1950),
pp. 161–166.

[10] S. Dolev, R. Segala, and A. A. Shvartsman, Dynamic load balancing with group communi-
cation, in Proceedings of the 6th International Colloquium on Structural Information and
Communication Complexity (SIROCCO 1999), Carleton Scientific, Waterloo, ON, Canada,
1999, pp. 111–125.

[11] C. Dwork, J. Y. Halpern, and O. Waarts, Performing work efficiently in the presence of
faults, SIAM J. Comput., 27 (1998), pp. 1457–1491.

[12] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young,
Competitive paging algorithms, J. Algorithms, 12 (1991), pp. 685–699.

[13] S. Georgiades, M. Mavronicolas, and P. Spirakis, Optimal, distributed decision-making:
The case of no communication, in Proceedings of the 12th International Symposium on
Fundamentals of Computation Theory (FCT 1999), Lecture Notes in Comput. Sci. 1684,
Springer-Verlag, Berlin, 1999, pp. 293–303.

[14] Ch. Georgiou, A. Russell, and A. A. Shvartsman, Optimally work-competitive scheduling
for cooperative computing with merging groups (brief announc.), in Proceedings of the
22nd ACM Symposium on Principles of Distributed Computing (PODC 2002), ACM, New
York, 2002, p. 132.

[15] Ch. Georgiou, A. Russell, and A. A. Shvartsman, Work-competitive scheduling for cooper-
ative computing with dynamic groups, in Proceedings of the 35th Annual ACM Symposium
on Theory of Computing (STOC 2003), ACM, New York, 2003, pp. 251–258.

[16] Ch. Georgiou and A. A. Shvartsman, Cooperative computing with fragmentable and merge-
able groups, J. Discrete Algorithms, 1 (2003), pp. 211–235.

[17] J. F. Groote, W. H. Hesselink, S. Mauw, and R. Vermeulen, An algorithm for the asyn-
chronous Write-All problem based on process collision, Distributed Comput., 14 (2001),
pp. 75–81.

[18] P. C. Kanellakis and A. A. Shvartsman, Fault-Tolerant Parallel Computation, Kluwer Aca-
demic, Dordrecht, The Netherlands, 1997.

[19] Z. M. Kedem, K. V. Palem, and P. Spirakis, Efficient robust parallel computations, in Pro-
ceedings of the 22nd ACM Symposium on Theory of Computing (STOC 1990), ACM, New



862 C. GEORGIOU, A. RUSSELL, AND A. A. SHVARTSMAN

York, 1990, pp. 138–148.
[20] G. Malewicz, A. Russell, and A. A. Shvartsman, Distributed cooperation during the absence

of communication, in Proceedings of the 14th International Symposium on Distributed
Computing (DISC 2000), Lecture Notes in Comput. Sci. 1914, Springer-Verlag, Berlin,
2000, pp. 119–133.

[21] C. Martel and R. Subramonian, On the complexity of certified Write-All algorithms, J.
Algorithms, 16 (1994), pp. 361–387.

[22] C. H. Papadimitriou and M. Yannakakis, On the value of information in distributed decision-
making, in Proceedings of the 10th ACM Symposium on Principles of Distributed Com-
puting (PODC 1991), ACM, New York, 1991, pp. 61–64.

[23] D. Powell, ed., Special Issue on Group Communication Services, Comm. ACM, 39 (1996).
[24] M. Saks, N. Shavit, and H. Woll, Optimal time randomized consensus—making resilient

algorithms fast in practice, in Proceedings of the 2nd ACM-SIAM Symposium on Discrete
Algorithms (SODA 1991), ACM, New York, 1991, pp. 351–362.

[25] N. Shavit, Concurrent Timestamping, Ph.D. thesis, The Hebrew University, 1989.
[26] D. Sleator and R. Tarjan, Amortized efficiency of list update and paging rules, Comm.

ACM, 28 (1985), pp. 202–208.
[27] J. B. Sussman and K. Marzullo, The Bancomat problem: An example of resource allo-

cation in a partitionable asynchronous system, in Proceedings of the 12th International
Symposium on Distributed Computing (DISC 1998), Lecture Notes in Comput. Sci. 1499,
Springer-Verlag, Berlin, 1998, pp. 363–377.



SIAM J. COMPUT. c© 2005 Society for Industrial and Applied Mathematics
Vol. 34, No. 4, pp. 863–878

CURVE-SENSITIVE CUTTINGS∗

VLADLEN KOLTUN† AND MICHA SHARIR‡

Abstract. We introduce (1/r)-cuttings for collections of surfaces in 3-space, such that the
cuttings are sensitive to an additional collection of curves. Specifically, let S be a set of n surfaces
and let C be a set of m curves in R

3, all of constant description complexity. Let 1 ≤ r ≤ min{m,n}
be a given parameter. We show the existence of a (1/r)-cutting Ξ of S of size O(r3+ε), for any
ε > 0, such that the number of crossings between the curves of C and the cells of Ξ is O(mr1+ε).
The latter bound improves, by roughly a factor of r, the bound that can be obtained for cuttings
based on vertical decompositions. We view curve-sensitive cuttings as a powerful tool for various
scenarios that involve curves and surfaces in three dimensions. As a preliminary application, we
use the construction to obtain a bound of O(m1/2n2+ε), for any ε > 0, on the complexity of
the multiple zone of m curves in the arrangement of n surfaces in 3-space. After the conference
publication of this paper [V. Koltun and M. Sharir, Proceedings of the 19th ACM Symposium on
Computational Geometry, 2003, pp. 136–143], curve-sensitive cuttings were applied to derive an
algorithm for efficiently counting triple intersections among planar convex objects in three dimensions
[E. Ezra and M. Sharir, Proceedings of the 20th ACM Symposium on Computational Geometry, 2004,
pp. 210–219], and we expect additional applications to arise in the future.

Key words. computational geometry, cuttings, random sampling, curves in space, zone

AMS subject classifications. 68U05, 52C45, 68W20
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1. Introduction.

Motivation. (1/r)-cuttings (see below for definitions) have attracted consider-
able attention in the computational geometry community, as they turned out to be
crucial to the solution of many central problems in the field [5, 6, 7, 8, 9, 10, 14, 16, 17].
For some applications, special properties possessed by the cutting can lead to improved
results. For instance, the tree structure of hierarchical cuttings [6] is of great help in
numerous settings [4, 17].

We construct a (1/r)-cutting for a collection of surfaces in 3-space, such that
the cutting is sensitive, in the sense defined below, to a collection of curves given
as additional input to the construction. We apply this cutting to obtain a bound of
O(m1/2n2+ε), for any ε > 0, on the complexity of the multiple zone of m curves in
the arrangement of n surfaces in 3-space, all of constant description complexity. The
multiple zone is defined as the collection of all cells of the arrangement of the given
surfaces that are crossed by at least one of the curves. It is a generalization of both
the concept of the zone of a curve in an arrangement [3, 13] and the widely studied
notion of many faces/cells in arrangements [2].
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We expect curve-sensitive cuttings to find additional uses in contexts that involve
the interaction of curves and surfaces. It has already been applied, after the conference
publication of this paper [15], to derive an algorithm for efficiently counting triple
intersections among planar convex objects in three dimensions [12].

Overview. Let S be a set of n surfaces in R
3 of constant description complexity,

and let C be a set of m curves in R
3 of constant description complexity; that is,

each surface and curve is defined as a Boolean combination of a constant number of
polynomial equations and inequalities of constant maximum degree. Let 1 ≤ r ≤
min{m,n} be a given parameter. A (1/r)-cutting of S is a subdivision of 3-space into
connected cells, each of constant description complexity, so that each cell is crossed
by at most n/r surfaces of S. We wish to construct a (1/r)-cutting Ξ of S of size near
O(r3), so that the number of pairs (c, τ), where c ∈ C, τ is a cell of Ξ, and c∩ τ �= ∅,
is near O(mr); that is, the average number of cells of Ξ crossed by a curve of C is
near O(r).

A standard method (in fact, the only general-purpose method known to date)
for constructing a (1/r)-cutting for arrangements of nonlinear surfaces is to take an
appropriate random sample R of the surfaces of S and construct the vertical decom-
position of the arrangement A(R) of R [18]. The construction of this decomposition
proceeds in two stages. First, for every edge of A(R) and every vertical tangency
curve (also known as the silhouette) on every surface of R, we erect a two-dimensional
vertical visibility wall, defined as the union of all z-vertical segments that have an
endpoint on this edge (or curve) and are interior-disjoint from all surfaces of R. This
first stage results in a decomposition of A(R) into vertical pseudoprisms, such that
the floor of each prism, if it exists, is contained in a single surface of R, and similarly
for the ceiling of each prism. However, the combinatorial complexity of a single prism
can still be fairly high.

In the second stage of the construction we refine the decomposition as follows. For
every prism as above, consider its projection onto the xy-plane. It is a two-dimensional
semialgebraic set, which we decompose in the plane by erecting zero, one, or two y-
vertical (possibly infinite) visibility segments on each of its vertices and y-vertical
tangency points on its edges, where a visibility segment is defined as a maximal y-
vertical segment that has an endpoint on this vertex (or tangency point), is contained
in the considered prism projection, and is interior-disjoint from its boundary. We
then erect z-vertical two-dimensional walls inside the original prism, defined as its
intersection with the z-vertical walls spanned by all the y-vertical segments erected
by the planar decomposition. Repeating this process for each of the above prisms
decomposes A(R) into cells of constant description complexity.

We can choose R as a single sample from S of size ar log r, for an appropriate
absolute constant a. It can then be argued that, with high probability, the resulting
vertical decomposition of A(R) is indeed a (1/r)-cutting. This is a consequence of the
probabilistic analyses of Haussler and Welzl [14] and of Clarkson [9]. Using a variant
of the method of Chazelle and Friedman [7] or of Chazelle [6] slightly reduces the size
of the resulting cutting from O(r3 log3 r) to O(r3).

Unfortunately, vertical decompositions may fail to satisfy our requirement con-
cerning the number of crossings between the curves of C and the cells of the cutting.
In fact, a curve may cross nearly Ω(r2) such cells. An example is shown in Figure 1,
where R is a collection of r planes. Half of them are parallel to the x-axis and pass
above it, all appearing on the lower envelope of this group, which looks like a tunnel in
the x-direction with a convex roof that is symmetric about the xz-plane. The remain-
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(a) (b)

Fig. 1. A curve (the x-axis, shown dashed) crossing a quadratic number of cells of the vertical
decomposition. (a) A side view of the input set. (b) A view from above of the second-step subdivision
of the cells mentioned in the text.

ing r/2 planes are all parallel to the y-axis and form a fixed angle, say 45◦, with the
xy-plane. These latter planes are sufficiently separated from each other so that their
portions that lie above the xy-plane and below the lower envelope of the first group
have pairwise disjoint xy-projections. The x-axis crosses Θ(r2) cells of the vertical
decomposition of these planes: Indeed, the first decomposition step creates (among
others) r/2 cells whose top facet is the portion of some slanted plane of the second
group that lies below the lower envelope of the first group. The second decomposition
step subdivides each of these cells into Θ(r) subcells, and the x-axis crosses them all.

In contrast, the undecomposed arrangement of Θ(r log r) surfaces is sensitive to
the curves of C, because each curve crosses each surface at O(1) points, so it crosses
O(r log r) cells of the arrangement. However, the undecomposed arrangement is gen-
erally not a (1/r)-cutting. On the other hand, the decomposed arrangement is (with
high probability) a (1/r)-cutting, but, as we have just seen, it may fail to be sen-
sitive to C. (Actually, as we will show in section 2.1, the first stage of the vertical
decomposition is also sensitive to C, but in general it is still not a (1/r)-cutting.)

In this paper we describe a technique that achieves the better of both worlds and
constructs cuttings that satisfy the desired properties. The construction proceeds
by taking a sample R of the surfaces, as described above, and decomposing A(R)
into vertical prisms using the first stage of the vertical decomposition construction.
Inside each prism we construct a decomposition that takes into account the parts of
the curves of C that lie inside the prism. Specifically, we construct a hierarchical
sequence of cuttings, somewhat reminiscent of the construction in Chazelle [6], that
reduces the number of crossings between the curves of C and the boundaries of the
cells of the cuttings. We are able to guarantee that the curves of C are not cut more
than O(mr1+ε) times, for any ε > 0, overall.

Before describing our results in detail, we remark that we can construct an alter-
native (and simpler) curve-sensitive decomposition scheme for the special case where
the surfaces are planes and the curves are lines (as in the example of Figure 1) by us-
ing the Dobkin–Kirkpatrick hierarchical decomposition [11] in each cell of A(R). This
approach, however, does not extend to general curves and surfaces. (An expanded
discussion of this remark is given in the application paper [12].)

2. A curve-sensitive decomposition. In this section we present a new de-
composition scheme that is a (1/r)-cutting for S and satisfies the desired bounds on
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the number of cells and on the number of curve-cell crossings. For simplicity of expo-
sition, we will base our analysis on a single random sample of surfaces from S (rather
than the more elaborate repeated-sampling scheme of [7]). Moreover, we consider
samples of size r (rather than Θ(r log r)). This simplifies the calculations, but will
only produce an O(log r/r)-cutting. We get the desired cutting by simply replacing
r, at the end of the analysis, by the above larger sample size.

2.1. First stage of the decomposition. We begin with taking a random sam-
ple R of r surfaces of S, and a random sample R′ of r curves of C. We form the
arrangement A(R) of R and apply to it the first step of the vertical decomposition.
That is, we erect vertical walls up and down from each curve of an intersection of
pairs of surfaces in R, as well as from the silhouette of each surface in R; the walls
are extended until they hit another surface of R or, failing that, all the way to ±∞.
In addition, we erect similar vertical walls from each curve c ∈ R′, which are also
extended to the first surface above and below.

Let A1 = A1(R,R′) denote the resulting decomposition. Note that each cell τ of
A1 is a vertical prism-like cell: the intersection of each vertical line with τ is connected.
However, the xy-projection τ∗ of τ can have arbitrary shape and complexity.

For each cell τ of A1, let ξτ denote its combinatorial complexity (i.e., the number
of vertices, edges, and faces on its boundary), and let Cτ denote the set of all connected
components of the nonempty intersections between τ and the curves of C. Let λq(r)
denote, as usual, the maximum length of a Davenport–Schinzel sequence of order q
on r symbols [18], and put βq(r) = λq(r)/r, which is thus an extremely slow-growing
function of r. We have the following lemma.

Lemma 2.1. (a) The number of cells of A1 and their overall combinatorial com-
plexity are both O(r3βq(r)) for an appropriate parameter q that depends on the alge-
braic complexity of the curves of C and the surfaces of S.

(b)
∑

τ∈A1
|Cτ | = O(mrβq(r)).

Proof. Let γ be a fixed curve, which is either a curve in C, an intersection curve
of two surfaces in R, or the silhouette of a surface in R. Let Vγ denote the vertical
2-manifold (wall) spanned by γ. Let V +

γ (resp., V −
γ ) denote the portion of Vγ that

lies above (resp., below) γ. Let A+ (resp., A−) denote the cross section of A(R)
with V +

γ (resp., V −
γ ). By construction, any point at which γ crosses the boundary of

some cell of A1 must be either the vertical projection on γ of a vertex of the lower
envelope of A+, a vertex of the upper envelope of A− (or of both, if the vertex lies
on γ itself), or a point that lies vertically above or below a point on another curve
of R′ (so that the two points are vertically visible in A(R)). The complexity of each
envelope is O(λq(r)) = O(rβq(r)) for an appropriate constant q [18], and the number
of times γ passes above or below any curve of R′ is O(r) (over all curves of R′).
This readily implies the lemma: Part (b) is an immediate consequence, while part (a)
follows by applying this bound to each of the O(r2) intersection and O(r) silhouette
curves arising in the sample.

2.2. Second stage of the decomposition. After constructing the decompo-
sition A1, we perform a second decomposition step, which decomposes each cell τ of
A1 as follows. Let ∂τ∗ denote the boundary of τ∗ and let hτ denote the number of
internal boundary components (“holes”) of τ∗. Note that hτ ≤ ξτ . Since τ∗ need not
be simply connected, ∂τ∗ may consist of more than one connected component (i.e.,
hτ may be strictly positive). The potential existence of many components of ∂τ∗ is
the main source of technical difficulty in the analysis of our decomposition.
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Put mτ = |Cτ |. Let C∗
τ denote the set of the xy-projections of the arcs of Cτ . Let

Xτ denote the number of intersections between the curves of C∗
τ . This is also equal to

the number of vertical visibility segments between pairs of curves of Cτ , where such a
segment is parallel to the z-axis and connects a point on one curve to a point on the
other (and is thus fully contained in τ). We clearly have∑

τ∈A1

Xτ = O(m2).(1)

In what follows, through the bulk of this section, we assume that Xτ ≥ mτ . The
alternative case Xτ < mτ is considerably simpler to handle and will be described later
in the analysis.

If Xτ = o(m2
τ ), we carry out a preliminary decomposition stage that covers τ∗ by

the union of simpler-shaped subcells, so that, within each such subcell τ0, the number
of intersections between the curves of C∗

τ that cross τ0 is roughly the square of the
number of such curves. We employ a standard approach that proceeds as follows.
(See, e.g., [5].) Put s = sτ = 	m2

τ/Xτ
. We distinguish between the following two
cases.

(a) Suppose first that s ≤ ξτ . We sample each curve of C∗
τ with probability s/mτ .

This produces a random sample R′′ of expected size s. The expected complexity of
A(R′′) is O(s+(s/mτ )

2Xτ ) = O(s), since each intersection counted in Xτ becomes a
vertex of A(R′′) with probability (s/mτ )

2. We construct the vertical decomposition
of A(R′′) and argue that, with high probability, it consists of O(s) trapezoids, each of
which is crossed by at most O((mτ/s) log s) curves of C∗

τ . We next apply a modified
version of the analysis of Chazelle and Friedman [7] to refine the decomposition, so
that each of its cells is crossed by at most mτ/s curves of C∗

τ , while the number of
cells remains O(s).

Since the setup here is somewhat different from that in [7], we present details of
the construction and of its analysis. This is done as follows. We take each cell Δ of
the vertical decomposition that is crossed by tmτ/s curves of C∗

τ , for any t > 1, draw
a random sample R′′

Δ of ct log t of these curves, for an appropriate sufficiently large
constant c, construct the vertical decomposition of the arrangement A(R′′

Δ), and clip
each resulting cell to Δ. With high probability, each cell in the resulting decomposition
is crossed by at most mτ/s curves of C∗

τ , provided c is chosen sufficiently large. To
estimate the overall number of cells, we apply Lemma 2.2 of Agarwal, Matoušek, and
Schwarzkopf [1], which, in our context, asserts that the expected number of cells that
are crossed by at least jmτ/s curves is O(2−j) times the expected number of cells in
a random sample of s/j curves of C∗

τ . The latter expected number of cells is easily
seen to be O(s/j), and thus the overall expected number of new cells is

O(s) +
∑
j≥1

O(2−js/j) = O(s),

as claimed.
As we do throughout the analysis, we assume that all those subsamples meet

their expected values, so that this property holds with certainty. This assumption
can be made effective, e.g., by resampling at each stage of the construction until a
good sample is obtained. See a remark to that effect following Theorem 2.3.

These trapezoids are the cells τ0 of the cutting decomposition (or, rather, cov-
ering) of τ∗. Each cell τ0 contains on average Xτ/s = O(X2

τ /m
2
τ ) crossings between

curves of C∗
τ , which is roughly the square of the number O(mτ/s) = O(Xτ/mτ ) of
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(a) (b)

Fig. 2. Stage 2 of the decomposition. (a) The curves of Q ⊆ C∗
τ0

(solid) and ∂τ∗ (dotted). (b)
The external faces of A(Q); note that f2 contains two components of ∂τ∗.

these curves that cross τ0. It is important to note that this decomposition is defined
only in terms of the curves in C∗

τ , and is thus not necessarily confined within τ∗.
Thus our trapezoids constitute a covering of τ∗. (Nevertheless, since all the curves of
C∗

τ are fully contained in τ∗, the portion of the covering outside τ∗ is uninteresting;
it is constructed simply because we do not want at this stage to let ∂τ∗ affect the
construction.) We shall later, towards the end of this section, take care to clip the
new cells to within τ∗.

(b) Suppose next that s > ξτ . We then sample each curve of C∗
τ with probability

ξτ/mτ . Note that this quantity is indeed at most 1, because s ≤ mτ (which follows
from the assumption Xτ ≥ mτ ) and ξτ < s. This produces a random sample R′′ of
expected size ξτ . The expected complexity of A(R′′) is O(ξτ +(ξτ/mτ )

2Xτ ) = O(ξτ ),
since ξτ < s. We apply the same decomposition construction as in the preceding case,
obtaining a new collection of O(ξτ ) trapezoids, each of which is crossed by at most
mτ/ξτ curves of C∗

τ . These trapezoids are the cells τ0 of the cutting-cover of τ∗.

This concludes the description of the preliminary covering of τ∗ that is constructed
only if Xτ = o(m2

τ ). If Xτ = Θ(m2
τ ), we have s = O(1) and the first case applies; we

cover τ by a single τ0, which we take to be the entire xy-plane.

We now apply an additional decomposition step to each cell τ0 of this preliminary
cutting. This decomposition consists of a recursively constructed hierarchical sequence
of cuttings of the subset C∗

τ0 of those curves of C∗
τ that cross τ0, clipped to within τ0.

This decomposition is somewhat reminiscent of the hierarchical cutting construction
of Chazelle [6]. We begin by choosing a sufficiently large constant ρ, to be used
throughout the construction. Put mτ0 = |C∗

τ0 |.

First level in the hierarchy. We draw a random sample Q of ρ arcs of C∗
τ0

and consider all the faces of the planar arrangement A(Q) that contain components
of ∂τ∗. By the definition of Cτ , the arcs of C∗

τ0 are contained within τ∗, and thus each
component of ∂τ∗ lives in a single (not necessarily distinct) face of A(Q). We refer
to such faces as the external faces of A(Q). Note also that, as defined, those faces
are not confined within τ0 or within τ∗. That is, ∂τ∗ is not part of A(Q) and does
not delimit any face of it. However, each component γ of ∂τ∗ bounds a connected
component of the complement of τ∗ which is fully disjoint from all the arcs of Q (or
of C∗

τ0 for that matter). See Figure 2.

For each external face f of A(Q), we compute the two-dimensional vertical de-
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composition of f into vertical pseudotrapezoids (see, e.g., [18]), which we refer to
as trapezoids or subcells. With high probability (greater than, say, 1 − 1/ρ), each
resulting subcell σ is crossed by at most

amτ0

ρ log ρ curves of C∗
τ0 for an appropriate

absolute constant a [9, 14]. As above, we assume that Q is a sample that satisfies this
property. For each connected component γ of ∂τ∗, the face fγ of A(Q) that contains
γ consists of O(ρβq(ρ)) subcells [18], so the total number of crossings between the
arcs of C∗

τ0 and these subcells is O(mτ0βq(ρ) log ρ). Let κτ0 denote the number of
distinct external faces of A(Q). Then we get a total of O(κτ0ρβq(ρ)) external trape-
zoids,1 and the total number of crossings between the arcs of C∗

τ0 and these subcells
is O(κτ0mτ0βq(ρ) log ρ).

An obvious upper bound on κτ0 is 1+hτ0 , where hτ0 denotes the number of internal
connected components of ∂τ∗ that are fully contained in τ0 (boundary components
that cross ∂τ0 all lie in the single unbounded face of A(Q)), but we will use in the
following analysis a more refined bound. The need for a refined analysis comes from
the observation that, at this initial stage of the hierarchy, the total number of faces
of A(Q) is only a constant (at most O(ρ2)), whereas hτ0 can be much larger. Note
that, trivially, ∑

τ0

hτ0 ≤ hτ ≤ ξτ .(2)

We also have hτ = O(r), because we can charge each internal component of ∂τ∗ either
to a complete connected component of an intersection curve between the surface of R
forming the floor of τ with another surface in R, to a similar intersection component
involving the surface forming the ceiling of τ , or to a complete connected component
of the silhouette of some surface of R (which is completely contained in the interior
of τ), and the overall number of such components is clearly O(r). In fact, applying
this analysis to all the cells τ of A1 together, we obtain the following bound, which is
crucial for our analysis: ∑

τ∈A1

hτ = O(r2).(3)

In addition to decomposing the external faces as described above, we also parti-
tion the remainder of A(Q) (its internal portion) into vertical trapezoids. In doing
so, we erase all the edges of A(Q) that are contained in the interior of the internal
portion, and retain only the edges that also bound the external faces. Thus the num-
ber of trapezoids into which the internal portion is partitioned is also O(κτ0ρβq(ρ)).
The total number of crossings between the arcs of C∗

τ0 and these internal subcells
is O(κτ0mτ0ρβq(ρ)). (Here we can no longer claim that each internal trapezoid is
crossed by only a small number of curves, because it is not necessarily disjoint from
the sampled curves in Q, so this bound is larger than the bound claimed for external
trapezoids by nearly a factor of ρ.)

Second level in the hierarchy. We now apply a second partitioning step2

within each external trapezoid σ that has a nonempty intersection with ∂τ∗. (All

1The number of external trapezoids is proportional to the combined complexity of the external
faces. In general, better bounds are known for the complexity of κτ0 faces in an arrangement of ρ
curves (see, e.g., [8]), but the cruder bound that we use suffices for our purposes.

2To help the reader follow the construction, we present the second stage explicitly and separately,
even though it is a special case of the general recursive step, described later. As a matter of fact, it
is also similar to the first-level partitioning.
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Fig. 3. An external trapezoid σ (dashed), the portions of ∂τ∗ that meet σ (dotted), and the
arcs in C∗

σ (solid).

other external and internal trapezoids are not decomposed any further.) Let C∗
σ

denote the set of connected components of the intersections of the curves in C∗
τ0 with

σ. As in the preceding step, σ is not necessarily contained in τ∗; however, each arc
in C∗

σ lies fully in σ ∩ τ∗. See Figure 3.
We draw a random sample Qσ of ρ curves of C∗

σ and compute all the faces of
the planar arrangement A(Qσ) that contain components of ∂τ∗. As above, each
component of ∂τ∗ lives in a single (“external”) face of A(Qσ). Again, those faces are
not necessarily distinct. This time, however, all external faces, with the exception of
the unbounded one, are confined to within σ. Boundary components γ of ∂τ∗ that
intersect σ are of two types: those that are fully contained in the interior of σ, and
those that cross ∂σ. All components γ of the second type lie in the same (unbounded)
face of A(Qσ). Let hσ, κσ denote, respectively, the number of components γ of the
first type, and the number of distinct external faces of A(Qσ). Clearly, κσ ≤ 1 + hσ,
and

∑
σ hσ ≤ hτ (where the sum extends over all σ and all τ0). Again, however, we

will have to use a more refined bound for κσ in what follows.
For each external face f of A(Qσ), we compute the two-dimensional vertical

decomposition of f . With high probability (larger than 1 − 1/ρ), each resulting
subcell σ′ is crossed by at most (

a log ρ

ρ

)2

mτ0

curves of C∗
σ, and, as above, we assume that Qσ is a sample that does satisfy this

property. For each connected component γ of ∂τ∗ that meets σ, the face fγ of A(Qσ)
that contains γ consists of O(ρβq(ρ)) subcells. Summing over all boundary compo-
nents of ∂τ∗ that meet σ, we get a total of O(κσρβq(ρ)) external trapezoids, and the
total number of crossings between the arcs of C∗

σ and these subcells is

O(κσmτ0βq(ρ) log2 ρ/ρ).

Summing these bounds over all external trapezoids σ, we obtain bounds for the overall
number of external trapezoids in the second hierarchical partitioning step and the
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total number of crossings between arcs in C∗
τ0 and these trapezoids. These bounds

are, respectively,

∑
σ

O(κσρβq(ρ))(4)

and ∑
σ

O(κσmτ0βq(ρ) log2 ρ/ρ),

where these sums are over all external trapezoids σ in A(Q).

As above, we also partition the remaining internal portions of the arrangements
A(Qσ), over all trapezoids σ, into vertical trapezoids, using, as above, only the edges
and vertices of these internal portions that bound also the external portions. Thus,
the overall number of internal trapezoids is also bounded by (4), and the total number
of crossings between arcs in C∗

τ0 and these internal trapezoids is at most

∑
σ an external trapezoid in A(Q)

O(κσmτ0βq(ρ) log ρ).

Recursive construction of the hierarchy. The above process is repeated
recursively, each recursion stage refining the decomposition inside those “external”
trapezoids constructed in the previous stage that are still crossed by (or contain)
boundary components of ∂τ∗. Let j = jτ0 be the smallest integer such that

ρj ≥ ξτ/s.

We stop the recursive decomposition process after j steps. In particular, if ξτ < s,
there is no recursion, and τ0 remains intact. Otherwise, we have ρj = Θ(ξτ/s). Let
us for now consider only the (much more involved) case ξτ ≥ s.

By an appropriate extension of the preceding arguments, the overall number of
external and internal trapezoids produced in the ith step, for any i = 1, . . . , j, is at
most ∑

σ an external trapezoid in some A(Qσ′ )

O(κσρβq(ρ)),(5)

where σ′ is an external trapezoid constructed in the preceding (i − 1)st step which
intersects ∂τ∗. With high probability (which we turn into certainty by choosing
“good” samples Qσ′), each external trapezoid constructed at the ith step is crossed
by at most

O

((
a log ρ

ρ

)i

mτ0

)

curves of C∗
τ , and each such internal trapezoid is crossed by at most

O

((
a log ρ

ρ

)i−1

mτ0

)
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curves. Hence, the number of crossings between the arcs of C∗
τ0 and the external

trapezoids is at most

∑
σ

O

(
κσmτ0βq(ρ)

ai logi ρ

ρi−1

)
,

and the number of crossings between the arcs of C∗
τ0 and the internal trapezoids is at

most

∑
σ

O

(
κσmτ0βq(ρ)

ai−1 logi−1 ρ

ρi−2

)
,(6)

where these sums are over all external trapezoids σ in some A(Qσ′).

Bounding the number of trapezoids. We continue to assume in what follows
that ξτ ≥ s; otherwise τ0 remains a single trapezoid. Let us analyze the number of
trapezoids in more detail. Let γ be a boundary component of ∂τ∗. If at some step i, γ
crosses the boundary of some external trapezoid(s), it has no effect on the quantities
κσ from this step onward (inclusive). If on the other hand γ remains confined to the
interior of a single external trapezoid σ, then it may add 1 to κσ, but it will not affect
κσ′ , for any other external trapezoid σ′ produced at this step.

Elaborating this observation, we consider the tree T of all external trapezoids as
they are generated during the recursive process. The root of the tree is τ0, and the
children of each external trapezoid σ are the external trapezoids that are constructed
in the decomposition of σ. We say that a trapezoid is pregnant if it completely contains
a component of ∂τ∗ in its interior. Otherwise it is empty. An empty trapezoid
can spawn at most cρβq(ρ) subtrapezoids (in a single decomposition step), for some
constant c, whereas a pregnant trapezoid containing t components of ∂τ∗ in its interior
can spawn as many as (t + 1)cρβq(ρ) subtrapezoids, but no more than cρ2, which is
the maximum number of trapezoids that can be generated in a single decomposition
step (for simplicity, we use the same constant c in both bounds). Moreover, the total
number of pregnant trapezoids, over the entire tree, is only O(hτ0).

The empty trapezoids are organized into subtrees, each rooted at some pregnant
trapezoid. (If there are no pregnant trapezoids, the empty trapezoids comprise the
entire tree T , and the analysis becomes considerably simpler.) Consider such a subtree
rooted at a pregnant trapezoid at depth i (where the root of T is at depth 0). The
degree of each node in the subtree is at most cρβq(ρ), so the size (or, more precisely,
the number of leaves) of the subtree is at most (cρβq(ρ))

j−i (recall that j is the depth
of the entire recursion). We choose a threshold depth k, and distinguish between the
cases i ≤ k and i > k. In the former case, the total number of trees whose roots are
at depth i is at most ciρ2i, and their total size (i.e., number of leaves) is thus at most

ciρ2i · (cρβq(ρ))
j−i = cjρi+j(βq(ρ))

j−i.

Summing these bounds over all depths i = 0, . . . , k, we obtain a total size of

O(cjρk+j(βq(ρ))
j−k)

trapezoids.
In the latter case (i > k), we bound the total number of trees whose roots are at

depth greater than k simply by O(hτ0), and bound the size of any such subtree by
(cρβq(ρ))

j−k. Hence, the total size of these subtrees is at most

O(hτ0) · (cρβq(ρ))
j−k.
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To fix the value of k, we first assume that (cρ2)j ≤ hτ0 , set k = j, and note that only
the case i ≤ k remains relevant. The overall number of external trapezoids produced
within τ0 under this assumption is

O(cjρ2j) = O(hτ0).

Assuming now that (cρ2)j > hτ0 , we choose k so that (cρ2)k = Θ(hτ0), and assume
that ρ is a sufficiently large constant, as a function of a prescribed ε > 0, to conclude
that the overall number of external trapezoids in this setting is

O(h1/2
τ0 ρj(1+ε)) = O

(
h1/2
τ0

(
ξτ
s

)1+ε
)
.

By construction, the number of internal trapezoids has the same asymptotic upper
bound.

Note that when hτ0 = 0, there is only one subtree, with (cρβq(ρ))
j = O((ξτ/s)

1+ε)
trapezoids.

We sum the above two bounds over all cells τ0 (for the fixed first-stage cell τ), use
the Cauchy–Schwarz inequality and the facts that

∑
τ0
hτ0 ≤ hτ and that the number

of trapezoids τ0 is O(s), and cater to both cases hτ0 > 0 and hτ0 = 0 to conclude that
the total number of trapezoids into which τ is partitioned is

O

(∑
τ0

hτ0

)
+ O

((
ξτ
s

)1+ε
)

·
∑
τ0

max{1, hτ0}1/2(7)

= O

(∑
τ0

hτ0

)
+ O

((
ξτ
s

)1+ε

(hτ + s)1/2s1/2

)

= O
(
hτ + (1 + h1/2

τ )ξ1+ε
τ

)
.

We now cater to the case ξτ < s. In this case, τ is covered by O(ξτ ) trapezoids
τ0, and each of them remains intact, so the total number of trapezoids is O(ξτ ), which
is subsumed in the bound (7).

Bounding the number of curve-cell crossings. Next consider the bounds (6)
on the number of curve-cell crossings, and we analyze them in more detail, using our
tree representation of the external trapezoids. We continue to assume that Xτ ≥ mτ ,
and that ξτ ≥ s. For simplicity of exposition, we consider only crossings with external
trapezoids, observing that at each step of the construction, the number of internal
trapezoids has the same upper bound as the number of external trapezoids, and that,
with high probability (which, as usual, we take to hold with certainty), the bound
on the number of curves of C∗

σ that cross an internal trapezoid is at most ρ/(a log ρ)
times larger than the same bound for external trapezoids. Hence, up to this constant,
the number of crossings with internal trapezoids has the same upper bound as the
number of crossings with external trapezoids, so we concentrate only on bounding the
latter quantity.

Consider our tree T of external trapezoids. As in the preceding analysis, we
distinguish between the cases hτ0 > 0 and hτ0 = 0. We treat only the case hτ0 > 0;
the other case is handled similarly, by replacing hτ0 by 1. With high probability
(which, as usual, we take to hold with certainty), an external trapezoid at depth i is
crossed by at most (a log ρ

ρ )imτ0 curves of C∗
τ0 . We fix a threshold value k as above,
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taking also into consideration the case where (cρ2)j ≤ hτ0 . Suppose first that i ≤ k.
The number of external trapezoids at depth i is at most ciρ2i, so the overall number
of curve-cell crossings with these trapezoids is at most (acρ log ρ)imτ0 . Summing this
over all depths i = 0, . . . , k, we get a total of O((acρ log ρ)kmτ0) crossings. For both
possible values of k, by the choices of j and ρ, the above bound can be written as

O
(
(ac1/2 log ρ)k(c1/2ρ)kmτ0

)
= O

(
h1/2
τ0 (ξτ/s)

εmτ0

)
.

Consider next the case i > k (which applies only when (cρ2)j > hτ0). The number of
external trapezoids at depth i can be estimated as follows. All these trapezoids belong
to O(hτ0) subtrees rooted at the pregnant trapezoids, or, if hτ0 = 0, to the entire tree
T . To maximize the number of our trapezoids, the subtrees should be rooted as close
to the root of T as possible. By the choice of k, it is easily seen that this happens
when all the pregnant nodes lie roughly at level k of T . Assuming this “worst-case”
scenario, the number of external trapezoids at depth i is at most

O
(
(cρ2)k · (cρβq(ρ))

i−k
)

= O
(
ciρi+kβi−k

q (ρ)
)
.

Since, with high probability (which we take to hold with certainty), each of these
trapezoids is crossed by at most (a log ρ

ρ )imτ0 curves of C∗
τ0 , the total number of curve-

cell crossings with these trapezoids is at most

(acβq(ρ) log ρ)
i
(ρ/βq(ρ))

k
mτ0 .

As in the preceding subcase, for both possible values of k, summing over all depths
i = k + 1, . . . , j, and using the choices of j and ρ, this can be bounded by

O
(
(acβq(ρ) log ρ)jρkmτ0

)
= O

(
h1/2
τ0 (ξτ/s)

εmτ0

)
.

Hence the total number of curve-cell crossings within τ0, taking also into account the
case hτ0 = 0, is O

(
max{1, hτ0}1/2(ξτ/s)

εmτ0

)
.

We sum the bound just derived over all cells τ0 of A(R′′), calibrate the value of ε
appropriately, and use the facts that the number of cells τ0 is O(s), that mτ0 ≤ mτ/s,
and that s = 	m2

τ/Xτ
. This yields the following overall bound:

O

((
ξτ
s

)ε)
·
∑
τ0

O(mτ0 max{1, hτ0}1/2)

= O

⎛
⎝mτξ

ε
τ

s1+ε
·
(∑

τ0

(1 + hτ0)

)1/2

· s1/2

⎞
⎠

= O

(
mτξ

ε
τ

(hτ + s)1/2

s1/2+ε

)

= O

(
ξετ
sε

(
mτ +

mτh
1/2
τ

s1/2

))

= O
(
(X1/2

τ h1/2
τ + mτ )ξ

ε
τ

)
(8)

for any ε > 0.
If ξτ < s, then τ0 remains intact and the number of crossings between curves and

trapezoids within τ0 is thus mτ0 . We sum this over all O(ξτ ) cells τ0 and use the fact
that mτ0 ≤ mτ/ξτ for each τ0 to obtain the bound O(mτ ), which is subsumed in (8).
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The case Xτ < mτ . So far in the description of the second stage of the de-
composition we have assumed that Xτ ≥ mτ . We now address the case Xτ < mτ .
By breaking each curve of C∗

τ at the points where it crosses other curves, we obtain a
collection of pairwise openly disjoint curves, whose number is only O(mτ ). Assuming
first that ξτ ≤ mτ , we now sample each (new) curve in C∗

τ with probability ξτ/mτ ,
obtaining a random sample R∗ of expected size ξτ . The expected complexity of the
vertical decomposition of A(R∗) is thus also O(ξτ ). By further refining the decompo-
sition, we obtain a collection of O(ξτ ) trapezoids, each crossed by at most O(mτ/ξτ )
curves, for a total of O(mτ ) crossings between curves and cells. If mτ < ξτ , we “sam-
ple” all curves in C∗

τ and construct the vertical decomposition of their arrangement.
This yields O(mτ ) = O(ξτ ) trapezoids, each of which crosses no curve of C∗

τ .

Completion. We now form the final two-dimensional decomposition by taking
∂τ∗ into account. In the description below we address the more involved construction
of the case Xτ ≥ mτ . The derived bounds can be shown to hold also when Xτ < mτ

(with a significantly simpler analysis).
The final decomposition in the case Xτ ≥ mτ is formed as follows. The hierarchy

of trapezoids constructed so far is induced by various samples of (pieces of) curves
from C∗

τ . Let Γτ denote the collection of all curve portions that constitute the floors
and ceilings of all these trapezoids. By construction, no two curve portions in Γτ

intersect transversally. (Some pairs, constituting, e.g., floors of trapezoids that are
nested in the hierarchy, may partially overlap; this has no effect on the analysis about
to be presented.) Clearly, the number of trapezoids is Θ(|Γτ |).

Consider now the union Γ′
τ of Γτ with the set of arcs forming ∂τ∗. The arcs of

Γ′
τ are also pairwise openly disjoint (recalling that the arcs of Γτ have been clipped

at their points of intersection with ∂τ∗). Form the vertical trapezoidal decomposition
of Γ′

τ . Using (7), the number of trapezoids in this decomposition is

O(|Γ′
τ |) = O((1 + h1/2

τ )ξ1+ε
τ + ξτ + hτ ) = O((1 + h1/2

τ )ξ1+ε
τ + hτ ).

We retain only those trapezoids that are fully contained in τ∗ (the others are disjoint
from τ∗).

We next consider the number of crossings between the curves of C∗
τ and the new

trapezoids. Each such crossing can be charged to a crossing of a curve γ ∈ C∗
τ with

the boundary of a new trapezoid σ (unless γ is fully contained in σ; the number of
such latter pairs is clearly at most mτ ). If such a crossing occurs on the floor or
ceiling of σ, then either it is also a crossing with the boundary of an old trapezoid,
and is thus counted in (8), or it is an endpoint of a curve in C∗

τ (lying on a boundary
component of ∂τ∗), and the number of such endpoints is at most 2mτ . If it occurs at
a vertical wall erected from an endpoint (or a locally x-extreme point) p of some arc
in Γτ , then the new wall is equal to or shorter than the old wall erected from p. Hence
the number of such crossings is also upper bounded by (8). The only remaining case
is a vertical wall erected from some vertex of ∂τ∗ or from a locally x-extreme point
on some arc of ∂τ∗. The number of such walls is O(ξτ ), and any such wall is fully
contained in an old external trapezoid, and is thus crossed by at most

O((a log ρ/ρ)jmτ0) = O((a log ρ/ρ)j(mτ/s))

curves of C∗
τ . Hence the total number of crossings of this kind is (recall that ρj =

Θ(ξτ/s))

O(ξτ (a log ρ/ρ)j(mτ/s)) = O(mτξ
ε
τ )
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for any ε > 0. This bound also takes care of the case ξτ < s, and, as mentioned above,
it also trivially holds when Xτ < mτ .

The new decomposition is clearly a partition of τ∗ into subcells (trapezoids) of
constant description complexity. Each of these subcells is lifted vertically in the z-
direction to within τ , thereby obtaining a partition of τ itself. The collection of all
these partitionings, over all cells τ of A1, constitutes our final decomposition.

Since each resulting (three-dimensional) cell has constant description complexity,
it follows by the ε-net theory of Haussler and Welzl [14] that, with high probability,

each of them is crossed by at most a′n
r log r surfaces of S, for an appropriate absolute

constant a′ > 0, so it is an O((log r)/r)-cutting of S.
Lemma 2.2. (a) The total number of cells of the above decomposition is O(r3+ε)

for any ε > 0.
(b) The total number of crossings between the curves of C and these cells is

O(mr1+ε) for any ε > 0.
Proof. (a) By (7), the number of cells is

O

( ∑
τ∈A1

(
(1 + h1/2

τ )ξ1+ε
τ + hτ

))
= O

(
r2 +

∑
τ∈A1

(1 + h1/2
τ )ξ1+ε

τ

)
.

We analyze the quantity O(
∑

τ∈A1
(1 + h

1/2
τ )ξ1+ε

τ ). By Lemma 2.1(a),
∑

τ ξ
1+ε
τ =

O(r3+ε) for any ε > 0. This bound takes care of all cells for which hτ = 0. The
number of cells with hτ > 0 is only O(r2). Moreover, the complexity of a single cell
τ of A1 is only O(rβq(r)). Indeed, such a cell has a fixed floor and a fixed ceiling,
contained in two respective surfaces σ−, σ+ of R. We form a collection of curves
consisting of the xy-projections of (i) the intersections of σ− and σ+ with all the
remaining surfaces of R, (ii) the silhouettes of the surfaces in R, and (iii) the curves
in R′. We obtain a collection of O(r) curves in the plane, and it is easily seen that τ∗

is a cell of their arrangement. Hence the complexity of τ∗, and thus of τ , is O(rβq(r)),
as claimed (see [18] for details). Hence

∑
τ∈A1

h1/2
τ ξ1+ε

τ = O

⎛
⎝
( ∑

τ∈A1

hτ

)1/2

· (r2)1/2 · r1+ε

⎞
⎠ = O(r3+ε)

for any ε > 0, and this establishes (a).
(b) By (8) and the preceding discussion, the number of crossings is

∑
τ

O
(
(X1/2

τ h1/2
τ + mτ )ξ

ε
τ

)

for any ε > 0. Using (1) and (3), the Cauchy–Schwarz inequality, and Lemma 2.1(a,b),
and recalibrating ε, this can be upper bounded by

O(rε) ·
[∑

τ

O(X1/2
τ h1/2

τ ) +
∑
τ

O(mτ )

]

= O(rε) ·
(∑

τ

Xτ

)1/2

·
(∑

τ

hτ

)1/2

+ O(mr1+ε) = O(mr1+ε)
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for any ε > 0.

By replacing r by ar log r, for an appropriate absolute constant a, as discussed
above, we obtain the following main result.

Theorem 2.3. Let S be a set of n surfaces in R
3 of constant description com-

plexity, and let C be a set of m curves in R
3 of constant description complexity. Let

1 ≤ r ≤ min{m,n} be a given parameter. Then there exists a (1/r)-cutting Ξ of S of
size O(r3+ε), for any ε > 0, such that the number of crossings between the curves of
C and the cells of Ξ is O(mr1+ε).

Remark 1. We have ignored so far the algorithmic issue of constructing the
cutting. However, the proof is constructive. Moreover, since at each step of the
second decomposition stage we deal with samples of only O(1) curves, the overall
cost of the construction can be shown to be O(nr2+ε + mr1+ε) for any ε > 0. Recall
that in the proof we assume that each random sample is a good sample. This can
be algorithmically enforced by the standard approach of repeatedly sampling until
a good sample is found. Since we use only constant-size samplings in the second
decomposition stage, verifying that a sample is good is inexpensive. This approach
increases the running time of the algorithm by a constant factor on expectation.

Remark 2. Theorem 2.3 bounds only the overall number of crossings between the
curves and cells. A stronger result would be to show that, in addition, each cell of the
cutting is crossed by O(m/r) curves of C. We have not carried out this extension,
but we believe that this stronger property can be achieved via a modified version of
the preceding analysis.

3. The complexity of a multiple zone. Let S and C be as above. Define the
zone Z(C) of C in A(S) to be the collection of all cells of A(S) that are crossed by
at least one curve of C.

Theorem 3.1. The complexity of Z(C) is O(m1/2n2+ε) for any ε > 0.

Proof. Since the complexity of the entire arrangement is O(n3), the bound in the
theorem is nontrivial only when m = O(n2), which is what we assume in the proof.
Fix a parameter r, and construct a C-sensitive (1/r)-cutting of A(S), consisting of
O(r3+ε) cells, each crossed by at most n/r surfaces of S, so that the total number of
crossings between these cells and the curves of C is at most O(m1+εr).

Fix a cell τ of the cutting. Let Sτ (resp., Cτ ) denote the set of surfaces of S
(resp., curves of C) that cross τ , clipped to within τ . The complexity of Z(C)∩ τ can
be upper bounded as follows: First, the zone of a single curve in an arrangement of
N surfaces of constant description complexity is O(N2+ε) for any ε > 0 [13]. Hence,
the overall complexity of the |Cτ | separate zones of each of the curves in Cτ in A(Sτ )
is at most O(|Cτ ||Sτ |2+ε). In addition, portions of the boundary of the external cell
of A(Sτ ) may also belong to Z(C), because they may bound cells of A(S) that are
crossed by curves of C that do not cross τ . The complexity of this external cell is
O(|Sτ |2+ε). Hence, putting mτ = |Cτ |, the overall complexity of Z(C) is (we use the
same ε both in the bounds in Theorem 2.3 and for the bound on the complexity of
the zone of a curve)

O

(∑
τ

(mτ + 1)
(n
r

)2+ε
)

= O

(
mn2+ε

r
+ n2+εr

)
,

where we use Theorem 2.3 to infer that
∑

τ mτ = O(mr1+ε). Choosing r = m1/2

completes the proof of the theorem.
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Remark 3. A lower bound for Z(C) is Ω(m2/3n5/3). To establish it, take a planar
arrangement of n/2 lines that has m distinct faces of overall complexity Θ(m2/3n2/3).
Lift each of these lines to a vertical plane in three dimensions, and add to the resulting
arrangement n/2 additional horizontal planes. The resulting collection of n planes is
our set S. For the set C of curves, take m vertical lines, each intersecting the xy-plane
at a point inside one of the m marked faces. The complexity of the multiple zone
Z(C) is easily seen to be Θ(m2/3n5/3).
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LOW-DIMENSIONAL LINEAR PROGRAMMING WITH
VIOLATIONS∗

TIMOTHY M. CHAN†

Abstract. Two decades ago, Megiddo and Dyer showed that linear programming (LP) in two
and three dimensions (and subsequently any constant number of dimensions) can be solved in linear
time. In this paper, we consider the LP problem with at most k violations, i.e., finding a point
inside all but at most k halfspaces, given a set of n halfspaces. We present a simple algorithm in
two dimensions that runs in O((n+k2) logn) expected time; this is faster than earlier algorithms by
Everett, Robert, and van Kreveld (1993) and Matoušek (1994) for many values of k and is probably
near-optimal. An extension of our algorithm in three dimensions runs in near O(n + k11/4n1/4)
expected time. Interestingly, the idea is based on concave-chain decompositions (or covers) of the
(≤ k)-level, previously used in proving combinatorial k-level bounds.

Applications in the plane include improved algorithms for finding a line that misclassifies the
fewest among a set of bichromatic points, and finding the smallest circle enclosing all but k points.
We also discuss related problems of finding local minima in levels.

Key words. computational geometry, algorithms, LP
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1. Introduction.

1.1. Motivation: Outliers in geometric optimization. Consider the fol-
lowing formulation of a line-fitting problem, well known in computational geometry:
given a set of data points (x1, y1), . . . , (xn, yn) in the plane, find a line that mini-
mizes its largest vertical distance to the points. The problem is equivalent to a linear
program (LP) in three variables (the slope m, the intercept b, and the tolerance δ),
where the goal is to minimize δ subject to the constraints −δ ≤ mxi + b − yi ≤ δ
for i = 1, . . . , n. By known methods [22, 30, 49, 50, 57, 60], the problem can thus be
solved in O(n) time.

Though efficient methods exist, whether this formulation is the “right” one for
real applications is debatable, as the presence of an occasional faulty data point (a so-
called outlier) can drastically change the optimum. Statisticians have looked at more
robust formulations of the line-fitting problem, but here we try to address the issue
of outliers from a different direction by asking the following natural computational
questions, keeping the largest vertical distance as the fitness measure: Given a small
integer k ≤ n, how can we find the line that best fits all but k of the given points?
Or, given a prescribed tolerance δ, how can we find the smallest integer k such that
a line fitting all but k points exists?

Low-dimensional LP-type techniques can solve other common optimization prob-
lems. For example, finding the smallest enclosing circle of a planar point set (the stan-
dard 1-center problem) is an instance of three-dimensional (3-d) convex programming,
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was supported in part by an NSERC research grant.

http://www.siam.org/journals/sicomp/34-4/43940.html
†School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

(tmchan@uwaterloo.ca).

879



880 TIMOTHY M. CHAN

and finding the smallest-area enclosing annulus of a planar point set (a circle-fitting
problem) is an instance of four-dimensional (4-d) LP. Due to applications in statistical
analysis and computational metrology, it is again natural to consider generalizations
of these optimization problems that allow a small number k of violations.

1.2. LP with violations: The problem and background. We can define the
problem of linear programming with at most k violations in d dimensions as follows:

Given a set H of n closed halfspaces in R
d, a linear objective func-

tion f , and a number 0 ≤ k < n/2, we want to minimize f over the
region

Ik(H) = {q ∈ R
d | q lies outside at most k halfspaces of H},

or report that Ik(H) = ∅.
Since our interest is in geometric applications, we confine our discussion to small

constant values of d. The problem for arbitrary dimensions is NP-complete (for ex-
ample, see [7, 8]).

Note that I0(H), the intersection of all halfspaces, is the feasible region of the
original LP problem. Following Matoušek [47], we call the special case of the problem
in which I0(H) �= ∅ the feasible case. In the feasible case (where, by an affine trans-
formation, we may assume that the halfspaces are all lower halfspaces or all upper
halfspaces), the boundary of Ik(H) is commonly called the k-level, and the 0-level,
1-level, . . . , k-level collectively form the (≤ k)-level.

The simplest case, the two-dimensional (2-d) feasible problem, can be solved in
near-linear time by a parametric or binary search [47, 56]; the current best time
bound was obtained by this author [14] using randomization and almost matched the
one-dimensional (1-d) O(n + k log k) bound.

The next simplest case, the general 2-d problem, has already baffled researchers.
Everett, Robert, and van Kreveld [37] first investigated the problem in 1993; they
proposed a simple approach that effectively explores the entire solution space by
constructing the (≤ k)-level of the upper halfplanes and the (≤ k)-level of the lower
halfplanes and “intersecting” the two structures, so to speak. As the (≤ k)-level has
O(nk) complexity [6, 40] in the plane, they solved the 2-d problem in O(n log n+nk)
time. The approach can probably (though nontrivially) be extended to any fixed
dimension, but the running time would be higher, since the (≤ k)-level has worst-case
complexity Θ(n�d/2�k�d/2�) in R

d [24] (in three dimensions, a near-O(nk2) algorithm
was indeed obtained by Efrat, Lindenbaum, and Sharir [34]).

Shortly after, in 1994, Matoušek [47] proposed another simple approach; it works
quite differently and is best described in the feasible case. The algorithm enumerates
all local minima of I0(H), . . . , Ik(H) by computing the minimum of I0(H) by LP
and repeatedly removing a solution’s defining halfspace and reoptimizing, to generate
I1(H) minima from the I0(H) minimum, I2(H) minima from the I1(H) minima, and
so on. As the (≤ k)-level has O(kd) local minima [51], the cost of the algorithm is
dominated by the cost of O(kd) dynamic LP operations. The general 2-d problem can
be “lifted” to a feasible 3-d problem, and with the appropriate data structures [53],
these O(k3) operations can be carried out in O(n log n+k3 log2 n) time. The first term
has been lowered to O(n log k) by the author [11, 12]; the second term can probably
be lowered slightly as well by adopting recent data structures for dynamic convex
hulls [16] (though the particular LP queries needed were not explicitly considered
in [16]).
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Table 1

Time bounds for LP with at most k violations. (In this paper, ε > 0 denotes an arbitrarily
small constant, and c denotes a specific constant.)

Problem Best previous result(s) (Refs.) New result
2-d feasible O(n + k1−εnε logn) [56, 14]
2-d general O(n logn + nk) [37]

O(n log k + k3 log2 n) [47, 11] O((n + k2) logn)
3-d feasible O(n log k + k3nε) [47, 11] O(n logn + k2 log2 n)
3-d general O(nk2(logn + log2(n/k))) [34]

O(n log k + k4nε) [47, 11] O(n logn + k11/4n1/4 logc n)

4-d feasible O(n log k + k8/3n2/3+ε + k4n1/3+ε) [47, 11] O(n logn + k11/4n1/4 logc n)

Modulo these small improvements, the rough bounds of O(nk) by Everett, Robert,
and van Kreveld (for large k ≥

√
n) and O(n + k3) by Matoušek (for small k ≤√

n) have surprisingly remained the record for the general 2-d problem for about
eight years. There seems no natural way to combine the two approaches to get a
uniform time bound for all k. Concerning his algorithm, Matoušek [47] wondered
whether it is possible to generate the local minima of Ik(H) directly, without going
through I0(H), I1(H), . . ., since the number of local minima in the k-level is only
O(kd−1) [23, 52]. In particular, for the general 2-d problem, is it possible to bypass
intermediate “infeasible” minima (defined by triples after the lifting) and generate
only solutions (vertices) defined by pairs of halfplanes, as in Everett, Robert, and van
Kreveld’s algorithm? To put it bluntly, can Matoušek’s 2-d algorithm be made more
“planar”?

With the status of the 2-d problem unresolved, our understanding of LP with
violations in higher dimensions is even more tentative. A suspected lower bound
for the general d-dimensional problem (for k � n/2) is Ω(n + kd) because of the
following argument: Given a collection of N hyperplanes, the problem of detecting
affine degeneracy, i.e., a subset of d + 1 hyperplanes intersecting at a common point,
is conjectured to require Ω(Nd) time. (See [36] for a proof in a restricted model; for
d = 2, the problem is so-called 3sum-hard [38].) This problem can be reduced to LP
with violations for any n ≥ 2N and k = N − d− 1; just take the 2N lower and upper
(closed) halfspaces defined by the N hyperplanes together with n− 2N copies of the
halfspace x ≤ M for a sufficiently large M .

1.3. Main results. Table 1 summarizes the previous results and our new re-
sults. We focus on the general case since, as we will demonstrate in section 4, the
feasible problem in d dimensions reduces to the general problem in d− 1 dimensions
by parametric or randomized search.

Our main result, presented in section 2, is an algorithm for the general 2-d prob-
lem that runs in O((n+k2) log n) expected time (randomization is used in just one step
of the algorithm). This algorithm not only simultaneously improves Everett, Robert,
and van Kreveld’s and Matoušek’s algorithms for most values of k (between nε and
n/ log n) but also essentially settles the complexity of the 2-d problem up to a loga-
rithmic factor, assuming that the conjectured lower bound holds. The algorithm, like
Matoušek’s, actually generates all O(k2) local minima of I0(H), . . . , Ik(H). The basic
algorithm uses simpler data structures than Matoušek’s and is arguably simpler than
Everett, Robert, and van Kreveld’s as well. The approach is noteworthy: although
like Everett, Robert, and van Kreveld we will use the (≤ k)-level of the lower/upper
halfplanes, we will not build the entire (≤ k)-level (which has size O(nk)) but in-
stead will work with its “concave/convex-chain decomposition” (which involves only
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Fig. 1. Comparison of time bounds for the general 3-d problem.

a small O(k) number of chains of total size O(n)). The concave-chain decomposition
idea was instrumental in the recent breakthroughs on k-level complexity and related
combinatorial problems [1, 27, 59]; because concave chains and convex polygons enjoy
nice computational properties, we demonstrate that this very idea has algorithmic
applications as well.

In section 3, we use similar ideas to obtain an O(n log n+k3 log2 n) expected time
bound for generating an O(k3)-size superset of the local minima of I0(H), . . . , Ik(H)
in three dimensions. The generalization is not trivial, as an analogous concave-surface
decomposition of the (≤ k)-level in three dimensions is not known (but see [43] for
a variant); nevertheless, we prove here that a small concave-surface cover always
exists and can be computed efficiently. Unfortunately, unlike the 2-d algorithm, the
3-d algorithm does not automatically filter out the local minima of I0(H), . . . , Ik(H)
from the superset. This filtering step turns out to be the computational bottleneck.
Sophisticated static data structures for range searching are required to yield our final
expected time bound of O(n log n + k11/4n1/4 logc n). Although this does not quite
approach the suspected lower bound Ω(n + k3), it is not far off (see Figure 1) and
in particular improves both Efrat, Lindenbaum, and Sharir’s near-O(nk2) bound and
Matoušek’s near-O(n + k4) bound (the latter requires sophisticated dynamic data
structures).

For very small k = O(nε), Matoušek’s algorithm can be made to run in O(n log k)
time, as shown by the author [11, 12]. So, by combining two algorithms, we can
automatically replace all logn factors with log k in the time bounds.

1.4. Applications. We can use our algorithms to find the smallest k such that
Ik(H) �= ∅ within the same time bounds: Given an upper bound K ≥ k, we can
generate all local minima of I0(H), . . . , IK(H) and thus identify the value of k. We
can “guess” an upper bound by a standard trick (as in [12]); for example, in two
dimensions, by trying K =

√
n, 2

√
n, 4

√
n, . . ., the total running time can be bounded

by a geometric series and remains O((n + k2) log n).

The 2-d algorithm can also be modified for convex programming with nearly the
same running time, provided that a linear objective function is used, as explained
in the remarks in section 2. The sample applications below thus follow immediately
from these observations (all the bounds except the last are probably near-optimal for
all k � n/2).

• Given n red/blue points in the plane, we can find a line � that minimizes k, the
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total number of red points above � and blue points below �, in O((n+k2) log n)
expected time. (This was the original dual problem considered by Everett,
Robert, and van Kreveld [37].)

• Given n points in the plane and a fixed value δ, we can find a line � that
minimizes k, the number of points at a vertical distance exceeding δ from �,
in O((n + k2) log n) expected time.

• Given n points in the plane and a fixed convex set C of constant complex-
ity, we can translate C to minimize k, the number of points outside C, in
O((nβ(n) + k2) log n) expected time, where β(·) is a slow-growing, inverse-
Ackermann-like function.

• Given n points in the plane and a fixed value δ, we can find an annulus A
of area δ that minimizes k, the number of points outside A, in O(n log n +
k11/4n1/4 logc n) expected time.

We can also use our algorithms to solve feasible LPs with violations in one di-
mension higher, as explained in section 4. The applications below follow:

• Given n points in the plane and a number k, we can find the line that mini-
mizes its largest vertical distance to all but k points in O(n log n+ k2 log2 n)
expected time.

• Given n points in the plane and a number k, we can find the smallest circle
enclosing all but k points in O(nβ(n) log n+ k2nε) expected time. (This was
the motivating problem considered by Matoušek [47]. Note that, in contrast,
the related problem of finding the smallest circle enclosing k points is believed
to have complexity near Θ(nk) [26, 35, 42, 46].)

• Given n points in the plane and a number k, we can find the minimum-area
annulus enclosing all but k points in O(n log n + k11/4n1/4 logc n) expected
time.

In the feasible case, several researchers have explored the problem of finding all
local minima of the k-level and the (≤ k)-level.

• By specializing our 2-d algorithm in section 2 to the feasible case, we can
immediately find all O(k2) local minima of the 2-d (≤ k)-level in O((n +

k2) log n) expected time, thus improving the previous O(n log n+k2 log3/2 n)
bound [16, 47].

• As shown in the appendix, we can also find all O(k) local minima of the

2-d k-level in O((n+(nk)3/5) logO(1) n) expected time, improving Katoh and

Tokuyama’s recent O((n + (nk)2/3) logO(1) n) bound [44].

Again, all logn factors above can be replaced by log k by switching to Matoušek’s
algorithm when k = O(nε).

2. A 2-d algorithm to find all local minima of I0(H), . . . , Ik(H). Let L−

and L+ be the sets of lines bounding the given lower and upper halfplanes, respectively.
Without loss of generality, assume that the objective is to minimize the x-coordinate.
For simplicity, assume also that the input is in general position. The outline of our
2-d algorithm is remarkably simple:

1. Form O(k) concave chains whose union covers (i.e., contains) the (≤ k)-level
of the lower halfplanes; the polygonal chains are made from lines in L−, are
nonoverlapping (i.e., they intersect only at vertices), and have O(n) total size
(see Figure 2(a)). Similarly, form O(k) convex chains for the lines in L+.

2. For each pair of concave and convex chains, compute their left and right
intersection points (if they exist). Let S be the O(k2) left intersection points.
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Fig. 2. (a) The (≤ 2)-level of a set of lower halfplanes is covered by three concave chains
(in dotted lines); in this example, the cover happens to be a decomposition. (b) Step 3: Counting
concave chains below each point p ∈ S (in black) on a convex chain γ becomes an interval counting
problem. (c) Step 1, second option: Forming concave chains becomes an interval coloring problem.

3. For each p ∈ S, determine

k−(p) = min{k + 1,number of lines of L− strictly below p}, and

k+(p) = min{k + 1,number of lines of L+ strictly above p}.

If k−(p) + k+(p) ≤ k, then report p as a local minimum of Ik−(p)+k+(p)(H).
To check the correctness of the algorithm, we just have to observe that all local

minima of I0(H), . . . , Ik(H) are contained in S; each such local minimum lies on both
the (≤ k)-level of the upper halfplanes and the (≤ k)-level of the lower halfplanes and
thus is at the intersection of a concave and a convex chain.

We now explain how to implement the three steps, in order of difficulty, so that
the total expected running time is O((n + k2) log n).

Step 2: Computing S. The intersection of a concave and a convex chain can
be found in logarithmic time by known binary-search algorithms (for example, see
[20, 28]). So step 2 can be carried out in O(k2 log n) time.

Step 3: Computing k−(p) and k+(p). By symmetry, it suffices to con-
sider the computation of the k−(p) values. Observe that k−(p) = min{k +
1,number of concave chains strictly below p}: if p is on the (≤ k)-level of the lower
halfplanes, the number of lines of L− strictly below p is the equal to the number of
concave chains strictly below p, since the concave chains cover the (≤ k)-level and are
nonoverlapping; if p is strictly above the (≤ k)-level, both numbers exceed k + 1.

Fix a convex chain γ. Each concave chain defines an open interval on γ delimited
by the chain’s left and right intersection points with γ. (The interval can be half-
infinite or empty.) Given a point p lying on γ, a concave chain is strictly below p iff
the corresponding interval does not contain p. (See Figure 2(b).) Thus, computing
k−(p) for all points p ∈ S lying on γ can be reduced to a 1-d counting problem: given
O(k) points and O(k) intervals, count how many intervals contain each point. This
1-d problem can be solved in O(k log k) time by sorting and a linear scan. Repeating
the process for each convex chain γ gives k−(p) for all points p ∈ S in O(k2 log k)
time.

Step 1: Constructing the concave/convex chains—first option. By sym-
metry, it suffices to consider the computation of the concave chains. Pick a random
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integer k′ ∈ [k, 2k]. Since the k-level, . . . , 2k-level have combined size O(nk), the
k′-level has expected size O(n).

We use a standard idea to decompose the (≤ k′)-level of the lower halfplanes
into concave chains (for example, see [1]): Track the k′ + 1 lowest lines of L− at
a vertical sweep line as the sweep line moves from left to right. At x = −∞, our
k′ + 1 chains start at the initial k′ + 1 lowest lines. When the (k′ + 1)st lowest line
�1 and the (k′ + 2)nd lowest line �2 are about to switch, the chain currently at �1
will correspondingly turn right to follow �2. Switches occur only at concave k′-level
vertices, so the k′ + 1 chains thus defined have total expected size O(n) and can be
formed in linear time once the k′-level has been constructed. (The example in Figure
2(a) is obtained this way.)

The k′-level can be computed by several output-sensitive algorithms, as surveyed
in [15]. The simplest to implement is probably Basch, Guibas, and Hershberger’s
method using kinetic tournament trees [9]; for an expected O(n)-size output, the
expected running time is O(nα(n) log2 n), where α(n) is the slow-growing inverse
Ackermann function. The more complicated, randomized algorithms by Agarwal et
al. [2, 15] and Har-Peled [41] are faster, with time bounds of O(nα(n)2 log n) and
O(nα(n) log n), respectively. Brodal and Jacob’s recent announcement on dynamic
convex hulls and kinetic heaps [10] implies the ultimate expected running time of
O(n log n).

Step 1: Constructing the concave chains—second option. We now offer
a different method for step 1 that also achieves O(n log n) expected time but has the
advantage of being generalizable to three dimensions (as we will see in section 3).

This second option is based on Matoušek’s shallow cutting lemma [45]. Ramos [54]
(building on [2, 17]) has given an O(n log n) randomized algorithm to construct such
a cutting in two and three dimensions. We restate the 2-d result in the following
convenient form.

Lemma 2.1. Given n lower halfplanes in R
2, the (≤ k)-level can be covered by

O(n/k) cells, each intersecting O(k) bounding lines. More specifically, the cells are
taken from the vertical decomposition of the region underneath a concave chain γ0

of size O(n/k). The cells, the list of lines intersecting each cell, and γ0 can all be
constructed in O(n log n) expected time.

Proof. Matoušek’s shallow cutting lemma [45] and Ramos’s algorithm [54] give a
set Ξ of cells (triangles) satisfying the first statement in O(n log n) expected time. To
achieve the second statement, we modify the construction. Suppose that the maximum
number of lines intersecting a cell is less than bk for some constant b. Remove a cell
from Ξ if one of its vertices is above more than (b + 1)k lines (because if this is true,
the cell does not intersect the (≤ k)-level anyway); this condition can be tested in
O(log n + k) time per cell, after preprocessing in O(n log n) time, by a known data
structure for halfplane range reporting queries [21].

Now, let γ0 be the boundary of the upper hull of the vertices of Ξ, and take
the O(n/k) cells (unbounded trapezoids) of its vertical decomposition, which is com-
putable in O((n/k) log(n/k)) time. Clearly, the new cells cover the (≤ k)-level. Since
a line intersecting a cell must lie below one of its (two) vertices, the list of lines
intersecting each new cell has at most 2(b + 1)k elements and can be generated in
O(log n + k) time per cell, again by halfplane range reporting.

Say that two lines are compatible in a region R if no point in R is above both
lines. The problem of constructing the concave chains can be reduced to coloring the
lines of L− so that lines of the same color are compatible in the (≤ k)-level of the
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lower halfplanes (or in any region covering the (≤ k)-level): Indeed, nonoverlapping
concave chains can be formed by simply taking the lower envelope of lines of each
color; the chains cover the (≤ k)-level, because given a point p on the (≤ k)-level
incident to some line �, p cannot be above another line of the same color as � and so
must appear in the lower envelope of that color.

To solve this coloring problem, we invoke Lemma 2.1 to get a concave chain γ0

above the (≤ k)-level. Each line of L− defines an interval (possibly half-infinite or
empty) on γ0 delimited by the line’s left and right intersection points with γ0; each
interval can again be computed in logarithmic time by binary search. Two lines are
compatible in the region underneath γ0 iff their corresponding intervals are disjoint.
(See Figure 2(c).) Thus, our problem is reduced to coloring of an interval graph.

Observe that the intervals have depth O(k), i.e., each point p on γ0 is contained in
at most O(k) intervals: p is contained in an interval iff p lies above the corresponding
line, but p is above only O(k) lines since each cell intersects O(k) lines by construction.
As is well known (see, e.g., [39]), the chromatic number of an interval graph is equal
to the depth (also equal to the clique number), and an optimal coloring can be found
in O(n log n) time by a standard greedy strategy (sequentially coloring the intervals
in sorted order of left endpoints). This gives an O(k)-coloring, and thus a cover by
O(k) concave chains, in O(n log n) expected time.

We have thus proved the following theorem.
Theorem 2.2. For n halfplanes in R

2, LP with at most k violations can be solved
in O((n + k) log n) expected time.

Remarks. The construction [54] used in Lemma 3.1 is fairly involved. A much
simpler alternative is to choose a random sample of n

2k bounding planes and take
the vertical decomposition of their lower envelope. This construction behaves the
same “on average” but is only guaranteed to cover each vertex of the (≤ k)-level with
constant probability (for example, as observed in [1]). The resulting algorithm would
be Monte Carlo.

Degenerate cases can be handled by direct modifications of the algorithm or by
general symbolic perturbation techniques [31, 32]. With the latter choice, we need to
perturb the lines in L− upward and the lines in L+ downward (as also suggested by
Matoušek [47]), so that a vertex v (lying on possibly more than two lines) violates
at most k constraints iff some point in the neighborhood of v violates at most k
constraints after the perturbation.

The algorithm can be modified to work if the constraints H are not half-
planes but convex sets of constant description complexity: For each convex set,
we form a concave/convex x-monotone curve by taking its upper/lower bound-
ary and attaching near-vertical downward/upward rays at the two endpoints. We
let L− and L+ instead be the sets of these concave and convex curves, respec-
tively. Step 1 still works using the first option, since many of the k-level algo-
rithms [2, 9, 15, 41] generalize to curves, with α(n) replaced by a similar slow-
growing function β(n) in the time bound. Step 2 generalizes, since concave/convex
chains formed by concave/convex curves are still concave/convex. Step 3 requires a
change, though. Given that k−(p), k+(p) ≤ k, the number of constraints violated
by p is not necessarily k−(p) + k+(p) but is rather k−(p) + k+(p) − k0(p), where
k0(p) = number of convex sets whose x-projection does not contain p. Fortunately,
computing the k0(p)’s is also a 1-d interval counting problem and can be solved by
sorting. The total expected running time is O((nβ(n) + k2) log n).

3. A 3-d algorithm to find all local minima of I0(H), . . . , Ik(H). Let
Π− and Π+ be the sets of planes bounding the given lower and upper halfspaces,
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respectively. Our 3-d algorithm proceeds similarly:
1. Form O(k) concave surfaces whose union covers the (≤ k)-level of the lower

halfspaces; the polyhedral surfaces are made from planes of Π−, are nonover-
lapping (i.e., they intersect only at zero-dimensional (0-d) or 1-d features),
and have O(n) total size. Similarly, form O(k) convex surfaces for the planes
of Π+.

2. For each subset of at most three surfaces, find the minimum point in the
intersection of the at most three convex polytopes bounded by these surfaces.
Let S be the O(k3) minima obtained.

3. For each p ∈ S, determine

k−(p) = min{k + 1,number of planes of Π− strictly below p}, and

k+(p) = min{k + 1,number of planes of Π+ strictly above p}.

If k−(p) + k+(p) ≤ k, then report p as a local minimum of Ik−(p)+k+(p)(H).
Correctness follows since S contains all local minima of I0(H), . . . , Ik(H): each

such local minimum p lies on the (≤ k)-level of the lower halfspaces and of the upper
halfspaces; in the neighborhood of p, its three defining halfspaces are part of up to
three concave/convex surfaces; p is the minimum point in the intersection of the
corresponding polytopes.

We now explain how to implement each step.
Step 2: Computing S. If the polytopes are stored in hierarchical represen-

tations [29], which require O(n) preprocessing time, then the minimum in the in-
tersection of three (or fewer) convex polytopes can be found by an O(log3 n) algo-
rithm [33]. If the polytopes are instead stored in drum representations [55], which
require O(n log n) preprocessing time [13], then the minimum can be found by an
O(log2 n) algorithm [13]. With the latter option, this step takes O(k3 log2 n) time.

Step 1: Constructing the concave/convex surfaces—existence proof. By
symmetry, it suffices to consider the computation of the concave surfaces. Following
the second option in section 2, we reduce the problem to coloring the planes of Π−

so that two planes of the same color are compatible in the (≤ k)-level of the lower
halfspaces (i.e., no point in the region is above both planes). We use the following
3-d version of Lemma 2.1.

Lemma 3.1. Given n lower halfspaces in R
3, the (≤ k)-level can be covered by

O(n/k) cells, each intersecting O(k) bounding planes. More specifically, the cells are
taken from the vertical decomposition of the region underneath a polyhedral concave
surface γ0 of size O(n/k). The cells, the list of planes intersecting each cell, and γ0

can all be constructed in O(n log n) expected time.
Proof. As in the proof of Lemma 2.1, we apply Matoušek’s shallow cutting lemma

and Ramos’s algorithm, which work in three dimensions. We modify the construction
in the same way, this time using a randomized data structure for 3-d halfspace range
reporting [17].

To solve the coloring problem, we invoke Lemma 3.1 to get a concave surface γ0

lying above the (≤ k)-level. Each plane of Π− defines a set on γ0 formed by intersecting
its upper halfspace with γ0. Two planes are compatible in the region underneath γ0

iff the corresponding sets are disjoint.
As before, the sets have depth O(k): a point p on γ lies above at most O(k) planes

since each cell intersects O(k) planes by construction. We would like to infer that the
intersection graph of planar convex sets of depth O(k) is O(k)-colorable; however,
this is not necessarily true in general. Fortunately, our sets are pseudodisks, i.e., the
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boundaries of each pair intersect at most twice: the intersection of two planes is a
line, and a line intersects γ0 at most twice. By a lemma of Sharir [58] (which extends
a lemma of Pach), a 2-d arrangement of n pseudodisks has O(nk) intersections if
their depth is O(k). It follows that there exists a pseudodisk that intersects at most
O(k) other pseudodisks. Remove this pseudodisk and repeat. As a result, we obtain
an acyclic orientation of the intersection graph so that the maximum in-degree δ is
bounded by O(k) (i.e., the degeneracy or inductiveness of the graph is O(k)). As
is well known (see, e.g., [39]), the chromatic number is bounded by δ + 1, and a
corresponding coloring can be found by a standard greedy strategy. We conclude that
an O(k)-coloring of the pseudodisks, and hence a cover by O(k) concave surfaces,
exists.

Step 1: Constructing the concave surfaces—algorithmic proof. Further
ideas are needed to turn the above proof into an efficient algorithm, as we cannot afford
to build the intersection graph of the pseudodisks and color sequentially. Here, we
return to Matoušek’s shallow cutting lemma (Lemma 3.1) and avoid Sharir’s lemma
(both were incidentally proven by random sampling arguments). Recall that we have
a|Π−|/k cells, each intersected by at most bk planes, for some constants a and b. Call
a plane heavy if it intersects more than 2ab cells and light otherwise (this is inspired
by a similar definition of “bad” and “good” in [4]). At most half of the planes of Π−

are heavy.

First, recursively color the heavy planes from the palette {1, . . . , 4ab2k} so that
planes of the same color are compatible in the (≤ k)-level of the corresponding heavy
halfspaces (and thus in the (≤ k)-level of all lower halfspaces). Stop if the number of
planes drops below 4ab2k. For each cell, maintain a dictionary of the colors used so
far among the planes intersecting the cell.

Now, take each light plane π (in any order). Randomly select a color from
{1, . . . , 4ab2k}. Check that the color is not in the dictionary of any of the at most 2ab
cells π intersects. If so, give π that color and update the dictionaries; otherwise, retry
with another random selection. Since each of the at most 2ab dictionaries contains at
most bk colors, the probability of success in each trial is at least 1/2, so this process
takes expected O(1) dictionary operations for each π. If the plane π and a previous
plane are incompatible in the region underneath γ0, then some cell is intersected by
both planes, and their colors are different by construction. So, after all light planes
are processed, we have a correct (4ab2k)-coloring.

The expected running time satisfies the recurrence T (n) = T (n/2) + O(n log n),
which solves to O(n log n).

Step 3: Computing k−(p) and k+(p). By symmetry, it suffices to consider
the computation of the k−(p) values. The geometry of concave/convex surfaces does
not seem to help here, unlike in the 2-d algorithm, and we need to resort to more
complicated techniques.

We wish to determine the number of planes strictly below each of O(k3) points. In
dual space, this is the halfspace range counting problem. Since an upper limit k + 1
is placed on the counts, one solution is to use known output-sensitive results, as
given in [18, Theorem 6], to answer each halfspace range counting query in O((1 +
(nk2/m)1/3)nε) time after preprocessing in O(mnε) time. By setting the tradeoff
parameter m = max{k11/4n1/4, n}, the total cost of O(k3) queries becomes O(n1+ε +
k11/4n1/4+ε).

Alternatively, a more direct solution is to use Lemma 3.1. To compute k−(p),
locate the cell Δ that contains p (by 2-d point location), extract the list of the O(k)
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planes intersecting Δ, and count the number of planes in this list strictly below
p. Recalling that q halfspace range counting queries on a set of size O(k) in three
dimensions take O(k log k+ (kq)3/4 logc k) time [3], we obtain the following bound on
the total cost, where the qi’s sum to O(k3):

O

⎛
⎝n log n +

O(n/k)∑
i=1

(kqi)
3/4 logc k

⎞
⎠ = O(n log n + (n/k)1/4(k · k3)3/4 logc k)

= O(n log n + k11/4n1/4 logc k).

Since range searching structures are used as a subroutine, the result is admittedly
theoretical, but because the queries are off-line, (hierarchical) cuttings instead of
partition trees are sufficient [3, 19] and the constant c is small. (Without sophisticated
data structures, one can still get a near-O(n + k4) time bound.)

We have thus proved the following theorem.
Theorem 3.2. For n halfspaces in R

3, LP with at most k violations can be solved
in O(n log n + k11/4n1/4 logO(1) n) expected time.

4. On the feasible case. We now solve the feasible LP problem with violations
in R

d by reducing it to general LP with violations in R
d−1.

Assume the objective is to minimize the first coordinate x. Let ξ∗ be the min-
imum x-coordinate in Ik(H). First, find some v0 ∈ I0(H) by LP. Since Ik(H) is
connected in the feasible case, given ξ smaller than the x-coordinate of v0, we can
decide whether ξ∗ ≤ ξ by testing whether Ik(H) intersects the vertical hyperplane
x = ξ or, equivalently, whether Ik(Hξ) �= ∅, where Hξ is the set of (d−1)-d halfspaces
formed by intersecting the halfspaces of H with x = ξ.

4.1. 3-d feasible LP with violations. In the d = 3 case, the decision problem
can therefore be solved by the 2-d algorithm of section 2 in O((n + k2) log n) time.
To solve the optimization problem, we can apply parametric search [48]. (We assume
that the reader is familiar with this technique; if not, see [5] for more information.)
Unfortunately, step 1 of our algorithm, the construction of the concave/convex chains,
appears difficult to parallelize efficiently.

To circumvent this difficulty, we preprocess before parametric searching by con-
structing the 3-d concave/convex surface cover using step 1 of the algorithm of sec-
tion 3, in O(n log n) expected time. If the bounding polytopes are stored in drum
representations [55] via persistent search trees, as suggested in [13], we can retrieve
a binary-searchable copy of the intersection of each surface with any vertical plane
x = ξ in logarithmic time. These 2-d slices form concave/convex chains covering
the (≤ k)-level of the lower/upper halfplanes of Hξ. Thus, for any given ξ, we can
decide whether Ik(Hξ) = ∅ in O(k2 log n) time using steps 2 and 3 of the 2-d al-
gorithm. These two steps are parallelizable in O(log n) time with O(k2) processors,
by using the AKS sorting network for the interval counting problem in step 3 (the
linear scan does not need to be parallelized because no more comparisons with ξ are
involved after sorting). Thus, ξ∗ can be found by Megiddo’s parametric search [48],
with Cole’s improvement [25], in O(k2 log2 n) time. Including the preprocessing, the
entire algorithm takes O(n log n + k2 log2 n) expected time.

4.2. 4-d feasible LP with violations. Parametric search is more problematic
in the d = 4 case. Not only is the decision algorithm (the 3-d algorithm of section 3)
difficult to parallelize (because of step 1), but an efficient global preprocessing in four
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dimensions is not available to remedy the situation. Fortunately, the author’s ran-
domized optimization technique [14] is applicable (which uses the decision algorithm
only as a black box) and yields the best result in this case.

Lemma 4.1. If LP with at most k violations in R
d−1 can be solved in O(T (n, k))

expected time, then feasible LP with at most k violations in R
d can be solved in

O(T (n, k)) expected time, provided that T (n, k)/nε is monotone increasing in n.

The d = 2 case of the above lemma is shown in [14, Theorem 5.2]. Since the
proof in higher dimensions is essentially identical (using known constant-size cuttings
in higher dimensions), we will not repeat the proof here.

By Lemma 4.1 and the algorithm of section 3, we can thus solve the 4-d feasible
case in O(n log n + k11/4n1/4 logc n) expected time.

Theorem 4.2. For n halfspaces in R
3 with a nonempty common intersection,

LP with at most k violations can be solved in O(n log n + k2 log2 n) expected time.

For n halfspaces in R
4 with a nonempty common intersection, LP with at most k

violations can be solved in O(n log n + k11/4n1/4 logO(1) n) expected time.

Remark. A similar approach can be used to find the smallest circle enclosing all
but k points, given n points {(ai, bi)}i in the plane. This problem is a variant of
3-d feasible LP with violations: the objective is now to minimize a convex function
x2 + y2 + z, but the constraints z ≥ −2aix − 2biy + a2

i + b2i are still linear. The
same technique for Lemma 4.1 reduces the problem to 2-d convex programming with
violations (deciding whether there exists a point lying in all but k planar convex sets),
which can be solved in O((nβ(n)+k) log n) expected time by the remark in section 2.
The upper bound T (n) = O(nβ(n) log n + knε) can then be used.

(Alternatively, it might be possible to solve this problem by parametric search,
but certain details are unclear, so we will not comment further.)

5. Conclusions. We have presented a new, simple approach to solving LPs
with violations in two and three dimensions. The running time of our 2-d algorithm
(O((n + k2) log n)) is almost optimal for all values of k � n/2 under a well-known
conjecture; an open question is whether the time bound can be further improved to
O(n log k+ k2). Our algorithm uses O(n+ k2) space; another question is whether the
storage requirement can be reduced to O(n).

For the general 3-d problem, there is still a small gap between our time bound and
the conjectured Ω(n + k3) lower bound. For the general 4-d problem, our approach
does not seem to work as well due to various reasons (for instance, we can no longer
afford to construct concave/convex surfaces explicitly, since convex polytopes defined
by n hyperplanes in R

d may have Ω(n�d/2�) size). Determining the complexity of LP
with violations in dimension four and beyond thus remains a challenging problem.

Appendix: Finding all local minima of Ik(H) in the 2-d feasible case.
In the 2-d feasible case, Katoh and Tokuyama [44] recently showed that all O(k)
local y-maxima of the k-level of n lower halfplanes can be enumerated in O(n log n+

(nk)2/3 logO(1) n) time. In this appendix, we note that the time bound can be reduced

to O((n + (nk)3/5) logO(1) n) using randomization. This result is independent of the
rest of the paper and is of mainly theoretical interest, because in practice the k-level
in two dimensions tends to have near-linear size, in which case the problem can be
solved directly in near-linear time.

First, it is no loss of generality in the feasible case to assume that the objective
is to maximize the y-coordinate and the halfplanes are all lower halfplanes: the first
condition can be met by rotation; for the second condition, we can find a point v0 ∈
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I0(H) by LP, make v0 the origin by translation, and then transform each halfplane
ax + by ≤ 1 to the lower halfplane y′ ≤ ax′ − b by an affine map (x′ = −x/y,
y′ = −1/y).

Our result is obtained by the following observation (which was also used in an
algorithm in [15]): although the current best bound on size of the k-level is O(nk1/3)
by Dey [27], a random level nearby has lower complexity. Let j be a parameter to
be set later. Pick a random integer j′ ∈ [0, j] and construct the (k − j′)-level L−

and the (k + j′)-level L+. Since the (k − j)-level, . . . , (k + j)-level have combined
size O(nk1/3j2/3) [27], L− and L+ have expected size O(n(k/j)1/3) and can therefore

be constructed in O(n(k/j)1/3 logO(1) n) expected time by known output-sensitive
algorithms [15].

Among the n bounding lines, track the subset formed by the (k − j′ + 1)st, . . . ,
(k + j′ + 1)st lowest lines at a vertical sweep line as the sweep line moves from left
to right. Changes to the subset occur only at vertices of L− and L+, and thus this
process takes O(n(k/j)1/3) time.

Now, divide the plane into m = O(nk1/3/j4/3) vertical slabs, each containing at
most j vertices of L− and L+. Take each slab σ. A line intersecting the k-level within
σ must intersect L− or L+, or be among the (k − j′ + 1)st, . . . , (k + j′ + 1)st lowest
lines at the left/right wall of σ. Therefore, we can form a list Lσ of O(j) size that
contains all lines involved in the k-level within σ. Within σ, the k-level of all lower
halfplanes coincides with a level of the O(j) lower halfplanes defined by Lσ. We can
apply Katoh and Tokuyama’s algorithm to find all kσ local y-maxima within σ in
O(j log j + (jkσ)2/3 logO(1) j) time, because their algorithm is output-sensitive [44].
The total time over all slabs is given below, up to polylogarithmic factors, where the
kσ’s sum to O(k):

O

(
mj +

∑
σ

(jkσ)2/3

)
= O(mj + m1/3j2/3k2/3)

= O(n(k/j)1/3 + n1/3k7/9j2/9).

Setting j = min{n6/5/k4/5, k} yields an expected time bound of O((n +

(nk)3/5) logO(1) n).
Remark. If Dey’s bound on the combined size of the (k−j)-level, . . . , (k+j)-level

can be improved to O(nkαj1−α) for some constant α > 0, then the time bound would

work out to be O((n + (nk3α)1/(1+2α)) logO(1) n).
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[46] J. Matoušek, On enclosing k points by a circle, Inform. Process. Lett., 53 (1995), pp. 217–221.
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DYNAMIC LCA QUERIES ON TREES∗
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Abstract. We show how to maintain a data structure on trees which allows for the following
operations, all in worst-case constant time:

1. insertion of leaves and internal nodes,
2. deletion of leaves,
3. deletion of internal nodes with only one child,
4. determining the least common ancestor of any two nodes.

We also generalize the Dietz–Sleator “cup-filling” scheduling methodology, which may be of
independent interest.
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1. Introduction. Finding least common ancestors (LCAs) in trees is a funda-
mental problem that arises in a number of applications. For example, it arises in
computing maximum weight matchings in graphs [Ga90], in computing longest com-
mon extensions of strings, finding maximal palindromes in strings, matching patterns
with k mismatches, and finding k-mismatch tandem repeats [Gus97]. The tree in-
volved in all but the first of these applications is a suffix tree.

The primary use of LCA computations in a suffix tree is to determine the longest
common prefix of two substrings in constant time. This operation is used heavily in
the above applications. The suffix tree for a given string can be constructed in linear
time [M76]. Each node in this tree corresponds to a substring of the given string. The
longest common prefix of any two substrings is the string corresponding to the LCA
of the corresponding nodes.

The first constant time LCA computation algorithm was developed by Harel and
Tarjan [HT84]. This algorithm preprocesses a tree in linear time and subsequently
answers LCA queries in constant time. Subsequently, Schieber and Vishkin [SV88],
Berkman and Vishkin [BV94], and Bender and Farach-Colton [BF00], gave simpler
algorithms with the same performance.

In this paper, we consider the dynamic version of the problem, i.e., maintaining
a data structure which supports the following tree operations: insertion of leaves and
internal nodes, deletion of internal nodes with only one child, and LCA queries. We
assume that when a new node is inserted, a pointer to the insertion site in the tree is
also given. The motivation is to maintain a suffix tree under insertion of new strings,
deletion of strings, and longest common prefix queries. One application of this problem
arises in maintaining a databaseof strings in order to answer queries of the following
kind: given a pattern string, find all its occurrences with up to k mismatches in the
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strings in the database. Efficient algorithms for finding all occurrences of a pattern
in a text with up to k mismatches [LV86, CH97] require maintaining the suffix tree of
the text and processing it for LCA queries. Extending these algorithms to maintain a
database of strings supporting k-mismatch queries would require maintaining LCAs
dynamically.1 Additions and deletions of new strings to the database will change the
suffix tree as well as the LCA data structure. A new string can be inserted into a
suffix tree in time proportional to its length. The number of nodes inserted in the
process is proportional to the length of the string inserted. These nodes could be
leaves or internal nodes. Similarly, deletion of a string will cause the removal of some
nodes. Our goal is to minimize the work needed to maintain the data structure for
each node inserted or deleted.

Harel and Tarjan [HT84] gave an algorithm to maintain a forest under linking and
finding LCAs. This is useful in computing maximum weight matchings in graphs. The
link operation generalizes insertions of new leaves. Harel and Tarjan’s link operation
allowed only linking of whole trees, not linking of a tree to a subtree of another tree.
The amortized time taken by their link operation was α(m,n), where n is the size of
the tree and m is the number of operations. LCA queries were answered in constant
time. Gabow [Ga90] gave an algorithm which performs additions and deletions of
leaves in constant amortized time and also supports linking of trees to subtrees in
α(m,n) amortized time. The worst-case time for update operations in both these
algorithms was Ω(n). The worst-case time for an LCA query was O(1). Both the
above algorithms were motivated by the maximum weighted matching problem in
graphs.

Since our focus is different, namely suffix trees, we consider insertions and dele-
tions of leaves and internal nodes, but not the link operation. Note that neither
of the above algorithms considered insertions of internal nodes. Westbrook [We92]
built upon Gabow’s approach above to give an O(1) amortized time algorithm which
could perform insertions and deletions of leaves as well as internal nodes. Our focus,
however, is on worst-case insertion time rather than amortized time.

We give an algorithm which performs insertions and deletions of leaves and in-
ternal nodes while supporting LCA queries, all in constant worst-case time. This
algorithm is obtained in two stages. First, we give an algorithm which takes O(log3 n)
worst-case time for insertions and deletions and O(1) worst-case time for queries. This
is the core of our algorithm. Subsequently, we show how to improve the worst-case
time for insertions and deletions to O(1) by using a standard multilevel scheme. The
space taken by our algorithm is O(n).

Our basic O(log3 n) worst-case time algorithm broadly follows Gabow’s and Schie-
ber and Vishkin’s algorithm. The overall approach is to decompose the tree into cen-
troid paths and assign a code to each node. From the codes for two given nodes, the
centroid path at which their paths from the root separate can be easily determined in
constant time. And given two vertices on the same centroid path, the one closer to the
root can be determined by a simple numbering. Together, the codes and numberings
yield the LCA. The basic problem we have to solve is to maintain the centroid paths
and codes over insertions and deletions. Gabow’s algorithm does this in bursts, reor-
ganizing whole subtrees when they grow too large. This makes the worst-case time
large. However, the amortized time is O(log n) because each reorganization is coupled

1However, just maintaining LCAs alone is not sufficient to solve the dynamic k mismatches
problem with query time smaller than the obvious static algorithm. Therefore, we do not obtain any
results on the dynamic k mismatches problem here.
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with a doubling in size; this time is reduced to O(1) using a multilevel scheme. Note,
also, that Gabow does not consider insertions of internal nodes. Thus, two main issues
need to be tackled to get constant worst-case time.

The first issue is that of maintaining numbers on centroid paths so that the LCA
of two given nodes on the same centroid path can be found in constant time. For
this purpose, we use the Dietz–Sleator [DS87] data structure (or the Tsakalidis [Ts84]
data structure) which maintains order in a list under insertions and deletions.2

The second and the more serious issue by far is that of reorganizing trees to
maintain centroid paths and codes in constant worst-case time. Since we seek constant
worst-case time, there is little option but to delay this reorganization. We amortize
this reorganization over future insertions and deletions, i.e., spread the O(1) amortized
work of Gabow’s algorithm over future insertions/deletions so each insertion and
deletion does only a constant amount of work. This approach is not new and has
been used by Dietz and Sleator [DS87] and Willard [W82] among others. However,
the problems caused by this approach are nontrivial and specific to this setting.

The problem with this approach is that any change at a node v causes the codes
at all the nodes in the subtree rooted at v to change. Since updates of these codes
are spread over future insertions and deletions, queries at any given instant will find
a mixture of updated and not yet updated codes. This could potentially give wrong
answers. We avoid this with a two-phase update of a two-copy code.

What further complicates the situation is that reorganizations could be taking
place at many subtrees simultaneously, one nested inside the other. This implies that
the variation amongst nodes in the degree to which their codes have been updated
at any given instant could be arbitrarily large. Nonetheless, the two-phase update
ensures correct answers to the queries.

An additional complication is that the various nested reorganizations could pro-
ceed at very different speeds, depending upon the distribution of the inserted nodes.
In this respect, the situation is analogous to that encountered in asynchronous dis-
tributed computing, where interacting processes proceeding at arbitrarily different
speeds need to ensure they collectively make progress on their shared computation.

Our main contribution is to organize the various nested processes so that they
complete in time and also maintain codes which give correct answers to queries. This is
obtained by a nontrivial scheduling procedure coupled with an analysis which bounds
the total sizes of nested processes.

To understand our scheduling procedure it is helpful to recall the Dietz–Sleator
cup-filling methodology. It concerns a collection of tasks in which priorities increase in
an unknown but bounded way (i.e., adversarially set), each time unit; the scheduling is
very simple: simply select the current highest priority task and run it to completion.
They show this algorithm has a good performance which they tightly bound. We
are concerned with a similar scenario, but in which priorities are only approximately
known; naturally, we schedule the apparently highest priority task. We also allow
the tasks to be somewhat divisible so that they need not be run to completion once
started. Details appear in section 6.8.

2. Overview. We assume that the tree is a binary tree, without loss of general-
ity.

2We can also use the data structure given here but supporting only leaf insertion and deletion.
This results in the centroid paths being modified only at their endpoints, and a trivial numbering
scheme suffices to maintain order. This approach was suggested by Farach-Colton [F99].
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First, we consider only insertions. Deletions are handled easily by just ignoring
them until they form a significant fraction of the number of nodes, at which point the
entire data structure is rebuilt. The original data structure is also maintained until
this rebuilding is complete in order to answer queries. Details on handling deletions
are deferred to section 8.

We also assume that the insertions at most double the tree size. This assumption
is also handled easily by rebuilding when the size of the tree increases by some suitable
constant factor, and again is addressed in section 8.

The paper is organized as follows. We give some definitions in section 3. Then we
describe the algorithm for the static case in section 4 and Gabow’s dynamic algorithm
in section 5. In section 6, we describe our O(log3 n) worst-case time algorithm. Sec-
tions 7 and 8 describe the improvement to O(1) time and the handling of deletions,
respectively.

3. Definitions. We partition the tree T into paths, called centroid paths, as
follows. Let Ty denote the subtree of T rooted at node y. Suppose 2i ≤ |Ty| < 2i+1.
Then, y is called a tail node if |Tz| < 2i for all children z of y, if any. Such vertices y
will lie in distinct centroid paths and will be the tails, i.e., bottommost vertices, in
their respective centroid paths. The centroid path containing y connects y to its
farthest ancestor x such that 2i ≤ |Tx| < 2i+1. x is called the head of this path. It is
easy to see that centroid paths defined as above are disjoint.

A centroid path π is said to be an ancestor of a node x if π contains an ancestor3

of x. A centroid path π is said to be an ancestor of another path π′ if π is an ancestor
of the head of π′. A centroid path π is a child of another path π′ if the head of π is
a child of a node on π′.

The least common centroid path (LCCP) of two nodes is the centroid path con-
taining their LCA. An off-path node with respect to a particular centroid path π is
a node not on π whose parent is on π. The branching pair (BP) of two nodes x, y is
the pair of nodes x′, y′ on the LCCP which are the least common ancestors of x, y,
respectively.

4. Outline of the static algorithm. The nodes of the tree are partitioned into
centroid paths. The nodes are then numbered so that parents have smaller numbers
than their children. In fact, the numbering need satisfy only the following property:
if x and y are distinct vertices on the same centroid path and x is a strict ancestor
of y then number(x) < number(y).

Each vertex is given a code of length O(log n) with the following property: the
LCCP and BP of x and y can be determined easily from the first bit in which the
codes for x and y differ. Let code(x) denote the code for node x.

The LCA of two nodes x, y is now easy to determine. The LCCP and BP of x, y
are found in constant time using a RAM operation for finding the leftmost bit which
differs in code(x) and code(y).4 Note that the nodes in the BP need not be distinct
(see Figure 1). The node in the BP with the smaller number is the desired LCA.

4.1. The codes. We still need to describe the assignment of codes to nodes.
Note that if the tree was a complete binary tree, all centroid paths would be just
single nodes. Furthermore, code(x) could be the canonical code obtained by labelling
the left-going edges 0 and right-going edges 1, and reading off the path labels from
the root to x.

3All references to ancestors in this paper will be in the nonstrict sense, unless otherwise stated.
4Or perhaps, using table look-up on a precomputed set of answers.
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Fig. 1. LCCP and BP.

For a general tree, code(x) is a concatenation of smaller bit strings, one for each
centroid path containing an ancestor of x.

First, we assign to each centroid path π a bit string called separator(π). These
strings have the following property. For each centroid path π, the separator strings
assigned to children centroid paths of π form a prefix-free set (i.e., no string is a prefix

of another string). The length of separator(π) is O(log |Tx|
|Ty| ), where y is the head of π

and x is the head of the centroid path containing the parent of y.

code(x) is a concatenation of the separator strings assigned to ancestor centroid
paths of x (including the path containing x) in order of increasing distance from the
root. It is easy to show that the length of the code is O(log n) (take any sequence
of centroid paths encountered on a path from the root to a leaf and let x1 . . . xk be

the heads of these centroid paths; then the sum
∑k

i=2 log
|Txi−1

|
|Txi

| equals O(log |Tx1
|) =

O(log n)).

It will be convenient to have separator(π) be of length a(�log |Tx|� − �log |Ty|�)
for a suitable constant integer a ≥ 1, if need be by padding separator(π) with zeros
at the right end. This ensures that the length and position of separator(π) in a code
is fully determined by |Tx| and |Ty|.

Each separator string in code(x) is tagged with the name of the corresponding
centroid path, i.e., given the index of a bit in code(x), we can recover the name of the
path within whose separator this bit lies, in O(1) time. The functions number(x),
separator(π), code(x), and the above tagging can all be computed in O(n) time (we
comment briefly on this below).

The LCCP of nodes x and y is determined from code(x) and code(y) in O(1) time
as follows. We find the leftmost bit in which code(x) and code(y) differ; subsequently,
using the above tagging, we find the name of the two paths whose separators contain
this mismatch bit in code(x) and code(y), respectively. The parents of the heads of
these two paths will give the BP (see Figure 1) and the path containing this BP is
the LCCP. To see this, note that the separator strings in both codes corresponding
to the LCCP and centroid paths above the LCCP are identical. In addition, due to
the above prefix-free property, the separator strings corresponding to the two children
paths of the LCCP which are ancestors of x and y, respectively, necessarily differ in
some bit.

A special case arises when one or both of x, y are part of the LCCP. If both are
part of the LCCP, then the one with smaller number() is the LCA. Otherwise, if
x is part of the LCCP but y is not, then code(x) is a prefix of code(y). The path
containing x is the LCCP; BP is easy to determine as well.

Computation. We briefly touch upon how number(x), separator(π), and code(x)
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can be computed in O(n) time and, further, how each separator string in code(x) can
be tagged with the name of the corresponding path.

Computing number(x) is clearly easy: in any centroid path the numbers only
need to be in increasing order of distance from the root.

Computing separator(π) involves assigning prefix-free codes. We outline how
this is done for child paths of a centroid path π with head x, given that the separator
for π has already been determined. Let π1 . . . πk denote the child paths of π and
x1 . . . xk their respective heads. We construct a weight-balanced binary search tree
on the weights |Tx1 | . . . |Txk

|. This tree can be constructed in O(k) time [Meh77] and

has the property that the height of the leaf corresponding to xi is O(log
∑k

j=1 |Txj
|

|Txi
| ) =

O(log |Tx|
|Txi

| ). Separator codes for π1 . . . πk are obtained by encoding left edges in the

weight-balanced tree by 0, encoding right edges by 1, and reading off the labels on the
path from the root to the appropriate leaves in this tree. Clearly, codes thus obtained
are prefix-free. The whole procedure takes O(k) time, which translates to O(n) time
over all of T .

code(x) is computed in O(1) time from code(y), where y is the parent of x, as
follows. If x and y are in the same centroid path, then the codes are the same.
Otherwise, x is in a child path π of the path containing y, and code(x) is obtained
by concatenating code(y) and separator(π). This is done in O(1) time using a RAM
operation.

There is one issue which needs clarification. Recall the tagging mentioned above.
One method to find the name of the centroid path whose separator string contains a
particular mismatch bit is to keep an array of size O(log n) for each vertex x; the array
for vertex x stores the relevant path name for each potential mismatch bit. Clearly,
given the leftmost bit in which code(x) differs from code(y), indexing into the above
arrays (one each for x and y) using the location of the mismatch bit will give us the
names of the required separator paths in O(1) time. However, setting this up would
require O(n log n) space and, therefore, O(n log n) time, over all nodes x. Both terms
can be reduced to O(n) in one of two ways.

The first involves using a multilevel data structure, similar to the one used by
Gabow [Ga90] and the one we use to get O(1) query time for the dynamic case; this
is elaborated upon further in section 7. In this paper, we will assume the framework
of this solution.

In the second solution, this tagging is avoided altogether. Instead, centroid paths
are named by the code given to their respective heads and the name of the LCCP of
two given nodes x and y is easily recovered in O(1) time, given their codes. Indeed,
only the following operation needs to be performed to determine the name of the
LCCP: given the mismatch bit in code(x), return the prefix of code(x) comprising
separators of all those centroid paths which are ancestors of that centroid path whose
separator contains the mismatch bit (and likewise for code(y)). This is easily done
using look-up tables of O(n) size.

5. The dynamic case: Gabow’s amortized bound. The main problem
in the dynamic case is to maintain the centroid paths along with the quantities
number(x), separator(π), and code(x).

Gabow [Ga90] gave an algorithm for the case when only leaf insertions were
allowed. Maintenance of number(x) is trivial in this case: new leaves are assigned
successively larger numbers. However, if insertions of internal nodes is allowed, then
it is not clear how to maintain number(x).
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Gabow’s approach to maintaining centroid paths is as follows. As insertions are
made, the centroid paths in the tree will change, in a manner yet to be described.
Gabow updates the centroid paths not incrementally but in bursts. Whenever the
subtree rooted at the head of a centroid path doubles5 in size, the entire subtree is
reorganized, i.e., reprocessed to construct new centroid paths, separators, and codes.

Gabow maintains separators and codes as follows. Instead of prefix-free separa-
tors, Gabow maintains a family of nested intervals. The interval for a centroid path is
a subinterval of the interval for any ancestor centroid path. In addition, the intervals
for the centroid paths which are children of a path π are all disjoint. A constrained
version of this approach is equivalent to maintaining separators, as we shall describe
shortly in section 6.2.

When a new off-path node y with respect to a particular centroid path π is
inserted, a new interval within the interval for π and to the right of all other intervals
for children of π is assigned to y. Gabow shows that there is always sufficient space
for this new interval, given that a subtree is reprocessed whenever its size doubles, at
which point intervals nested within another are packed together. We follow a similar
approach.

The time taken by Gabow’s algorithm on any single insertion is proportional to
the size of the subtree which is reorganized. Thus the worst-case time for an insertion
could be Ω(n). However, since the reorganization of a subtree is coupled with the
doubling in its size, the amortized time for an insertion is O(log n). Gabow converts
this to O(1) amortized time by using a multilevel approach.

6. Our O(log3 n) time worst-case algorithm. As described above, there are
two main hurdles to improving Gabow’s scheme to run in constant worst-case time,
or even poly-logarithmic worst-case time. The first is the maintenance of number(x)
when internal nodes are inserted. The second is the reorganization of subtrees.

The first problem is easy to overcome using an algorithm for maintaining order in
a list under insertions and deletions in O(1) worst-case time, due to Dietz and Sleator
[DS87]. We maintain each centroid path as an ordered list using this algorithm,
allowing us to answer queries about which node in a particular BP is closer to the
root in O(1) worst-case time.

The second problem is more serious. Our basic approach is to distribute the reor-
ganization of a subtree caused by a particular insertion over subsequent insertions. In
other words, the various operations involved in reorganizing a subtree are performed,
a poly-logarithmic number at a time, over future insertions.6 This means that queries
which come while a subtree is being reorganized will see a partially reorganized sub-
tree and therefore risk returning wrong answers. We describe our algorithm for the
reorganization in further detail next.

6.1. Weighted nodes. Our O(1) time algorithm for the LCA problem uses as
a subroutine an O(log3 n) algorithm for a slightly generalized problem. We indicate
the reasons behind the need for a generalization next.

Let T be the tree on which the LCA queries are being performed. Our approach
is to select Θ(n/ log3 n) nodes of T , which partition T into subtrees of size O(log3 n),
called small subtrees. The selected nodes are formed into an induced tree T1, to which
we apply the O(log3 n) time algorithm. It will be the case that for each Θ(log3 n)

5When it crosses a power of two boundary, actually.
6This general approach has also been followed by Dietz and Sleator [DS87] and by Willard [W82]

to convert algorithms with good amortized performance to worst-case performance.
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Fig. 2. Changing centroid paths.

insertions into one of these small subtrees just O(1) nodes are added to T1. To
achieve the O(1) worst-case time bound, we need to perform the O(log3 n) operations
stemming from an insertion to T1 over the corresponding O(log3 n) insertions to the
relevant small subtree of T , at a rate of O(1) operations per insertion. To control this
appropriately, we weight the nodes of T1 as follows.
Weight constraints:

(i) All weights are integer multiples of 1/ log3 n.7

(ii) Node weights are in the range [0, 1].
(iii) If a node has weight less than 1, its parent has weight 1.
(iv) A weight 1 node has at most one child of weight less than 1.
Weight increases occur in integer multiples of 1/ log3 n; the largest possible in-

crease is by 1/ log2 n, as we will see in Remark 6.23. We will show that we can
maintain T1 with O(log3 n) operations per unit increase in weight. Later we will see
that each insertion to T results in at most a 4/ log3 n increase in weight, and we will
show that T1 can be maintained with O(1) work per insertion to T . For intuition,
the reader may find it helpful to think of nodes being inserted with weight 1 with the
caveat that this is not exactly the scenario we are describing.

When a node is inserted in T1 it will have weight zero initially. As the relevant
inservations to T occur, its weight is increased. Until its weight reaches 1, no further
nodes can be inserted in its neighborhood in T1, so as to meet constraints (iii) and (iv)
above.

6.2. Updating centroid paths. When a node’s weight is increased (by up to
1/ log2 n), each of its O(log n) ancestor centroid paths could shift down by one or two
nodes as shown in Figure 2, Case 1. New centroid paths of one or two nodes could
begin as well, as shown in Figure 2, Case 2. (If all node weights are equal to 1, the
shifts are only by one node and the new paths each have only one node.)

We would like to maintain the invariant that for each centroid path there is an
integer i such that for each node w on the path, 2i ≤ |Tw| < 2i+1, where |Tw| denotes
the weight of the subtree Tw rooted at w. We call such paths i-paths. Unfortunately,
as it is expensive to update the codes associated with the subtrees of a centroid path,
the changes to a centroid path may lag the increases in the sizes of the trees Tw.
Consequently, we will allow centroid paths to overlap.

More specifically, an i-path π, as in the static structure, comprises a maximal

7n is restricted to a range [2i, 2i+a] for some constant a, and we take log3 n to be the fixed value
(i + a)3.
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sequence of nodes w with 2i ≤ |Tw| < 2i+1, but in addition may include further
nodes z with 2i+1 ≤ |Tz| < 2i+1 +2i−1 +2i−2, for i ≥ 1. Any such node z is also part
of an (i + 1)-path π′. Naturally, the nodes of π are required to form a path.

Further, to accommodate leaves, which may have weight 0, we define a 0-path to
comprise a maximal sequence of nodes w such that 0 ≤ |Tw| < 2, and in addition it
may include further nodes z with 2 ≤ |Tz| < 2 3

4 .
If node v lies on both an i-path π and an (i+1)-path π′, π is said to be its primary

path and π′ its secondary path. If v lies on a single path π, π is its primary path.
We need to redefine the notion of parenthood for these paths.
Definition 6.1. Let π be a centroid path with topmost node x, called head(π). If

x is secondary on path π′, then π′ is the parent of π. Otherwise, if x is not secondary
on any path, the parent of π is given by the primary path of parent(x).

Lemma 6.2. Suppose that u and v are adjacent secondary nodes on (i+1)-path π′.
Then u and v are primary nodes on the same i-path π, where π′ is the parent of π.

Proof. W.L.O.G., let u be the parent of v. |Tv| ≥ 2i+1 as v lies on π′. Let
w be u’s other child, if any. Suppose, for a contradiction, that u and v were on
different i-paths. Also suppose that u is on i-path π. Then w must have been part
of π before |Tv| reached 2i, as otherwise at that point v would have joined π. For
i ≥ 1, it follows that |Tw| ≥ 2i. For i = 0, by weight constraint (iv), weight(w) must
reach 1 before v is inserted (with initial weight 0) in T1; thus here too, |Tw| ≥ 2i.
Thus |Tu| = weight(u) + |Tw| + |Tv| ≥ 2i+1 + 2i, and thus u cannot be on an i-path,
contrary to assumption.

The increment in weight of a node z may cause changes to the tails of some or all
of its ancestral centroid paths. Changes to the heads of the paths may be deferred;
their handling is described in subsequent sections. The reason for delaying changes
to the head is that such a change entails updating the codes of all the nodes in the
off-path subtree of the head node. The following changes may occur to an i-path with
tail y and head x.

1. If node z is not a descendant of y, then the tail of π is unchanged.
2. If z is a descendant of x and |Tx| increases from less than 2i+1 to at least

2i+1 due to the weight change, then x is added to an (i+1)-path. If the path
π′′, the parent of π, is an (i + 1)-path, then x becomes the tail of π′′. If not,
a new (i + 1)-path is created, comprising the single node x. In any event, x
remains on π for now. Note that there may be two nodes x1 and x2 for which
|Txh

|, h = 1, 2, increases from less than 2i+1 to at least 2i+1.
Remark 6.3. Clearly, as weights increase in the subtree rooted at the head x

of path π, eventually x must be removed from the head of π in order to maintain the
invariant that |Thead(π)| < 2i+1+2i−1+2i−2. Thus, over time, the path π will migrate
down the (growing) tree, but will never disappear.

Remark 6.4. Actually, the tail node u of an i-path might have children v and w
with |Tv|, |Tw| < 2i−1, but at least one of |Tv|, |Tw| will be of size 2i−2 or larger (for
to contradict this we would need 2i ≤ |Tu| = wt(u) + |Tv| + |Tw| < 1 + 2 · 2i−2, i.e.,
2i−1 < 1 or i < 1, and then u is a leaf). Thus as (i − 1)-path π′ migrates down
the tree from such a node u it might disappear; to avoid this we preserve it as a zero
length path at the “bottom” of node u and ancestral to both v and w. Later if either
|Tv| or |Tw| reaches size 2i−1, then the corresponding node (v or w) joins π′. When
a node z is inserted it joins a centroid path according to the following rules.

1. If z is inserted between two nodes in π, then z is added to π at the appropriate
place (possibly, z is added to two paths in this way, once as a primary node
and once as a secondary node).
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Fig. 3. Constrained intervals.

2. If node z is inserted between x, the head of path π, and x’s parent z′, then z is
added to the centroid path or paths to which x belongs. If as a result z is on
both an i- and an (i+1)-path, it will be the case that |Tz| < 2i+1+2i−1+2i−2,
since |Tz| = |Tx| at this point.

6.3. Updating separators. Separators and codes have to be updated to reflect
the above changes in the centroid paths; the update begins when a node previously
on an i-path joins an (i + 1)-path. When the update completes, the node leaves the
i-path. In between times it lies on both paths.

The following interpretation of separators in terms of intervals is helpful.
Separators as constrained intervals. Consider an interval of length m = 2k. All

subintervals we consider will have lengths which are powers of 2. Each integer point
on this interval has an associated k bit code (the leftmost point is coded with the all 0s
string, subsequent points are coded by the binary encoding of their distance from the
leftmost point; this encoding has length k). We allow a subinterval of length 2i to
begin only at those integer points which have i trailing 0s in their bits (see Figure 3);
with such a subinterval, we associate a bit string of length k − i given by the leading
k − i bits of the code for the starting point. It can easily be seen that given a set
of disjoint subintervals with this property, the bit strings assigned to the subintervals
form a prefix-free set. Thus assigning prefix-free separators is identical to assigning
subintervals with the above constraints. Henceforth, all our references to intervals
will be to intervals with the above constraints.

Mapping paths to intervals. With each i-path π we maintain an interval intπ of
length either 2ic or 2ic+c′ , c′ < c, where c and c′ are constants to be determined.
When π is created, intπ has length 2ic. At some point between the time Thead(π)

reaches size 2i+1 − 2i−3 and the time it reaches size 2i+1, intπ will gain length 2ic+c′ .
There are two goals. The first is to ensure that if the parent of head(π) lies on an
i-path (not π) as well as an (i + 1)-path, then intπ has length 2ic. The second is to
ensure that if a node originally on π is also secondary on path π′ then intπ has length
2ic+c′ . By definition, once Thead(π) first reaches size 2i +2i−1 +2i−2 the first situation
no longer applies. The second situation applies once Thead(π) reaches size 2i+1 (as
head(π) changes the size of Thead(π) may subsequently drop). Note that constraints
on c and c′ will be imposed by Lemma 6.10 below; setting c′ = 5 and c = 10 suffices.

A crucial property of an interval for an i-path π is that the rightmost bit for its
separator ends at a fixed location, so that in each code in which it occurs there are
a specified number of bits to its right whose values depend only on the separators
for h-paths, h < i, to which the relevant node belongs. The number of these bits is
either ic or ic + c′, corresponding to the size of intπ. This allows the code for intπ
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to be changed without requiring any change to the separators for h-paths, h < i,
contained in the codes in which intπ occurs. The one exception arises when the size
of the interval for π increases. But this can be viewed as simply prefixing c′ zeros to
the separator following π in the code for each node in Thead(π).

Updating intervals. The following updates need to be performed. See Figure 2.
1. Node x lies on paths π and π′; x is the head of π and is being removed from π;

in addition, there is a proper ancestor of x that is or had been on π′. Then
the centroid path π′′ whose head was the off-path child of x (with respect
to π) must be assigned a new interval. The interval for π′′ was earlier nested
within intπ and intπ′ . Now this interval must be reassigned so as to be
disjoint from intπ but still nested within intπ′ . The process which does this
is called Reassign(x).

2. Node x is on paths π and π′, and x is the head node of π and π′. Then π′ is a
new centroid path, and a new interval has to be assigned to π′. This interval
intπ′ must be nested within the interval intπ′′ for the path π′′, the previous
parent of π, and now the parent of π′. Further, intπ must be reassigned so
it is nested within intπ′ . This is done by a procedure called Assign(π′). In
addition, the interval associated with the path π′′ containing the off-path child
of x (with respect to π) must be reassigned so that it is also nested within
intπ′ . This is done by a procedure called Reassign(x). There are a few
details associated with this case which will be explained later in section 6.4.

3. Node x is the head of i-path π, and its parent y lies on class i path π′ �= π and
also necessarily on class i+1 path π′′ (for by the maximality of π, |Ty| ≥ 2i+1).
Note that by the time |Thead(π)| = 2i+1, y will no longer be on π′. Between
this time and before the time |Thead(π)| reaches 2i+1 + 2i−1 + 2i−2, a new
larger interval will have been assigned to path π; this new interval will be
contained within intπ′′ . This is done by a process called Rescale(π).

Thus as time proceeds, subintervals move from one interval to another and new
intervals are created. This movement and creation is done as follows. When a subin-
terval has to be removed from an interval, the subinterval is just marked as deleted
but not removed. When a new subinterval has to be assigned to π within intπ′ , where
π′ is the parent path of π, it is assigned in either the first half of intπ′ or the sec-
ond half of intπ′ , based on a logic to be described. In either case, it is assigned to
the leftmost available slot to the right of all assigned subintervals in constant time.
Note that a particular weight increase creates at most constant number of Rescale,
Reassign, or Assign processes at each ancestor centroid path of the reweighted node.

We need to ensure that Assign(π), Rescale(π), and Reassign(x) will always find
an empty slot as above to assign to the new interval for π. This is not hard to
ensure if nondeleted subintervals are separated by small gaps only. However, large
gaps could build up as subintervals enter and leave intervals. Consequently, we need
a background process which will start removing deleted subintervals and compacting
nondeleted subintervals within an interval, once the interval reaches a certain fraction
of its capacity. This process is described next.

The compacting process for an i-path π. The compacting process maintains the
interval intπ as two halves. At any given time, one half, the insertion half, will be
receiving newly inserted subintervals. At the same time the deleted subintervals in
the other half are being removed and the nondeleted subintervals are being moved
to the insertion half. By the time the insertion half is filled, the noninsertion half
will be empty, and then their roles are toggled. Actually, the toggling occurs at a
predetermined time when it is guaranteed that the noninsertion half is empty and the
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insertion half has not overflowed. W.L.O.G., consider the instant at which the right
half becomes the insertion half. The compaction process moves through the subinter-
vals in the left half from left to right removing deleted subintervals and reassigning
undeleted subintervals at the leftmost possible slot in the right half (to the right of
already assigned subintervals in this half). Insertions subsequent to the beginning of
the compaction process will also be made in the right half until the stopping time,
which is no later than when the right half becomes full. We will show that the com-
paction process in the left half will have finished by the time this happens. At this
point, the compaction process will become active in the right half and insertions will
be performed in the left half. We call the above process Compact(π). Note that
a single insertion can initiate a compaction process at each of its ancestor centroid
paths.

Thus there are four kinds of processes which could be created when a node is
inserted: Assign( ), Rescale( ), Reassign( ), and Compact( ). Each process is
expensive and takes time at least proportioned to the size of the subtree in which it
modifies codes (this updating of codes will be elaborated upon shortly in section 6.4).
Thus these proceses have to be performed, a poly-algorithmic number of operations
at a time, over future insertions. Therefore, at any instant a number of such processes
could be underway.

6.4. Updating codes. We consider the updates that need to be made to the
various codes as a result of changes made to the intervals by Assign( ), Reassign( ),
Rescale( ), and Compact( ) processes (as described in section 6.3).

First, consider an Assign(π′) process initiated by some node x, which is the head
node on i-path π and becomes the first node on (i + 1)-path π′. Assign(π′) must
assign a new interval to π′ and a new interval to π nested within the interval for π′.
It must then change the codes at all nodes in Tx to reflect the change to the above
two intervals. This is done as follows. The old separator string for π in the codes at
nodes in Tx (including x itself) will be updated to the new separator string for π. In
addition, the separator string for π′ will be incorporated into the codes at all nodes
in Tx. Thus the effect of Assign(π′) on the codes in Tx is to make π′ appear as a
path in their codes, but as a path with no primary nodes. Reassign(x) will perform
the changes needed to make x a primary node on π′.

Next, consider a Reassign(x) process. It is initiated when x is in the process of
leaving i-path π on which it is currently primary (recall x is also secondary on (i+1)-
path π′ in this scenario). The process must remove the separator string for π from
the code at x and from the codes at all the nodes in the subtree rooted at that child y
of x which is not on π. In addition, this process must assign a new separator string
for the path containing y and modify the codes at all nodes in the subtree rooted at y
to reflect this.

We need to specify the scheduling of Reassign(x) in more detail. When size(x)
reaches 2i+1, Reassign(x) is made pending. At some future point, Reassign(xi)
processes, 1 ≤ i ≤ k, are all initiated, where nodes x1, x2, . . . , xk are all the nodes
currently primary on π and secondary on π′. These Reassign( ) processes are per-
formed in top-to-bottom order (i.e., if the nodes x1, x2, . . . , xk are in top-to-bottom
order, then Reassign(x1), Reassign(x2), . . . , Reassign(xk) are performed in turn).
This collection of Reassign processes is called a Reassign superprocess.

A Compact(π) process for an i-path π must assign a new separator code to all
child paths of primary nodes on π (secondary nodes are themselves contained in a
child path of a primary node on π by Lemma 6.2). Compact(π) must also update
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codes at all nodes in the subtree rooted at the head of π (other than codes for primary
nodes on π). If π happens to be a zero length path, the above description applies to
its one or two child paths.

Finally, a Rescale(π) process must assign a new interval intπ to π contained
within intπ′ , where π′ is the parent of π. In addition, the process must update the
codes of all nodes in Thead(π), replacing the old separator for π with the new separator
(corresponding to the change to interval intπ).

In addition to updating the codes, it is also necessary to update the annotations
on the codes; recall the annotations label each bit in the code with the name of the
centroid path whose separator contains this bit (also note the tagging mentioned in
section 4.1). This can be done in O(log n) time per node.

We have now described the overall structure of the algorithm. For each unit weight
increase in a node (from 0 to 1), which occurs as a node is inserted, O(log n) work
is done in updating the ancestor centroid paths of the inserted node and initiating
a constant number of Assign, Rescale, Reassign, and Compact processes for each
such centroid path. A further O(log n) work is done to construct the code for the
inserted node along with the annotations, using the code for its parent or child (this
is explained in section 6.5). The work needed to be done on this insertion in order
to further the progress of unfinished processes will be described in section 6.6. This
part of the algorithm is what leads to the O(log3 n) bound. Before describing this
work, we introduce one more crucial aspect of the algorithm and also some crucial
invariants which we will maintain.

Two codes instead of one. Even though all of the above description has been in
terms of one code per node, we will actually maintain not one but two codes at each
node. We will refer to these two codes as the first code and the second code. The
reason for two codes is the following.

Consider two nodes x, y and any process which needs to modify codes at both
these nodes. At some intermediate time instant, this process could have modified the
code at x but not at y; as a consequence, the first bit of difference will no longer be
related to the LCCP of x and y. To make matters worse, there could be several such
processes which have modified codes at one but not both of x and y (actually, our
algorithm will ensure that there is only one such process).

To ensure that LCAs are indeed related to the very first bit of difference, we will
maintain two codes instead of one at each vertex. Each process will be required to
update both codes for all vertices of interest. However, all first codes will be updated
first, and all second codes will be updated only after all first codes have been updated.
The critical property is that at any instant of time, either both the first codes at x, y
would have been modified, or neither second code at x, y has been modified. Thus
either the first codes or the second codes will retain the relationship of the leftmost
difference bit to the LCCP at each instant of time.

In what follows, unless explicitly stated, we will refer to both the codes for node x
collectively as the code at node x, or as code(x).

6.5. Invariants maintained. To ensure that queries are answered correctly at
every instant, we schedule the various processes so that the two invariants described
below are maintained.

Invariant 1 states that each process finishes before the situation which caused the
initiation of the process changes too dramatically. Some additional terminology will
be helpful.
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Definition 6.5. A process associated with an i-path is called an i-process (i-
Assign, etc.).

Definition 6.6. The size of path π, size(π), is defined to be |Thead(π)|.
Definition 6.7. A weight increase is in the domain of path π, or into π for

short, if it is applied to a node in the subtree rooted at the current head of π.
Invariant 1. Each process associated with i-path π completes within a weight

increase of 2i−3 into π from the time the process was initiated. In addition to this,
the following rules apply:

(a) Assign(π) is initiated when size(π) reaches 2i. (As size(π) may never be ex-
actly 2i, it is helpful to pretend that time is continous and that the weight in-
creases occur continuously, and then we can define the initiation of Assign(π)
to occur exactly when size(π) = 2i.)

(b) Compact(π) is initiated following each weight increase of 2i+1 into π from
the time of π’s creation (i.e., Assign(π)’s initiation).

(c) Pending Reassign(x) processes associated with π are initiated following
weight increase h 2i−2 + 2i−3 into π, from the time of π’s creation, for each
integer h ≥ 4.

(d) Rescale( ) is initiated when size(π) reaches 2i+1 − 2i−3.
Corollary 6.8. A Reassign(x) process associated with (i + 1)-path π′, which

removes x from i-path π, becomes pending when size(π) = 2i+1 and head(π) = x,
and completes before a further weight increase of 2i−1 + 2i−2 into π. In addition,
if a Reassign(z) process is created when node z is inserted as the parent of node x
with an already pending Reassign(x) process, the Reassign(z) completes before the
Reassign(x) process completes.

Finally, size(π) < 2i+1 + 2i−1 + 2i−2.
Proof. Reassign(x) becomes pending when x becomes secondary on π′, i.e., when

size(π) = 2i+1 with head(π) = x. By Invariant 1(c) applied to π′, Reassign(x) is
initiated before a further weight increase of 2i−1 into π′ and completes within another
weight increase of 2i−2 into π′. Any weight increase into π during this time is also
into π′. The first claim follows. The claim about Reassign(z) follows due to the
scheduling of Reassign( ) processes in top-to-bottom order.

To obtain the bound on size(π) we show that size(π) is less than 2i+1 + 2i−1

at the moment when a bunch of Reassign( ) processes removing nodes from π are
initiated. Let x be the highest node on π not being reassigned. Then, at that moment,
|Tx| < 2i+1. Following a weight increase of 2i−1 into π′, all the nodes being reassigned
have been removed, and the next bunch of Reassign( ) processes is being initiated; at
that moment again size(π) < 2i+1 + 2i−1. The maximum size for π therefore occurs
just before the Reassign( ) processes are completed, i.e., just before a weight increase
of 2i−2 into π′ (and hence into π) from the moment the Reassign( ) processes are
initiated. This yields the claimed bound on size(π).

Corollary 6.9. For each path π, there is at most one Assign(π), Rescale( ),
Reassign(x) for x secondary on π, or Compact(π) under way at any given time.

Invariant 2. For any pair of nodes x, y there is at most one Assign( ), Reassign( ),
Rescale( ), or Compact( ) process which must modify the codes at both x and y and
which has modified one but not both the first codes at these nodes. Similarly, there
is at most one process which must modify the codes at both x and y and which has
modified one but not both the second codes at these nodes. Finally, if a process with
the former description exists, then a process with the latter description cannot exist.

We remark that Invariant 1 is not hard to maintain. Similarly, Invariant 2 is easy
to maintain using a simple blocking mechanism for processes. However, maintain-
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ing both invariants simultaneously is nontrivial. This is because weight increases in
different parts of the tree may occur at different rates and unfinished processes will
therefore be driven at different speeds by these weight increases. In particular, a pro-
cess could be blocked indefinitely. One solution to this problem is to make a blocked
process help the blocking process. This will be described in detail in section 6.6.

We are now ready to show that the intervals are sufficiently large.

Lemma 6.10. Suppose Invariant 1 holds and that c′ ≥ 5 and c = 2c′. Let π be
an i-path.

(a) The insertion side of intπ cannot be filled up prior to the completion of
Rescale(π) (recall that intπ has size 2ic before Rescale(π) completes).

(b) The insertion side of intπ following the completion of Rescale(π) will not fill
up before the first initiation of Compact(π) (intπ now has size 2ic+c′).

(c) Consider an initiation of Compact(π). Over a subsequent weight increase of
2i+1 into π, the side of intπ being filled by Compact(π) will have room for
the subintervals being added to intπ.

Proof. The proof uses an induction on i. The result is trivially true for i = 0. Thus
the inductive step remains to be proven. We start with part (a). Up to the completion
of Rescale(π), size(π) remains less than 2i+1. We show that all the subintervals that
could be generated until Rescale(π) completes will fit into intπ.

We sum the length of all the subintervals inserted into intπ since the initiation
of Assign(π). Some of these intervals may have been deleted by the time Rescale(π)
completes. The length of each interval that is inserted is at most 2(i−1)c+c′ . A particu-
lar subtree rooted at an off-path node could repeatedly delete and insert subintervals
increasing in size by successive factors of 22c′ . Thus such a subtree, whose root is
a primary node in an h-path, could be responsible for a total subinterval of length∑2h+1

j=0 2jc
′
< 2(2h+2)c′

2c′−1 . The total length of gaps between subintervals is at most the to-
tal length of the subintervals. Since Rescale(π) completes following a weight increase
of 2i into π from the time π was created, the total length of intπ occupied by deleted

and undeleted subintervals and the gaps between them is at most 2
∑

r
2c′(2hr+2)

2c′−1 ,

where
∑

r 2hr ≤ 2i+1 = 4 · 2i−1 and hr ≤ i − 1. This is at most 8·2ic′

2c′−1 ≤ 22ic′

2 for
c′ ≥ 5.

The proof of part (c) is broadly similar. W.L.O.G., we assume that Compact(π)
inserts into the right half of intπ (now intπ has size 2ic+c′). We show that from
the time of the initiation of Compact(π), the subintervals in intπ when Compact(π)
was initiated together with any new subintervals inserted up until the next initiation
of Compact(π) will all fit in the right half of intπ. When Compact(π) is initiated,
size(π) < 2i+1 + 2i−1 + 2i−2; the next initiation of Compact(π) occurs following a
weight increase of 2i+1 into π. The length of each subinterval inserted into intπ is at
most 22ic′ ; such a subinterval would be due to a subtree of size at least 2i. Similarly to
before, the total length of subintervals for which such a subtree could be responsible

is less than 22ic′ +
∑2i−1

j=0 2jc
′
< 2(2i+1) c′

2c′−1
. A smaller subtree, whose root is a primary

node on an h-path could contribute subintervals of total length no more than 2(2h+2) c′

2c′−1
.

As before, the total length of the right half of intπ occupied by deleted and undeleted

subintervals and the gaps between them is less than 2a·2(2i+1) c′

2c′−1
+ 2

∑
r

2(2hr+2) c′

2c′−1
,

where a · 2i +
∑

r 2hr < 2i+1 + 2i−1 + 2i−2 + 2i+1 and hr ≤ i − 1. This is at most

(8 · 2(2i+1) c′ + 4 · 22ic′)/(2c
′ − 1) ≤ 12 · 2(2i+1) c′/(2c

′ − 1) ≤ 2(2i+1) c′/2, if c′ ≥ 5.

The proof of part (b) is identical to that of part (c) except that we need only
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consider the intervals due to an initial weight of 2i (when π was created) and a weight
increase of 2i+1 (namely, up to the time when Compact(π) is first initiated).

6.6. Some details of processes. Before proceeding, some details of Assign( ),
Reassign( ), Rescale( ), and Compact( ) processes need to be carefully examined.
These details arise because a process is performed over a sequence of future insertions.
A fundamental issue here is that nodes can lie on two paths: on one as a primary
node and on the other as a secondary node.

Our goal, which enables the O(1) query procedure, is to establish the following
claim.

Claim 6.11. The changes due to x becoming primary on path π′ and ceasing to
be primary on path π are reflected in the code at a descendant node y of x only due to
the modifications performed by the process carrying out x’s change of primary paths.

Process blocking. To maintain Invariant 2, the following strategy is used. A
process first updates all the first codes for the nodes it needs to process in preorder
and then updates all the second codes, again in preorder. When the process begins
work on the first codes of a subtree rooted at a node z it will mark z as blocked and
will only remove the mark when it has finished updating the first codes in z’s subtree.
It will follow the same blocking procedure when updating second codes. If a process P
comes to a blocked node it will not proceed with its work until the node is unblocked
(later, we explain the helping of the blocking process undertaken by P while it is
waiting).

In addition, a process keeps the topmost node it is updating blocked until it is
completed. Finally, a Reassign(x) process, in addition to keeping x blocked through-
out its processing, will as its last step make x primary on the path on which x had
been secondary.

We specify later just how a newly inserted node is marked.
Constructing codes for newly inserted nodes. Recall that each node has two asso-

ciated codes, a first code and a second code. For a newly inserted node x, each code
is obtained from the corresponding code for its parent or child as follows.

1. If x is inserted as a child of a leaf node, then it is given the same code as its
parent. This reflects the fact that x lies on the same 0-path as its parent. Of
course, if and when x’s weight increases sufficiently, its parent will leave this
0-path.

2. If x is inserted as a leaf child of an internal node v, then it forms a new
singleton path. A new interval is assigned for this path. The code for x is
just the code for its parent appended with the separator string for this new
singleton path. There is one more complicated scenario, which arises when a
Reassign(v) process is underway, and the first code for v has been updated,
but the second has not. Let π be v’s primary path and π′ its secondary
path. In this case, x is assigned two subintervals, one in intπ′ for its first
code and one in intπ for its second code. When the Reassign(v) process
updates second codes it will replace the subinterval in x’s second code with
the subinterval in intπ′ used in its first code.

3. If x is inserted as an internal node, then the code for x is made identical to
that for its child. This makes x primary on the same path π as its child. In
addition, if x’s child is marked, then so is x. Of course, it may be that x
is also added to the parent path of π, in which case a Reassign(x) process
is created. There is one exception. Let y be x’s child. If a Reassign(y) is
already underway, the code for x is set to the updated code for y, i.e., the
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code with separator(π) removed, and in this case x is not marked.
We mention here that Invariant 2 also applies to newly inserted nodes x and y

which inherit their codes from partially processed nodes (i.e., nodes for which one but
not both codes have been updated by some process).

Process roots. Each process must modify codes at certain nodes in the tree. The
node closest to the root of T1 whose code a process must modify is called the root
of the process. Since nodes are inserted dynamically, the root of a process needs
to be defined more precisely. For an Assign(π), Compact(π), or Rescale(π) process,
head(π) is the root of the process; if a new node z is inserted and becomes the head of π
as one of these processes is underway, z becomes the new root of the process. While
one of these processes is underway no node x leaves π due to a Reassign(x) process
until the Assign(π), Rescale(π), or Compact(π) has completed; this is a consequence
of the blocking strategy. For a Reassign(x) process, the root is always x.

Helping a blocking process. If a process P reaches a marked node x, it will seek to
help an unblocked process in Tx so as to advance the processing that will lead to the
removal of the mark on x. To this end it traverses a path of marked nodes from x;
at the last marked node y, it discovers the process Q that marked y and performs
the next code update for Q. This may entail unmarking O(log n) nodes and marking
up to one node (since Q marks a nonleaf node prior to updating it). To facilitate
this process, each mark includes the name of the process making the mark. As it
suffices to have P help some unblocked process on which it is waiting either directly
or indirectly, it suffices that P traverse a maximal path of marked nodes in Tx; thus
this process takes O(log n) time. It is called a basic step.

i-process P could be blocked by an ancestral process or by a descendant process.
We will need to ensure that P is blocked by at most one ancestral process. Further,
this only happens at P ’s initiation. If P is so blocked, it puts a subsidiary mark on its
root. The meaning of this mark is that as soon as Q’s mark is removed, where Q is the
blocking process, P ’s mark is then instantiated. As there is only one active process
per path, there are at most two such subsidiary marks per node (two paths can share
a root, either because a new path has only secondary nodes and hence shares its root
with a child path, or because a path temporarily has no nodes; the nodeless path will
use its parent node as its root for any associated processes). In the case that two
marks are present, the mark for the deeper path will be instantiated. It remains the
case that each process P is blocked by at most one ancestral process.

Process interleaving and its effect on code updates. We need to examine the
interleaving of processes for paths π and π′, π′ a child of π, and how this may affect
the update of code portions corresponding to sep(π) and sep(π′).

Because of their relative timing, Compact(π), Rescale(π), Assign(π), and
Reassign(x) for x secondary on π do not overlap.

Compact(π) and Reassign(x) for x secondary on π, update only the portion of
the code corresponding to sep(π′) for π′ a child of π; Rescale(π) updates only the
portion of the code corresponding to sep(π); Assign(π), on the other hand, updates
the portions of the code corresponding to both sep(π) and sep(π′), where π′ is the
primary path for nodes secondary on π. Thus we will need to consider the possible
interaction of Compact(π) and Assign(π′) or Rescale(π′), and of Reassign(x) and
Assign(π′′′) or Rescale(π′′′) where x is secondary on π, primary on π′, and π′′′ is the
off-path child of x (w.r.t. π′).

Consider such a Compact(π) process. Let y be an off-path child of π, second-
ary on π′ and primary on π′′. So there is an Assign(π′) process at hand. If the
Compact(π) process updates code(y) first, then π′′ receives a new subinterval in the
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insertion half of intπ, the right half say; subsequently, the Assign(π′) gives π′ a new
subinterval in the right half of intπ. On the other hand, if the Assign(π′) process
updates code(y) first, but after the Compact(π) process has been initiated, then the
Assign(π′) process gives π′ a new subinterval in the right half of intπ, and sub-
sequently the Compact(π) process does nothing further to intπ′ and the codes for
nodes in Ty. The possible interactions of Compact(π) and Rescale(π′) are identical.

Next, we consider a Reassign(x) process for a node x, primary on π′ and second-
ary on π. Let y be the child of x which is not on π′. Let π′′ be the path containing y.
After the creation of the Reassign(x) process suppose that y becomes secondary on a
new centroid path π′′′. π′′′ now becomes the parent of π′′ and an Assign(π′′′) process
is initiated. We consider two cases in turn.

First, suppose that Assign(π′′′) modifies the code for y before Reassign(x) does
so. Then the separator for π′ will be in code(y) when it is processed by Assign(π′′′).
Thus intπ′′′ will be assigned so that it is nested within intπ′ . At some subsequent
point, Reassign(x) will remove the separator string for π′ from code(y) and reassign
intπ′′′ so that it is nested within intπ.

Second, suppose that Reassign(x) has updated code(y) before Assign(π′′′). Then,
when Assign(π′′′) processes code(y) it no longer contains the separator for π′. The
behavior of Assign(π′′′) is now as expected with intπ′′′ being assigned so as to be
nested within intπ. But note that when Reassign(x) processed code(y), code(y) indi-
cated that y was primary on π′′. So π′′ was reassigned a new subinterval within intπ
and the resulting separator string was included within code(y). At some later instant,
Assign(π′′′) included the separator string for π′′′ in code(y) and replaced the current
separator string for π′′ with a new separator string corresponding to a subinterval
nested within intπ′′′ . Ultimately, the Reassign(y) process created by y becoming sec-
ondary on π′′′ removed the latter separator string from code(y). Again, the possible
interactions of Reassign(x) and Rescale(π′′′) are identical.

Consider Claim 6.11. Note that it would not hold if, in the first case above,
Assign(π′′′) assigned an interval to π′′′ nested within the interval for π and incor-
porated the associated separator into code(y). For if Assign(π′′′) did so then the
change resulting from x becoming primary on π would be reflected in code(y) by a
modification made by Assign(π′′′) and not by Reassign(x).

It is possible for the updates described above involving two processes (Compact(π)
and Assign(π′) or Rescale(π′), Reassign(x) and Assign(π′′′) or Rescale(π′′′)) to
occur in a different order on the two codes. The only possible interleaving for
the Compact(π) process is that first Compact(π) updates the first codes of nodes
in Ty, then Assign(π′) (or Rescale(π′)) updates both codes of nodes in Ty, and
then Compact(π) examines Ty but makes no further updates to the codes. For the
Reassign(x) process, the only possible interleaving is that first Reassign(x) updates
the first codes of nodes in Ty, then Assign(π′′′) (or Rescale(π′′′)) updates both codes
of nodes in Ty, the Reassign(x) updates the second codes of nodes in Ty. Each update
follows the appropriate rules for the codes it encounters which will differ for the first
and second codes. All we have to ensure is that the subintervals chosen for the second
codes within a particular interval are the same as those selected for the first codes
within the same interval. Thus, for example, in the Reassign(x)/Assign(π′′′) scenario
above, Assign(π′′′) assigns a separator for π′′′ to code(y), (sep(π′′′))1 say, contained
in intπ, while for the second code it assigns a separator (sep(π′′′))2 for π′′′ contained
within intπ′ , and then Reassign(x) replaces this separator with (sep(π′′′))1.
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6.7. Processing queries. The algorithm ensures that the first bit of difference
between either the first codes at x and y or the second codes at x and y is related to
the LCCP, which itself can be obtained using the algorithm detailed below. The first
step is to find the leftmost bit of difference dfirst, between the first codes at x and y,
and thereby to find the rightmost path πfirst such that the first codes at x and y agree
on all separators up to and including that for πfirst. Similarly, dsecond and πsecond

are identified with respect to the second codes at x and y.
Consider zfirst = head(πfirst) and zsecond = head(πsecond). As we will see, if the

first code of zfirst agrees with the first code of x (and of y) on all separators up to
πfirst and the same is true for zsecond, then one of πfirst and πsecond is the LCCP of
x and y; if it holds only for zfirst, then πfirst is the LCCP, and similarly for zsecond.

Lemma 6.12. If a process P updates the separator sep(π) for a path π, then
sep(π) is identical either for all first codes for nodes in Thead(π) or for all second
codes for nodes in Thead(π), and when P unmarks Thead(π) it is identical both for all
first codes for nodes in Thead(π) and for all second codes, although its encoding in the
first and second codes may differ.

Proof. The proof uses an induction on time. So assume that the result is true at
the moment P marks Thead(π). Any process that updates sep(π) must mark Thead(π),
thus until P unmarks Thead(π), only P can update sep(π) in the codes for nodes in
Thead(π). The lemma follows.

Comment. The interleaving described in the previous section shows that the two
codes may differ following completion of a process, though when the second process
touching these codes also completes, the equality will be restored.

Lemma 6.13. If sep(π) appears in code(x), then head(π) is an ancestor of x.
Proof. The proof is by induction on time. When a node is inserted, if a leaf it

inherits its code from its parent and thus the claim is true at this point; if an internal
node, it inherits its code from its child and the claim is true at this point too.

An update which changes head(π) will occur only after sep(π) is appropriately
updated in the codes for all descendants of head(π) and thus the claim continues to
hold.

Let z be the LCA of x and y, and suppose that z is primary on π and let
w = head(π). Then we have the following.

Lemma 6.14. Suppose either that w is not marked, or if w is marked, then
W.L.O.G. it is the second codes in Tw that are begin updated. Then z and zfirst lie
on the same path. Also, the first code of zfirst agrees with the first code of x on all
the separators up to πfirst. Finally, πfirst is the LCCP of x and y.

Proof. By Lemma 6.12, any encoding sep(π̃) for path π̃ appearing in the first
code of z must also appear in the first codes of x and y. Thus zfirst lies on the
same path as z or is a descendant of z. But clearly if sep(π̃) appears in code(x),
then there is a node v on π̃ with v an ancestor of x (v may be primary or secondary
on π̃). Thus there are nodes on πfirst ancestral to each of x and y, which must include
zfirst = head(πfirst). Thus zfirst and z lie on the same path.

Corollary 6.15. One of πfirst and πsecond is the LCCP of x and y.
By Lemma 6.13 πfirst and πsecond are both ancestral to each of x and y. Thus

if πfirst = πsecond they are both the LCCP. Otherwise, let πfirst be a j-path and
πsecond a k-path. The one with the larger index (among j and k) provides the LCCP.

This yields the O(1) algorithm for finding the LCCP and hence the LCA.

6.8. Running time. In order to maintain Invariant 2 while meeting Invariant 1,
a process may need to help (perform the work of) other processes that are blocking it.
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Thus the main issue is to determine how much work a process may do. We measure
this work in basic steps.

Definition 6.16. A basic step of a process is the traversal of O(log n) edges of
the subtree it is processing followed by the updating of one of the codes at a single node
in this subtree. (The final basic step entails only edge traversals.)

Claim 6.17.

(i) A basic step takes O(log n) time to perform.
(ii) A process rooted at node x performs at most 2|Tx|+ 1 basic steps on its task,

where |Tx| is the size of tree Tx in vertices immediately before the completion
of the process.

Lemma 6.18. An Assign(π), Compact(π), Rescale(π), or Reassign superpro-
cess associated with class i path π performs at most e · 2i · i basic steps on itself and
all the tasks it helps, for a suitable constant e > 0.

Lemma 6.18 depends on a scheduling algorithm which ensures that for each weight
increase of 2i−3 into path π, at least e · i · 2i basic steps are performed on process P
and the tasks it helps, where P is associated with path π. We describe the scheduler
later. Clearly, if the scheduler exists, then the truth of Lemma 6.18 up to a given
time immediately implies Invariant 1 also holds up to that time.

Proof of Lemma 6.18. The proof uses a double induction, the outer induction
being on t, the weight increase since the data structure was initiated (time for short),
and the inner induction being on the class i of the i-path π. Note that time proceeds
in increments of 1/ log3 n. Our proof depends on the following claim, whose proof
uses the inductive hypothesis.

Claim 6.19. Suppose Lemma 6.18 holds through time t and for processes asso-
ciated with h-paths, h < i, at time t + 1/ log3 n. Then consider an i-path π at time
t + 1/ log3 n with head x. Consider the collection of all h-processes, h < i, having
roots in Tx which have been activated by time t+ 1/ log3 n. The total number of basic
steps that have been performed on all these processes through time t + 1/ log3 n since
their first activation is O(i · 2i).

Proof of Claim 6.19. We first note that if Lemma 6.18 holds for a given process P
associated with an i-path at its termination, then the size of the subtree rooted at
P ’s root at its termination is less than 2i+1 + 2i−1 + 2i−2, by Corollary 6.8. Conse-
quently, if a process associated with an i-path is not complete at a time t′ for which
Lemma 6.18 holds, then the subtree rooted at the process root has size less than
2i+1 + 2i−1 + 2i−2. In particular, the subtree rooted at P ’s root has size less than
2i+1 + 2i−1 + 2i−2 at time t, and hence size less than 2i+1 + 2i−1 + 2i−2 + 1/ log2 n at
time t + 1/ log3 n.

Now, we bound the number of basic steps performed by each type of process
having its root in Tx, where x is P ’s root.

Assign( ) processes. There is one Assign( ) process for each path inside Tx. By
the inductive hypothesis, for an Assign(π′) process associated with h-path π′, h < i,
the associated subtree has size less than 2h+1 + 2h−1 + 2h−2 at time t + 1/ log3 n
and hence the Assign(π′) process has had at most O(2h) basic steps performed on it.
For each h < i, each h-path has a distinct set of nodes of combined size at least 2h

associated with it, namely either the subtree rooted at the head of the path, or if the h-
path π′ has h-path π′′ as a child, the associated nodes are given by Thead(π′)−Thead(π′′).

Thus there are at most (2i+1 + 2i−1 + 2i−2 + 1/ log2 n) /2h h-paths in Tx, and the
total number of basic steps performed through time t + 1/ log3 n on their Assign( )
processes is O(2i). Summing over all h < i gives a bound of O(i · 2i) on the number
of basic steps performed on Assign( ) processes for h-paths, h < i, inside Tx.
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Rescale( ) processes. The analysis is identical to that for the Assign( ) processes.

Compact( ) processes. Recall that successive Compact(π′) processes for h-path π′

are separated by weight increases of 2h+1 into π′. Likewise the first Compact(π′)
process occurs following a weight increase 2h+1 from the initiation of Assign(π′).
Further, each weight increase at a node contributes only to the weight increase for
paths that are the node’s ancestors, hence for at most two h-paths for each value of h.
Thus at most 2(2i+1 +2i−1 +2i−2 +1/ log2 n) /2h+1 Compact(π′) processes have been
activated for h-paths π′ contained in Tx. By the inductive hypothesis, these processes
have each had at most O(2h) basic steps performed on them by time t+1/ log3 n, and
hence summing over all h < i, and all paths in Tx, yields a bound of O(i · 2i) basic
steps performed on the Compact( ) processes for h-paths, h < i, inside Tx.

Reassign( ) processes. The argument is very similar to that for the Compact( )
processes, with each bunched Reassign( ) superprocess resembling a Compact( ) pro-
cess in its cost. We account for a bunched h-superprocess by associating it with the
at least 2h−2 insertions to its associated h-path π′ from either the time of the cre-
ation of π′ or the start of the previous Reassign( ) superprocess associated with π′,
whichever is more recent, to the moment the current superprocess begins to be pro-
cessed.

Consider a weight increase; it is charged for the Reassign( ) superprocesses at its
ancestors, i.e., for at most two Reassign( ) h-superprocesses, for each h. It follows
that there have been at most 2(2i+1+2i−1+2i−2+1/ log2 n) /2h−2 such superprocesses
activated in Tx. Summing over all paths and h < i, we conclude that a total of O(i·2i)
basic operations have been performed on the Reassign( ) superprocesses with roots
in Tx.

This concludes the proof of Claim 6.19.

We now complete the proof of Lemma 6.18.

Consider the currently active process P associated with i-path π, if any. By
Claim 6.19, P has performed at most O(i · 2i) basic operations helping processes
associated with h-paths, h < i. Since P has not completed at time t, as already
noted, |Tx| < 2i+1 + 2i−1 + 2i−2 + 1/ log2 n at time t+ 1/ log3 n. Thus the number of
basic steps performed on P ’s task and the up to one other task it may help associated
with some ancestral j-path, j > i, is O(2i). This gives a total bound of O(i · 2i) on
the basic steps performed by P .

We must still describe the processing performed following a weight increase. Fol-
lowing a Θ(1/ log n) weight increase at a node, the size of each of its O(log n) ancestral
central paths are incremented, up to O(log n) new secondary nodes are added to the
paths to which they newly belong, and up to O(log n) new processes are initiated.
Then e basic steps are performed on the active process at each ancestral centroid
path, if any, for a total of O(log n) basic steps, which takes O(log2 n) time. Node
insertion costs O(log n) per node, but there are O(1) node insertions per unit weight
increase, so this is relatively insignificant.

The O(1) time algorithm requires a more elaborate scheduling procedure for two
reasons. First, we cannot keep the recorded sizes of the centroid paths completely up
to date and so processes may be late in getting underway, and second, we do not want
to have multiple basic steps partially completed. This leads us to perform basic steps
over a Θ(1/ log2 n) weight increase once started, even if the weight increase is not
all occuring in the relevant subtree. Our scheduling procedure is based on a variant
of the Dietz–Sleator “cup-filling” methodology [DS87], which we develop in the next
section.
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6.9. Dietz–Sleator “cup-filling” with dated priorities. We seek to handle
a task scheduling scenario of the following flavor. There are at most k tasks at any
one time. Tasks have associated priorities which increase, possibly at different rates,
as they are delayed. Furthermore, the known priorities may be somewhat dated and
hence potentially inaccurate. Our goal is to determine conditions under which the
following strategy is effective: schedule for atom steps the task with current highest
known priority and iterate.

So let Γ = {P1, P2, . . .} be a collection of no more than k tasks. Suppose each
task is performed in atomic chunks of length atom and suppose each task has length
at most �, an integer multiple of atom. Task Pi has an associated priority pi ≥ 0.
Priorities only increase. At any time a new task of priority 0 may be created so long
as there are at most k tasks altogether. It will be convenient to keep placeholder tasks
of priority 0 to ensure that there are always exactly k tasks at hand.

After every atom steps a task Pi is chosen to be executed for the next atom steps
(possibly, but not necessarily, the same task as on the previous atom steps) which
satisfies the following rule:

λ pi − work performed on Pi + λ · error ≥ λpj − work performed on Pj for all j �= i,

where error represents the maximum error in the recorded priorities (as opposed to
the actual priorities pi, pj) and λ > 0 is a scale parameter relating priorities to steps
executed. After executing these atom steps, the priorities of an arbitrary subset of
tasks are increased by a combined total of at most p-inc.

Lemma 6.20. The above scheduling algorithm, if atom ≥ 4λmax{error, p-inc},
satisfies

λpi + �− work performed on Pi ≤ λ (error + p-inc) + (atom + �)

+ 4λ(error + p-inc) log k.

Corollary 6.21. pi ≤ (error+ p-inc)+ 1/λ(atom+ �)+ 4(error+ p-inc) log k.
Proof of Lemma 6.20. We use a potential argument. We show that if there

is a task Pj with priority plus 1/λ times remaining work (strictly, 1/λ(� − work
performed on Pj)) at least �/λ+ error+atom/λ, when a task is chosen to have atom
steps executed, then the potential will not increase following these atom steps being
performed and the applying of the combined p-inc increment to the priorities.

We associate potential cri with task Pi, 1 ≤ i ≤ k, where c > 1 is a suitable
constant and ri is defined as follows: ri = λ pi + �− work performed on Pi.

Clearly, following atom steps being executed on Pi and potentials being incre-
mented by p-inc, the maximum increase in potential occurs if all the incremental pri-
ority is concentrated on the task Pj with largest rj . We note that ri + λ · error ≥ rj
prior to the execution of atom steps on Pi. Thus if rj ≥ � + λ · error + atom, then
ri ≥ � + atom, so after atom steps of work are performed on Pi, Pi’s potential de-
creases by a multiplicative factor of catom. We want to ensure that the potential does
not increase. For this, it suffices that

crj+λ p-inc + cri−atom ≤ crj + cri .

Clearly, this is hardest to satisfy with ri + λ · error = rj ; so it suffices that

cλ(error + p-inc) + c−atom ≤ cλ · error + 1.
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Let Δ = λmax{error, p-inc}. Choosing c so that c2Δ =
√

2 and choosing atom ≥ 4Δ
yields a sufficient condition of

√
2 + (1/

√
2)2 ≤ 1 + 1,

which is true.
Thus the largest potential possible is less than

(k − 1) cλerror+(atom+�) + cλ(error+p-inc)+(atom+�) ≤ k cλ(error+p-inc)+(atom+�).

Hence cri ≤ k cλ(error+p-inc)+(atom+�) for all i, from which the claimed bound on ri
follows.

A special case arises when error = 0 and atom = �.
Corollary 6.22. If error = 0 and atom = �, then pi ≤ (9 + 4 log k) p-inc.
Proof. Set λ = atom/(4p-inc).
Dietz and Sleator proved this bound with somewhat tighter constants, namely

pi ≤ p-inc · (log k + O(1)). This is often called the Dietz–Sleator cup-filling lemma.

6.10. Scheduling in the O(1) time algorithm. In the O(1) time algorithm
a layered structure will be used. The tree is binarized and partitioned into subtrees
of size O(log3 n). The roots of these subtrees and their LCAs form an implicit tree on
which the previous O(log3 n) time update algorithm is run. Intuitively, the subtree
roots change only every Θ(log3 n) insertions, which provides enough time to perform
the O(log3 n) operations needed for an update.

Let T denote the tree of n nodes on which LCA queries are being performed and
let T1 denote the implicit tree. As we will see, T1 has at most 4n/ log3 n nodes, and
this relationship applies to each subtree of T and the corresponding subtrees of T1.
An insertion of a node v in T will result in a weight increase of either 0 or 4/ log3 n
to the following node in T1: the node that is the root of the size O(log3 n) subtree
containing v in the binarized version of T . The rule for the weight increase is discussed
later in section 7 when we discuss how to maintain the size O(log3 n) subtrees.

Also, a new node of weight zero may be inserted in T1 as a result of an insertion
into T . As already noted, weight 0 nodes are adjacent only to weight 1 nodes. Again,
details on when this happens are given in section 7.

At this point, we describe a schedule that updates path weights and performs
Assign( ), Rescale( ), Reassign( ), and Compact( ) processes as needed but with
only O(1) work per insertion to T .

The major difficulty we face is that on updating the weight of a node (as a result
of an insertion in T ), we cannot immediately update the weights of all the ancestral
centroid paths (note that we only track the weight of the subtrees rooted at the heads
of centroid paths—together with the individual node weights, this suffices to track the
weight changes when a head node leaves a centroid path). Instead we create a weight
update task for each node in T1. The weight update task for node v is responsible for
updating the weights of head nodes ancestral to v to reflect an increase in v’s weight.
It may be run multiple times. The execution of weight update tasks is alternated
with the execution of Assign( ), Rescale( ), Reassign( ), and Compact( ) processes
in stages of length Θ(logn), with each update weight task being run to completion
once initiated. An update weight task will take O(log n) time to run to completion, as
we will see. This ensures that the Assign( ), Rescale( ), Reassign( ), and Compact( )
processes, when underway, always see a tree T1 with consistent weights at the different
head nodes.
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Recall that we also need to track the weight of insertions made to each i-path so as
to know when to initiate an i-process (it suffices to keep track of this value mod 2i+1).
To this end, each update weight task also increments these weights. The update
weight task for node v needs to store two values: the first value is the increment being
made to each of its ancestral centroid paths if it is underway, which equals the weight
increment to v between the start of the previous and current runs of the task; the
second value is the weight increment to v since the task last began running.

The weight update tasks are scheduled using the standard Dietz–Sleator cup-
filling scheduler. A task’s priority is given by the sum of the two increment values
it holds. Here atom = Θ(p-inc) = Θ(1/ log2 n) and k = Θ(n/ log3 n), for p-inc, the
increase in priority during the execution of one task is defined to be a tight upper
bound on the total weight increase to T1 when performing one run of one task. We
choose the constant of proportionality so that the start of successive runs of the task
for a node v are separated by at most a weight increase of α/ log n on v’s part, for a
suitable constant α > 0.

Remark 6.23. This implies that when a weight is updated, it is updated by at
most p-inc ≤ α/(4 log2 n) ≤ 1/ log2 n, as we will choose α ≤ 1.

By Corollary 6.22 this entails that (9 + 4 logn) p-inc ≤ α/ log n, i.e., that an
update task runs to completion during a period bounded by a weight increase of
α/[(9 + 4 logn) log n] to T1. But such a weight increase requires Ω(log n) insertions,
and as one run of the task takes O(log n) time, this takes O(1) time per insertion
to T .

Now we can show the following lemma.

Lemma 6.24. The recorded size of an i-path is at most α(2i+1+2i−1+2i−2)/ log n
smaller than the actual size and no larger than the actual size, assuming the actual
size is less than 2i+1 + 2i−1 + 2i−2.

Proof. Consider the subtree rooted at the head node of the i-path. If it has
r nodes of weight 1 it has at most 2r + 1 nodes of weight less than 1 (since all but
possibly one node of weight less than 1 has a parent, necessarily of weight 1, and since
each weight 1 node has at most one child of weight less than 1). Since the subtree has
size less than 2i+1 +2i−1 +2i−2, it has at most 2i+1 +2i−1 +2i−2 nodes of weight less
than 1. But the recorded weight of each such node is in deficit by at most α/ log n,
and the result follows.

We are ready to describe the scheduling of the Assign( ), Rescale( ), Reassign( ),
and Compact( ) processes. For each i, we run a separate modified cup-filling procedure
for the i-processes. The priority of a process is simply the weight of insertions in the
associated subtree since the moment when the process would have been initiated in our
original algorithm. For an Assign(π) process this is approximated using the current
size of i-path π minus 2i; the size of π when Assign(π) should have been initiated.
For Compact(π) and Reassign( ) superprocesses, we need to record the weight of
insertions mod 2i+1 that have occurred in the subtree rooted at the head of i-path π
since π was created. This term minus the starting time of the process mod 2i+1, as
specified in Invariant 1, yields the priority (for Reassign( ), the priority is calculated
with a shift of 2i−3 mod 2i+1). It follows the recorded priority maybe too small, but
by at most α(2i+1 + 2i−1 + 2i−2)/ log n.

We perform each scheduled process for one basic step, cycling among the classes
of processes for each class of i-path (i = 0, 1, 2, . . .) in round robin order. We alternate
between performing one basic step and one complete task updating path sizes. This
ensures the recorded sizes of the centroid paths are always consistent when basic steps
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are being performed. Thus every Θ(log2 n) insertions, one basic step is performed on
one process associated with a class i-path for each i = 1, 2, . . . .

Lemma 6.25. With the following parameter choices, each i-process finishes within
the time for 2i/8 weighted insertions into the corresponding i-path, assuming n ≥ 2.
The parameter choices are: error = 11α2i−1/ log n, � = e′ · i · 2i (measured in ba-
sic steps), λ = d log n, p-inc = atom/(4d log n), atom = 44α d 2i−1, d = 2/α,
e′ = � e

44� · 44, and α = 1/[4(154 + e′)].
Proof. We note that for these parameter values, � is an integer multiple of atom,

atom ≥ 4λmax{error, p-inc}, so Lemma 6.20 applies. Thus the process priorities are
always bounded by 11α 2i−1/ log n+11α 2i−1/ log n+1/(d log n)(44α d 2i−1+e′·i·2i)+
4(11α 2i−1/ log n + 11α 2i−1/ log n) log n ≤ α 2i−1(66/ log n + e′ · i/ log n + 88) ≤
2i/[8 · 4 (154 + e′)α] = 2i/8, assuming n ≥ 2.

It remains to show that O(1) work per weight increase of 4/ log3 n suffices.
Lemma 6.26. It suffices to perform O(1) work per weight increase of 4/ log3 n to

ensure that in the period in which an i-process performs atom basic steps the overall
weight and hence priority increase by at most p-inc.

Proof. These atom basic steps are performed over a period of Θ(atom log2 n) inser-
tions assuming O(1) work per insertion. (Recall that we cycle among the i-processes
for i = 0, 1, . . . , log n in round robin order, performing one basic step on an i-process
for each i, and each basic step takes O(log n) work.) Since each insertion causes a
weight increase of at most 4/ log3 n, the resulting weight gain is O(atom/ log n). No-
tice that the more work per insertion, the fewer insertions needed to complete the
atom basic steps and the smaller the weight increase. Thus with a large enough O(1)
work per insertion, the result holds.

We have shown the following theorem.
Theorem 6.27. The implicit tree T1 described above can be maintained in O(1)

work per insertion, assuming that each insertion results in a weight increase of 0 or
4/ log3 n, that each insertion adds at most one weight 0 node v to T1, and further that
such a node v is adjacent only to weight 1 nodes. Further, LCA queries on T1 can be
answered in O(1) time.

7. The O(1) worst-case algorithm. The tree T on which LCA queries are
being performed is made binary, using a standard binarization. More specifically, a
node v with d children is represented by d copies of v forming a chain of right children.
The actual children of v will be stored as the left children of this chain of nodes. Note
that if n items are inserted in an initially empty tree the binarized tree will contain
at least n nodes and at most 2n− 1. As a result, an insertion may entail the addition
of two nodes to the binarized tree, called T henceforth. To simplify the discussion,
from now on we term a node addition to T an insertion, understanding that a real
insertion may induce two insertions into T .

As already noted, T is kept partitioned in at most 4n/ log3 n subtrees, called
partitioning subtrees, each of size at most log3 n/4 (strictly, �(log n)/4	3). We assume
that n lies in the range [n, 2n); section 8 explains how to handle n increasing to 2n or
beyond. We create a tree T1 which contains the root of each subtree in the partition
of T . These subtrees are chosen so that the LCA of the roots of any two partitioning
subtrees is itself the root of a partitioning subtree. A node v in T1 is the parent of
node w in T1 if v is the nearest ancestor of w in T such that v is in T1. Clearly, as T
is binary, so is T1.

When a partitioning subtree grows too large it is split, causing the addition of
one or two nodes to T1 (two nodes may be needed to maintain the LCA property on
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subtree roots). But, as we will see, a newly created partitioning subtree once initiated
is itself partitioned only following Θ(log3 n) insertions into itself.

A partition of partitioning subtree S, rooted at node v, proceeds as follows. Once
initiated, within 1

4 log3 n further insertions into S it determines the root(s) of the new
subtrees. It then inserts one of the news roots in T1 as a child of v, giving it weight 0.
Over the next 1

4 log3 n insertions into S the weight of the new root is increased in

increments of 4/ log3 n until its actual weight is 1. Within the next 1
8 log3 n insertions

into S, we ensure v’s recorded weight becomes 1, as follows. Instead of following the
previously stated rule for giving priorities to weight update tasks, once the actual
weight of a node reaches 1, on each insertion to subtree S, we continue incrementing
its priority by 4/ log3 n. To bring the new root’s recorded weight to 1 may need the
completion of one run of its weight increase task and a full second run of the task.
We have ensured this occurs within a weight increase of 2α/ log n, so it suffices that
2α/ log n ≤ 1

8 log3 n · 4/ log3 n, and α ≤ 1/4 suffices for n ≥ 2. The second new root,
if any, is then inserted in the same way. Note that this ensures that any node in T1 of
weight less than 1 is adjacent only to nodes of weight 1, and nodes of weight 1 have
at most one child of weight less than 1.

To answer a query LCA(u, v), we first determined if u and v are in different
partitioning subtrees by finding, in O(1) time, the roots ru and rv of their respective
partitioning subtrees. If ru �= rv, we compute LCA(ru, rv) on T1 in O(1) time as
previously described (see Theorem 6.27). Otherwise, the query is handled recursively.

To support queries on the partitioning subtrees, they are partitioned in turn into
subtrees of size at most 4 log log3 n.8 For each partitioning subtree S of T we maintain
a tree S1 comprising the roots of S’s partitioning subtrees. Updates are performed us-
ing our previous algorithm, i.e., with O(log log3 n) work over Θ(log log3 n) insertions.
Queries are performed as in the previous paragraph. It is helpful to let T2 denote the
union of all the S1 trees.

The recursion bottoms out at the partitioning subtrees of size O(log log3 n) for,
as we will see, there are o(n) distinct partitioning trees of this size, and their updating
can be done via table lookup in O(1) time per insertion, as can LCA queries. The
requisite tables use o(n) space.

7.1. Details of the data structures. Each node in T keeps a pointer to its
newest ancestor in T2, the root of the size O(log log3 n) partitioning subtree to which
it belongs. Similarly, each node in T2 keeps a pointer to its nearest ancestor in T1, the
root of the size O(log3 n) partitioning subtrees to which it belongs. On an insertion,
the weight of the appropriate nodes in T2 and T1 are incremented in O(1) time, using
the above pointers.

Definition 7.1. The size of a partitioning subtree is the sum of the weights of
the nodes it contains.

The size of partitioning subtrees are recorded with their roots. On an insertion,
the up to two subtree sizes that change are incremented (by 4/ log log3 n and 4/ log3 n,
respectively); these sizes are stored at the subtrees’ roots.

Additional data is needed to support the splitting of the partitioning subtrees.
We begin by describing what is needed for splitting the size O(log log3 n) partitioning
subtrees. In addition to storing the subtrees themselves, we keep a table of all possible
trees, represented canonically. Using the canonical representation, in O(1) time we
will be able to answer LCA queries and to determine the new canonical tree resulting

8log log3 n is our notation for (log log n)3.
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from an insertion. Finally, by linking the nodes of the actual tree to those of the
corresponding canonical tree, we will be able to translate query answers on canonical
tree to answers on the actual tree in O(1) time.

The following information is maintained for each actual tree S.
1. For each node v in S, a distinct label, denoted label(v) in the range [1, log log3 n].

In addition, the up to two edges going to children outside S are also recorded.
(The structure of S along with the associated labels provides the appropriate
canonical labelled tree used to answer LCA queries on S.)

2. An array � to n(S) storing, for each label in the range [1, log log3 n], the node
in S corresponding to this label, if any. This inverse map is used to convert
the LCA obtained using lookup tables on the canonical tree from a label to
an actual node (for the canonical tree nodes are named by their labels).

3. The name name(S) of the labelled canonical tree associated with S, the root
root(S), of S, along with a pointer pointer(v) from each node v in S to the
location storing � to n(S), name(S), root(S), size(S), and flag(S). The role
of flag(S) is explained next.

4. Actually, two copies of label(v) and pointer(v) are maintained for each node v
in S. One of these copies will be “old” and the other “current.” This will
be indicated by the flag(S) field above. The flag(S) field pointed to by
the “old” pointer(v) will be set to 0 while that pointed to by the “current”
pointer(v) will be set to 1.

5. In addition to the above, there is a static table for each labelled tree of size
at most 4 log log3 n supporting the following queries: given two labels in the
tree, return the label of the LCA, and given a new label (corresponding to
a newly inserted node) and the label(s) corresponding to the node(s) at the
insertion site, return the name of the resulting labelled tree. Note that labels
for nodes in S are allocated in sequential order of insertion.
Since there are O(28 log log3 n (4 log log3 n)4 log log3 n) labelled binary trees of
size at most 4 log log3 n with labels in the range [1, log log3 n], the total space
occupied by the above tables is O(n). These tables can also be built in O(n)
time.

Processing insertions. Each insertion will do O(1) work at each of the 3 lev-
els. This will result in Θ(log3 n) work being available for each insertion into T1 and
Θ(log log3 n) work for each insertion into T2.

Insertions into T will require the following actions. First, the insertion into the
appropriate size O(log log3 n) partitioning subtree S of T rooted at a node in T2 is
made. This is done using a constant time table lookup to calculate the name of the
new subtree after insertion. Second, if S reaches size 3(log log3 n) then it is partitioned
into two or three subtrees, each of size at most 3 log log3 n, over the next log log3 n
insertions to S.

An insertion of node u into T is processed as follows.
Let v be the parent of u in T . u is viewed as being inserted into the partitioning

subtrees Sb and Sa containing v, of sizes O(log log3 n) and O(log3 n) and rooted in
T2 and T1, respectively. On following pointer(v), � to n(Sb), name(Sb), and size(Sb)
are readily updated in O(1) time (using table lookup for name(Sb)). If size(Sb)
reaches 3 log log3 n, a split of Sb is initiated. It is carried out as described below.
O(1) work is then performed on the tasks associated with the trees T1 and T2.

Splitting S = Sb. The first step is to find a splitting location that divides the
tree into two pieces each of size at least log log3 n. This can be done by depth first
search in O(log log3 n) time, or by table lookup in O(1) time. To ensure that the new
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trees have at most two external children each, we find the LCAs of the new roots
and the up to two external children; if one of these LCAs is not a new root, it is
also introduced as a third root. The one or two new roots are added to tree T2 with
the already explained timing (it suffices to carry out the depth first search within
1
4 log log3 n insertions). To simplify the notation, we continue to suppose that only
two new trees are created; the changes if there are three new trees are evident.

The new roots define S1 and S2, the trees that Sb is split into. Next, root(S1),
� to n(S1), name(S1), size(S1), root(S2), � to n(S2), size(S2), and name(S2) are
computed in the obvious way in O(log log3 n) time (e.g., by traversing each of S1 and S2

in turn and “inserting” their nodes one by one). Then for each node w the “old”
label(w) and pointer(w) are updated to be in accordance with S1 or S2, whichever
contains v, also in O(log log3 n) time.

Note that all this while the “current” label(v), pointer(v), name(S), root(S), and
� to n(S) are used to answer LCA queries; furthermore these structures are updated
with each insertion that occurs even after the splitting process starts. Also note
that after the splitting process starts, new insertions are neglected in constructing S1

and S2 and the associated fields name(S1), root(S1), � to n(S1), name(S2), root(S2),
� to n(S2). This is easily implemented by putting a time-stamp on each inserted
node and ignoring nodes which are time-stamped later than the start of the splitting
process. These insertions are just queued up and performed on S1 or S2 as appropriate
after they have been constructed. When all log log3 n insertions have been performed,
flag(S1) and flag(S2) are set and flag(S) is reset so that for each v in S1 and S2 the
“old” label(v) and pointer(v) become “current” and vice versa; this takes O(1) time.
Note that S1 and S2 each have size at most 3 log log3 n at this point.

Splitting algorithm for a size O(log3 n) partitioning subtree Sa. The splitting
algorithm on Sa begins when its size reaches 3 log3 n and is similar to the previous
splitting algorithm but is done without table lookup. For each partitioning Sa the
following information is maintained, in addition to the data structure storing the tree
itself.

1. For each node v, code(v), along with the annotations, and number(v).
2. The structure cpath(Sa) storing centroid paths and associated information

for paths in Sa.
3. For each node v, a pointer pointer(v) to the location storing cpath(Sa),

root(Sa), and flag(Sa).
4. Two copies of code(v), number(v), pointer(v), maintained as before. One of

these copies will be “old” and the other “current.” The appropriate flag(Sa)
indicates which of these copies is current.

The algorithm proceeds as before. First, the location of the split is determined
in O(log3 n) time using depth-first search. This splits Sa into two pieces each of size
at least log3 n, thereby defining S1 and S2. Then the data structures for S1 and S2

are computed, the backlog of insertions is applied, and finally the appropriate flats
are set. This all takes O(log3 n) time.

We have shown the following lemma.

Lemma 7.2. There is a data structure for trees of size in the range [n, 2n) which
answers LCA queries in O(1) time and performs insertions to the tree in O(1) time.

Remark 7.3. Although space is not freed when subtrees are split, the space used
is still linear. For each split of a size s tree, using space Θ(s), only happens after
Θ(s) insertions.
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8. Handling deletions and changing values of n. We note that the need
for the limited range in Lemma 7.2 arises for two reasons: first, the construction in
section 7 requires a fixed value of log3 n (and of log log3 n), and second, the basic
algorithm takes O(log3 n) time per update; here the log3 n is not fixed. But we could
readily change the range to [n, 2dn) for any fixed n by replacing log3 n by (logn+ d)3

in section 7. As we will see, d = 3 suffices.

We do not perform deletions explicitly. Instead, deleted items will just be marked
as such, or rather the topmost copy of the corresponding node will be so marked. Thus
the size of the current tree would include the count of both deleted and nondeleted
nodes. We will periodically rebuild the data structure from scratch, in the background,
so as to maintain the following invariant.

Invariant 3. The insertion count, the number of items in the data structure plus
the number of items marked deleted, lies in the range [4 ·2i, 32 ·2i]; the actual number
of items in the data structure lies in the range [6 · 2i, 32 · 2i]. In addition, the number
of deleted items is at most 3 · 2i. Furthermore, immediately after being rebuilt the
insertion count is in the range [8 ·2i, 31 ·2i], the actual count in the range [7 ·2i, 31 ·2i],
and the deletion count is at most 2i+1.

Invariant 3 implies that the number of nodes in the tree lies in the range [4 · 2i,
64 · 2i), and thus d = log 64/4 = 4 suffices.

Let the actual size of the data structure denote the number of undeleted items. If
the insertion count reaches 31·2i, the data structure is rebuilt in the range [8·2i, 64·2i];
if the actual size decreases to 7n, then it is rebuilt in the range [2 ·2i, 16 ·2i]; if neither
of these apply but the number of items marked deleted reaches 2i+1, then it is rebuilt
either in the range [4 · 2i, 32 · 2i] if the actual size is at least 8n, and in the range
[2 · 2i, 16 · 2i] otherwise. The rebuilding is completed within 2i insertions; this takes
O(1) time per insertion. It is readily checked that Invariant 3 continues to hold
following the rebuilding.

An easy way to perform the rebuilding is to traverse the current tree, determining
the undeleted items and then inserting them in the new tree, one by one, using the
appropriate value for log3 n. Of course, new insertions and deletions are performed
on the current tree and queued so they can be performed on the new tree.

We have shown the following theorem.

Theorem 8.1. There is a linear time data structure that supports LCA queries
on a tree undergoing insertions and deletions such that each update and query can be
performed in worst case O(1) time.

Acknowledgments. We thank the referees for urging us to seek a less complex
solution which led us to the present version of the data structure.
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YI-TING CHIANG† , CHING-CHI LIN† , AND HSUEH-I LU‡

Abstract. We introduce and study orderly spanning trees of plane graphs. This algorithmic
tool generalizes canonical orderings, which exist only for triconnected plane graphs. Although not
every plane graph admits an orderly spanning tree, we provide an algorithm to compute an orderly
pair for any connected planar graph G, consisting of an embedded planar graph H isomorphic to G,
and an orderly spanning tree of H. We also present several applications of orderly spanning trees:
(1) a new constructive proof for Schnyder’s realizer theorem, (2) the first algorithm for computing
an area-optimal 2-visibility drawing of a planar graph, and (3) the most compact known encoding of
a planar graph with O(1)-time query support. All algorithms in this paper run in linear time.

Key words. planar graph algorithm, graph drawing, realizer, visibility representation, canonical
ordering, orderly spanning tree, graph encoding, triangulation, unit-cost RAM model, succinct data
structure, data compression

AMS subject classifications. 05C62, 05C85, 68P05, 68W35, 68U05, 68R10, 94C15
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1. Introduction. A plane graph is a planar graph equipped with a plane em-
bedding. Canonical orderings of triconnected plane graphs [11, 19, 27, 28] are crucial
in several graph-drawing and graph-encoding algorithms [7, 8, 9, 16, 20, 22]. This
paper introduces the orderly spanning tree as an algorithmic tool that generalizes the
concept of canonical orderings for plane graphs that are not required to be tricon-
nected. The concept of orderly spanning trees of plane graphs originates from that
of canonical spanning trees of triconnected plane graphs [9], but the former is more
general even for triconnected plane graphs (see section 2.1 and Figure 2.1(b)).

We say that (H,T ) is an orderly pair of G if (1) T is an orderly spanning tree of
plane graph H, and (2) G and H, ignoring their embeddings, are isomorphic planar
graphs. Although not every connected plane graph admits an orderly spanning tree
(see section 2.1 and Figure 2.2(a)), we provide a linear-time algorithm (see section
2.2) to compute an orderly pair for any connected planar or plane graph. We also
present three applications of orderly spanning trees in the paper.

Application 1: Realizers of planar graphs. A graph is simple if it contains no
multiple edges. For the first application of orderly spanning trees, we present a new
linear-time algorithm to compute a realizer for any plane triangulation (i.e., simple
triangulated plane graph with at least three nodes). Schnyder [38] gave the first
known linear-time algorithm that computes a realizer for any plane triangulation,
thereby settling the open question on the dimension [42, 14] of planar graphs. This
celebrated result also yields the best known straight-line drawing of planar graphs on
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the grid [39]. Our proof, based upon the existence of an orderly spanning tree for any
simple plane triangulation, is quite simple.

Application 2: Optimal 2-visibility drawings of planar graphs. For the second
application of orderly spanning trees, we give an O(n)-time algorithm that produces
a 2-visibility drawing of area at most (n − 1) ×

⌊
2n+1

3

⌋
for any n-node simple plane

graph H with n ≥ 3. Let v1, v2, . . . , vn be the nodes of H. A 2-visibility drawing [16]
of H consists of n nonoverlapping rectangles b1, b2, . . . , bn such that if vi and vj are
adjacent in H, then bi and bj are visible to each other either horizontally or vertically.1

For example, the picture in Figure 1.1(b) is a 2-visibility drawing of the plane graph
in Figure 1.1(a). Fößmeier, Kant, and Kaufmann [16] gave an O(n)-time algorithm
to compute an x× y 2-visibility drawing for H with x+ y ≤ 2n and conjectured that
it is “not trivial” to improve their upper bound. Moreover, they showed an n-node
plane triangulation whose x× y 2-visibility drawing requires x + y ≥ n− 1 +

⌊
2n+1

3

⌋
and min{x, y} ≥

⌊
2n+1

3

⌋
.2 According to their lower bounds, the 2-visibility drawing

produced by our algorithm is worst-case optimal.

In order to take advantage of the wonderful properties of canonical orderings,
many drawing algorithms work on triangulated versions of input plane graphs. As
pointed out in [19], the initial triangulation tends to ruin the original plane graph’s
structure. Our orderly pair algorithm appears as a promising tool for drawing graphs
neatly and compactly, without first triangulating the given plane graphs. The concept
of an orderly pair is more general than that of a canonical ordering, since all known
canonical orderings are only defined for triconnected plane graphs. The technique of
orderly pairs is potentially more powerful, since it exploits the flexibility of planar
graphs whose planar embeddings are not predetermined.

Application 3: Convenient encodings of planar graphs. For the third application of
orderly spanning trees, we investigate the problem of encoding a graph G into a binary
string S with the requirement that S can be decoded to reconstruct G. This problem
has been extensively studied with three objectives: (1) minimizing the length of S, (2)
minimizing the time required to compute and decode S, and (3) supporting queries
efficiently. As these objectives are often conflicting, a number of coding schemes with
different trade-offs have been proposed in the literature. The widely useful adjacency-
list encoding of an n-node m-edge graph G requires 2m�log2 n� bits. See [9, 22, 23,
29, 34, 37, 43] for O(n)-bit encodings of n-node planar graphs without efficient query
supports.

Under the model of unit-cost RAM [5, 10, 17, 40, 41, 45], where operations such
as read, write, and add on O(log n) consecutive bits take O(1) time, an encoding S
of G is weakly convenient [9] if it takes (i) O(m + n) time to encode G and decode
S, (ii) O(1) time to determine from S the adjacency of any two nodes in G, and
(iii) O(d) time to determine from S the neighbors of a degree-d node in G. If the
degree of a node can be determined from a weakly convenient encoding S in O(1)
time, then S is convenient [9]. For a planar graph G having multiple edges but no
self-loops, Munro and Raman [35] gave the first nontrivial convenient encoding of G
with 2m + 8n + o(m + n) bits. Their result is based on the four-page decomposition
of planar graphs [46] and auxiliary strings, encoding an involved three-level data

1A closely related rectangle-visibility drawing [13, 12, 25, 3] of H requires that vi and vj are
adjacent in H if and only if bi and bj are visible to each other.

2The lower bounds stated in [16] are x + y ≥ 5n
3

and min{x, y} ≥ 2n
3

. Based on the given
sketch of proof, however, it is not hard to see that their lower bound should be corrected as x+ y ≥
n− 1 +

⌊
2n+1

3

⌋
and min{x, y} ≥

⌊
2n+1

3

⌋
.
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Fig. 1.1. (a) A plane graph H with an orderly spanning tree of H rooted at node 1 represented
by the thick edges. (b) A 2-visibility drawing of H. (c) A realizer (T1, T2, T12) of H, where T1

(respectively, T2 and T12) consists of the thick (respectively, dashed and thin) edges.

structure for any string of parentheses. For a planar graph G that has (respectively,
has no) multiple edges, Chuang, Garg, He, Kao, and Lu [9] improved the bit count
to 2m +

(
5 + 1

k

)
n + o(m + n) (respectively, 5

3m +
(
5 + 1

k

)
n + o(n)) for any positive

constant k. They also provided a weakly convenient encoding of 2m+ 14
3 n+ o(m+n)

(respectively, 4
3m + 5n + o(n)) bits for a planar graph G that has (respectively, has

no) multiple edges. Based on our orderly pair algorithm, in this paper we present the
best known convenient encodings for a planar graph G: If G may (respectively, does
not) contain multiple edges, then the bit count of our encoding is 2m+3n+ o(m+n)
(respectively, 2m + 2n + o(n)), which is even less than that of the weakly convenient
encodings of Chuang et al. [9]. The bit counts are very close to Tutte’s information-
theoretical lower bound of roughly 3.58m bits for encoding connected plane graphs
without any query support [44]. The bit count of our encoding for a planar graph
G without multiple edges matches that of the best known convenient encoding for
an outerplanar graph [35]. Besides relying on the orderly pair algorithm, our results
are also based on an improved auxiliary string for a folklore encoding [9, 21, 35] of
a rooted tree T . With the auxiliary strings of Munro and Raman [35], computing
the degree of a degree-d node in T requires Θ(d) time. In this paper, we present a
nontrivial auxiliary string, in Lemma 5.3, to support the degree query in O(1) time.

Recent applications. Besides the applications presented in the present paper, our
orderly pair algorithm also yields the following recent results:

• Improved compact distributed routing tables for any n-node distributed pla-
nar network [33], improving the best previously known design of Gavoille and
Hanusse [18] by reducing the worst-case table size count from 8n + o(n) bits
to 7.181n+o(n) bits, without increasing the time complexity of preprocessing
and query.

• A linear-time algorithm for compact floor-plans of plane triangulations [30,
31], which is not only much simpler than the previous methods in the litera-
ture [20, 47] but also provides the first known nontrivial upper bound on the
floor-plan’s area.

• Compact Podevs drawings for plane graphs and an alternative proof for the
sufficient and necessary condition for a planar graph to admit a rectangular
dual [6].

• Improved upper bounds on the number of planar graphs via so-called well
orderly spanning trees, which are orderly spanning trees with additional prop-
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Fig. 2.1. (a) The tree rooted at node 1, consisting of the thick edges, is not an orderly spanning
tree of the plane graph. (b) A triconnected plane graph H, where the thick edges form an orderly
spanning tree T , rooted at node 1, of H. The counterclockwise preordering of T is not a canonical
ordering of H. (c) Illustration for the orderly pattern of vi.

erties [2].
Organization of the paper. The rest of the paper is organized as follows. Sec-

tion 2 gives the linear-time algorithm for computing an orderly pair of any given
planar graph. Applications are given in sections 3–5. Section 3 gives the linear-time
algorithm for computing a realizer of any given plane triangulation. Section 4 shows
the linear-time algorithm for obtaining an area-optimal 2-visibility drawing of any
given plane graph. Section 5 presents the best known convenient encodings for planar
graphs.

2. Orderly spanning trees for plane graphs.

2.1. Basics. Unless stated otherwise, all graphs in sections 2–4 are simple. Let
H be a plane graph. The outer boundary of H is the boundary of the external face
of H. The nodes and edges on the outer boundary of H are external in H; and the
other nodes and edges are internal in H.

Let T be a rooted spanning tree of a connected plane graph H. Two distinct
nodes of H are unrelated with respect to T if neither of them is an ancestor of the
other in T . An edge e of H is unrelated with respect to T if the endpoints of e are
unrelated with respect to T . Let v1, v2, . . . , vn be the counterclockwise preordering
of the nodes in T . A node vi is orderly in H with respect to T if the neighbors of vi
in H form the following four blocks of H with respect to T in counterclockwise order
around vi, where each block could be empty.

• P (vi): the parent of vi in T ;
• U<(vi): the nodes vj with j < i that are unrelated to vi with respect to T ;
• D(vi): the children of vi in T ; and
• U>(vi): the nodes vj with j > i that are unrelated to vi with respect to T .

(See Figure 2.1(c).) T is an orderly spanning tree of H if (i) v1 is on the outer
boundary of H and (ii) each node vi is orderly in H with respect to T . If T is an
orderly spanning tree of H, then each incident edge of v1 in H belongs to T . An
example of an orderly spanning tree is given in Figure 1.1(a). Figure 2.1(a) provides
a negative example of an orderly spanning tree, where nodes 1, 3, 8, and 10 are not
orderly in H with respect to T .

Not every connected plane graph admits an orderly spanning tree. However, as to
be shown in this section, there always exists a planar embedding for any given planar
graph that admits an orderly spanning tree. For example, consider the plane graph
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Fig. 2.2. (a) A plane graph H that has no orderly spanning trees. (b) A different planar
embedding of H that admits an orderly spanning tree rooted at node 1, consisting of the thick edges.

H in Figure 2.2(a). Assume for a contradiction that H admits an orderly spanning
tree T rooted at node 1. Observe that the thick edges must be in T , and thus the
thin edges cannot be in T . Now, T contains exactly one of the dashed edges. In
either case, however, the parent of node 6 in T is not orderly in H with respect to
T , thereby contradicting the assumption that T is an orderly spanning tree rooted at
node 1. Since H is rotationally symmetric, H admits no orderly spanning trees. If
we change the planar embedding of H by moving edge (2, 5) to the interior of H, as
shown in Figure 2.2(b), then the new plane graph has an orderly spanning tree rooted
at node 1 consisting of the thick edges.

The concept of orderly spanning trees of plane graphs originates from those of
canonical orderings and canonical spanning trees of triconnected plane graphs. Let
H be a triconnected plane graph. A canonical ordering of H is a certain ordering of
the vertices in H, first introduced by de Fraysseix, Pach, and Pollack [11] for plane
triangulations, and extended to triconnected plane graphs by Kant [27]. Specifically,
let v1, v2, . . . , vn be an ordering of the nodes of H. Let Hi be the subgraph of H
induced by v1, v2, . . . , vi. Let Bi be the outer boundary of Hi. This ordering is
canonical if the interval [3, n] can be partitioned into I1, . . . , IK with the following
properties for each Ij . Suppose Ij = [k, k + q]. Let Cj be the path vk, vk+1, . . . , vk+q.

• Hk+q is biconnected. Bk+q contains the edge (v1, v2) and Cj . Cj has no
chord in H.

• If q = 0, vk has at least two neighbors in Hk−1, all on Bk−1. If q > 0, Cj

has exactly two neighbors in Hk−1, both on Bk−1, where the left neighbor is
incident to Cj only at vk and the right neighbor only at vk+q.

• For each vi with k ≤ i ≤ k + q, if i < n, vi has at least one neighbor in
H −Hk+q.

Chuang et al. [9] defined a canonical spanning tree T of H as a way to find parents
in T for all except one node of H according to any given canonical ordering of H.
Specifically, for the given canonical ordering of H, the canonical spanning tree T of
H rooted at v1 is the one formed by the edge (v1, v2) together with the paths Cj and
the edges (v�, vk) over all Ij , where v� is the leftmost neighbor of Cj on Bk−1. By
the triconnectivity of H, it is implicit in [9] that (a) any canonical spanning tree T
of H has to be an orderly spanning tree of H, and (b) the counterclockwise preorder-
ing of T is the given canonical ordering of H. As shown in Figure 2.1(b), however,
the counterclockwise preordering of an orderly spanning tree for a triconnected plane
graph H may not be a canonical ordering of H. Therefore, the concept of orderly
spanning trees is more general than that of canonical spanning trees even for tricon-
nected plane graphs. The counterclockwise preordering of any orderly spanning tree
of a plane triangulation Δ has to be a canonical ordering of Δ, though.
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H

prev(H, v)

cw(H, r, v)

next(H, v)

ccw(H, r, v)

v

r

Fig. 2.3. Illustration of the definitions of prev(H, v), next(H, v), cw(H, r, v), and ccw(H, r, v).

2.2. The orderly pair algorithm. For plane graphs H and G, H ∼ G denotes
that H and G (ignoring their plane embeddings) are isomorphic planar graphs. We
say that (H,T ) is an orderly pair of a connected planar graph G with respect to r if
(i) H ∼ G and (ii) T rooted at r is an orderly spanning tree of H. This subsection
shows how to compute an orderly pair for any planar graph in linear time. Without
loss of generality, we may assume that the input planar graph is already equipped
with a planar embedding represented by an adjacency list, where each node v keeps a
doubly linked list, storing its neighbors in counterclockwise order around v. Moreover,
the two copies of each edge are cross-linked to each other. Such a representation can
be obtained as a by-product by running the linear-time planarity-testing algorithm
of Hopcroft and Tarjan [24] or that of Boyer and Myrvold [4]. Based upon this
representation, deleting an edge takes O(1) time. Moreover, moving an edge e to the
interior of a face F can be conducted in O(1) time, as long as an edge on the boundary
of F incident to each endpoint of e is provided. (Our algorithm moves an edge e to
the interior of F only when it traverses the boundary of F .)

To describe the algorithm, we need some definitions for a 2-connected plane graph
H. If v is an external node in H, then let nextH, v (respectively, prevH, v) denote
the external node of H that immediately succeeds (respectively, precedes) v in coun-
terclockwise order around the outer boundary of H. For any two distinct external
nodes r and v of H, let ccw(H, r, v) (respectively, cw(H, r, v)) denote the sequence
of the external nodes of H from r to v in counterclockwise (respectively, clockwise)
order around the outer boundary of H. Observe that prev(H, v) ∈ ccw(H, r, v) and
next(H, v) ∈ cw(H, r, v). Define boundary(H, r) = ccw(H, r,prev(H, r)), i.e., the se-
quence of the external nodes of H from r to prev(H, r) in counterclockwise order
around the outer boundary of H. See Figure 2.3 for an illustration. For example,
if H is the plane graph shown in Figure 2.2(b), then we have that next(H, 2) = 6,
prev(H, 2) = 1, ccw(H, 1, 6) = (1, 2, 6), cw(H, 1, 6) = (1, 5, 6), and boundary(H, 1) =
(1, 2, 6, 5).

The key component of our orderly pair algorithm is the recursive subroutine
block(G, r, v) shown below. Given any 2-connected plane graph G and two distinct
external nodes r and v of G, the subroutine block(G, r, v) computes an orderly pair
(H,T ) of G with respect to r. Let us emphasize that v can be any external node of G
other than r. The high-level strategy of block(G, r, v) is to identify a neighbor p of v
in G that can be the parent of v in T . The subroutine then deletes v and its incident
edges and recursively works on each 2-connected component of the remaining graph.
The difficulty lies in efficiently choosing an appropriate parent of v with possible
modification to the plane embedding of G. More precisely, we want the subroutine to
alter the embedding of G into H and find a neighbor p of v such that (1) the required
time is linear in the total size of the internal faces of G that contains v and (2) the
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following property Π holds for H and p:

For each neighbor x of v in H other than p, if x and prev(H, v)
(respectively, next(H, v)) are on the same side of (v, p) in H, then
(v, x) is on the first (respectively, last) internal face of H containing
v and x in counterclockwise order around v starting from the one
containing (v,next(H, v)).

(See Figure 2.5(b) for an illustration of property Π.) It turns out that a two-phase
process serves the purpose: We say that an edge of G is movable if the embedding of G
can be changed by moving the edge into a face of G. For example, edges (1, 2), (2, 5),
and (5, 1) are the movable edges in the plane graph shown in Figure 2.2(a). Imagine
that node v is at the “bottom” of G. The first phase flips each movable incident edge
of v to the leftmost possible face. At the end of the first phase, the node p is exactly
the neighbor of v on cw(G, r, v) that is closest to r. After determining p, the second
phase flips each movable incident edge of v that is to the left of edge (p, v) to the
rightmost possible face.

When recursively taking care of each 2-connected component Gi of G′, the sub-
routine has to choose two distinct nodes ri and vi on the outer boundary of Gi for the
recursive subroutine call block(Gi, ri, vi). For any choice of ri and vi, the subroutine
call will return an orderly pair (Hi, Ti) of Gi with respect to ri. However, to ensure
that gluing all returned orderly pairs together yields an orderly pair of G, we have to
be careful about the choice of each vi.

The detailed description of block(G, r, v) is as follows.

Subroutine block(G, r, v).

Step 1. If G consists of a single edge (r, v), then return (G,G); otherwise, perform
steps 2–7.

Step 2. Perform step 2.1 for each internal face F incident to node v in G in clockwise
order around v starting from the one containing (v,prev(G, v)).
Step 2.1. For any node x in F such that (v, x) is an edge of G succeeding F in

clockwise order around v starting from (v,next(G, v)), update the
planar embedding of G by flipping (v, x) into the interior of F .
Remark. For instance, if v and F are as shown in Figure 2.4, then
(v, x1) and (v, x2) will be flipped into the interior of F by step 2.1.

Step 3. Let p be the neighbor of v in G closest to r in cw(G, r, v).
Step 4. Perform step 4.1 for each internal face F of G that succeeds (v, p) in counter-

clockwise order around v starting from the face containing (v, p):
Step 4.1. For any node x in F such that (v, x) is an edge of G succeeding

F in counterclockwise order around v starting from (v,next(G, v)),
update the planar embedding of G by flipping (v, x) into the interior
of F .
Remark. For instance, if v and F are as shown in Figure 2.4, then
(v, x3) and (v, x4) will be flipped into the interior of F by step 4.1.

Step 5. Let G′ be the graph obtained by deleting all the incident edges of v in G,
except for (v, p). Compute the 2-connected components of G′ by traversing
the segment of the outer boundary of G′ from prev(G, v) to next(G, v) in
counterclockwise order around the outer boundary of G′.
Remark. Since G is 2-connected, we know that all 2-connected components
of G′ are external to one another. Therefore, the above traversal of part of
the outer boundary will suffice. Also, by the definitions of G′ and p, one of
the 2-connected components of G′ consists of the single edge (v, p).
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x1

prev(G, v)

next(G, v)

v

x3x4

x2

F

Fig. 2.4. F is an internal face of G containing nodes v and xi, but not edge (v, xi) for each
i ∈ {1, 2, 3, 4}.

Step 6. Compute (Hi, Ti) = block(Gi, ri, vi) for each 2-connected component Gi of
G′, where ri is the node of Gi closest to r in G′, and vi is defined as follows:
Case 1. Gi = (v, p). Let vi = v.
Case 2. Gi and prev(G, v) are on the same side of (v, p) in G. Let S consist of

the nodes in both ccw(Gi,next(Gi, ri),prev(Gi, ri)) and ccw(G, r, v).
If S is empty, then let vi = next(Gi, ri). Otherwise, let vi be the last
node of S in counterclockwise order around the outer boundary of
Gi.

Case 3. Gi and next(G, v) are on the same side of (v, p) in G. Let S consist of
the nodes in both ccw(Gi,next(Gi, ri),prev(Gi, ri)) and cw(G, r, v).
If S is empty, then let vi = prev(Gi, ri). Otherwise, let vi be the first
node of S in counterclockwise order around the outer boundary of
Gi.

Step 7. Return (H,T ), where H is obtained from G by replacing each Gi with Hi,
and T is the union of all Ti.

An illustration of block(G, r, v) is given in Figure 2.5. Let G be the 2-connected
plane graph shown in Figure 2.5(a). At the completion of step 4, the resulting em-
bedding of G and p are as shown in Figure 2.5(b), where the gray ellipse with label
i is the ith 2-connected component Gi of G′. Note that (v, p) is also a 2-connected
component of G′. One can verify that after step 6 we have that r1 = r, r2 = r6,
r8 = r9, r11 = r12 = p, and v11 = v. For the 2-connected components lying on the
same side of (v, p) with prev(G, v), we have v1 = r2, v2 = r3, v3 = r4, v4 = prev(G, v),
and that vi = next(Gi, ri) holds for each i ∈ {5, 6, . . . , 10}. For the 2-connected com-
ponents lying on the same side of (v, p) with next(G, v), we have v12 = r13, v13 = r15,
v14 = prev(G14, r14), and v15 = next(G, v).

Lemma 2.1. If r and v are two distinct external nodes of a 2-connected plane
graph G, then block(G, r, v) outputs an orderly pair of G with respect to r.

Proof. Let (H,T ) be the output of block(G, r, v). We prove the following proper-
ties of (G,H, T, r, v) by induction on the number of edges in G:

1. Each external node of G remains external in H. Moreover, boundary(G, r) is
a subsequence of boundary(H, r).

2. (Property Π.) For each neighbor x of v in H other than p, if x and prev(H, v)
(respectively, next(H, v)) are on the same side of (v, p) in H, then (v, x) is on
the first (respectively, last) internal face of H containing v and x in counter-
clockwise order around v starting from the one containing (v,next(H, v)).

3. T rooted at r is a spanning tree of H such that exactly one of the following
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Fig. 2.5. (a) A 2-connected plane graph G, where each gray ellipse is a 2-connected component
of G − {v}. (b) The plane graph G at the completion of performing steps 1–4 of block(G, r, v).
Observe that all edges incident to v, especially those dashed (i.e., movable) edges, satisfy property
Π.

conditions holds for each node u in ccw(H, r, v) (respectively, cw(H, r, v)):
(i) u is a leaf of T ; or (ii) next(H,u) (respectively, prev(H,u)) is the lowest-
indexed (respectively, highest-indexed) child of u in T .

4. H ∼ G.
5. T rooted at r is an orderly spanning tree of H.

Properties 4 and 5 suffice, but we need the other properties to enable the induction
step. When G consists of a single edge (r, v), by step 1 we have H = T = G. It
is not difficult to see the inductive basis of each property holds. Suppose that G′

consists of k 2-connected components. By step 6, we have ri �= vi for each i. It
follows from the inductive hypothesis that properties 1–5 of (Gi, Hi, Ti, ri, vi) hold for
each i ∈ {1, 2, . . . , k}. The rest of the proof shows the induction step. For brevity, for
each j = 1, 2, . . . , 5, we abbreviate “property j of (Gi, Hi, Ti, ri, vi)” to “property j of
Gi” and use “property j (of G)” to stand for “property j of (G,H, T, r, v).”

Property 1. Observe that throughout the execution of block(G, r, v), without ac-
counting for its subsequent subroutine calls to block, the embedding of G changes
only by flipping edges into the interior of internal faces of G in steps 2 and 4. Thus,
based on how H is obtained from G in step 7, it follows from property 1 of Gi for
each i ∈ {1, 2, . . . , k} that the property holds.

Property 2. Let property 2′ stand for the property obtained from property 2 by
replacing each H with a G. From steps 2 and 4, one can verify that the plane graph G
at the completion of performing step 4 satisfies property 2′. From property 2 and how
H is obtained from G in step 7, we know that the relative order among the incident
edges of v and the faces containing v remains the same in G and H. Therefore the
property follows from property 2′.

Property 3. For each i ∈ {1, 2, . . . , k}, property 3 of Gi implies that Ti is a
spanning tree of Hi. Since H1, H2, . . . , Hk are edge disjoint, and each node of H
belongs to some Hi, we know that T , the union of all Ti, is a spanning tree of H.
Since v is a leaf of T , the required property holds for v. Let x be an external node of
H other than v. If (x, v) is not an external edge of H belonging to H − T , then the
required property for x follows from the property of x guaranteed by property 3 of
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Gi for each index i with x ∈ Hi. Otherwise, by property 2, x is either prev(H, v) or
next(H, v). Let Hj be the 2-connected component of H ′ containing x. We have that
vj = x. By property 3 of Gj , x is a leaf of Tj . Since (x, v) �∈ T , x is also a leaf of T
and property 3 holds for x.

Property 4. Observe that steps 2 and 4 flip an edge (v, x) into the interior of
F only if F contains both v and x. Therefore, the resulting embedding of G at
the completion of step 4 is still planar. According to how H is obtained from G in
step 7, the property follows from property 1 of G and properties 4 of Gi for all indices
i ∈ {1, 2, . . . , k}.

Property 5. Each neighbor of r in H is a child of r in T ; hence r is orderly in
H with respect to T . The rest of the proof shows that each node x other than r is
orderly in H with respect to T . Let H ′ be the graph obtained from H by deleting each
incident edge of v in H −T . Observe that H ′ ∼ G′ and that each Hi is a 2-connected
component of H ′. Let Ix consist of the indices i with x ∈ Hi. As x �= r, one can verify
that there is an index j in Ix such that x �= rj and x = ri for each index i ∈ Ix −{j}.

We first show that if (v, x) is an edge of H − H ′, then (v, x) is unrelated with
respect to T . If the index of x is higher than that of v, then by the fact that v is a
leaf in T , we know that (v, x) is unrelated. As for the case with the index of x lower
than that of v, let us assume for a contradiction that x is an ancestor of v in T . Since
(v, x) ∈ H − T and p is the parent of v in T , we know that x is also an ancestor of p
in T . Let P be the path of T between r and p. Thus, x ∈ P . Let y be the node of Hj

closest to p in P . It is not difficult to see that y ∈ cw(H, r, p) and y ∈ cw(Hj , rj , x).
Since (v, p) ∈ T , (v, x) ∈ H − T , and y ∈ cw(H, r, p), we know y �= x. Otherwise,
x would have been a neighbor of v in H closer to r than p in cw(H, r, v), thereby
contradicting the choice of p in step 3. As y �= x, x is not a leaf of Tj . By step 6(2),
x ∈ cw(Hj , rj , vj). Let z = prev(Hj , x). By property 3 of Gj , node z has to be the
largest-indexed child of x in Tj . Since x �= rj and y ∈ cw(Hj , rj , x), we know that
y and z are on different sides of the path of Tj between rj and x in Hj , thereby
contradicting the fact that z is the highest-indexed child of x in Tj .

We then show that x is orderly in H ′ with respect to T . If |Ix| = 1, then the
orderly pattern of x in H ′ with respect to T follows immediately from that in Hj with
respect to Tj , which is ensured by property 5 of Gj . When |Ix| ≥ 2, by properties 5
of Gi for all i ∈ Ix − {j}, each neighbor of x in

⋃
i∈Ix−{j} Hi is a child of x in T . It

follows from property 3 of Gj that all children of x in T are consecutive in H ′ around
x. Since x is orderly in Hj with respect to Tj , one can see that x is orderly in H ′

with respect to T .

Since v is a leaf of T , we know that v is orderly in H with respect to T . It remains
to show that each neighbor x of v in H −H ′ is orderly in H with respect to T . Let
z1 (respectively, z2) be the neighbor of x that precedes (respectively, succeeds) v in
counterclockwise order around x. It suffices to show that if the index of x is lower
(respectively, higher) than that of v, then z2 (respectively, z1) belongs to P (x) or
D(x) (respectively, P (x) or U<(x)) of H ′ with respect to T as follows: If the index
of x is lower than that of v, then z2 = next(Hj , x) by property 2. By step 6, one can
verify that x belongs to cw(Hj , rj , vj). By property 3, we have that z2 belongs to
either P (x) or D(x) of H ′ with respect to T . If the index of x is higher than that of
v, then we know z1 = prev(Hj , x) from property 2. By step 6, one can verify that x
belongs to ccw(Hj , rj , vj). From property 3, we have that z1 belongs to either P (x)
or U<(x) of H ′ with respect to T .

Lemma 2.2. If r and v are two distinct external nodes of an n-node 2-connected
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plane graph G, then block(G, r, v) runs in O(n) time.
Proof. The execution of block(G, r, v) consists of a sequence of subroutine calls

to block. One can see that each node of G can be the parameter v for no more than
two subroutine calls to block—one with G �= (r, v) and the other with G = (r, v). If
G = (r, v), then the subroutine call block(G, r, v) runs in O(1) time. Let � be the
number of subroutine calls to block(G, r, v) with G �= (r, v). For each j ∈ {1, 2, . . . , �},
let block(Gj , rj , vj) be the jth subroutine call to block with Gj �= (rj , vj) throughout
the execution of block(G, r, v), where G1 = G, r1 = r and v1 = v. Clearly, vj �= vj

′

holds for any two distinct indices j and j′, thereby implying that � ≤ n. Let Ej

consist of the edges of G belonging to the boundaries of the internal faces of Gj that
contain vj . Let tj be the time required by block(Gj , rj , vj), without accounting for
that required by its subsequent subroutine calls to block. Observe that tj = O(|Ej |)
holds for each j. It is not difficult to implement the algorithm block such that the
running time of block(G, r, v) is dominated by

∑�
j=1 tj =

∑�
j=1 O(|Ej |). Since G has

O(n) edges, it suffices to show as follows that any edge (x, y) of G belongs to no more
than two of the sets E1, E2, . . . , E�: Let j1 be the smallest index j with (x, y) ∈ Ej . If
vj1 ∈ {x, y}, then j1 is also the largest index j with (x, y) ∈ Ej . It remains to consider
the case vj1 /∈ {x, y}. Let j2 be the smallest index j with j > j1 and (x, y) ∈ Ej . From
the definition of block, edge (x, y) has to be on the outer boundary of Gj2 , implying
vj2 ∈ {x, y}. Therefore, j2 is the largest index j with (x, y) ∈ Ej .

Finally, we have the next theorem.
Theorem 2.3. It takes O(n) time to compute an orderly pair for an n-node

connected planar graph.

3. Realizers for plane triangulations. This section provides a new linear-
time algorithm for computing a realizer for any n-node plane triangulation Δ. As
defined by Schnyder [39, 38], (T1, T2, Tn) is a realizer of Δ if

• the internal edges of Δ are partitioned into three edge-disjoint trees T1, T2,
and Tn, each rooted at a distinct external node of Δ; and

• the neighbors of each internal node v of Δ form six blocks U1, Dn, U2, D1,
Un, and D2 in counterclockwise order around v, where for each j ∈ {1, 2, n},
Uj (respectively, Dj) consists of the parent (respectively, children) of v in Tj .

A realizer of the plane triangulation in Figure 1.1(a) is shown in Figure 1.1(c).
Lemma 3.1. Given an orderly spanning tree of Δ, a realizer of Δ is computable

in O(n) time.
Proof. Let T be the given orderly spanning tree of Δ rooted at v1. Let v1, . . . , vn

be the counterclockwise preordering of T , where v1, v2, and vn are the external nodes
of Δ in counterclockwise order. Note that (v1, v2) and (v1, vn) must be in T . Since Δ
is a plane triangulation and the edges of Δ−T are unrelated with respect to T , both
U<(vi) and U>(vi) are nonempty for each 3 ≤ i ≤ n− 1. (To see this, one can verify
that if U<(vi) or U>(vi) were empty, then the edge between vi and the parent of vi
in T would belong to a face of Δ consisting of at least four edges, contradicting the
assumption that Δ is a plane triangulation.) Let pi (respectively, qi) be the index of
the last (respectively, first) node in U<(vi) (respectively, U>(vi)) in counterclockwise
order around vi. Let T1 be obtained from T by deleting (v1, v2) and (v1, vn). Let
T2 = {(vi, vpi

) | 3 ≤ i ≤ n− 1} and Tn = {(vi, vqi) | 3 ≤ i ≤ n− 1}. An example
is shown in Figure 1.1(c). Observe that pi < i < qi holds for each 3 ≤ i ≤ n − 1,
implying that both T2 and Tn are acyclic. It can be proved as follows that exactly
one of the equalities i = pj and j = qi holds for each edge (vi, vj) ∈ Δ−T with i < j.
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Since each face of Δ has size three, there is a node vk that is (i) the
neighbor of vi immediately succeeding vj in clockwise order around
vi and (ii) the neighbor of vj immediately preceding vi in clockwise
order around vj . Clearly, i < j < k implies i = pj and j �= qi; and
k < i < j implies j = qi and i �= pi. As for the remaining case that
i < j < k, one can verify that vi has to be the parent of vk in T ,
thereby implying j = qi and i �= pj .

It follows that each internal edge of Δ belongs to exactly one of T1, T2, and Tn. By
the definitions of pi and qi, one can verify that the neighbors of each internal node
vi of Δ indeed form the required pattern for (T1, T2, Tn) as a realizer of Δ. Since it
takes O(n) time to determine all pi and qi, the lemma is proved.

Theorem 3.2 (see also [39, 38]). A realizer of any plane triangulation is derivable
in linear time.

Proof. The proof is straightforward by Theorem 2.3 and Lemma 3.1.

4. 2-visibility drawings for plane graphs. This section shows how to obtain
in O(n) time an (n−1)×

⌊
2n+1

3

⌋
2-visibility drawing for any n-node plane graph G. For

calculating the area of a 2-visibility drawing, we follow the convention of [16], stating
that the corner coordinates of each rectangle are integers, and that each rectangle
is no smaller than 1 × 1. For example, the area of the 2-visibility drawing shown in
Figure 1.1(b) is 9 × 8. Let Δ be a plane triangulation obtained by triangulating G.
Since any 2-visibility drawing of Δ is also a 2-visibility drawing of G, the rest of the
section assumes that the input is the plane triangulation Δ.

Let T be an orderly spanning tree of Δ. Let v1, v2, . . . , vn be the counterclockwise
preordering of the nodes in T . Our algorithm draw(Δ, T ) consists of n iterations,
where the ith iteration performs the following steps:
Step 1. If i �= 1 and vi is not the first child of its parent in T , then lengthen each

ancestor of vi in T to the right by one unit.
Step 2. Draw vi as a unit square beneath the parent of vi in T such that vi and all

ancestors of vi in T align along the right boundary. Now, vi is vertically
visible to its parent in T .

Step 3. Lengthen downward vi and each neighbor vj of vi in Δ with j < i, if necessary,
so that vi and vj are horizontally visible to each other.

If Δ and T are as shown in Figure 4.1(a), then the intermediate (respectively, re-
sulting) drawing obtained by draw(Δ, T ) is shown in Figure 4.1 (respectively, Fig-
ure 4.1(b)).

Lemma 4.1. The algorithm draw(Δ, T ) obtains an h × w 2-visibility drawing of
Δ with h ≤ n− 1 and such that w equals the number of leaves in T .

Proof. Since T is a spanning tree of Δ, draw(Δ, T ) is well defined. Also, the
output of draw(Δ, T ) is indeed a 2-visibility drawing of Δ with width equal to the
number of leaves in T . The rest of the proof shows that the height of the output of
draw(Δ, T ) is at most n − 1. For any two distinct edges e and e′ in Δ − T , we say
that e encloses e′ if e′ is in the interior of the cycle consisting of e and the path of
T between the endpoints of e. By the planarity of Δ, the above “enclosing” relation
defines a nesting structure among the edges of Δ − T . Let �(e) denote the “level” of
edge e in the nesting structure:

If e does not enclose any other edge in Δ − T , then let �(e) = 1;
otherwise, let �(e) be one plus the maximum of �(e′) over all the
edges e′ in Δ − T that are enclosed by e.

If we are to draw edge e = (u, v) as a horizontal line segment connecting the rectangles
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Fig. 4.1. An illustration of the intermediate steps of draw(Δ, T ), where Δ and T are as shown
in (a) and the final drawing is as shown in (b).

representing nodes u and v without intersecting other rectangles or line segments,
then 1 + �(e) is the minimum possible (vertical) distance between the line segment
representing e and the rectangle representing the lowest common ancestor of u and v
in T . Let edge ê be (v2, vn), which encloses all the other edges in Δ − T . The height
of the output of draw(Δ, T ) is exactly 1 + �(ê). It remains to show �(ê) ≤ n − 2 as
follows: Assume for the sake of contradiction that e1, e2, . . . , en−1 is a sequence of
edges in Δ−T such that ei encloses e1, e2, . . . , ei−1 for each i ∈ {2, 3, . . . , n− 1}. For
each i ∈ {1, 2, . . . , n− 1}, let Xi consist of the endpoints of ei, ei+1, . . . , en−1. For
each i ∈ {1, 2, . . . , n− 2}, there must be an endpoint of ei that is not in Xi+1. (To see
this, assume for the sake of contradiction that j and k with i < j < k ≤ n− 1 are two
indices such that ej and ek are incident to the endpoints u and v of ei, respectively.
Let C be the cycle consisting of ej and the path of T that connects the endpoints of
ej . Since ei is in the interior of C and ek is outside of C, the assumption that ek is
incident to v violates the orderly property of v.) Therefore, X1 contains at least n
distinct nodes. Since T is an orderly spanning tree of Δ, v1 is not incident to any
edges of Δ − T . Therefore, v1 /∈ X1, which contradicts that Δ has n nodes.

Lemma 4.2. It takes O(n) time to compute an orderly spanning tree of Δ with
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⌊
2n+1

3

⌋
or fewer leaves.

Proof. Let v1, v2, and vn be the external nodes of Δ in counterclockwise order
around the outer boundary of Δ. By Theorem 3.2, a realizer (T ′

1, T
′
2, T

′
n) of Δ, where

each T ′
i is rooted at vi, can be obtained in O(n) time. Let I = {1, 2, n}. For each

i ∈ I, let Ti = T ′
i ∪ {(vi, vi1), (vi, vi2)}, where {i1, i2} = I − {i}. Observe that T1,

T2, and Tn are three spanning trees of Δ with T1 ∪ T2 ∪ Tn = Δ. We first show that
each Ti is an orderly spanning tree of Δ. Since the relation between T1, T2, and Tn

is rotationally symmetric, it suffices to verify that each node is orderly with respect
to T1. Let v1, v2, . . . , vn be the counterclockwise preordering of T1. For each i ∈ I
and j ∈ {1, 2, . . . , n}, let Qi,j be the path of Ti between vi and vj . Note that Q1,j ,
Q2,j , and Qn,j are three edge-disjoint paths of Δ that intersect only at vj . If vj is
not a leaf of T1, then the children of vj in T1 are consecutive in Δ in counterclockwise
order around vj . Therefore, to ensure that each node is orderly with respect to T1, it
suffices to prove that each edge of Δ− T1 is unrelated with respect to T1: If vj′ were
an ancestor of vj , that is, also a neighbor of vj in Δ − T1, then vj and vj′ would be
on different sides of Q2,j′′ ∪Qn,j′′ in Δ, where vj′′ is the parent of vj in T1, thereby
contradicting the planarity of Δ.

It remains to show that T1, T2, or Tn has at most 2n+1
3 leaves. For each i ∈ I,

let leaf(T ′
i ) consist of the leaves of T ′

i . Since the number of leaves in Ti is precisely
2 + |leaf(T ′

i )|, it suffices to show that
∑

i∈I |leaf(T ′
i )| ≤ 2n − 5. Let v be a node in

leaf(T ′
i ). Observe that v is internal in Δ. For each i ∈ I, let pi(v) denote the parent

of v in Ti. Let i1 and i2 be the indices in I −{i}. Since (T ′
1, T

′
2, T

′
n) is a realizer of Δ,

there is a unique internal face Fi(v) of Δ containing v, pi1(v), and pi2(v). We have
that pi1(v) /∈ leaf(T ′

i1
) and pi2(v) /∈ leaf(T ′

i2
). It follows that Fi(v) �= Fi1(u1) for any

node u1 in leaf(T ′
i1

) and that Fi(v) �= Fi2(u2) for any node u2 in leaf(T ′
i2

). Therefore,∑
i∈I |leaf(T ′

i )| is no more than the number of internal faces of Δ, which is precisely
2n− 5 by Euler’s formula.

Theorem 4.3. An (n − 1) ×
⌊

2n+1
3

⌋
2-visibility drawing of any n-node planar

graph is computable in O(n) time.

Proof. A naive implementation of algorithm draw runs in O(n2) time, since one
stretching of a node’s rectangle affects the horizontal spans of all its descendants.
However, it is not difficult to implement the algorithm to run in O(n) time. The
width of the rectangle representing a node v is exactly the number of leaves in the
subtree of T rooted at v. Therefore, one can easily calculate the x-coordinates of all
rectangles in linear time. Also, the y-coordinates of all rectangles can be computed in
linear time via the values �(e) for all edges e in G−T . (See, e.g., Figure 3.2 of [32] for
related implementation techniques.) Therefore, the theorem follows from Lemmas 4.1
and 4.2.

5. Convenient encodings for planar graphs. This section gives the best
known convenient encoding for an n-node m-edge planar graph as an application of
our orderly pair algorithm. We need some notation to describe the data structures
required by our convenient encodings. Let |S| denote the length of a string S, i.e.,
the number of symbols in S. Unless clearly stated otherwise, all strings in this section
have length O(m + n). A string S consisting of t distinct symbols can be encoded
in |S|�log2 t� bits. For example, if S consists of parentheses and brackets, including
open and closed ones, then S can be encoded in 2|S| bits. S is binary if it consists of
two distinct symbols. For each 1 ≤ i ≤ j ≤ |S|, let S[i, j] be the length-(j − i + 1)
substring of S from the ith position to the jth position. If i > j, then let S[i, j] be the
empty string. Define S[i] = S[i, i]. S[k] is enclosed by S[i] and S[j] in S if i < k < j.
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Let select(S, i,�) be the position of the ith � in S. Let rank(S, k,�) be the number
of �’s before or at the kth position of S. If k = select(S, i,�), then i = rank(S, k,�).

An auxiliary string χ of S is a binary string with |χ| = o(|S|) which is obtainable
from S in O(|S|) time.

Fact 5.1 (see [1, 15]). For any strings S1, S2, . . . , Sk with k = O(1), there is an
auxiliary string χ0 such that, given the concatenation of χ0, S1, S2, . . . , Sk as input,
the index of the first symbol of any given Si in the concatenation is computable in
O(1) time.

Let S1 ◦S2 ◦ · · · ◦Sk denote the concatenation of χ0, S1, S2, . . . , Sk as in Fact 5.1.
Suppose that S is a string of multiple types of parentheses. Let reverse(S) be the

string R such that R[i] is the opposite parenthesis of the same type as S[|S|+1−i]. For
example, reverse(“)()])[”) = “]([()(.” For an open parenthesis S[i] and a closed
one S[j] of the same type with i < j, the two match in S if every parenthesis of the
same type that is enclosed by them matches one enclosed by them. S is balanced in
type k if every parenthesis of type k in S belongs to a matching parenthesis pair. S is
balanced if S is empty or is balanced in all types of parentheses. Here are some queries
defined for a balanced string S. Let match(S, i) be the position of the parenthesis in
S that matches S[i]. Let enclosek(S, i1, i2) be the position pair (j1, j2) of the closest
matching parenthesis pair of the kth type that encloses S[i1] and S[i2].

Fact 5.2 (see [35, 9]). For any balanced string S of O(1) types of parenthe-
ses, there is an auxiliary string χ1(S) such that each of rankS, i,�, select(S, i,�),
match(S, i), and enclosek(S, i, j) can be determined from S ◦ χ1(S) in O(1) time.

For a string S of parentheses that may be unbalanced, we define wrapped(S, i)
as follows. For the case that S[i] is an open parenthesis of type k, let S′ be a string
obtained from S by appending some closed parentheses of type k, if necessary, such
that S′[i] is matched in S′. Define wrapped(S, i) to be the number of indices j satisfy-
ing i < j ≤ |S|, enclosek(S

′, j,match(S′, j)) = (i,match(S′, i)), and S[j] is of type k.
For the case that S[i] is closed, let wrapped(S, i) = wrapped(reverse(S), |S| + 1 − i).
Therefore, if

S = (()[[[[[(](])[(]])[[)[[(])[[[(](](]]])[(]]])[[(])[)[)[(]]]]])),(5.1)

122.....3.4.4.5..5..3..6.6...7.8.9...9.A...A..B.B.8.7.C.....C1

then we have wrapped(S, 1) = 10 and wrapped(S, 6) = 4. If S is balanced, then
wrapped(S, i) is an even number for each i, i.e., twice the number of parenthesis pairs
that are enclosed by the parenthesis pair in question. The next lemma extends the
set of queries supported in Fact 5.2.

Lemma 5.3. For any balanced string S of O(1) types of parentheses, there is an
auxiliary string χ2(S) such that wrapped(S, i) can be computed from S ◦χ2(S) in O(1)
time.

Proof. Define width(i, j) = |i− j| + 1. We say that parentheses of the same type
with property π are d-disjoint if

• width(i,match(S, i)) > d holds for any parenthesis S[i] with property π; and
• any two property-π parentheses S[i] and S[j] with S[i] = S[j] satisfy at least

one of width(i, j) > d and width(match(S, i),match(S, j)) > d.
Intuitively, d-disjoint parentheses have to be sparse: Suppose that parentheses with
property π are d-disjoint. Then, for any property-π open parenthesis S[i], either
S[i] is the only property-π open parenthesis in S[i− d + 1, i] or S[match(S, i)] is the
only property-π closed parenthesis in S[match(S, i),match(S, i) + d− 1]. As a result,
suppose that we partition S into segments of length d. For each segment, let us
mark (a) the property-π open parenthesis with the smallest index in the segment and
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(b) the property-π closed parenthesis with the largest index in the segment. Then,
for each parenthesis S[i] with property π, at least one of S[i] and S[match(S, i)] is
marked. Therefore, there are only O(s/d) parentheses with property π.

Let s = |S|. For a carefully chosen number � = Θ(log s), we say that

• parenthesis S[i] is narrow if width(i,match(S, i)) ≤ �;
• parenthesis S[i] is wide if wrapped(S, i) > 2�2; and
• parenthesis S[i] is medium if it is neither narrow nor wide.

We apply the commonly used preprocessing technique (see, e.g., [10, 35]) in the unit-
cost RAM model which allows the query wrapped(S, i) for any narrow S[i] to be
answered in O(1) time from the linear-time precomputable o(s)-bit table (i.e., the
table M1 ◦M2 to be described later). It is not difficult to see that wide parentheses
are �2-disjoint. Therefore, we can afford to encode (i,wrapped(S, i)) for all wide
parentheses S[i] using o(s) bits. Although medium parentheses are not necessarily
�-disjoint, we identify special parentheses, which are medium parentheses that have
to be �-disjoint, and encode (i,wrapped(S, i)) for all special medium parentheses S[i]
using o(s) bits. As for medium parentheses that are not special, we will show that
two queries to the o(s)-bit precomputed table suffice. The details are as follows.

Let t be the number of distinct types of parentheses in S. Let b be the smallest
integer with 2t ≤ 2b. Each symbol of S can be encoded in b bits. As t = O(1), we
have b = O(1). Let � =

⌊
1
2 log2b s

⌋
. Any substring S[i, j] with j ≤ i+ �−1 has O(

√
s)

possible distinct values. Define tables M1 and M2 for S by letting M1[S[i, i+�−1]] =
wrapped(S[i, i + �− 1], 1) and M2[S[i, j]] = wrapped(reverse(S[i, j]), 1) for any i, j
with 1 ≤ i ≤ j ≤ i + � − 1. One can easily come up with an o(s)-bit string χ′

2 from
which each entry of M1 and M2 can be obtained in O(1) time.

For each k ∈ {1, 2, . . . , t}, define tables Mk
3 and Mk

4 as follows. For each i =
1, 2, . . . ,

⌈
s
�2

⌉
,

• let Mk
3 [i] = (j,wrapped(S, j)), where index j is the smallest index, if any,

with (i− 1)�2 < j ≤ i�2 such that S[j] is a wide open parenthesis of type k;
and

• let Mk
4 [i] = (j,wrapped(S, j)), where index j is the largest index, if any, with

(i− 1)�2 < j ≤ i�2 such that S[j] is a wide close parenthesis of type k.

Since each entry of Mk
3 and Mk

4 can be encoded in O(log s) bits, one can easily obtain
an o(s)-bit string χ′′

2 from which each entry of Mk
3 and Mk

4 can be determined in O(1)
time.

A medium open parenthesis S[i] is special if at least one of the inequalities
width(i, j) > � and width(match(S, i),match(S, j)) > � holds for each index j with i <
j < match(S, i) and S[j] = S[i]. A closed parenthesis S[i] is special if S[match(S, i)]
is special. One can verify that special parentheses are �-disjoint. For each k ∈
{1, 2, . . . , t}, define tables Mk

5 and Mk
6 as follows. For each i ∈ {1, 2, . . . ,

⌈
s
�

⌉
},

• let Mk
5 [i] = (j,wrapped(S, j)), where j is the smallest index, if any, with

(i− 1)� < j ≤ i� such that S[j] is a special open parenthesis of type k; and
• let Mk

6 [i] = (j,wrapped(S, j)), where j is the largest index, if any, with
(i− 1)� < j ≤ i� such that S[j] is a special close parenthesis of type k.

Observe that Mk
5 [i] = (j, c) or Mk

6 [i] = (j, c) implies 0 ≤ i�− j ≤ � and 0 ≤ c ≤ 2�2.
Therefore, each entry of Mk

5 and Mk
6 can be encoded in O(log �) = O(log log s) bits.

As a result, one can easily come up with an o(s)-bit string χ′′′
2 from which each entry

of Mk
5 and Mk

6 can be determined in O(1) time. Let χ2(S) = χ′
2 ◦ χ′′

2 ◦ χ′′′
2 . The

o(s)-bit string χ2(S) can be derived from S in O(s) time.

It remains to show that wrapped(S, i) can be determined from S and χ2(S) by
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function wrapped(S, i) {
Step 1. let k, with 1 ≤ k ≤ t, be the type of S[i];
Step 2. let i1 = min{i,match(S, i)};
Step 3. let i2 = match(S, i1);

Step 4. let (j, c) = Mk
3

[⌈
i1/�

2
⌉]

; if j = i1, then return c;

Step 5. let (j, c) = Mk
4

[⌈
i2/�

2
⌉]

; if j = i2, then return c;

Step 6. let (j, c) = Mk
5 [�i1/��]; if j = i1, then return c;

Step 7. let (j, c) = Mk
6 [�i2/��]; if j = i2, then return c;

Step 8. if width(i1, i2) ≤ �, then return M1[S[i1, i2]];
Step 9. if width(i1, i2) ≤ 2�, then return M1[S[i1, i1 + �− 1]] + M2[S[i1 + �, i2]];
Step 10. return M1[S[i1, i1 + �− 1]] + M2[S[i2 − � + 1, i2]];

}

Fig. 5.1. An O(1)-time algorithm that computes wrapped(S,i).

the algorithm shown in Figure 5.1, which clearly runs in O(1) time. If a value c is
returned from steps 4–9, we have c = wrapped(S, i). The rest of the proof assumes
that step 10 is executed. Since wide parentheses are �2-disjoint and special parentheses
are �-disjoint, parentheses S[i1] and S[i2] at step 10 satisfy width(i1, i2) > 2� and form
a matching pair of medium parentheses that are not special. By definition of special
parentheses, there are indices j1 and j2 with i1 < j1 < j2 = match(S, j1) < i2 and
S[i1] = S[j1] (thus S[j2] = S[i2]) such that width(i1, j1) ≤ � and width(j2, i2) ≤ �.
Since width(i1, i2) > 2�, we have wrapped(S, i1) = M1[S[i1, i1 + � − 1]] + M2[S[i2 −
� + 1, i2]]. Therefore, step 10 correctly returns wrapped(S, i).

A folklore encoding [22, 35, 9] S of an n-node simple rooted tree T is a balanced
string of 2n parentheses representing a counterclockwise depth-first traversal of T .
Initially, an open (respectively, closed) parenthesis denotes a descending (respectively,
ascending) edge traversal. Then, this string is enclosed by an additional matching
parenthesis pair. For example, the string in (5.2) is the folklore encoding for the tree
T in Figure 1.1(a). Let vi be the ith node in the counterclockwise depth-first traversal.
Let (i be the ith open parenthesis in S. Let )i be the closed parenthesis of S that
matches (i in S. Node vi corresponds to (i and )i in that vi is the parent of vj in T if
and only if (i and )i form the closest pair of matching parentheses that encloses (j and
)j . Also, the number of children of vi in T is precisely wrapped(S, select(S, i, ())/2,
which is also equal to wrapped(S,match(S, select(S, i, ()))/2.

Let H be an n-node connected plane graph that may have multiple edges but
no self-loops. Let T be a spanning tree of H rooted at v1. Let v1v2 · · · vn be the
counterclockwise preordering of T . Let degree(i) be the number of edges incident
to vi in H. Let children(i) be the number of children of vi in T . Let above(i)
(respectively, below(i)) be the number of edges (vi, vj) of H such that vj is the parent
(respectively, a child) of vi in T . Let low(i) (respectively, high(i)) be the number of
edges (vi, vj) of H such that j < i (respectively, j > i) and vj is neither the parent nor
a child of vi in T . Now, degree(i) = above(i)+below(i)+low(i)+high(i). If H has no
multiple edges, then below(i) = children(i). If H and T are as shown in Figure 1.1(a),
for instance, then above(3) = 1, below(3) = children(3) = 2, low(3) = 1, high(3) = 2,
and degree(3) = 6.

The T -code of H is a triple (S1, S2, S3) of the binary strings S1, S2, S3, where δi≥2

equals 1 if i ≥ 2 and 0 otherwise.

• S1 is the folklore encoding of T .
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• Let pi = select(S1, i, () and qi = match(S1, pi). S2 has exactly 2n copies of 1,
in which low(i) copies of 0 immediately succeed the pith 1, and high(i) copies
of 0 immediately succeed the qith 1.

• S3 has exactly n copies of 1, where above(i) + below(i) − children(i) − δi≥2

copies of 0 immediately succeed the ith 1.
For example, if H and T are as shown in Figure 1.1(a), then

S1 = (()(()())()((()()()))());(5.2)

S2 = 11100000101010100100100101000101010001010001001010101010000011;

S3 = 111111111111.

We have that

|S1| = 2n;

|S2| = 2n +

n∑
i=1

(low(i) + high(i)) ;

|S3| = 1 +

n∑
i=1

(above(i) + below(i) − children(i)) .

Therefore, |S1| + |S2| + |S3| = 2m + 3n + 2. Moreover, if H has no multiple edges,
then |S3| = n, and thus |S1| + |S2| = 2m + 2n + 2.

The next theorem describes our convenient encoding. The techniques in the proof
are mostly adapted from [9]. (Their encoding needs initial augmentation to the input
graph to ensure that the resulting graph admits a canonical spanning tree. As a result,
their encoding requires an additional number of bits to tell which edges are original.)

Theorem 5.4. Let G be an input n-node m-edge planar graph having no self-
loops. If G has (respectively, has no) multiple edges, then G has a convenient encoding,
obtainable in O(m+n) time, with 2m+ 3n+ o(m+n) (respectively, 2m+ 2n+ o(n))
bits.

Proof. We focus on the case that G is connected. As sketched at the end of the
proof, it is not difficult to remove this restriction. By Theorem 2.3, an orderly pair
(H,T ) of G can be derived in O(m + n) time. Let (S1, S2, S3) be the T -code of H.
We prove that there exists an o(m + n)-bit string χ, obtainable in O(m + n) time,
such that S1 ◦ S2 ◦ S3 ◦ χ is a convenient encoding of G. If G has no multiple edges,
then S3 consists of n copies of 1, and thus S1 ◦ S2 ◦ χ will suffice.

To support degree queries, let pi = select(S1, i, () and qi = match(S1, pi). Since
S[pi] and S[qi] are a matching parenthesis pair, we have that

low(i) = select(S2, pi + 1, 1) − select(S2, pi, 1) − 1,

high(i) = select(S2, qi + 1, 1) − select(S2, qi, 1) − 1.

Observe that children(i) = wrapped(S1, pi)/2. From the definition of S3, we know
above(i) + below(i)− children(i) = select(S3, i + 1, 1)− select(S3, i, 1)− 1 + δi≥2. Let
χ′ = χ1(S1)◦χ1(S2)◦χ1(S3)◦χ2(S1). From degree(i) = above(i)+below(i)+low(i)+
high(i), Fact 5.2, and Lemma 5.3, we determine that degree(i) is computable from
S1 ◦ S2 ◦ S3 ◦ χ′ in O(1) time.

To support adjacency queries and listing of all neighbors, we introduce a string
S of two types of parentheses derived from S1 and S2 as follows. Although S is only
implicitly represented in our convenient encoding, any O(log n) consecutive parenthe-
ses of S can be obtained from S1, S2, and some auxiliary string in O(1) time. Let (
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and ) be of type 1, and let [ and ] be of type 2. Initially, for each i = 1, 2, . . . , 2n,
replace the ith 1 of S2 with S1[i]. Then, replace each 0 of S2 with a bracket such that
the bracket is open if and only if the last parenthesis in S preceding this 0 is closed.
More precisely, for each i = 1, 2, . . . , |S2|, let

S[i] =

⎧⎨
⎩

S1[j1] if S2[i] = 1,
] if S2[i] = 0 and S1[ji] = (,
[ if S2[i] = 0 and S1[ji] = ),

where ji = rank(S2, i, 1). For example, if H and T are as given in Figure 1.1(a), then
S is as in (5.1). There exists an auxiliary string χ3 such that any O(log n) consecutive
symbols of S are obtainable from S1◦S2◦χ3 in O(1) time: Let � =

⌊
1
8 log2 n

⌋
. Observe

that the content of S[i, i+ �− 1] can be uniquely determined from the concatenation
S′ of S2[i, i + �− 1] and S1[j, j + �− 1] with j = rank(S2, i, 1). Also, S′ is obtainable
from S1 ◦S2 ◦χ1(S2) in O(1) time. Since S′ has 4� distinct values, we can precompute
in O(n) time an o(n)-bit table M such that the content of S[i, i+ �− 1] is obtainable
from S′ and M in O(1) time. Hence, it suffices to let χ3 = M ◦ χ1(S2).

With the help of S and its auxiliary strings, adjacency queries can be supported
as follows. For any two integers a and b, let [a, b] consist of the integers a, a+1, . . . , b.
For each i ∈ {1, 2, . . . , n}, let

Li = [�i + 1, select(S2, rank(S2, �i, 1) + 1, 1) − 1],

Ri = [hi + 1, select(S2, rank(S2, hi, 1) + 1, 1) − 1],

where �i = select(S, i, () and hi = match(S, �i). Let (vi, vj) and (vi′ , vj′), with i < j
and i′ < j′, be two unrelated edges of H with respect to T . Since T is an orderly
spanning tree of H, one can see that if (vi′ , vj′) is enclosed by the cycle of H determined
by T and (vi, vj), then hi < hi′ < �j′ < �j . One can prove that

vi and vj , with i < j, are adjacent in H−T if and only if there exists
an index � ∈ Ri with match(S, �) ∈ Lj

by the following induction on the number b of matching bracket pairs in S:
The above statement clearly holds when b = 0. To show the induction
step for any b ≥ 1, let e = (vx, vy) be an edge in H − T . We know

that T is also an orderly spanning tree of H − {e}. Let Ŝ, R̂i, and
L̂i be the corresponding notation for H − {e} with respect to T .
Observe that Ŝ can be obtained from S by deleting an open bracket
in a position in Rx and deleting a closed bracket in a position in
Ly. Since vx and vy are not adjacent in H − {e}, it follows from the

inductive hypothesis that match(Ŝ, �) /∈ L̂y holds for any index � in

R̂x; and match(Ŝ, �) /∈ R̂x holds for any index � in L̂y. Therefore,

there is a position in R̂x and a position in L̂y such that if we insert an
open bracket in the first position and a closed bracket in the second
position, then the brackets will match each other in the resulting
string, which is exactly S. Thus, the above statement is proved.

Thus, one can determine whether (vi, vj) is an unrelated edge of H with respect to
T , by checking whether i′′ ∈ Ri and j′′ ∈ Lj hold, where

(i′′, j′′) = enclose2(S, select(S, rank(S2, hi, 1) + 1, (), �j).

Therefore, the answer to each adjacency query is derivable from S2 ◦S ◦χ1(S2)◦χ1(S)
in O(1) time.
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The neighbors of a degree-d node vi can be listed from S ◦χ1(S) in O(d) time: If
vi is not the root of T , then the parent of vi is vj , where j is computable by letting

(j1, j2) = enclose(S, select(S, i, (),match(S, select(S, i, ()));

j = rank(S, j1, ().

If vi is not a leaf of T , then vi+1 is the first child of vi in T . If vj is the tth child of
vi in T , then the (t + 1)st child of vi in T is vk, where

k = rank(S, 1 + match(S, select(S, j, ()), ().

If t ≤ |U<(vi)|, the tth neighbor of vi in U<(v) with respect to T is vj , where j is
computable by

j1 = match(S, t + select(S, i, ());

j2 = select(S, rank(S, j1, )), ));

j = rank(S,match(S, j2), ().

If t ≤ |D(vi)|, then the tth neighbor of vi in D(v) with respect to T is vj , where j is
computable by j1 = match(S, select(S, i, ()) and j = rank(S,match(S, j1 + t), ().

It is not difficult to verify that G can be reconstructed from S and S3 in O(m +
n) time. Therefore, the theorem for connected planar graphs is proved by letting
χ = χ′ ◦ χ3 ◦ χ1(S). As for the case that G has k ≥ 2 connected components, by
Theorem 2.3, an orderly pair (Hi, T i) of the ith connected component Gi of G can
be derived in overall O(m + n) time. Let (Si

1, S
i
2, S

i
3) be the T i-code of Hi. For each

j = 1, 2, 3, let Sj be the concatenation of S1
j , S

2
j , . . . , S

k
j . The theorem can then be

proved similarly using S1, S2, and S3.
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Abstract. We consider the amount of randomness necessary in information-theoretic private
protocols. We prove that at least Ω(log n) random bits are necessary for the t-private computation
of the function xor by n players for any t ≥ 2. In view of the upper bound of O(t2 log(n/t))
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prove that on every input there is a run where the number of random bits used is large, rather than
proving only that on some input there is a run where the number of random bits used is large. All
our lower bounds hold for the “trusted dealer” model as well, and the Ω(t log(n/t)) lower bound for
restricted protocols is tight, up to constant factors, for any t ≥ 2 in this model.

In comparison, the previous lower bounds on the amount of randomness required by t-private
computation of explicit functions did not grow with n for constant values of t, and our results improve
the previous lower bounds for xor for any 2 ≤ t = o(logn). Our results also show that already for
t = 2, Ω(log n) random bits are necessary, while it is known that for the case of t = 1 a single random
bit is sufficient for privately computing xor for any number of players.

Our proofs use novel techniques by which we extract random variables from a t-private protocol,
and then use the t-privacy property of the protocol to prove properties of these random variables.
These properties in turn imply that the number of random bits used by the players is large.
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1. Introduction. A t-private protocol for computing a function f is a dis-
tributed protocol that allows n players Pi, 1 ≤ i ≤ n, each possessing an individ-
ual secret input xi, to compute the value of f(�x) in a way that does not reveal any
“unnecessary” information to any coalition of at most t players. The players proceed
in rounds, where in each round each player can send a private message to any other
player (i.e., each player sends to each other player a message that cannot be seen by
any of the remaining players). The t-privacy property means that any coalition of
at most t players cannot learn anything from the execution of the protocol, except
what is implied by the value of f(�x) and the inputs of the members of the coalition.
In particular, the members of the coalition do not learn anything about the inputs
of the other players. Private computation in this setting was the subject of consid-
erable research; see, e.g., [2, 3, 4, 6, 7, 11, 13, 14, 15, 16, 17, 19, 21, 23, 24, 29].
Randomness is necessary to perform private computations involving more than two
players (except for the computation of very degenerate functions). That is, the play-
ers must have access to a random source. As randomness is regarded as a scarce
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resource, methods for saving random bits in various contexts have been suggested in
the literature; see, e.g., [28, 18] for a survey. Thus, an important research topic is the
design of randomness-efficient private protocols, and the quantification of the amount
of randomness needed to perform private computations of various functions and under
various constraints. This line of research has received considerable attention in recent
years; see, e.g., [27, 23, 25, 17, 7, 8, 10, 26, 5, 20]. This study also showed that the
randomness complexity of the private computation of a function is related to other
complexity measures, such as sensitivity and circuit size [27, 25, 17, 7, 26]. The spe-
cific function xor (addition modulo 2) was the subject of considerable research in this
context due to its being a basic operation and its relative simplicity [27, 26, 8, 23].

Previous work on the randomness complexity of private computations revealed
that there is a tradeoff between randomness and time (i.e., number of communication
rounds) for the 1-private computation of the function xor [27, 17]. These works also
gave lower bounds on the number of rounds necessary to 1-privately compute any
function in terms of the sensitivity of the function and the amount of randomness
used. If one is allowed an arbitrary number of rounds for the computation, there
are no known lower bounds on the number of random bits for 1-private protocols
computing explicit functions (except that randomness is necessary, i.e., no determin-
istic private protocol exists). In fact, Kushilevitz, Ostrovsky, and Rosén [25] gave
a relation between the number of random bits necessary to 1-privately compute a
function and the Boolean circuit size necessary to compute it; it is proved that the
class of functions that have O(1)-random, 1-private protocols is equal to the class of
functions that have linear-size circuits. This surprising connection explains the lack
of ω(1) lower bounds on the number of random bits for explicit functions in the case
of 1-privacy, as such results would imply superlinear lower bounds on circuit size.

Before our work, ω(1) lower bounds on the number of random bits of t-private
protocols (without limiting the number of rounds) have been proved for explicit func-
tions only for values of t that grow with n, and no such bounds have been known
if t itself is constant. More precisely, Kushilevitz and Mansour [23] proved that any
t-private protocol for xor requires at least t random bits. Blundo et al. [7] gave lower
bounds for two special cases. Namely, they proved that if t = n− c for some constant
c, then Ω(n2) random bits are necessary, and if t ≥ (2 −

√
2)n, then Ω(n) random

bits are necessary. As for upper bounds, Canetti et al. [10] gave randomness-efficient
generic protocols to t-privately compute (for t < n/2) any Boolean function f . They
showed that any function f with circuit size of m gates can be computed by a t-
private protocol (t < n/2) using O(t2 log n + (m/n)t5 log t) random bits. Kushilevitz
and Mansour [23] gave protocols that compute the function xor t-privately, for any t,
using O(t2 log(n/t)) random bits.

In the present paper we develop new techniques for proving lower bounds on the
number of random bits necessary in t-private computations (for t ≥ 2) and obtain
Ω(log n) lower bounds on the number of random bits necessary to t-privately compute
the function xor for any t ≥ 2.1 More precisely, we prove the following theorem. (See
section 2 for a formal definition of a d-random protocol.)

Theorem 1.1. Let t ≥ 2, and let A be a d-random, t-private protocol for com-
puting f(�x) = x1 + · · · + xn (mod 2). Then d = Ω(log n).

In fact, we prove a slightly stronger statement: we prove that Ω(logn) random
bits are necessary on every input.

1Blundo, Galdi, and Persiano [9] recently reported obtaining similar results independently, using
a different approach.
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In view of the upper bound of O(t2 log(n/t)) of [23], our lower bound is tight, up
to constant factors, for any fixed t. This is the first result showing that the number
of random bits necessary for t-private computation grows with n for constant values
of t, and it improves the lower bound of [23] for any t = o(log n). It is interesting
to note that our Ω(logn) lower bound holds already for t = 2, while for the case of
t = 1, it is known that the function xor can be computed 1-privately, for any number
of players n, with only 1 random bit.

All known randomness-efficient private protocols designed specifically for the func-
tion xor [27, 23, 26, 8] are built in the following special way. They are based on a
deterministic, nonprivate protocol for xor. Then this protocol is modified by changing
any message so it is the sum (modulo 2) of the original message, and a value which
is a function of the random bits only. Thus, the private protocol is built by masking
the original messages of the nonprivate protocol. We give stronger lower bounds for
protocols of this class (see section 4 for a formal definition of this class). Namely, we
give a lower bound of Ω(t log(n/t)) on the number of random bits required by any
protocol of this class to compute xor for n players.

All our lower bounds hold also in the “trusted dealer” model, considered in [23,
10]. In this model, the n players are deterministic, and there is an additional player,
the “trusted dealer,” who does not get any input, and whose role is limited to “deal”
random bits to the other players (hence a “dealer”). This player never participates in
any coalition (hence it is “trusted”). For this model, our lower bound of Ω(t log(n/t))
for protocols of the above restricted class is tight up to constant factors for every t ≥ 2,
as [23] gave a protocol (of this class) in the trusted dealer model using O(t log(n/t))
random bits.

Our proofs use novel techniques by which we extract from a private protocol
random variables that depend on the randomness that the players use. We then use
the t-privacy property of the protocol to prove that these random variables must have
certain properties (for example, linear independence or t-wise independence). Based
on these properties we show that the amount of randomness used by the players must
be large. We believe that these new techniques may prove useful for proving other
properties of private protocols.

2. Preliminaries. In this paper we consider information-theoretic privacy (as
in [4, 11]), where the players have unlimited computational power, no intractability
assumptions are made, and messages are sent over private channels.

Let f : {0, 1}n → {0, 1} be an arbitrary Boolean function. A set of n players Pi

(1 ≤ i ≤ n), each possessing a single private input bit xi (i.e., xi is known only to Pi),
collaborate in a protocol to compute the value of f(�x). The protocol is probabilistic.
During the course of the protocol each player can toss random coins, where the coin
tosses are unbiased and independent. The protocol operates in rounds. In each
round, each player may toss some coins, and then sends messages to the other players
(messages are sent over private channels so that, other than the intended receiver, no
other player can access them). The player then receives the messages sent to it by the
other players. Each player chooses to output the value of the function at a certain
round. In a correct protocol, each player must output the correct value f(�x), and
stop its operation in a finite number of steps (it may output f(�x) before stopping).
That is, for every input assignment �x and for every outcome of the coin tosses of all
players, each player outputs f(�x) and stops in a finite number of steps.

In Claim 1 below we formally argue that for a given correct protocol involving n
players, there is a finite upper bound � on the number of coin tosses any single player
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performs during the course of the protocol. We in fact show that there is a finite upper
bound � on the total number of coin tosses performed by all players. Claim 1 gives
a formal argument for the intuition that a protocol for which such an upper bound
does not exist is not a correct protocol. For example, consider a protocol where some
player keeps tossing coins until it gets a 1 before sending any message. For such a
protocol, the property claimed does not hold. But such a protocol does not satisfy
the definition of correctness either, as there are possible outcomes of the coin tosses
for which some player does not stop in a finite number of steps. We note that since we
prove lower bounds on the number of random bits used, we could avoid using Claim 1
by the following argument: we could argue that if on some input, some player may
toss more than � coins, then a lower bound of � is obtained; otherwise one can assume
that no player ever tosses more than � coins. This would be sufficient to prove lower
bounds on the randomness complexity of the protocol (see Definition 2.1). However,
we prove stronger statements. Claim 1 is useful in proving that on every input there
is a run where the number of coin tosses performed is large, rather than only proving
that on some input there is a run where the number of coin tosses performed is
large.

Claim 1. Given a correct protocol involving n players, there is a finite upper
bound � on the total number of coin tosses performed by all players in any run of the
protocol.

Proof. We show below that for any input assignment �x there is a finite upper
bound �(�x) on the total number of coin tosses performed by all players in any run
of the protocol in which the input assignment is �x. Since there is a finite number of
input assignments �x ∈ {0, 1}n, the claim follows by letting � = max�x∈{0,1}n{�(�x)}.

Fix an input assignment �x ∈ {0, 1}n. As in the proof of Lemma 4.10 in [27], we
build a binary tree T�x representing the coin tosses of the players on a given input
�x. Each node of the tree is labeled by the name of a player Pi, which tosses a coin.
The two outgoing edges from a node are labeled 0 and 1 according to the outcome of
the coin toss. Coin tosses in the run of the protocol are ordered by round number,
then by player number, and then by a serial number (for that player in that round).
Note that the identity of the player to toss the first coin on �x, that is, the label of
the root, is determined by �x, and the identity of any subsequent player to toss a coin
is determined by �x and the outcomes of the previous coin tosses, that is, by the path
leading to a given node of the tree.

Observe that a path of length k from the root to another node represents a run
(or a prefix of a run) of the protocol in which k coin tosses occur. Assume towards
a contradiction that there is no finite upper bound �(�x) on the number of coin tosses
performed by the players on input �x. Then for every finite k there is a path of length
k in the tree. Since the outdegree of each node of the tree is at most 2, this means that
the tree T�x must contain an infinite path starting from the root (cf. König’s lemma
in [22]). This path corresponds to a possible run of the protocol (defined by �x and
the results of the coin tosses as defined by the edges along the path). In this run at
least one player tosses an infinite number of coins, i.e., this player does not stop in a
finite number of steps, contradicting the correctness of the protocol.

We thus model the players in a correct protocol as being provided with finite
binary random tapes. That is, in a correct protocol involving n players to compute a
function f , each player Pi is provided with a local binary random tape Ri of length �.
Note that the value of � may be different for different protocols and different numbers
of players n. The bits in the random tapes are unbiased and independent. We denote
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by �R = (R1, . . . , Rn) a given vector of random tapes of all players, and we think of �R
as a binary vector of length n�.

The following definition is used to measure the amount of randomness used in a
protocol.

Definition 2.1 (randomness complexity of a protocol). A d-random protocol is
a protocol such that for any input assignment and any vector of local random tapes,
the total number of random bits read from the local random tapes by all players is at
most d.

We emphasize that the definitions allow, for example, that in different executions
of a protocol (i.e., different input assignments and different local random tapes), a
given player reads a different number of random bits from its local random tape. The
number of random bits read by the player may depend on both the inputs of the
players and the random bits read by all players.

We now proceed to consider the messages exchanged by the players. Each player
Pi receives during the execution of the protocol a sequence of messages. In different
runs of a protocol the various players may receive different messages. These depend
on the input to the players and on the random tapes. We denote the communication
seen by a player as follows.

Definition 2.2. The communication ci(�x, �R), of player Pi, on input �x and

vector of random tapes �R = {Ri}1≤i≤n, is the sequence of messages that player Pi

receives during the execution of the protocol when the input is �x and the vector of
random tapes of all players is �R.

Thus, ci is the (random) variable of the sequence of messages received by Pi. For
a subset of the players S, we denote by cS the (random) variable of the sequences
of messages received by all the players in S. Informally, t-privacy means that any
coalition of up to t players cannot learn anything (in particular, the inputs of the other
players) from the communication that the members of the coalition receive, except
what is implied by the input bits of the members of that coalition, and the value of
the function computed. Formally, we give the following definition.

Definition 2.3 (privacy). A protocol for computing a function f is private with
respect to a subset of the players S ⊆ [n] if the following holds. For any two input
vectors �x and �y such that f(�x) = f(�y), and xi = yi for any i ∈ S, and for any sequence
of messages CS, and for any vector of random tapes for the subset S, {Ri}i∈S,

Pr[cS = CS |{Ri}i∈S , �x ] = Pr[cS = CS |{Ri}i∈S , �y ] ,

where the probability is over the random tapes of the players.
A protocol is said to be t-private if it is private with respect to any subset of

players S such that |S| ≤ t.
It will be convenient in our proofs to use a weaker privacy requirement, directly

implied by the t-privacy property, as stated in the following lemma. (Note that since
we prove lower bounds, this only makes our results stronger.)

Lemma 2.4. Consider any t-private protocol. For any subset S of the players
S ⊆ [n] such that |S| ≤ t, and for any two input vectors �x and �y such that f(�x) = f(�y)
and xi = yi for any i ∈ S, the following holds:

1. For any sequence of messages CS,

Pr[cS = CS |�x ] = Pr[cS = CS |�y ] ,

where the probability is over the vectors �R chosen uniformly from {0, 1}n�.
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2. For any function φS of cS, and for any value Φ in the range of φS,

Pr[φS = Φ|�x ] = Pr[φS = Φ|�y ] ,

where the probability is over the vectors �R chosen uniformly from {0, 1}n�.
Proof. Let s be the size of S, i.e., s = |S|. Fixing a vector of random tapes

for the subset S, {Ri}i∈S , is equivalent to fixing a binary vector of length s�. The
probability of each of these 2s� vectors is 2−s�, and the events corresponding to the
various vectors are disjoint. Therefore we have

Pr[cS = CS |�x ] = 2−s�
∑

{Ri}i∈S∈{0,1}s�

Pr[cS = CS |{Ri}i∈S , �x ] .

Using the same arguments, applied to �y instead of �x, we have that

Pr[cS = CS |�y ] = 2−s�
∑

{Ri}i∈S∈{0,1}s�

Pr[cS = CS |{Ri}i∈S , �y ] .

But, by the privacy property of the protocol we have that for any vector of random
tapes for the subset S, {Ri}i∈S ,

Pr[cS = CS |{Ri}i∈S , �x ] = Pr[cS = CS |{Ri}i∈S , �y ] .

We therefore obtain that

Pr[cS = CS |�x ] = Pr[cS = CS |�y ] .

The second statement of the lemma follows by observing that the value of φS is
fixed given any communication CS .

From the point of view of an observer of the protocol, one can define the transcript
of a given run of the protocol, which is the sequence of all messages sent between all
players during the execution of the protocol on input �x and vector of random tapes
�R. The transcript is in fact the ordered vector of the communication of all players.

Definition 2.5. The transcript Trans(�x, �R) of a protocol on input �x and vector

of random tapes �R = {Ri}1≤i≤n is (c1(�x, �R), c2(�x, �R), . . . , cn(�x, �R)).
The following lemma follows immediately from the arguments of the proof of

Lemma 4.10 in [27]. We will use this lemma in our proofs.
Lemma 2.6 (see [27]). For a given input �x, let d be the maximum, over all runs

on input �x, of the total number of random bits read from the random tapes by all
players during a given run. Then the number of different transcripts of runs on input
�x is at most 2d.

It is convenient in our proofs to consider the messages sent by the players as being
messages of single bits. This is done by “breaking” each message into the bits of its
binary representation. Formally, for a given protocol involving n players, let M be the
set of all different messages that can be sent in the protocol in all different runs (over

all possible inputs �x ∈ {0, 1}n and all possible vectors of random tapes �R ∈ {0, 1}n�).
Fix an arbitrary one-to-one binary encoding of fixed length for the messages in M .
We note that the empty message is one of the elements of M . We consider a protocol
where each player sends, instead of a given message from M , a sequence of single-
bit messages that represents the binary encoding of the original message from M .
Henceforth, when we refer to messages we refer to these single-bit messages. It is
important for our argument that the number of transcripts of the protocol, on any
given input �x, remains the same. This follows since we use a one-to-one encoding.
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Since we consider each message as being a single bit, we can think of a given
message m as a Boolean function of the input �x, which is a binary vector of length
n, and the random tapes of all players, which is a binary vector of length n�. We
therefore can write m as m = m(�x, �R).

Our lower bound exploits the fact that the function xor has large sensitivity on
every input. Sensitivity is defined as follows.

Definition 2.7 (sensitivity).
• Given �x ∈ {0, 1}n, we denote by �x(i) the vector �x with its ith bit flipped.

(Similarly, �x(i,j) is �x with its ith and jth bits flipped.)
• A function f is sensitive to its ith variable on input �x if f(�x) �= f(�x(i)).
• s(f, �x) is the number of variables to which the function f is sensitive on

input �x.
• The sensitivity of a function f is s(f) = max�x s(f, �x).

Note that the function xor (addition modulo 2) of n binary variables is sensitive
to all its n variables on any input. This immediately follows since for any �x ∈ {0, 1}n,
and for any i ∈ [n], xor(�x) �= xor(�x(i)).

We will further need the following definitions.
Definition 2.8.

• A message m depends on the variable xi if there exist �x and �R, such that
m(�x, �R) �= m(�x(i), �R). In other words, m depends on the variable xi if m is

sensitive to xi on some �x and �R.
• For i ≤ j, a message m depends on a variable xj under the partial assignment
x1 = α1, . . . , xi−1 = αi−1 if there exists an assignment to the remaining

variables xi, . . . , xn and there exists �R, such that m(α1, . . . , αi−1, xi, . . . , xj ,

. . . , xn, �R) �= m(α1, . . . , αi−1, xi, . . . , x̄j , . . . , xn, �R).
We will use the following simple observation.
Observation 1. Let m = m(�x, �R) = φ(f1(�x, �R), . . . , fu(�x, �R)). If m depends on

a variable xj under the partial assignment x1 = α1, . . . , xi−1 = αi−1, then at least one
of the functions f1, . . . , fu depends on the variable xj under the partial assignment
x1 = α1, . . . , xi−1 = αi−1.

3. Lower bound for general protocols. In this section we give a lower bound
that applies to any t-private protocol for xor for t ≥ 2. We first outline our approach,
which is common to the general lower bound and to the stronger lower bound for the
restricted class of protocols (given in section 4) and then proceed to give the proof of
Theorem 1.1.

3.1. Our approach. We state informally the approach we use in our proofs.
Our proofs proceed in two stages. First, we prove that in any t-private protocol for
xor we can identify q = Ω(n) distinct messages m1, . . . ,mq with certain properties.
Informally these properties are as follows:

(1) We can permute the input vector (and accordingly the set of players), such
that for any i, message mi depends on input xi but does not depend on any
input xj , j > i.

(2) The set of receivers of these messages is disjoint from the set of players that
have access to the inputs xi, 1 ≤ i ≤ q.

In the second stage of our proofs we consider the values of these selected messages
on a given input assignment. That is, we consider the vectors representing the values
of these messages over the possible random tapes to all players, when the input as-
signment is fixed. Using the properties of the private protocol and the properties of



RANDOMNESS IN PRIVATE COMPUTATION 953

the special set of selected messages, we then prove, in the case of a general t-private
protocol, that these vectors are linearly independent. In the case of a protocol of
the restricted class, we prove that all the vectors obtained from sums of at most t/2
original vectors are linearly independent. In each case, this allows us to conclude that
the number of different columns in the matrix obtained from the vectors as rows is
“large” (where the extent to which this number is large is different in each case). It
follows that the number of transcripts of the protocol on the given input is “large,”
and hence, using Lemma 2.6, the randomness complexity of the protocol is “high.”

3.2. Proof of Theorem 1.1. In this section, as well as in section 4, we always
assume that the computed function is xor. We now proceed to prove Theorem 1.1. In
fact we prove here a stronger claim than the claim of Theorem 1.1. We prove that for
any input assignment �α = α1, . . . , αn, there is a run in which the number of random
bits read by the players from their random tapes is Ω(logn).

3.2.1. Selecting the messages. Let �α = α1, . . . , αn be an arbitrary input
assignment. Given a fixed �α, we will define a sequence of messages. (We will not
indicate in our notation that the choice of this sequence depends on �α, but this
should be clear from the context.)

We define an ordering of all the messages sent during the protocol in order to be
able to refer to the first message with a given property. Then, based on this ordering,
we select a sequence of messages with certain properties. The choice of these messages
will induce a particular permutation of the input bits; and since each input bit belongs
to a given player, this induces a permutation of the players as well.

Definition 3.1. We define an ordering of all messages, such that in this order-
ing, any message sent in round i precedes any message sent in round j for i < j. For
the messages sent within the same round we choose an arbitrary ordering.

When we refer to the first message with a given property, we mean the first
message according to the above ordering that satisfies that property.

During the process of selecting the sequence of messages, we also assign a partic-
ular numbering to the input bits and to the players. To this end, when selecting a
given message, a variable and a player are also selected, and both are given the same
number as the message. That is, when the first i messages m1, . . . ,mi have been
selected, the variables x1, . . . , xi and the players P1, . . . , Pi are also already selected.
(We assume an arbitrary permutation of the remaining indices i + 1, . . . , n for the
remaining variables and players.) When the process ends (after selecting n messages)
a permutation of the variables and a permutation of the players is fixed.

We now proceed to the selection process. Let m1 be the first message in the
protocol that depends on at least one input variable. We will argue below that since
this is the first such message, it can depend on only one input variable, and without
loss of generality, we denote this input variable by x1, and the player that has access
to it by P1.

Let m2 be the first message in the protocol that depends on at least one input
variable under x1 = α1. We will argue below that since this is the first such message,
there is only one such input variable, and without loss of generality we denote it by
x2, and the player that has access to it by P2.

Inductively, let mi be the first message sent in the protocol that depends on some
input variable under x1 = α1, . . . , xi−1 = αi−1. We prove the following claim.

Claim 2. Let xk be any input variable on which mi depends under x1 = α1, . . . ,
xi−1 = αi−1. Then the sender of the message mi must be the player that has access
to the variable xk, that is, player Pk.
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Proof. Suppose that the sender of the message mi is a player Pj such that j �= k
(i.e., Pj is not the owner of xk). Note that a message m sent in a given round by
player Pj is a function of only the communication to player Pj in previous rounds,
its input xj , and its random tape Rj . Thus, by Observation 1, if Pj is not the owner
of the variable xk, it can send a message that depends on xk under x1 = α1, . . . ,
xi−1 = αi−1 only if it received in an earlier round a message that depends on xk

under x1 = α1, . . . , xi−1 = αi−1. But this contradicts the assumption that mi is the
first such message.

The above claim implies that there is only one input variable on which mi depends
under x1 = α1, . . . , xi−1 = αi−1. Without loss of generality we denote it by xi, and
the player that has access to it by Pi. Thus we derive the following.

Claim 3.

1. The message mi is sensitive to xi on the input �α and some vector of random
tapes �R.

2. Let �β be any input that agrees with �α in the first i − 1 coordinates, and let
j > i. Then the message mi is not sensitive to the variable xj on �β and �R

for any �R.

Proof. We selected mi such that mi depends on xi under x1 = α1, . . . , xi−1 = αi−1.
This means that there is some assignment to the remaining variables and some
�R such that mi is sensitive to xi on the input obtained by the additional assign-
ment and �R. But since xi is the only input variable on which mi depends under
x1 = α1, . . . , xi−1 = αi−1 this also means that mi is sensitive to xi on �α and �R.

We obtain the second statement using the observation that xi is the only input
variable on which mi depends under x1 = α1, . . . , xi−1 = αi−1.

Claim 4. We can continue the above procedure of selecting messages for n steps
and define the sequence of messages m1, . . . ,mn.

Proof. In a correct protocol to compute the function f , the output of each player
has to be equal to f(�α) on any input �α. Note that the output of a given player
depends only on the communication it received, its input bit, and its random tape.
Since the sensitivity s(f, �α) of the function f(�x) = x1 + · · ·+xn (mod2) is n on every
input �α, we have by Observation 1, for each player Pi and each variable xj such that
j �= i, that the communication received by Pi must contain at least one message that
is sensitive to xj on the input �α and some �R. Thus, on any input �α, there exists at

least one message for each variable xj that is sensitive to xj on �α and some �R. If our
procedure cannot be continued after k < n steps on some input �α, that would mean
by Claim 3 that no message is sensitive to any of the remaining variables on �α and �R
for any �R, which would be a contradiction.

As argued above, the senders of the messages m1, . . . ,mn are P1, . . . , Pn, respec-
tively. Denote by Q1, . . . , Qn the receivers of these messages. Note that the n receivers
are not necessarily n distinct players. We now select a subset of the above n messages,
mi1 , . . . ,miq , with the property that {Pij : j ∈ [q]} ∩ {Qij : j ∈ [q]} = ∅. That is,
none of the receivers of the selected messages is a sender of a selected message.

Lemma 3.2. There is a subset of size q ≥ n
4 of the above n messages, denoted

mi1 , . . . ,miq , such that the receivers of these messages, Qi1 , . . . , Qiq are disjoint from
the senders of these messages, Pi1 , . . . , Piq .

Proof. For the purpose of the proof we define an undirected graph. The set of
nodes consists of n nodes, each node vi representing a message mi of the original set
of n messages. Recall that each distinct message mi is sent by a distinct player Pi.
Therefore we can also think of the nodes as representing n distinct players. For each
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message mi, we put an edge between node vi and node vj if player Pj is the receiver
of message mi.

We now have a graph of n nodes and at most n edges. The graph therefore
contains an independent set of size at least n

4 (cf. [1, Theorem 3.2.1]). We select the
messages that correspond to the nodes of this independent set.

To simplify notation, in what follows we denote by m1, . . . ,mq, P1, . . . , Pq, x1, . . . ,
xq, and Q1, . . . , Qq the selected messages, their senders, the input variables these
senders have access to, and the receivers of the messages, respectively.

3.2.2. Properties of the vectors defined by the selected messages. We
will now consider the 2n�-bit binary vectors that represent these messages on input �α.
We denote by �m(�α) the binary vector of length 2n� that consists of the bits m(�α, �R).

Thus, for any i, the vector �mi(�α) consists of the bits mi(�α, �R). For ∅ �= S ⊆ [q] we
denote by �mS(�α) the bitwise mod 2 sum of the vectors �mi(�α) for i ∈ S. That is,

mS(�α, �R) = ⊕i∈Smi(�α, �R).
Lemma 3.3. Let m1, . . . ,mq be selected as above in a t-private protocol. For any

∅ �= S ⊆ [q] of size at most t, and any i, j ∈ [q] (where i �= j),

Pr�R[mS(�α, �R) = 1] = Pr�R[mS(�α(i,j), �R) = 1] .

Proof. Consider the set of players S′ = {Qi|i ∈ S}, that is, the coalition formed by

the receivers of the messages mi for i ∈ S. Then φS′
(cS′) = ⊕i∈Smi(�α, �R) = mS(�α, �R)

is a function of the sequence of messages received by the players in S′. Recall that
the set of senders of the messages mi is disjoint from the set of the receivers, that
is, {Pi : i ∈ [q]} ∩ {Qi : i ∈ [q]} = ∅, which implies that {Pi : i ∈ [q]} ∩ S′ = ∅,
and therefore for any i, j ∈ [q], Pi and Pj are not in S′. This means that for any

i, j ∈ [q] and for any l ∈ S′, αl = α
(i,j)
l , that is, the input bits held by the members

of the coalition S′ are not changed when one flips the ith and jth bits of �α. Note
also that flipping two bits does not change the value of the xor function, that is,
f(�α) = f(�α(i,j)) for any i, j ∈ [q], when f is the xor function. Thus, we can apply
Lemma 2.4 to S′ and φS′

= mS , and the second statement of Lemma 2.4 directly
implies the statement of the present lemma.

For i = 1, . . . , q, we denote by �hi(�α) the bitwise mod2 sum of the vectors �mi(�α)

and �mi(�α
(i)). Thus, the vector �hi(�α) is 1 in the coordinates corresponding to �R such

that mi(�α, �R) and mi(�α
(i), �R) differ, and 0 where they agree. We denote by hi(�α, �R)

the entry of �hi(�α) in the coordinate corresponding to �R.

Claim 5. The vectors �hi(�α), i = 1, . . . , q, are not identically 0.
Proof. The proof follows by the definition of the messages mi and the first state-

ment of Claim 3.
Lemma 3.4. Let m1, . . . ,mq be selected as above in a t-private protocol. Let

∅ �= S ⊆ [q − 1] be a subset of size at most t, and let k be the largest element of S.
Then

Pr�R[mS(�α, �R) = 1|hk(�α, �R) = 1] = 1/2 .

Proof. Since k is the largest element of S and q is larger than any element in S,
we get by Claim 3 that �mS(�α(k,q)) is the bitwise mod2 sum of the vectors �mS(�α) and
�hk(�α). To see this observe that for any 1 ≤ i < k, mi(�α

(k), �R) = mi(�α, �R) by the

second statement of Claim 3, and mi(�α
(k,q), �R) = mi(�α

(k), �R) again by the second

statement of Claim 3. At the same time, mk(�α
(k,q), �R) = mk(�α

(k), �R) by the second
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statement of Claim 3, and mk(�α
(k), �R) = mk(�α, �R)+hk(�α, �R) by the definition of hk.

Thus, mS(�α(k,q), �R) and mS(�α, �R) are complements of each other in the coordinates

where hk(�α, �R) is 1, and agree where hk(�α, �R) is 0. We therefore have

Pr�R[mS(�α, �R) = 1] = Pr�R[mS(�α, �R) = 1 ∧ hk(�α, �R) = 1]

+ Pr�R[mS(�α, �R) = 1 ∧ hk(�α, �R) = 0]

and

Pr�R[mS(�α(k,q), �R) = 1] = Pr�R[mS(�α, �R) = 0 ∧ hk(�α, �R) = 1]

+ Pr�R[mS(�α, �R) = 1 ∧ hk(�α, �R) = 0] .

Since by Lemma 3.3

Pr�R[mS(�α, �R) = 1] = Pr�R[mS(�α(k,q), �R) = 1] ,

we have that

Pr�R[mS(�α, �R) = 1 ∧ hk(�α, �R) = 1] = Pr�R[mS(�α, �R) = 0 ∧ hk(�α, �R) = 1] .

Since Pr�R[hk(�α, �R) = 1] �= 0 by Claim 5, this implies the statement of the lemma.
For i = 1, . . . , q we denote by �ωi(�α) the binary vector of length 2n� that we get

by replacing each 0 in �mi(�α) by 1, and replacing each 1 in �mi(�α) by −1. Similarly,
for ∅ �= S ⊆ [q] we denote by �ωS(�α) the binary vector of length 2n� that we get
by replacing each 0 in �mS(�α) by 1, and replacing each 1 in �mS(�α) by −1. That is,
we move from the domain {0, 1} to the domain {1,−1}, and we obtain the vectors
�ωi(�α), for i = 1, . . . , q, from the vectors �mi(�α) using the standard transformation that
replaces each value b by (−1)b. The vectors �ωS(�α), for ∅ �= S ⊆ [q], are obtained from
the vectors �mS(�α) in the same way.

Lemma 3.5. Let �ω1, . . . , �ωq be selected as above in a t-private protocol for t ≥ 2.
Then the vectors �ωi(�α), i = 1, . . . , q − 1, are linearly independent over the reals.

Proof. As we will see in the next section, our job would be much easier (and we

could obtain stronger bounds) if the vectors �hk(�α) were the same for each k. In that
case we could show that the vectors �ωi(�α), i = 1, . . . , q − 1 (or some projections of

them), are pairwise orthogonal. However, in general the vectors �hk(�α) may not be
the same. Nevertheless, we can show that a given projection of each vector �ωk(�α)
is orthogonal to the same projection of each preceding vector �ωi(�α) for i < k. This
will let us show that for any k such that 2 ≤ k ≤ q − 1, the vector �ωk(�α) cannot be
obtained as a linear combination of the vectors �ω1(�α), . . . , �ωk−1(�α).

Consider an arbitrary k ∈ {2, . . . , q− 1}, and consider the following projection of
the vectors �ω1(�α), . . . , �ωk(�α). Note that our choice of the projection depends on k (via
�hk(�α)) and this is indicated in the notation by the superscript k. For i = 1, . . . , k,
denote by �vk

i the projection of the vector �ωi(�α) to only those coordinates where

hk(�α, �R) = 1. Note that �hk(�α) is not identically 0, as stated in Claim 5, so there is
always at least one such coordinate.

Since t ≥ 2, by applying Lemma 3.4 to the sets {i, k} for i < k we get that the
inner product of �vk

k with any of the vectors �vk
i for i < k is 0. To see this, consider

�ωS(�α) for S = {i, k}. Considering {1,−1} vectors instead of {0, 1} vectors, Lemma 3.4
states that

Pr�R[ωS(�α, �R) = 1|hk(�α, �R) = 1] = Pr�R[ωS(�α, �R) = −1|hk(�α, �R) = 1] = 1/2 .
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Thus,
∑

{�R:hk(�α,�R)=1} ωS(�α, �R) = 0. Notice that for S = {i, k}, the above sum is ex-

actly the inner product of the vectors �vk
i and �vk

k, since ωS(�α, �R) = ωi(�α, �R) ·ωk(�α, �R).
Therefore, we get that the inner product of �vk

k with any of the vectors �vk
i for i < k

is 0, as claimed.
Suppose that �ωk(�α) can be obtained as a linear combination of the vectors

�ω1(�α), . . . , �ωk−1(�α). Then �vk
k can be obtained as a linear combination of the vec-

tors �vk
1 , . . . , �v

k
k−1. But since the inner product of �vk

k with each �vk
i for i < k is 0, this

would imply that the inner product of �vk
k with itself is 0. Since �vk

k has only 1 or −1
entries, this is not possible.

Let us now consider the (q − 1) × 2n� matrix, formed by the vectors �ωi(�α), i =
1, . . . , q − 1, as row vectors. Since the vectors �ωi(�α), i = 1, . . . , q − 1, are linearly
independent, this matrix has at least q − 1 different columns. This implies that
the protocol has at least q − 1 different transcripts on input �α. Since q = Ω(n),
Theorem 1.1 follows by Lemma 2.6.

4. Restricted protocols. In this section we consider a class of restricted pro-
tocols that we define below. Our motivation to consider this class is that all known
randomness-efficient protocols designed specifically for xor obey this restriction, or
can be easily brought to this form without changing the number of coin tosses per-
formed [27, 23, 26, 8]. Informally one can describe the protocols of this class in the
following way. First, a deterministic, nonprivate protocol to compute f is defined.
Then this protocol is modified by masking each message with randomness by adding
to it (modulo 2) a value that depends on the randomness only. This restriction was
previously considered in [27]. Formally the restriction we consider here is defined as
follows.

Definition 4.1. We say that a given protocol involving n players has a restricted
form if each message of the protocol can be obtained as a mod 2 sum of a Boolean
function u : {0, 1}n → {0, 1} that depends on the input variables only, and a Boolean
function v : {0, 1}n� → {0, 1} that depends on the random tapes only. That is, each

message m can be written as m(�x, �R) = u(�x) + v(�R) mod 2.
Theorem 4.2. Let t ≥ 2, and let A be a d-random, t-private protocol, obey-

ing the above restriction, for computing f(�x) = x1 + · · · + xn (mod 2). Then d =
Ω(t log(n/t)).

As in our proof for general protocols, here too we prove in fact a stronger claim.
We prove that for any input assignment �α = α1, . . . , αn, there is a run of the protocol
in which the number of random bits read by the players from their random tapes is
Ω(t log(n/t)).

Proof. Let �α = α1, . . . , αn be an arbitrary input assignment. We select a sequence
of messages m1, . . . ,mq and define the corresponding vectors as in the previous section.

Recall that �hi(�α) denotes the bitwise mod 2 sum of the vectors �mi(�α) and �mi(�α
(i)).

The restriction on the protocols we consider allows us to have the following claim.
Claim 6. The vectors �hi(�α), i = 1, . . . , q, are identically 1.

Proof. We know by Claim 5 that the vectors �hi(�α) are not identically 0. That is,

they have at least one entry with value 1. This means that mi(�α, �R) �= mi(�α
(i), �R) for

at least one �R. But mi(�x, �R) can be written as mi(�x, �R) = ui(�x) + vi(�R) mod 2. It

follows that ui(�α) �= ui(�α
(i)), and therefore for any �R, mi(�α, �R) �= mi(�α

(i), �R).
The above claim allows us to obtain a stronger bound using the machinery of the

previous section. We now prove the following lemma.
Lemma 4.3. Let �ωS be defined as above in a t-private protocol obeying the above
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restriction for t ≥ 2. Then the vectors �ωS(�α), such that ∅ �= S ⊆ [q − 1] and
|S| ≤ t/2�, are linearly independent over the reals.

Proof. First note that since t ≥ 2, there exist sets S, such that ∅ �= S ⊆ [q − 1]
and |S| ≤ t/2�; thus the statement of the lemma is meaningful (assuming n ≥ 5;
otherwise q−1 could be less than 1, since the guarantee of Lemma 3.2 is that q ≥ n

4 ).

Since by Claim 6 for each i ∈ [q] the vector �hi(�α) is identically 1, Lemma 3.4 gives that

Pr�R[mT (�α, �R) = 1] = 1/2 for any ∅ �= T ⊆ [q − 1] of size at most t. This implies that
the sum of entries of the vector �ωT (�α) is 0 for any ∅ �= T ⊆ [q − 1] of size at most t.

Notice that for any two sets S1 and S2, we have ωS1(�α,
�R) ·ωS2(�α,

�R) = ωS1�S2(�α,
�R).

Thus, for sets ∅ �= S1 ⊆ [q − 1] and ∅ �= S2 ⊆ [q − 1], each of size at most t/2�, the
inner product of �ωS1

(�α) and �ωS2
(�α) must be 0. We get that the vectors �ωS(�α) for

∅ �= S ⊆ [q − 1] and |S| ≤ t/2� are pairwise orthogonal, and therefore they must be
linearly independent over the reals.

We denote by
(

a
≤b

)
the sum

∑min(a,b)
i=1

(
a
i

)
for integers a, b ≥ 1. Let us now consider

the
(

q−1
≤�t/2�

)
× 2n� matrix, formed by the vectors �ωS(�α), such that ∅ �= S ⊆ [q− 1] and

|S| ≤ t/2�, as row vectors. Since the vectors �ωS(�α) are linearly independent, this
matrix has at least

(
q−1

≤�t/2�
)

different columns. Note that each column of the matrix

is associated with a fixed vector of random tapes �R, and each column is completely
determined by the transcript of the protocol on the given �R and �α. This implies that
the protocol has at least

(
q−1

≤�t/2�
)

different transcripts on input �α. Since q = Ω(n),

the theorem follows by Lemma 2.6.
We find it worthwhile to note that our proof also implies that the random variables

associated with the messages m1, . . . ,mq on input �α are t-wise independent in any
t-private protocol that obeys the above restriction. Thus, we could conclude the
proof of Theorem 4.2 by referring to the known lower bounds on the size of sample
spaces with t-wise independent random variables [12, 1]. In fact, part of the proof of
Lemma 4.3 is analogous to the corresponding part of the argument used in [12]. The
t-wise independence property of the random variables associated with the messages
m1, . . . ,mq on input �α follows by Lemma 3.4, which, as we have shown above, gives

in the case of the restricted protocols that Pr�R[mS(�α, �R) = 1] = 1/2 for any ∅ �=
S ⊆ [q − 1] of size at most t. This implies t-wise independence of the corresponding
random variables by the results of [12].
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1. Introduction. In infinite fields it is possible to compute the coefficients of
the product of two polynomials of degree n in 2n + 1 nonscalar multiplications. It is
known from [23] that each algorithm for computing the product in 2n + 1 nonscalar
multiplications must evaluate the multiplicands at 2n + 1 distinct points (possibly
including ∞), multiply the samples, and interpolate the result. However, in finite
fields this method fails if 2n exceeds the number of the field elements. Thus, in
general, the 2n + 1 tight bound cannot be achieved in finite fields.

Let μF (n) denote the number of multiplications required to compute the coeffi-
cients of the product of a polynomial of degree n and a polynomial of degree n − 1
over field F by means of quadratic algorithms1 and let Fq denote the q-element field.
For q ≥ 3, the best lower bound on μFq

(n) known from the literature is 3n − o(n)
(see [15] and [6, Theorem 18.10]) and, for sufficiently large n, μF2(n) > 3.52n (see [3]).
On the other hand, if q ≥ 3, computing the coefficients of the minimal degree residue
of the product of two polynomials of degree n modulo a fixed irreducible polynomial
of degree n + 1 over Fq2 can be done in 2(1 + 1

q−2 )n + o(n) multiplications; see [7]

and [20]. Thus, for q ≥ 3, μFq2
(n) ≤ 4(1+ 1

q−2 )n+o(n). This small difference between

the upper and the lower bounds motivates a further search for better (both upper and
lower) bounds on the complexity of polynomial multiplications. Also, apart from be-
ing of interest in their own right, algorithms for polynomial multiplication over finite
fields are tightly connected to error-correcting codes; see [2, 3, 7, 14, 16, 17].

In our paper we prove the following lower bound on μFq (n).
Theorem 1. We have

μFq (n) ≥
(

3 +
(q − 1)2

q5 + (q − 1)3

)
n− o(n).
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1A straightforward substitution argument shows that the number of multiplications required to

compute the coefficient of the product of two polynomials of degree n over F exceeds μF (n) by at
least 1.
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The proof of Theorem 1 is based on a novel combination of two known techniques.
One technique is the analysis of Hankel matrices representing bilinear forms defined
by linear combinations of the coefficients of the polynomial product; see [15]. The
other technique is a counting argument from the coding theory; see [16].

The reason for combining these two techniques is that the Hankel matrix approach
uses very few properties of finite fields and the coding approach does not use at
all a very special structure of bilinear forms defined by linear combinations of the
coefficients of the polynomial product. In fact, our paper indicates that the Hankel
matrix approach is, in some sense, richer than Baur’s technique; see [6, proof of
Theorem 18.10]. In particular, as a byproduct, using the tools developed for the
proof of Theorem 1, we obtain a more intuitive alternative proof of the lower bound
on the complexity of multiplication of polynomials modulo a polynomial established
in [4] and [7].

We end this section with the note that if a set of quadratic forms over an in-
finite field can be computed by a (general) straight-line algorithm in t multiplica-
tions/divisions, then it can be computed in t multiplications by a quadratic algorithm
whose total number of operations differs from that of the original one by a factor of a
small constant; see [21]. It is unknown whether a similar result holds for finite fields;
cf. [5]. However, the proof in [21] easily extends to finite fields if, for some input
that belongs to the underlying finite field, the original straight-line algorithm does
not divide by zero. Therefore, in the case of multiplication of polynomials over Fq,
our lower bound applies to all straight-line algorithms which compute the coefficients
of the product of at least one pair of polynomials whose coefficients all belong to Fq.
Finally, one can easily prove that quadratic algorithms for computing a set of bilinear
forms are optimal within the class of algorithms without divisions, and all algorithms
for polynomial multiplication over finite fields known from the literature are quadratic
(and even bilinear).

The paper is organized as follows. In the next section we gather the definitions
and some basic facts used in this paper. In section 3 we indicate some limitations of
the known tools and present an example through which we develop a technique used
for the proof of Theorem 1. Then, in section 4, we outline the proof of the theorem.
The proof itself is based on an improvement of a known lower bound presented in
section 5 and a number of technical constructions presented in sections 6, 7, and 8.
In particular, the improved lower bound in section 5 is based on a counting argument
from the coding theory and can be used for an alternative proof of the complexity of
multiplication of polynomials modulo a polynomial.

2. Notation, definitions, and auxiliary results. This section contains the
definitions and some basic results known from the literature which we use in this
paper. First we define the notion of a quadratic algorithm. Then we introduce
notation and definitions from linear recurring sequence theory and state the major
auxiliary technical lemmas. We conclude this section with some basic calculations
from the coding theory and an example that will be used for the proof of Theorem 1.

2.1. Quadratic algorithms for polynomial multiplication. In this paper
we deal only with quadratic algorithms defined below.

Let s be a set of indeterminates. We remind the reader that a quadratic algorithm
over field F for computing a set Q of quadratic forms of the elements of s is a straight-
line algorithm whose nonscalar multiplications are of the form L′∗L′′, where L′ and L′′

are linear forms of the elements of s over F and each form in Q is a linear combination
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of these products. The minimal number of such multiplications is called the quadratic
complexity of Q over F and is denoted by μF (Q).

Let Q = {xTMy : M ∈ M}, where M is a set of matrices. That is, the quadratic
(in fact, bilinear) forms in Q are defined by the elements of M .

In what follows we shall identify Q with M and often write μF (M) instead of
μF (Q). Also, we shall identify a quadratic algorithm with the corresponding set of
pairs of linear forms.

Let x = (x0, x1, . . . , xn)T and y = (y0, y1, . . . , yn−1)
T be column vectors of the

multiplicands’ coefficients. We have to compute

zk = zk(x,y) =
∑

i+j=k

xiyj , k = 0, . . . , 2n− 1.(1)

Assume that μF (n) = t, i.e., there exist t linear forms L′
1(x,y), . . . , L′

t(x,y) and t
linear forms L′′

1(x,y), . . . , L′′
t (x,y) of x and y such that each zk is a linear combination

of products L′
i(x,y)L′′

i (x,y), i = 1, 2, . . . , t.
Let z = (z0, z1, . . . , z2n−1)

T and let p be a column vector of the above products.
That is,

p =

⎛
⎜⎜⎜⎝

L′
1(x,y)L′′

1(x,y)
L′

2(x,y)L′′
2(x,y)

...
L′
t(x,y)L′′

t (x,y)

⎞
⎟⎟⎟⎠ ,

say. Then there exists a 2n× t matrix U such that z = Up.
By definition, zk = xTAky, where Ak = (ai,j,k) is an (n + 1) × n Hankel matrix

defined by

ai,j,k =

{
1 if i + j = k + 2,
0 otherwise.

In particular, z0 = xTA0y = x0y0 is the value of polynomial
∑2n−1

k=0 zkα
k at zero,

and z2n−1 = xTA2n−1y = xnyn−1 is its value at infinity.
Since matrices A0, A1, . . . , A2n−1 are linearly independent, rankU = 2n. Permut-

ing the components of p if necessary, we may assume that the first 2n columns of U
are linearly independent. Hence there exist a nonsingular 2n × 2n matrix W and a
2n× (t− 2n) matrix V such that

Wz = (I2n, V )p,(2)

where I2n denotes the 2n× 2n identity matrix. That is, the first 2n columns of WU
are those of I2n.

Let Wz = (xTD1y,x
TD2y, . . . ,x

TD2ny)T and D = {D1, D2, . . . , D2n}. Then
μF (n) = μF (D), which together with (2) easily implies Proposition 2 below.

Proposition 2 (cf. [1, Proposition 1]). Let D be as above and let D′ ⊆ D.
Then

μF (n) ≥ 2n + 1 + μF (D′) − |D′|.2
We apply Proposition 2 for the proof of Theorem 1 in a standard manner; see [1],

[5], [6, proof of Theorem 18.10], and [15]. Namely, we prove that there exists a subset
D′ of D of cardinality o(n) such that

μFq (D
′) ≥

(
1 +

(q − 1)2

q5 + (q − 1)3

)
n;

2As usual, for a set X, |X| denotes the number of elements of X.
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cf. [6, proof of Theorem 18.10] and [15]. For this purpose we refine the technique
developed in [15].

2.2. Hankel matrices and linear recurring sequences. In this section we
recall the notation and state major auxiliary lemmas from [5] and [15].

Let F be a field, let k be a positive integer, and let a0, . . . , ak−1 ∈ F . A sequence
σ = s0, s1, . . . , s� of elements of F satisfying the relation

sm+k = ak−1sm+k−1 + ak−2sm+k−2 + · · · + a0sm, m = 0, 1, . . . , �− k,

is called a (finite kth-order homogeneous) linear recurring sequence in F . The terms
s0, s1, . . . , sk−1 are called initial values, and the polynomial

f(α) = αk − ak−1α
k−1 − ak−2α

k−2 − · · · − a0 ∈ F [α]

is called a characteristic polynomial of σ. The characteristic polynomial of σ of the
minimal degree is called the minimal polynomial of σ and is denoted by fσ(α).

Proposition 3 below shows that if a finite linear recurring sequence is “sufficiently
long,” then it possesses an important property of infinite linear recurring sequences.

Proposition 3 (see [15, Proposition 1]). Let σ, f(α), and fσ(α) be as above. If
deg fσ(α) + deg f(α) ≤ � + 1, then fσ(α) divides f(α).

For a sequence σ = s0, s1, . . . , s2n−1 we define the (n+1)×n Hankel matrix H(σ)
by

H(σ) =

⎛
⎜⎜⎜⎝

s0 s1 · · · sn−1

s1 s2 · · · sn
...

...
...

sn sn+1 · · · s2n−1

⎞
⎟⎟⎟⎠ .

The proof of Theorem 1 is based on the fact that linear combinations of the
coefficients of the product of two polynomials are defined by Hankel matrices and
vice versa.

We proceed with Definition 4 below, for which we need the following notation.

We denote by �Hi, i = 0, 1, . . . , n, the (i+1)th row of a (n+1)×n Hankel matrix
H.

Definition 4. Let σ = s0, s1, . . . , s2n−1, H = H(σ), and let k be the minimal
integer for which there exist a0, a1, . . . , ak−1 ∈ F such that

k−1∑
i=0

ai �Hi = �Hk.

The sequence σ̃ = s̃0, s̃1, . . . , s̃2n−1 is defined by linear recurrence

s̃i+k = ak−1s̃i+k−1 + ak−2s̃i+k−2 + · · · + a0s̃i,(3)

with initial values s̃i = si, i = 0, 1, . . . , k − 1.
The sequence σ − σ̃ is denoted by σ̄, and (n + 1) × n Hankel matrices H(σ̃) and

H(σ̄) are denoted by H̃ and H̄, respectively.

We denote characteristic polynomial αk −
∑k−1

i=0 aiα
i of the sequence defined by

recurrence (3) by fH̃(α)3 and we define the (integral) divisor fH(α) by

fH(α) = fH̃(α)(α−∞)rank(H̄).

3In fact, fH̃(α) is the minimal polynomial of this sequence and, in particular, of σ̃; see [15,
section 3].
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Example 5. Let d ≤ n − 1 and let σ = s0, s1, . . . , s2n be such that sd �= 0
and sj = 0 for all j = d + 1, d + 2, . . . , 2n. Then fH(σ)(α) = αd. Similarly, for
σ′ = s′0, s

′
1, . . . , s

′
2n, where s′2n−d �= 0 and s′j = 0 for all j = 0, 1, . . . , 2n − d − 1,

fH(σ′)(α) = (α−∞)d. Thus, in particular, for the zero (n+ 1)× n matrix 0(n+1)×n,
f0(n+1)×n

(α) = 1.

Proposition 6 (see [15, Proposition 2]). Let H be an (n+1)×n Hankel matrix.
Then rank(H) = degfH(α).

A part of the proof of Theorem 1 is based on Lemmas 7–11 below. To state these
lemmas we need the following notation.

Let S be a set of (n + 1) × n Hankel matrices. We denote by fS(α) the least
common multiple of {fH(α) : H ∈ S}:

fS(α) = lcm{fH(α) : H ∈ S}.

Let V be a vector space over F and let V ′ ⊆ V . We denote by [V ′] the linear
subspace of V spanned by the elements of V ′.

Finally, we denote the maximal possible number of distinct factors of a polynomial
of degree n over Fq by iq(n). It is well known that for q ≥ 3, iq(n) < n

lgq n−3 ; e.g.,

see [15, Appendix 1].

Lemma 7 (see [15, Lemma 1]). Let S be a set of (n + 1) × n Hankel matrices.
Then dim([S]) ≤ deg fS(α).

Lemma 8 (see [15, Lemma 2] and [5, Lemma 1]). Let S be a set of (n + 1) × n
Hankel matrices over a field F such that deg fS(α) ≥ n + 1. Then μF (S) ≥ n + 1.

Lemma 9 (see [15, Lemma 3] and [5, Lemma 1]). Let S be a set of (n + 1) ×
n Hankel matrices over a field F such that deg fS(α) < n + 1. Then μF (S) ≥
deg fS(α).

Lemma 10 (see [5, Lemma 2]). Let S and S′ be sets of (n + 1) × n Hankel
matrices such that [S] = [S′]. If deg fS(α) ≤ n, then fS′(α) = fS(α).

Lemma 11 (see [15, Lemma 4]). Let M be a set of (n + 1) × n Hankel matrices
over Fq. Then for each m ≤ dim(M) there exists a subset M ′ of M containing iq(m)
or fewer elements such that deg fM ′(α) ≥ m.

The following example illustrates the power of the tools listed so far.

Example 12 (see [15, proof of Theorem 1]). Let D be the set of Hankel matrices
defining the components of Wz in (2). Then dim(D) = 2n and, by Lemma 11, there
is a subset D′ of D of cardinality not exceeding iq(n + 1) such that deg fD′(α) ≥
n + 1. By Lemma 8, μFq

(D′) ≥ n + 1 which, together with Proposition 2, implies
μFq (n) = 3n− o(n).

2.3. Bounds from the coding theory. This section contains some elementary
calculations from the coding theory needed for the proof of Theorem 1.

The most basic notion of the coding theory is the weight of a vector v, denoted
wt(v), that is the number of nonzero components of v.

Proposition 13 (see [19, problem 3.6, p. 73]). Let U be a k× t matrix over Fq

without zero columns. Then ∑
v∈Fk

q

wt(vU) = t(qk − qk−1).
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Corollary 14. Let U be a 2 × t matrix over Fq without zero columns. Then

t =

wt((0, 1)U) +
∑
v∈Fq

wt((1, v)U)

q
.

The proof of this corollary is immediate and is left to the reader.
Corollary 15 (cf. [16, proof of Theorem 1]). Let S = {H1, H2, . . . , Hk} be a

set of (n + 1) × n Hankel matrices over Fq. Then

μFq
(S) ≥

∑
H∈[S]

deg fH(α)

qk − qk−1
.

Proof. Let μFq
(S) = t and let {(L′

i(x,y), L′′
i (x,y))}i=1,2,...,t be a quadratic algo-

rithm over Fq that computes the bilinear forms defined by the elements of S. Let p
be a column vector of products L′

i(x,y)L′′
i (x,y), i = 1, 2, . . . , t, and let U be a k × t

matrix over Fq such that

(xTH1y,x
TH2y, . . . ,x

THky)T = Up.

Let �S = (H1, H2, . . . , Hk)
T . Then, for each v ∈ F k

q ,

xT (v�S)y = vUp,

implying μFq (v
�S) ≤ wt(vU). Since μFq (v

�S) = rank(v�S) and, by Proposition 6,

rank(v�S) = deg fv�S(α), we have

t(qk − qk−1) =
∑

v∈Fk

wt(vU)

≥
∑

v∈Fk

μFq
(v�S) =

∑
v∈Fk

deg fv�S(α) =
∑

H∈[S]

deg fH(α),

which implies the desired inequality.
We conclude this section with an example that will be used for the proof of

Theorem 1.
Example 16. Let

εq =
q4

q5 + (q − 1)3
(4)

and let D be the set of Hankel matrices defining the components of Wz in (2). If
there exists a subset D′ of D of cardinality 	lgq lgq n− lgq lgq lgq n
 such that for each

H ∈ [D′], deg fH(α) ≥ (1 − εq)n, then

μFq (n) ≥
(

3 +
(q − 1)2

q5 + (q − 1)3

)
n− o(n).

That is, Theorem 1 is true in this degenerate case.
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Indeed, by Corollary 15,

μFq
(D′) ≥

∑
H∈[D′]

deg fH(α)

q�lgq lgq n−lgq lgq lgq n� − q�lgq lgq n−lgq lgq lgq n�−1

≥ (q�lgq lgq n−lgq lgq lgq n� − 1)(1 − εq)n

q�lgq lgq n−lgq lgq lgq n� − q�lgq lgq n−lgq lgq lgq n�−1

≥
(

1 +
1

q − 1

)
(1 − εq)n−

(1 − εq)n lgq lgq n

lgq n

and the desired inequality follows from (4) and Proposition 2.

3. Limitations of Lemma 8 and its extension. First we observe that Exam-
ple 12 does not use much of the finiteness of the underlying field, because Lemma 8
holds for any field. In addition, Lemma 11 uses only “a half” of the dimension of
[D] that equals 2n. It seems that a better bound could be achieved by extending
Lemma 8 “beyond n + 1” (just in the case of a finite field), which would allow us to
use a “bigger portion of dim([D]).” As shown in Theorem 21 in section 3.2, Lemma 8
can indeed be extended, and we apply its extension for the proof of Theorem 1.

This section is organized as follows. First we present an example that indicates
some limitations of Lemma 8. Then we state and prove Theorem 21 that extends
Lemma 8.

3.1. Limitations of Lemma 8. Our example illustrating some of the limita-
tions of Lemma 8 is based on the following lemma.

Lemma 17. Let H ′ and H ′′ be (n + 1) × n Hankel matrices over Fq and let
α ∈ Fq2 \Fq.

4 Then each quadratic algorithm over Fq that computes xT (H ′ +αH ′′)y
also computes xTH ′y and xTH ′′y.

Proof. Let {(L′
i(x,y), L′′

i (x,y))}i=1,2,...,t be a quadratic algorithm over Fq that
computes xT (H ′ + αH ′′)y. That is, there exist ai, bi ∈ Fq, i = 1, 2, . . . , t, such that

xT (H ′ + αH ′′)y = xTH ′y + αxTH ′′y

=

t∑
i=1

(ai + αbi)L
′
i(x,y)L′′

i (x,y)

=

t∑
i=1

aiL
′
i(x,y)L′′

i (x,y) + α

t∑
i=1

biL
′
i(x,y)L′′

i (x,y).

Since the coefficients of all L′
i(x,y) and L′′

i (x,y), i = 1, 2, . . . , t, belong to Fq,

xTH ′y =
∑t

i=1aiL
′
i(x,y)L′′

i (x,y) and xTH ′′y =
∑t

i=1biL
′
i(x,y)L′′

i (x,y).
Remark 18. A bit more involved argument shows that Lemma 17 holds for any

two fields F ⊂ F ′ and any α ∈ F ′ \ F .
Now we are ready to present our example on which we base the proof of Theorem 1.
Example 19. Let n be even and let M,M ′, and M ′′ be (n+1)×n Hankel matrices

over Fq such that fM (α),fM ′(α), and fM ′′(α) are pairwise coprime divisors of degree
n+1

2 . Below we prove that μFq ({M,M ′,M ′′}) ≥ (1 + 1
2q2 )(n + 1), whereas Lemma 8

gives us only μFq ({M,M ′,M ′′}) ≥ n + 1.

4Of course, we may assume that Fq ⊂ Fq2 .



POLYNOMIAL MULTIPLICATION OVER FINITE FIELDS 967

Let {(L′
i(x,y), L′′

i (x,y))}i=1,2,...,t be a quadratic algorithm over Fq that computes
the bilinear forms defined by those three matrices. Then this algorithm also computes
the bilinear forms over Fq2 defined by M + αM ′ and M ′′, where α ∈ Fq2 \ Fq is as
in Lemma 17. Let p be a column vector of products L′

i(x,y)L′′
i (x,y), i = 1, 2, . . . , t.

Then there exists a 2 × t matrix U over Fq2 such that(
xT (M + αM ′)y

xTM ′′y

)
= Up.

Therefore,

xTM ′′y = (0, 1)Up,

implying

wt((0, 1)U) ≥ μFq ({M ′′}).(5)

In addition, for u, v ∈ Fq,

xT ((M + uM ′′) + α(M ′ + vM ′′))y = xT ((M + αM ′) + (u + vα)M ′′)y

= (1, u + vα)Up,

implying, by Lemma 17,

wt((1, u + vα)U) ≥ μFq
({M + uM ′′,M ′ + vM ′′}).(6)

Now, combining (5) and (6) with Corollary 14, we obtain

t ≥

μFq
({M ′′}) +

∑
u,v∈Fq

μFq
({M + uM ′′,M ′ + vM ′′})

q2 .(7)

Since

μFq ({M ′′}) = rank(M ′′) = deg fM ′′(α) =
n + 1

2

and, by Lemma 8, μFq ({M + rM ′′,M ′ + sM ′′}) ≥ n + 1, the desired inequality
t ≥ (1 + 1

2q2 )(n + 1) follows from (7).

Remark 20. Replacing {M+αM ′,M ′′} in the above example with {M+αM ′,M+
αM ′′}, one can show that μFq ({M,M ′,M ′′}) ≥ (1 + 1

q2 )(n + 1). However, we do not

know how to generalize this approach.

3.2. A generalization of Example 19. Theorem 21 below (whose proof is
presented in the next section) generalizes Example 19 by extending Lemma 8 “beyond
n + 1.” We precede the statement of the theorem with the following notation.

For a set H of (n + 1) × n Hankel matrices we denote by ‖H‖ the minimum
of {deg fH(α) : H ∈ [H] \ {0(n+1)×n} and we denote by deg H the minimum of
{deg fH′(α) : [H ′] = [H]}.5

Theorem 21. Let M be a set of three linearly independent (n + 1) × n Hankel
matrices over Fq such that deg fM (α) ≥ n + 1.

5 Note the difference between deg H and deg fH (α). Whereas the latter refers to a particular
set of Hankel matrices H, the former is the minimum over all sets H′ which span [H]. Nevertheless,
by Lemma 10, they are equal, if either of them is less than n + 1.
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1. If there is a basis {M,M ′,M ′′} of [M ] such that

deg f{M,M ′′}(α),deg f{M,M ′}(α),deg f{M ′,M ′′}(α) ≤ n,(8)

then

μFq (M) ≥ n + 1 +
deg f{M,M ′,M ′′}(α) − n− 1

q2 .

2. If for each basis {M,M ′,M ′′} of [M ] (8) does not hold, then

μFq (M) ≥ n + 1 +
‖M‖
q2 .

Corollary 22. Let M be a set of three linearly independent (n+ 1)×n Hankel
matrices over Fq. If deg fM (α) ≥ n + 1, then

μFq (M) ≥ n + 1 +
min(deg M − n− 1, ‖M‖)

q2 .

In view of Corollary 22, we shall search for a subset D′ of D, where D is the set
of Hankel matrices defining the components of Wz in (2), such that

• |D′| = o(n) and
• [D′] includes a set M of three linearly independent (n+1)×n Hankel matrices

satisfying

min(deg M − n− 1, ‖M‖) ≥ (q − 1)2

q2 εqn,

where εq is defined by (4).

3.3. Proof of Theorem 21. We start with the proof of the first claim of the
theorem. In this case we may assume that M = {M,M ′,M ′′}, where M , M ′, and
M ′′ satisfy (8). Since μFq ({M ′′}) = deg fM ′′(α), by (7), μFq (M) is bound from below
by

deg fM ′′(α) +
∑

u,v∈F

μFq
({M + uM ′′,M ′ + vM ′′})

q2 ,(9)

which we are going to estimate.
Let fM (α) =

∏�
i=1p

di
i (α) be the decomposition of fM (α) into irreducible factors.

Then M =
∑�

i=1Mi, M
′ =

∑�
i=1M

′
i , and M ′′ =

∑�
i=1M

′′
i , where each of fMi(α),

fM ′
i
(α), and fM ′′

i
(α) divides pdi

i (α), i = 1, 2, . . . , �.6 Thus,

M + uM ′′ =

�∑
i=1

(Mi + uM ′′
i )

and

M ′ + vM ′′ =

�∑
i=1

(M ′
i + vM ′′

i ).

We shall need the following property of matrices Mi, M
′
i , and M ′′

i , i = 1, 2, . . . , �.
Proposition 23. For each i = 1, 2, . . . , �

6Of course, some of Mi, M
′
i , and M ′′

i , i = 1, 2, . . . , �, may be 0(n+1)×n.
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1. inequality

f{Mi+uM ′′
i ,M ′

i+vM ′′
i }(α) �= pdi

i (α)(10)

implies fM ′′
i
(α) = pdi

i (α), and
2. (10) holds for at most one pair (u, v) ∈ F 2

q .

Proof. Assume that fM ′′
i
(α) �= pdi

i (α). Then, by the definition of Mi, M ′
i ,

and M ′′
i , f{Mi,M ′

i}(α) = pdi
i (α), because fM ′′

i
(α) properly divides pdi

i (α). How-

ever, f{Mi,M ′
i}(α) = pdi

i (α) together with fM ′′
i
(α) �= pdi

i (α) (and Lemma 10) contra-
dicts (10).

For the proof of the second claim, assume to the contrary that for two dis-
tinct pairs (u1, v1) and (u2, v2) neither of polynomials f{Mi+u1M ′′

i ,M ′
i+v1M ′′

i }(α) and

f{Mi+u2M ′′
i ,M ′

i+v2M ′′
i }(α) equals pdi

i (α). We assume that u1 �= u2 (the case of v1 �= v2

is treated in a similar manner).
By the definition of Mi, M ′

i , and M ′′
i , both fMi+u1M ′′

i
(α) and fMi+u2M ′′

i
(α)

divide pdi−1
i (α). Therefore, by Lemma 10, fM ′′(α) also divides pdi−1

i (α), which con-
tradicts the first claim of the proposition.

Now, for a pair (u, v) ∈ F 2
q , let the set I(u,v) consist of all integers i = 1, 2, . . . , �

which satisfy (10). Then

deg f{M+uM ′′,M ′+vM ′′}(α) =

�∑
i=1

deg f{Mi+uM ′′
i ,M ′

i+vM ′′
i }(α)

≥ deg fM (α) − deg
∏

i∈I(u,v)

pdi
i (α),

implying, by Lemmas 8 and 9,

μFq
({Mi + uM ′′

i ,M
′
i + vM ′′

i }) ≥ min

⎛
⎝n + 1,deg fM (α) − deg

∏
i∈I(u,v)

pdi
i (α)

⎞
⎠ .(11)

Therefore, summing over all pairs (u, v) ∈ F 2
q and adding deg fM ′′(α), we obtain

deg fM ′′(α) +
∑

(u,v)∈F 2
q

μFq ({M + uM ′′,M ′ + vM ′′})

≥ deg fM ′′(α) +
∑

(u,v)∈F 2
q

min

⎛
⎝n + 1,deg fM (α) − deg

∏
i∈I(u,v)

pdi
i (α)

⎞
⎠

≥ deg fM ′′(α) + (q2 − 1)(n + 1)

+ min

⎛
⎝n + 1,deg fM (α) −

∑
(u,v)∈F 2

q

deg
∏

i∈I(u,v)

pdi
i (α)

⎞
⎠

≥ deg fM ′′(α) + (q2 − 1)(n + 1) + min(n + 1,deg fM (α) − deg fM ′′(α))

= deg fM ′′(α) + (q2 − 1)(n + 1) + (deg fM (α) − deg fM ′′(α))

= q2(n + 1) + (deg fM (α) − n− 1),
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where the first inequality follows from (11) and the second inequality follows from a
trivial observation that for positive real numbers a, b, and c such that c ≥ n + 1,

min(n + 1, c− a) + min(n + 1, c− b) ≥ n + 1 + min(n + 1, c− (a + b)).

To prove the last inequality we observe that, by the second claim of Proposi-
tion 23, sets I(u,v) are mutually disjoint. Thus, by the first claim of that proposition,∏

(u,v)∈F 2
q

∏
i∈I(u,v)

pdi
i (α) divides fM ′′(α).

Finally, the first equality follows from deg fM (α) − deg fM ′′(α) ≤ n. This is
because deg f{M,M ′}(α) ≤ n and M = {M,M ′,M ′′}.

Now, the first claim of the theorem follows from (7).
For the proof of the second claim it suffices to find a basis {M,M ′,M ′′} of M

such that for all u, v ∈ Fq,

μFq ({M + uM ′′,M ′ + vM ′′}) ≥ n + 1.(12)

This, together with (9), would imply

μFq (M) ≥ n + 1 +
deg fM ′′(α)

q2 ,

which, in turn, would imply the second claim of the theorem.
So, let {M,M ′,M ′′} be a basis of [M ]. If for all u, v ∈ Fq it satisfies (12), we

are done. Otherwise, it follows from Lemma 8 that for some elements u and v of
Fq, deg f{M+uM ′′,M ′+vM ′′}(α) ≤ n, and we replace M , M ′, and M ′′ with M + uM ′′,
M ′′, and M ′ + vM ′′, respectively, which we shall also denote by M , M ′, and M ′′,
respectively. That is, we may assume that

deg f{M,M ′′}(α) ≤ n.(13)

Again, if for all u, v ∈ Fq, (12) holds (in the new basis), we are done.
Otherwise, for some u, v ∈ Fq, deg f{M+uM ′′,M ′+vM ′′}(α) ≤ n, and we replace

M , M ′, and M ′′ with M ′ + vM ′′, M ′′, and M + uM ′′, respectively, which we shall
also denote by M , M ′, and M ′′, respectively. Then, in view of (13), we may assume
that

deg f{M,M ′′}(α),deg f{M ′,M ′′}(α) ≤ n.(14)

Now we contend that for all u, v ∈ Fq, (12) holds (in the new basis).
To prove our contention, assume to the contrary that for some u, v ∈ Fq, (12)

does not hold. Then, by Lemma 8, deg f{M+uM ′′,M ′+vM ′′}(α) ≤ n, and we replace
M and M ′ with M + uM ′′ and M ′ + vM ′′, respectively, which we shall also denote
by M and M ′, respectively. Then, in view of (14),

deg f{M,M ′′}(α),deg f{M,M ′}(α),deg f{M ′,M ′′}(α) ≤ n,

in contradiction with the assumption of the second claim of the theorem.

4. Outline of the proof of Theorem 1. In this very short section we outline
the proof of Theorem 1.

Let εq be as in (4) and let D = {D1, D2, . . . , D2n} be the set of Hankel matrices
defining the components of Wz in (2). In view of Example 16, we may assume that
the linear closure of each subset of D of cardinality 	lgq lgq n− lgq lgq lgq n
 contains
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an element H such that deg fH(α) < (1 − εq)n. Under this assumption we shall
construct a subset of D of cardinality o(n) whose linear closure contains three Hankel
matrices M,M ′, and M ′′ such that

min(deg{M,M ′,M ′′} − n− 1, ‖{M,M ′,M ′′‖) ≥ (q − 1)2

q2 εqn.(15)

This together with Corollary 22, Proposition 2, and (4) will prove Theorem 1.
The rest of the paper is organized as follows. In the next section we improve the

known lower bound given by Lemma 9 and in section 6 we choose a small cardinality
subset D′ of D whose linear closure includes a set S of Hankel matrices possessing
some special properties. The set {M,M ′,M ′′} that satisfies (15) is chosen from [S].
Matrices M and M ′ are constructed in section 7, and matrix M ′′ is constructed in
section 8.

5. A coding-like lower bound, an extension of Lemma 9, and multipli-
cation of polynomials modulo a polynomial. In section 5.1 we prove a major
technical lemma according to which linear spaces of Hankel matrices contain a ma-
trix with an associated divisor of a (relatively) high degree and in section 5.2 we
extend Lemma 9 and apply the extension to multiplication of polynomials modulo a
polynomial.

5.1. A coding-like lower bound. In this section we estimate the sum of the
degrees of the divisors associated with all linear combinations of a set of Hankel
matrices. We start with notation that will be used throughout the rest of this paper.

Let S = {H1, H2, . . . , Hk} be a set of (n+1)×n Hankel matrices and let fS(α) =∏�
i=1p

di
i (α) be the decomposition of fS(α) into irreducible factors. Then for each

H ∈ S and each i = 1, 2, . . . , � there is the unique Hankel matrix H|i—the pi(α)-

component of H—such that fH|i(α) divides pdi
i (α) and H =

∑�
i=1H|i; cf. the proof

of Theorem 21. The set of all pi(α)-components of the elements of S, i = 1, 2, . . . , �,
will be denoted by S|i. That is,

S|i = {H|i : H ∈ S}.

We shall denote by �S and �S|i, i = 1, 2, . . . , �, the column vectors of the el-

ements of S and S|i, respectively. That is, �S = (H1, H2, . . . , Hk)
T and �S|i =

(H1|i, H2|i, . . . , Hk|i)T , say. Vector �S|i, i = 1, 2, . . . , �, will be referred to as the

pi(α)-component of �S, and the set of all pi(α)-components of �S, i = 1, 2, . . . , �, will

be denoted C(�S).

Next, for a vector v ∈ F k
q , the set of Hankel matrices {v�S|i : i = 1, 2, . . . , �} will

be denoted by vC(�S). In this notation, fvC(�S)(α) is the product
∏�

i=1fv�S|i(α) of the

divisors fv�S|i(α) associated with the summands v�S|i of v�S, i = 1, 2, . . . , �.

In particular, if each fHi
(α) is the minimal polynomial of an infinite linear recur-

ring sequence σi and v = (v1, v2, . . . , vk), then fvC(�S)(α) is the minimal polynomial

of
∑k

i=1viσi.

Remark 24. Note the difference between fv�S(α) and fvC(�S)(α). The degree of

the former is at most n, whereas the degree of the latter can exceed it. The divisors
are equal if and only if deg fvC(�S)(α) ≤ n.
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Proposition 25. For each v′,v′′ ∈ F k
q ,

deg fv′C(�S)(α) + deg fv′′C(�S)(α) ≥ deg lcm{fv′C(�S)(α),fv′′C(�S)(α)}
≥ deg f (v′+v′′)C(�S)(α).

Proof. Since, by definition, fvC(�S)(α) =
∏�

i=1fv�S|i(α), i = 1, 2, . . . , �, it suffices

to show that

deg fv′�S|i(α) + deg fv′′�S|i(α) ≥ deg lcm{fv′�S|i(α),fv′′�S|i(α)}
≥ deg f (v′+v′′)�S|i(α).

The first inequality is trivial and the second inequality holds because, by the
definition of S|i, one of the divisors fv′�S|i(α) and fv′′�S|i(α) divides the other.

Finally, for divisors f(α) and g(α) we denote by degg(α) f(α) the degree of
lcm{g(α),f(α)}

g(α) . That is,

degg(α) f(α) = deg lcm{g(α),f(α)} − deg g(α).(16)

Proposition 26 (cf. Proposition 13). Let S be a k-element set of (n + 1) × n
Hankel matrices. Then∑

v∈Fk
q

degg(α) fvC(�S)(α) ≥ (qk − qk−1) degg(α) fS(α).(17)

Proof. Let fS(α) =
∏�

i=1p
di
i (α). It follows from the definition of fvC(�S)(α)

and (16) that

degg(α) fvC(�S)(α) =

�∑
i=1

degg(α) fv�S|i(α).

Therefore,

∑
v∈Fk

q

degg(α) fvC(�S)(α) =

�∑
i=1

∑
v∈Fk

q

degg(α) fv�S|i(α),(18)

and we start with the calculation of
∑

v∈Fk
q

degg(α) fv�S|i(α).

Let

Si,j = {H ∈ [S|i] : fH(α)|pji (α)},(19)

where i = 1, 2, . . . , � and j = 0, 1, . . . , di. Then v�S|i ∈ Si,j \ Si,j−1 implies

degg(α) fv�S|i(α) = degg(α) p
j
i (α).(20)

First, for each j = 0, 1, . . . , di we shall calculate the number of vectors v ∈ F k
q

such that v�S|i ∈ Si,j or, equivalently,

v�S|i ≡ 0(n+1)×n mod Si,j .(21)
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Since the dimension of the vector space of solutions of (21) is

k − dim(Si,di
/Si,j) = k − (dimSi,di

− dim Si,j),

where, as usual, Si,di/Si,j denotes the quotient vector space of Si,di modulo Si,j , the
number of vectors v satisfying (21) is qk−(dim Si,di

−dim Si,j). Therefore, the number of

vectors v such that v�S|i ∈ Si,j \ Si,j−1 is

qk−(dim Si,di
−dim Si,j) − qk−(dim Si,di

−dim Si,j−1),

and it follows from (18) and (20) that∑
v∈Fk

q

degg(α) fvC(�S)(α)

=
�∑

i=1

di∑
j=1

degg(α) p
j
i (α)(qk−(dim Si,di

−dim Si,j) − qk−(dim Si,di
−dim Si,j−1)).

(22)

With no loss of generality, replacing g(α) with gcd(fS(α), g(α)) if necessary, we

may assume that g(α) divides fS(α). That is, g(α) =
∏�

i=1p
ei
i (α), where ei ≤ di,

i = 1, 2, . . . , �. Then for i = 1, 2, . . . , � and a nonnegative integer j,

degg(α) p
j
i (α) =

{
deg pj−ei

i (α) if j ≥ ei,
0 otherwise.

Therefore, by (22), the left-hand side of (17) equals

�∑
i=1

deg pi(α)

di∑
j=ei+1

(j − ei)(q
k−(dim Si,di

−dim Si,j) − qk−(dim Si,di
−dim Si,j−1))

=

�∑
i=1

qk−dim Si,di deg pi(α)

di∑
j=ei+1

(j − ei)(q
dim Si,j − qdim Si,j−1).(23)

Since

di∑
j=ei+1

(j − ei)(q
dim Si,j − qdim Si,j−1)

=

di∑
j=ei+1

(j − ei)q
dim Si,j −

di∑
j=ei+1

(j − ei)q
dim Si,j−1

=

di∑
j=ei+1

(j − ei)q
dim Si,j −

di−1∑
j=ei

(j − ei + 1)qdim Si,j

= (di − ei)q
dim Si,di −

di−1∑
j=ei

qdim Si,j ,

(23) equals

�∑
i=1

qk−dim Si,di deg pi(α)

⎛
⎝(di − ei)q

dim Si,di −
di−1∑
j=ei

qdim Si,j

⎞
⎠

= qk degg(α) fS(α) − qk−1
�∑

i=1

deg pi(α)

di−1∑
j=ei

q

qdim Si,di
−dim Si,j

.(24)
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Now, adding to (24) the zero sum

−qk−1 degg(α) fS(α) + qk−1
�∑

i=1

(di − ei) deg pi(α),

we obtain ∑
v∈Fk

q

degg(α) fvC(�S)(α)

= (qk − qk−1) degg(α) fS(α)(25)

+ qk−1
�∑

i=1

⎛
⎝(di − ei) −

di−1∑
j=ei

q

qdim Si,di
−dim Si,j

⎞
⎠deg pi(α).

Since for j < di, dimSi,di > dim Si,j , we have

(di − ei) −
di−1∑
j=ei

q

qdim Si,di
−dim Si,j

≥ 0,

which together with (25) completes the proof.
We conclude this section with an example that will be used in the proof of The-

orem 1.
Example 27. Let S = {H1, H2, . . . , Hk}. If for all v ∈ F k

q ,

deg fvC(�S)(α) ≤ n,(26)

then μFq
(S) ≥ deg fS(α).

Indeed,

μFq
(S) ≥

∑
v∈Fk

q

deg fv�S(α)

qk − qk−1
=

∑
v∈Fk

q

deg fvC(�S)(α)

qk − qk−1
≥ deg fS(α),

where the first inequality is by Corollary 15 (because [S] = {v�S : v ∈ F k
q }), the

equality is by (26) and Remark 24, and the last inequality follows from Proposition 26
with g(α) = 1.

5.2. An extension of Lemma 9 and multiplication of polynomials mod-
ulo a polynomial. We start with the following extension of Lemma 9.

Lemma 28. Let S be a set of (n+1)×n Hankel matrices. Let fS(α) =
∏�

i=1p
di
i (α)

be the decomposition of fS(α) into irreducible factors and let Si,j, i = 1, 2, . . . , �,
j = 0, 1, . . . , di, be as in the proof of Proposition 26. If deg fS(α) ≤ n, then

μFq (S) ≥
(

1 +
1

q − 1

)
deg fS(α) − 1

q − 1

�∑
i=1

⎛
⎝di−1∑

j=0

q

qdim Si,di
−dim Si,j

⎞
⎠deg pi(α).

Proof. Since deg fS(α) ≤ n, by Lemma 10 and Remark 24, fvC(�S)(α) = fv�S(α)

for each v ∈ F k
q . Therefore, the lemma follows from Corollary 15, (25) with g(α) = 1,7

and equality deg fS(α) =
∑�

i=1di deg pi(α).

7Of course, in both Corollary 15 and (25), k = |S|.
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In particular, as an easy corollary to Lemma 28, we obtain a more intuitive and
direct proof of the lower bound on the complexity of multiplication of polynomials
modulo a polynomial ([4] and [7]) with a better lower order term.

We shall need the following notation. Let P (α) be a polynomial of degree n
over Fq, and let CP (α) be the set of the coefficients of the minimal degree residue of∑2n−1

k=0 zkα
k modulo P (α), where zks are defined by (1).

Corollary 29 (cf. [4] and [7, Corollary 4.5]). We have

μFq (CP (α)) ≥
(

2 +
1

q − 1

)
n− o(n).

Proof. Assume that μFq (CP (α)) = t. That is, there exist t pairs of linear forms
(L′

1(x,y), L′′
1(x,y)), . . . , (L′

t(x,y), L′′
t (x,y)) such that the elements of CP (α) are lin-

ear combinations of products L′
i(x,y)L′′

i (x,y), i = 1, 2, . . . , t. Let p be a column
vector of the above products. Since dim[CP (α)] = n, there exists an n × t matrix U

such that �CP (α) = Up, where �CP (α) is a column vector of the elements of CP (α).
Permuting the components of p if necessary, we may assume that the first n

columns of U are linearly independent. Hence there exist a nonsingular n× n matrix
W and an n× (t− n) matrix V such that

W �CP (α) = (In, V )p.

Let CW denote the set of the components of W �CP (α). By [15, Lemma 6],
fCP (α)

(α) = P (α). Therefore, by Lemma 10, fCW (α) = P (α) as well, implying

that CW is a basis of {H : fH(α)|P (α)}, because the elements of CW are linearly
independent.

Let P (α) =
∏�

i=1p
di
i (α) be the decomposition of P (α) into irreducible factors and

let ki = 	lgq deg pdi
i (α)
, i = 1, 2, . . . , �.

For each i = 1, 2, . . . , �, let Ci be a ki-element subset of CW such that the
elements of Ci|i are linearly independent modulo [C

p
di−�ki/ deg pi(α)�−1
i

(α)] and Ci|i
contains a basis of [CW |i] modulo [C

p
di−�ki/ deg pi(α)�
i

(α)].

Let S =
⋃�

i=1Ci. Similarly to [1, Proposition 1], one can show that

μFq (C
W ) ≥ n + μFq (S) − |S|.(27)

Since [CP (α)] = [CW ], μFq (CP (α)) = μFq (C
W ), and it follows from the definition

of S that |S| ≤
∑�

i=1ki. This together with (27) implies

μFq (CP (α)) ≥ n + μFq
(S) −

�∑
i=1

ki.

By the definition of Ci, fCi(α) = pdi
i (α), i = 1, 2, . . . , �. Therefore,

deg fS(α) =

�∑
i=1

di deg pi(α) = degP (α) = n,

which together with Lemma 28 implies

μFq (S) ≥
(

1 +
1

q − 1

)
n− q

q − 1

�∑
i=1

⎛
⎝di−1∑

j=0

1

qdim Si,di
−dim Si,j

⎞
⎠deg pi(α).
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Hence it suffices to show that

�∑
i=1

⎛
⎝ q

q − 1

⎛
⎝di−1∑

j=0

1

qdim Si,di
−dim Si,j

⎞
⎠deg pi(α) + ki

⎞
⎠(28)

is o(n).
It follows from the definition of S that
• dim Si,di − dim Si,j = (di − j) deg pi(α) if j ≥ di − �ki/deg pi(α)� and
• dim Si,di − dim Si,j ≥ ki otherwise.

Therefore,

di−1∑
j=0

1

qdim Si,di
−dim Si,j

≤
�ki/ deg pi(α)	∑

j=1

1

qj deg pi(α)
+

di − �ki/deg pi(α)�
qki

=
1

qdeg pi(α)

1 − q−�ki/ deg pi(α)	 deg pi(α)

1 − q− deg pi(α)
+

di − �ki/deg pi(α)�
qki

≤ 1

qdeg pi(α) − 1
+

di

qki
.

Consequently,⎛
⎝di−1∑

j=0

1

qdim Si,di
−dim Si,j

⎞
⎠deg pi(α) ≤ deg pi(α)

qdeg pi(α) − 1
+

di deg pi(α)

qki
≤ q + 1

q − 1
,

because

deg pi(α)

qdeg pi(α) − 1
≤ 1

q

and, by the definition of ki,

qki ≥ di deg pi(α).

Therefore,

q

q − 1

⎛
⎝di−1∑

j=0

1

qdim Si,di
−dim Si,j

⎞
⎠deg pi(α) + ki ≤

q(q + 1)

(q − 1)2
+ ki,

which, in turn, implies that (28) is bound by

q(q + 1)

(q − 1)2
� +

�∑
i=1

ki ≤
q(q + 1)

(q − 1)2
� +

�∑
i=1

lgq deg pdi
i (α) + �

≤ q(q + 1)

(q − 1)2
iq(n) + lgq deg

�∏
i=1

pdi
i (α) + iq(n)

=
2q2 − q + 1

(q − 1)2
iq(n) + lgq n,

which completes the proof.
Remark 30. A straightforward inspection shows that [15, Lemma 6] extends to

divisors. That is, for a divisor P (α), fCP (α)
(α) = P (α).8 Therefore, Corollary 29

holds for computation of the polynomial product modulo a divisor as well.

8See [1, section 2] for the definition of the minimal degree residue modulo a divisor.
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6. Proof of Theorem 1. Part 1: Construction of a subset of D of a small
cardinality. First, in section 6.1 we prove a number of auxiliary results needed for
our constructions. Then, in section 6.2 we choose a small cardinality subset D′ of D
whose linear closure includes a set of Hankel matrices S needed for the construction
of M , M ′, and M ′′.

6.1. An extension of Lemma 10. In this section we describe divisors of some
elements of the vector space spanned by a set of Hankel matrices.

Proposition 31 (cf. Lemma 10). Let S be a set of (n+ 1)× n Hankel matrices
and let H ∈ [S]. If deg fS∪{H}(α) ≤ 2n, then fH(α) divides fS(α).

The proof of Proposition 31 is based on its particular cases treated by Lemmas 32
and 33 below.

Lemma 32. Let H ′ and H ′′ be (n+1)×n Hankel matrices such that fH′(α) and
fH′′(α) are coprime and

deg fH′(α) + deg fH′′(α) + deg fH′+H′′(α) ≤ 2n.(29)

Then fH′+H′′(α) divides fH′(α)fH′′(α).
Proof. We shall denote H ′ + H ′′ by H.
Let H, H ′, and H ′′ be defined by sequences σ = s0, s1, . . . , s2n−1, σ

′ = s′0, s
′
1, . . . ,

s′2n−1, and σ′′ = s′′0 , s
′′
1 , . . . , s

′′
2n−1, respectively.

Since fH′(α) and fH′′(α) are coprime, we may assume that H̄ ′′ is the zero (n +
1) × n matrix 0(n+1)×n.9

We contend that H̄ = H̄ ′. By [18, Theorem 8.55, p. 425], f H̃′(α)f H̃′′(α)f H̃(α)
is a characteristic polynomial of σ̃′ + σ̃′′ − σ̃, and it follows from (29) that

deg f H̃′(α)f H̃′′(α)f H̃(α) ≤ 2n− max{rank(H̄), rank(H̄ ′)}.(30)

In addition, since

H̃ ′ + H̃ ′′ − H̃ = (H ′ − H̄ ′) + (H ′′ − H̄ ′′) − (H − H̄) = H̄ − H̄ ′,(31)

the first 2n− max{rank(H̄), rank(H̄ ′)} elements of σ̃′ + σ̃′′ − σ̃ are 0. Thus, by (30),
all elements of σ̃′ + σ̃′′ − σ̃ are 0 as well. This together with (31) implies

H̃ ′ + H̃ ′′ − H̃ = H̄ − H̄ ′ = 0(n+1)×n,

which, in turn, implies the desired equality H̄ = H̄ ′.
It remains to show that f H̃(α) divides f H̃′(α)f H̃′′(α). Let

rank(H̄ ′) = d (= rank(H̄))

and let σ|2n−d−1, σ′|2n−d−1, and σ′′|2n−d−1 consist of the first 2n − d elements of
σ, σ′, and σ′′, respectively. Then f H̃′(α) and f H̃′′(α) are characteristic polynomi-
als of σ′|2n−d−1 and σ′′|2n−d−1, respectively, and, by [18, Theorem 8.55, p. 425],
f H̃′(α)f H̃′′(α) is a characteristic polynomial of σ′|2n−d−1 + σ′′|2n−d−1.

Since σ′|2n−d−1 +σ′′|2n−d−1 = σ|2n−d−1 and f H̃(α) is the minimal polynomial of
σ|2n−d−1, the result follows from Proposition 3 (that applies in view of (29)).

Lemma 33. Let S be a set of (n + 1) × n Hankel matrices and let H ∈ [S]. If
deg fH(α) + deg fS(α) ≤ 2n, then fH(α) divides fS(α).

9See Definition 4 and Example 5.
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Proof. Let fS(α) =
∏�

i=1p
di
i (α) be the decomposition of fS(α) into irreducible

factors. Then H =
∑�

i=1Hi, where fHi(α) divides pdi
i (α), i = 1, 2, . . . , �.

Since
∏�

i=1fHi
(α) divides

∏�
i=1p

di
i (α) = fS(α), it suffices to show that fH(α)

divides
∏�

i=1fHi
(α).

A straightforward induction based on Lemma 32 shows that f∑k
i=1 Hi

(α) divides∏k
i=1fHi(α), k = 2, 3, . . . , �, and the result follows with k = �.

Proof of Proposition 31. Let H = H ′ + H ′′, where fH′(α) divides fS(α) and
fH′′(α) is coprime with fS(α).

Since H ∈ [S], H ′′ ∈ [S ∪ {H ′}]. Therefore,

deg fS∪{H′}(α) + deg fH′′(α) = deg fS∪{H}(α) ≤ 2n.

Thus, by Lemma 33, fH′′(α) divides fS∪{H′}(α), which together with the definition
of H ′′ implies H ′′ = 0(n+1)×n. That is, H = H ′, which completes the proof.

6.2. Construction of S. Let D = {D1, D2, . . . , D2n} be the set of Hankel
matrices defining the components of Wz in (2). Lemma 34 below provides us with a
small cardinality subset D′ of D and a subset S of [D′] needed for the construction
of three matrices M , M ′, and M ′′ satisfying (15).

Lemma 34. Assume that the linear closure of each subset of D of cardinality
	lgq lgq n− lgq lgq lgq n
 contains a matrix H such that deg fH(α) < (1 − εq)n. Then

there exists a subset D′ of D of cardinality at most
(1+εq)n lgq lgq n

lgq((1+εq)n) and there exists a

subset S of [D′] such that
1. for each H ∈ S, deg fH(α) < (1 − εq)n and
2. deg fS(α) ≥ (1 + εq)n.

Proof. For a 	lgq lgq n − lgq lgq lgq n
-element subset C of D, let HC ∈ [C] be
such that deg fHC

(α) < (1 − εq)n and let

H = {HC : |C| = 	lgq lgq n− lgq lgq lgq n
}.(32)

We contend that dim[H] ≥ 2n−	lgq lgq n−lgq lgq lgq n
. For the proof, assume to

the contrary that dim[H] < 2n− 	lgq lgq n− lgq lgq lgq n
. Let �D be a column vector
of the elements of D and let U be a dim[H] × 2n matrix such that the components

of U �D form a basis of [H]. Permuting the components of �D and applying linear
transformations if necessary, we may assume that U is of the form (Idim[H], V ). Then

[H] ∩ [{D2n−i : i = 0, 1, . . . , 	lgq lgq n− lgq lgq lgq n
 − 1}] = ∅.

Therefore,

H{D2n−i:i=0,1,...,�lgq lgq n−lgq lgq lgq n�−1} �∈ H,

in contradiction with the definition of H. This proves our contention.
Since

2n− 	lgq lgq n− lgq lgq lgq n
 > (1 + εq)n,

by Lemma 11, there exists a subset S of H of cardinality at most iq((1 + εq)n) such
that deg fS(α) ≥ (1 + εq)n.

It remains to construct a small cardinality subset D′ of D such that S ⊆ [D′].
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For each element H of S, let CH be a 	lgq lgq n− lgq lgq lgq n
-element subset of
D such that H = HCH

and let

D′ =
⋃

H∈S

CH .

Then S ⊂ [D′] and

|D′| ≤ 	lgq lgq n− lgq lgq lgq n
iq((1 + εq)n) ≤
(1 + εq)n lgq lgq n

lgq((1 + εq)n)
,

which completes the proof.
Corollary 35. Let S be as in Lemma 34. Then deg S ≥ (1 + εq)n.
Proof. Assume to the contrary that for some basis S′ of [S], deg fS′(α) < (1 +

εq)n. Let H ∈ S. Then H ∈ [S′], because S′ is a basis of [S]. Also, by Lemma 34,
deg fH(α) < (1 − εq)n, implying

deg fS′(α) + deg fH(α) < (1 + εq)n + (1 − εq)n = 2n.

Therefore, by Lemma 33, fH(α) divides fS′(α), and, consequently, fS(α) divides
fS′(α). However, this contradicts our assumption deg fS′(α) < (1 + εq)n, because
deg fS(α) ≥ (1 + εq)n.

Let S be as in Lemma 34. Deleting some elements from S if necessary, we may
assume that for no proper subset S′ of S, deg fS′(α) ≥ (1 + εq)n. Also, replacing H
defined in the proof of Lemma 34 with its maximal linearly independent subset, we
may assume that the elements of S are linearly independent.

7. Proof of Theorem 1. Part 2: Construction of M and M ′. Let S be
the set of matrices constructed in section 6.2. In this section we construct Hankel
matrices M and M ′, M,M ′ ∈ [S], such that

deg fM (α) <

(
1 − (q − 1)2

q2 εq

)
n,(33)

deg fM ′(α) <

(
1 − (q − 1)2

q2 εq

)
n,(34)

deg f{M,M ′}(α) ≥
(

1 − (q − 1)2

q2 εq

)
n,(35)

and

‖{M,M ′}‖ ≥ (q − 1)2

q2 εqn.(36)

The construction is as follows. Let S = {H1, H2, . . . , Hk}. In view of Example 27
and Proposition 2, we may assume that for some v ∈ F k

q ,

deg fvC(�S)(α) > n,(37)

and we fix such a vector v = (v1, v2, . . . , vk) through the end of this section.
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The first two matrices M and M ′ are appropriate subsums of v�S, and the third
matrix M ′′ is constructed from the quotient vector space [S]/[M,M ′].

To construct M and M ′, which satisfy (33)–(36), we shall distinguish between
the cases of

max{deg fHi
(α) : vi �= 0} <

(q − 1)2

q2 εqn(38)

and

max{deg fHi
(α) : vi �= 0} ≥ (q − 1)2

q2 εqn(39)

and use the following notation.
For I ⊆ {1, 2, . . . , k} we define a k-dimensional vector vI = (vI1 , v

I
2 , . . . , v

I
k) by

vIi =

{
vi if i ∈ I,
0 otherwise,

i = 1, 2, . . . , k.

7.1. The case of max{deg fHi
(α) : vi �= 0} < (q−1)2

q2 εqn. Let J be a

minimal (with respect to inclusion) subset of {1, 2, . . . , k} such that

deg fvJC(�S)(α) >

(
1 − (q − 1)2

q2 εq

)
n(40)

and let I be a minimal (with respect to inclusion) subset of J such that

deg fvIC(�S)(α) ≥ (q − 1)2

q2 εqn.(41)

Proposition 36. We have

deg fvIC(�S)(α) < 2

(
(q − 1)2

q2 εqn

)
.

Proof. Assume to the contrary that

deg fvIC(�S)(α) ≥ 2

(
(q − 1)2

q2 εqn

)
.(42)

Then, for each i ∈ I,

deg fvI\{i}C(�S)(α) ≥ deg fvIC(�S)(α) − deg fv{i}C(�S)(α)

≥ 2

(
(q − 1)2

q2 εqn

)
− (q − 1)2

q2 εqn =
(q − 1)2

q2 εqn,

where the first inequality is by Proposition 25 and the last inequality follows from (42)
and (38). However,

deg fvI\{i}C(�S)(α) ≥ (q − 1)2

q2 εqn

contradicts the definition of I as a minimal subset of J satisfying (41).
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By Proposition 36 and Remark 24, deg fvIC(�S)(α) = deg fvI�S(α), and we let M

be vI �S. Then (33) follows from Proposition 36 and (4).
Let I ′ be a minimal (with respect to inclusion) subset of J \ I such that

deg lcm{fvIC(�S)(α),fvI′C(�S)(α)} ≥
(

1 − (q − 1)2

q2 εq

)
n.(43)

The existence of I ′ follows from (40) and Proposition 25.
It follows from the minimality assumption on J that

deg fvI′C(�S)(α) <

(
1 − (q − 1)2

q2 εq

)
n.(44)

Therefore, by Remark 24,

deg fvI′C(�S)(α) = deg fvI′ �S(α)

and we let M ′ be vI′�S. Then (34) follows from (44), and (35) follows from (43).
For the proof of (36) we need Proposition 37 below.
Proposition 37. We have

deg fM ′(α) ≥
(

1 − 3

(
(q − 1)2

q2 εq

))
n.

Proof. Were

deg fM ′(α) = deg fvI′C(�S)(α) <

(
1 − 3

(
(q − 1)2

q2 εq

))
n,(45)

by Propositions 36 and 25, we would have(
1 − (q − 1)2

q2 εq

)
n = 2

(
(q − 1)2

q2 εqn

)
+

(
1 − 3

(
(q − 1)2

q2 εq

))
n

> deg fvIC(�S)(α) + deg fvI′C(�S)(α)

≥ deg lcm{fvIC(�S)(α),fvI′C(�S)(α)},

which contradicts (43).
In view of (41), for the proof of (36), it suffices to show that for all v ∈ Fq,

deg fvM+M ′(α) ≥ (q−1)2

q2 εqn.

This is indeed so, because

deg fvM+M ′(α) ≥ deg fM ′(α) − deg fM (α)

≥
(

1 − 3

(
(q − 1)2

q2 εq

))
n− 2

(
(q − 1)2

q2 εq

)
n

≥ (q − 1)2

q2 εqn,

where the first inequality follows from Proposition 25, the second inequality follows
from Propositions 37 and 36, and the last inequality follows from (4).

This completes the construction of M and M ′ in the case of (38).
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We conclude this section with the observation that

deg f{M,M ′}(α) < n.(46)

This observation will be used in the construction of matrix M ′′ in section 8.1.2.
For the proof of (46), assume to the contrary that

deg f{M,M ′}(α) = deg lcm{fvIC(�S)(α),fvI′C(�S)(α)} ≥ n.

This together with (38) and (4) implies that for each i ∈ I ′,

deg lcm{fvIC(�S)(α),fvI′\{i}C(�S)(α)}
≥ deg lcm{fvIC(�S)(α),fvI′C(�S)(α)} − deg fHi

(α)

≥ n− (q − 1)2

q2 εqn =

(
1 − (q − 1)2

q2 εq

)
n,

which contradicts the definition of I ′ as a minimal subset of J \ I satisfying (43).

7.2. The case of max{deg fHi(α) : vi �= 0} ≥ (q−1)2

q2 εqn. Let i =

1, 2, . . . , k be such that deg fHi
(α) ≥ (q−1)2

q2 εqn and let I be a maximal (with re-

spect to inclusion) subset of {1, 2, . . . , k} containing i such that

deg fvIC(�S)(α) <

(
1 − (q − 1)2

q2 εq

)
n.(47)

By Remark 24, deg fvIC(�S)(α) = deg fvI�S(α), and we let M be vI �S. Then (33)

immediately follows from the definition.
To construct M ′ we shall distinguish between the cases of

max{deg fHi
(α) : i ∈ {1, 2, . . . , k} \ I} ≥ (q − 1)2

q2 εqn(48)

and

max{deg fHi(α) : i ∈ {1, 2, . . . , k} \ I} <
(q − 1)2

q2 εqn.(49)

If (48), let M ′ be an element of {Hi : i ∈ {1, 2, . . . , k} \ I} such that

deg fM ′(α) ≥ (q − 1)2

q2 εqn.(50)

Then (34) immediately follows from the first claim of Lemma 34.
Otherwise, i.e., if (49), let I ′ be a minimal (with respect to inclusion) subset of

{1, 2, . . . , k} \ I such that

deg fvI′C(�S)(α) ≥ (q − 1)2

q2 εqn.(51)

The existence of I ′ follows from (37), (47), and Proposition 25. Similarly to the proof
of Proposition 36 one can show that

deg fvI′C(�S)(α) < 2

(
(q − 1)2

q2 εqn

)
.(52)
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Therefore, by Remark 24, deg fvI′C(�S)(α) = deg fvI′ �S(α) and we let M ′ be vI′�S.

Then (34) follows from (52) and (4), and (35) follows from the definition of I in the
beginning of this section.

It remains to prove (36). In view of (50) and (51), for the proof it suffices to show

that for all v ∈ Fq, deg fM+vM ′(α) ≥ (q−1)2

q2 εqn.

So, assume to the contrary that for some v ∈ Fq, deg fM+vM ′(α) < (q−1)2

q2 εqn.

By Corollary 35, with no loss of generality, we may assume that S is a basis of [S]
with the maximal number of elements H such that

deg fH(α) <
(q − 1)2

q2 εqn.(53)

However, (S \ {Hi}) ∪ {M + vM ′}, where i is as in the definition of I in the
beginning of this section, is a basis of [S] with more matrices H satisfying (53), which
contradicts our assumption.

8. Proof of Theorem 1. Part 3: Construction of M ′′. As we have already
mentioned in the beginning of section 7, M ′′ is constructed from the quotient vector
space [S]/[M,M ′]. We remind the reader that S = {H1, H2, . . . , Hk} is the set of
Hankel matrices constructed in section 6.2. In view of Corollary 35, we may assume
that

{H1, H2} = {M,M ′},(54)

where M and M ′ are the matrices constructed in section 7.
Also, changing the indices of the elements of S if necessary, we may assume that

deg fS(α) − deg f{H1,H2,...,Hk−1}(α)

= min{deg fS(α) − deg fS\{H}(α) : H ∈ S \ {H1, H2}}.

Then, for each i = 2, 3, . . . , k − 1,

deg fS(α) − deg fS\{Hk}(α)

≤ deg fS(α) − deg fS\{Hi+1}(α)

≤ deg f{H1,H2,...,Hi,Hi+1}(α) − deg f{H1,H2,...,Hi}(α),

because each factor of fHi+1(α) that does not divide fS\{Hi+1}(α) does not divide
f{H1,H2,...,Hi}(α) either. Therefore,

(k − 3)(deg fS(α) − deg f{H1,H2,...,Hk−1}(α))

≤
k−2∑
i=2

(deg f{H1,H2,...,Hi,Hi+1}(α) − deg f{H1,H2,...,Hi}(α))

= deg fS\{Hk}(α) − deg f{H1,H2}(α),

implying

deg fS(α) ≤ deg fS\{Hk}(α) +
deg fS\{Hk}(α) − deg f{H1,H2}(α)

k − 3
.(55)

For the construction of the third matrix M ′′ we shall distinguish between the
cases of k ≥ 5 and k ≤ 4.
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8.1. The case of k ≥ 5. By the minimality assumption on S in the end of
section 6.2,

deg fS\{Hk}(α) ≤ (1 + εq)n

and, by (54) and (35),

deg f{H1,H2}(α) ≥
(

1 − (q − 1)2

q2 εq

)
n.

Therefore, it follows from (55) that

deg fS(α) ≤ (1 + εq)n +
εq +

(q − 1)2

q2 εq

k − 3
n,

which together with (4) and k ≥ 5 implies

deg fS(α) ≤
(

2 − 2

(
(q − 1)2

q2 εq

))
n.(56)

Remark 38. Actually, (56) is the only reason we need the condition k ≥ 5; see
also section 8.2.3.

The construction of the third matrix M ′′ is based on Lemma 39 below.
Lemma 39. Let S be the set of matrices constructed in section 6.2, let M and

M ′ be the matrices constructed in section 7, and let v′′ ∈ F k
q be such that

degf{M,M′}(α) fv′′C(�S)(α) ≥
(

1 − 1

q

)
degf{M,M′}(α) fS(α).(57)

Then

deg{M,M ′,v′′�S} ≥
(

1 +
(q − 1)2

q2 εq

)
n.(58)

Moreover, if deg f{M,M ′}(α) ≥ n, then

deg{M,M ′,v′′�S} ≥
(

1 +
q − 1

q
εq

)
n.(59)

Proof. For the proof of the first part of the lemma, assume to the contrary that
for some basis B of [{M,M ′,v′′�S}],

deg fB(α) <

(
1 +

(q − 1)2

q2 εq

)
n.(60)

Then it follows from (33), (34), and Lemma 33 that f{M,M ′}(α) divides fB(α). Thus,

we may assume that B = {M,M ′, H} for some H ∈ [{M,M ′,v′′�S}], in which case it
follows from (60) and (35) that

degf{M,M′}(α) fH(α) = deg fB(α) − deg f{M,M ′}(α)

<

(
1 +

(q − 1)2

q2 εq

)
n−

(
1 − (q − 1)2

q2 εq

)
n = 2

(
(q − 1)2

q2 εqn

)
.

(61)
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We contend that fv′′C(�S)(α) divides fB(α).

Let fS(α) =
∏�

i=1p
di
i (α) be the decomposition of fS(α) into irreducible fac-

tors. By the definition of fv′′C(�S)(α), it suffices to show that for each i = 1, 2, . . . , �,

fv′′�S|i(α) divides fB(α).

Since
∑�

i=1v
′′�S|i = v′′�S and H ∈ [{M,M ′,v′′�S}], for each i = 1, 2, . . . , �,

v′′�S|i ∈ [{M,M ′, H} ∪ {v′′�S|j : j �= i}].

We observe next that

deg fS∪{H}(α) = deg fS(α) + (deg fS∪{H}(α) − deg fS(α))

≤ deg fS(α) + (deg fB(α) − deg f{M,M ′}(α)) ≤ 2n,

where the first inequality holds because each factor of fH(α) that does not divide
fS(α) does not divide f{M,M ′}(α) either, and the second inequality follows from (56)
and (61). Therefore,

deg f{M,M ′,H}∪{v′′�S|i:i=1,2,...,�}(α) ≤ 2n

as well, because f{M,M ′,H}∪{v′′�S|i:i=1,2,...,�}(α) divides fS∪{H}(α). Hence, by Propo-

sition 31, fv′′�S|i(α) divides f{M,M ′,H}∪{v′′�S|j :j �=i}(α).

Consequently, since for all j = 1, 2, . . . , i − 1, i + 1, . . . , � − 1, �, fv′′�S|i(α) and

fv′′�S|j (α) are coprime, fv′′�S|i(α) divides f{M,M ′,H}(α), and the contention follows.

Therefore,

deg fB(α) = deg f{M,M ′,H}(α)

≥ deg lcm({f{M,M ′}(α),fv′′C(�S)(α)})
= deg f{M,M ′}(α) + degf{M,M′}(α) fv′′C(�S)(α)

≥ deg f{M,M ′}(α) +

(
1 − 1

q

)
(deg fS(α) − deg f{M,M ′}(α))

≥
(

1 − 1

q

)
(1 + εq)n +

1

q
deg f{M,M ′}(α)

≥
(

1 − 1

q

)
(1 + εq)n +

1

q

(
1 − (q − 1)2

q2 εq

)
n(62)

≥
(

1 +
(q − 1)2

q2 εq

)
n,(63)

where the first inequality follows from the above contention, the second inequality
follows from (57), the third inequality follows from the second clause of Lemma 34,
and the fourth inequality follows from (35). That is, we arrived at a contradiction
with (60), which completes the proof of the first part of the lemma.

The proof of the second part is similar to the above. The only difference is that,
under its assumption, (60) becomes

deg fB(α) <

(
1 + εq −

εq
q

)
n,

the second line of (61) becomes(
1 + εq −

εq
q

)
n− n =

(
εq −

εq
q

)
n,



986 MICHAEL KAMINSKI

(62) becomes (
1 − 1

q

)
(1 + εq)n− n

q
,

and (63) becomes (
1 + εq −

εq
q

)
n.

We leave the details to the reader.
It follows from Proposition 26, by the standard average-counting argument, that

we can find a vector v′′ ∈ F k
q such that

degf{M,M′}(α) fv′′C(�S)(α) ≥
(

1 − 1

q

)
degf{M,M′}(α) fS(α).(64)

That is, v′′ satisfies prerequisite (57) of Lemma 39. Therefore, by the first part of the
lemma, if

deg f{M,M ′}(α) <

(
1 +

(q − 1)2

q2 εq

)
n,

then

v′′�S �∈ [{M,M ′}].(65)

At this point we shall distinguish between the cases of

deg f{M,M ′}(α) ≤ n,

i.e., the case of (46),

n < deg f{M,M ′}(α) <

(
1 +

(q − 1)2

q2 εq

)
n,(66)

and

deg f{M,M ′}(α) ≥
(

1 +
(q − 1)2

q2 εq

)
n.

8.1.1. The case of deg f{M,M ′}(α) ≤ n. We let M ′′ be v′′�S, where v′′ is as
in (64). Then, by the first part of Lemma 39,

deg{M,M ′,M ′′} ≥
(

1 +
(q − 1)2

q2 εq

)
n

and, in view of (65), we just have to show that

‖{M,M ′,M ′′}‖ ≥ (q − 1)2

q2 εqn.

For the proof, assume to the contrary that

deg fH(α) <
(q − 1)2

q2 εqn
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for some matrix H ∈ [{M,M ′,M ′′}]. Then, by (36), H �∈ [{M,M ′}], implying
[{M,M ′, H}] = [{M,M ′,M ′′}]. However,

deg f{M,M ′,H}(α) ≤ deg f{M,M ′}(α) + deg fH(α) <

(
1 +

(q − 1)2

q2 εq

)
n

contradicts (58).
Remark 40. As we have seen in the end of section 7.1, (38) implies (46). In

addition, it follows from (4) and (38) that k ≥ 5. Therefore, the construction of
M,M ′, and M ′′ is completed in the case of (38) as well.

8.1.2. The case of n < deg f{M,M ′}(α) < (1 + (q−1)2

q2 εq)n. Let v′′ be as

in (64). If

‖{M,M ′,v′′�S}‖ ≥ (q − 1)2

q2 εqn,

then, by Lemma 39 and (65), we let M ′′ be v′′�S.
Otherwise, i.e., if

‖{M,M ′,v′′�S}‖ <
(q − 1)2

q2 εqn,(67)

let Hmin ∈ [{M,M ′,v�S}] be such that deg fHmin(α) = ‖{M,M ′,v�S}‖. Then,
by (67),

deg fHmin(α) <
(q − 1)2

q2 εqn.(68)

Now we need Lemma 41 below.
Lemma 41. Let H be a Hankel matrix such that

deg fH(α) ≤ (1 − εq)n.(69)

Then, for some vH ∈ Fq,

deg{M,M ′, H + vHHmin} ≥
(

1 +
(q − 1)2

q2 εq

)
n.(70)

We postpone the proof of Lemma 41 until the end of this section and proceed
with the construction of M ′′. Let H be as in the beginning of the proof of Lemma 34;
see (32).

If for some H ∈ H \ [{M,M ′, Hmin}],
‖{M,M ′, H + vHHmin}‖ ≥ (q − 1)2

q2 εqn,10

we just let M ′′ be H + vHHmin.
Otherwise, i.e., if for each H ∈ H \ [{M,M ′, Hmin}],

‖{M,M ′, H + vHHmin}‖ <
(q − 1)2

q2 εqn,

10Here, of course, vH ∈ Fq is from Lemma 41. That is, vH satisfies (70).
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we reduce the case of (66) to Remark 40. The reduction is as follows.
For each H ∈ H \ [{M,M ′, Hmin}], let DH ∈ [{M,M ′, H + vHHmin}] be such

that

deg fDH
(α) <

(q − 1)2

q2 εqn.(71)

It follows from the definition of H that

dim([{DH : H ∈ H \ [{M,M ′, Hmin}]}]) = 2n− o(n).

Thus, by Lemma 11, there exists a subset S′ of {DH : H ∈ H} containing iq((1+εq)n)
or fewer elements such that deg fS′(α) ≥ (1 + εq)n.

Let

D′′ = D′ ∪
⋃

DH∈S′

CH ,

where CH is as in the proof of Lemma 34. By definition, S′ ⊆ [D′′]. Also∣∣∣∣∣
⋃

DH∈S′

CH

∣∣∣∣∣ ≤ 2(1 + εq)n lgq lgq n

lgq((1 + εq)n)

implies

|D′′| ≤
2(1 + εq)n lgq lgq n

lgq((1 + εq)n)
= o(n).

Therefore, we may replace S and D′ constructed in Lemma 34 with, respectively,
S′ and D′′ that we have just described. Since, by (71),

max{deg fH(α) : H ∈ S′} <
(q − 1)2

q2 εqn,

we have the prerequisite of Remark 40.
Thus, to complete the construction, it remains to prove Lemma 41.
Proof of Lemma 41. If

deg{M,M ′, H} ≥
(

1 +
(q − 1)2

q2 εq

)
n,

we just let vH be 0.
Otherwise, i.e., if

deg{M,M ′, H} <

(
1 +

(q − 1)2

q2 εq

)
n,

we proceed as follows.
We observe first that

deg{M,M ′} fH(α) <
(q − 1)2

q2 εqn.(72)
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Indeed, let B be a basis of [{M,M ′, H}] such that

deg fB(α) <

(
1 +

(q − 1)2

q2 εq

)
n.

Then, by Lemma 33, all fM (α),fM ′(α), and fH(α) divide fB(α), and (72) follows
from the left inequality of (66).

Next, since

deg fH(α) + deg fHmin(α) < (1 − εq)n +
(q − 1)2

q2 εqn < n,

by Remark 24, for all u, v ∈ Fq,

f (u,v)C((H,Hmin)T )(α) = fuH+vHmin(α).

Therefore, by Proposition 26 with g(α) = f{M,M ′}(α) and S = {Hmin, H},
∑

(u,v)∈F 2
q

degf{M,M′}(α) fuH+vHmin(α) ≥ (q2 − q) degf{M,M′}(α) f{Hmin,H}(α).

Consequently, since

degf{M,M′}(α) fHmin(α) ≤ degf{M,M′}(α) f{Hmin,H}(α),

we have ∑
(u,v)∈F 2

q \({0}×Fq)

degf{M,M′}(α) fuH+vHmin(α)

≥ (q2 − 2q + 1) degf{M,M′}(α) f{Hmin,H}(α),

and, by the standard average-counting argument, for some vH ∈ Fq,

degf{M,M′}(α) fH+vHHmin(α) ≥
(

1 − 1

q

)
degf{M,M′}(α) f{Hmin,H}(α)

≥
(

1 − 1

q

)
degf{M,M′}(α) f{Hmin}(α).

By the definition of degf{M,M′}
(see (16)),

degf{M,M′}(α) fH+vHHmin(α) = deg f{M,M ′,H+vHHmin}(α) − deg f{M,M ′}(α)

and

degf{M,M′}(α) f{Hmin}(α) = deg f{M,M ′,Hmin}(α) − deg f{M,M ′}(α).

Therefore, it follows from the inequality above that

degf{M,M′}(α) f{M,M ′,H+vHHmin}(α)

≥
(

1 − 1

q

)
(deg f{M,M ′,Hmin}(α) − deg f{M,M ′}(α)) + deg f{M,M ′}(α)
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=

(
1 − 1

q

)
deg f{M,M ′,Hmin}(α) +

deg f{M,M ′}(α)

q

≥
(

1 − 1

q

)(
1 +

q − 1

q
εq

)
n +

deg f{M,M ′}(α)

q

=

(
1 +

(q − 1)2

q2 εq

)
n− n

q
+

deg f{M,M ′}(α)

q

≥
(

1 +
(q − 1)2

q2 εq

)
n,

where the second inequality is by the second part of Lemma 39 and the last inequality
is by the left inequality of (66).

Now, the proof of (70) is similar to that of Lemma 39. Assume to the contrary
that for some basis B of [{M,M ′, H + vHHmin}],

deg fB(α) <

(
1 +

(q − 1)2

q2 εq

)
n.(73)

Then it follows from (33), (34), and Lemma 33 that f{M,M ′}(α) divides fB(α), which
allows us to assume that B = {M,M ′, H ′} for some H ′ ∈ [{M,M ′, H + vHHmin}].

We have

deg f{M,M ′,H′}∪{H+vHHmin}(α)

= deg f{M,M ′,H′}(α) + degf{M,M′,H′}(α) fH+vHHmin
(α)

≤ deg f{M,M ′,H′}(α) + degf{M,M′,H′}(α) fH(α) + degf{M,M′,H′}(α) fHmin
(α)

≤ deg f{M,M ′,H′}(α) + degf{M,M′}(α) fH(α) + deg fHmin(α)

≤
(

1 +
(q − 1)2

q2 εq

)
n +

(q − 1)2

q2 εqn +
(q − 1)2

q2 εqn < 2n,

where the last inequality follows from (73), (72), and (68).

Thus, by Proposition 31, f{M,M ′,H+vHHmin}(α) divides fB(α). Since

deg f{M,M ′,H+vHHmin}(α) ≥
(

1 +
(q − 1)2

q2 εq

)
n,

this contradicts our assumption (73).

8.1.3. The case of deg f{M,M ′}(α) ≥ (1 + (q−1)2

q2 εq)n. This is a particular

case of the previous section. The only modification is to ignore Lemma 41 and to
replace Hmin with 0(n+1)×n. We leave this easy exercise to the reader.

8.2. The case of k ≤ 4. To construct M ′′, we shall treat each of the cases of
k = 2, k = 3, and k = 4 separately.

8.2.1. The case of k = 2. It follows from (54) that deg f{M,M ′}(α) ≥ (1+εq)n,
which is the case in section 8.1.3.
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8.2.2. The case of k = 3. It follows from (54) that, in particular,

deg f{M,M ′,H3}(α) ≥
(

1 +
(q − 1)2

q2 εq

)
n,

which is the case in section 8.1.2. The only modification required is to replace v′′�S
with H3.

8.2.3. The case of k = 4. If

deg f{H1,H2,H3}(α) ≥
(

1 +
(q − 1)2

q2 εq

)
n,

we are in the case of section 8.2.2.
Otherwise, it follows from (55) and (35) that

deg fS(α) ≤
(

1 +
(q − 1)2

q2 εq

)
n + 2

(
(q − 1)2

q2 εqn

)
,

which together with (4) implies (56). Therefore, all arguments of section 8.1 apply to
the latter case; see Remark 38.

This completes the construction of matrices M,M ′, and M ′′ and the proof of
Theorem 1.
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A WORK-OPTIMAL DETERMINISTIC ALGORITHM FOR THE
CERTIFIED WRITE-ALL PROBLEM WITH A NONTRIVIAL

NUMBER OF ASYNCHRONOUS PROCESSORS∗
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Abstract. Martel [C. Martel, A. Park, and R. Subramonian, SIAM J. Comput., 21 (1992),
pp. 1070–1099] posed a question for developing a work-optimal deterministic asynchronous algo-
rithm for the fundamental load-balancing and synchronization problem called Certified Write-All
(CWA). In this problem, introduced in a slightly different form by Kanellakis and Shvartsman in a
PODC’89 paper [P. C. Kanellakis and A. A. Shvartsman, Distributed Computing, 5 (1992), pp. 201–
247], p processors must update n memory cells and only then signal the completion of the updates.
It is known that solutions to this problem can be used to simulate synchronous parallel programs
on asynchronous systems with worst-case guarantees for the overhead of a simulation. Such simula-
tions are interesting because they may increase productivity in parallel computing since synchronous
parallel programs are easier to reason about than are asynchronous ones.

This paper presents the first solution to the question of Martel, Park, and Subramonian. Specifi-
cally, we show a deterministic asynchronous algorithm for the CWA problem. Our algorithm has the
work complexity of O(n + p4 logn). This work complexity is asymptotically optimal for a nontriv-

ial number of processors p ≤ (n/ logn)1/4. In contrast, all known deterministic algorithms require
superlinear in n work when p = n1/r for any fixed r ≥ 1.

Our algorithm generalizes the collision principle introduced by Buss et al. [J. Buss, P. C. Kanel-
lakis, P. L. Ragde, and A. A. Shvartsman, J. Algorithms, 20 (1996), pp. 45–86] in 1996, which has
not been previously generalized despite various attempts. Each processor maintains a collection of
intervals of {1, 2, . . . , n}. Any processor iteratively selects an interval and works from its tip toward
the other tip until it finishes the work or collides with another processor. Collisions are detected
effectively using a special Read-Modify-Write operation. In any case, the processor transforms its
collection appropriately. Our analysis shows that the transformations preserve some structural prop-
erties of collections of intervals. This guarantees that work is assigned to processors in an efficient
manner.
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1. Introduction. This paper shows a deterministic algorithm where p asyn-
chronous processors update n cells of shared memory and only then signal the com-
pletion of the updates. The algorithm has asymptotically optimal work complexity of

O(n) for a nontrivial number of processors p ≤ (n/ log n)
1/4

. This result is the first
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Many existing parallel systems are asynchronous. However, writing correct paral-
lel programs on an asynchronous shared memory system is often difficult, for example,
because of data races, which are difficult to detect in general [7, 38]. When the in-
structions of a parallel program are written with the intention of being executed on
a system that is synchronous, then it is easier for a programmer to write correct
programs because it is easier to reason about synchronous parallel programs than
asynchronous ones. Therefore, in order to improve productivity in parallel comput-
ing, one could offer programmers the illusion that their programs run on a parallel
system that is synchronous, while in fact the programs would be simulated on an
asynchronous system.

Simulations of a parallel system that is synchronous on a system that is asyn-
chronous have been studied for over a decade [3, 4, 5, 6, 10, 14, 16, 20, 22, 23, 24,
25, 30, 31, 32, 33, 35, 40, 41]. Simplifying considerably, such simulations assume that
there is a system with p asynchronous processors, and that the system must simulate a
program written for n synchronous processors. The simulations use three main ideas:
idempotence, load balancing, and synchronization. Specifically, the execution of the
program is divided into a sequence of phases. A phase executes an instruction for
each of the n synchronous programs. A phase is divided into two stages. First, the n
instructions are executed and the results are saved to a scratch memory. Only then
cells of the scratch memory are copied back to desired cells of the main memory. This
ensures that the result of the phase is the same even if multiple processors execute the
same instruction in a phase, which may happen due to asynchrony. The p processors
run a load-balancing algorithm to ensure that the n instructions of the phase are
executed quickly despite possibly varying speeds of the p processors. In addition, the
p processors are synchronized at every stage (twice per phase), so as to ensure that
the simulated program proceeds in lock-step. Such simulation implements the PRAM
model [15] on an asynchronous system.

One challenge in realizing the simulations is the problem of “late writers,” i.e.,
when a slow processor clobbers the memory of a simulation with a value from an
old phase. This problem has been addressed in various ways: by replication of vari-
ables [23]; by a combination of hashing, replication, and error correction [4]; by ap-
proximate detection of who is late, and replication of variables [5]; by using instruc-
tions that execute relatively fast [33]; by versioning of variables using extra atomic
primitives [34]; or by restricting a class of computations that can be simulated [33].

Another challenge is the development of efficient load-balancing and synchro-
nization algorithms. This challenge is abstracted as the Certified Write-All (CWA)
problem. In this problem, introduced in a slightly different form by Kanellakis and
Shvartsman [20], there are p processors and an array w with n cells and a flag f , all
initially 0, and the processors must set the n cells of w to 1, and only then set f to 1.
One efficiency criterion for the simulation is to reduce the wasteful use of computing
resources. This use can be abstracted as the work complexity (or work for short) that
is equal to the worst-case total number of instructions executed by the simulation. A
simulation uses an algorithm that solves the CWA problem. Therefore, it is desirable
to develop low-work algorithms that solve the CWA problem.

When creating a simulation of a given parallel program for n processors, one
may have a choice of the number p of simulating processors. On the one hand, when
a CWA algorithm for p � n is used in a simulation, the simulation may be faster
as compared to the simulation that uses an algorithm for p � n processors, simply
because of higher parallelism, which means that more processors are available to
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perform the simulation. On the other hand, however, processors that access shared
memory may create hotspots, which may cause delays, and as a result an algorithm
for p � n may in fact run slower than an algorithm for p � n (memory contention
is disregarded in the model studied in this paper). The actual speed of a simulation
may depend on system parameters, and so it is interesting to study CWA algorithms
for different relationships between p and n.

The best known randomized algorithm that solves the CWA problem on an asyn-
chronous system was given by Martel and Subramonian [36]. Their algorithm has
expected work of O(n) when p ≤ n/ log n, and expected work of O(n log n) when
p = n. They also showed a lower bound of Ω(n + p log p) on expected work of Las
Vegas CWA algorithms against an oblivious adversary.

Deterministic algorithms that solve the CWA problem on an asynchronous system
can be used to create simulations that have bounded worst-case overhead. Thus sev-
eral deterministic algorithms have been studied [1, 8, 9, 18, 21, 37]. Fixing r ≥ 1
when p = n1/r, all these deterministic algorithms have work ω(n). Specifically,
when r = 1 the first asynchronous CWA algorithm, called X, was developed by Buss
et al. [8]. This algorithm was later generalized by Anderson and Woll [1]. Using a
lower bound on contention of permutations (a value related to the number of left-to-
right maxima in the permutations; see [1] for a formal definition) due to Lovász [29]
and Knuth [27], Malewicz [31] showed that the generalized algorithm, called AWT,

has work Ω(n1+
√

ln lnn/ lnn/2). When r ≥ 2, a trivial algorithm, where each processor
writes to every cell of the array w, has work Ω(n1+1/r). The best known algorithm
for r ≥ 2 was given by Anderon and Woll [1]. This algorithm, called AW, has work
Ω(n log n), which can be shown using the same lower bound of Lovász and Knuth
(this algorithm can be instantiated using results of Naor and Roth [37], Kanellakis
and Shvartsman [21], and Chlebus et al. [9], with the same asymptotic lower bound
on work). Algorithms X, AW, and AWT access shared memory through atomic
read and write instructions. The elegant algorithm of Groote et al. [18] has work
Ω(n1+1/(2r2r ln 2)), and it uses a Test-and-Set instruction [19]. All these deterministic
algorithms have work ω(n) when r ≥ 1 is fixed.

An interesting deterministic algorithm, called T, for 3 processors was shown by
Buss et al. [8]. In this algorithm, two processors start from the two opposite tips of
the array w, and each works toward the opposite tip. The third processor starts from
the middle of the array and “expands” by setting to 1 further and further cells on
each side of the starting cell. When a “collision” between two processors occurs, the
two processors “jump” to repeat the pattern of work recursively in a different part of
the array. The algorithm has work O(n), and at most n + O(log n) cells of the array
are set to 1. A generalization of this algorithm to more than 3 processors is an open
problem posed by Buss et al. in 1996. In a recent paper by Groote et al. [18] it is
stated that “Algorithm T does not appear to be generalizable to larger numbers of
processes.”

Contributions. This paper presents, for the first time, a deterministic algorithm
for the CWA problem that has asymptotically optimal work for a nontrivial number
of asynchronous processors. Specifically, we consider a shared memory setting with
p asynchronous processors. The processors must solve the CWA problem: given an
array w with n cells and a flag f , all initially 0, set all elements of w to 1, and
only then set f to 1. We present a deterministic algorithm that solves the problem
in this shared memory setting. Our algorithm has the work complexity of O(n +
p4 log n) (appearing in Theorem 3.15). The algorithm has asymptotically optimal
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work O(n) for a nontrivial number of processors p ≤ (n/ log n)
1/4

. In contrast, all
known deterministic algorithms require as much as ω(n) work when p = n1/r, for
any fixed r ≥ 1. The processors use O(n + p4 log n) memory cells for coordinating
their work (shown in Theorem 3.16). Our algorithm generalizes the collision principle
used by the algorithm T. Namely, each processor has a collection of intervals of
w and iteratively selects an interval to work on. The processor proceeds from one
tip of the interval toward the other tip. When processors collide, they exchange
appropriate information and schedule their future work accordingly. Our algorithm
uses a special atomic Read-Modify-Write (RMW) instruction to detect collisions. Such
strong primitives were not used by previous algorithms, except for the algorithm of
Groote et al. [18]. Our paper contributes to solving the problems posed by Martel,
Park, and Subramonian [33] and by Buss et al. [8].

Subsequent work. Subsequent to the conference version of this paper [30],
Kowalski and Shvartsman presented [26] a deterministic asynchronous algorithm for
the CWA problem. Their algorithm has asymptotically optimal work when the num-
ber of processors is p < n1/(2+ε). This range is significantly wider than the range of
p while the algorithm presented here is proven to have asymptotically optimal work.
However, it is not clear that our upper bound on work is tight. It would be inter-
esting to develop tight bounds on work for each algorithm and compare the bounds.
The algorithm of Kowalski and Shvartsman uses atomic reads and writes, while our
algorithm requires a much stronger primitive of RMW. Their algorithm uses a col-
lection of q permutations with contention O(q log q), while it is not known to date
how to construct such permutations in polynomial time. Thus their result is, so far,
existential, while ours is explicit.

Paper organization. The remainder of the paper is organized as follows. In
section 2, we define the asynchronous shared memory model of computation used in
the paper and the CWA problem. In section 3, we present our deterministic algorithm
and its analysis. Finally, in section 4, we conclude with future work.

2. Model and definitions. We consider a shared memory system where pro-
cessors can work at arbitrarily varying paces. Our formal definition is based on the
Atomic Asynchronous Parallel System as presented by [5] (cf. [2, 11, 12, 13, 17, 28,
33, 39, 42]).

The system consists of p processors, each of which has a dedicated local memory,
and every processor has access to shared memory. Any memory is composed of cells.
The initial section of n cells of shared memory stores an array w[0, . . . , n − 1]. The
subsequent cell stores a flag f . Any cell of any memory can store any O(log n)-bit
number. Any processor has a distinct identifier from {1, . . . , p}.

Each processor has a discrete local clock ranging over N = {1, 2, 3, . . . }. A proces-
sor executes exactly one basic action at any tick of the local clock unless the processor
has halted. The basic actions that a processor can execute are a Halt action that
stops the operation of the processor, any operation on a constant number of cells from
the local memory, and a transfer between the local memory and shared memory. The
possible transfers are reading a single cell of shared memory into a cell of the local
memory; writing from a cell of the local memory to a cell of shared memory; and
performing a special RMW action that compares the value stored at a cell of shared
memory with the value stored at a cell of the local memory, and if they are equal,
the action transfers a constant number of cells from the local memory to a constant
number of cells of shared memory, but in any case returns the result of the comparison
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Fig. 1. The special RMW operation used by the algorithm first compares two cells, and then
possibly transfers a constant number of cells from local memory to shared memory. All this is done
atomically.

(see Figure 1 and also an example of syntax in Figure 2).
An execution of an algorithm progresses according to the following model of asyn-

chrony. Local time of processor i is mapped to global time through a strictly increas-
ing function Ti : N → R. We assume that no local clock ticks of two processors are
mapped to the same instant of global time, i.e., if Ti(x) = Tj(y), then i = j and x = y.
A tuple 〈T1, . . . , Tp〉 with mappings that satisfy these conditions is called a valid tuple
of mappings. When a valid tuple 〈T1, . . . , Tp〉 has been fixed, each processor executes
basic actions dictated by its algorithm. The processors take turns according to the to-
tal order prescribed by the mappings. Any processor i does not execute basic actions
after the tick when the processor executed the Halt action, if the processor executed
the action. The execution of any basic action is instantaneous, and so the resulting
memory updates are atomic.

We adopt the following definition of the CWA problem: given the array w[0, . . . , n−
1] with n cells and the flag f , all initially 0, set the n cells of w to 1, and only then
set f to 1. An algorithm solves the CWA problem for p processors and n cells if, for
any valid tuple 〈T1, . . . , Tp〉 of mappings, the following three conditions hold:

(i) (Termination) each processor halts after a finite number of local clock ticks,
(ii) (Certification) when any processor halts, the flag f has been set to 1,
(iii) (Validity) when the flag f is set to 1, all cells of w have been set to 1.
The work complexity of a deterministic algorithm that solves the CWA problem

for p processors and n cells measures the maximum total number of basic actions
executed by the processors. Consider any valid tuple 〈T1, . . . , Tp〉 of mappings. Let
hi be the first local clock tick when processor i executes the Halt action, or ∞ if it
does not execute the action. Then the total number of basic actions executed by the
processors is

∑p
i=1 hi. The work of the algorithm is defined as the maximum value of

the sum across valid tuples of mappings. (Work is a function of n and p.)
Definition 2.1. The work of a deterministic algorithm A for p processors and

n cells that solves the CWA problem is defined as

work(A, p, n) = max
〈T1,...,Tp〉

p∑
i=1

hi(T1, . . . , Tp),

where the maximum is taken over all valid tuples of mappings; and where hi(T1, . . . , Tp)
is a number from N that is the first tick of the local clock of processor i during which
the processor executes the Halt basic action, when local time of processors have been
mapped to global time using the maps T1, . . . , Tp.

Note that in this model, there is a trivial Write-All algorithm for n = p where the
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first basic action that a processor i, 0 ≤ i ≤ n−1, executes is an assignment of 1 to cell
i of the array w (because the model ensures that each processor will eventually perform
a basic action). This takes O(n) work in total. However, in general, no processor can
certify and halt immediately after performing its first basic action without violating
the validity condition. The processor simply cannot always ensure that each of the n
cells has been set to 1, due to the fact that other processors may be delayed.

3. Collision algorithm and its analysis. This section presents a deterministic
algorithm for the CWA problem with asynchronous processors (see Figure 2). The
algorithm generalizes the collision principle of algorithm T. The main algorithmic
approaches of our algorithm are: to ensure that any processor often works on a
relatively large interval of unset cells of the array w, according to a sequence that
enables rapid detection of two processors setting to 1 the same cell of the array; and,
when redundancy occurs, to ensure an effective mechanism for reassigning work to
processors. Briefly speaking, all processors share an array tab with n cells used for
coordination of their work. Each processor maintains a collection of intervals of the
set {0, 1, . . . , n− 1} (an interval is a subset of consecutive elements of the set). A
processor takes an interval from the collection and keeps setting cell w[x] to 1 and
storing some special information in cell tab[x], while working through cells x from a tip
of this interval toward the opposite tip. Later, the processor removes some intervals
or their parts from the collection, possibly based on information obtained from other
processors. This process is repeated as long as there is an interval in the collection.
When the collection becomes empty, then the processor sets the flag f to 1 and halts.

There are several challenges that we solve to ensure that our algorithm avoids
doing too much redundant work. It may happen that two processors “collide” at
the same cell while working in opposite or the same directions. When they work in
opposite directions, they could “cross” each other and duplicate the work that the
other processor already did. When they work in the same direction, they may keep
on working “side-by-side” and again duplicate the work that the other processor is
doing. Another potential problem is that even if we are able to detect collisions, then
a processor that collides must decide upon a cell of the array where the processor will
resume its work. Ideally, the processor should choose to work from a tip of an interval
so that this tip is “far away” from any cell that any other processor is currently
working on. This is desirable because it would help to ensure that when the next
collision of this processor occurs, a substantial number of distinct new cells of the
array w have been set to 1.

Intuitively, our algorithm solves these challenges as follows. The processors co-
ordinate their work on intervals using atomic RMW instructions. This ensures that
whenever a processor does a successful RMW to a cell, no other processor can succeed.
As a result, a colliding processor sets at most one cell of w to 1 before it detects a
collision with another processor, and has an opportunity to reassign its own future
work. The choice of a relatively long interval located in a rather unassigned part of
the array is intuitively done by a processor always working on an interval that is at
least as long as half of the length of a longest interval in the collection. In addition, we
ensure that a colliding processor obtains knowledge from the other processor about
which cells of w remain to be set to 1, and this allows us to guarantee that when
a processor often collides, it must substantially reduce the amount of work that it
“thinks” remains to be done, even though it has not actually recently set to 1 any
distinct cells of w.

The following sections present details of this intuitive explanation. We begin, in
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shared variables: f , arrays w[0, . . . , n− 1], tab[0, . . . , n− 1]
initially f = 0, w[x] = 0, tab[x] = 〈0, ∅, ∅〉, for x = 0, . . . , n− 1

COLLIDE
local variables: dir, U,D, dir′, U ′, D′, c, s, e, x, failed
01 U := {[0, n− 1]}, tips are unmarked unless explicitly marked
02 while true

03 let s be an unmarked tip of an interval from U and e the other tip
04 if s ≤ e, then dir := R else dir := L

}
select an interval

05 D := ∅
06 for x := s to/downto e
07 w[x] := 1
08 RMW(x) // see line 30

09 if failed, then goto 11

10 D := D ∪ {x}

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

work from tip s to tip
e of the interval

11 if not failed, then
12 U := U \D

}
no collision,
record progress

13 else
14 〈dir′, U ′, D′〉 := tab[x]

}
collision,
retrieve information

15 if maxlen (U) > maxlen (U ′), then U := U ′ ∩ U
16 else
17 U := U ∩ U ′

⎫
⎬

⎭
intersect collections

18 if dir 	= dir′, then
19 U := U \ (D ∪D′)

}
head-on-head collision,
record joint progress

20 else
21 if D 	= ∅, then U := U \D
22 else U := U \ (D′ \ {x})
23 mark tip x of the interval in U that contains x

⎫
⎪⎪⎬

⎪⎪⎭

head-on-back collision,
record progress,
and mark a tip

24 remove from U any interval of length 1 with a marked tip
25 if U is empty, then set f to 1 and Halt

}
check for completion

26 if all tips of all intervals in U are marked, then
27 let [a, b] be an interval among the longest ones in U

28 c := a + b−a+1
2

− 1
29 U := (U \ {[a, b]}) ∪ {[a, c], [c + 1, b]}

⎫
⎪⎪⎬

⎪⎪⎭

all tips marked,
split an interval

RMW(x)
30 begin atomic
31 if tab[x].D is ∅, then
32 failed := false
33 tab[x] := 〈dir, U,D ∪ {x}〉
34 else failed := true
35 end atomic

Fig. 2. Deterministic collision algorithm as executed by any processor; see section 3.1. Opera-
tions from lines 15 to 17, 19, 21, and 22 are detailed in section 3.2. Theorem 3.16 explains how to
modify the code so that RMW transfers at most a constant number of memory cells.

section 3.1 with an overview of the collision algorithm to help the reader gain famil-
iarity with the code of the algorithm and how the algorithm works. In the algorithm,
processors maintain collections of intervals and sometimes incorporate knowledge from
collections of other processors. Then in section 3.2, we detail the operations on collec-
tions of intervals that processors use. The operations incorporate knowledge so that
the resulting collections of intervals are “well-behaved” in a precise sense. Finally, in
section 3.3, this good behavior of operations helps us prove a bound on work for our
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algorithm.

3.1. Overview of the collision algorithm. We outline the collision algorithm.
We begin with the shared and the local memory variables that processors access, and
then describe how the algorithm works. Recall that n denotes the number of cells
in the Write-All array and p denotes the number of processors. We assume that n
and p are powers of two. Line numbers mentioned in this section refer to the code in
Figure 2.

Each processor has access to three shared variables: the completion flag f , the
Write-All array w[0, . . . , n−1], and an array tab[0, . . . , n−1] called the trace table. The
trace table is of paramount significance to the collision algorithm because information
about completed work is disseminated through the trace table. Each cell tab[x] of the
trace table is a record with three fields denoted by tab[x].dir, tab[x].U , and tab[x].D
(an example of content of a trace table is given in Figure 3(a)). The first field is a bit
equal to either L or R. The second field is a collection of intervals of {0, . . . , n− 1}.
As we will see later, at most p/2 intervals are ever stored in this field. The third
field is an interval of {0, . . . , n− 1}. Note that each interval can be represented as
two numbers—the interval tips. Hence, any cell of tab contains O(p log n) bits. We
will later see how to use a pointer representation of collections so as to ensure that
each cell of the trace table stores only O(log n) bits. For now, we use the “expanded”
representation for simplicity of exposition. We assume that when processors begin
execution, these shared variables are initialized as follows: f and cells of w to zero,
and every cell of tab to 〈L, ∅, ∅〉 (i.e., tab[x].dir = L, tab[x].U = ∅, and tab[x].D = ∅,
for any 0 ≤ x ≤ n− 1).

Each processor has a few local variables. The variable U contains a collection of
intervals of {0, . . . , n− 1}. As we will see later, U can contain at most p/2 intervals
at any time during execution. These intervals cover all cells that remain to be written
to, and so any cell that is not in one of the intervals must necessarily have already
been written to. However, some cells covered by intervals from U may already be
written to, because of the concurrent work of other processors and possibly delayed
dissemination of knowledge. Each tip of any interval in U has a flag equal to marked
or unmarked. The processor has other local variables: U ′ is a collection of intervals
of {0, . . . , n− 1} (again, it will contain at most p/2 intervals); D and D′ are intervals
of {0, . . . , n− 1}; c, s, e, x are integers from {0, . . . , n− 1}; dir, dir′, and failed are
bits.

Note that the algorithm is uniform (i.e., it is the same for each processor), so we
describe it for a given processor i. The processor begins by setting its collection U to
a set that contains just one interval [0, n − 1] (line 01). The tips of this interval are
unmarked. Note that then U contains an interval with an unmarked tip. Next the
processor enters a big while loop (lines 02 to 29). In general, every time the processor
starts an iteration of the while loop (line 03), the following loop invariant holds: the
collection U contains at least one interval with an unmarked tip; the other tip and
some tips of other intervals, if any, may be marked. The body of the while loop has
several sections of code, each carrying out a specific function.

The processor selects an interval from U (lines 03 and 04). The interval is chosen
so that it has an unmarked tip s and e is the other tip of the interval. The processor
will attempt to work on the interval from s to e. The relationship between s and e
determines the direction of work: either L, meaning left, or R, right.

Then the processor works on the interval by iterating through cells x from tip s
to tip e (lines 05 to 10). At the end of each iteration, the interval D contains the
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Fig. 3. Illustration of activities of the collision algorithm. Part (a) shows a processor that
“leaves a trace” in the trace table. Part (b) presents changes to U when there has been no colli-
sion. Part (c) demonstrates the process of retrieval of information about the colliding processor and
intersection of the two collections of intervals.

cells through which the processor has iterated so far. At every iteration of the loop,
the processor writes to the cell w[x] of the Write-All array, and “leaves a trace” of
its work inside a cell tab[x] of the trace table (see animation in Figure 3(a)). Writing
to cell tab[x] is done using the RMW atomic operation so as to ensure that no two
processors succeed in writing to a cell of tab (lines 30 to 35). Specifically, the write
tests the value of the third field of the cell, and only if it is equal to the empty set,
the write proceeds by setting the field to a value of D ∪ {x} that is always different
from the empty set. The interval D∪{x} contains all cells to which the processor has
successfully RMWed during the work on the interval. In addition to modifying the
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third field, a successfully performed RMW stores in tab[x] the direction dir of work
and the collection U . Two events can happen during the time when the processor
iterates from s to e: (1) either the processor reaches the tip e of the interval because
it has successfully RMWed to all cells of the interval or (2) the processor fails on a
RMW operation because earlier some processor j successfully RMWed to a cell of the
interval; if this happens we say that processor i collides with processor j. The actions
of processor i depend on whether i collided or not.

When processor i has not collided, it records recent progress (lines 11 and 12).
Specifically, then the interval D is equal to the interval from U with tips s and e on
which the processor has just finished working. The processor removes this interval
from U (see Figure 3(b)).

Slightly more complicated operations are performed when processor i has collided.
In such a case, processor i will incorporate the knowledge gained from the processor
j with whom the collision has occurred. The incorporation of knowledge proceeds in
several stages.

First, processor i retrieves information about processor j from the trace table
(lines 13 and 14). Recall that a collision occurs when a processor fails on an RMW to
a cell tab[x] of the trace table. This means that a processor j has already performed
a successful RMW to the cell. This cell must contain the collection U of intervals
that processor j had at the time when it performed a successful RMW to the cell
tab[x]. The cell also contains the direction dir in which processor j was working at
that time, and the part D of the interval that processor j had successfully worked on
until the time it performed the RMW. So processor i can retrieve these three pieces
of information from the trace table by reading tab[x] (see Figure 3(c)). We denote the
pieces by U ′, dir′, and D′. Note that the local variables U , dir, and D of processor
j at the time when i retrieves information from the cell tab[x] may be different from
U ′, dir′, and D′ because j might have executed many instructions since it performed
RMW to tab[x].

Second, processor i intersects the two collections of intervals, its own U with the
collection U ′ of processor j (lines 15 and 17). A collection with the longest interval
is taken, and its intervals are trimmed by the union of the intervals from the other
collection. A detailed specification of the intersection operation is given in Lemma 3.3.
As a result of the intersection, U contains some intervals.

Then the actions that processor i takes depend on whether the colliding processors
i and j worked in the same or opposite directions.

If they worked in opposite directions, then processor i records progress D and D′

(lines 18 and 19). It removes from U all intervals, or their parts, that are contained in
either the interval D that i successfully worked on or the interval D′ that j successfully
worked on (see Figure 4(a)). A detailed specification of the removal operation is given
in Lemma 3.5.

If, on the other hand, processors i and j worked in the same direction, then
progress D and D′ is recorded in a different way (lines 20 to 23). Two kinds of a
“head-on-back” collision are distinguished. The first kind is when processor i failed
on its first RMW in the work on the interval from s to e, and the second kind is when
processor i succeeded on the first RMW and thus “bumped into the back” of the trace
of processor j later during the work on the interval. When processor i succeeded on
the first RMW, then D = ∅ (line 21). Here processor j cannot have arrived at x
“from behind” of processor i, and so j must have just started working on its interval
when it RMWed to cell tab[x] (see Figure 4(b)). Then processor i removes from U the
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Fig. 4. Illustration of activities of the collision algorithm. Parts (a), (b), and (c) represent
modifications to collection U using intervals D, D′, and the cell x where collision took place.

interval D that it has just successfully worked on (line 21). A detailed specification
of the removal operation is given in Lemma 3.7. As a result of the removal, cell x
becomes a tip of an interval in U . When, on the other hand, processor i failed on the
first RMW, then D = ∅ (line 22). Here processor j must have successfully worked on
at least one cell, but possibly more (see Figure 4(c)). Processor i removes from U the
interval D′ that j worked on, except for the cell x where collision took place (line 22).
A detailed specification of the removal operation is given in Lemma 3.9. No matter
which of the two kinds of “head-on-back” collisions occurred, as a result x is a tip of
an interval in U , and processor i marks the tip (line 23). Marking allows us to keep
track of the tips where head-on-back collisions took place. A marked cell is known to
have been set to 1.

In any case, whether processor i collided or not, the processor then checks if all
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cells have been written to (lines 24 and 25). As the algorithm iterates, intervals of
length 1 with a marked tip may emerge in the collection U . Such intervals are removed
from U , as we are certain that the corresponding cells must have been written to. If
U does not contain any more intervals, then the processor certifies and halts. As a
result of the removal, any interval with a marked tip has length at least 2.

The final action performed by processor i in the body of the while loop is a
possible partition of an interval (lines 26 to 29). If all tips of all intervals in U are
marked, then the processor takes a longest interval in U and partitions it into two
halves. The two tips that are being exposed are unmarked. This ensures that there
is at least one interval in U with an unmarked tip. So the while loop invariant holds
again.

3.2. Collections of intervals, their transformations, and preserved prop-
erties. During the time when a processor executes the collision algorithm, the proces-
sor interacts with other processors through the trace table. As a result, the processor
transforms its collection U in various ways. Lines 11 through 29 of the algorithm list
the conditions under which the transformations are performed. The current section
is devoted to defining these transformations and demonstrating their effect on U . We
first introduce the notions of “regularity” and “monotonicity” of collections of inter-
vals. We then show that the transformations maintain regularity and monotonicity
of U , and that the number of elements contained in the intervals of U gets reduced
rapidly under certain conditions. These observations will be useful when reasoning
about correctness and work of the algorithm.

We define regularity and monotonicity of collections of intervals (see Figure 5 for
illustration). All intervals in this and subsequent sections are over the set of integers
{0, 1, . . . , n− 1}.

Definition 3.1. Let U0, . . . , Ug be collections of intervals over {0, . . . , n − 1}.
We say that the collections are regular iff the following three properties are satisfied:

(i) Each collection is composed of mutually disjoint nonempty intervals, each
interval has length that is a power of two (length can be 1), and the lengths
of any two intervals from the same collection differ by at most a factor of 2.

(ii) For any two intervals I and J , each from a different collection, either I ⊆ J ,
or J ⊆ I, or I ∩ J = ∅.

(iii) If I ⊆ J are two intervals from different collections, then J can be partitioned
into a number of intervals such that this number is a power of 2 (the number
can be 1), the intervals have the same length, and I is one of the intervals.

We say that the collections are monotonic iff the following property is satisfied:
(iv) For any j, 0 ≤ j < g, if interval I belongs to Uj+1, then there is interval J

that belongs to Uj such that J ⊇ I.
We now show a simple fact that halving any interval in the last collection preserves

monotonicity.
Lemma 3.1. Let U0, . . . , Ug be monotonic collections of intervals, and let U be

equal to Ug except that instead of an interval from Ug of length 2 or more, U contains
the two halves of the interval. Then the collections U0, . . . , Ug, U are monotonic.

The following lemma states that halving a relatively long interval in any collection
preserves regularity.

Lemma 3.2. Let U0, . . . , Ug be regular collections of intervals, 0 ≤ i ≤ g, and
let U be equal to Ui except that instead of a longest interval from Ui of length 2 or
more, U contains the two halves of the interval. Then the collections U0, . . . , Ug, U
are regular.
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Fig. 5. This figure illustrates the definition of regular and monotonic collections of intervals.
In the example above we have three collections U1, U2, and U3 of intervals of cells. These collections
are regular for the following reasons. Any collection has disjoint intervals whose lengths are powers
of 2, and the lengths of intervals in any collection differ by the factor of 2, at most (they do not
differ for U1, but differ for U2 and for U3). Any two intervals from any two distinct collections
are either disjoint or one is contained in the other, i.e., there are no partial overlaps. If one is
contained in the other, then the subset must be properly aligned inside the superset, i.e., the superset
can be partitioned into intervals of the same length, the number of these intervals is a power of two,
and the subset is one of the intervals (e.g., I2,1 can be partitioned into two intervals, the right of
which is I3,1). Note that collections U1, U2 are monotonic, because for each interval of U2 there is
a superset interval in U1. On the other hand, collections U2, U3 are not monotonic because there is
no interval in U2 that contains interval I3,2.

Taking a specific intersection of two collections preserves regularity and mono-
tonicity, as shown below. In this intersection, a collection with the longest interval
is taken, and its intervals are trimmed by the union of the intervals from the other
collection.

Lemma 3.3. Let k1, . . . , kp ≥ 0, let the collections U0
1 , . . . , U

k1
1 , . . . . . . , U0

p , . . . , U
kp
p

be regular, and let the collections U0
h , . . . , U

kh

h be monotonic for any h, 1 ≤ h ≤ p. Let

i = j be two numbers from {1, . . . , p}, 0 ≤ m ≤ kj, and U = Uki
i and U ′ = Um

j . Let

2k be the maximum length of an interval in U and 2k
′
be the maximum length of an

interval in U ′. Let V be the collection

V =

⎧⎨
⎩

U ′ ∩ U :=
{
H | H = ∅ ∧ J ∈ U ′ ∧ H = J ∩

⋃
I∈U I

}
if k > k′,

U ∩ U ′ :=
{
H | H = ∅ ∧ I ∈ U ∧ H = I ∩

⋃
J∈U ′ J

}
if k ≤ k′.

Then the number of intervals in V is at most the maximum of the number of intervals
in U and in U ′, i.e., |V | ≤ max {|U | , |U ′|}. If k > k′, then V contains some complete
intervals from U ′, and when k < k′, some complete intervals from U . If k = k′, then
V contains some complete intervals from U and a single half for each of some other
intervals of length 2k from U (V never contains two halves of any interval from U).

The collections V,U0
1 , . . . , U

k1
1 , . . . , . . . , U0

p , . . . , U
kp
p are regular, and the collections

U0
i , . . . , U

ki
i , V are monotonic.

Proof. We shall study the content of V based on the relationship between the
length of a longest interval in U and the length of a longest interval in U ′. In prepa-
ration for the case analysis we record what the lengths of intervals in these collections
may be. Since collections are regular, by property (i), we indeed know that the length
of a longest interval in U is 2k and the length of a longest interval in U ′ is 2k

′
, for
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some integers k, k′ ≥ 0. We also know that intervals in U have length 2k or 2k−1, and
the intervals in U ′ have length 2k

′
or 2k

′−1.

For the first case, suppose that k > k′, and let us investigate common parts
between U ′ and U . Let I be an interval from U , and J from U ′. The interval I cannot
be shorter than 2k−1, and the interval J cannot be longer than 2k−1. Therefore, J is
too short to be a strict superset of I. Hence, by property (ii), any interval J from U ′ is
either a subset of some interval from U or does not intersect with any interval from U .
Consequently, the set U ′∩U contains only some complete nonempty intervals from U ′.
The length of a longest interval in U ′∩U is reduced by a factor of 2 or more compared
to the length of a longest interval in U . Since removing an interval from a collection

does not invalidate the properties, the collections V,U0
1 , . . . , U

k1
1 , . . . . . . , U0

p , . . . , U
kp
p

are regular and the collections U0
i , . . . , U

ki
i , V are monotonic.

The second case is when k < k′. We can carry out an analysis similar to the one
presented in the previous paragraph. The set U ∩ U ′ contains only some complete
nonempty intervals from U , and regularity and monotonicity hold. However, we do
not guarantee that the length of a longest interval in U is reduced, because it could
happen that any interval from U is included in an interval from U ′.

The final case is when k = k′. Let us again investigate the result of the operation
U ∩ U ′. Take any interval I from U , and let us see what part of this interval is
contained in U ∩U ′, if any. By property (ii), for any interval J from U ′ we have either
I ⊆ J , or I ⊃ J , or I ∩J = ∅. If the first subcase occurs, then we are guaranteed that
complete I is contained in U ∩ U ′. Suppose that the first subcase does not happen,
and so for all J , either I ⊃ J or I ∩J = ∅ (but never I ⊆ J). The result now depends
on how many distinct J there are that satisfy I ⊃ J . Suppose that I ⊃ J . Our
assumption about the length of intervals ensures that the length of such J is 2k−1

and of I is 2k. By property (i), we can have either zero, or one, or two intervals in
U ′ that are strict subsets of I. In the former situation all intervals J have empty
intersection with I, and so I is not contained in U ∩ U ′. In the latter situation the
two intervals combined must yield I, and so complete I is contained in U ∩ U ′. The
discussion presented in this paragraph so far implies that regularity and monotonicity
trivially hold because the intervals contained in U ∩U ′ are complete intervals from U .
In the middle scenario, by property (iii), the interval I is partitioned into two halves:
J and I \ J , and so only the half J is contained in U ∩ U ′, but not the other half.
An argument similar to that in Lemma 3.1 shows that monotonicity is preserved and
another similar to that in Lemma 3.2 shows that regularity is preserved.

The operation of intersection defined in the preceding lemma yields a certain
reduction of size or length of the intervals in the resulting collection V , compared to
the given collection U .

Corollary 3.4. If V = U , then either

(i) the length of a longest interval in V is at most half of the length of a longest
interval in U , i.e., maxI∈V |I| ≤ 1/2 · maxI∈U |I|, or

(i) the total number of elements in the intervals of V is at most the total number
of elements in the intervals of U minus half of the length of a longest interval
in U , i.e., |∪I∈V I| ≤ |∪I∈UI| − 1/2 · maxI∈U |I|.

Proof. The analysis again proceeds by considering the relationship between the
lengths of longest intervals in U and U ′. We consider three mutually exclusive cases.
Suppose that k > k′. Then, by Lemma 3.3, the length of a longest interval in V
is at most half of the length of a longest interval in U . If k < k′, then V contains
some complete intervals from U , and since U = V , one of them must be missing in
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V . This missing interval has length at least half of the length of a longest interval in
U . If k = k′, then V contains complete intervals from U or their halves. Again, since
U = V , either one interval or its half is missing. If a half is missing, then this half
must contain at least 2k−1 elements.

From now until the end of section 3.2, let us fix the values of the collections

U0
1 , . . . , U

k1
1 , . . . . . . , U0

p , . . . , U
kp
p as well as the values of variables i, j, and m. Let V

be the collection defined in Lemma 3.3 for the fixed values of the collections and the
variables. We let I be a fixed interval from the collection Uki

i , and J a fixed interval
from the collection Um

j , such that these two intervals have nonempty intersection.
This intersection contains a cell x where processor i collides with a different processor
j. The lemmas and corollaries in the remainder of section 3.2 show transformations on
collections that preserve regularity and monotonicity, and lead to certain reductions
in the number of elements contained in the intervals of the resulting collections. The
proofs are similar to the proofs of Lemma 3.3 and Corollary 3.4 (see Figure 6 for
illustrations).

Lemma 3.5. Let D be a possibly empty prefix of I and D′ a possibly empty suffix
of J , or conversely, let D be a suffix and D′ a prefix, such that D∩D′ = ∅ and D∪D′

is a nonempty interval. Let W be the collection

W = V \ (D ∪D′) := { H | H = ∅ ∧ K ∈ V ∧ H = K \ (D ∪D′) } .

Then the number of intervals in W is at most the number of intervals in V . If k = k′,
then the collection W contains some complete intervals from V . If k = k′, then W
contains some complete intervals from V and a single half for each of some other

intervals from V . The collections W,U0
1 , . . . , U

k1
1 , . . . . . . , U0

p , . . . , U
kp
p are regular, and

the collections U0
i , . . . , U

ki
i , V,W are monotonic.

Proof. To prove the lemma, we take any interval K from V and argue about what
the result of subtracting D ∪D′ from K is. We arrange the argument in three cases
by the relationship between the length of a longest interval in U and in U ′.

For the first case suppose that k > k′. Then, by Lemma 3.3, the collection V
contains only some complete intervals from U ′. Inspecting the possible lengths of
intervals from U and U ′ reveals that it cannot happen that an interval from U is a
strict subset of some interval from U ′, and so, by property (ii), J ⊆ I (recall that
we assume that I ∩ J = ∅). Similarly, for any K from V , K ⊆ I or K ∩ I = ∅.
Note that the interval D ∪ D′ starts at a tip of I, runs through entire J , and ends
at the opposite tip of J . Thus the three sets (D ∪ D′) \ J , J , and I \ (D ∪ D′) are
disjoint possibly empty intervals whose union is I. If K does not intersect with I,
then K \ (D ∪D′) = K. Assume now that K is a subset of I. Since J and K are
intervals from U ′, we have, by property (i), that either J = K or J ∩ K = ∅. In
the first subcase K \ (D ∪D′) = ∅, while in the second subcase K either belongs to
(D ∪D′) \ J or to I \ (D ∪D′) and so K \ (D ∪D′) is equal to ∅ or K, respectively.
Thus W is equal to V except for possibly some complete intervals removed, and so
desired regularity and monotonicity hold.

A symmetric case is when k < k′. Now collection V contains only some complete
intervals from U , and it must be that I ⊆ J , and that for any K from V , K ⊆ J or
K ∩ J = ∅. As above, if K does not intersect with J , then K \ (D ∪D′) is equal to
K, while if K ⊆ J , then K \ (D ∪D′) is either empty or equal to K, and so desired
regularity and monotonicity hold.

Finally, consider the case when k = k′. Since I ∩ J = ∅, by property (ii), we
have three subcases: J ⊂ I, I ⊂ J , I = J . We consider them in turn. For the first
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Fig. 6. This figure illustrates the assumptions of Lemmas 3.5, 3.7, and 3.9.

subcase suppose that J ⊂ I. Since, by property (i), the length of I and J can be
either 2k or 2k−1, the length of I is 2k and, by property (iii), J is a half of I and has
length 2k−1. Thus D ∪ D′ is either equal to I or equal to a half of I. Take any K
from V . By Lemma 3.3, V contains complete intervals from U or halves of some other
intervals form U but never two halves of the same interval from U . If K is an interval
from U , then, by property (i), K is either equal to I or has empty intersection with
I. If K ∩ I = ∅, then K \ (D ∪D′) = K. If K = I, then K \ (D ∪D′) is equal to
either a half of K or an empty set depending on whether D ∪D′ is the other half of
K or not. If K is a half of an interval from U , then either K ∩ I = ∅ or K is a half
of I. If K is a half of I, then K \ (D ∪D′) is either K or an empty set. Thus in the
first subcase the set K \ (D ∪D′) has length either 2k or 2k−1 or 0 and is equal to
K, or a half of K, or the empty set. Hence desired regularity and monotonicity hold.
For the second subcase suppose now that I ⊂ J . Then J has length 2k, I is its half
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of length 2k−1, and D ∪ D′ is equal to J or I. Take any K from V . Since K is an
interval from U or its half and has length 2k or 2k−1, K is too short to be a strict
superset of J , and, by property (ii), K ⊆ J or K ∩ J = ∅. When the latter is true,
K \(D ∪D′) = K. Let K ⊆ J . If the length of K is 2k, then K = J and K \(D ∪D′)
is equal to ∅ or a half of K. If the length of K is 2k−1, then K \ (D ∪D′) is equal
to K or ∅. Thus in the second subcase the set K \ (D ∪D′) has length either 2k or
2k−1 or 0. Hence desired regularity and monotonicity hold. Finally, consider the last
subcase when I = J . Then the set K \ (D ∪D′) is either empty or equal to K, and
so it has length either 2k, or 2k−1, or 0, and so desired regularity and monotonicity
hold.

Corollary 3.6. If U = V , then the total number of elements in the intervals
of W is at most the total number of elements in the intervals of U minus half of the
length of a longest interval in U , i.e., |∪I∈W I| ≤ |∪I∈UI| − 1/2 · maxI∈U |I|.

Proof. If U = V , then the I used in the statement of Lemma 3.5 belongs to
V . Consequently, one of the sets K from the statement of Lemma 3.5 is equal to I.
We now follow the last three paragraphs of the proof of Lemma 3.5 to see what the
difference is between V and W . It cannot be that k > k′, because then U = V . If
k < k′, then the set D ∪D′ used in the statement of Lemma 3.5 contains I, and so
the collection W does not contain the interval I, which has length at least half of the
length of the longest interval is U . If k = k′, then we have the following: when J ⊂ I,
then I has the length of a longest interval in U and the set D∪D′ is at least a half of
I, which is removed; when I ⊂ J , then D ∪D′ contains I, and so I is removed; when
I = J , then I is removed.

Lemma 3.7. Let D = ∅ be a prefix of I and let D′ = ∅ be a prefix of J such that
x is the smallest element in D′ and x− 1 is the largest element in D, or conversely,
let D = ∅ be a suffix of I and let D′ = ∅ be a suffix of J such that x is the largest
element in D′ and x + 1 is the smallest element in D. Let Q be the collection

Q = V \D := { H | H = ∅ ∧ K ∈ V ∧ H = K \D } .

Then the number of intervals in Q is at most the number of intervals in V . If k = k′,
then Q contains some complete intervals from V . If k = k′, then Q contains some
complete intervals from V and a single half for each of some other intervals from

V . The collections Q,U0
1 , . . . , U

k1
1 , . . . , U0

p , . . . , U
kp
p are regular, and the collections

U0
i , . . . , U

ki
i , V,Q are monotonic.

Proof. We begin by showing that there are just two cases to consider. Since
I ∩ J = ∅, by property (ii), we know that either I ⊆ J or J ⊂ I. Suppose that I ⊆ J .
Then, when D′ is a prefix of J , x must be the smallest element in J , and so x−1 does
not belong to J and so cannot belong to I either, while we know that x belongs to I,
or when D′ is a suffix of J , x is the largest element in J and so x+ 1 does not belong
to J and so cannot belong to I either. Hence the assumption that I ⊆ J leads to a
contradiction. Consequently it must be that J ⊂ I, and so either k = k′ or k > k′.

For the first case suppose that k > k′. Then V contains only some complete
intervals from U ′. Take any K from V . By property (ii), we have one of the three
subcases: K ⊆ I, K ⊃ I, K ∩ I = ∅. The interval K is too short to be a strict
superset of I, so the middle subcase cannot happen. If the last subcase happens, then
K \ D = K. Let us now focus on the first subcase when K ⊆ I. Notice that the
sets D, J , and I \ (D ∪ J) are disjoint intervals and their union is I. By property (i),
either K = J or K ∩ J = ∅. If K = J , then K \ D = K, while when K does
not intersect with J , then K \ D is either empty or equal to K. Consequently the
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collection Q contains only some complete intervals from V , and so desired regularity
and monotonicity hold.

Finally, consider the second case when k = k′. Take any K from V . The collection
V contains some complete intervals from U or halves of some other intervals from U ,
but never two halves of any interval from U . Hence, by property (i), either K ∩I = ∅,
or K = I, or K is a half of I, but then there is no other interval in V that is equal
to the other half of I. In the first subcase K \D = K, and so let us focus on the two
remaining subcases. Note that the length of J can be either 2k or 2k−1, but since
J ⊂ I, the length of J must be 2k−1, and J must be a half of I. As a result, D and
J are the two halves of I. So if K = I, then K \D is equal to J , a half of K. If K is
a half of I, then K \D is either K or empty. Again regularity and monotonicity hold
for Q.

Corollary 3.8. If U = V , then the total number of elements in the intervals
of Q is at most the total number of elements in the intervals of U minus half of the
length of a longest interval in U , i.e., |∪I∈QI| ≤ |∪I∈UI| − 1/2 · maxI∈U |I|.

Proof. As explained in Corollary 3.6, we have that k ≤ k′ and I is in V , and
so I = K for some K from the statement of the Lemma 3.7. It cannot be that
k < k′ because this is disallowed by the proof of Lemma 3.7. Thus the only possible
relationship between k and k′ is that k = k′. In this case I has length 2k and a half
of I is removed.

Lemma 3.9. Let x be the smallest element in I and D′ = ∅ be a prefix of J such
that x is the largest element in D′, or conversely, let x be the largest element in I
and D′ = ∅ be a suffix of J such that x is the smallest element in D′. Let R be the
collection

R = V \ (D′ \ {x}) := { H | H = ∅ ∧ K ∈ V ∧ H = K \ (D′ \ {x}) } .

Then the number of intervals in R is at most the number of intervals in V . The
collection R contains some complete intervals from V . The collections R,U0

1 , . . . , U
k1
1 ,

. . . , U0
p , . . . , U

kp
p are regular, and the collections U0

i , . . . , U
ki
i , V,R are monotonic.

Proof. The argument is similar to that of Lemma 3.5: we take an interval K from
V and argue what part of the interval is in R. We start with an observation that
when D′ contains just one element x then the result is trivial because R = V . Assume
therefore that D′ contains at least two elements. But then J contains an element that
is not in I and so, by property (ii), I ⊂ J . Consequently, we have just two cases to
consider: k = k′ and k < k′. We will study them in turn.

For the first case suppose that k = k′. Take any K from V . The collection V
contains some complete intervals from U or halves of some other intervals from U .
Hence, by property (i), either K ∩ I = ∅, or K = I, or K is a half of I. Note that the
length of K can be either 2k or 2k−1 and the length of I is 2k−1, so K cannot be a
half of I. As a result, the last subcase does not happen and we have either K ∩ I = ∅
or K = I. If K = I, then K \ (D′ \ {x}) = K, while if K ∩ I = ∅, then K \ (D′ \ {x})
can be either K or empty. Again, regularity and monotonicity hold for R.

Finally, consider the second case when k < k′. This case is very similar to the
case when k > k′ in the proof of Lemma 3.7. We shall show it here for completeness.
Then V contains only some complete intervals from U . Take any K from V . By
property (ii), we have one of the three mutually exclusive subcases: K ⊆ J , K ⊃ J ,
or K ∩ J = ∅. The interval K is too short to be a strict superset of J so the middle
subcase cannot happen. If the last subcase happens, then K \ (D′ \ {x}) = K. Let
us now focus on the first subcase when K ⊆ J . Notice that the sets D′ \ {x}, I, and
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J \ ((D′ \ {x}) ∪ I) are disjoint intervals and their union is J . By property (i), either
K = I or K ∩ I = ∅. If K = I, then K \ (D′ \ {x}) = K, while when K does not
intersect with I, then K \ (D′ \ {x}) is either empty or equal to K. Consequently, the
collection R contains only some complete intervals from V , and so desired regularity
and monotonicity hold.

Corollary 3.10. If U = V and R = V , then the total number of elements in the
intervals of R is at most the total number of elements in the intervals of U minus half
of the length of a longest interval in U , i.e., |∪I∈RI| ≤ |∪I∈UI| − 1/2 · maxI∈U |I|.

Proof. Since U = V , then each interval K from the statement of the Lemma 3.9
has length at least half of the length of a longest interval in U . But R = V and so
at least one interval or its part must have been removed. Lemma 3.9 shows that a
complete interval is either removed or not a part of it at all. Thus at least one K is
missing in R compared to V .

3.3. Analysis of the algorithm. This section presents an analysis of the colli-
sion algorithm given in Figure 2. Line numbers refer to the code in the figure. Recall
that n and p are powers of 2. Without loss of generality, we assume that RMW can
transfer O(p) cells between local and shared memory (this assumption can be easily
relaxed to comply with our model by first transferring the O(p) cells to a dedicated
region of shared memory and then making RMW store a pointer to this region in a
cell of the trace table; see the proof of Theorem 3.16 for details).

The basic idea of the proof is to “convert” any asynchronous execution of the
algorithm into collections of intervals and then reason about the collections. Any
processor iterates through the big while loop (lines 03 to 29) possibly many times.
A brief inspection of the code of the algorithm reveals that at the beginning of each
iteration, the collection U that the processor maintains in its local memory contains
intervals of cells of the Write-All array and that one of the intervals has an unmarked
tip. Intuitively, the cells contained in the intervals are the only ones that may still
need to be written to because all other cells have already been written to. An external
observer can record (or “remember”) the value of the collection U of each processor as
the processors iterate, and then reason about the properties of all recorded collections,
to conclude that a certain bound on work must hold.

Formally, each time a processor i executes line 03, we record the value of the local
variable U of the processor (the collection U does not change in line 03, but we can
still record U). This gives rise to a sequence U0

i , U
1
i , U

2
i , . . . of collections of intervals,

where Uk
i is the value of collection U of processor i recorded in line 03 of the iteration

number k + 1 of the while loop, or Uk
i = ∅ when processor i does not reach iteration

k + 1, in the given execution. A convenient way to think about the superscript k is
that Uk

i is the collection U of processor i recorded immediately after iteration k has
been completed by the processor—this is why we start the sequence of superscripts
from zero. For example, U0

i is the value of the collection U recorded at the beginning
of the first iteration (immediately after “iteration zero” has been completed). By
inspecting the code, we see that U0

i is always equal to {[0, n− 1]} for any i, because
when processor i executes line 03 for the first time, the only instructions that it has
executed earlier are these in lines 01 and 02. Processor i may or may not halt in
a given execution. If it does not halt, then the value Uk

i is well defined by the first
segment of the definition (processor i will execute line 03 for iteration number k + 1,
for all k ≥ 0). However, if the processor halts in iteration number k+1 < ∞ for some
k ≥ 0, then Uk

i is the last collection recorded for processor i, and line 03 will not
be reached in iterations k + 2, k + 3, . . . . Then the second segment of the definition
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Fig. 7. The value ki for processor i increases at the moment when the last RMW instruction is
executed in any iteration of the while loop that this processor executes. The induction of Lemma 3.11
focuses on these moments.

puts Ur
i = ∅ for all r ≥ k + 1. So the sequences of collections are well defined for any

execution and any processor.

We introduce additional terminology and notation used in the analysis of the
algorithm. We say that a processor is working on an interval when it is executing its
first RMW in the for loop (lines 06 to 10) or any instruction during this loop until
the processor has executed the last RMW in the for loop. At the moment when this
last RMW has been executed, we say that the processor has completed working on an
interval. Note that this last RWM can be executed either successfully or not. Also,
during each iteration of the while loop, the processor may be working on a different
interval than in other iterations. For a fixed execution, processor, and iteration of
the while loop, we let Uz denote the value of U right before the processor executes
line number z of the iteration and Uz denote the value of U immediately after line
number z. It will be clear from the context which execution, processor, and iteration
Uz or Uz refer to.

The analysis starts with three lemmas and a corollary that reduce the analysis of
the algorithm to the analysis of properties of collections of intervals. The first lemma
shows that the collections of intervals, recorded over time as the algorithms unfolds,
have specific structure.

Lemma 3.11. Consider any moment (of the global clock) during an execution of
the algorithm, and let ki ≥ 0 for 1 ≤ i ≤ p be the number of times processor i has
completed working on an interval at that time. Then each processor i either will begin
work on an interval from Uki

i , or is working on an interval from Uki
i , or will halt with-

out doing any more RMW, or has halted. The intervals U0
1 , . . . , U

k1
1 , . . . , U0

p , . . . , U
kp
p

are regular, and the intervals U0
i , . . . , U

ki
i are monotonic for any 1 ≤ i ≤ p.

Proof. The proof is by induction on the moments in the execution when the values
of ki’s change (see Figure 7). We shall see that the lemma holds from the moment
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when processors begin execution until, but excluding, the first time any processor has
completed working on an interval. Then we will consider two moments: a moment
immediately before any moment when a processor i has completed working on an
interval, and the moment when the processor has completed working on the interval.
Thus the value of ki increases by one from the first moment to the second, and no
processor executes any action between these moments. We will argue that if the
hypothesis holds at the first moment, it holds at the second moment as well, and
also later, until immediately before the next time when a processor (possibly different
than i) has completed working on an interval.

Let us consider the base case. The lemma is true immediately before, for the first
time, a processor has completed working on an interval. Indeed, the first line of the
collision algorithm for any processor i sets U to {[0, n− 1]}, and the value of U is not
changed at least until the processor reaches line 11 of the first iteration of the while
loop. Thus U0

i = {[0, n − 1]} for any 1 ≤ i ≤ p. At the moment immediately before
a last RMW is executed for the first time by any processor, each processor i either
is working or will work on an interval from U0

i . Note that collections U0
1 , . . . , U

0
p

are regular, as each contains the same single interval of length that is a power of
two. Trivially, the collection U0

i is monotonic for any 1 ≤ i ≤ p because any single
collection is always monotonic.

For the inductive step, pick a moment immediately before any moment when a
processor has completed working on an interval, and assume that the lemma is true
then. Let this be processor i, and let kh ≥ 0 denote the number of times processor h
has competed working on an interval. Processor i is executing iteration number ki +1
of the while loop and is about to complete working on an interval for the (ki + 1)-th
time. When processor i has finally completed working on the interval, we have two
cases: either the processor has succeeded on the last RMW or has failed.

Case 1. If processor i succeeds on the last RMW, then it means that the processor
has successfully RMWed to all cells in the interval I that it has been working on.
Notice that the processor never reads any memory cell that could be written to by a
different processor between now and the moment when the processor reaches line 03

again in the next iteration number ki + 2 of the while loop, if the processor ever
reaches this line again. Therefore, the value of Uki+1

i is already determined. Since

the processor has been working on an interval I from U = Uki
i , then, in line 12,

the processor removes the interval from the collection. Let V denote the resulting
collection of intervals. Clearly, the collections U0

i , . . . , U
ki
i , V are monotonic and the

collections V,U0
1 , . . . , U

k1
1 , . . . , U0

p , . . . , U
kp
p are regular.

When processor i reaches line 24, the collections U24, U0
1 , . . . , U

k1
1 , . . . , U0

p , . . . ,

U
kp
p are regular, and the collections U0

i , . . . , U
ki
i , U24 are monotonic. By property (i),

if U24 contains an interval of length 1, then U24 contains intervals of length 1 or 2 only.
Hence a possible removal of intervals of length 1 preserves regularity and monotonicity.
If U25 is empty, then processor i halts and Uki+1

i = ∅. Suppose that U25 is not empty.
The processor will begin work on an interval from a collection, as explained next.
When not all tips of intervals in U25 are marked, then Uki+1

i = U25 and the processor
will begin work on an interval with an unmarked tip from the collection. Alternatively,
all tips of intervals in U25 are marked. Then U25 cannot contain intervals of length 1,
because these were just removed. Also U25 is not empty. So it contains at least
one interval that has length at least 2. Let R be a collection equal to U25 except
for a longest interval replaced by its two halves (lines 27 to 29). By Lemma 3.2,

the collections R,U0
1 , . . . , U

k1
1 , . . . , U0

p , . . . , U
kp
p are regular, and, by Lemma 3.1, the
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collections U0
i , . . . , U

ki
i , R are monotonic. Then Uki+1

i = R. Note that at any moment
until the next time a processor will have completed working on an interval, properties
related to processors other than i carry over from the inductive assumption. That

is, any processor j = i will begin work on an interval from U
kj

j , or is working on an

interval from U
kj

j , or will halt without doing any more RMW, or has halted, while

processor i will begin work on an interval from Uki+1
i , or is working on an interval

from Uki+1
i , or will halt without doing any more RMW, or has halted.

The argument presented so far ensures that the inductive step holds in the case
when processor i succeeds on the last RMW.

Case 2. Suppose that processor i fails on RMW to a cell x that belongs to the
interval I that the processor has been working on. Then the processor reaches line 14
and, if the processor was working on I from left to right, the set D contains a prefix
of I up to, but excluding, x, or, if the processor was working from right to left, a
suffix of I up to, but excluding, x. Suppose that it was a processor j that has done
a successful RMW to the cell x. This must have happened when processor j was
working on an interval J either from its left tip toward its right tip or vice versa, and
so the set D′ read by processor i in line 14 of iteration ki +1 is a prefix of J ending at
x, or conversely it is a suffix of J ending at x. Note that i = j because if a processor
does a successful RMW to a cell, then it never again even attempts to do RMW to
this cell. Thus the collection U ′15 is equal to Um

j for some 0 ≤ m ≤ kj .
We now consider the changes to U that can happen from line 15 to line 23 and

see how these changes affect regularity and monotonicity.
After processor i has executed lines 15 to 17 the desired properties hold. Indeed,

by Lemma 3.3, the collections U18, U0
1 , . . . , U

k1
1 , . . . , U0

p , . . . , U
kp
p are regular, and the

collections U0
i , . . . , U

ki
i , U18 are monotonic.

The execution of processor i now depends on whether i collided with j when
working in opposite directions or the same direction.

First, suppose that processor j was working on its interval J in the opposite
direction to the direction in which processor i was working. Then i will execute

line 19. As a result, by Lemma 3.5, the collections U19, U
0
1 , . . . , U

k1
1 , . . . , U0

p , . . . , U
kp
p

are regular, and the collections U0
i , . . . , U

ki
i , U19 are monotonic, and so the collection

U24 is equal to U19.
Second, assume that processor j was working on J in the same direction as pro-

cessor i has been on I. We now study two subcases depending on the success of i in
RMW to any cell in I.

Subcase number one is when processor i has managed to successfully RMW to at
least one cell in I. Then D = ∅ and so the processor will execute line 21. We now
argue that specific relationships must hold between D, D′, and x. If i and j worked to
the right, then x cannot be the second or later to the right element of J , because then
the first element of J would be successfully RMWed by j, and so i would have failed
on an RMW to an element different than x, as ensured by the fact that i has been
working on consecutive elements from the interval I and that D = ∅. So x must be the
first element of J , and so x is the smallest element of D′ and x−1 is the largest element
of D. Similarly, if i and j were working to the left, then x is the largest element of
D′ and x + 1 is the smallest element of D. These relationships ensure that when i

has executed line 21, by Lemma 3.7, collections U21, U
0
1 , . . . , U

k1
1 , . . . , U0

p , . . . , U
kp
p are

regular, and the collections U0
i , . . . , U

ki
i , U21 are monotonic. Then the collection U24

is equal to U21.
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Subcase number two is when processor i failed on its first RMW to a cell in I.
Then D = ∅ and so processor i will execute line 22. Since i has failed on its first
RMW, then, when i works to the right, x must be the smallest element in I and x
the largest element in D′, or, when i works to the left, then x is the largest element
in I and x the smallest element in D′. As a result, after i has executed line 22,

by Lemma 3.9, the collections U22, U
0
1 , . . . , U

k1
1 , . . . , U0

p , . . . , U
kp
p are regular, and the

collections U0
i , . . . , U

ki
i , U22 are monotonic. Then the collection U24 is equal to U22.

Let us summarize how the changes to U done by processor i from line 14 to
line 23 can affect regularity and monotonicity immediately before i reaches line 24.
By the above argument, when processor i fails on the RMW, we know that collections

U24, U0
1 , . . . , U

k1
1 , . . . , U0

p , . . . , U
kp
p are regular, and the collections U0

i , . . . , U
ki
i , U24 are

monotonic. We can carry out the same analysis as in the case of a successful last RMW
described in Case 1 earlier to show that any processor either has halted, will halt, is
working, or will begin work on an interval at any moment before the next time some
kg is increased, and that the collections are regular and monotonic as desired.

This completes the inductive step and the proof.

The technique used in the proof of Lemma 3.11 could be called the technique of
eventual invariant. We formulate an invariant, take any execution that is a sequence
of events, show that there is an event when the invariant holds and that, due to the
properties of the asynchronous model, eventually there is another event when the
invariant holds again, or the algorithm terminates.

Corollary 3.12. Consider any moment during an execution of the algorithm
and let ki ≥ 0 for 1 ≤ i ≤ p be the number of times processor i has completed working
on an interval at that time. Then the cells {0, . . . , n − 1} \ Uki

i of the array w have
been set to 1 for any i. When a processor sets the flag f to 1 and halts, then each cell
of w has been set to 1.

Proof. Using a straightforward inductive argument similar to that given in Lemma
3.11, we can demonstrate that any cell x ∈ {0, . . . , n− 1} \ Uki

i has been set to 1. In
particular, given any processor and its collection U at any moment of the execution,
any cell in {0, . . . , n− 1} \ U is known to have been set to 1, along with tips marked
by the processor. For the second part, observe that a processor halts only when its U
is empty.

The next lemma shows that any processor has at most p/2 intervals in its collec-
tion U at any time during execution. The key algorithmic tool that yields this bound
is the technique of marking tips of intervals. Recall that a processor splits an interval
only when all tips of all intervals in U are marked. So in order to produce many
intervals, there must be a moment when the processor has many marked tips. This,
however, means that the processor must have collided with many other processors.
We can infer that during these collisions, knowledge about progress must necessarily
be transferred from one processor to the other processor, and so the processor must
necessarily remove a tip, thus preventing the number of intervals from growing too
much.

Lemma 3.13. Consider any moment during an execution of the algorithm and
let ki ≥ 0 for 1 ≤ i ≤ p be the number of times processor i has completed working
on an interval at that time. Then for each processor i, the collection Uki

i has at most
p/2 intervals. None of the collections can have p marked tips.

Proof. The proof is by induction on the moments in the execution when the values
of ki’s change, as in Lemma 3.11.

For the base case, we observe that the lemma is true immediately before, for the
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first time, a processor has completed working on an interval, because U0
1 = · · · = U0

p

are collections, each containing just one interval [0, n− 1] with no marked tip.

For the inductive step, pick a moment immediately before any moment when
a processor has completed working on an interval. Let this be processor i, and let
kh ≥ 0 be the number of times processor h has completed working on an interval
then. Assume that collection Uk

h has at most p/2 intervals for any 1 ≤ h ≤ p and
0 ≤ k ≤ kh. Processor i is executing iteration number ki + 1 of the while loop and is
about to complete working on an interval for the (ki + 1)-th time.

Let us bound the number of intervals in U when processor i reaches line 24 of
this iteration. During the time when i is working on the interval, collection U of i is
equal to Uki

i . If the last RMW in this iteration is successful, then when the processor

reaches line 24, the number of intervals in U is one fewer than in Uki
i , and so it is

at most p/2 − 1. If the RMW failed, then the processor must have collided with a
different processor j, and so the value of the variable U ′

14 of processor i is equal to
Um
j for some 0 ≤ m ≤ kj . By the inductive hypothesis the number of intervals in

U ′
14 is at most p/2. After the processor i has executed lines 15 to 23, the number of

intervals in U can be at most the maximum of the number of intervals in Uki
i and

Um
j , because of Lemmas 3.3, 3.5, 3.7, and 3.9. And so U24 has at most p/2 intervals.

We now study the evolution of U until processor i reaches line 03 again, if ever.
We begin the evaluation with three simple cases. First, if U24 is empty, then the result
is trivial because Uki+1

i is empty. Second, if U24 has an interval with an unmarked

tip, then processor i does not execute lines 27 to 29, and so Uki+1
i is equal to U24.

Third, if U24 is not empty, all tips of all intervals in U24 are marked, and U24 has
strictly fewer than p/2 intervals, then the processor i executes lines 27 to 29. But then
splitting an interval increases the number of intervals by exactly one. Consequently,
in the third case, Uki+1

i has one interval more compared to U24, and so the number
of intervals is bounded by p/2. In all three cases the inductive step follows.

The final and most interesting case of the inductive step is when the collection
U24 has exactly p/2 intervals and all their tips are marked. We show that this cannot
happen by way of contradiction.

Let the collection U24 be composed of the intervals I1, . . . , Ip/2. Since all intervals
of length 1 with marked tips were removed in line 24, each of the p/2 intervals has
length at least 2. Thus the intervals have exactly p distinct tips and the tips are
marked.

How can the tips get marked? By inspecting the code we see that a tip x can get
marked only after i collides with a processor that worked in the same direction when
performing RMW to x. Then either D = ∅ or D = ∅. When D = ∅, i fails on RMW
to tip s in an iteration, and then s remains as a tip and gets marked in this very
iteration. When D = ∅, i fails on RMW to x other than s in an iteration, and then x
becomes a tip and gets marked in this very iteration. Consequently, in order for any
tip x to be marked, processor i must fail on RMW to x. So processor i must have
failed on RMW to the p distinct tips by the moment it reaches line 24 of iteration
ki + 1.

Could any of these tips be successfully RMWed by i? Note that if processor i had
done a successful RMW to a tip of its interval during the for loop in a kth iteration
of the while loop, k ≤ ki +1, then this tip (not necessarily entire interval) would have
been removed from its collection before the processor i reaches line 24 of the while
loop in iteration number k, and, by the monotonicity property (iv), no subsequent
collection U of processor i can contain the tip. Therefore, when processor i reaches
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line 24 of the current iteration number ki + 1, all p distinct tips of the intervals
I1, . . . , Ip/2 have been successfully RMWed by processors other than i.

By the pigeonhole principle, therefore, there is a processor j other than i, such
that the processor j had successfully RMWed to two of the p tips on which i failed.
Let x and y be these two tips, such that x was RMW before y was, according to
the total order established by the RMW instructions. Let jx ≤ jy be the iteration
numbers of the while loop of processor j during which the processor did successful
RMWs to the two tips x and y, respectively. We consider two cases depending on
whether x and y were RMW in the same iteration or different iterations of the while
loop.

For the first case, suppose that x was RMW in an earlier iteration, i.e., jx < jy.
Then processor j must have removed the cell x from its set U by the end of the
iteration jx, and so in all subsequent iterations the collection U of processor j does
not contain any interval that contains x. So when j performs a successful RMW
to cell y, it stores a collection there, so that none of the intervals of the collection
contains x. Subsequently, processor i fails on RMW to cell y, and then the processor
retrieves the collection stored in the cell. At that time, no interval of the collection
U ′

14 of processor i contains element x. Hence, after intersection and by monotonicity,
the interval U24 of the iteration number ki + 1 of processor i does not contain any
interval that contains x. This is a desired contradiction because we assumed that x
is a marked tip of an interval in the collection U24.

For the second and final case, assume that x and y were RMW during the same
iteration of processor j’s while loop, i.e., jx = jy. Hence when j does RMW to cell
y, its interval D contains x. Subsequently, processor i fails on RMW to cell y and
retrieves the interval from the cell. So in the iteration when the retrieval occurs, the
D′

14 of processor i contains two distinct elements x and y. Suppose that during this
iteration i was working in the same direction as the direction in which j was working
when j did a successful RMW to y. Assume for a moment that the direction was
R (right). Moreover, assume that processor i succeeded in one or more RMW in this
iteration. Since y is the only cell on which processor i can fail in this iteration, i must
have succeeded on the RMW to cell y−1. But this cannot be the case, because x is to
the left of y and all cells between x and y inclusive had been successfully RMWed by
j. A similar contradiction is reached when the direction of work was L (left). Hence,
in the iteration when retrieval occurred, it cannot be the case that processor i worked
in the same direction as processor j, dir14 = dir′14, and processor i succeeded in an
RMW, D14 = ∅. As a result, i cannot execute line 21 in this iteration and must
execute either line 19 or line 22. Consequently, at least one x or y is removed from
U . Again, this leads to a contradiction.

The inductive step is completed, which proves the lemma.

During an execution, a processor performs some number of iterations of the while
loop. The next lemma shows an upper bound on this number. The lemma is proven
by noticing that the sequence U0

i , U
1
i , U

2
i , . . . of collections of intervals cannot have

too long subsequences of equal collections, because the number of marked tips would
increase, and that when two consecutive collections are different, then processor i
makes substantial progress on its work. This means that the successive collections
quickly become “slimmer and slimmer” and eventually become empty.

Lemma 3.14. In any execution of the algorithm any processor performs at most
p2 + p (2p + 1) log n iterations of the while loop.

Proof. Let us consider any execution, any processor i, and the sequence of all
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collections U0
i , U

1
i , U

2
i , . . . that have been recorded for this processor in this execu-

tion. Since each collection was recorded, the collection is nonempty. This sequence
may perhaps be infinite. We will argue that the sequence of recorded collections can-
not have too long subsequences of consecutive equal collections, and that when two
subsequent collections are different, then there is substantial difference in the total
number of elements that belong to the intervals of the consecutive collections. Hence
the sequence of collections “slims fast.” As a result, we will be able to conclude that
the sequence of recorded collections is finite, and in fact quite short. Thus the number
of iterations will be small, too, because the number of iterations is exactly equal to
the number of recorded collections.

We begin with an observation that if two consecutive recorded collections are
equal, then there is one tip that is unmarked in the previous collection and the tip
is marked in the subsequent collection, while all tips already marked in the previous
collection remain marked in the subsequent collection. Indeed, suppose that Uk

i =
Uk+1
i . Note that when a processor is working on an interval, then the tip s from which

the processor has started the work is unmarked. Recall that Uk
i is recorded at the

beginning of iteration k + 1 and Uk+1
i is recorded at the beginning of iteration k + 2.

Since the two collections are equal, and transformations applied to U in the iteration
are monotonic, the value of the collection U must stay intact during iteration k + 1.
In particular, U does not change from the moment immediately before line 11 until
immediately after line 29. In order for U to remain the same, the processor must
have failed on its first RMW to the tip s of the interval on which i was working, and
the failure must have been because a different processor j had successfully RMWed
to s while j had been working on an interval in the same direction as i was when i
attempted an RMW to s (otherwise the value of U would change). As a result, the
tip s that was previously unmarked becomes marked in line 23. Note that no tip x
of any interval in any collection is ever unmarked by a processor, unless a part of the
interval that contains x is removed from the collection. Hence the number of marked
tips in Uk+1

i is one plus the number of marked tips in Uk
i .

This leads to an observation that the length of a sequence of consecutive equal
collections must be bounded. Suppose that for some k ≥ 0 and c ≥ 0, collections
Uk
i , U

k+1
i , . . . , Uk+c

i have been recorded, and they are equal to Uk
i = Uk+1

i = · · · =
Uk+c
i . By Lemma 3.13, the collection Uk

i has at most p/2 intervals and so at most
p unmarked tips. Because each subsequent collection in the sequence has one fewer
unmarked tip and, by Lemma 3.13, no collection can have p marked tips, c can be
at most p − 1. So in the sequence of recorded collections, there can be at most p
consecutive equal collections.

We inspect what must happen when two consecutive collections are different.
Take any k ≥ 0 such that Uk

i , . . . , U
k+c
i , Uk+c+1

i have been recorded, and c is the
largest number so that Uk

i = Uk+1
i = · · · = Uk+c

i ; thus Uk+c
i = Uk+c+1

i . Our plan
is to show that the difference between collections Uk+c

i and Uk+c+1
i is “big.” Recall

that Uk+c
i was recorded at the beginning of iteration k + c + 1, and Uk+c+1

i at the
beginning of k+c+2. So the value of U11 in iteration k+c+1 is equal to Uk+c

i , while
the value of U29 is equal to Uk+c+1

i . We consider all the ways in which the execution
of the processor i may proceed from line 11 until line 29 of iteration k + c + 1, and
study the changes to U .

The plan for the subsequent analysis is to consider the first moment when U
changes in lines 11 to 29. We know that a change must occur somewhere inside these
lines. Then, by the properties of the transformations of intervals, we can conclude
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that a “big” modification must occur, and that this modification must carry over to
the end of the iteration, by monotonicity of transformations. Then we can count how
many times these modifications can happen in the sequence U0

i , U
1
i , U

2
i , . . . until Uk

i

becomes empty. In the paragraphs that follow we will be assuming that U does not
change throughout larger and larger initial sections of the code of lines 11 to 29.

If processor i succeeded on the last RMW, then it executes line 12, where an
interval is removed from U . By property (i), this interval has length that is equal
to at least half of the length of a longest interval in Uk+c

i . Due to monotonicity
of subsequent transformations in the iteration, the total number of elements in the
intervals of Uk+c+1

i is at most the total number of elements in the intervals of Uk+c
i

minus half of the length of a longest interval in Uk+c
i .

Suppose, on the other hand, that the processor failed on the RMW to a cell x,
and so it executes line 14. If the execution of lines 15 to 17 leads to a change in the
value of U , then, by Corollary 3.4, either the length of a longest interval in U18 is at
most half of the length of a longest interval in Uk+c

i , or the total number of elements
in the intervals of U18 is at most the total number of elements in the intervals of Uk+c

i

minus half of the length of a longest interval in Uk+c
i . Again, due to monotonicity,

this relative difference carries over to the difference between Uk+c
i and Uk+c+1

i .

It is possible that processor i has failed on the RMW to the cell x, and the
execution of lines 15 to 17 does not change U . Then U18 = Uk+c

i . Let j = i be the
processor that successfully RMWed to the cell x while working on an interval. Now
we have two cases: either processor i and j worked in opposite directions or the same
direction.

For the first case, assume that the colliding processors i and j worked in different
directions. Then, by Corollary 3.6, the total number of elements in the intervals of
U19 is at most the total number of elements in the intervals of Uk+c

i minus half of
the length of a longest interval in Uk+c

i . Again, due to monotonicity, the intervals of
Uk+c+1
i can only have even fewer elements.

For the second case, assume that i and j worked in the same direction. Then
processor i executes either line 21 or 22. In the former case, the value of U always
changes; in the latter it may change or not. Suppose that U changes, i.e., U23 = U21.
Then, by Corollaries 3.8 and 3.10, the total number of elements in the intervals of
U24 is at most the total number of elements in the intervals of Uk+c

i minus half of the
length of a longest interval in Uk+c

i . It may, however, happen that U23 = U21, and
then we have that U24 = Uk+c

i . Consequently, if any interval of length 1 is removed in
line 24, then, by property (i), this interval is at least as long as half of the length of a
longest interval in Uk+c

i . Finally, assume that no interval of length 1 is removed. Since
Uk+c+1
i is recorded, then i does not halt in line 25, and so U26 = Uk+c

i . Then it cannot
be the case that there is an unmarked tip, because we assumed that Uk+c

i = Uk+c+1
i .

Hence a longest interval in U26 gets split, and so Uk+c+1
i is equal to Uk+c

i except for
a longest interval split into two halves.

Let us sum up the above study of the modifications to U that must occur from
line 11 to line 29, when the collection Uk+c+1

i is different than the collection Uk+c
i .

There are three possible modifications: either the length of a longest interval in
Uk+c+1
i is at most half of the length of a longest interval in Uk+c

i , or Uk+c+1
i is

equal to Uk+c
i except for a longest interval being split into two halves, or the total

number of elements in the intervals of Uk+c+1
i is at most the total number of elements

in the intervals of Uk+c
i minus half of the length of a longest interval in Uk+c

i .

We now count how many times each of these three modifications can happen until
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U becomes empty (in which case processor i must halt). Reduction of length by the
factor of 2 or more can happen at most logn times, a longest interval can be split
into two halves at most p log n times (because the number of intervals in a collection
is bounded by p/2), and at least half of a longest interval can be removed at most

p (1 + log n) times. As a result U
p(log n+p logn+p(1+log n))
i = ∅, and the lemma has been

proven.

We are now ready to prove the main result of this paper.

Theorem 3.15. The algorithm solves the CWA problem and has work of O(n +
p4 log n); the processors combined set at most n + 4p3 log n cells of w to 1.

Proof. Consider any execution of the algorithm. By Lemma 3.13 each processor
performs a bounded number of iterations, and, by Corollary 3.12, when a processor
stops all cells of w have been set to 1. Hence the algorithm solves the CWA problem.

We now argue about the work complexity of the algorithm. Let us fix a processor
and divide each of its iterations of the while loop into two parts. The first part contains
the instructions starting from the first RMW of the for loop until but not including the
last RMW of the for loop, while the second part contains all other instructions in the
iteration (the second part has two discontinuous sections of instructions). Note that
all RMW in the first part are successful and so the combined work of all processors
on the first parts is O(n) (using a pointer representation of the collections) and at
most n cells of the array w are set to 1 by the p processors during the first parts.
For any processor, the number of second parts is equal to the number of iterations,
which is bounded, by Lemma 3.14, by p2 + p (2p + 1) log n. So the total number of
iterations performed by all processors is bounded by p

(
p2 + p (2p + 1) log n

)
. During

each second part at most one cell of w can be set to 1, and so the p processors combined
may set to 1 at most p3 + p2 (2p + 1) log n cells of w in their second parts. Recall
that, by Lemma 3.13, the number of intervals in any collection during the execution
is at most p/2 and so any second part takes O(p) instructions to execute. Thus the
combined work that processors performed on the second parts is O(p4 log n). This
completes the proof.

Recall that the code of the algorithm assumes that RMW can transfer O(p) cells
between local and shared memory. We now discuss how to relax this assumption to
comply with our model which allows only O(1) cells to be transferred. The relaxation
can be accomplished using pointer representation of collection U .

Theorem 3.16. In a single execution of the collision algorithm, the p processors
combined use at most O(n + p4 log n) cells of shared memory.

Proof. Each processor i maintains a shared memory array where collections
U0
i , U

1
i , U

2
i , . . . will be placed (see Figure 8). The array has p/2 rows and p2 +

p (2p + 1) log n columns, and is stored in a dedicated section of shared memory. The
location of the section inside shared memory can be selected using the unique iden-
tifier of the processor. Each entry of the array stores two numbers representing tips
of an interval. Recall that in our model each memory cell can accommodate O(log n)
bits. Hence the total number of shared memory cells sufficient for the p arrays is
O(p4 log n).

When processor i begins iteration k, it transfers the collection U to column k of
the array. In the algorithm as stated in Figure 2, each RMW transfers the current
collection U to a cell of the trace table tab. This violates the model because we may
need to transfer O(p) cells while in our model we assume that RMW can access a
constant number of cells only. In the actual version of the collision algorithm, the
processor will transfer a pointer to column k of the array during any RMW operation
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Fig. 8. Pointer representation of collections of intervals. There are p shared memory arrays,
each dedicated to a processor. Collections U generated by a processor are stored in columns of the
array. The trace table, also in shared memory, contains pointers to columns.

of iteration k. Thus, assuming that a pointer takes O(log n) bits, RMW needs only
to transfer a constant number of cells. In the algorithm stated in Figure 2, processor
reads U directly from the trace table. In the actual algorithm, the processor will
read a pointer to a column of an array, and retrieve a collection of intervals from the
column.

The number of rows allocated for each processor is sufficient, by Lemma 3.13, to
accommodate any U produced during any execution of the algorithm. The number
of columns is sufficient, by Lemma 3.14, to complete one execution of the collision
algorithm.

4. Future work. It should be possible to tighten the analysis of work complexity
of the algorithm by further exploring the information flow between processors. We
believe that the actual work complexity of our algorithm is no more than O(n +
p3 log n) because the analysis given in the proof of Lemma 3.14 appears to have a fair
amount of slack.

We believe that it should be possible to further reduce the work and space com-
plexities of the algorithm by modifying data structures. Specifically, instead of creat-
ing a new U during each iteration, we could try to reuse the parts of U that have not
changed since the prior iteration. This should decrease space complexity, but may
increase work complexity as the new representation of U may be more “dispersed.”
In the proof of Theorem 3.15, we bounded by O(p) the time to perform the trans-
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formations of U . Is Θ(p) necessary? It would be interesting to find a representation
of U that would allow the performance of r transformations in time o(rp) and space
o(rp), possibly by exploiting regularity and monotonicity.

In our algorithm there may be more than one unmarked tip to select from at the
beginning of an iteration of the while loop. Currently, the algorithm arbitrarily selects
an unmarked tip of an interval. However, one can consider a more refined process
of selection when there are choices. One could apply the techniques of “oblivious
schedules” of Anderson and Woll [1], in conjunction with identifiers of processors, so
as to select a tip to begin work from, so that overall not too many processors also select
this tip. The combination of the collision technique and the oblivious technique seems
a promising approach for constructing an algorithm that would have asymptotically
optimal work for a wider range of the number of processors.

The algorithm uses a special RMW primitive to efficiently detect collisions. Is
the use of such a primitive essential for obtaining an algorithm with asymptotically
optimal work for a wide range of the number of processors? Would the use of a more
standard single word RMW, compare and swap, or even atomic reads and writes be
sufficient? A recent paper of Kowalski and Shvartsman [26] shows that atomic reads
and writes are sufficient.

Work of any deterministic asynchronous algorithm for the CWA problem with
p ≤ n1−ε processors must obviously be Ω(n). We have shown that there is an O(n)
algorithm when 1 ≥ ε ≥ 4/5. Is it true that there exists an O(n) algorithm for ε
arbitrary close to 0? For what values of p compared to n is there a nontrivial lower
bound on work of a deterministic algorithm? In particular, is ω(n) work necessary
when p is o(n/ log n)?
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Abstract. The bisimulation problem for equational graphs of finite out-degree is shown to be
decidable. We reduce this problem to the η-bisimulation problem for deterministic rational (vectors
of) boolean series on the alphabet of a deterministic pushdown automaton M. We then exhibit a
complete formal system for deducing equivalent pairs of such vectors.
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1. Introduction.

1.1. Motivations.

Processes. In the context of concurrency theory, several notions of “behavior
of a process” and “behavioral equivalence between processes” have been proposed.
Among them, the notion of bisimulation equivalence seems to play a prominent role
(see [26]). The question of whether this equivalence is decidable or not for various
classes of infinite processes has been the subject of many works in the last fifteen
years (see, for example, [1, 5, 18, 7, 14, 17, 8, 6, 45, 19, 37, 44, 22]).

The aim of this work is to show decidability of the bisimulation equivalence for
the class of all processes defined by pushdown automata (pda) whose ε-transitions are
deterministic and decreasing (of course, we assume that ε-transitions are not visible,
which implies that the graphs of the processes considered here might have infinite
in-degree). This problem was raised in [6] (see Problem 6.2 of this reference) and is
a significant subcase of the problem raised in [45] (as the bisimulation problem for
processes “of type −1”).

Infinite graphs. A wide class of graphs enjoying interesting decidability prop-
erties has been defined in [11, 2, 3] (see [12] for a survey). In particular it is known
that the problem

are Γ,Γ′ isomorphic?

is decidable for pairs Γ,Γ′ of equational graphs. It seems quite natural to investigate
whether the problem

are Γ,Γ′ bisimilar?

is decidable for pairs Γ,Γ′ of equational graphs. We show here that this problem is
decidable for equational graphs of finite out-degree.
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Formal languages. Another classical equivalence relation between processes
is the notion of language equivalence. The decidability of language equivalence for
deterministic pushdown automata (dpda) has been established in [34, 40] (see also
[36, 35] for shorter expositions of this result). It was first noticed in [1] that, in the
case of deterministic processes, language equivalence and bisimulation equivalence
are identical. Moreover dpda can always be normalized (with preservation of the
language) in such a way that ε-transitions are all decreasing. Hence the main result
of this work is a generalization of the decidability of the equivalence problem for
dpda.

Mathematical generality. More precisely, the present work extends the no-
tions developed in [34] so as to obtain a more general result. As a by-product of
this extension, we obtain a deduction system which, in the deterministic case, seems
simpler than the one presented in [34] (see system B3 in section 10).

The present work can also be seen as a common generalization of three different
results: the results of [45, 19] establishing decidability of the bisimulation equivalence
in two nondeterministic subclasses of the class considered here, and the result of [34]
dealing only with deterministic pda (or processes).

Logics. Our solution consists in constructing a complete formal system, in the
general sense taken by this word in mathematical logics; i.e., it consists of a set of well-
formed assertions, a subset of basic assertions, the axioms, and a set of deduction rules
allowing one to derive new assertions from assertions which are already generated. The
well-formed assertions we are considering are pairs (S, T ) of rational boolean series
over the nonterminal alphabet V of some strict-deterministic grammar G = 〈X,V, P 〉.
Such an assertion is true when the two series S, T are bisimilar.

Several simple formal systems generating all the identities between boolean ra-
tional expressions have been the subject of several works (see [32, 4, 21]); the case of
bisimilar rational expressions has been addressed in [25, 20].

A tableau proof-system generating all the bisimilar pairs of words with respect to
a given context-free grammar in Greibach normal form was also given in [18].

Our complete formal systems can be seen as participating in this general research
stream ([39] provides an overview of this subject in the context of equivalence problems
for pda).

1.2. Results. The main decidability result of this work is the following.

Theorem 10.7. The bisimulation problem for rooted equational 1-graphs of finite
out-degree is decidable.

The main structural result obtained here is as follows.

Theorem 10.14. B3 is a complete deduction system.

Here, B3 is a formal system whose elementary rules just express the basic alge-
braic properties of bisimulation: the fact that it is an equivalence relation, that it
is compatible with right and left (matricial) product, that Arden’s lemma remains
true modulo bisimulation and, at last, its link with one-step derivation (rule (R34)).
Completeness means here that all pairs of bisimilar rational “deterministic” boolean
series are generated by this formal system.

1.3. Overview and roadmap.

Overview: Large scale. Let us describe the principal flow of ideas which un-
derpins our proof.
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Step 1: Reduction. We reduce the bisimulation problem for vertices v, v′ of an
equational graph Γ of finite out-degree to an analogous problem, but with more alge-
braic flavor: given two deterministic rational row-vectors S, S′, are they η-bisimilar?

The precise definition of what is a deterministic rational row-vector is given in
section 3.1, the notion of η-bisimilarity for vectors is defined in section 3.2, and the
reduction itself is stated in Lemma 3.25.

Step 2: Logical system. We define a formal system, named B0, whose assertions are
the pairs of deterministic rational row-vectors (S, S′). Such an assertion is considered
as true iff the vectors S, S′ are η-bisimilar. The system B0 is defined in section 4.3
and its soundness is immediately proved there.

Step 3: Strategies for B0. We define some suitable notions of strategies for a
formal system: a strategy is a map sending every partial proof P into a partial
proof P ′ containing P . What we have in mind is to build, step by step, a proof for
a given true assertion by iteratively applying a strategy. Section 7 is devoted to the
construction of such strategies for the system B0.

Step 4: Completeness of B0. We proceed to a close analysis of the “proof-trees”
produced by the above strategies in order to show that, starting from a true assertion
(S, S′), a finite proof-tree is always reached. This succeeds in proving that B0 is a
sound and complete logical system. Unfortunately, B0 cannot be easily shown to be
recursively enumerable, due to one of its rules, namely, rule (R5).

Step 5: Elimination. It turns out that this problematic rule (R5) can be eliminated
from B0, resulting in a smaller system B1 which is still sound, complete, and recursively
enumerable. This logical result allows us to prove decidability of the η-bisimulation
problem for deterministic rational row-vectors, and hence of the bisimulation problem
for vertices of an equational graph of finite out-degree (by Step 1).

Step 6: Simplifications. This last step is useless for decidability purposes but sheds
light on the structure of bisimulation equivalence. Successive elimination arguments
lead us to a fairly simple logical system, named B3, which is still sound and complete.
The rules of B3 are just consisting of the principal algebraic properties of vectors-
η-bisimulation and a single rule expressing the precise grammar (or process) we are
examining (rule (R34)).

Overview and roadmap: Medium scale. Let us describe now, section by
section, the main successive technical contributions to the general flow described in
the previous overview.1

Section 2.

2.1. We recall the notion of graph-bisimulation as classically stated in the litera-
ture.

2.2. As well, we recall the notion of pda.
2.3. We characterize the class of graphs under scrutiny, the “equational 1-graphs

of finite out-degree,” as the computation-graphs of normalized pda (a precise
proof is delayed to the appendix).

2.4. We recall the definition of a deterministic context-free grammar.
2.5. We state the basic definitions allowing us to translate the usual notions of left-

derivation with respect to (w.r.t.) (resp., language generated by) a context-
free grammar G into a more algebraic framework: everything is formulated
now within semirings of boolean series over finite sets of undeterminates,

1Sections 1 and 11 do not participate in the proof itself and therefore are left out of this overview.
The appendix is also neglected here because of its marginality.
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endowed with two right-actions�, •: the first right-action expresses a one-step
left-derivation, while the second right-action is just the well-known residual-
action.

Section 3.
3.1. We recall the notion of deterministic boolean series, which plays a role analo-

gous to that of “configuration” of a dpda. The advantage of this notion is that
it allows extensions to vectors and matrices and supports several well-behaved
operations.

3.2. We reduce the initial bisimulation problem over graphs to a bisimulation
problem over deterministic rational row-vectors (we call this new kind of
bisimulation the σ-η-bisimulation). For every pair (S, S′) of deterministic
series, we introduce a notion of word-η-bisimulation which is a kind of equiv-
alence relation over words that “witnesses” the fact that (S, S′) are indeed
σ-η-bisimilar. Operations on such word-η-bisimulations are introduced in
order to prove, later on, some algebraic properties of σ-η-bisimulation.

3.3. The usual notions of derivation and stacking derivation are translated in our
framework. Some basic properties are demonstrated.

Section 4.
4.1. We define a very general notion of deduction system. Its only nonstandard

aspect, as compared to the usual “Hilbert-style systems,” is that the proofs
can “loop”: it may happen that a correct proof contains an assertion A, which
is deduced, by means of finitely many steps, from a set of axioms and (though
such a feature was not expected) A itself.

4.2. We introduce a general notion of strategy w.r.t. a given deduction system: it is
just a map sending every partial proof P into a partial proof P ′ containing P .
The desirable properties of such strategies are defined there.

4.3. We define here the principal deduction system B0 that we expect to be able
to generate exactly the set of σ-η-bisimilar pairs of vectors (S, S′). We imme-
diately establish that B0 is sound (Lemma 4.9). Some interesting algebraic
corollaries are deduced.

4.4. We isolate a subsystem of B0, which we name C, that is independent of any
graph or automaton: the rules of C capture the essential algebraic properties
relating the σ-η-bisimulation relation with the matricial product. We then
state four useful general deductions within the system C.

Section 5.
5.1. A set of row-vectors which is closed under linear combination is named a

d-space. Such a d-space, endowed with the right-operation �, is the key
algebraic structure we shall use later. We define a natural notion of linear
independence for families of vectors and show that it enjoys one of the usual
properties of linear independence: if a family is dependent, then one of the
vectors of the family is a linear combination of the others.

5.2. Applying repeatedly the above property of dependent families, we exhibit a
“triangulation process” for systems of equations: given a system S of n equa-
tions

∑d
j=1 αi,jSj ∼

∑d
j=1 βi,jSj (where ∼ denotes the σ-η-bisimulation) one

can transform S in such a way that the last equation, which we call the inverse
equation, combines the coefficients αi,�, βi,� but does not involve the Sj any-
more. The exact relationship between S and the inverse equation, INV(S),
is studied there.
In fact, the above description is accurate only when η is just the equality rela-
tion. In the general case we are lead to introduce the notion of an oracle: an
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oracle is a choice of word-η-bisimulation for every pair of η-bisimilar vectors.
The “inverse” equation determined by S and by an oracle O is denoted by
INV(O)(S).

Section 6. Here are collected all the definitions of “constants” used throughout
this article: these are all the integers, depending on a given initial automaton M, an
equivalence η, and an initial pair of vectors (S−

0 , S+
0 ) which one would like to test for

σ-η-bisimilarity.
Section 7. We define here strategies for the particular deduction system B0.
7.1. We define several substrategies based on both the algebraic properties estab-

lished in section 4.3 and the triangulation process studied in section 5.2.
7.2. All the substrategies from section 7.1 are synthesized into a global strategy

ŜABC .
Section 8. The proofs built by ŜABC are naturally structured as “proof-trees.”

We examine here a hypothetical infinite branch belonging to some infinite proof
built by ŜABC . In section 8.2 we prove that such an infinite branch must possess
an infinite suffix, which is a B-stacking sequence: roughly speaking, it begins with
a TB-application and later on, each time some Tα

B is applied, the vector which is
used by Tα

B for constructing the new vector (on side α) has a norm which is large
enough.

We show carefully (Lemmas 8.4 to 8.10) that such a sequence of equations contains
a subsequence of equations, on which the triangulation process (section 5) can be
applied. Consequently the substrategy TC could apply to one node of this suffix.

Section 9. From the technical result proved in section 8, we quickly deduce that
ŜABC cannot build an infinite proof-tree from any true assertion. Unfortunately two
problems remain to be solved:

• we must show that ŜABC really builds a finite proof-tree from every true
assertion, i.e., that ŜABC is closed ;

• at this point we do not know whether B0 is recursively enumerable or not,
because of metarule (R5): this rule specifies that the conclusion is a pair of
. . . σ-η-bisimilar vectors, which is somewhat circular.

Section 10.
10.1. We overcome here the two difficulties quoted above:

– ŜABC is shown to be closed ;
– we show that every proof-tree constructed by ŜABC is in fact also a

proof for the smaller system B1 obtained from B0 by removing rule (R5)
(proof of Theorem 10.6).

In other words we show that (R5) can be eliminated from B0, while preserving
completeness. Hence B1 is a deduction system which is sound, complete,
and recursively enumerable. The main decidability theorem (Theorem 10.7)
follows: The bisimulation problem for rooted equational 1-graphs of finite
out-degree is decidable.

10.2, 10.3. We perform successive simplifications of system B1. We finally obtain a
system B3 whose elementary rules just express the basic algebraic proper-
ties of bisimulation: the fact that it is an equivalence relation, that it is
compatible with right and left (matricial) products, that Arden’s lemma re-
mains true modulo bisimulation and, at last, its link with one-step derivation
(rule (R34)).

We provide the reader with a roadmap which might help him in finding his way
across the different sections (see Figure 1). The essential steps of the proof are placed
in a column corresponding to the main theme to which they belong (Graphs, Algebra,
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B0 is sound

ŜABC is closed

ŜABC terminates

3 Series, Matrices

3.1 Operations on

LOGICS

4 Deduction systems

4.1 General systems

row-vectors

4.2 Strategies

3.2 Bisimulation
of series

Word bisimulation

3.3 Derivations

5.1 Linear independence

5.2 Triangulations

5 Deterministic spaces
7 Strategies for B0

8 Tree analysis

8.2 B-stacking sequences

9 Termination

4.3 System B0

4.4 Congruence

TA, TB

TC

10 Elimination

10.1 B1

10.2 B2

10.3 B3

2 Preliminaries

2.3 Bisimulation
for graphs

GRAPHS ALGEBRA

Main decidability TH.

closure

6 Constants

Main structural TH.

ŜABC

Fig. 1. Roadmap.

or Logics) and in a line corresponding to the physical linear ordering of the proof (from
beginning to end). Arrows are added showing the main logical dependencies (they
define a partial ordering over the steps that the written proof must extend into a total
ordering).
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Overview: Small scale. The proof exposed here is an updated version of the
full proof given in [33] and presented concisely in [37]. This last reference can be used
as a small-scale overview of our proof.

2. Preliminaries.

2.1. Graphs. Let X be a finite alphabet. We call graph over X any pair Γ =
(VΓ, EΓ) where VΓ is a set and EΓ is a subset of VΓ × X × VΓ. For every integer
n ∈ N, we call an n-graph every n + 2-tuple Γ = (VΓ, EΓ, v1, . . . , vn) where (VΓ, EΓ)
is a graph and (v1, . . . , vn) is a sequence of distinguished vertices: they are called the
sources of Γ.

A 1-graph (V,E, v1) is said to be rooted iff v1 is a root of (V,E) and V �= {v1}. A
2-graph (V,E, v1, v2) is said birooted iff v1 is a root, v2 is a coroot of (V,E), v1 �= v2,
and there is no edge going out of v2 (this last technical condition will be useful
for reducing the bisimilarity notion for graphs to an analogous notion on series; see
sections 2.1, 2.3, and 3.2).

The equational graphs are the least solutions (in a suitable sense) of the systems of
(hyperedge) graph-equations (see [12] for precise definitions). Let us mention that the
equational graphs of finite degree are exactly the context-free graphs defined in [27].

Bisimulations.
Definition 2.1. Let Γ = (VΓ, EΓ, v1, . . . , vn), Γ′ = (VΓ′ , EΓ′ , v′1, . . . , v

′
n) be two

n-graphs over an alphabet X. Let R be some binary relation R ⊆ VΓ × VΓ′ . R is a
simulation from Γ to Γ′ iff

(1) dom(R) = VΓ,
(2) ∀i ∈ [1, n], (vi, v

′
i) ∈ R,

(3) ∀v ∈ VΓ, w ∈ VΓ, v′ ∈ VΓ′ , x ∈ X, such that (v, x, w) ∈ EΓ and vRv′,
there exists w′ ∈ VΓ′ such that (v′, x, w′) ∈ EΓ′ and wRw′.

R is a bisimulation from Γ to Γ′ iff R is a simulation from Γ to Γ′ and R−1 is a
simulation from Γ′ to Γ.

This definition corresponds to the standard one [29, 26, 6] in the case where n = 0.
The n-graphs Γ,Γ′ are said to be bisimilar, which we denote by Γ ∼ Γ′, iff there exists
a bisimulation R from Γ to Γ′.

Let us now extend this definition by means of a relational morphism between free
monoids.

Definition 2.2. Let X,X ′ be two alphabets. A binary relation η ⊆ X∗ ×X ′∗ is
called a strong relational morphism from X∗ to X ′∗ iff

(1) η is a submonoid of X∗ ×X ′∗,
(2) dom(η) = X∗, im(η) = X ′∗,
(3) η is generated (as a submonoid) by the subset η ∩ (X ×X ′).
One can easily check that strong relational morphisms are preserved by inversion

and composition and that any surjective map η : X → X ′ induces a strong relational
morphism from X∗ to X ′∗. Let Γ = (VΓ, EΓ, v1, . . . , vn) be an n-graph over the
alphabet X, and let Γ′ = (VΓ′ , EΓ′ , v′1, . . . , v

′
n) be an n-graph over the alphabet X ′.

Let η ⊆ X∗ × X ′∗ be some strong relational morphism, and let R be some binary
relation R ⊆ VΓ × VΓ′ .

Definition 2.3. R is an η-simulation from Γ to Γ′ iff
(1) dom(R) = VΓ,
(2) ∀i ∈ [1, n], (vi, v

′
i) ∈ R,

(3) ∀v, w ∈ VΓ, v′ ∈ VΓ′ , x ∈ X, such that (v, x, w) ∈ EΓ and vRv′,

∃w′ ∈ VΓ′ , x′ ∈ η(x) such that (v′, x′, w′) ∈ EΓ′ and wRw′.
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R is an η-bisimulation iff R is an η-simulation and R−1 is an η−1-simulation.
For every v ∈ VΓ, v′ ∈ VΓ′ , we denote by v ∼ v′ the fact that there exists

some η-bisimulation R from Γ to Γ′ such that (v, v′) ∈ R. Throughout this work,
the composition of binary relations is denoted by ◦ and defined by the following: if
R1 ⊆ E × F and R2 ⊆ F ×G, then

R1 ◦ R2 = {(x, z) ∈ E ×G | ∃y ∈ F, (x, y) ∈ R1, (y, z) ∈ R2}.(2.1)

Fact 2.4.

(1) If R is an η-bisimulation, then R−1 is an η−1-bisimulation.
(2) If R1 is an η1-bisimulation and R2 is an η2-bisimulation, then R1 ◦ R2 is

an η1 ◦ η2-bisimulation.
(3) If for every i ∈ I, Ri is an η-bisimulation, then

⋃
i∈I Ri is an η-bisimulation.

2.2. Pushdown automata. A pushdown automaton (pda) on the alphabet X
is a 7-tuple M = 〈X,Z,Q, δ, q0, z0, F 〉 where Z is the finite stack-alphabet, Q is the
finite set of states, q0 ∈ Q is the initial state, z0 is the initial stack-symbol, F is a
finite subset of QZ∗, the set of final configurations, and δ, the transition function, is
a mapping δ : QZ × (X ∪ {ε}) → Pf (QZ∗).

Let q, q′ ∈ Q, ω, ω′ ∈ Z∗, z ∈ Z, f ∈ X∗, and a ∈ X ∪ {ε}; we note that

(qzω, af) �−→M (q′ω′ω, f) if q′ω′ ∈ δ(qz, a). The binary relation
∗�−→M is the reflexive

and transitive closure of �−→M.
For every qω, q′ω′ ∈ QZ∗ and f ∈ X∗, we note qω

f−→M q′ω′ iff (qω, f)
∗�−→M

(q′ω′, ε).
M is said to be deterministic iff, for every z ∈ Z, q ∈ Q, x ∈ X,

Card(δ(qz, ε)) ∈ {0, 1},(2.2)

Card(δ(qz, ε)) = 1 ⇒ Card(δ(qz, x)) = 0,(2.3)

Card(δ(qz, ε)) = 0 ⇒ Card(δ(qz, x)) ≤ 1.(2.4)

M is said to be real-time iff, for every q ∈ Q, z ∈ Z, Card(δ(qz, ε)) = 0.
A configuration qω of M is said to be ε-bound iff there exists a configuration q′ω′

such that (qω, ε) �−→M (q′ω′, ε); qω is said to be ε-free iff it is not ε-bound.
A pda M is said to be normalized iff it fulfills conditions (2.2), (2.3) above and

(2.5), (2.6), (2.7):

q0z0 is ε-free(2.5)

and for every q ∈ Q, z ∈ Z, x ∈ X,

q′ω′ ∈ δ(qz, x) ⇒| ω′ |≤ 2,(2.6)

q′ω′ ∈ δ(qz, ε) ⇒| ω′ |= 0.(2.7)

All the pda considered here are assumed to fulfill condition (2.5). A pda M is called
birooted iff it fulfills (2.8) and (2.9):

∃q̄ ∈ Q,F = {q̄},(2.8)

∀q ∈ Q,ω ∈ Z∗, f ∈ X∗, q0z0
f−→M qω ⇒ ∃g ∈ X∗, qω

g−→M q̄.(2.9)
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The language recognized by M is

L(M) = {w ∈ X∗ | ∃c ∈ F, q0z0
w−→M c}.

It is a “folklore” result that, given a dpda M, one can effectively compute another
dpda M′ which is normalized and fulfills

L(M′) = L(M)− {ε}.

2.3. Graphs and pda.

Equational graphs and pda. We call a transition-graph of a pda M, denoted
T (M), the 0-graph T (M) = (VT (M), ET (M)), where VT (M) = {qω | q ∈ Q, ω ∈ Z∗,
qω is ε-free} and

ET (A) = {(c, x, c′) ∈ VT (M) × VT (M) | c
x−→M c′}.(2.10)

We call a computation 1-graph of the pda M, denoted (C(M), vM), the subgraph of
T (M) induced by the set of vertices which are accessible from the vertex q0z0, together
with the source vM = q0z0. In the case where M is birooted, we call a computation
2-graph of the pda M, denoted (C(M), vM, v̄M), the graph C(M) defined just above,
together with the sources vM = q0z0, v̄M = q̄.

Theorem 2.5. Let Γ = (Γ0, v0) be a rooted 1-graph over X. The following
conditions are equivalent:

(1) Γ is equational and has finite out-degree.
(2) Γ is isomorphic to the computation 1-graph (C(M), vM) of some normalized

pda M.
The formal proof of this theorem is quite technical and is omitted here. (See the

appendix for a sketch of proof.)
Corollary 2.6. Let Γ = (Γ0, v0, v̄) be a birooted 2-graph over X. The following

conditions are equivalent:
(1) Γ is equational and has finite out-degree.
(2) Γ is isomorphic to the computation 2-graph (C(M), vM, v̄M) of some birooted

normalized pda M.

Bisimulation for nondeterministic (versus deterministic) graphs. In this
section, we reduce the classical notion of bisimulation for equational graphs to the
notion of η-bisimulation for deterministic equational graphs, where η has been suitably
chosen (see Definition 2.3).

Lemma 2.7. Let Γ1 be some rooted equational 1-graph over a finite alphabet Y1

and let # be a new letter # /∈ Y1. Then one can construct an equational birooted
2-graph Γ over the alphabet Y = Y1 ∪ {#} such that

(1) VΓ1 ⊆ VΓ,
(2) for every v, v′ ∈ VΓ1 , (v, v′ are bisimilar in Γ1) iff (v, v′ are bisimilar in Γ),
(3) Γ1 has finite out-degree iff Γ has finite out-degree.
Sketch of proof. Let us define Γ from Γ1 by

VΓ = VΓ1
∪ {v̄}, EΓ = EΓ1

∪ {(w,#, v̄) | w ∈ VΓ1
}, Γ = (Γ1, v̄),

where v̄ is a new vertex v̄ /∈ VΓ1
. One can easily check that Γ is equational iff Γ1 is

equational and that, provided Γ1 is rooted, Γ is birooted. Points (1) and (3) of the
lemma are clear. One can check that the mapping R �→ R ∪ {(v̄, v̄)} is a bijection
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from the set of all the bisimulations over Γ1 (i.e., from Γ1 to Γ1) to the set of all the
bisimulations over Γ. Hence point (2) is true.

Let us consider finite alphabets X,Y , a length-preserving homomorphism ψ :
X∗ → Y ∗, and the strong relational morphism ψ̄ = ψ◦ψ−1 ⊆ X∗×X∗. An n-graph Γ
over X will be called ψ̄-saturated iff, for every v ∈ VΓ, for every (x, x′) ∈ ψ̄,

(∃v1 ∈ VΓ, (v, x, v1) ∈ EΓ) ⇔ (∃v′1 ∈ VΓ, (v, x
′, v′1) ∈ EΓ).

Lemma 2.8. Let Γ1 be an equational birooted 2-graph of finite out-degree over
an alphabet Y . One can construct a finite alphabet X, a surjective length-preserving
homomorphism ψ : X∗ → Y ∗, and an equational, birooted 2-graph Γ over the alpha-
bet X, such that

(1) Γ is deterministic,
(2) Γ is ψ̄-saturated,
(3) VΓ1 = VΓ,
(4) Id : VΓ → VΓ1

is a ψ-bisimulation from Γ to Γ1.

Sketch of proof. By Lemma 2.6, we can suppose that Γ1 is the computation
2-graph (C(M1), vM1 , v̄M1) of some birooted normalized pda M1 = 〈Y,Z,Q, δ1, q0,
z0, {q̄}〉. Let us consider the following integers: ∀q ∈ Q, z ∈ Z, y ∈ Y ,

t1(qz, y) = Card(δ1(qz, y)), t̄1 = max{t1(qz, y) | q ∈ Q, z ∈ Z, y ∈ Y }.

Let X = Y × [1, t̄1] and let ψ : X → Y be the first projection. Let ρ : QZ × Y ×N →
QZ∗ such that dom(ρ) =

⋃
q∈Q,z∈Z,y∈Y {qz} × {y} × [1, t1(qz, y)] and

ρ(qz, y, �) : {qz} × {y} × [1, t1(qz, y)] → δ1(qz, y)

is a bijection (for every triple (q, z, y)). We then define M = 〈X,Z,Q, δ, q0, z0, {q̄}〉
by the following: for every q ∈ Q, z ∈ Z, y ∈ Y , i ∈ [1, t̄1],

δ(qz, ε) = δ1(qz, ε) if qz is ε-bound,

δ(qz, (y, i)) = {q′ω′} if

ρ(qz, y, i) = q′ω′ or [(1 ≤ t1(qz, y) < i ≤ t̄1 and ρ(qz, y, 1) = q′ω′)].

The 2-graph Γ = (C(M), vM, v̄M) fulfills the required properties.

Let us remark that, by point (4) and by composition of η-bisimulations, for every
v, v′ ∈ VΓ, v, v′ are ψ̄-bisimilar (w.r.t. Γ) iff v, v′ are bisimilar (w.r.t. Γ1).

2.4. Deterministic context-free grammars. Let M be some dpda (we sup-
pose here that M is normalized). The variable alphabet VM associated to M is
defined as

VM = {[p, z, q] | p, q ∈ Q, z ∈ Z}.

The context-free grammar GM associated to M is then

GM = 〈X,VM, PM〉,

where PM is the set of all the pairs of one of the following forms:
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([p, z, q], x[p′, z1, p
′′][p′′, z2, q]),(2.11)

where p, q, p′, p′′ ∈ Q, x ∈ X, p′z1z2 ∈ δ(pz, x),

([p, z, q], x[p′, z′, q]),(2.12)

where p, q, p′ ∈ Q, x ∈ X, p′z′ ∈ δ(pz, x),

([p, z, q], a),(2.13)

where p, q,∈ Q, a ∈ X ∪ {ε}, q ∈ δ(pz, a). GM is a strict-deterministic grammar (see
Definition 3.7 below). A general theory of this class of grammars is presented in [15]
and used in [16].

2.5. Free monoids acting on semirings.

Semiring B〈〈 W 〉〉. Let (B,+, ·, 0, 1), where B = {0, 1} denotes the semiring of
“booleans.” Let W be some alphabet. By (B〈〈 W 〉〉,+, ·, ∅, ε) we denote the semiring
of boolean series over W : the set B〈〈 W 〉〉 is defined as BW∗

; the sum and product
are defined as usual; each word w ∈ W ∗ can be identified with the element of BW∗

mapping the word w on 1 and every other word w′ �= w on 0; every boolean series
S ∈ B〈〈 W 〉〉 can then be written in a unique way as

S =
∑

w∈W∗

Sw · w,

where, for every w ∈W ∗, Sw ∈ B.
The support of S is the language

supp(S) = {w ∈W ∗ | Sw �= 0}.

In the particular case where the semiring of coefficients is B (which is the only case
considered in this article) we sometimes identify the series S with its support. A series
S ∈ B〈〈 W 〉〉 is called a boolean polynomial over W iff its support is finite. The set
of all boolean polynomials over W is denoted by B〈W 〉.

The usual ordering ≤ on B extends to B〈〈 W 〉〉 by

S ≤ S′ iff ∀w ∈W ∗, Sw ≤ S′
w.

We recall that for every S ∈ B〈〈 W 〉〉, S∗ is the series defined by

S∗ =
∑
0≤n

Sn.(2.14)

Given two alphabets W,W ′, a map ψ : B〈〈 W 〉〉 → B〈〈 W ′ 〉〉 is said to be
σ-additive iff it fulfills the following condition: for every denumerable family (Si)i∈N

of elements of B〈〈 W 〉〉,

ψ

(∑
i∈N

Si

)
=
∑
i∈N

ψ(Si).(2.15)

A map ψ : B〈〈 W 〉〉 → B〈〈 W ′ 〉〉 which is both a semiring homomorphism and a
σ-additive map is usually called a substitution.
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Actions of monoids. Given a semiring (S,+, ·, 0, 1) and a monoid (M, ·, 1M ), a
map ◦ : S ×M → S is called a right-action of the monoid M over the semiring S iff,
for every S, T ∈ S, m,m′ ∈ M,

0 ◦m = 0, S ◦ 1M = S,

(S + T ) ◦m = (S ◦m) + (T ◦m), S ◦ (m ·m′) = (S ◦m) ◦m′.(2.16)

In the particular case where S = B〈〈 W 〉〉, ◦ is said to be a σ-right-action if it fulfills
the additional property that, for every denumerable family (Si)i∈N of elements of S
and m ∈ M, (∑

i∈N

Si

)
◦m =

∑
i∈N

(Si ◦m).(2.17)

The action of W ∗ on B〈〈 W 〉〉. We recall the following classical σ-right-action
• of the monoid W ∗ over the semiring B〈〈 W 〉〉: ∀S, S′ ∈ B〈〈 W 〉〉, u ∈W ∗,

S • u = S′ ⇔ ∀w ∈W ∗, (S′
w = Su·w)

(i.e., S • u is the left-quotient of S by u, or the residual of S by u).
For every S ∈ B〈〈 W 〉〉 we denote by Q(S) the set of residuals of S:

Q(S) = {S • u | u ∈W ∗}.

We recall that S is said to be rational iff the set Q(S) is finite. We define the
norm of a series S ∈ B〈〈 W 〉〉, denoted ‖S‖, by

‖S‖ = Card(Q(S)) ∈ N ∪ {∞}.

The reduced grammar G. The classical reduced and ε-free grammar associated
with GM is G0 = 〈X,V0, P0〉, where

V0 = {v ∈ VM | ∃w ∈ X+, v
∗−→PM w},(2.18)

ϕ0 : B〈〈 V 〉〉 → B〈〈 V0 〉〉

is the unique substitution such that, for every v ∈ V ,

ϕ0(v) = v (if v ∈ V0), ϕ0(v) = ε (if v
∗−→PM ε), ϕ0(v) = ∅ (otherwise),

P0 = {(v, w′) ∈ V0 × (X ∪ V0)
+ |

v ∈ V0,∃w ∈ (X ∪ VM)∗, (v, w) ∈ PM, w′ = ϕ0(w)}.(2.19)

G0 is the reduced and ε-free form of GM. It is well known that, ∀v ∈ V0,

∃w ∈ X+, v
∗−→P0 w,

{w ∈ X∗, v
∗−→PM w} = {w ∈ X∗, v

∗−→P0 w}.

For technical reasons (which will be made clear in section 7), we introduce an alphabet
of “marked variables” V̄0 together with a fixed bijection: v �→ v̄ from V0 to V̄0. Let
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V = V0 ∪ V̄0. We denote by ρe (the letter e stands here for “erasing the marks”) the
literal morphism V ∗ → V ∗

0 defined by the following: for every v ∈ V0,

ρe(v) = v, ρe(v̄) = v.

Similarly, ρ̄e is the literal morphism V ∗ → V̄ ∗
0 defined by the following: for every

v ∈ V0,

ρ̄e(v) = v̄, ρ̄e(v̄) = v̄.

We denote also by ρe, ρ̄e the unique substitutions extending these monoid homomor-
phisms.

At last, the grammar G is defined by G = 〈X,V, P 〉, where

P = P0 ∪ {(ρ̄e(v), ρ̄e(w)) | (v, w) ∈ P0}.

In other words, the rules of G consist of the rules of the usual proper and reduced
grammar associated with M together with their marked copies.

The action of X∗ on B〈〈 V 〉〉. Let us now fix a deterministic (normalized)
pda M and consider the associated grammar G. We define a σ-right-action � of the
monoid X∗ over the semiring B〈〈 V 〉〉 by the following: for every v ∈ V , β ∈ V ∗,
x ∈ X,

(v · β)� x =

⎛
⎝ ∑

(v,h)∈P

h • x

⎞
⎠ · β,(2.20)

ε� x = ∅.(2.21)

Let us consider the unique substitution ϕ : B〈〈 V 〉〉 → B〈〈X 〉〉 fulfilling the following:
for every v ∈ V ,

ϕ(v) = {u ∈ X∗ | v ∗−→P u}

(in other words, ϕ maps every subset L ⊆ V ∗ on the language generated by the
grammar G from the set of axioms L).

Lemma 2.9. For every S ∈ B〈〈 V 〉〉, u ∈ X∗, ϕ(S � u) = ϕ(S) • u (i.e., ϕ is a
morphism of right-actions).

Proof. Let v ∈ V , β ∈ V ∗, x ∈ X. Recall that G is in Greibach normal form (i.e.,
P ⊆ V ×X · V ∗). One can then check with formulas (2.20), (2.21) that

ϕ(ε� x) = ϕ(ε) • x and ϕ((v · β)� x) = ϕ(v · β) • x.

By induction on |w|, it follows that, ∀w ∈ V ∗,

ϕ(w � x) = ϕ(w) • x.

By σ-additivity of ϕ, it follows that, ∀S ∈ B〈〈 V 〉〉,

ϕ(S � x) = ϕ(S) • x.

By induction on |u|, it follows that, ∀u ∈ X∗,

ϕ(S � u) = ϕ(S) • u.

We denote by ≡ the kernel of ϕ, i.e., for every S, T ∈ B〈〈 V 〉〉,

S ≡ T ⇔ ϕ(S) = ϕ(T ).
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3. Series and matrices.

3.1. Deterministic series, vectors, and matrices. We introduce here a no-
tion of deterministic series which, in the case of the alphabet V associated to a
dpda M, generalizes the classical notion of configuration of M. The main advantage
of this notion is that, unlike for configurations, we shall be able to define nice alge-
braic operations on these series (see, in particular, section 5.1). Let us consider a pair
(W,�) where W is an alphabet and � is an equivalence relation over W . We call
(W,�) a structured alphabet. We have the following two examples in mind:

• the case where W = VM, the variable alphabet associated toM and [p, z, q] �
[p′, z′, q′] iff p = p′ and z = z′ (see [15]);

• the case where W = X, the terminal alphabet of M and x � y holds for
every x, y ∈ X (see [15]).

Definitions.

Definition 3.1. Let S ∈ B〈〈 W 〉〉. S is said to be left-deterministic iff either

(1) S = ∅ or
(2) S = ε or
(3) ∃i0 ∈ [1,m], Si0 �= ∅ and ∀w,w′ ∈ W ∗, Sw = Sw′ = 1 ⇒ [∃A,A′ ∈ W ,

w1, w
′
1 ∈W ∗, A � A′, w = A · w1, and w′ = A′ · w′

1].

A left-deterministic series S is said to have the type ∅ (resp., ε, [A]�) if case (1)
(resp., (2), (3)) occurs.

Definition 3.2. Let S ∈ B〈〈 W 〉〉. S is said to be deterministic iff, for every
u ∈W ∗, S • u is left-deterministic.

This notion is the straightforward extension to the infinite case of the notion of
a (finite) set of associates defined in [16, Definition 3.2, p. 188].

We denote by DB〈〈 W 〉〉 the subset of deterministic boolean series over W . Let
us denote by Bn,m〈〈 W 〉〉 the set of (n,m)-matrices with entries in the semiring
B〈〈 W 〉〉.

Definition 3.3. Let m ∈ N, S ∈ B1,m〈〈 W 〉〉 : S = (S1, . . . , Sm). S is said to
be left-deterministic iff either

(1) ∀i ∈ [1,m], Si = ∅ or
(2) ∃i0 ∈ [1,m], Si0 = ε and ∀i �= i0, Si = ∅ or
(3) ∀w,w′ ∈ W ∗, ∀i, j ∈ [1,m], (Si)w = (Sj)w′ = 1 ⇒ [∃A,A′ ∈ W , w1, w

′
1 ∈

V ∗, A � A′, w = A · w1, and w′ = A′ · w′
1].

A left-deterministic row-vector S is said to have the type ∅ (resp., (ε, i0), [A]�)
if case (1) (resp., (2), (3)) occurs.

The right-action • on B〈〈 W 〉〉 is extended componentwise to Bn,m〈〈 W 〉〉: for
every S = (si,j), u ∈W ∗, the matrix T = S • u is defined by

ti,j = si,j • u.

The ordering ≤ on B is also extended componentwise to Bn,m〈〈 W 〉〉.
Definition 3.4. Let S ∈ B1,m〈〈 W 〉〉. S is said to be deterministic iff, for every

u ∈W ∗, S • u is left-deterministic.

We denote by DB1,m〈〈 W 〉〉 the subset of deterministic row-vectors of dimen-
sion m over B〈〈 W 〉〉.

Definition 3.5. Let S ∈ Bn,m〈〈 W 〉〉. S is said to be deterministic iff, for
every i ∈ [1, n], Si,. is a deterministic row-vector.

Let us note first some easy facts about deterministic matrices.
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Fact 3.6. Let S ∈ DB〈〈 W 〉〉. For every T ∈ B〈〈 W 〉〉, u ∈W ∗

(1) T ≤ S ⇒ T ∈ DB〈〈 W 〉〉.
(2) T = S • u⇒ T ∈ DB〈〈 W 〉〉.
Norm. Let us generalize the classical definition of rationality of series in B〈〈W 〉〉

to matrices. Given M ∈ Bn,m〈〈 W 〉〉 we denote by Q(M) the set of residuals of M :

Q(M) = {M • u | u ∈W ∗}.

Similarly, we denote by Qr(M) the set of row-residuals of M :

Qr(M) =
⋃

1≤i≤n

Q(Mi,∗).

M is said to be rational iff the set Q(M) is finite. One can check that it is equivalent
to the property that every coefficient Mi,j is rational, or to the property that Qr(M)
is finite. We denote by RBn,m〈〈 W 〉〉 (resp., DRBn,m〈〈 W 〉〉) the set of rational
(resp., deterministic, rational) matrices over B〈〈 W 〉〉. For every M ∈ RBn,m〈〈 W 〉〉,
we define the norm of M as

‖M‖ = Card(Qr(M)).

Grammars.
Definition 3.7. Let G = 〈X,V, P 〉 be a context-free grammar in Greibach normal

form. G is said to be strict-deterministic iff there exists an equivalence relation �
over V fulfilling the following condition: for every E ∈ V , x ∈ X, if (Ek)1≤k≤m is a
bijection [1,m] → [E]�, and Hk =

∑
(Ek,h)∈P h • x, then

(H1, H2, . . . , Hm) is a deterministic vector.

Any equivalence � satisfying the above condition is said to be a strict equivalence for
the grammar G.

This definition is a reformulation of [15, Definition 11.4.1, p. 347] adapted to the
case of a Greibach normal form.

Theorem 3.8. Let G1 = 〈X,V1, P1〉 be a strict-deterministic grammar. Then
its reduced form G0 = 〈X,V0, P0〉, as defined in formulas (2.18), (2.19), is strict-
deterministic too. Moreover, if � is a strict equivalence for G1, its restriction over V0

is a strict equivalence for G0.
The proof would consist in slightly extending the proof of [15, Theorem 11.4.1,

p. 350].
It is known that, given a dpda M, its associated grammar GM is strict-deter-

ministic. By Theorem 3.8 G0 is strict-deterministic too. Let us consider the minimal
strict equivalence � for G0 and extend it to V by, ∀v, v′ ∈ V0,

v̄ � v̄′ ⇔ v � v′; v̄ �� v′.

Then � is a strict equivalence for G (the grammar G is defined in section 2.5). This
ensures that G is strict-deterministic.

Residuals.
Lemma 3.9 (see [42, Lemma 37]). Let S ∈ DB〈〈 W 〉〉, T ∈ B〈〈 W 〉〉, u ∈ W ∗.

If S • u �= ∅, then (S · T ) • u = (S • u) · T .
Lemma 3.10 (see [42, Lemma 39]). Let S ∈ DB1,m〈〈 W 〉〉, T ∈ Bm,s〈〈 W 〉〉,

u ∈W ∗, and U = S · T . Exactly one of the following cases is true:
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(1) ∃j, Sj • u /∈ {∅, ε}. In this case U • u = (S • u) · T .
(2) ∃j0, ∃u′, u′′, u = u′ · u′′, Sj0 • u′ = ε. In this case U • u = Tj0 • u′′.
(3) ∀j, ∀u′ � u, Sj • u = ∅, Sj • u′ �= ε. In this case U • u = ∅ = (S • u) · T .
Lemma 3.11. For every S ∈ DBn,m〈〈 W 〉〉, T ∈ DBm,s〈〈 W 〉〉, S · T ∈

DBn,s〈〈 W 〉〉.
Lemma 3.12. Let A ∈ DBn,m〈〈 W 〉〉, B ∈ Bm,s〈〈 W 〉〉. Then ‖A · B‖ ≤

‖A‖+ ‖B‖.
The two above lemmas correspond to [42, Lemma 310].

W = V . Let (W,�) be the structured alphabet (V,�) associated with M and
let us consider a bijective numbering of the elements of Q: (q1, q2, . . . , qnQ

). Let us
define here a handful of notations for some particular vectors or matrices. Let us use
the Kronecker symbol δi,j to mean ε if i = j and ∅ if i �= j. For every 1 ≤ n, 1 ≤ i ≤ n,
we define the row-vector εni as

εni = (εni,j)1≤j≤n, where ∀j, εni,j = δi,j .

We call any vector of the form εni a unit row-vector.
For every 1 ≤ n, we denote by ∅n ∈ DB1,n〈〈 V 〉〉 the row-vector

∅n = (∅, . . . , ∅).

For every ω ∈ Z∗, p, q ∈ Q, [pωq] is the deterministic series defined inductively by

[pεq] = ∅ if p �= q, [pεq] = ε if p = q,

[pωq] =
∑
r∈Q

[p, z, r] · [rω′q] if ω = z · ω′ for some z ∈ Z, ω′ ∈ Z∗.

Let us define

K0 = max{‖(E1, E2, . . . , En)� x‖ | (Ei)1≤i≤n is a bijective numbering

of some class in V/ � , x ∈ X}.(3.1)

Lemma 3.13 (see [42, Lemma 318]). For every S ∈ DB1,λ〈〈 V 〉〉, u ∈ X∗,
(1) S � u ∈ DB1,λ〈〈 V 〉〉,
(2) ‖S � u‖ ≤ ‖S‖+ K0 · |u|.
Lemma 3.14 (see [42, Lemma 319]). Let λ ∈ N − {0}, S ∈ DRB1,λ〈〈 V 〉〉,

u ∈ X∗. One of the three following cases must occur:
(1) S � u = ∅λ.
(2) S � u = ελj for some j ∈ [1, λ].
(3) ∃u1, u2 ∈ X∗, v1 ∈ V ∗, q ∈ N, E1, . . . , Ek, . . . , Eq ∈ V , Φ ∈ DRBq,λ〈〈 V 〉〉

such that

u = u1 · u2, S � u1 = S • v1 =

q∑
k=1

Ek · Φk, S � u =

q∑
k=1

(Ek � u2) · Φk, and

∀k ∈ [1, q], Ek � E1, Ek � u2 /∈ {ε, ∅}.

We now give an adaptation of Lemma 3.10 to the action � in place of •.
Lemma 3.15 (see [42, Lemma 321]). Let S ∈ DB1,m〈〈 V 〉〉, T ∈ Bm,s〈〈 V 〉〉,

u ∈ X∗, and U = S · T . Exactly one of the following cases is true:
(1) S � u /∈ {∅m} ∪ {εmj | 1 ≤ j ≤ m}. In this case U � u = (S � u) · T .
(2) ∃j0, ∃u′, u′′, u = u′ · u′′, S � u′ = εsj0 . In this case U � u = Tj0 � u′′.
(3) ∀j, ∀u′ � u, S�u = ∅m and S�u′ �= εmj . In this case U�u = ∅s = (S�u)·T .
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Marks. A word w ∈ V ∗ is said to be marked iff w ∈ V ∗ · V̄0 · V ∗; it is said to be
fully marked iff w ∈ V̄ ∗

0 .
A series S ∈ B〈〈 V 〉〉 is said to be marked iff ∃w ∈ supp(S), w is marked; it is

said to be fully marked iff ∀w ∈ supp(S), w is fully marked. It is said to be unmarked
iff it is not marked. A matrix S ∈ Bm,n〈〈 V 〉〉 is said to be marked (resp., fully
marked, unmarked) iff, for every i ∈ [1,m], the series

∑n
j=1 Si,j is marked (resp., fully

marked, unmarked).
Definition 3.16. Let d ∈ N. A vector S ∈ DB1,λ〈〈 V 〉〉 is said to be d-marked

iff there exists q ∈ N, α ∈ DRB1,q〈V 〉, Φ ∈ DRBq,λ〈〈 V 〉〉 such that

S =

q∑
k=1

αk · Φk and ‖α‖ ≤ d,

and Φ is unmarked.
Lemma 3.17. For every S ∈ DB1,λ〈〈 V 〉〉,
(1) ρe(S) ∈ DB1,λ〈〈 V 〉〉,
(2) ‖ρe(S)‖ ≤ ‖S‖.
Sketch of proof.
(1) Let us notice that the homomorphism ρe : V ∗ → V ∗ preserves the equiva-

lence �: for every v, v′ ∈ V , if v � v′, then ρe(v) � ρe(v
′). It follows that the

corresponding substitution ρe preserves determinism.
(2) Let S ∈ DB1,λ〈〈 V 〉〉. For every v ∈ V0,

ρe(S) • v = ρe(S • v) or ρe(S) • v = ρe(S • v̄)

according to the fact that the leftmost letters of the monomials of S are in [v]� or in
[v̄]�; both formulas are true when S is null or is a unit.

By induction on the length, it follows that, for every w ∈ V ∗
0 , there exists w′ ∈ V ∗

such that

ρe(w
′) = w and ρe(S) • w = ρe(S • w′).

Moreover, for every w ∈ V ∗V̄0V
∗,

ρe(S) • w = ∅λ,

but in this case, too, there exists some w′ ∈ V ∗ such that ρe(S) • w = ρe(S • w′).
The map T �→ ρe(T ) is then a surjective map from Q(S) onto Q(ρe(S)), which

proves that ‖ρe(S)‖ ≤ ‖S‖.

Operations on row-vectors. Let us introduce two new operations on row-
vectors and prove some technical lemmas about them.

Given A,B ∈ B1,m〈〈 W 〉〉 and 1 ≤ j0 ≤ m we define the vector C = A∇j0B
as follows: if A = (a1, . . . , aj , . . . , am), B = (b1, . . . , bj , . . . , bm), then C = (c1, . . . , cj ,
. . . , cm), where

cj = aj + aj0 · bj if j �= j0, cj = ∅ if j = j0.

Lemma 3.18 (see [42, Lemma 311]). Let A,B ∈ B1,m〈〈 W 〉〉 and 1 ≤ j0 ≤ m.
(1) If A,B are deterministic, then A∇j0B is deterministic.
(2) If A,B are deterministic, then ‖A∇j0B‖ ≤ ‖A‖+ ‖B‖.
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Given A ∈ DB1,m〈〈 W 〉〉 and 1 ≤ j0 ≤ m we define the vector A′ = ∇∗
j0

(A) as
follows: if A = (a1, . . . , aj , . . . , am), then A′ = (a′1, . . . , a

′
j , . . . , a

′
m), where

a′j = a∗j0 · aj if j �= j0, a′j = ∅ if j = j0.

Lemma 3.19 (see [42, Lemma 312]). Let A ∈ DB1,m〈〈 W 〉〉 and 1 ≤ j0 ≤ m.

Then ∇∗
j0

(A) ∈ DB1,m〈〈 W 〉〉 and ‖∇∗
j0

(A)‖ ≤ ‖A‖.

3.2. Bisimulation of series. Up to the end of this section, we consider the
structured alphabet V associated with a dpda M over X. We suppose a strong
relational morphism η ⊆ X∗ ×X∗ is given (see Definition 2.2).

Series, words, and graphs. Let us first give a slight adaptation of Definition 2.1
to the n-graph (DRB1,n〈〈 V 〉〉,�, (εni )1≤i≤n).

Definition 3.20. Let R be some binary relation R ⊆ DRB1,n〈〈 V 〉〉 ×
DRB1,n〈〈 V 〉〉. R is a σ-η-bisimulation iff

(1) ∀(S, S′) ∈ R, ∀x ∈ X,

∃x′ ∈ η(x), (S � x, S′ � x′) ∈ R and ∃x′′ ∈ η−1(x), (S � x′′, S′ � x) ∈ R,

(2) ∀(S, S′) ∈ R, ∀i ∈ [1, n], (S = εni ⇔ S′ = εni ).

We denote by S ∼ S′ the fact that there exists some σ-η-bisimulation R such that
(S, S′) ∈ R. One can notice that ∼ is the greatest σ-η-bisimulation (w.r.t. the inclu-
sion ordering) over DRB1,n〈〈 V 〉〉. The σ-bisimulation relations can be conveniently
expressed in terms of word -bisimulations.

Definition 3.21. Let S, S′ ∈ DRB1,n〈〈 V 〉〉 and R ⊆ X∗ × X∗. R is a w-η-
bisimulation with respect to (S, S′) iff R ⊆ η and

(1) totality: dom(R) = X∗, im(R) = X∗;
(2) extension: ∀(u, u′) ∈ R, ∀x ∈ X,

∃x′ ∈ η(x), (u · x, u′ · x′) ∈ R and ∃x′′ ∈ η−1(x), (u · x′′, u′ · x) ∈ R;

(3) coherence: ∀(u, u′) ∈ R, ∀i ∈ [1, n], (S � u = εni ) ⇔ (S′ � u′ = εni );
(4) prefix: ∀(u, u′) ∈ X∗×X∗, ∀(x, x′) ∈ X×X, (u ·x, u′ ·x′) ∈ R ⇒ (u, u′) ∈ R.

(Condition (1) can be equivalently replaced by “(ε, ε) ∈ R.”) R is said to be a
w-η-bisimulation of order m w.r.t. (S, S′) iff it fulfills conditions (3)–(4) above and
the modified conditions

(1′) dom(R) = X≤m, im(R) = X≤m,
(2′) ∀(u, u′) ∈ R ∩ (X≤m−1 ×X≤m−1), ∀x ∈ X,

∃x′ ∈ η(x), (u · x, u′ · x′) ∈ R and ∃x′′ ∈ η−1(x), (u · x′′, u′ · x) ∈ R.

The w-η-bisimulations are also called w-η-bisimulations of order ∞. Lemmas 3.22
and 3.25 below relate the notions of w-η-bisimulation (on words), σ-η-bisimulation
(on series), and η-bisimulation (on the vertices of the computation 2-graph of M).

Lemma 3.22. Let S, S′ ∈ DRB1,n〈〈 V 〉〉. The following properties are equivalent:

(i) S ∼ S′.
(ii) There exists R ⊆ X∗ ×X∗ which is a w-η-bisimulation w.r.t. (S, S′).
(iii) ∀m ∈ N, there exists Rm ⊆ X≤m × X≤m which is a w-η-bisimulation of

order m w.r.t. (S, S′).
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Proof. (i) ⇒ (iii): Suppose that S is a σ-η-bisimulation w.r.t. (S, S′). Let
us prove by induction on the integer m the following property P(m): ∃Rm, w-η-
bisimulation of order m w.r.t. (S, S′) such that

∀(u, u′) ∈ Rm, (S � u, S′ � u′) ∈ S.(3.2)

m = 0: Let R0 = {(ε, ε)}. R0 clearly fulfills points (1′), (2′), (4) of the above
definition. Moreover, as (S, S′) ∈ S, where S fulfills condition (2) of Definition 3.20,
R0 fulfills point (3) of Definition 3.21.

m = m′ + 1: Let Rm′ be some w-η-bisimulation of order m′ w.r.t. (S, S′). Let
us define Rm = Rm′ ∪ {(u · x, u′ · x′) | (u, u′) ∈ Rm′ , (S � ux, S′ � u′x′) ∈ S, and
(x, x′) ∈ η}. Property (1) of S and property (1′) of Rm′ imply that

dom(Rm) = X≤m, im(Rm) = X≤m.(3.3)

Property (1) of S and property (2′) of Rm′ imply that ∀(u, u′) ∈ Rm ∩ (X≤m−1 ×
X≤m−1), ∀x ∈ X,

∃x′ ∈ η(x), (u · x, u′ · x′) ∈ Rm and ∃x′′ ∈ η−1(x), (u · x′′, u′ · x) ∈ Rm.(3.4)

Property (2) of S and property (3) of Rm′ imply that

∀(u, u′) ∈ Rm,∀i ∈ [1, n], (S � u = εni ) ⇔ (S′ � u′ = εni ).(3.5)

Property (4) of Rm′ and the definition of Rm imply that

∀(u, u′) ∈ X∗ ×X∗,∀(x, x′) ∈ X ×X, (u · x, u′ · x′) ∈ Rm ⇒ (u, u′) ∈ Rm.(3.6)

Property (3.2) for Rm′ and the definition of Rm imply that (3.2) is fulfilled by Rm

too. Equations (3.3), (3.4), (3.5), (3.6) prove thatRm is a w-η-bisimulation of order m
w.r.t. (S, S′), and hence P(m) is proved.

(iii) ⇒ (ii): Let us notice that, as the alphabet X is finite, for every w-η-
bisimulation R of order m w.r.t. (S, S′),

Card{R′ ⊆ X∗ ×X∗ | R ⊆ R′, R′ is a w-η-bisim. of ord. m + 1 w.r.t. (S, S′)} <∞.

Hence, by Koenig’s lemma, if (iii) is true, then there exists an infinite sequence
(Rm)m∈N such that for every m ∈ N,Rm is a w-η-bisimulation of order m w.r.t. (S, S′)
and Rm ⊆ Rm+1. Let us then define

R =
⋃
m≥0

Rm.

R is a w-η-bisimulation of order ∞ w.r.t. (S, S′).
(ii) ⇒ (i): Let R be a w-η-bisimulation of order ∞ w.r.t. (S, S′). Let us define

a relation S by

S = {(S � u, S′ � u′) | (u, u′) ∈ R}.

The totality property of R implies that (S, S′) ∈ S. The extension property of R
implies that S fulfills condition (1) of Definition 3.20 and the coherence property of R
implies that S fulfills condition (2).
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Lemma 3.22 leads naturally to the following definition. We denote by Bn(T, T ′)
the set of all w-η-bisimulations of order n w.r.t. (T, T ′).

Definition 3.23. Let λ ∈ N − {0}, S, S′ ∈ DRB1,λ〈〈 V 〉〉. We define the
divergence between S and S′ as

Div(S, S′) = inf{n ∈ N | Bn(S, S′) = ∅}.

(It is understood that inf(∅) = ∞.)
Let us suppose that the dpda M = 〈X,Z,Q, δ, q0, z0, {q̄}〉 is normalized and

birooted. Let ψ : X∗ → Y ∗ be a monoid homomorphism such that ψ(X) ⊆ Y and
let ψ̄ = ψ ◦ ψ−1 (ψ̄, the kernel of ψ, is a strong relational morphism which is also an
equivalence relation; this additional property will be used in what follows). Let Γ be
the computation 2-graph of M and let us suppose Γ is ψ̄-saturated.

Let θ : VΓ → DRB〈〈 V 〉〉 be the mapping defined by the following: ∀q ∈ Q,
∀ω ∈ Z∗, such that qω ∈ VΓ,

θ(qω) = ϕ0([qωq̄]).

For every qω ∈ VΓ, S ∈ DRB〈〈 V 〉〉 we also define

L(qω) = {u ∈ X∗, qω
u−→Γ q̄, }; L(S) = {u ∈ X∗, S � u = ε}.

Lemma 3.24. For every qω ∈ VΓ, L(qω) = L(ϕ0([qωq̄])).
This lemma follows from the classical result that the language recognized by M

with starting configuration qω and final configuration q̄ is exactly the language gen-
erated by GM from the polynomial [qωq̄], which, in turn, is equal to the language
generated by G0 from the polynomial ϕ0([qωq̄]). At last, G and G0 generate the same
language from any given polynomial over V0.

Lemma 3.25. Let v, v′ be vertices of Γ. Then v ∼ v′, in the sense of Defini-
tion 2.1 iff θ(v) ∼ θ(v′), in the sense of Definition 3.20.

Proof. In this proof we denote by �Γ the right-action of X∗ over VΓ∪{⊥} defined
by the following: for every v, v′ ∈ VΓ, u ∈ X∗,

v �Γ u = v′ if v
u−→Γ v′,

v �Γ u = ⊥ if there is no v′′, such that v
u−→Γ v′′,

⊥�Γ u = ⊥.

Step 1. Let us suppose that (v, v′) ∈ R, where R is some ψ̄-bisimulation over Γ.
Let S = {(θ(v)�u, θ(v′)�u′) | (u, u′) ∈ ψ̄, (v�Γ u, v′�Γ u′) ∈ R}∪{(∅, ∅)}. Let

us show that S is a σ-ψ̄-bisimulation.
Let us consider some pair of series in S. If the given pair is (∅, ∅), points (1), (2)

of Definition 3.20 are clearly fulfilled. Otherwise, it has the form (θ(v)�u, θ(v′)�u′),
where (u, u′) ∈ ψ̄ and (v �Γ u, v′ �Γ u′) ∈ R.

Step 1.1. Let x ∈ X.
Case 1.1.1. θ(v)� ux �= ∅.

L(θ(v)� ux) �= ∅

(because the grammar G is reduced); hence, using Lemma 3.24,

L(v �Γ ux) = L(v) • ux = L(θ(v)) • ux �= ∅.
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It follows that

v �Γ ux �= ⊥.

As R is a ψ̄-simulation, there must exist some x′ ∈ ψ̄(x) such that

(v �Γ ux, v′ �Γ u′x′) ∈ R.

Hence

(θ(v)� ux, θ(v′)� u′x′) ∈ S.

Case 1.1.2. θ(v) � ux = ∅. In this case, by Lemma 3.24 and the fact that Γ is
birooted, v �Γ ux must be equal to ⊥. As Γ is ψ̄-saturated, it follows that

∀x′ ∈ ψ̄(x), v �Γ ux′ = ⊥.

As R−1 is a ψ̄−1-simulation, it must also be true that

∀x′ ∈ ψ̄(x), v′ �Γ u′x′ = ⊥.

Choosing some particular x′ ∈ ψ̄(x), and again using Lemma 3.24, we obtain

θ(v′)� u′x′ = ∅.

In both cases, as v, v′ are playing symmetric roles, property (1) of Definition 3.20 has
been verified. If the starting pair in S is (∅, ∅), property (1) is again verified.

Step 1.2. Let us suppose that θ(v)� u = ε. This means that

L(θ(v)) • u = ε,

and hence, using Lemma 3.24, that

L(v �Γ u) = ε;

hence

v �Γ u = q̄.

As Γ is birooted, q̄ is the only vertex having no outgoing edge (see section 2.1). As
R is a ψ̄-bisimulation, v′ �Γ u′, we must also have no outgoing edge; hence

v′ �Γ u′ = q̄,

and by the same arguments, used backwards now,

L(θ(v′)) • u′ = ε,

which, as the grammar G is proper and reduced, implies

θ(v′)� u′ = ε.

As (v, v′) are playing symmetric roles, property (2) of Definition 3.20 has been verified.
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Step 2. Let us suppose that (θ(v), θ(v′)) ∈ S, where S is some σ-ψ̄-bisimulation.
LetR = {(v�Γu, v

′�Γu
′) | (u, u′) ∈ ψ̄, (θ(v)�u, θ(v′)�u′) ∈ S−{(∅, ∅)}}∪{(c, c) |

c ∈ VΓ}. We show that R is a ψ̄-bisimulation over Γ.
Step 2.1. Using Lemma 3.24, we obtain

θ(v)� u �= ∅ ⇒ v �Γ u �= ⊥.

Hence

dom(R) ⊆ VΓ.

Conversely, due to the term {(c, c) | c ∈ VΓ},

dom(R) ⊇ VΓ.

Finally, point (1) of Definition 2.1 is fulfilled.
Step 2.2. Due to the term {(c, c) | c ∈ VΓ}, point (2) of Definition 2.1 is fulfilled.
Step 2.3. Let us consider some pair of configurations in R. It must have the form

(v �Γ u, v′ �Γ u′), where (u, u′) ∈ ψ̄ and (θ(v)� u, θ(v′)� u′) ∈ S − {(∅, ∅)}.
By the same arguments as in Case 1.1.1 above, one can show that, for every

x ∈ X, such that

v �Γ ux �= ⊥,

there exists some x′ ∈ ψ̄(x) such that

v′ �Γ u′x′ �= ⊥.

Hence R fulfills the three points of Definition 2.1. By the same means, R−1 fulfills
them too, so that R is a ψ̄-bisimulation over the graph Γ.

Extension to matrices. Let δ, λ ∈ N − {0}. We extend the binary relation ∼
from vectors in DRB1,λ〈〈 V 〉〉 to matrices in DRBδ,λ〈〈 V 〉〉 as follows: for every
T, T ′ ∈ DRBδ,λ〈〈 V 〉〉,

T ∼ T ′ ⇔ ∀i ∈ [1, δ], Ti,∗ ∼ T ′
i,∗.(3.7)

We call a w-η-bisimulation of order n ∈ N ∪ {∞} with respect to (T, T ′) every

R = (Ri)i∈[1,δ] such that ∀i ∈ [1, δ], Ri ∈ Bn(Ti,∗, T
′
i,∗).

We denote by Bn(T, T ′) the set of w-η-bisimulations of order n w.r.t. (T, T ′).
Some algebraic properties of this extended relation ∼ will be established in Corol-

lary 4.10.

Operations on w-bisimulations. The following operations on word-ψ̄-bisimu-
lations turn out to be useful.

Right-product. Let δ, λ ∈ N− {0}, S, S′ ∈ DRB1,δ〈〈 V 〉〉, T ∈ DRBδ,λ〈〈 V 〉〉. For
every n ∈ N ∪ {∞} and R ∈ Bn(S, S′) we define

〈S|R〉 = [{(u, u′) ∈ R | ∀v � u, ∀i ∈ [1, δ], S � v �= εδi }(3.8)

∪ {(u · w, u′ · w) | (u, u′) ∈ R, w ∈ X∗,∃i ∈ [1, δ], S � u = εδi }]
∩X≤n ×X≤n.

One can check that 〈S|R〉 ∈ Bn(S · T, S′ · T ).
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Left-product. Let δ, λ ∈ N − {0}, S ∈ DRB1,δ〈〈 V 〉〉, T, T ′ ∈ DRBδ,λ〈〈 V 〉〉. For
every n ∈ N ∪ {∞} and R ∈ Bn(T, T ′) we define

〈S,R〉 = [{(u, u) | u ∈ X∗,∀v � u, ∀i ∈ [1, δ], S � v �= εδi }(3.9)

∪ {(u · w, u · w′) | u ∈ X∗,∃i ∈ [1, δ], S � u = εδi , (w,w
′) ∈ Ri}]

∩X≤n ×X≤n.

One can check that 〈S,R〉 ∈ Bn(S · T, S · T ′).
Star. Let λ ∈ N − {0}, S1 ∈ DRB1,1〈〈 V 〉〉, S1 �= ε, (S1, S) ∈ DRB1,λ+1〈〈 V 〉〉,

T ∈ DRB1,λ〈〈 V 〉〉. For every n ∈ N ∪ {∞} and R ∈ Bn(S1 · T + S, T ) we define

R0 = R,(3.10)

S0 =

⎛
⎜⎝
R0

...
R0

⎞
⎟⎠,(3.11)

∀k ≥ 0,Rk+1 = 〈(S1, S),Sk〉 ◦ R0,(3.12)

Sk =

⎛
⎜⎝
Rk

...
Rk

⎞
⎟⎠,(3.13)

and finally

R〈S1,∗〉 =
⋃
k≥0

Rk ∩X≤k ×X≤k.(3.14)

One can check that, for every k ≥ 0,

Rk ∈ Bn

(
Sk+1

1 +

k∑
i=0

Si
1 · S, T

)
,(3.15)

Sk ∈ Bn

((
Sk+1

1 +
∑k

i=0 S
i
1 · S

Iλ

)
,

(
T
Iλ

))
,(3.16)

and finally R〈S1,∗〉 ∈ Bn(S∗
1 · S, T ).

Remark 3.26. In fact operations could be more adequately defined on “pointed”
w-bisimulations, i.e., on binary relations with sets of “terminal pairs of words” of
type i ∈ [1, δ] corresponding to the pairs (u, u′) such that S � u = εδi , S′ � u′ = εδi .
The two different external operations 〈S,R〉, 〈S|R〉 could then be replaced by only one
binary operation 〈R1,R2〉 over “pointed” w-bisimulations.

3.3. Derivations. For every u ∈ X∗ we define the binary relation ↑ (u) over
DB1,λ〈〈 V 〉〉 by the following: for every S, S′ ∈ DB1,λ〈〈 V 〉〉, S ↑ (u)S′ ⇔ ∃q ∈ N,
∃E1, . . . , Ek, . . . , Eq ∈ V , Φ ∈ DBq,λ〈〈 V 〉〉 such that

S =

q∑
k=1

Ek · Φk, S′ =

q∑
k=1

(Ek � u) · Φk,

and ∀k ∈ [1, q], E1 � Ek, Ek � u /∈ {∅, ε}.
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It is clear that if S ↑ (u)S′, then S � u = S′ and that the converse is not true
in general. A sequence of deterministic row-vectors S0, S1, . . . , Sn is a derivation iff
there exist x1, . . . , xn ∈ X such that S0 � x1 = S1, . . . , Sn−1 � xn = Sn. The length
of this derivation is n. If u = x1 · x2 · . . . · xn, we call S0, S1, . . . , Sn the derivation
associated with (S, u). We denote this derivation by S0

u−→ Sn.
A derivation S0, S1, . . . , Sn is said to be stacking iff it is the derivation associated

to a pair (S, u) such that S = S0 and S0 ↑ (u)Sn. A derivation S0, S1, . . . , Sn is said
to be a subderivation of a derivation S′

0, S
′
1, . . . , S

′
m iff there exists some i ∈ [0,m]

such that, ∀j ∈ [1, n], Sj = S′
i+j .

Definition 3.27. A vector S ∈ DRB1,λ〈〈 V 〉〉 is said to be loop-free iff for every
v ∈ V +, S • v �= S.

Let us note that every polynomial is loop-free. The following two lemmas give
other examples of loop-free vectors.

Lemma 3.28. Let α ∈ DB1,n〈V 〉, Φ ∈ Bn,λ〈〈 V 〉〉, such that ∞ > ‖α ·Φ‖ > ‖Φ‖.
Then α · Φ is loop-free.

Proof. Let α,Φ fulfill the hypothesis of the lemma and suppose, for the sake of
contradiction, that there exists some v ∈ V + such that

(α · Φ) • v = α · Φ.

By induction, for every n ≥ 0,

(α · Φ) • vn = α · Φ.(3.17)

As α is a polynomial, there exists some n0 ≥ 0 such that |vn0 | is greater than the
greatest length of a monomial of α. Using Lemma 3.10, equality (3.17) for such an
integer n0 means that there exists some k ∈ [1, n], v′′ suffix of vn0 such that

Φk • v′′ = α · Φ.(3.18)

Using the hypothesis of the lemma, we conclude that

‖Φ‖ ≥ ‖Φk • v′′‖ = ‖α · Φ‖ > ‖Φ‖,

which is contradictory.
Lemma 3.29. Let S ∈ DRB1,λ〈〈 V 〉〉, u ∈ X∗, such that ‖S � u‖ > ‖S‖. Then

S � u is loop-free.
Proof. Let us consider S, u fulfilling the hypothesis of the lemma and let us

consider the three possible forms of S � u proposed by Lemma 3.14. The forms (1)
or (2) are incompatible with the inequality ‖S � u‖ > ‖S‖. Hence S � u has the
form (3):

u = u1 · u2, S � u1 = S • v1 =

q∑
k=1

Ek · Φk, S � u =

q∑
k=1

(Ek � u2) · Φk, and

∀k ∈ [1, q], Ek � E1, Ek � u2 /∈ {ε, ∅}.

Hence S � u = α · Φ for some polynomial α ∈ DRB1,q〈V 〉. As for every k, Φk =
S • (v1Ek), we obtain that ‖S‖ ≥ ‖Φ‖. Finally

∞ > ‖S � u‖ = ‖α · Φ‖ > ‖S‖ ≥ ‖Φ‖,

and by Lemma 3.28, S � u is loop-free.
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Lemma 3.30. Let S ∈ DRB1,λ〈〈 V 〉〉, w ∈ X∗, such that
(1) S is loop-free,
(2) ∀u � w, ‖S � u‖ ≥ ‖S‖.

Then the derivation S
w−→ S � w is stacking.

Proof. S is left-deterministic. If it has type ∅ or (ε, j), the lemma is trivially true.
Otherwise

S =

q∑
k=1

Ek · Φk

for some class of letter [E1]� = {E1, . . . , Eq} and some matrix Φ ∈ DRBq,λ〈〈 V 〉〉.
Suppose that for some prefix u � w and k ∈ [1, q],

Ek � u = ε.(3.19)

Then S � u = Φk so that ‖S � u‖ ≤ ‖Φ‖ ≤ ‖S‖, which shows that S = S � u
while u �= ε. This would contradict the hypothesis that S is loop-free; hence (3.19) is
impossible.

Let us apply now Lemma 3.15 to the expression (E ·Φ)�w: case (2) is impossible,
and hence

(E · Φ)� w = (E � w) · Φ,

which is equivalent to

S ↑ (w)S � w.

Lemma 3.31. Let S ∈ DRB1,λ〈〈 V 〉〉, w ∈ X∗, k ∈ N, such that

‖S � w‖ ≥ ‖S‖+ k ·K0 + 1.

Then the derivation S
w−→ S � w contains some stacking subderivation of length k.

Sketch of proof. Let S = S0, . . . , Si, . . . , Sn be the derivation associated to (S,w).
Let i0 = max{i ∈ [0, n] | ‖Si‖ = min{‖Sj‖ | 0 ≤ j ≤ n}} and i1 = max{i ∈ [i0 +1, n] |
‖Si‖ = min{‖Sj‖ | i0 + 1 ≤ j ≤ n}}. Let w = w0w1w

′, where |w0| = i0, |w0w1| = i1.
As ‖S � w0w1‖ > ‖S � w0‖, by Lemma 3.29 S � w0w1 = Si1 is loop-free. Using

Lemma 3.13,

‖Sn‖ − ‖Si1‖ ≥ ‖Sn‖ − ‖Si0‖ − (‖Si1‖ − ‖S0‖) ≥ (k − 1) ·K0 + 1.

Using Lemma 3.13 we must have |w′| ≥ k. Let w′ = w2w3 with |w2| = k. By
definition of i1, ∀i ∈ [i1 + 1, i1 + k], ‖Si‖ ≥ ‖Si1‖+ 1.

By Lemma 3.30, the subderivation Si1 , . . . , Si1+k (associated to (Si1 , w2)) is stack-
ing.

Lemma 3.32. Let S, S′ ∈ DRB1,λ〈〈 V 〉〉, w ∈ X∗, k, d, d′ ∈ N, such that S is
d-marked and

(1) the derivation S
w−→ S′ contains no stacking subderivation of length k,

(2) |w| ≥ d · k.
Then S′ is unmarked.

Proof. By the hypothesis,

S =

q∑
k=1

αk · Φk

for some α ∈ DRB1,q〈 V 〉, Φ ∈ DRBq,λ〈〈 V 〉〉, ‖α‖ ≤ d, Φ unmarked.
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Let S
w−→ S′ = (S0, . . . , Sn). By induction on �, using hypothesis (1) and

Lemma 3.30 (on polynomials, which are particular cases of loop-free series) one can
show that for every � ∈ [0, d], there exists some prefix w� of w, with length |w�| ≤ k ·�,
such that either

S � w� =

q∑
k=1

(αk � w�) · Φk with ‖α
w�‖ < ‖α‖ − �(3.20)

or there exists an integer k ∈ [1, q] such that

S � w� = Φk.(3.21)

Let us apply this property to � = d: inequality (3.20) is not possible for this value
of � because, by hypothesis (2) of the lemma, ‖α‖ − � ≤ 0. Hence (3.21) is true and,
as Φ is unmarked, Φk is unmarked, so that S � w is unmarked.

4. Deduction systems.

4.1. General formal systems. We follow here the general philosophy of [16, 9].
Let us call a formal system any triple D = 〈A, H, |−− 〉 where A is a denumerable set
called the set of assertions, H, the cost function, is a mapping A → N ∪ {∞}, and
|−− , the deduction relation, is a subset of Pf (A)×A; A is given with a fixed bijection
with N (an “encoding” or “Gödel numbering”) so that the notions of recursive subset,
recursively enumerable subset, recursive function, over A,Pf (A), are defined, up to
this fixed bijection; we assume that D satisfies the following axioms:

(A1) ∀(P,A) ∈ |−− , (min{H(p), p ∈ P} < H(A)) or (H(A) = ∞).
(We let min(∅) = ∞.) We call D a deduction system iff D is a formal system satisfying
the additional axiom:

(A2) |−− is recursively enumerable.
In what follows we use the notation P |−−A for (P,A) ∈ |−− . We call a proof in the
system D, relative to the set of hypotheses H ⊆ A, any subset P ⊆ A fulfilling

∀p ∈ P , (∃Q ⊆ P,Q |−− p) or (p ∈ H).

We call P a proof iff

∀p ∈ P, (∃Q ⊆ P,Q |−− p)

(i.e., iff P is a proof relative to ∅).
Let us define the total map χ : A → {0, 1} and the partial map χ : A → {0, 1} by

χ(A) = 1 if H(A) = ∞, χ(A) = 0 if H(A) <∞,

χ(A) = 1 if H(A) = ∞, χ is undefined if H(A) <∞.

(χ is the “truth-value function”; χ is the “1-value function.”)
Lemma 4.1. Let P be a proof relative to H ⊆ H−1(∞) and A ∈ P . Then

χ(A) = 1.
In other words, if an assertion is provable from true hypotheses, then it is true.
Proof. Let P be a proof. We prove by induction on n that

P(n) : ∀p ∈ P,H(p) ≥ n.
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It is clear that, ∀p ∈ P , H(p) ≥ 0. Suppose that P(n) is true. Let p ∈ P−H : ∃Q ⊆ P ,
Q |−−p. By the induction hypothesis, ∀q ∈ Q, H(q) ≥ n and by (A1), H(p) ≥ n+1. It
follows that, ∀p ∈ P−H, H(p) = ∞. But by the hypothesis, ∀p ∈ H, H(p) = ∞.

A formal system D will be complete iff, conversely, ∀A ∈ A, χ(A) = 1 =⇒ there
exists some finite proof P such that A ∈ P . (In other words, D is complete iff every
true assertion is “finitely” provable.)

Lemma 4.2. If D is a complete deduction system, χ is a recursive partial map.
Proof. Let i �→ Pi be some recursive function whose domain is N and whose image

is Pf (A). Let h : (Pf (A)×A× N) → {0, 1} be a total recursive function such that

P |−−A iff ∃n ∈ N, h(P,A, n) = 1

(such an h exists, because the recursively enumerable sets are the projections of the
recursive sets; see [30]).

The following (informal) semialgorithm computes χ on the assertion A:
1. i := 0 ; n := 0 ; s := i + n;
2. P := Pi;

3. b := minp∈P {maxQ⊆P {h(Q, p, n)}};
4. c := (A ∈ P );
5. if (b ∧ c) then (χ(A) = 1 ; stop);

6. if i = 0 then (i := s + 1 ; n := 0; s := i + n)
else (i := i− 1 ; n := n + 1);

7. goto 2;

In order to define deduction relations from more elementary ones, we set the
following definitions.

Let |−− ⊆ Pf (A)×A. For every P,Q ∈ Pf (A) we set

• P
[0]

|−−Q iff P ⊇ Q,

• P
[1]

|−−Q iff ∀q ∈ Q, ∃R ⊆ P , R |−− q,

• P
〈0〉
|−−Q iff P

[0]

|−−Q,

• P
〈1〉
|−−Q iff ∀q ∈ Q, (∃R ⊆ P , R |−− q) or (q ∈ P ),

• P
〈n+1〉
|−− Q iff ∃R ∈ Pf (A), P

〈1〉
|−−R and R

〈n〉
|−−Q (for every n ≥ 0),

•
〈∗〉
|−− =

⋃
n≥0

〈n〉
|−− .

Given |−− 1, |−− 2 ⊆ Pf (A)× Pf (A), for every P,Q ∈ Pf (A) we set

P ( |−− 1 ◦ |−− 2)Q iff ∃R ⊆ A, (P |−− 1R) ∧ (R |−− 2Q).

4.2. Strategies. We define here a notion of strategy which consists of a map
allowing us to build proofs within a formal system D. This notion will be an essential
tool for proving that a formal system is complete. Let D = 〈A, H, |−− 〉 be a formal
system. We call a strategy for D any map S : A+ → P(A∗) such that

(S1) if B1 · · ·Bm ∈ S(A1A2 · · ·An), then ∃Q ⊆ {Ai | 1 ≤ i ≤ n− 1} such that

{Bj | 1 ≤ j ≤ m} ∪Q |−−An;

(S2) if B1 · · ·Bm ∈ S(A1A2 · · ·An), then

min{H(Ai) | 1 ≤ i ≤ n} = ∞ =⇒ min{H(Bj) | 1 ≤ j ≤ m} = ∞.
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Remark 4.3. It may happen that ε ∈ S(A1A2 · · ·An) (and, correspondingly, that
m = 0 in the above conditions): it just means that {A1, . . . , An−1} |−− An. It may
also happen that S(A1A2 · · ·An) = ∅: this means, intuitively, that S “does not know”
how to extend a proof (with hypothesis), with the only information being that the given
proof contains the assertions A1, A2, . . . , An.

Remark 4.4. Axiom (A1) on systems is similar to the “monotonicity” condition
of [16] or axiom (2.4.2′) of [9]. Axiom (S2) on strategies is similar to the “validity”
condition of [16] or property (2.4.1′) of [9].

Given a strategy S, we define T (S, A), the set of proof-trees associated to the
strategy S and the assertion A, as the set of all trees t fulfilling the following properties:

ε ∈ dom(t), t(ε) = A,(4.1)

and, for every path x0x1, . . . , xn−1 in t, with labels t(xi) = Ai+1 (for 0 ≤ i ≤ n− 1),
if xn−1 has m sons xn−1 · 1, . . . , xn−1 ·m ∈ dom(t) with labels t(xn−1 · j) = Bj (for
1 ≤ j ≤ m), then

(B1 · · ·Bm) ∈ S(A1 · · ·An) or m = 0.(4.2)

The proof-tree t is said to be closed iff it fulfills the following additional condition:
for every path x0x1, . . . , xn−1 in t, with labels t(xi) = Ai+1 (for 0 ≤ i ≤ n − 1), if
xn−1 has m sons xn−1 · 1, . . . , xn−1 · m ∈ dom(t) with labels t(xn−1 · j) = Bj (for
1 ≤ j ≤ m), then

m = 0 ⇒ ((∃i ∈ [1, n− 1], Ai = An) or (ε ∈ S(A1 · · ·An))).(4.3)

A node x ∈ dom(t) is said to be closed iff it is an internal node or it is a leaf fulfilling
property (4.3) above.

The proof-tree t is said to be repetition-free iff, for every x, x′ ∈ dom(t),

[x � x′ and t(x) = t(x′)] ⇒ x = x′ or x′ is a leaf.

For every tree t let us define

L(t) = {t(x) | ∀y ∈ dom(t), x � y ⇒ x = y}, I(t) = {t(x) | ∃y ∈ dom(t), x ≺ y}.

(Here L stands for “leaves” and I stands for “internal nodes.”)
Lemma 4.5. If S is a strategy for the deduction-system D, then, for every true

assertion A and every t ∈ T (S, A),
(1) the set of labels of t is a D-proof, relative to the set L(t)− I(t);
(2) every label of a leaf is true.
Proof. Let us suppose that H(A) = ∞. Let t ∈ T (S, A), P = im(t) (the set of

labels of t), H = L(t)− I(t).
Using (S2), one can prove by induction on the depth of x ∈ dom(t) that H(t(x)) =

∞. Point (2) is then proved. Let x be an internal node of t, with sons x·1, x·2, . . . , x·m
(m ≥ 1), and with ancestors y1, y2, . . . , yn−1, yn = x (n ≥ 1), such that

t(y1) · · · t(yn) = A1 · · ·An, t(x1) · · · t(xm) = B1 · · ·Bm.

By definition of T (S, A),

B1 · · ·Bm ∈ S(A1 · · ·An),
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and by condition (S1),

∃Q ⊆ {Ai | i ≤ n− 1}, such that {Bj | 1 ≤ j ≤ m} ∪Q |−−An.

It follows that for every p /∈ H, ∃R ⊆ P , R |−− p; hence

∀p ∈ P, (∃R ⊆ P , R |−− p) or p ∈ H.

Point (1) is proved.
For every D-strategy S, we use the notation

T (S) =
⋃

A∈H−1(∞)

T (S, A).

We call a global strategy w.r.t. S any total map Ŝ : T (S) → T (S) such that

∀t ∈ T (S), t � Ŝ(t).(4.4)

Ŝ is a terminating global strategy iff

∀A0 ∈ H−1(∞), ∃n0 ∈ N, Ŝn0(A0) = Ŝn0+1(A0),(4.5)

and Ŝ is a closed global strategy iff

∀A0 ∈ H−1(∞),∀n ∈ N, Ŝn(A0) is closed ⇐⇒ Ŝn(A0) = Ŝn+1(A0)(4.6)

(where the assertion A0 is identified with the tree reduced to one node whose label
is A0).

Lemma 4.6. Let D be a formal system, S a strategy for D, and Ŝ a global strategy
w.r.t. S. If Ŝ is terminating and Ŝ is closed, then D is complete.

Proof. Let A0 ∈ A. Under the hypothesis of the lemma, ∃n0 ∈ N such that
(4.5) and (4.6) are both true. Hence t∞ = Ŝn0(A0) is a closed proof-tree for S.
By Lemma 4.5 im(t∞) is a D-proof relative to the set L(t∞) − I(t∞). Let x be a
leaf such that t∞(x) ∈ L(t∞) − I(t∞). Let A0, A1, . . . , An = t∞(x) be the word
labeling the path from the root to x. As x is closed and t∞(x) ∈ L(t∞) − I(t∞) by
(4.3), ε ∈ S(A1 · · ·An); hence {A1, . . . , An−1} |−− t∞(x). It follows that im(t∞) is a
D-proof.

4.3. System B0. Let us define here a particular formal system B0 “tailored for
the σ-ψ̄-bisimulation problem for deterministic series.”

Let us fix two finite alphabets X,Y , a surjection ψ : X → Y (which induces a
surjection X∗ → Y ∗ denoted by the same symbol ψ), and its kernel ψ̄ = Kerψ ⊆
X∗ × X∗ (see section 3.2). We also fix a dpda M over the terminal alphabet X
and consider the variable alphabet V associated to M (see section 3.1) and the sets
DRBδ,λ〈〈 V 〉〉 (the sets of deterministic rational boolean matrices over V ∗, with δ rows
and λ columns). The set of assertions is defined by

A =
⋃
λ≥1

N× DRB1,λ〈〈 V 〉〉 × DRB1,λ〈〈 V 〉〉;

i.e., an assertion is here a weighted equation over DRB1,λ〈〈 V 〉〉 for some integer λ.
For every n ≥ 0 we define

B̄n = {R ⊆ ψ̄ | R fulfills conditions (1′), (2′), and (4) of Definition 3.21}.(4.7)
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We call the elements of B̄n the admissible relations of order n over X∗ × X∗. For
every pair (S, S′) ∈ DRB1,λ〈〈 V 〉〉 × DRB1,λ〈〈 V 〉〉, and n ∈ N ∪ {∞}, we define

Bn(S, S′) = {R ⊆ ψ̄ | R is a w-ψ̄-bisimulation of order n w.r.t. (S, S′)}.(4.8)

The “cost-function” H : A → N ∪ {∞} is defined by

H(n, S, S′) = n + 2 ·Div(S, S′),

where Div(S, S′) is the divergence between S and S′ (Definition 3.23). We recall that
it is defined by

Div(S, S′) = inf{n ∈ N | Bn(S, S′) = ∅}.

(We recall inf(∅) = ∞.)
Let us note that, by Lemma 3.22,

χ(n, S, S′) = 1 ⇐⇒ S ∼ S′.

We define a binary relation ||−− ⊆ Pf (A)×A, the elementary deduction relation,
as the set of all the pairs having one of the following forms:
(R0)

{(p, S, T )} ||−− (p + 1, S, T )

for p ∈ N, λ ∈ N− {0}, S, T ∈ DRB1,λ〈〈 V 〉〉;
(R1)

{(p, S, T )} ||−− (p, T, S)

for p ∈ N, λ ∈ N− {0}, S, T ∈ DRB1,λ〈〈 V 〉〉;
(R2)

{(p, S, S′), (p, S′, S′′)} ||−− (p, S, S′′)

for p ∈ N, λ ∈ N− {0}, S, T ∈ DRB1,λ〈〈 V 〉〉;
(R3)

∅ ||−− (0, S, S)

for S ∈ DRB1,λ〈〈 V 〉〉;
(R′3)

∅ ||−− (0, S, ρe(S))

for S ∈ DRB1,1〈〈 V 〉〉;
(R4)

{(p + 1, S � x, T � x′) | (x, x′) ∈ R1} ||−− (p, S, T )

for p ∈ N, λ ∈ N− {0}, S, T ∈ DRB1,λ〈〈 V 〉〉, (S �= ε ∧ T �= ε), and R1 ∈ B̄1;
(R5)

{(p, S, S′)} ||−− (p + 2, S � x, S′ � x′)

for p ∈ N, λ ∈ N − {0}, S, T ∈ DRB1,λ〈〈 V 〉〉, (x, x′) ∈ ψ̄, S ∼ S′ ∧
S � x ∼ S′ � x′;
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(R6)

{(p, S1 · T + S, T )} ||−− (p, S∗
1 · S, T )

for p ∈ N, λ ∈ N−{0}, S1 ∈ DRB1,1〈〈 V 〉〉, S1 �= ε, (S1, S) ∈ DRB1,λ+1〈〈 V 〉〉,
T ∈ DRB1,λ〈〈 V 〉〉;

(R7)

{(p, S, S′)} ||−− (p, S · T, S′ · T )

for p ∈ N, δ, λ ∈ N− {0}, S, S′ ∈ DRB1,δ〈〈 V 〉〉, T ∈ DRBδ,λ〈〈 V 〉〉;
(R8)

{(p, Ti,∗, T
′
i,∗) | 1 ≤ i ≤ δ} ||−− (p, S · T, S · T ′)

for p ∈ N, δ, λ ∈ N− {0}, S ∈ DRB1,δ〈〈 V 〉〉, T, T ′ ∈ DRBδ,λ〈〈 V 〉〉.
Remark 4.7. We do not claim that this formal system is recursively enumer-

able: due to rule (R5), establishing this property is as difficult as solving the general
bisimulation problem for equational graphs of finite out-degree. This difficulty will be
overcome in section 10 by an elimination lemma.

Lemma 4.8. Let P ∈ Pf (A), A ∈ A, such that P ||−−A. Then min{H(p) |
p ∈ P} ≤ H(A).

Let us introduce the following notation: for every n ∈ N ∪ {∞}, λ ∈ N − {0},
S, S′ ∈ DRB1,λ〈〈 V 〉〉,

S ∼n S′ ⇔ Bn(S, S′) �= ∅.

Proof. Let us check this property for every type of rule.
(R0) p + 2 ·Div(S, T ) ≤ p + 1 + 2 ·Div(S, T ).
(R1) p + 2 ·Div(S, T ) = p + 2 ·Div(T, S).
(R2) As the weight p is the same in all the considered equations, we are reduced

to proving that ∀n ∈ N, S ∼n S′ ∧ S′ ∼n S′′ =⇒ S ∼n S′′. This is true because, if
R ∈ Bn(S, S′) and R′ ∈ Bn(S′, S′′), then R ◦R′ ∈ Bn(S, S′′).

(R3) Let us note that IdX∗ ⊆ ψ̄. It follows that ∞ = Div(S, S).
(R′3) The definition of G from G0 is such that S ≡ ρe(S); hence S ∼ ρe(S) and

∞ = Div(S, ρe(S)).
(R4) Let n ∈ N such that

∀(x, x′) ∈ R1, n ≤ Div(S � x, S′ � x′).

Let us choose, for every (x, x′) ∈ R1, some Rx,x′ ∈ Bn(S � x, S′ � x′). Let us then
define

R =
⋃

(x,x′)∈R1

(x, x′) · Rx,x′ .

R belongs to Bn+1(S, S
′). It follows that

min{Div(S � x, S′ � x′) | (x, x′) ∈ R1}+ 1 ≤ Div(S, S′),

and hence that

min{H(p + 1, S � x, S′ � x′) | (x, x′) ∈ R1} ≤ H(p, S, S′)− 1.
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(R5) By the hypothesis, H(p + 2, S � x, S′ � x′) = ∞.
(R6) Let n ∈ N such that

n ≤ Div(S1 · T + S, T ).

Let R ∈ Bn(S1 · T + S, T ). Let R′ = R〈S1,∗〉 (see definition (3.14) in section 3.2).
Since we have

R′ ∈ Bn(S∗
1 · S, T ),

we get the inequality Div(S1 · T + S, T ) ≤ Div(S∗
1 · S, T ).

(R7) Let n ≤ Div(S, S′) and R ∈ Bn(S, S′). Let us consider R′ = 〈S|R〉 (see
definition (3.8) in section 3.2). Since we have R′ ∈ Bn(S · T, S′ · T ), the required
inequality is proved.

(R8) Let n ≤ min{Div(Ti,∗, T
′
i,∗) | 1 ≤ i ≤ δ} and, for every i ∈ [1, δ], let

Ri ∈ Bn(Ti,∗, T
′
i,∗). Let us consider R′ = 〈S,R〉 (see definition (3.9) in section 3.2).

Since we know that

R′ ∈ Bn(S · T, S · T ′),

the required inequality is proved.
Let us define |−− as follows: for every P ∈ Pf (A), A ∈ A,

P |−−A⇐⇒ P
〈∗〉
||−− ◦

[1]

||−− 0,3,4◦
〈∗〉
||−− {A},

where ||−− 0,3,4 is the relation defined by R0, R3, R
′
3, R4 only. We let

B0 = 〈A, H, |−− 〉.

Lemma 4.9. B0 is a formal system.
Proof. Using Lemma 4.8, one can show by induction on n that

P
〈n〉
||−− Q =⇒ ∀q ∈ Q, min{H(A) | A ∈ P} ≤ H(q).

The proof of Lemma 4.8 also reveals that

P ||−− {0,3,4}q =⇒ (min{H(p) | p ∈ P} < H(q)) or H(q) = ∞.

It follows that, for every m,n ≥ 0,

P
〈n〉
||−− Q

[1]

||−− 0,3,4 R
〈m〉
||−− q =⇒ (min{H(p) | p ∈ P} < H(q)) or H(q) = ∞.

Hence axiom (A1) is fulfilled.
Let us note the following algebraic corollaries of Lemma 4.8.
Corollary 4.10.

(C1) ∀λ ∈ N − {0}, S1 ∈ DRB1,1〈〈 V 〉〉, S1 �≡ ε, (S1, S) ∈ DRB1,λ+1〈〈 V 〉〉,
T ∈ DRB1,λ〈〈 V 〉〉,

S1 · T + S ∼ T =⇒ S∗
1 · S ∼ T.

(C2) ∀δ, λ ∈ N− {0}, S, S′ ∈ DRB1,δ〈〈 V 〉〉, T ∈ DRBδ,λ〈〈 V 〉〉,

S ∼ S′ =⇒ S · T ∼ S′ · T.
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(C3) ∀λ ∈ N− {0}, S, S′ ∈ DRB1,1〈〈 V 〉〉, T ∈ DRB1,λ〈〈 V 〉〉,

[S · T ∼ S′ · T and T �= ∅λ] =⇒ S ∼ S′.

(C4) ∀δ, λ ∈ N− {0}, S ∈ DRB1,δ〈〈 V 〉〉, T, T ′ ∈ DRBδ,λ〈〈 V 〉〉,

T ∼ T ′ =⇒ S · T ∼ S · T ′.

Proof. Statement (Ci) (for i ∈ {1, 2, 4}) is a direct corollary of the fact that
the value of H on the left-hand side of some rule (Rj) is smaller than or equal to the
value of H on the right-hand side of rule (Rj): (C1) is justified by (R6), (C2) by (R7),
(C4) by (R8).

Let us prove (C3): Suppose that λ ∈ N − {0}, S, S′ ∈ DRB1,1〈〈 V 〉〉, T ∈
DRB1,λ〈〈 V 〉〉, and

S · T ∼ S′ · T and S �∼ S′.(4.9)

Let R ∈ B∞(S · T, S′ · T ) and let

(u, u′) = min{(v, v′) ∈ R | (S � v = ε) ⇔ (S′ � v′ �= ε)}.

From the hypothesis that R ∈ B∞(S · T, S′ · T ), we get that

∀(v, v′) ∈ R, (S · T )� v ∼ (S′ · T )� v′,

and by the choice of (u, u′) we obtain that

T ∼ (S′ � u′) · T or (S � u) · T ∼ T,

which, by (C1), implies

T ∼ (S′ � u′)∗ · ∅λ or (S � u)∗ · ∅λ ∼ T,

i.e., T ∼ ∅λ, which implies (because G is a reduced grammar) that

T = ∅λ.(4.10)

We have proved that (4.9) implies (4.10), and hence (C3).

4.4. Congruence closure. Let us consider the subset C of the rules of B0, con-
sisting of all the instances of the metarules (R0), (R1), (R2), (R3), (R′3), (R6), (R7),
(R8). We also denote by ||−−C ⊆ Pf (A)×A the set of all instances of these metarules.
We are interested here (and later in section 10.1) in special subsets of A which express
an ordinary weighted equation (p, S, S′) together with an admissible binary relation R
of finite order (which is a candidate to be a w-ψ̄-bisimulation w.r.t. (S, S′)).

For every p, n ∈ N, λ ∈ N − {0}, S, S′ ∈ DRB1,λ〈〈 V 〉〉, R ∈ B̄n, we use the
notation

[p, S, S′,R] = {(p + |u|, S � u, S′ � u′) | (u, u′) ∈ R}.(4.11)

One can check the following properties.
Composition. For every p, n ∈ N, λ ∈ N−{0}, S, T ∈ DRB1,λ〈〈 V 〉〉, R1,R2 ∈ B̄n,

[p, S, S′,R1] ∪ [p, S′, S′′,R2]
〈∗〉
||−− C [p, S, S′′,R1 ◦ R2].
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Star. For every p, n ∈ N, λ ∈ N − {0}, S1 ∈ DRB1,1〈〈 V 〉〉, S1 �≡ ε, (S1, S) ∈
DRB1,λ+1〈〈 V 〉〉, T ∈ DRB1,λ〈〈 V 〉〉, R ∈ B̄n,

[p, S1 · T + S, T,R]
〈∗〉
||−− C [p, S∗

1 · S, T,R〈S1,∗〉].

Right-product. For every p, n ∈ N, δ, λ ∈ N − {0}, S, S′ ∈ DRB1,δ〈〈 V 〉〉, T ∈
DRBδ,λ〈〈 V 〉〉, R ∈ B̄n,

[p, S, S′,R]
〈∗〉
||−− C [p, S · T, S′ · T, 〈S|R〉].

Left-product. For every p, n ∈ N, δ, λ ∈ N − {0}, S ∈ DRB1,δ〈〈 V 〉〉, T, T ′ ∈
DRBδ,λ〈〈 V 〉〉, R1, . . . ,Rδ ∈ B̄n,

⋃
1≤i≤δ

[p, Ti,∗, T
′
i,∗,Ri]

〈∗〉
||−− C [p, S · T, S · T ′, 〈S,R〉].

Given a subset P ∈ Pf (A), we define the congruence closure of P , denoted by
Cong(P ), to be the set

Cong(P ) = {A ∈ A | P
〈∗〉
||−− C {A}}.(4.12)

Also, for every integer q ≥ 0 we define

Congq(P ) = {A ∈ A | P
〈q〉
||−− C {A}}.(4.13)

5. Deterministic spaces.

5.1. Linear independence. We adapt here the key idea of [23, 24] to bisimu-
lation of vectors.

Definitions. Let (W,∼) be some structured alphabet. A vector U =
∑n

i=1 γi · Ui

where �γ ∈ DRB1,n〈〈 W 〉〉, Ui ∈ DRB1,λ〈〈 W 〉〉 is called a linear combination of
the Ui’s. We define as a deterministic space of rational vectors (d-space for short) any
subset V of DRB1,λ〈〈 W 〉〉 which is closed under finite linear combinations. Given
any set G = {Ui | i ∈ I} ⊆ DRB1,λ〈〈 W 〉〉, one can check that the set V of all (finite)
linear combinations of elements of G is a d-space (by Lemma 3.11) and that it is the
smallest d-space containing G. Therefore we call V the d-space generated by G and
we call G a generating set of V (we note V = V({Ui | i ∈ I})). (Similar definitions
can be given for families of vectors.)

Linear independence. We now let W = V . Following an analogy with classical
linear algebra, we now develop a notion corresponding to a kind of linear independence
of the classes (mod ∼) of the given vectors. Let us extend the equivalence relation ∼
to d-spaces, as follows: if V1,V2 are d-spaces,

V1 ∼ V2 ⇔ ∀i, j ∈ {1, 2},∀S ∈ Vi,∃S′ ∈ Vj , S ∼ S′.

Lemma 5.1. Let S1, . . . , Sj , . . . , Sm ∈ DRB1,λ〈〈 V 〉〉. The following are equiva-
lent:

(1) ∃�α, �β ∈ DRB1,m〈〈 V 〉〉, �α �∼ �β, such that

m∑
j=1

αj · Sj ∼
m∑
j=1

βj · Sj .
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(2) ∃j0 ∈ [1,m], ∃�γ ∈ DRB1,m〈〈 V 〉〉, �γ �∼ εmj0 , such that

Sj0 ∼
m∑
j=1

γj · Sj .

(3) ∃j0 ∈ [1,m], ∃�γ′ ∈ DRB1,m〈〈 V 〉〉, γ′
j0
∼ ∅, such that

Sj0 ∼
m∑
j=1

γ′
j · Sj .

(4) ∃j0 ∈ [1,m], such that

V((Sj)1≤j≤m) ∼ V((Sj)1≤j≤m,j =j0).

The equivalence between (1), (2), and (3) was first proved in [23, 24] in the case
where the Sj ’s are configurations qjω, with the same ω and ψ̄ = IdX∗ , and hence ∼ is
just the language equivalence relation ≡. This is the key idea around which we have
developed the notion of d-spaces.

Proof. (1) ⇒ (2): Let us consider R ∈ B∞(�α · S, �β · S), ν = Div(�α, �β), and

(u, v) = min{(w,w′) ∈ R ∩X≤ν ×X≤ν | ∃j ∈ [1,m],

(�α� w = εmj ) ⇔ (�β � w′ �= εmj )}.(5.1)

Let us suppose, for example, that �α � u = εmj0 while �β � v �= εmj0 and let �γ = �β � u.

As (u, v) ∈ R ∈ B∞(�α · S, �β · S),

(�α · S)� u ∼ (�β · S)� v.(5.2)

Using Lemma 3.15 we obtain

(�α · S)� u = Sj0 .(5.3)

Let us examine now the right-hand side of equality (5.2). Let (u′, v′) ≺ (u, v) with
|u′| = |v′|. By condition (4) in Definition 3.21 (u′, v′) ∈ R (here is the main place

where this condition (4) is used) and by minimality of v, �β � v′ is a unit iff �α� u′ is

a unit. But if �α � u′ is a unit, then �α � u = ∅, which is false. Hence �β � v′ is not a
unit. Hence, ∀v′ ≺ v, �β � v′ is not a unit. By Lemma 3.15

(�β · S)� v = (�β � v) · S.(5.4)

Let us plug equalities (5.3) and (5.4) into equivalence (5.2) and let us define �γ = �β�v.
We obtain

Sj0 ∼ �γ · S, �γ �= εmj0 .

(2) ⇒ (3):

Sj0 ∼ γj0 · Sj0 +

⎛
⎝∑

j =j0

γj · Sj

⎞
⎠, γj0 �= ε.
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By Corollary 4.10, point (C1), we can deduce that

Sj0 ∼
∑
j =j0

γ∗
j0γj · Sj = ∇∗

j0(γ) · S.

Taking γ′ = ∇∗
j0

(γ) we obtain

Sj0 ∼ γ′ · S, where γ′
j0 = ∅.

(3) ⇒ (4): Let us denote by Ŝ the vector (S1, . . . , Sj0−1, ∅, Sj0+1 . . . , Sm) ∈
DBm,1〈〈 V 〉〉. If T = �α · S, then T ∼ (�α∇j0

�γ′) · Ŝ.
(4) ⇒ (1): Let us suppose (4) is true for some integer j0. The element Sj0 is

clearly equivalent (mod ∼) to two linear combinations of the Sj ’s with nonequivalent
vectors of coefficients (mod ∼). Hence (1) is true.

5.2. Triangulations. Let S1, S2, . . . , Sd be a family of deterministic row-vectors
over the structured alphabet V (i.e., Si ∈ DRB1,λ〈〈 V 〉〉, where λ ∈ N − {0}). We
recall that V is the alphabet associated with some dpda M as defined in section 2.4.

Let us consider a sequence S of n “weighted” linear equations:

(Ei) : pi,

d∑
j=1

αi,jSj ,

d∑
j=1

βi,jSj ,(5.5)

where pi ∈ N− {0}, and A = (αi,j), B = (βi,j) are deterministic rational matrices of
dimension (n, d), with indices m ≤ i ≤ m + n− 1, 1 ≤ j ≤ d.

For any weighted equation, E = (p, S, S′), we recall that the “cost” of this equation
is H(E) = p + 2 ·Div(S, S′).

Let us define an oracle on deterministic vectors as a mappingO :
⋃

λ≥1 DRB1,λ〈〈 V 〉〉
× DRB1,λ〈〈 V 〉〉 → P(X∗ ×X∗) such that

∀(S, S′) ∈ DRB1,λ〈〈 V 〉〉 × DRB1,λ〈〈 V 〉〉, S ∼ S′ ⇒ O(S, S′) ∈ B∞(S, S′).

In other words, an oracle is a choice of w-ψ̄-bisimulation for every pair of equivalent
vectors (modulo ∼). Let us denote by Ω the set of all oracles. Let us fix an oracle O
throughout this section.

We associate to every system (5.5) another equation, INV(O)(S), which “trans-
lates the equations of S into equations over the coefficients (αi,j , βi,j) only.”2 The

general idea of the construction of INV(O) consists in iterating the transformation
used in the proof of (1) ⇒ (2) ⇒ (3) in Lemma 5.1, i.e., the classical idea of trian-
gulating a system of linear equations. Of course we must deal with the weights and
relate the construction with the deduction system B0.

We assume here that

∀j ∈ [1, d], Sj �= ∅λ.(5.6)

Let us define INV(O)(S),W(O)(S) ∈ N ∪ {⊥}, D(O)(S) ∈ N by induction on n.
W(O)(S) is the weight of S. D(O)(S) is the weak codimension of S.

2The function INV defined in [34] was an “elaborated version” of the inverse systems defined
in [23, 24] in the case of a single equation. We consider here a relativization of this notion to some
oracle O.
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Case 1. αm,∗ ∼ βm,∗.

INV(O)(S) = (W(O)(S), αm,∗, βm,∗), W(O)(S) = pm − 1, D(O)(S) = 0.

Case 2. αm,∗ �∼ βm,∗, n ≥ 2, pm+1−pm ≥ 2 ·Div(αm,∗, βm,∗)+1. Let us consider

R = O(
∑d

j=1 αm,jSj ,
∑d

j=1 βm,jSj), ν = Div(αm,∗, βm,∗), and

(u, u′) = min{(v, v′) ∈ R ∩X≤ν ×X≤ν | ∃j ∈ [1, d],

(αm,∗ � v = ελj ) ⇔ (βm,∗ � v′ �= ελj )}.(5.7)

Let us consider the integer j0 ∈ [1, d] such that (αm,∗ � u = ελj0) ⇔ (βm,∗ � u′ �= ελj0).
Subcase 1. αm,j0 � u = ε, βm,j0 � u′ �= ε. Let us consider the equation

(E ′m) : pm + 2 · |u|, Sj0 ,

d∑
j=1
j =j0

(βm,j0 � u′)∗(βm,j � u′)Sj

and define a new system of weighted equations S ′ = (E ′i)m+1≤i≤m+n−1 by

(E ′i) : pi,
∑
j =j0

[(αi,j + αi,j0(βm,j0 � u′)∗(βm,j � u′)]Sj ,

∑
j =j0

[(βi,j + βi,j0(βm,j0 � u′)∗(βm,j � u′)]Sj ,(5.8)

where the above equation is seen as an equation between two linear combinations of
the Si’s, 1 ≤ i ≤ d, where the j0th coefficient is ∅ on both sides. We then define

INV(O)(S) = INV(O)(S ′), W(O)(S) = W(O)(S ′), D(O)(S) = D(O)(S ′) + 1.

Subcase 2. αm,j0 � u �= ε, βm,j0 � u′ = ε (analogous to Subcase 1).
Case 3. αm,∗ �∼ βm,∗, n = 1. We then define

INV(O)(S) = ⊥, W(O)(S) = ⊥, D(O)(S) = 0,

where ⊥ is a special symbol which can be understood as meaning “undefined.”
Case 4. αm,∗ �∼ βm,∗, n ≥ 2, pm+1 − pm ≤ 2 ·Div(αm,∗, βm,∗). We then define

INV(O)(S) = ⊥, W(O)(S) = ⊥, D(O)(S) = 0.

Lemma 5.2. Let S be a system of weighted linear equations with deterministic
rational coefficients. If INV(O)(S) �= ⊥, then INV(O)(S) is a weighted linear equation
with deterministic rational coefficients.

Proof. The proof follows from Lemmas 3.18 and 3.19 and the formula defining S ′

from S.
From now on, and up to the end of this section, we simply write “linear equation”

to mean “weighted linear equations with deterministic rational coefficients.”
Lemma 5.3. Let S be a system of linear equations. If INV(O)(S) �= ⊥, then

(1) {INV(O)(S)} ∪ {Ei | m ≤ i ≤ m + D(O)(S)− 1} |−− Em+D(O)(S);

(2) min{H(Ei) | m ≤ i ≤ m + D(O)(S)} = ∞ =⇒ H(INV(O)(S)) = ∞.
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...

∗

Em E ′
m

〈∗〉
||−−

Em+1

〈∗〉
||−− E ′

m+1

...

Ei

〈∗〉
||−− E ′

i

...
...

Em+D−1

〈∗〉
||−− E ′

m+D−1

τ−1(Em+D)
〈∗〉
−−|| τ−1(E ′

m+D)

INV(O)(S ′)Em+D

Fig. 2. Proof of Lemma 5.2.

Proof. See in Figure 2 the “graph of the deductions” we use for proving point (1).
Let us prove by induction on D(O)(S) the following strengthened version of point (1):

{INV(O)(S)} ∪ {Ei | m ≤ i ≤ m + D(O)(S)− 1}
〈∗〉
||−− τ−1(Em+D(O)(S)),(5.9)

where, for every integer k ∈ Z, τk : {(p, S, S′) ∈ A | p ≥ −k} → A is the translation
map on the weights τk(p, S, S

′) = (p + k, S, S′).

If D(O)(S) = 0: As INV(O)(S) �= ⊥, S must fulfill the hypothesis of Case 1.

Em =

⎛
⎝pm,

d∑
j=1

αm,jSj ,

d∑
j=1

βm,jSj

⎞
⎠ = Em+D(O)(S),

INV(O)(S) = (pm − 1, αm,∗, βm,∗).

Using rule (R7) we obtain

INV(O)(S)
〈∗〉
||−−

⎛
⎝pm − 1,

d∑
j=1

αm,jSj ,

d∑
j=1

βm,jSj

⎞
⎠ = τ−1(Em).
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If D(O)(S) = n + 1, n ≥ 0: S must fulfill Case 2.

• Suppose Case 2, Subcase 1 occurs.

As the relation R used in the construction of E ′m from Em is a w-ψ̄-bisimulation
w.r.t. the pair of sides of equation Em, using (R5) and then (R6) (this is possible
because βm,j0 � u′ �= ε), we obtain a deduction:

Em
〈2·|u|+1〉
||−− E ′m.(5.10)

Using (R2), (R8) we get that, for every i ∈ [m + 1,m + D(O)(S)],

{Ei, E ′m}
〈∗〉
||−−

⎛
⎝max{pi, pm + 2 |u |},

∑
j =j0

(αi,j + αi,j0(βm,j � u′))Sj ,
∑
j =j0

(βi,j + βi,j0(βm,j � u′))Sj

⎞
⎠

but the hypothesis of Case 2 implies that max{pm+1, pm + 2 | u |} = pm+1, and the

fact that INV(O)(S ′) is defined implies that ∀i ∈ [m + 1,m + D(O)(S)], pi ≥ pm+1;
hence, max{pi, pm + 2 | u |} = pi and the right-hand side of the above deduction is
exactly E ′i. Therefore,

∀i ∈ [m + 1,m + D(O)(S)], {Ei, E ′m}
〈∗〉
||−− E ′i.(5.11)

Using deductions (5.10) and (5.11), we obtain that

{Ei | m ≤ i ≤ m + D(O)(S)− 1}
〈∗〉
||−− {E ′i | m ≤ i ≤ m + D(O)(S)− 1}.(5.12)

By the induction hypothesis,

INV(O)(S ′) ∪ {E ′i | m + 1 ≤ i ≤ m + 1 + D(O)(S ′)− 1}
〈∗〉
||−− τ−1(E ′m+1+D(O)(S′)),

which is equivalent to

INV(O)(S) ∪ {E ′i | m + 1 ≤ i ≤ m + D(O)(S)− 1}
〈∗〉
||−− τ−1(E ′m+D(O)(S)).(5.13)

As pm + 2 · |u| ≤ pm+1 − 1 ≤ pm+D(O)(S) − 1, we have also the following inverse
deduction (which is similar to deduction (5.11)):

{E ′m, τ−1(E ′m+D(O)(S))}
〈∗〉
||−− τ−1(Em+D(O)(S)).(5.14)

Combining deductions (5.12), (5.13), and (5.14), we have proved (5.9). Using rule
(R0), this last deduction leads to point (1) of the lemma.

• Suppose now that Case 2, Subcase 2 occurs.

This case can be treated in the same way as Subcase 1, by simply exchanging the
roles of α, β.
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Let us prove statement (2) of the lemma.

We prove by induction on D(O)(S) the statement

min{H(Ei) | m ≤ i ≤ m + D(O)(S)} = ∞ =⇒ H(INV(O)(S)) = ∞.(5.15)

If D(O)(S) = 0: As INV(O)(S) �=⊥, Case 1 must occur. αm,∗ ∼ βm,∗ implies

that H(INV(O)(S)) = ∞, and hence the statement is true.

If D(O)(S) = p + 1, p ≥ 0: As D(O)(S) ≥ 1 and INV(O)(S) �=⊥, Case 2 must
occur.

Using deductions (5.10) and (5.11) established above we obtain that

{Ei | m ≤ i ≤ m + D(O)(S)}
〈∗〉
||−− {E ′i | m + 1 ≤ i ≤ m + 1 + D(O)(S ′)},

which proves that

min{H(Ei) | m ≤ i ≤ m + D(O)(S)} ≤ min{H(E ′i) | m + 1 ≤ i ≤ m + 1 + D(O)(S ′)}.
(5.16)

Since D(O)(S ′) = D(O)(S)− 1, we can use the induction hypothesis

min{H(E ′i) | m + 1 ≤ i ≤ m + 1 + D(S ′)} = ∞ =⇒ H(INV(O)(S ′)) = ∞.(5.17)

Since INV(O)(S) = INV(O)(S ′), (5.16), (5.17) imply statement (5.15).

Lemma 5.4. Let S be a system of linear equations satisfying the hypothesis of
Case 2. Then, ∀i ∈ [m + 1,m + n− 1],

‖ α′
i,∗ ‖ ≤ ‖ αi,∗ ‖ + ‖ βm,∗ ‖ +K0 | u |,

‖ β′
i,∗ ‖ ≤ ‖ βi,∗ ‖ + ‖ βm,∗ ‖ +K0 | u | .

Proof. The formula defining S ′ from S shows that

α′
i,∗ = αi,∗∇j0(∇∗

j0(βm,∗ � u′)),

β′
i,∗ = βi,∗∇j0(∇∗

j0(βm,∗ � u′)).

From these equalities and Lemmas 3.18, 3.19, and 3.13, the inequalities on the norm
follow.

Let us consider the function F defined by

F (d, n) = max{Div(A,B) | A,B ∈ DRB1,d〈〈 V 〉〉, ‖ A ‖≤ n, ‖ B ‖≤ n,A �∼ B}.

For every integer parameter K0,K1,K2,K3,K4 ∈ N − {0}, we define integer
sequences (δi, �i, Li, si, Si,Σi)m≤i≤m+n−1 by
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δm = 0, �m = 0, Lm = K2, sm = K3 ·K2 + K4, Sm = 0, Σm = 0,(5.18) ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

δi+1 = 2 · F (d, si + Σi) + 1,

�i+1 = 2 · δi+1 + 3,

Li+1 = K1 · (Li + �i+1) + K2,

si+1 = K3 · Li+1 + K4,

Si+1 = si + Σi + K0F (d, si + Σi),

Σi+1 = Σi + Si+1

(5.19)

for m ≤ i ≤ m + n− 2.
These sequences are intended to have the following meanings when K0,K1,K2,

K3,K4 are chosen to be the constants defined in section 6 and the equations (Ei) are
labeling nodes of a B-stacking sequence (see section 8.2):

• δi+1 ≤ increase of weight between Ei, Ei+1.
• �i+1 ≥ increase of depth between Ei, Ei+1.
• Li+1 ≥ increase of depth between Em, Ei+1.
• si+1 ≥ size of the coefficients of Ei+1.

• Si+1 ≥ size of the coefficients of E(i+1−m)
i+1 (these systems are introduced below

in the proof of Lemma 5.5).

• Σi+1 ≥ increase of the coefficients between E(i−m)
k , E(i+1−m)

k (for k ≥ i + 1).

For every linear equation E = (p,
∑d

j=1 αjSj ,
∑d

j=1 βjSj), we define

|‖ E |‖= max{‖ (α1, . . . , αd) ‖, ‖ (β1, . . . , βd) ‖}.

Lemma 5.5. Let S = (Ei)m≤i≤m+d−1 be a system of d linear equations such that
H(Ei) = ∞ (for every i) and

(1) ∀i ∈ [m,m + d− 1], |‖ Ei |‖≤ si,
(2) ∀i ∈ [m,m + d− 2], W(Ei+1)−W(Ei) ≥ δi+1.

Then
(3) INV(O)(S) �=⊥,
(4) D(O)(S) ≤ d− 1,

(5) |‖ INV(O)(S) |‖≤ Σm+D(O)(S) + sm+D(O)(S).
Proof. (Figure 3 might help the reader to follow the definitions below.) Let

us define a sequence of systems S(i−m) = (E(i−m)
k )m≤i≤k≤m+d−1, where i ∈ [m,

m + D(O)(S)]; by induction

• E(0)
k = Ek for m ≤ k ≤ m + d− 1;

• if Case 1 or Case 3 or Case 4 is realized, D(O)(S) = 0; hence S(i−m) is
well-defined for m ≤ i ≤ m + D(O)(S);

• if Case 2 is realized, then we set, ∀i ≥ m + 1, E(i−m)
k = (E ′k)(i−m−1) for

m + 1 ≤ k ≤ m + d− 1.
Let us prove by induction on i ∈ [m,m + D(O)(S)] that, ∀k ∈ [i,m + d− 1],

|‖ E(i−m)
k |‖≤ sk + Σi.(5.20)

i = m: In this case

|‖ E(i−m)
k |‖=|‖ Ek |‖≤ sk = sk + Σm.

i + 1 ≤ m + D(O)(S): In this case, by Lemma 5.4,

|‖ E(i+1−m)
k |‖≤|‖ E(i−m)

k |‖ + |‖ E(i−m)
i |‖ +K0 | u |,
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(E(0)
m )′

E(1)
i

Em = E(0)
m

Ei = E(0)
i

Em+1 = E(0)
m+1 E(1)

m+1

· · ·

. . .

E(i−m)
i

(E(i−1−m)
i−1 )′

(E(D−1)
m−1+D)′

. . .

E(1)
m+d−1 · · · E(i−m)

m+d−1 E(D)
m+d−1Em+d−1 = E(0)

m+d−1

...
...

...
...

...
...

Fig. 3. Proof of Lemma 5.4.

where R = O(
∑d

j=1 α
(i−m)
i,j Sj ,

∑d
j=1 β

(i−m)
i,j Sj), ν = Div(α

(i−m)
i,∗ , β

(i−m)
i,∗ ), and

(u, u′) = min{(v, v′) ∈ R ∩X≤ν ×X≤ν | ∃j ∈ [1, d],

(α
(i−m)
i,∗ � v = ελj ) ⇔ (β

(i−m)
i,∗ � v′ �= ελj )}.

By definition of F and the induction hypothesis,

| u |≤ F (d, |‖ E(i−m)
i |‖) ≤ F (d, si + Σi).

Hence

|‖ E(i+1−m)
k |‖≤ (sk + Σi) + (si + Σi) + K0F (d, si + Σi) = (sk + Σi) + Si+1

= sk + Σi+1.

Let us note that D(O)(S) is always an integer and that this proof is valid for m ≤ i ≤
m + D(O)(S), i ≤ k ≤ m + d− 1.

We now prove that INV(O)(S) �=⊥. Let us consider the system

(E(D(O)(S))
k )m+D(O)(S)≤k≤m+d−1.

If D(O)(S) = d−1: (E(D(O)(S))) fulfills either Case 1 or Case 3 of the definition

of INV(O) (just because this system consists of a single equation).
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Using the successive deductions (5.10), (5.11) established in the proof of Lemma
5.3 we get that

{Ei | m ≤ i ≤ m + d− 1}
〈∗〉
||−− {E(d−1)

m+d−1}.

Using now the hypothesis that H(Ei) = ∞ (for m ≤ i ≤ m + d− 1), we obtain

H(E(d−1)
m+d−1) = ∞.(5.21)

For any system of equations S, let us define the support of the system as

supp(S) =

{
j ∈ [1, d]

∣∣∣∣∣
m+n−1∑
i=m

αi,j + βi,j �= ∅
}
.

Let us consider δ = Card(supp(S(d−1)). One can prove by induction on i that

Card(supp(S(i−m)) ≤ d− i + m,

and hence

δ = Card(supp(S(d−1)) ≤ d− (d− 1) = 1.

• If δ = 1, supp(S(d−1)) = {j0} for some j0 ∈ [1, d].
By Corollary 4.10, point (C3), and by hypothesis (5.6), the implication

[(α
(d−1)
m+d−1,j0

Sj0 ∼ β
(d−1)
m+d−1,j0

Sj0) =⇒ α
(d−1)
m+d−1,j0

∼ β
(d−1)
m+d−1,j0

]

holds. Hence, by (5.21), α
(d−1)
m+d−1,j0

∼ β
(d−1)
m+d−1,j0

; i.e., S(d−1) fulfills Case 1,
so that

INV(O)(S) = INV(O)(S(d−1)) �= ⊥.

• If δ = 0, supp(S) = ∅.
Then α

(d−1)
m+d−1,∗ = β

(d−1)
m+d−1,∗ = ∅d. Here also S(d−1) fulfills Case 1.

If D(O)(S) < d − 1: By the hypothesis,

W(Em+D(O)(S)+1)−W(Em+D(O)(S)) ≥ δm+D(O)(S)+1

= 2F (d, sm+D(O)(S) + Σm+D(O)(S)) + 1.

If α
D(O)(S)

m+D(O)(S),∗ ∼ β
D(O)(S)

m+D(O)(S),∗, then E(D(O)(S))

m+D(O)(S)
fulfills Case 1 of the definition of

INV(O); hence INV(O)(S) �=⊥.
Otherwise, let us consider

R = O

⎛
⎝ d∑

j=1

α
(D(O)(S))

m+D(O)(S),j
Sj ,

d∑
j=1

β
(D(O)(S))

m+D(O)(S),j
Sj

⎞
⎠ ,

ν = Div
(
α

(D(O)(S))

m+D(O)(S),∗, β
(D(O)(S))

m+D(O)(S),∗

)
, and

(u, u′) = min
{

(v, v′) ∈ R ∩X≤ν ×X≤ν
∣∣∣ ∃j ∈ [1, d],

(
α

(D(O)(S))

m+D(O)(S),∗ � v = ελj

)
⇔(

β
(D(O)(S))

m+D(O)(S),∗ � v′ �= ελj

)}
.
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By the definition of F and inequality (5.20),

| u |≤ F
(
d,
∣∣∣∥∥∥E(D(O)(S))

m+D(O)(S)

∣∣∣∥∥∥) ≤ F (d, sm+D(O)(S) + Σm+D(O)(S)).

Hence pm+D(O)(S)+1 − pm+D(O)(S) ≥ 2|u| + 1; i.e., the hypothesis of Case 2 is real-

ized. This proves that D(O)(S(D(O)(S))) ≥ 1, while in fact D(O)(S(D(O)(S))) = 0. This

contradiction shows that this last case (D(O)(S) < d − 1 and E(D(O)(S))

m+D(O)(S)
not fulfill-

ing Case 1 of definition of INV(O)) is impossible. We have proved point (3) of the
lemma.

6. Constants. Let us fix a birooted dpda M, a strong relational morphism ψ̄,
and an initial equation A0 = (Π0, S

−
0 , S+

0 ) ∈ N × DRB1,λ0〈〈 V 〉〉 × DRB1,λ0〈〈 V 〉〉
in the corresponding set of assertions. This short section is devoted to the definition
of some integer constants: these integers are constant in the sense that they depend
only on this triple: (M, ψ̄, A0). The motivation of each of these definitions will appear
later on, in different places for the different constants. The equations below provide
merely an overview of the dependencies between these constants and allow us to check
that the definitions are sound (i.e., there is no hidden loop in the dependencies).

k0 = max{ν(v) | v ∈ V }, k1 = max{2k0 + 1, 3},(6.1)

K0 = max{‖(E1, E2, . . . , En)� x‖ | (Ei)1≤i≤n is a bijective numbering

of some class in V/�, x ∈ X}.(6.2)

K0 serves as an upper-bound on the possible increase of norm under the right-action
of a single letter x ∈ X; see Lemma 3.13.

D1 = k0 ·K0 + |Q|+ 2, k2 = D1 · k1 ·K0 + 2 · k1 ·K0 + K0.(6.3)

k1 is used in the definition of strategy TB (section 7), D1 appears as an upper-bound
on the marked part of series, and k2 is used in Lemma 8.4.

k3 = k2 + k1 ·K0, k4 = (k3 + 1) ·K0 + k1.(6.4)

k3 appears in in Lemma 8.5, and k4 is used in the definition (8.15) of the d-space V0.

K1 = k1 ·K0 + 1,

K2 = k2
1 ·D1 ·K0 + k2

1 ·K0 + 2 · k1 ·K0 + D1 · k1 + 2 · k1 + 4.(6.5)

These constants K1,K2 appear in Lemma 8.7.

K3 = k0|Q|, K4 = D1.(6.6)

These constants K3,K4 appear in Lemma 8.8.

d0 = Card(X≤k4).(6.7)

d0 appears as an upper-bound on the dimension of the d-space V0 defined by equation
(8.15) and used in Lemma 8.7. We consider now the integer sequences (δi, �i, Li, si,
Si,Σi)m≤i≤m+n−1 defined by the relations (5.19) of section 5.2 where the parameters
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K0,K1, . . . ,K4 are chosen to be the above constants and m = 1, n = d = d0. Equiv-
alently, they are defined by

δ1 = 0, �1 = 0, L1 = K2, s1 = K3 ·K2 + K4, S1 = 0, Σ1 = 0,(6.8) ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

δi+1 = 2 · F (d0, si + Σi) + 1,

�i+1 = 2 · δi+1 + 3,

Li+1 = K1 · (Li + �i+1) + K2,

si+1 = K3 · Li+1 + K4,

Si+1 = si + Σi + K0 · F (d0, si + Σi),

Σi+1 = Σi + Si+1

(6.9)

for 1 ≤ i ≤ d0 − 1. The function F is defined in section 5.2 and depends on the pair
(M, ψ̄) only.

D2 = max{Σd0
+ sd0

, ‖S−
0 ‖, ‖S+

0 ‖}.(6.10)

Σd0
+ sd0 appears in the conclusion of Lemma 5.5 when we take d = d0 in the

hypothesis and suppose that D(O)(S) has its maximal possible value, i.e., D(O)(S) =
d0− 1. It is used as an upper-bound on the norm of vectors at the root of the trees τ
analyzed in section 8 (inequality (8.1)).

λ2 = max{λ0, d0}.(6.11)

The integer λ2 is used as an upper-bound on the length of vectors at the root of the
trees τ analyzed in section 8 (inequality (8.2)).

N0 = 1 + k3 + D2.(6.12)

N0 appears as a lower-bound for the norm in the definition of a B-stacking sequence
(section 8.2, condition (8.5)).

7. Strategies for B0. Let us define strategies for the particular system B0.

7.1. Strategies. We shall first define auxiliary strategies Tcut, T∅, Tε; and then

for every oracle O ∈ Ω auxiliary strategies T
(O)
A , T

(O)
B , T

(O)
C , we define the strategies

TA, TB , TC and finally the “compound” strategies S(O)
AB ,S(O)

ABC ,SAB ,SABC . Let us fix
here some total ordering on X : x1 < x2 < · · · < xα.

• Tcut:
B1 · · ·Bm ∈ Tcut(A1 · · ·An) iff ∃i ∈ [1, n− 1], ∃S, T ,

Ai = (pi, S, T ), An = (pn, S, T ), pi < pn, and m = 0.3

• T∅:
B1 · · ·Bm ∈ T∅(A1A2 · · ·An) iff ∃S, T ,

An = (p, S, T ), p ≥ 0, S = T = ∅λ, and m = 0.

• Tε:
B1 · · ·Bm ∈ Tε(A1 · · ·An) iff

An = (p, S, T ), p ≥ 0, S = T = ελi (for some i ∈ [1, λ]), and m = 0.

3That is, B1 · · ·Bm = ε.
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Let us consider an oracle O ∈ Ω.

• T
(O)
A :

B1 · · ·Bm ∈ T
(O)
A (A1 · · ·An) iff

An = (p, S, T ), | X |≤ m ≤| X |2,

B1 = (p + 1, S � x1, T � x′
1), . . . , Bm = (p + 1, S � xm, T � x′

m),

where S �≡ ε, T �≡ ε, O(S, T )∩X×X = {(x1, x
′
1), . . . , (xi, x

′
i), . . . , (xm, x′

m)}.
• T

(O),+
B :

B1 · · ·Bm ∈ T+
B (A1 · · ·An) iff n ≥ k1 + 1, An−k1 = (π, U, U ′) (where U is

unmarked)

U ′ =

q∑
k=1

Ek · Φk for some q ∈ N, Ek ∈ V,

(Ek)1≤k≤q is the bijective numbering of a class in V/�, Φk ∈ DRB1,λ〈〈 V 〉〉,
Ai = (π + k1 + i− n,Ui, U

′
i) for n− k1 ≤ i ≤ n, (Ui)n−k1≤i≤n is a derivation,

(U ′
i)n−k1≤i≤n is a “stacking derivation” (see definitions in section 3.3),

U ′
n =

q∑
k=1

(Ek � u) · Φk for some u ∈ X∗,

m = 1, B1 = (π + k1 − 1, V, V ′), V = Un,

V ′ =

q∑
k=1

ρ̄e(Ek � u) · (U � uk),

where ∀k ∈ [1, q], u′
k = min(ϕ(Ek)), and if R = O(S, T ), ∀k ∈ [1, q], uk =

min{R−1(u′
k)}.

• T
(O),−
B :

T
(O),−
B is defined in the same way as T

(O),+
B by exchanging the left series (S−)

and right series (S+) in every assertion (p, S−, S+).

• T
(O)
C :

B1 · · ·Bm ∈ T
(O)
C (A1 · · ·An) iff there exists d ∈ [1, d0], D ∈ [0, d−1], λ ∈ N−

{0}, S1, S2, . . . , Sd ∈ DRB1,λ〈〈 V 〉〉 − {∅λ}, 1 ≤ κ1 < κ2 < · · · < κD+1 = n,
such that
(C1) every equation Ei = Aκi = (pκiS

−
pκi

, S+
pκi

) is a weighted equation over

S1, S2, . . . , Sd, with pκi ≥ 1;
(C2) D(O)(S) = D (where S = (Ei)1≤i≤D+1);

(C3) INV(O)(S) �= ⊥, |‖ INV(O)(S) |‖≤ Σd0 + sd0 ;

(C4) m = 1 and B1 = ρe(INV(O)(S)) (where ρe is the obvious extension of ρe
to weighted pairs of deterministic row-vectors; in other words the result

of T
(O)
C is INV(O)(S), where the marks have been removed).
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We then set, for every W ∈ A+,

TA(W ) =
⋃
O∈Ω

T
(O)
A (W ),

T+
B (W ) =

⋃
O∈Ω

T
(O),+
B (W ), T−

B (W ) =
⋃
O∈Ω

T
(O),−
B (W ),

TC(W ) =
⋃
O∈Ω

T
(O)
C (W ).

Lemma 7.1. Tcut, T∅, Tε, TA are B0-strategies.
Proof.
Tcut: (S1) is true by rule (R0). (S2) is trivially true.
T∅: (S1) is true by rule (R′3). (S2) is trivially true.
Tε: (S1) is true by rule (R′3). (S2) is trivially true.
TA: By rule (R4), {Bj | 1 ≤ j ≤ m} ||−− 4 An, which proves (S1). Suppose

H(An) = ∞, i.e., S ∼ T . Then, ∀j ∈ [1,m], S � xj ∼ T � x′
j , so that min{H(Bj) |

1 ≤ j ≤ m} = ∞. (S2) is proved.
Lemma 7.2. T+

B , T−
B are B0-strategies.

Proof. Let us show that T+
B is a B0-strategy.

We use the notation of the definition of T
(O),+
B . Let H = {(π, U, U ′), (π + k1 − 1,

V, V ′)}. Let us show that

H
〈∗〉
||−− B0

(π + k1 − 1, Un, U
′
n).(7.1)

Using rule (R5) we obtain, ∀k ∈ [1, q],

{(π, U, U ′)} =

⎧⎨
⎩
⎛
⎝π, U,

q∑
j=1

Ej · Φj

⎞
⎠
⎫⎬
⎭

〈∗〉
||−− R5 (π + 2· | uk |, U � uk, U

′ � u′
k)

〈∗〉
||−− R0 (π + 2 · k0, U � uk, U

′ � u′
k)

= (π + 2 · k0, U � uk,Φk).(7.2)

Using rule (R′3),

∅ ||−− R′3(0, (ρe(E1 � u), . . . , ρe(Eq � u)), (E1, . . . , Eq)).(7.3)

Using (7.3), (7.2) and rules (R3), (R7), (R8), we obtain

{(π, U, U ′)}
〈∗〉
||−− B0

(
π + 2k0,

q∑
k=1

(Ek � u) · Φk,

q∑
k=1

ρe(Ek � u) · (Ū � uk)

)

= {(π, U, U ′)}
〈∗〉
||−− (π + 2k0, U

′
n, V

′).(7.4)

Let us recall that Un = V . Hence, by (R0), (R1), (R2)

{(π + k1 − 1, V, V ′), (π + 2k0, U
′
n, V

′)}
〈∗〉
||−− C (π + k1 − 1, Un, U

′
n).(7.5)
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By (7.4) and (7.5), (7.1) is proved. Now, using (7.1) and rule (R0), we obtain

H
〈∗〉
||−− B0

(π + k1 − 1, Un, U
′
n) |−− R0(π + k1, Un, U

′
n),(7.6)

i.e., T+
B fulfills (S1).

Let us suppose now that ∀i ∈ [n− k1, n], Ui ∼ U ′
i . Then, by (7.4), U ′

n ∼ V ′ and
by the hypothesis, V = Un ∼ U ′

n. Hence V ∼ V ′. This shows that T+
B fulfills (S2).

An analogous proof can obviously be written for T−
B .

Lemma 7.3. Let (p, S, S′) be a weighted equation, i.e., p ∈ N, λ ∈ N − {0},
S, S′ ∈ DRB1,λ〈〈 V 〉〉. Then

{(p, S, S′)}
〈∗〉
||−− C {(p, ρe(S), ρe(S

′))},

{(p, ρe(S), ρe(S
′))}

〈∗〉
||−− C {(p, S, S′)}.

Proof. The proof follows easily from (R1), (R2), (R′3).
Lemma 7.4. For every O ∈ Ω, TO

C is a B0-strategy.
Proof. By Lemma 5.3, point (1), combined with Lemma 7.3, (S1) is proved. By

Lemma 5.3, point (2), combined with Lemma 7.3, (S2) is proved.
Let us define the strategy SABC by the following: for every W = A1A2 · · ·An,
(0) if Tcut(W ) �= ∅, then SABC(W ) = Tcut(W );
(1) else if T∅(W ) �= ∅, then SABC(W ) = T∅(W );
(2) else if Tε(W ) �= ∅, then SABC(W ) = Tε(W );
(3) else if T+

B (W ) ∪ T−
B (W ) �= ∅, then SABC(W ) = T+

B (W ) ∪ T−
B (W ) ∪ TC(W );

(4) else SABC(W ) = TA(W ) ∪ TC(W ).
The strategy SAB is obtained from SABC by removing the occurrence of TC in cases
(3) and (4).

7.2. Global strategy. Let us define a global strategy ŜABC w.r.t. the strategy
SABC . Let us fix (until the end of this article) a total well-ordering  over the set of
oracles Ω. We need now three technical definitions.

Definition 7.5. Let P ∈ Pf (A), O ∈ Ω, and π̄ ∈ N ∪ {∞}. O is π̄-consistent
with P iff, for every (π, S, S′) ∈ Cong(P ) and every n ∈ N, if

π + n− 1 < π̄,

then the binary relation Rn = O(S, S′) ∩X≤n ×X≤n fulfills

[π, S, S′,Rn] ⊆ Cong(P ).

We use the notation

Ω(π̄, P ) = {O ∈ Ω | O is π̄-consistent with P}.

Definition 7.6. Let P be a finite subset of A, and let π̄ ∈ N ∪ {∞}. P is said
to be π̄-consistent iff there exists some oracle O ∈ Ω, which is π̄-consistent with P .

For every proof-tree t ∈ T (SABC), we denote by Π̄(t) the integer

Π̄(t) = min{π ∈ N | ∃x ∈ dom(t), x is not closed for SABC , ∃S, S′, t(x) = (π, S, S′)}.
(7.7)

(We admit here that min(∅) = ∞.)
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Definition 7.7. Let t be a finite proof-tree for the strategy SABC , t ∈ T (SABC).
t is consistent iff im(t) is Π̄(t)-consistent.

Let us consider some tree t ∈ T (SABC) which is consistent and not closed. Let
π̄ = Π̄(t), and let x be the smallest unclosed node of weight π̄. Let

W = A1 · · ·An(7.8)

be the word labeling the path from the root to x in t. (One can notice that, as x is
not closed, Tcut(W ) ∪ T∅(W ) ∪ Tε(W ) = ∅.) We define a tree of height one, Δ̂(t), as
follows:

(0) If ∃O ∈ Ω(π̄, im(t)), T
(O)
C (W ) �= ∅, then

O0 = min{O ∈ Ω(π̄, im(t)), T
(O)
C (W ) �= ∅}, Δ̂(t) = An(T

(O0)
C (W ));

(1) else if T+
B (W ) �= ∅, then

O0 = min(Ω(π̄, im(t))), Δ̂(t) = An(T
(O0),+
B (W ));

(2) else if T−
B (W ) �= ∅, then

O0 = min(Ω(π̄, im(t))), Δ̂(t) = An(T
(O0),−
B (W ));

(3) else

O0 = min(Ω(π̄, im(t))), Δ̂(t) = An(T
(O0)
A (W )).

(In the above definition, by A(W ′), where A ∈ A, W ′ ∈ A+, we mean the tree of
height one with root labeled by A and whose sequence of leaves is the word W ′.)

ŜABC(t) = t[Δ̂(t)/x],(7.9)

i.e., ŜABC(t) is obtained from t by substituting Δ̂(t) at the leaf x.
Lemma 7.8. For every t ∈ T (SABC), if t is consistent, then Δ̂(t) is defined.
Proof. By the definition of consistency the oracle O0 is always defined (that

is, Ω(π̄, im(t)) �= ∅), and for the word W defined above, Tε(W ) = ∅ ⇒ ∀O ∈ Ω,

T
(O)
A (W ) �= ∅; hence one of cases (0)–(3) must occur.

If t is not consistent or is closed, then we define

ŜABC(t) = t.(7.10)

Lemma 7.9. ŜABC is a global strategy for SABC .
Sketch of proof. By Lemma 7.8 ŜABC is defined on every t ∈ T (SABC). It suffices

to check that, in every case, the word constituted by the leaves of Δ̂(t) belongs to
SABC(W ) (where W is the word considered in (7.8)).

8. Tree analysis. This section is devoted to the analysis of the proof-trees τ
produced by the strategy SAB defined in section 7. The main results are Lemmas 8.9
and 8.10, whose combination asserts that if some branch of τ is infinite, then there
exists some finite prefix on which TC has a nonempty value. This key technical result
will ensure termination of the global strategy ŜABC (see section 9).
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We fix throughout this section a tree τ ∈ T (SAB , (π0, U
−
0 , U+

0 )) (i.e., τ is a proof-
tree associated to the assertion (π0, U

−
0 , U+

0 )) by the strategy SAB). We suppose
that

‖U−
0 ‖ ≤ D2, ‖U+

0 ‖ ≤ D2, U−
0 , U+

0 are both unmarked,(8.1)

U−
0 , U+

0 ∈ DRB1,λ〈〈 V 〉〉 with λ ≤ λ2,(8.2)

U−
0 ≡ U+

0 .(8.3)

We recall that, formally, τ is a map dom(τ) → N×DRB1,λ〈〈 V 〉〉×DRB1,λ〈〈 V 〉〉
such that dom(τ) ⊆ {1, . . . , |X|2}∗ is closed under prefix and under “left-brother”
(i.e., w ·(i+1) ∈ dom(τ) ⇒ w · i ∈ dom(τ)). We denote by pr2,3 : N×DRB1,λ〈〈 V 〉〉×
DRB1,λ〈〈 V 〉〉 → DRB1,λ〈〈 V 〉〉 ×DRB1,λ〈〈 V 〉〉 the projection (π, U, U ′) �→ (U,U ′).
By τs we denote the tree obtained from τ by forgetting the weights τs = τ ◦ pr2,3.

8.1. Depth and weight. In this paragraph we check that the weight and the
depth of a given node are closely related. Let us say that the strategy T “occurs at”
node x iff

τ(x) ∈ T (τ(x[0]) · τ(x[1]) · · · τ(x[|x| − 1]));

i.e., the label of x belongs to the image of the path from ε (included) to x (excluded)
by the strategy T .

Lemma 8.1. Let α ∈ {−,+}, A1, . . . , An ∈ A such that Tα
B(A1 · · ·An) �= ∅.

Then, ∀i ∈ [n− k1 + 1, n], Ai /∈ TB(A1 · · ·Ai−1).

In other words, if TB occurs at node x of τ , it cannot occur at any of its k1 above
immediate ancestors.

Proof. Suppose that ∃i ∈ [n − k1 + 1, n], Ai ∈ TB(A1 · · ·Ai−1). Hence πi =
πi−1 − 1 < πn−k1 + i, contradicting one of the hypotheses under which TB(A1 · · ·An)
is not empty.

Lemma 8.1 ensures that, in every branch (xi)i∈I and for every interval [n + 1,
n + 4] ⊆ I, at most one integer j is such that TB occurs at j.

Lemma 8.2. Let τ be a proof-tree associated to the strategy SAB. Let x, x′ ∈
dom(τ), x � x′. Then |W (x′)−W (x) |≤ |x′| − |x| ≤ 2 · (W (x′)−W (x)) + 3.

(We recall the depth of a node x is just its length |x|.) We denote by W (x) the
weight of x which we define as the first component of τ(x), i.e., the weight of the
equation labeling x.

Proof. Let x, x′ be such that |x′| = |x| + 1. Then W (x′) −W (x) ∈ {−1,+1},
and hence the inequality | W (x′)−W (x) |≤ |x′| − |x| is fulfilled by such nodes. The
general case follows by induction on (|x′| − |x|).

Let us prove now the other inequality. We distinguish two cases.

Case 1. |x′| − |x| ≤ 3. Then |x′| − |x| ≤ 2 · (W (x′)−W (x)) + 3 (because there is
at most one TB step in a sequence of length ≤ 3).

Case 2. |x′| − |x| ≥ 4. Let x = x0, x1, . . . , xq, x
′ be the sequence of nodes such

that |x′| − |x| = 4 · q + r, 0 ≤ r < 4, and ∀i ∈ [0, q − 1], |xi+1| − |xi| = 4.

By Lemma 8.1, in every set {y ∈ dom(τ) | xi ≺ y � xi+1} at most one node z is
such that TB occurs at z. Hence W (xi+1)−W (xi) ≥ 2.

It follows that
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|x′| − |x| =
q−1∑
i=0

[|xi+1| − |xi|] + |x′| − |xq|

≤
q−1∑
i=0

2(W (xi+1 −W (xi)) + |x′| − |xq|

≤ 2(W (xq)−W (x)) + 2(W (x′)−W (xq)) + 3 (by the first case)

≤ 2(W (x′)−W (x)) + 3.

Let us recall the values of some constants (defined in section 6):

k0 = max{ν(v) | v ∈ V }, k1 = max{2k0 + 1, 3}, D1 = k0 ·K0 + |Q|+ 2,

k2 = D1 · k1 ·K0 + 2 · k1 ·K0 + K0, k3 = k2 + k1 ·K0,

k4 = (k3 + 1) ·K0 + k1, d0 = Card(X≤k4), N0 = 1 + k3 + D2.

8.2. B-stacking sequences. We establish here that every infinite branch must
contain an infinite suffix (a “B-stacking sequence”) where at least d0 labels (U,U ′)
belong to the same d-space V0 of dimension ≤ d0 with coordinates not greater than sd0

(over some fixed generating family of cardinality ≤ d0).
Let σ = (xi)i∈I be a path in τ , where I = [i0,∞[ and let (xi)i≥0 be the unique

branch of τ containing σ. Let us note τ(xi) = (πi, U
−
i , U+

i ).
We call σ a B-stacking sequence iff there exists some α0 ∈ {−,+} such that

Tα0

B occurs at xi0+k1+1,(8.4)

and, for every i ∈ I, α ∈ {−,+}, if Tα
B occurs at xi+k1+1, then

‖U−α
i ‖ ≥ ‖U−α0

i0
‖ ≥ N0.(8.5)

From now on and until Lemma 8.10, we fix a B-stacking sequence σ = (xi)i∈I and
denote by S0 the series U−α0

i0
.

Lemma 8.3. There exists some word u0 ∈ X∗ and some sign α′
0 ∈ {−,+} such

that S0 = U
α′

0
0 � u0.

Proof. One can prove by induction on i ∈ N that, for every α ∈ {−,+}, Uα
i has

one of the two following forms:
(1) Uα

i = Uα′

0 � u for some α′ ∈ {−,+}, |u| ≤ i;

(2) Uα
i =

∑q
k=1 βk · (Uα′

0 � uuk)
for some deterministic rational vector β, α′ ∈ {−,+}, |u · uk| ≤ i, |uk| ≤ k0.

Lemma 8.4. Suppose that i0 ≤ j < i, no TB occurs in [j + 1, i], U−α
j is

D1-marked, and Uα
j is unmarked. Then, for every j′ ∈ [j, i], ‖Uα

j′‖ ≥ ‖Uα
i ‖ − k2.

Proof. Let i, j fulfill the hypothesis of the lemma.
(1) Let us first treat the case where j′ = j. If (i − j) ≤ (D1 + 1)k1, then, by

Lemma 3.13,

‖Uα
i ‖ ≤ ‖Uα

j ‖+ (D1 + 1) · k1 ·K0 ≤ k2;

hence the lemma is true.
Let us suppose now that (i− j) ≥ (D1 +1)k1 +1. We can then define the integers

j < i1 < i2 < i by

i1 = j + D1 · k1, i2 = i− k1 − 1.
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By Lemma 3.13 we know that

‖Uα
i1‖ ≤ ‖U

α
j ‖+ D1 · k1 ·K0 and ‖Uα

i ‖ ≤ ‖Uα
i2‖+ (k1 + 1) ·K0.(8.6)

If there were some stacking subderivation of length k1 in U−α
j → U−α

i1
, as all the Uα

k

(for k ∈ [j, i]) are unmarked, TB would occur at some integer in [j + k1 + 1, i1 + 1],
which is untrue. Hence there is no such stacking subderivation, and by Lemma 3.32
U−α
i1

is unmarked.
If there were some stacking subderivation of length k1 in Uα

i1
→ Uα

i2
, as all the

U−α
k (for k ∈ [i1, i]) are unmarked, TB would occur at some integer in [i1 + k1 + 1, i],

which is untrue. Hence there is no such stacking subderivation, and by Lemma 3.31

‖Uα
i2‖ ≤ ‖U

α
i1‖+ k1 ·K0.(8.7)

Adding inequalities (8.6), (8.7) we obtain

‖Uα
i ‖ ≤ ‖Uα

j ‖+ (D1 · k1 + 2 · k1 + 1) ·K0 = ‖Uα
j ‖+ k2,

which was to be proved.
(2) Let us suppose now that j ≤ j′ ≤ i. If (i−j) ≤ (D1+1)k1, the same inequality

is true for i− j′ and the conclusion is true for j′.
Otherwise, if j′ ≤ i1, then (8.6), (8.7) are still true for j′ instead of j, and hence

the conclusion too.
Otherwise, by the arguments of part (1), U−α

j′ , Uα
j′ are both unmarked. Therefore

the hypotheses of part (1) are met by (j′, i) instead of (j, i), and hence the conclusion
is met too. (We illustrate our argument in Figure 4.)

Lemma 8.5. Let i ∈ I, α ∈ {−,+} such that Tα
B occurs at i+ k1 + 1. Then there

exists u ∈ X∗, |u| ≤ (i− i0), U
−α
i = S0 � u, and, for every prefix w � u,

‖S0 � w‖ ≥ ‖S0‖ − k3.

Proof. We prove the lemma by induction on i ∈ [i0,∞[ .
Basis: i = i0.
Choosing u = ε, the lemma is true.
Induction step: i0 ≤ i′ < i, Tα′

B occurs at i′ + k1 + 1, Tα
B occurs at i + k1 + 1,

and TB does not occur in [i′ + k1 + 2, i + k1].
By the induction hypothesis, there exists some u′ ∈ X∗, |u′| ≤ (i′ − i0), fulfilling

U−α′

i′ = S0 � u′,(8.8)

∀w′ � u′, ‖S0 � w′‖ ≥ ‖S0‖ − k3.(8.9)

Let us define j = i′ + k1 + 1.
Let ū ∈ X∗ be the word such that

U−α
j

ū−→ U−α
i(8.10)

is the derivation described by the −α component of the path from xj to xi.
Case 1. α′ = α.

U−α
j = U−α′

i′ � u1
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‖Uα
i ‖

‖Uα
i ‖ − k2

Uα
j

TB

should occur
here

Uα
i

Fig. 4. ‖Uα
j ‖ too small is impossible.

for some u1 ∈ X∗, |u1| = k1, and Uα
j is D1-marked. Let us choose u = u′ · u1 · ū.

Hence

U−α
i = S0 � u.(8.11)

Let us consider some prefix w of u.
Subcase 1. w � u′. By (8.9) we know that ‖S0 � w‖ ≥ ‖S0‖ − k3.
Subcase 2. w = u′ · u1 · u′′ for some u′′ � ū. By Lemma 8.4 we know that

‖S0 · w‖ ≥ ‖Uα
i ‖ − k2, and by the definition of a B-stacking sequence we also know

that ‖Uα
i ‖ ≥ ‖S0‖. Hence

‖S0 � w‖ ≥ ‖S0‖ − k2.

Subcase 3. w = u′ · u′
1, where u′

1 is a prefix of u1. Then, by Lemma 3.13 and the
above inequality, we get

‖S0 � w‖ ≥ ‖S0 � u′u1‖ − k1 ·K0 ≥ ‖S0‖ − k3.

Case 2. −α′ = α.

U−α
j =

q∑
k=1

βk · (Uα
i′ � uk),

where β is a polynomial which is fully marked and every |uk| ≤ k0.
By Lemma 3.15 either U−α

i =
∑q

k=1(βk � ū) · (Uα
i′ � uk) or there exists a decom-

position

ū = ū1 · ū2(8.12)
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and an integer k ∈ [1, q] such that

U−α
i = Uα

i′ � ukū2.(8.13)

But, as U−α
i is unmarked (by definition of Tα

B), the first formula is impossible unless
β � ū is unitary or null. Hence (8.12), (8.13) is the only possibility.

Let us choose u = u′ · uk · ū2. It is clear from (8.13) that U−α
i = S0 � u.

Let us consider some prefix w of u.
Subcase 1. w � u′. We use the same arguments as in Case 1, Subcase 1.
Subcase 2. w = u′ · uk · u′′ for some u′′ � ū2. By Lemma 8.4 applied to the

interval [j + |ū1|+ 1, i], we can conclude that

‖S0 � w‖ ≥ ‖S0‖ − k3.

Subcase 3. w = u′ · u′
k, where u′

k is a prefix of uk. We use the same arguments as
in Case 1, Subcase 3.

Let us now define the following set of vectors and d-spaces:

G0 = {S0 � u | u ∈ X∗, |u| ≤ k4},(8.14)

V0 = V(G0).(8.15)

Lemma 8.6. Let i ≥ i0 such that TB occurs at i. Then U−
i , U+

i ∈ V0.
Proof. Let us suppose that Tα

B occurs at i. By Lemma 8.5, U−α
i−k1−1 = S0 � u

and, for every prefix w � u,

‖S0 � w‖ ≥ ‖S0‖ − k3.

By Lemma 3.14, ∃u1, u2 ∈ X∗, v1 ∈ V ∗, E1, . . . , Ek ∈ V , E1 � E2 � · · · � Ek,
Φ ∈ DRBq,λ〈〈 V 〉〉, such that u = u1 · u2,

S0 � u1 = S0 • v1 =

q∑
k=1

Ek · Φk,(8.16)

S0 � u =

q∑
k=1

(Ek � u2) · Φk.(8.17)

Without loss of generality, we can suppose that v1 is a minimal word realizing the
equality (8.16). Let us notice that, as G is a reduced grammar, for every v � v1, there
exists some v̄ ∈ X∗, such that S0 • v = S0 � v̄. Hence, for every v � v1,

S0 • v = U
α′

0
0 � u0 · v̄ and ‖Uα′

0
0 � u0 · v̄‖ ≥ ‖S0 � u1‖ > D2 = ‖Uα′

0
0 ‖.

By Lemma 3.29, all the vectors S0 • v for v � v1 are loop-free. It follows that, for
every v � v′ � v1,

v ≺ v′ ⇒ ‖S0 • v‖ > ‖S0 • v′‖,

and hence

|v1| ≤ ‖S0‖ − ‖S0 • v1‖ ≤ k3.
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The formula (8.17) can be rewritten

U−α
i−k1−1 =

q∑
k=1

(Ek � u2) · (S0 • v1Ek) =

q∑
k=1

(Ek � u2) · (S0 � ūk),

where ūk ∈ X∗, |ūk| ≤ (k3 + 1) ·K0.
Using Lemmas 3.15 and 3.11 we can deduce from the above form of U−α

i−k1−1 that

Uα
i ∈ V({S0 � w | w ∈ X∗, |w| ≤ (k3 + 1) ·K0 + k0}),

U−α
i ∈ V({S0 � w | w ∈ X∗, |w| ≤ (k3 + 1) ·K0 + k1}),

and hence that both U−α
i , Uα

i belong to V0.
We recall that

K1 = k1 ·K0 + 1, K2 = k2
1 ·D1 ·K0 + k2

1 ·K0 + 2 · k1 ·K0 + D1 · k1 + 2 · k1 + 4.

Lemma 8.7. For every L ≥ 0 there exists i ∈ [i0 + L, i0 + K1 · L+ K2] such that
U−
i , U+

i ∈ V0.
Proof. Let us establish that

∃i ∈ [i0 + L, i0 + K1 · L + K2 − k1 − 1], ∃α ∈ {−,+}, Tα
B occurs at i + k1 + 1.

(8.18)

Let L ≥ 0 and let i′ ≥ i0 be the greatest integer in [i0, i0 +L] such that TB occurs at
i′ + k1 + 1. Let j = i′ + k1 + 1. We then have

Uα′

j =

q∑
k=1

βk · (U−α′

i′ � uk),

where ‖β‖ ≤ D1 and U−α′

j is unmarked.
Case 1. There exists i ∈ [j, j + k1 ·D1], such that TB occurs at i+ k1 + 1. In this

case the small constants K1 = 0, K2 = k1 ·D1 + k1 + 1 would be sufficient to satisfy
(8.18). A fortiori the given constants satisfy (8.18).

Case 2. There exists no i ∈ [j, j+k1 ·D1], such that TB occurs at i+k1 +1. Then
there is no stacking subderivation of length k1 in Uα′

j −→ Uα′

j+k1·D1
. By Lemma 3.32

it follows that both Uα
j+D1·k1

are unmarked.
(1) Let j1 = j + D1 · k1 and let us show that there exists some i ≥ j1 such that

TB occurs at i + k1 + 1.
If such an i does not exist, then for every α ∈ {−,+}, the infinite derivation

Uα
j1 −→ Uα

j1+1 −→ · · ·

does not contain any stacking sequence of length k1. By Lemma 3.31 we would have

∀k ≥ j1, ‖Uα
k ‖ ≤ ‖Uα

j1‖+ k1 ·K0.

As the set {‖Uα
k ‖, k ≥ j1, α ∈ {−,+}} is finite, there would be a repetition

(U−
k , U+

k ) = (U−
k′ , U

+
k′) with j1 ≤ k < k′ and πk < πk′ ,

so that Tcut would have been defined on some finite prefix of the branch, contradicting
the hypothesis that the branch is infinite.
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(2) Let i > i′ be the smallest integer (in [j1,∞[ ) fulfilling point (1) above, and
suppose that Tα

B occurs at i + k1 + 1.
By Lemma 8.4,

∀� ∈ [j1, i], ‖U−α
� ‖ ≥ N0 − k2 > D2.

Using Lemma 8.3, Lemma 3.29, and inequality (8.1) we conclude that

∀� ∈ [j1, i], U−α
� is loop-free.

By an argument analogous to that used in Lemma 8.3 we see that U−α
j1

= S0 � u for
some |u| ≤ (j1 − i0), and by Lemma 3.13 we get

‖U−α
j1
‖ ≤ (j1 − i0) ·K0 + ‖S0‖.(8.19)

We also know that

‖S0‖ ≤ ‖U−α
i ‖ ≤ ‖U−α

i−1‖+ K0.(8.20)

As the derivation U−α
j1

−→ U−α
i−1 contains no stacking subderivation of length k1 and

consists of loop-free series only, by Lemma 3.30 we obtain

‖U−α
i−1‖ ≤ ‖U−α

j1
‖ − (i− j1 − 2)/k1.(8.21)

Combining the three inequalities (8.19), (8.20), (8.21) we get successively

‖S0‖ ≤ ‖S0‖+ (j1 − i0 + 1) ·K0 − (i− j1 − 2)/k1,

(i− j1 − 2) ≤ (j1 − i0 + 1) · k1K0,

(i− i′) = (i− j1 − 2) + (j1 − i′ + 2) ≤ (j1 − i0 + 1) · k1 ·K0 + D1 · k1 + k1 + 3

= (i′ − i0) · k1 ·K0 + k2
1 ·D1 ·K0 + k2

1 ·K0 + 2 · k1 ·K0 + D1 · k1 + k1 + 3

= (K1 − 1)(i′ − i0) + K2 − k1 − 1.

(8.22)

(3) By the choice of i′, i, we know that i′ ≤ i0 + L ≤ i. Using (8.22) we obtain

i ≤ i′ + (K1 − 1)(i′ − i0) + K2 − k1 − 1,

i ≤ i0 + K1 · L + K2 − k1 − 1.

Assertion (8.18) is now established for Case 2 as well as for Case 1.
From (8.18) and Lemma 8.6 the lemma follows.
(We illustrate our argument in Figure 5.)
Let us give now a stronger version of Lemma 8.7 in which we analyze the size of

the coefficients of the linear combinations whose existence is proved in Lemma 8.7.
We recall that

K3 = K0|Q|, K4 = D1.

Let us fix a total ordering on G0:

G0 = {θ1, θ2, . . . , θd}, where d = Card(G0).

Let us remark that d ≤ Card(X≤k4) = d0.
Lemma 8.8. Let L ≥ 0. There exists i ∈ [i0 +L, i0 +K1 ·L+K2] and, for every

α ∈ {−,+}, there exists a deterministic rational family (βα
i,j)1≤j≤d fulfilling
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i0 j

N0

N0 − k2

D2

Tα′
B Tα

B

i′ j1 i

k1 + 1 D1 · k1 k1 + 1

‖U−α′

i′ ‖
‖U−α

i ‖

i + k1 + 1

Fig. 5. Two successive TB.

(1) Uα
i =

∑d
j=1 β

α
i,j · θj,

(2) ‖βα
i,∗‖ ≤ K3 · (i− i0) + K4.

Proof. By Lemma 8.7 there exists i ∈ [i0+L, i0+K1 ·L+K2] and α ∈ {−,+} such
that Tα

B occurs at i. Let us use the notation of the proof of Lemma 8.6 and compute
upper-bounds on the coefficients of U−α

i , Uα
i expressed as linear combinations of the

vectors of G0.

Coefficients of U−α
i . U−α

i = U−α
i−k1−1 � u′ for some u′ ∈ X∗, |u′| = k1. By

Lemma 3.15, U−α
i can be expressed in one of the two following forms:

U−α
i = S0 � (ūku

′′), where u′′ is a suffix of u′,(8.23)

U−α
i =

q∑
k=1

(Ek � u2u
′) · (S0 � ūk).(8.24)

In case (8.23) we can choose as vector of coordinates: β−α
i,� = εdj0 . We then have

‖βi,�‖ = 2 ≤ K4.

In case (8.24), we can choose β−α
i,� = E � u2u

′ (completed with ∅ in all the
columns j not corresponding to some vector S0 � ūk of G0). We then have

‖βi,�‖ = ‖E � u2u
′‖ ≤ K0 · (i− i0) ≤ K3 · (i− i0).
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Coefficients of Uα
i . By the definition of Tα

B

Uα
i =

r∑
�=1

τ� · (U−α
i−k1−1 � w̄�),(8.25)

where ‖τ‖ ≤ D1, |w̄�| ≤ k0.
Replacing u′ by w̄� in the above analysis, we get

∀� ∈ [1, r], U−α
i−k1−1 � w̄� =

d∑
j=1

γ�,j · θj ,(8.26)

with ‖γ�,�‖ ≤ K0 · (i− i0).
Equalities (8.25), (8.26) show that

Uα
i = τ · γ · θ,

where τ , γ, θ are deterministic rational matrices of dimensions (1, r), (r, d), (d, 1),
respectively. Let us choose βi,� = (τ · γ).

‖βi,�‖ ≤ ‖τ‖+ ‖γ‖ ≤ D1 + r ·K0 · (i− i0)

≤ D1 + |Q| ·K0 · (i− i0) = K3 · (i− i0) + K4.

Lemma 8.9. There exists i0 ≤ κ1 < κ2 < · · · < κd and deterministic rational
vectors (βα

i,j)1≤j≤d (for every i ∈ [1, d]) such that
(0) W (κ1) ≥ 1,

(1) ∀i, ∀α, Uα
κi

=
∑d

j=1 β
α
i,jθj ∈ V0,

(2) ∀i, ∀α, ‖βα
i,∗‖ ≤ si,

(3) ∀i, W (κi+1)−W (κi) ≥ δi+1,
where the sequences (δi, �i, Li, si, Si, σi) are those defined by relations (6.8), (6.9) in
section 6.

Proof. Let us consider the additional property
(4) κi − i0 ≤ Li.

We prove by induction on i the conjunction (1) ∧ (2) ∧ (3) ∧ (4).
i = 1: By Lemma 8.8, there exists κ1 ∈ [i0, i0 + K2] such that ∀α ∈ {−,+},

there exists a deterministic vector (βα
1,j)1≤j≤d, such that

Uα
κ1

=

d∑
j=1

βα
1,jθj ,

and in addition ‖βα
1,∗‖ ≤ K3K2 + K4 = s1.

i → i + 1: Suppose that κ1 < κ2 < · · · < κi fulfill (1) ∧ (2) ∧ (3) ∧ (4). By
Lemma 8.8, there exists κi+1 ∈ [i0 + Li + �i+1, i0 + K1(Li + �i+1) + K2] such that
∀α ∈ {−,+}, there exists a deterministic vector (βα

i+1,j)1≤j≤d, such that

Uα
κi+1

=

d∑
j=1

βα
i+1,jθj ,(8.27)

and in addition

‖βα
i+1,∗‖ ≤ K3(K1(Li + �i+1) + K2) + K4 = K3Li+1 + K4

= si+1.(8.28)
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By Lemma 8.2

2(W (κi+1)−W (κi)) + 3 ≥ κi+1 − κi ≥ �i+1 = 2δi+1 + 3,

and hence

W (κi+1)−W (κi) ≥ δi+1.(8.29)

Finally,

κi+1 − i0 ≤ K1(Li + li+1) + K2 = Li+1.(8.30)

The above properties (8.27)–(8.30) prove the required conjunction.
It remains to prove point (0): the integer κ1 introduced by Lemma 8.8 is such

that TB occurs at κ1, and hence

W (κ1) = W (κ1 − k1 − 1) + k1 − 1

≥W (κ1 − k1 − 1) + 2 ≥ 1.

Lemma 8.10. Let (xi)i∈N be an infinite branch of τ . Then there exist some
i0 ∈ N such that (xi)i≥i0 is a B-stacking sequence.

Proof. Let us distinguish, a priori, several cases, and see that only the case where
τ admits a B-stacking sequence is possible.

Case 1. TB occurs finitely often on τ . Let j be the largest integer such that TB

occurs at j. By the arguments used in the proof of Lemma 8.7, Case 2, we know that
U−
j+k1·D1

, U+
j+k1·D1

are both unmarked, and that

∀k ≥ j + k1 ·D1,∀α ∈ {−,+}, ‖Uα
k ‖ ≤ ‖Uα

j+k1·D1
‖+ k1 ·K0.

This would imply that the branch contains a finite prefix on which Tcut is defined,
which is impossible on an infinite branch.

Case 2. For some sign α, there are infinitely many integers i such that [Tα
B occurs

at i+ k1 + 1 and ‖U−α
i ‖ < N0]. In this case there would exist an infinite sequence of

integers i1 < i2 < · · · < i� < such that

∀� ≥ 0, U−α
i1

= U−α
i�

.

For a given U−α
i , only a finite number of values are possible for the pair (U−

i+k1+1,

U+
i+k1+1). Hence there exist integers � < �′ such that

� < �′, π� < π�′ , and (U−
�+k1+1, U

+
�+k1+1) = (U−

�′+k1+1, U
+
�′+k1+1).

Here again Tcut would have a nonempty value on some prefix of τ , which is impossible.
Case 3. TB occurs infinitely often on τ and, for every sign α, there are only

finitely many integers i such that [Tα
B occurs at i + k1 + 1 and ‖U−α

i ‖ < N0].
Let us consider the set I0 of the integers i such that there exists a sign αi such

that

[Tαi

B occurs at i + k1 + 1 and ‖U−αi
i ‖ ≥ N0].

By the hypothesis of Case 3, I0 �= ∅. Let i0 be such that

‖U−αi0
i0

‖ = min{‖U−αi
i ‖ | i ∈ I0}.

Then (xi)i≥i0 is a B-stacking sequence.
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9. Termination.
Lemma 9.1. ŜABC is terminating on every unmarked assertion A0: if A0 ∈ A is

unmarked, then ∃n0 ∈ N, Ŝn0+1
ABC (A0) = Ŝn0

ABC(A0).
Proof. Suppose A0 ∈ A, A0 is true, A0 is unmarked, and

∀n ∈ N, Ŝn
ABC(A0) ≺ Ŝn+1

ABC(A0).(9.1)

Let us consider all the constants associated to this precise A0, the equivalence ψ̄, and
the dpda M in section 6. Let us note that tn = Ŝn

ABC(A0) (for every n ∈ N) and let

t∞ = least upper-bound{tn | n ∈ N}.

Let us note that, by definition (7.10), the strict inequality (9.1) implies that

∀n ∈ N, tn is consistent.(9.2)

Let us denote by xn the node of tn such that tn+1 = tn[Δ̂(tn)/xn]. Let us notice that
as every xn is unclosed in tn, one can prove by induction that every tn is repetition-
free. Hence

t∞ is repetition-free.(9.3)

By Koenig’s lemma, t∞ contains an infinite branch y0y1 · · · ys · · · whose (infinite)
labeling word is A0A1 · · ·As · · · (where As = t∞(ys)).

Condition (C3) in the definition of T
(O)
C , combined with Lemma 3.17, shows that

every equation (π, T, U) produced by TC has size

max{‖T‖, ‖U‖} ≤ D2,(9.4)

and hence that the number of possible unweighted equations produced by TC is finite.
Hence TC occurs only a finite number of times on this branch (because t∞ is repetition-
free (9.3) and Tcut cannot occur on an infinite branch). Let n0 be the last point where
TC occurs (or n0 = 0 if TC never occurs on this branch). (yn0+i)i≥0 is a branch of a
tree t′ ∈ T (SAB , An0). Let us notice also that

every equation produced by TC is unmarked(9.5)

(by condition (C4) in the definition of T
(O)
C ; see section 7), and

every equation produced by TC has a length λ ≤ λ2,(9.6)

because it has a length ≤ d0 and d0 ≤ λ2 by definition (6.11) in section 6. Moreover,
the root A0 of t∞ must have a size ≤ D2 (by definition (6.10) in section 6), must
be unmarked (by the hypothesis of the lemma), and must have a length λ0 ≤ λ2 (by
definition (6.11) in section 6). Hence, in either case, t′ fulfills the hypotheses (8.1)
and (8.2) stated in section 3.3 and assumed in section 8.

As SABC is a strategy for B0 and A0 is true, An0 is also true, and hence hypothesis
(8.3) assumed in section 8 is fulfilled. We may now apply the results obtained in
section 8.2.

By Lemma 8.10, the branch (yn0+i)i≥0 must contain an infinite B-stacking se-
quence. Let us remark that, as T∅ does not occur (otherwise the branch would be
finite), every equation (π, U−, U+) labeling this branch is such that U− �= ∅, U+ �= ∅.
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By Lemma 8.9 such a B-stacking sequence contains a subsequence (Aκ1
, Aκ2

, . . . , Aκd
)

with d ≤ d0, fulfilling hypotheses (1), (2) of Lemma 5.5, and by the above remark
it fulfills hypothesis (5.6) of section 5.2 too. Let ni ∈ N such that xni = yκi for
1 ≤ i ≤ d. By (9.2), Ω(Π̄(tnd

), im(tnd
)) �= ∅. Let us consider some

O ∈ Ω(Π̄(tnd
), im(tnd

)).

Let Sd = (Aκi)1≤i≤d and D = D(O)(Sd). By Lemma 5.5,

INV(O)(Sd) �= ⊥, D ∈ [0, d− 1], and |‖ INV(O)(Sd) |‖≤ Σd0
+ sd0

.(9.7)

Let SD+1 = (Aκi)1≤i≤D+1. By hypothesis (2) of Lemma 5.5 (we established that this
hypothesis is true),

Π̄(tnD+1
) ≤ Π̄(tnd

),

and it is straightforward that

im(tnD+1
) ⊆ im(tnd

);

hence,

O ∈ Ω(Π̄(tnD+1
), im(tnD+1

)).(9.8)

Let WD+1 = A0 ·A1 · · ·Aκ1
· · ·AκD+1

(the word from the root to yκD+1
). Let us notice

that

D(O)(SD+1) = D(O)(Sd) = D, INV(O)(SD+1) = INV(O)(Sd).(9.9)

By (9.7), (9.9),

ρe(INV(O)(SD+1)) ∈ T
(O)
C (WD+1).(9.10)

By (9.8), (9.10), the set {O ∈ Ω(Π̄(tnD+1
), im(tnD+1

)), T
(O)
C (WD+1) �= ∅} is not empty,

so that case (0) of the definition of Δ̂(t) (see section 7) is fulfilled and

Δ̂(tnD+1
) = AnD+1

(T
(O0)
C (WD+1)),

i.e., TC occurs at yκD+1+1. This is a contradiction with the minimality of n0. We
have proved that hypothesis (9.1) is impossible. Hence the lemma is proved.

10. Elimination.

10.1. System B1. We prove here that the new formal system B1 obtained by
elimination of metarule (R5) in B0 is recursively enumerable and complete. The
decidability of the bisimulation problem follows.

Let B1 = 〈A, H, |−− B1〉, where A, H are the same as in B0, but the elemen-
tary deduction relation ||−− B1

is the relation generated by the subset of metarules
(R0), (R1), (R2), (R3), (R′3), (R4), (R6), (R7), (R8), i.e., all the metarules of B0

except (R5). The deduction relation |−− B1 is now defined by

|−− B1
=

〈∗〉
||−− B1

◦
[1]

||−− R0,R3,R′3,R4◦
〈∗〉
||−− B1

.

Lemma 10.1. B1 is a deduction system.
Sketch of proof. As |−− B1 ⊆ |−− B0 , property (A1) is fulfilled by |−− B1 .
By the well-known decidability properties for finite-automata, rules (R0), (R1),

(R2), (R3), (R′3), (R4), (R6), (R7), (R8) are recursively enumerable. Hence prop-
erty (A2) is fulfilled by B1.
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Completeness.
Definition 10.2. Let P be a finite subset of A and let π̄ ∈ N. P is said to be

locally π̄-consistent iff, for every (π, S, S′) ∈ P , if

π < π̄,

then there exists R1 ∈ B̄1 such that

[π, S, S′,R1] ⊆ Cong(P ).

Lemma 10.3. Let P be a finite subset of A and let π̄ ∈ N. If P is locally
π̄-consistent, then P is π̄-consistent.

Proof. Let us consider, for every integer n ≥ 0 p ≥ 0, the following property
Q(n, p): ∀π ∈ N, λ ∈ N− {0}, S, S′ ∈ DRB1,λ〈〈 V 〉〉,

(π, S, S′) ∈ Congp(P ) and π + n− 1 < π̄ ⇒
∃Rn ∈ Bn(S, S′), [π, S, S′,Rn] ⊆ Cong(P ).(10.1)

Let us prove by lexicographic induction on (n, p) that

∀(n, p) ∈ N× N, Q(n, p).(10.2)

n = 0, p = 0: The only possible value of R0 ∈ B0(S, S
′) is R0 = {(ε, ε)}, and

[π, S, S′,R0] = {(π, S, S′)} ⊆ Cong0(P ).
p > 0: There exists a subset Q ⊆ Pf (A), such that

P
〈p−1〉
||−− C Q and Q

〈1〉
||−− C {(π, S, S′)}.

As every rule of B0 increases the weight, we can suppose that every assertion of Q
has a weight ≤ π. Hence, by the induction hypothesis,

∀(π′, T, T ′) ∈ Q, ∃Rn ∈ Bn(T, T ′), [π′, T, T ′,Rn] ⊆ Cong(P ).(10.3)

Let us consider the type of rule used in the last step, Q
〈1〉
||−− C {(π, S, S′)}, of the

above deduction.
(R0): (π − 1, S, S′) ∈ Q. By (10.3), ∃Rn ∈ Bn(S, S′),

[π − 1, S, S′,Rn] ⊆ Cong(P ).

As [π − 1, S, S′,Rn]
〈1〉
||−− C [π, S, S′,Rn],

[π, S, S′,Rn] ⊆ Cong(P ).

(R1): (π, S′, S) ∈ Q (analogous to the above case).
(R2): (π, S, T ), (π, T, S′) ∈ Q. By (10.3), ∃Rn ∈ Bn(S, T ), R′

n ∈ Bn(T, S′),

[π, S, T,Rn] ⊆ Cong(P ), [π, T, S′,R′
n] ⊆ Cong(P ).

Using the properties mentioned in section 4.4, we get that

[π, S, S′,Rn ◦ R′
n] ⊆ Cong(P ).
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(R3): In this case, Rn = Id ∩X≤n ×X≤n ∈ Bn(S, S′), and

[π, S, S′,Rn] ⊆ {(π, S, S′)} ∪ {(π + k, T, T ), 1 ≤ k ≤ n, T ∈ DRB1,λ〈〈 V 〉〉}
⊆ Cong(P ).

(R′3): In this case, Rn = Id ∩X≤n ×X≤n ∈ Bn(S, S′), and

[π, S, S′,Rn] = {(π + k, S � u, ρe(S)� u) | 0 ≤ k ≤ n, u ∈ Xk} ⊆ Cong(P )

(because ρe(S)� u = ρe(S � u)).
(R6): (π, S1 · S′ + U, S′) ∈ Q, S = S∗

1 · U . By (10.3), ∃Rn ∈ Bn(S1 · S′ + U, S′),

[π, S1 · S′ + U, S′,Rn] ⊆ Cong(P ).

Using the properties mentioned in section 4.4, we get that

[π, S, S′,R〈S1,∗〉
n ] = [π, S∗

1 · U, S′,R〈S1,∗〉
n ]

⊆ Cong[π, S1 · S′ + U, S′,Rn]

⊆ Cong(Q) ⊆ Cong(P ).

(R7): (π, S1, S
′
1) ∈ Q, S = S1 · T , S′ = S′

1 · T . By (10.3), ∃Rn ∈ Bn(S1, S
′
1),

[π, S1, S
′
1,Rn] ⊆ Cong(P ). Using the properties mentioned in section 4.4, we

get that

[π, S, S′, 〈S1|Rn〉] = [π, S1 · T, S′
1 · T, 〈S1|Rn〉]

⊆ Cong([π, S1, S
′
1,Rn])

⊆ Cong(Q) ⊆ Cong(P ).

(R8): ∀i ∈ [1, δ], (π, Ti,∗, T
′
i,∗) ∈ Q, S = S1·T , S′ = S1·T ′. By (10.3), ∃R1,n, . . . ,Rδ,n

∈ Bn(Ti,∗, T
′
i,∗), such that

[π, Ti,∗, T
′
i,∗,Ri,n] ⊆ Cong(P ).

Using the properties mentioned in section 4.4, we get that

[π, S, S′, 〈S,R∗,n〉] = [π, S1 · T, S1 · T ′, 〈S,R∗,n〉]

⊆ Cong

⎛
⎝ ⋃

1≤i≤δ

[π, Ti,∗, T
′
i,∗,Ri,n]

⎞
⎠

⊆ Cong(Q) ⊆ Cong(P ).

In all cases Q(n, p) has been established.
n > 0, p = 0: (π, S, S′) ∈ P . As P is locally π̄-consistent and π ≤ π+n−1 < π̄,

there exist R1 ∈ B1(S, S
′), q ∈ N such that

[π, S, S′,R1] ⊆ Congq(P ).(10.4)

As (n−1, q) < (n, 0), by the induction hypothesis, ∀(x, x′) ∈ R1∩X×X, ∃Rx,x′,n−1 ∈
Bn−1(S � x, S′ � x′) such that

[π + 1, S � x, S′ � x′,Rx,x′,n−1] ⊆ Cong(P ).(10.5)
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Let us consider Rn = {(ε, ε)}
⋃

(x,x′)∈R1∩X×X{(x, x′)}·Rx,x′,n−1. One can check that

Rn ∈ Bn(S, S′) and, by (10.4), (10.5), we obtain

[π, S, S′,Rn] = {(π, S, S′)}
⋃

(x,x′)∈R1∩X×X

[S � x, S′ � x′,Rx,x′,n−1] ⊆ Cong(P ).

Let us define now an oracle O ∈ Ω which is π̄-consistent with P . For every (S, S′) ∈⋃
λ≥1 DRB1,λ〈〈 V 〉〉 × DRB1,λ〈〈 V 〉〉 occurring in Cong(P ) (i.e., as the last two

components of an assertion in Cong(P )), let us note the following:

W (S, S′) = min{π ∈ N | (π, S, S′) ∈ Cong(P )},
D(S, S′) = max{π̄ −W (S, S′), 0},
C(S, S′) = min{R ∈ BD(S,S′)(S, S

′) | [W (S, S′), S, S′,R] ⊆ Cong(P )}.

Notice that C(S, S′) is well-defined, owing to property (10.2). We then define O as
follows: for every (S, S′) occurring in Cong(P ),

O(S, S′) = min{R ∈ B∞(S, S′) | C(S, S′) = R∩ (X≤D(S,S′) ×X≤D(S,S′))},(10.6)

and for every (S, S′) not occurring in Cong(P ),

O(S, S′) = min{R ∈ B∞(S, S′)} (if S ∼ S′),

O(S, S′) = IdX∗ (if S �∼ S′).(10.7)

One can check that, by the choice of C(S, S′), O is π̄-consistent with P .
Lemma 10.4. Let A0 ∈ A such that H(A0) = ∞. Let us consider the sequence

of trees tn = Ŝn
ABC(A0). For every integer n ≥ 0, tn is consistent.

Let us say that the strategy T “applies to” node x iff x has exactly m sons
x · 1, x · 2, . . . , x ·m and

τ(x1) · τ(x · 2) · · · τ(x ·m) ∈ T (τ(x[0]) · τ(x[1]) · · · τ(x[|x|]));

i.e., the word consisting of the labels of the sons of x belongs to the image of the path
from ε (included) to x (included) by the strategy T .

Proof. For every k ∈ N we define

π̄k = Π̄(tk).

We prove by induction on (n, π) the following property R(n, π):

∀x ∈ dom(tn), if tn(x) = (π, S, S′) with π < π̄n, then(10.8)

∃R1 ∈ B1(S, S
′), [π, S, S′,R1] ⊆ Cong(im(tn)).(10.9)

At every step of our proof by induction, we consider some node x of tn fulfilling
hypothesis (10.8) and show that it must fulfill (10.9). Let us notice that if x is not
closed, then hypothesis (10.8) cannot be true, by minimality of π̄n. Let us notice also
that if x is closed, but there is some x′ ≺ x such that tn(x′) = tn(x), then (10.9) on x
is the same property as (10.9) for x′. Hence, in what follows, we can suppose that x
is closed and that it is minimal (w.r.t. �):

x = min�{y ∈ dom(tn) | tn(y) = tn(x)}.(10.10)
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n = 0, π = 0: dom(t0) = {ε}, t0(ε) = A0. If ε is not closed, then π̄0 = π = 0,
and hence there is no node x fulfilling hypothesis (10.8). Otherwise, π̄0 = ∞ and
x = ε is closed: either T∅(A0) = {ε} or Tε(A0) = {ε}. Let us choose

R1 = IdX∗ ∩X≤1 ×X≤1.(10.11)

If we note A0 = (π, S−
0 , S+

0 ), then

[π, S−
0 , S+

0 ,R1] = {(π, S−
0 , S+

0 )} ∪ {(π + 1, S−
0 � x, S+

0 � x) | x ∈ X},

where, ∀x ∈ X, S−
0 � x ≡ S+

0 � x ≡ ∅. Using rule (R′3), we see that

[π, S, S′,R1] ⊆ Cong(∅) ⊆ Cong(im(tn)).(10.12)

n > 0, π = 0: Let x be some node of tn such that ∃S, S′, tn(x) = (π, S, S′)
and π < π̄n. Let us denote by Wx the word labeling the path from the root of tn
(included) to x (included).

Case 1. ∃x′ ∈ dom(tn), x′ internal node, such that tn(x′) = tn(x). As π = 0, the

sons x′ ·1, x′ ·2, . . . , x′ ·m of x′ are such that tn(x′ ·1)·tn(x′ ·2) · · · tn(x′ ·m) ∈ T
(O)
A (Wx′)

for some oracle O. Let us choose

R1 = O(S, S′) ∩X≤1 ×X≤1.(10.13)

Then

[π, S, S′,R1] ⊆ im(tn).(10.14)

Case 2. T∅(Wx) = {ε} or Tε(Wx) = {ε}. In this case the choice R1 = IdX∗ ∩
X≤1 ×X≤1 again satisfies (10.12).

π > 0: Let x fulfill hypothesis (10.8). As tn is a proof-tree for SABC , and as we
suppose x is closed and minimal (10.10), one of the following cases must occur.

Case 1. Tcut applies to x. There exists x′ ∈ dom(tn), ∃π′ ∈ N, such that

tn(x′) = (π′, S, S′) and π′ < π.

By the induction hypothesis

∃R1 ∈ B1(S, S
′), [π′, S, S′,R1] ⊆ Cong(im(tn)),

and by means of rule (R0),

[π, S, S′,R1] ⊆ Cong([π′, S, S′,R1]).

Hence (10.9) is true.
Case 2. T∅ or Tε applies to x. Here again, the choice (10.11) fulfills property

(10.12).
In the remaining cases we use the following notation: for every k ∈ N such that

tk is not closed,

xk = min{x ∈ dom(tk), x is not closed for SABC and ∃S, S′, t(x) = (π̄k, S, S
′)}.

If ∃k < n | tk is not consistent or is closed, then by (7.10), tk = tk+1 = · · · = tn; hence
R(n, π) ⇔ R(k, π), and this last property is true by the induction hypothesis.
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Let us suppose now that ∀k < n, tk is consistent and unclosed. According to
formula (7.9),

tk+1 = tk[ek+1/xk]

for some tree of depth one, ek+1.
Let k ∈ [0, n− 1], x = xk, π = π̄k (such a k must exist because x is internal). Let

x · 1, . . . , x · μ be the sequence of sons of x.

Case 3. TA applies to x. Hence there exists some oracle O such that T
(O)
A applies

to x. The choice (10.13) fulfills property (10.14).
Case 4. Tα

B applies to x (for some α ∈ {−,+}). Let us suppose α = +. Let
x′ = x(|x| − k1) (the prefix of x having length |x| − k1), tn(x′) = (π′, Ū , U ′). By
definition of ŜABC , there exists some oracle O which is π̄k-consistent with im(tk) and
such that

μ = 1 and tn(x · 1) = T
(O),+
B (Wx).

Let us look at the proof of Lemma 7.2 in the particular case of this oracle O: as the
pairs (u�, u

′
�) belong to O(Ū , U ′) (for every � ∈ [1, q]) and π′ + |u�| − 1 < π′ + k0 ≤

π′+2 ·k0 < π̄k, deduction (7.2) can be obtained just by using rules in C. As deduction
(7.2) is the only one (in the proof of Lemma 7.2) using rules in B0 − C we conclude
that deduction (7.1) can be replaced by

{tn(x′), tn(x · 1)} ∪ im(tk)
〈∗〉
||−− C τ−1(tn(x)).(10.15)

(We recall that τ−1 consists in replacing the weight of a given weighted equation into
its predecessor.) Deduction (10.15) implies that

∃p ∈ N, (π − 1, S, S′) ∈ Congp(im(tn)).(10.16)

By the induction hypothesis, as π − 1 < π̄n, im(tn) is locally π − 1-consistent, and
hence, by Lemma 10.3, im(tn) is π − 1-consistent. Hypothesis (10.16) implies that

∃R1 ∈ B1(S, S
′), [π − 1, S, S′,R1] ⊆ Cong(im(tn)),

and hence, using (R0), that

∃R1 ∈ B1(S, S
′), [π, S, S′,R1] ⊆ Cong(im(tn)).

Case 5. TC applies to x. By definition of ŜABC , there exists some oracle O which
is π̄k-consistent with im(tk) and such that

μ = 1 and tn(x · 1) = T
(O)
C (Wx).

Let Wx = A1 · · ·A� · · ·A|x|+1, κ1 < · · · < κi < κi+1 < · · ·κD+1 = |x| + 1, S =
(Ei)1≤i≤D+1, where, for every 1 ≤ i ≤ d,

Ei = Aκi =

⎛
⎝πi,

d∑
j=1

αi,jSj ,

d∑
j=1

βi,jSj

⎞
⎠

and

T
(O)
C (Wx) = ρe(INV(O)(S)), W(O)(S) �= ⊥, D(O)(S) = D ≤ d− 1.
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Let us look at the proof of Lemma 5.3 in the particular case of this oracle O: the only
place where a rule in B0 − C is used is in deduction (5.10), when Case 2, Subcase 1

(or Case 2, Subcase 2) of the recursive definition of INV(O)(S) occurs. Let us recall
that the pair (u, u′) chosen by the oracle O is such that

R = O

⎛
⎝ d∑

j=1

α1,jSj ,

d∑
j=1

β1,jSj

⎞
⎠ ,

ν = Div(α1,∗, β1,∗), Rν = R∩X≤ν ×X≤ν , (u, u′) ∈ Rν .

Note that π1 +ν−1 < π1 +2 ·ν < π2 ≤ W(O)(S)+1 = π = π̄k. As O is π̄k-consistent
with im(tk), we conclude that⎛
⎝π1 + |u|,

⎛
⎝ d∑

j=1

αi,jSj

⎞
⎠� u,

⎛
⎝ d∑

j=1

βi,jSj

⎞
⎠� u′

⎞
⎠ ∈

⎡
⎣π1,

d∑
j=1

αi,jSj ,

d∑
j=1

βi,jSj ,Rν

⎤
⎦

⊆ Cong(im(tk)).

Hence deduction (5.10) can be replaced by

E ′1 ∈ Cong(im(tk)).(10.17)

Similarly, for every i ∈ [2, D], as πi + 2 ·Div(α
(i−1)
i,∗ , β

(i−1)
i,∗ ) < πi+1 ≤ W(O)(S) + 1 =

π = π̄k, and E(i−1)
i ∈ Cong(im(tk)),

(E(i−1)
i )′ ∈ Cong(im(tk)).(10.18)

It follows that deduction (5.9) can be replaced by

{INV(O)(S)} ∪ im(tk)
〈∗〉
||−− C τ−1(tn(x)).(10.19)

Using the facts that ρe(INV(O)(S))
〈∗〉
||−− C INV(O)(S) and im(tk) ⊆ im(tn) we may

conclude that

{tn(x · 1)} ∪ im(tn)
〈∗〉
||−− C τ−1(tn(x)) = (π − 1, S, S′).(10.20)

From (10.20) and the induction hypothesis, we can conclude, as in Case 4, that

∃R1 ∈ B1(S, S
′), [π, S, S′,R1] ⊆ Cong(im(tn)).

(This ends the induction.)
By the above induction, for every n ∈ N, im(tn) is π̄n-consistent, i.e., tn is con-

sistent.
Lemma 10.5. ŜABC is closed.
Proof. Let A0 ∈ A. By Lemma 10.4, ∀n ∈ N, Ŝn

ABC(A0) is consistent.

If Ŝn
ABC(A0) is consistent and is not closed, then, by definition (7.9),

Ŝn
ABC(A0) �= Ŝn+1

ABC(A0);
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if Ŝn
ABC(A0) is consistent and is closed, then, by definition (7.10),

Ŝn
ABC(A0) = Ŝn+1

ABC(A0).

Hence the equivalence (4.6), which defines the notion of closed global strategy, is
fulfilled by ŜABC .

Theorem 10.6. The formal systems B0,B1 are complete.
Proof. By Lemma 9.1 ŜABC is terminating on every unmarked assertion, and by

Lemma 10.5 ŜABC is closed. Let A0 be some unmarked true assertion. According
to the proof of Lemma 4.6, ∃n0 ∈ N such that t∞ = Ŝn0(A0) is a proof-tree which
is closed, and hence such that Π̄(t∞) = ∞. By Lemma 10.5, t∞ is consistent, i.e.,
im(t∞) is ∞-consistent: ∀(π, S, S′) ∈ im(t∞),

∃R1 ∈ B1(S, S
′), [π, S, S′,R1] ⊆ Cong(im(t∞));

hence,

im(t∞)
〈∗〉
||−− C [π, S, S′,R1] |−− R4(π, S, S

′).(10.21)

As the rules of C and (R4) are rules of B1, deduction (10.21) shows that

im(t∞) |−− B1
(π, S, S′);(10.22)

i.e., im(t∞) is a B1-proof.
In the general case where A0 = (π0, U

−
0 , U+

0 ) might be marked, we observe that,
owing to rules (R1), (R2), (R′3),

{ρe(A0)}
〈∗〉
||−− C {A0}.

This deduction, combined with some B1-proof of ρe(A0), gives a B1-proof of A0.
Theorem 10.7. The bisimulation problem for rooted equational 1-graphs of finite

out-degree is decidable.
Proof. Let us consider the sequence of statements: Lemma 2.7, Lemma 2.8,

Corollary 2.6 and Lemma 3.25. By means of the above statements, the bisimulation
problem for rooted equational 1-graphs of finite out-degree reduces to the following
decision problem (we call it the bisimulation problem for deterministic vectors):
Instance: a birooted, normalized dpda M, its terminal alphabet X, a surjective

literal morphism ψ : X∗ → Y ∗ (we denote its kernel by ψ̄), and λ ∈
N − {0}, S, S′ ∈ DRB1,λ〈〈 V 〉〉 (where V is the structured alphabet asso-
ciated with M).

Question: S ∼ S′? (where ∼ is the ψ̄-bisimulation relation).
Let us consider M, X, V, ψ̄ given by some instance.

The equivalence relation ∼ on DRB1,λ〈〈 V 〉〉 has a recursively enumerable comple-
ment (this is well known). By Theorem 10.6 and Lemma 4.2, relation ∼ is recursively
enumerable too. Hence ∼ is recursive.

But the function associating to every M, X, V, ψ̄ the corresponding deduction
system B1 is recursive. Hence the bisimulation problem for deterministic vectors is
decidable.

10.2. System B2. We exhibit here a deduction system B2 which is simpler
than B1 and is still complete.
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Elementary rules. Let us eliminate the weights in the rules of B1: we define a
new set of assertions, A2, by

A2 =
⋃

λ∈N−{0}
DRB1,λ〈〈 V 〉〉 × DRB1,λ〈〈 V 〉〉.

We define a binary relation ||−− ⊆ Pf (A2)×A2, the elementary deduction relation,
as the set of all the pairs having one of the following forms:
(R21)

{(S, T )} ||−− (T, S)

for λ ∈ N− {0}, S, T ∈ DRB1,λ〈〈 V 〉〉;
(R22)

{(S, S′), (S′, S′′)} ||−− (S, S′′)

for λ ∈ N− {0}, S, T ∈ DRB1,λ〈〈 V 〉〉;
(R23)

∅ ||−− (S, S)

for S ∈ DRB1,λ〈〈 V 〉〉;
(R′23)

∅ ||−− (S, ρe(S))

for S ∈ DRB1,λ〈〈 V 〉〉;
(R24)

{(S � x, T � x′) | (x, x′) ∈ R1} ||−− (S, T )

for λ ∈ N− {0}, S, T ∈ DRB1,λ〈〈 V 〉〉, (S �≡ ε ∧ T �≡ ε), and R1 ∈ B̄1;
(R25)

{(S1 · T + S, T )} ||−− (S∗
1 · S, T )

for λ ∈ N − {0}, S1 ∈ DRB1,1〈〈 V 〉〉, S1 �≡ ε, (S1, S) ∈ DRB1,λ+1〈〈 V 〉〉,
T ∈ DRB1,λ〈〈 V 〉〉;

(R26)

{(S, S′)} ||−− (S · T, S′ · T )

for δ, λ ∈ N− {0}, S, S′ ∈ DRB1,δ〈〈 V 〉〉, T ∈ DRBδ,λ〈〈 V 〉〉;
(R27)

{(Ti,∗, T
′
i,∗) | 1 ≤ i ≤ δ} ||−− (S · T, S · T ′)

for δ, λ ∈ N− {0}, S ∈ DRB1,δ〈〈 V 〉〉, T, T ′ ∈ DRBδ,λ〈〈 V 〉〉.
We define |−− B2

as follows: for every P ∈ Pf (A2), A ∈ A2,

P |−−A⇐⇒ P
〈∗〉
||−− ◦

[1]

||−− 23,24◦
〈∗〉
||−− {A},

where ||−− 23,24 is the relation defined by (R23), (R′23), (R24) only.
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We define a simpler cost function H2 : A2 → N ∪ {∞} by

∀(S, S′) ∈ A2, H2(S, S
′) = Div(S, S′).

We let

B2 = 〈A2, H2, |−− B2〉.

Lemma 10.8. B2 is a deduction system.

Completeness. Let us denote by C2 the subset of rules of B2 obtained by re-
moving the weights in the rules of C.

Definition 10.9. Let P ∈ Pf (A2). P is said to be self-generating iff, for every
(S, S′) ∈ P ,

1. either S = S′ = ε, or
2. ∃R1 ∈ B̄1(S, S

′), ∀(x, x′) ∈ R1, P
〈∗〉
||−− C2

(S � x, S′ � x′).
(See Remark 10.12 below for the origins of this notion.)
Lemma 10.10. Let A ∈ A2 such that A is unmarked. Then H(A) = ∞ iff there

exists a finite self-generating set P ⊆ A2 such that A ∈ P .
Proof. Owing to metarules (R23), (R24) it is clear that every self-generating set

P ∈ Pf (A2) is a B2-proof. Hence, if A belongs to some self-generating set, then
H(A) = ∞.

Let us suppose now that H2(A) = ∞. Let us consider the closed proof-tree t∞
obtained by applying the global strategy ŜABC on the assertion (0, A). By Lemma 9.1
t∞ is finite, and by Lemma 10.5 t∞ is consistent, which means that im(t∞) is
∞-consistent. Let

P = pr2,3(im(t∞))

(where pr2,3 : A → A2 is the map erasing the weights).
As im(t∞) is ∞-consistent, P is self-generating and A ∈ P .
Theorem 10.11. B2 is a complete deduction system.
Proof. We already noticed that every self-generating set is a B2-proof. Hence

Lemma 10.10 proves that every true, unmarked assertion possesses some finite B2-
proof.

Let A be any true assertion. ρe(A) has a finite proof P . Owing to rules (R1),
(R2), (R′3), Q = P ∪ {A} is a B2-proof of A.

10.3. System B3. We exhibit here a deduction system B3 which is even simpler
than B2 and is still complete. Let us consider B3 = 〈A3, H3, |−− B3〉, where

A3 =
⋃

λ∈N−{0}
DRB1,λ〈〈 V0 〉〉 × DRB1,λ〈〈 V0 〉〉.

H3 = H2|A3
and |−− B3

is defined below: the metarules of B3 are essentially those
of B2, but restricted to the unmarked vectors.
(R31)

{(S, T )} ||−− (T, S)

for λ ∈ N− {0}, S, T ∈ DRB1,λ〈〈 V0 〉〉;
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(R32)

{(S, S′), (S′, S′′)} ||−− (S, S′′)

for λ ∈ N− {0}, S, T ∈ DRB1,λ〈〈 V0 〉〉;
(R33)

∅ ||−− (S, S)

for S ∈ DRB1,λ〈〈 V0 〉〉;
(R34)

{(S � x, T � x′) | (x, x′) ∈ R1} ||−− (S, T )

for λ ∈ N− {0}, S, T ∈ DRB1,λ〈〈 V0 〉〉, (S �≡ ε ∧ T �≡ ε), and R1 ∈ B̄1;
(R35)

{(S1 · T + S, T )} ||−− (S∗
1 · S, T )

for λ ∈ N − {0}, S1 ∈ DRB1,1〈〈 V0 〉〉, S1 �≡ ε, (S1, S) ∈ DRB1,λ+1〈〈 V0 〉〉,
T ∈ DRB1,λ〈〈 V0 〉〉;

(R36)

{(S, S′)} ||−− (S · T, S′ · T )

for δ, λ ∈ N− {0}, S, S′ ∈ DRB1,δ〈〈 V0 〉〉, T ∈ DRBδ,λ〈〈 V0 〉〉;
(R37)

{(Ti,∗, T
′
i,∗) | 1 ≤ i ≤ δ} ||−− (S · T, S · T ′)

for δ, λ ∈ N− {0}, S ∈ DRB1,δ〈〈 V0 〉〉, T, T ′ ∈ DRBδ,λ〈〈 V0 〉〉.
We then define |−− B3

as follows: for every P ∈ Pf (A3), A ∈ A3,

P |−− B3
A⇐⇒ P

〈∗〉
||−− B3

◦
[1]

||−− 33,34◦
〈∗〉
||−− B3

{A},

where ||−− 33,34 is now the relation defined by (R33), (R34) only.
As |−− B3

⊆ |−− B2
, H3 = H2, it is clear that B3 is a deduction system.

Completeness. Let us call C3 the intersection of the set of the rules of C with
the set of the rules of B3 (it is also equal to the set of instances of (R31), (R32), (R33),
(R35), (R36), (R37)). Let us now call P ∈ Pf (A3) a C2-self-generating set iff it fulfills
Definition 10.9 and a self-generating set iff it fulfills Definition 10.9 but where C2 is
replaced by C3.

Remark 10.12.

1. This notion of a “self-generating set (of pairs)” is a straightforward adaptation
to our d-space of vectors of the notion of the “self-proving set of pairs” defined in [10,
p. 162] for the magma M(F ∪ Φ, V ).

2. The notion of “self-bisimulation” (introduced in [5] and also used in [18, 17])
was also such an adaptation, but in the context of a monoid-structure. The notion
we use in this work can be seen, as well, as a generalization of this notion of self-
bisimulation: when every class in V0/� has just one element, the only “rational
deterministic boolean series” over V0 are the words; in this case the self-bisimulations
are exactly the self-generating sets.
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Lemma 10.13. Let A ∈ A3. Then H3(A) = ∞ iff there exists a finite self-
generating set P ⊆ A3 such that A ∈ P .

Proof. Owing to metarules (R33) and (R34), every self-generating set is a B3-
proof.

Let A ∈ A3 such that H3(A) = ∞. By Lemma 10.10, there exists some C2-self-
generating set P such that A ∈ P .

Let us consider Q = {ρe(B) | B ∈ P}.
One can check that ρe maps the set of rules of C2 into the set of rules of C3. One

can also check that ρe and � are commuting (i.e., ρe(S � u) = ρe(S)� u). Hence Q
is such that, for every (S, S′) ∈ Q,

1. either S = S′ = ε, or
2. ∃R1 ∈ B̄1(S, S

′), ∀(x, x′) ∈ R1, Q
〈∗〉
||−− C3

(S � x, S′ � x′).
That is, Q is self-generating.

Theorem 10.14. B3 is a complete deduction system.
Proof. Lemma 10.13 implies the completeness property.

10.4. System B4. We exhibit here a formal system B4 whose elementary rules
can be considered as more natural than those of B3: they just consist in the rules
expressing the basic algebraic properties of the bisimulation equivalence ∼ augmented
with the grammatical rules (i.e., the rules of grammar G0). This system B4 is still
complete. Below, we just sketch the completeness proof, which is just a slight modi-
fication of the above completeness proofs.

Let us consider the alphabet V4 = V0 ∪X. The equivalence relation � on V0 is
extended to V4 as follows: for every v, v′ ∈ V4, v ∼ v′ iff [v ∈ V , v′ ∈ V , and there are
equivalent in the sense used before] or [v ∈ X, v′ ∈ X]. (This equivalence is the one
considered in [15].) The right-action � is extended to B〈〈 V4 〉〉 ×X∗ as follows: for
every x ∈ X, β ∈ V ∗

4 , x′ ∈ X,

(x · β)� x′ = (x · β) • x′,(10.23)

A4 =
⋃

λ∈N−{0}
DRB1,λ〈〈 V4 〉〉 × DRB1,λ〈〈 V4 〉〉.

This extension of � leads naturally to extensions of the relation ∼ and of the notion
of divergence. The cost H4 is still defined by

∀(S, S′) ∈ A4, H4(S, S
′) = Div(S, S′).

Elementary rules.
(R41)

{(S, T )} ||−− (T, S)

for λ ∈ N− {0}, S, T ∈ DRB1,λ〈〈 V4 〉〉;
(R42)

{(S, S′), (S′, S′′)} ||−− (S, S′′)

for λ ∈ N− {0}, S, T ∈ DRB1,λ〈〈 V4 〉〉;
(R43)

∅ ||−− (S, S)

for S ∈ DRB1,λ〈〈 V4 〉〉;
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(R′44)

∅ ||−− ((E1, . . . , Ei, . . . , Eλ), (P1, . . . , Pi, . . . , Pλ))

for λ ∈ N−{0}, (Ei)1≤i≤λ, bijective numbering of some class in V/� and Pi

equal to the right-hand side of Ei in grammar G0;
(R′′44)

{(Sx, Tx′) | (x, x′) ∈ R1} ||−−
(∑

x∈X

x · Sx,
∑
x∈X

x · Tx

)

for λ ∈ N− {0}, Sx, Tx ∈ DRB1,λ〈〈 V4 〉〉, and R1 ∈ B̄1;
(R45)

{(S1 · T + S, T )} ||−− (S∗
1 · S, T )

for λ ∈ N − {0}, S1 ∈ DRB1,1〈〈 V4 〉〉, S1 �≡ ε, (S1, S) ∈ DRB1,λ+1〈〈 V4 〉〉,
T ∈ DRB1,λ〈〈 V4 〉〉;

(R46)

{(S, S′)} ||−− (S · T, S′ · T )

for δ, λ ∈ N− {0}, S, S′ ∈ DRB1,δ〈〈 V4 〉〉, T ∈ DRBδ,λ〈〈 V4 〉〉;
(R47)

{(Ti,∗, T
′
i,∗) | 1 ≤ i ≤ δ} ||−− (S · T, S · T ′)

for δ, λ ∈ N− {0}, S ∈ DRB1,δ〈〈 V4 〉〉, T, T ′ ∈ DRBδ,λ〈〈 V4 〉〉.

Completeness.
Proposition 10.15. B4 is a complete deduction system.
Sketch of proof. Let (S, S′) ∈ A4 such that S ∼ S′. Lemma 10.13 could be proved

for assertions in A4 in the same way that it has been proved for assertions in A3.
Hence there exists some self-generating set P containing (S, S′).

In order to prove that P is a B4-proof, we just have to check that every instance
of (R34) belongs to |−− B4 .

Let T, T ′ ∈ DRB1,λ〈〈 V4 〉〉 (for some λ ≥ 1). Using metarule (R′′44) we get

{(T � x, T ′ � x′) | (x, x′) ∈ R1} |−− B4

{(∑
x∈X

x · (T � x),
∑
x∈X

x · (T ′ � x)

)}
.

(10.24)

Using metarule (R′44) (as well as other auxiliary rules) we get

∅ |−− B4

{(
T,
∑
x∈X

x · (T � x)

)}
; ∅ |−− B4

{(
T ′,

∑
x∈X

x · (T ′ � x)

)}
.(10.25)

From deductions (10.24), (10.25) and metarules (R41), (R42) one derives

{(T � x, T ′ � x′) | (x, x′) ∈ R1} |−− B4
{(T, T ′)}.
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11. Comparisons and perspectives.

11.1. Old tools. We have reused here the notions developed in [34]:
• the deduction systems (which were in turn inspired by [9]);
• the deterministic boolean series (which were in turn inspired by [16]);
• the deterministic spaces (which were elaborated around the Meitus notion of

linear independence [23, 24]);
• the analysis of the proof-trees generated by a suitable strategy (which was

somehow similar to the analysis of the parallel computations, interspersed
with replacement moves, done in [49, 31, 28]).

Some simplifications of [34] found by Stirling [46] were taken into account in this
proof too:

• the technical notion of the “N-stacking sequence” is replaced by the slightly
simpler notion of the “B-stacking sequence” (see section 8.2);

• the analysis of section 8 uses a choice of “generating set” which is simpler
than the choice given in [33, 37];

• a main simplification linked with this more clever choice is that we can restrict
ourselves to the case of a proper, reduced strict-deterministic grammar (as is
done in [46]), while in [33, 37] we could not assume this restriction.

11.2. New tools. We also have introduced new ideas:
1. the notion of η-bisimulation over deterministic row-vectors of boolean series

(which, in some sense, translates the usual notion of bisimulation to the
d-space of row-vectors of series);

2. the notion of oracle, which is a choice of bisimulation for every pair of bisimilar
vectors; the notion of triangulation of systems of linear equations is now
“parametrized” by such an oracle O (see section 5.2); the strategies are now
parametrized by an oracle too (see section 7);

3. the elimination argument: roughly speaking, this argument shows that, in a
proof-tree t, if we take into account not only the branch ending at a node x,
but also the whole proof-tree, then the metarule (R5)

{(p, S, S′)} ||−− (p + 2, S � x, S′ � x′)

is not needed to show that im(t) |−− {t(x)} (see section 10.1); a nice (and
unexpected) by-product of this elimination is that the weights can be removed
from the equations (see sections 10.2, 10.3).

11.3. Perspectives and related works. In view of the above main result (and
of other closely related results), many directions for future work naturally arise:

• Whether the bisimulation problem is decidable or not, for equational graphs
of arbitrary out-degree, which was raised by [6], remains an open problem.

• The class of processes of type −1 was introduced in [45]: they correspond
to the computation-graphs of pda with only decreasing ε-moves. Whether
the bisimulation problem is decidable or not for such processes is a natural
challenge: the present article gives hope that it is decidable, while the negative
results from [44, 22] suggest it might be undecidable.

• Once we know that the bisimulation problem is decidable for equational
1-graphs, it is natural to ask what the intrinsic complexity of this problem
is. It is proved in [48] that the equivalence problem for deterministic pda
is primitive recursive. It is tempting to examine what techniques could be
extracted from this work and adapted to the above complexity problem (we
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discuss in section 11.4 below the difficulty of such adaptations). In [43] a
general algebraic tool (which generalizes the “extension-theorem” from [48]),
called the “subwords lemma,” is introduced for deterministic dpda. It is also
tempting to try to adapt this tool to nondeterministic pda (we discuss in
section 11.4 below the difficulty of such an adaptation).

• The intrinsic complexity of the bisimulation problem for some subclasses of
graphs would be interesting too: let us quote the context-free graphs and the
computation-graphs of finite-turn pda.

• The equivalence problem for deterministic pushdown transducers from a free
monoid into a free group (or a linear group) is shown decidable in [38]. We
strongly believe that this result can be unified with the result proved here
(Theorem 10.7) into a more general statement saying that “the bisimulation
problem is decidable for nondeterministic pushdown transducers, with out-
puts in a linear group and with only deterministic, decreasing, ε-moves” (i.e.,
whose underlying pda fulfills the hypotheses of the present article). Of course
the notion of bisimulation for transducers has to be defined carefully.

• Let us recall that, given two directed graphs G,G′, labeled over the same
alphabet X, G′ is a quotient of G iff there exists a functional bisimulation
from G to G′. It is proved in [41] that the quotient problem is decidable for
deterministic equational 1-graphs. The same decision problem remains open
for the equational 1-graphs of finite out-degree. It is open for the subclass of
context-free graphs too.

11.4. Language equivalence versus bisimulation. Let us stress here some
differences between the behavior of the equivalence ≡ (on one hand) and the behavior
of ∼ (on the other hand), w.r.t. important algebraic notions. These differences explain
some otherwise “odd” aspects of the present article, as well as point to difficulties that
must be overcome for reaching the above-mentioned perspectives. For illustrating
these differences, we shall always refer to the following example.

Example 11.1. Let G = 〈X,V, P 〉, where

X = {ai | 1 ≤ i ≤ 6} ∪ {bi | 1 ≤ i ≤ 6} ∪ {h, h′, h′′},

V = {Ai | 1 ≤ i ≤ 6} ∪ {Bi | 1 ≤ i ≤ 6} ∪ {H,H ′, H ′′},

P = {(Ai, ai) | 1 ≤ i ≤ 6} ∪ {(Bi, bi) | 1 ≤ i ≤ 6} ∪ {(H,h), (H ′, h′), (H ′′, h′′)}.

We define the equivalence relation � on V as the coarsest one:

∀v ∈ V, [v]� = V.

The grammar G is strict-deterministic and admits the partition �. Let Y = {a, b,
h, h, h′′} and let Ψ : X∗ → Y ∗ be the strict-alphabetical homomorphism defined by

Ψ(ai) = a, Ψ(bi) = b, Ψ(h) = h, Ψ(h′) = h′, Ψ(h′′) = h′′.

We define η as the kernel of Ψ:

η = {(w,w′) ∈ X∗ | Ψ(w) = Ψ(w′)}.

Direct product. We show here that, unlike for the equivalence ≡, relation ∼
over vectors does not easily reduce to the same relation over series, because it is not
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compatible with direct product. This explains the need for some row-vectors in the
assertions as well as for some matricial rules in the systems Bi for 1 ≤ i ≤ 3.

More precisely, it can be shown that, for every (S1, S2), (T1, T2) ∈ DB1,2〈〈 V 〉〉,

[(S1, S2) ≡ (T1, T2)] ⇔ [S1 ≡ T1 and S2 ≡ T2],(11.1)

while for the chosen series (see below)

[(S1, S2) �∼ (T1, T2)] and [S1 ∼ T1 and S2 ∼ T2].(11.2)

Let us choose:

S1 = A1A2; S2 = A1A3A3; T1 = A4A6; T2 = A5A6A6.

The following binary relation R1 (resp., R2) over X∗ is a word-η-bisimulation for
(S1, T1) (resp., (S2, T2)):

R1 = {(ε, ε)} ∪ {(a1, a4)} ∪ {(a4u, a1u) | u ∈ X∗} ∪ {(aiu, aiu) | i ∈ {2, 3, 5, 6}, u ∈ X∗}
∪ {(a1a2u, a4a6u) | u ∈ X∗} ∪ {(a1a6u, a4a2u) | u ∈ X∗}
∪ {(a1aiu, a4aiu) | i ∈ {1, 3, 4, 5}, u ∈ X∗},

R2 = {(ε, ε)} ∪ {(a1, a5}) ∪ {(a5u, a1u) | u ∈ X∗} ∪ {(aiu, aiu) | i ∈ {2, 3, 4, 6}, u ∈ X∗}
∪ {(a1a3, a5a6)} ∪ {(a1a6u, a5a3u) | u ∈ X∗} ∪ {a1aiu, a5aiu | i ∈ {1, 2, 4, 5}, u ∈ X∗}
∪ {(a1a3a3u, a5a6a6u) | u ∈ X∗} ∪ {(a1a3a6u, a5a6a3u) | u ∈ X∗}
∪ {(a1a3aiu, a5a6aiu) | i ∈ {1, 2, 4, 5}, u ∈ X∗}.

Let us now check that

S1 + S2 �∼ T1 + T2.(11.3)

Let us consider some binary relation R ⊆ X∗ × X∗ and show that it cannot be a
word-η-bisimulation for (S1 + S2, T1 + T2).

If R does not possess a pair with first component a1, then it does not fulfill the
totality condition.

If (a1, ai) ∈ R, with i /∈ {4, 5}, as (S1+S2)�a1 = A2+A3A3 while (T1+T2)�ai =
∅, then R cannot be a word-η-bisimulation.

If (a1, a4) ∈ R, as (T1 + T2) � a4 = A6, and the set of lengths of the words
generated from A2 + A3A3 is {1, 2} while the set of lengths of the words generated
from A6 is {1}, again R cannot be a word-η-bisimulation.

If (a1, a5) ∈ R, as A2 + A3A3 �∼ A6A6 (apply the same argument on the set of
lengths), then R cannot be a word-η-bisimulation.

We have proved (11.3).
But the properties established in section 4.3, namely, the soundness of rule (R8),

applied with T = T ′ equal to the column vector with two lines with entry ε show that
we must then have

(S1, S2) �∼ (T1, T2).

This ends the proof of (11.2). Let us notice that, of course, the implication from left
to right, in (11.1), also holds for ∼. It is the implication from right to left which may
fail for η-bisimulation.
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Extension theorem. We show here that the “extension theorem,” which is the
main new tool introduced in [48], does not hold for η-bisimulation.

The vectors. Let us consider the deterministic vectors and matrices S, T ∈
DB2,1〈〈 V 〉〉, A ∈ DB2,2〈〈 V 〉〉, α, β ∈ DB1,2〈〈 V 〉〉:

S =

(
H
ε

)
, T =

(
H ′

ε

)
, A =

(
H ′′ 0
0 H

)
,

α = (α1, α2), β = (β1, β2) with

α1 = A1,

α2 = A2H + A3H
′ + A4H

′ + A5H
′′ + A6H

′′

+ B1H + B2H + B3H
′ + B4H

′ + B5H
′′ + B6H

′′,

β1 = B1,

β2 = B2H + B3H
′ + B4H

′ + B5H
′′ + B6H

′′

+ A1H + A2H + A3H
′ + A4H

′ + A5H
′′ + A6H

′′.

The equations. The following equations are true:

α · S ∼ β · S,(11.4)

α ·AS ∼ β ·AS,(11.5)

α · T ∼ β · T.(11.6)

The reason for these three equivalences is that

α1 ·H + α2 ∼ β1 ·H + β2

(this equation is even true for language equivalence),

α1 ·H ′ + α2 ∼ β1 ·H ′ + β2 and α1 ·H ′′ + α2 ∼ β1 ·H ′′ + β2;

these last two equivalences are due to the fact that the number of occurrences of
some AiH (resp., AiH

′, AiH
′′, Ai0, BiH, BiH

′, BiH
′′, Bi0) in a deterministic sum

does not modify its class modulo ∼, provided that this number remains nonnull (or
remains null). We assert now that

α ·AT �∼ β ·AT.(11.7)

Let us prove inequality (11.7). It reduces to

α1 ·H ′′H ′ + α2 ·H �∼ β1 ·H ′′H ′ + β2 ·H,

but there is no word-η-bisimulation of depth 3 for the pair above, since

(α1 ·H ′′H ′ + α2 ·H)� a1h
′′h′ = ε,

while there is no pair (a1h
′′h′, w) ∈ η such that

(β1 ·H ′′H ′ + β2 ·H)� w = ε.

The extension theorem. The “extension theorem” stated in [48, Theorem 1, p. 828]
asserts that when ∼ is taken as the language equivalence relation, in the case where
n = 1, k = 0, m = ∞, the conjunction of (11.4), (11.5), (11.6) implies

α ·AT ∼ β ·AT.(11.8)

The above example shows that this theorem no longer holds when the equivalence
relation ∼ is the η-bisimulation relation. (The same example also holds for depth
m = 3 by the proof above.)
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Subwords lemma. We show here that the “subwords lemma,” which is the main
new tool introduced in [43], does not hold for η-bisimulation.

The “subwords lemma” stated in [43, pp. 478–489] asserts that when ∼ is taken
as the language equivalence relation, in the case where λ = 2, n = ∞, the conjunction
of

α · S ∼ β · S,
α ·AS ∼ β ·AS,

α ·BS ∼ β ·BS(11.9)

implies

α ·ABS ∼ β ·ABS.(11.10)

But if we take

B =

(
H ′ 0
0 H

)

in the above example, the three premises (11.9) are valid, while (11.10) is equivalent
to

α1 ·H ′′H ′H + α2 ·HH ∼ β1 ·H ′′H ′H + β2 ·HH.

As the equivalence∼ is right-cancellative (by Corollary 4.10, point (C3)), this equation
is equivalent to

α1 ·H ′′H ′ + α2 ·H ∼ β1 ·H ′′H ′ + β2 ·H,

which has been shown nonvalid in section 11.4.

Unifiers. We show here that, unlike for the equivalence ≡, there is no unique
most general unifier (modulo ∼) for a given finite system of linear equations (mod-
ulo ∼). This explains the need for some oracle in the definition of the triangulation
process and, consequently, in the definition of strategy TC .

It can be deduced from the type of reasoning used in [34], or even in the earlier
paper [24], that any equation of the form

αS ≡ βS(11.11)

(where α, β are deterministic row-vectors in DB1,λ〈〈 V 〉〉) has a single “most-general
unifier” up to ≡, i.e., there exists a single column vector S ∈ DBλ,1〈〈 V ∪U 〉〉, fulfilling
(11.11) and such that all the solutions of (11.11) are obtained from S by substituting
an arbitrary element of DB1,1〈〈 V 〉〉 to every variable in U (here U is a new alphabet
of variables, disjoint from V and with cardinality ≤ λ).

We have exhibited such an equation above, and we have seen that it admits at
least three minimal unifiers,(

HU
U

)
,

(
H ′U
U

)
,

(
H ′′U
U

)
,

where U ∈ U is a free variable. We could modify the example in such a way that the
number of minimal unifiers matches an arbitrary value p. We can conclude that, in
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general, a left-linear equation modulo ∼ admits a finite number of minimal unifiers,
but not a single one. This fact makes more difficult the treatment of systems of
equations modulo bisimulation as compared to systems of equations modulo language
equivalence.

Appendix. Let us sketch here a proof of Theorem 2.5.

Lemma A.1. Let Γ = (Γ0, v0) be the computation 1-graph (C(M), vM) of some
normalized pda M. Then Γ is equational and has finite out-degree.

Proof. Let M = 〈X,Z,Q, δ, q0, z0, F 〉 be a normalized pda. Let us consider a new
letter e /∈ X and build the real-time pda Me = 〈X ∪ {e}, Z,Q, δe, q0, z0, F 〉 obtained
by setting that, for every x ∈ X and q ∈ Q, z ∈ Z,

δe(qz, x) = δ(qz, x); δe(qz, e) = δ(qz, ε).

By [27, Theorem 2.6, p. 62], the computation-graph C(Me) is context-free, and by
[3, Theorem 6.3, p. 187] every context-free graph is equational. Hence C(Me) is
equational. Let us remark that C(M) is obtained from this graph just by contracting
all the edges labeled by e. Let us contract the edges labeled by e in some system of
equations Se defining C(Me): we obtain a system of equations S defining C(M).

We now use the notation of [13]. Given a system of graph equations S = 〈ui = Hi;
i ∈ [1, n]〉, by G(S, ui) we denote the ith component of the canonical solution of S.

Definition A.2. Let S = 〈ui = Hi; i ∈ [1, n]〉 be a system of graph equations.
It is standard iff it fulfills the following conditions:

(1) for every i ∈ [1, n] and every distinct integer k, � ∈ [1, τ(Hi)], the sources
src(Hi, k), src(Hi, �) are distinct vertices of Hi;

(2) for every i ∈ [1, n] and every hyperedge h of Hi which is labeled by some
unknown, all the vertices of h are distinct;

(3) for every i ∈ [1, n], k ∈ [1, τ(ui)], λ ∈ N, if there exist λ edges going out of
src(G(S, ui), k), inside the graph G(S, ui), then there exist also λ edges going
out of src(Hi, k), inside the graph Hi.

Lemma A.3. Let S = 〈ui = Hi; i ∈ [1, n]〉 be a system of graph equations where
the unknown u1 has type 1. One can compute from S a standard system of graph
equations S′ = 〈u′

i = H ′
i; i ∈ [1, n′]〉 such that the canonical solution of S′ has a first

component G(S′, u′
1) = G(S, u1).

Proof. From S one can construct a first system S1 which generates the same first
component G(S1, u1) = G(S, u1) and such that restrictions (1) and (2) of the lemma
are fulfilled: this follows from [13, Proposition 2.10, p. 209] (notice that the condition
“separated” in this reference is exactly the conjunction (1) ∧ (2)).

Let S1 = 〈vi = Ki; i ∈ [1,m]〉. Let us replace every right-hand side Ki by
a finite hypergraph Li obtained by unfolding the graph Ki, according to the rules
vj → Kj , as many times as necessary in order that every source src(Ki, k) gets as
many outgoing edges in Li as in the “complete unfolded graph” G(S1, vi). The new
system S′ = 〈vi = Li; i ∈ [1,m]〉 still fulfills conditions (1) and (2), it also fulfills
condition (3), and for every i ∈ [1,m], G(S1, vi) = G(S′, vi). Hence S′ satisfies the
conclusion of the lemma.

Lemma A.4. Let Γ = (Γ0, v0) be a rooted 1-graph over X which is the first
component of the canonical solution of some standard system of graph equations. Then
Γ is isomorphic to the computation 1-graph (C(M), vM) of some normalized pda M.

Sketch of proof. Let S = 〈ui = Hi; i ∈ [1, n]〉 be a standard system of graph
equations such that Γ = G(S, u1).
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Let us define M = 〈X,Z,Q, δ, q0, z0, F 〉 as follows. In every right-hand side Hi

we number bijectively all the unknown hyperedges, {h1,i, . . . , hj,i, . . . , hni,i}, and all
the vertices, {v1,i, . . . , vq,i, . . . , vNi,i}. Let us denote by β(j, i) the label of hj,i.

Z = {[j, i] | 1 ≤ i ≤ n, 1 ≤ j ≤ ni} ∪ {[1, 0]}.

(We extend β by defining β(1, 0) = 1.)
Intuitively every symbol [j, i] describes the situation of a vertex which belongs to

a component which has been glued to the jth unknown hyperedge of Hi.
Let Q = [1, N ], where N is the maximum number of vertices in the graphs Hi.

Intuitively, the transitions ofM starting from a mode q[j, i] describe the edges starting
from the qth vertex of Hβ(j,i). Let us define precisely the transitions starting from a
mode q[j, i]:

Case 1. q is strictly larger than the number of vertices of Hβ(j,i). Then there is
no transition starting from q[j, i].

Case 2. The vertex number q of Hβ(j,i) is a source of Hβ(j,i) and i �= 0. Then

q[j, i]
ε−→ q′,

where q′ is the number of the vertex of Hi to which it is glued (it is some vertex of
hj,i).

Case 3. The vertex number q of Hβ(j,i) is not a source of Hβ(j,i) or i = 0.
Internal edges. For every edge (vq,β(j,i), x, vq′,β(j,i)), we add the transition

q[j, i]
x−→ q′[j, i].

External edges. Let k = β(j, i). For every � such that vq,β(j,i) is a vertex of h�,k

and every edge (vr,β(�,k), x, vq′,β(�,k)) where the vertex vr,β(�,k) of Hβ(�,k) is glued to
the vertex vq,β(j,i) by the rewriting rule uβ(�,k) → Hβ(�,k), we add the transition

q[j, i]
x−→ q′[�, k][j, i].

The starting configuration is 1[1, 0] (i.e., q0 = 1, z0 = [1, 0]).
This pda is normalized (this is easy to check) and has a computation graph

whose isomorphism class is exactly G(S, u1) (this would be much more tedious to
prove formally).

Theorem 2.5 clearly follows from these three lemmas.

Acknowledgments. I thank O. Burkart, D. Caucal, P. Jancar, F. Moller, and
C. Stirling for useful discussion and information about the subject treated in this work.
This work has also benefited from the incisive questions, comments, and criticism of
O. Burkart and C. Stirling about [34].
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Abstract. We consider three natural models of random logarithmic depth decision trees over
Boolean variables. We give an efficient algorithm that for each of these models learns all but an
inverse polynomial fraction of such trees using only uniformly distributed random examples from
{0, 1}n. The learning algorithm constructs a decision tree as its hypothesis.
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1. Introduction. Decision trees are widely used to represent various forms of
knowledge. The apparent ease with which humans can understand and work with
decision trees has also made them a popular form of representation for knowledge
obtained through heuristic machine learning algorithms (see, e.g., [4, 10]). While
heuristic algorithms have proved reasonably successful for many applications, there
is some reason to believe that arbitrary decision trees are not efficiently learnable
from random examples alone, as the class of decision trees is provably not efficiently
learnable in the statistical query model, even when the examples are uniformly dis-
tributed [3].

Given the apparent difficulty of learning decision trees in polynomial time, many
researchers have considered alternative learning scenarios. One line of work which has
been pursued is to consider algorithms that run in superpolynomial time. Ehrenfeucht
and Haussler [6] have shown that the class of size-s decision trees over {0, 1}n can be
PAC learned in nlog s time steps. This result was later simplified by Blum [1]. Another
approach which has been pursued is to study decision tree learnability in alternate
learning models in which the learner has more power and the classifier produced need
not be a decision tree itself. Kushilevitz and Mansour [9] gave a polynomial time
algorithm which uses membership queries and can learn decision trees under the uni-
form distribution. The hypothesis produced by this algorithm is a weighted threshold
of parity functions. Using different techniques, Bshouty [5] gave a polynomial time
algorithm which learns decision trees in the model of exact learning from member-
ship and (nonproper) equivalence queries; this implies that decision trees can be PAC
learned in polynomial time under any distribution if membership queries are allowed.
The hypothesis in this case is a depth-three Boolean circuit.
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1.1. Our approach and results. In this work we propose a third approach
to coping with the difficulty of learning decision trees: looking at the average case.
Since we have been unable to design algorithms which can learn all decision trees,
we focus instead on algorithms which can efficiently learn most decision trees. Also,
unlike some of the earlier approaches, our hypothesis is a decision tree.

We consider three natural models of random log-depth decision trees, i.e., decision
trees over n Boolean variables which are of depth O(log n). (Note that decision trees
of logarithmic depth are a natural class to study in the context of uniform distribution
learning, since under the uniform distribution any decision tree of poly(n) size can
be approximated to any inverse polynomial accuracy by a decision tree of O(log n)
depth.) Our main result is a polynomial time algorithm that for each of these models
learns, using decision tree hypotheses, all but a 1/p(n) fraction of such trees using
only uniformly distributed random examples, where p(n) is any polynomial function
of n.

There are several motivations for this study. One natural motivation is that since
decision tree learning is an interesting and important problem, yet worst-case theo-
retical analyses seem quite hard, it is natural to consider the average case. Another
motivation comes from the work of Blum et al. [2], who proposed an approach to
constructing cryptographic primitives such as pseudorandom generators and one-way
functions based on the (presumed) intractability of certain learning problems. They
defined a framework of learning from uniformly random examples in which the tar-
get function is also selected at random from the concept class according to some
distribution. One of the main results of [2] is a proof that the existence of concept
classes which are hard to learn in this average-case sense implies the existence of cor-
responding one-way functions whose circuit complexity is closely related to the circuit
complexity of the concepts in the hard-to-learn class. Since decision trees are “simple”
in terms of circuit complexity yet widely viewed as an intractable learning problem,
one natural application of the Blum et al. paradigm would be to construct one-way
functions based on the presumed intractability of decision tree learning. However, our
results (which show that log-depth decision trees are not hard to learn in the average
case) indicate that this approach does not yield secure one-way functions.

In section 2 we give the necessary background on uniform distribution learning and
decision trees, and describe the three models of random decision trees which we con-
sider. Section 3 gives useful Fourier properties of decision trees. In section 4 we present
the learning algorithm, and sections 5 through 9 contain the proofs of correctness for
the learning algorithm. We conclude in section 10.

2. Preliminaries. A Boolean decision tree T is a rooted binary tree in which
each internal node has two children and is labeled with a variable, and each leaf is
labeled with a bit b ∈ {−1,+1}. The children are ordered, i.e., each internal node has
a definite left child and right child. We refer to an internal node whose two children are
both leaves as a preleaf node. Because we will deal exclusively with Boolean decision
trees in this paper, for convenience we will refer to them simply as decision trees.

A decision tree T computes a Boolean function f : {−1, 1}n → {−1, 1} in the
obvious way: on input x, if variable xi is at the root of T , we go to either the left or
right subtree depending on whether xi is −1 or 1. We continue in this fashion until
reaching a bit leaf; the value of this bit is f(x).

We define the depth of a node in a decision tree as follows. First, every decision
tree must have at least one node; we do not admit the empty (0-node) decision tree.
In a tree consisting of a single leaf node (labeled with some bit), the depth of this
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node is −1; we call such a tree trivial. The depth of the root in a nontrivial tree is 0,
and the depth of any nonroot node is one greater than the depth of its parent. The
depth of a decision tree T is −1 if T is trivial and the maximum depth over all preleaf
nodes of T otherwise.

A decision tree is nonredundant if no variable occurs more than once on any
root-to-leaf path. We consider only nonredundant decision trees in this paper.

We let U be the uniform distribution on {−1, 1}n. We write EX(f,U) to denote
a uniform random example oracle for f : {−1, 1}n → {−1, 1} which, when invoked,
outputs a labeled example 〈x, f(x)〉 where x is drawn from U .

We say that a collection C of representations of Boolean functions (such as decision
trees) is PAC learnable under distribution D in t time steps if there is an algorithm
A such that for every f ∈ C and for every positive ε and δ, when A is run using
EX(f,D) as an oracle, then with probability at least 1 − δ (over the random draws
from the oracle and any random choices made by A) A runs for at most t steps and
produces a hypothesis function h such that Pra∼D[f(a) �= h(a)] ≤ ε. We will focus
on the specific question of PAC learnability of a subset of the class of all decision
trees under the uniform distribution for t bounded by a polynomial in n, 1/ε, and
1/δ. More generally, C is PAC learnable in t time steps if for every distribution D it
is PAC learnable under D in t time steps.

We consider three models of random decision trees. Our primary model is the
uniform distribution over the set of all nonredundant decision tree representations of
depth at most d on the variable set {x1, . . . , xn}. We call this the uniform model and
will represent this distribution by T U

d,n. Note that not every Boolean function that

can be represented by a depth-d tree has the same probability mass under T U
d,n; some

functions may have more T U
d,n-good trees which represent them than others. That is,

T U
d,n is a distribution over syntactic representations of decision tree functions, and not

over the functions themselves.

In each of our other two models, the internal nodes form a complete tree of depth
d and are labeled uniformly at random using the variables {x1, . . . , xn}, with the
restriction that the tree must be nonredundant. These models, denoted by T C

d,n and

T B
d,n, differ in that the leaves in T C

d,n are selected independently and uniformly from

{−1, 1}, while in T B
d,n each sibling pair must have opposite signs, although the sign of

the left node is independently and uniformly chosen from {−1, 1}. We call these the
complete and balanced models, respectively.

We assume throughout that d is O(log n) and that the learning algorithm knows
the exact value of d. This latter assumption is without loss of generality (w.l.o.g.)
since the algorithm can try all values d = 1, 2, . . . until it succeeds.

3. Fourier properties of decision trees. We will be interested in carefully
measuring the correlation between a decision tree f and each of f ’s variables. Define
ei to be the n-bit vector that has a 1 in position i and 0’s elsewhere and define
f̂(ei) to be Ea∼U [aif(a)]. Since f(a) and ai take values in {−1, 1} we have f̂(ei) =

Pra∼U [f(a) = ai] − Pra∼U [f(a) �= ai]. Each f̂(ei) is a first-order Fourier coefficient
of f .

Kushilevitz and Mansour [9] showed that decision trees have some particularly
useful Fourier properties.1 Define L(i) to be the set of all leaves in a decision tree f

1In [9] Kushilevitz and Mansour considered decision trees in which internal nodes can contain
arbitrary parity functions; however, as noted earlier we allow only single variables at internal nodes.
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that are descendants of some node labeled by variable xi, and let d(�) represent the
depth of a leaf � in f . The analysis of [9] directly implies the following.

Corollary 3.1 (Kushilevitz–Mansour). For every decision tree f and every
1 ≤ i ≤ n, there is a function σi : L(i) → {−1, 1} such that

f̂(ei) =
∑

�∈L(i)

2−d(�)σi(�).

Note that this corollary implies that in any tree of depth d, each f̂(ei) is of the
form j/2d for some integer j. This is because any leaf at depth d + 1 must have a

sibling leaf, so the total number of ±1/2d+1 contributions to f̂(ei) is even. We say
that any first-order Fourier coefficient of the form 2k+1

2d for some integer k is an odd
coefficient, and all other first-order coefficients are even coefficients.

From the above corollary we can obtain the following.

Lemma 3.2. For every decision tree f of depth d and every 1 ≤ i ≤ n, f̂(ei)
is an odd coefficient if and only if the total number of occurrences of the following
conditions is odd for xi:

1. A node at depth d is labeled xi and the children of this node (both leaves) have
opposite signs.

2. A leaf at depth d has an ancestor labeled xi.
3. A pair of sibling leaves at depth d+1 have the same sign, xi labels an ancestor

of this pair of leaves, and xi is not the label of the parent of the pair.

Proof. Fix an arbitrary i. By the corollary, only leaves in L(i) that are at depth

d or d + 1 can affect whether f̂(ei) is an even or odd coefficient. Also, as noted
earlier, each leaf at depth d + 1 has a sibling leaf. Let “leaf set” denote either a
leaf at depth d or a sibling pair of leaves at depth d + 1. Then notice that every
leaf set in L(i) is covered by at most one of the conditions of the lemma. We will
show that each leaf set in L(i) that is not covered by a condition contributes noth-

ing to f̂(ei), while every covered leaf set contributes ±1/2d. From this, the lemma
follows.

First, again by the corollary, each leaf in L(i) at depth d contributes ±1/2d to

f̂(ei). For sibling leaves at depth d + 1 there are two cases: the siblings have either
the same sign or different signs. If sibling leaves at depth d + 1 have the same sign,
then their immediate parent is irrelevant: the tree is equivalent to one with a leaf at
depth d in place of the parent node. Thus, in this case, the nonparent ancestor nodes
each receive a ±1/2d contribution to their corresponding Fourier coefficients, while
the parent node receives no contribution to its coefficient. For the case in which the
siblings have different signs, it is not hard to see from the definition of f̂(ei) that the

net contribution to f̂(ei) of the set of all bit-vectors a that reach these two leaves will
be ±1/2d if xi is the parent of the leaves and 0 if xi is a nonparent ancestor of the
leaves.

Conditions 2 and 3 of this lemma may seem redundant, since a tree with two
sibling leaves having the same sign is equivalent to a tree that has a single leaf in
place of the parent of the siblings. We include both conditions because these are
syntactically different structures, both of which may arise in the various trees we
consider.

A key observation which follows from this lemma is Lemma 3.3.

Lemma 3.3. Fix any Boolean decision tree structure of depth d and assign vari-
ables x1 through xn arbitrarily to the internal nodes of the tree, with the constraint
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that the resulting tree is nonredundant. Assign each leaf bit by independently and uni-
formly selecting from {−1, 1}. Then for every 1 ≤ i ≤ n such that xi is an ancestor

of at least one leaf at depth d + 1, we have Pr[f̂(ei) is an odd coefficient ] = 1
2 .

Moreover, let S be any subset of variables x1, . . . , xn with the following property:
there is a collection C of |S| preleaves in T , each of which is at depth d and is
labeled with a different element of S, such that no variable in S occurs on any of
the paths from the root to any of these preleaves. Then we have that Pr[ for all i ∈
S f̂(ei) is an even coefficient ] = 1

2|S| .

Proof. We can view certain leaves of the tree as defining the “parity” of the inter-
nal nodes in a way that corresponds to the conditions of Lemma 3.2. More precisely,
all internal nodes begin with even parity, and then their parities are computed by
applying the following rules to each leaf and each pair of leaves (each leaf or leaf pair
will meet the conditions of at most one rule):

1. If a pair of sibling leaves is at depth d+ 1 and the leaves have opposite signs,
then the parity of their depth-d parent node is toggled.

2. If a leaf is at depth d, then the parity of each ancestor node is toggled.
3. If a pair of sibling leaves is at depth d+1 and the leaves have identical signs,

then the parity of each ancestor node except its parent node is toggled.

We can then define the parity of a variable xi as the parity of the parity of all nodes
that are labeled xi. It is clear that for each i, the first-order Fourier coefficient f̂(ei)
is odd if and only if xi has odd parity according to this definition.

Next, notice that since sibling leaves are labeled uniformly at random, any pair
of sibling leaves at depth d + 1 is equally likely to satisfy rule 1 or rule 3 above. So
the probability that any given ancestor node of a pair of such sibling leaves has its
parity toggled by a random assignment to these leaf bits is exactly 1/2. The same is
true of the parity of the variable labeling the node. Since all leaves at depth d + 1
have sibling leaves (because the tree depth is d), all possible assignments to leaves at
depth d+1 are covered by the conditions of rules 1 and 3. Thus, any variable xi that
is an ancestor of at least one leaf at depth d+ 1 will have odd parity with probability
exactly 1/2, and the first equation is proved.

To see that the second equation also holds, observe that the |S| preleaves in C
will each toggle the parity of the corresponding variable with probability 1/2. Since
no variable in S occurs on any path to a node in C, the final parities of these variables
are all independent of each other, and the lemma follows.

Kushilevitz and Mansour also observed that it follows from Corollary 3.1 and
Chernoff bounds that for any decision tree f and any δ > 0, a uniformly distributed
sample S of m labeled pairs 〈x, f(x)〉 is—with probability at least 1−δ over the choice
of S—sufficient to compute all of the first-order Fourier coefficients of f exactly, for
m exponential in the depth d of f and polynomial in log(n/δ). In particular, with

probability at least 1 − δ over the random draw of S, f̂(ei) = R
(
(
∑

a∈S aif(a))/m
)
,

where R(·) represents “rounding” the argument to the nearest rational number having
denominator 2d. Therefore, we also have the following corollary.

Corollary 3.4 (Kushilevitz–Mansour). There is an algorithm FCExact such
that, given δ > 0 and access to EX(f,U) for any decision tree f of depth O(log n),
with probability at least 1 − δ FCExact(n, δ, EX(f,U)) computes all of the first-order
Fourier coefficients of f exactly in time poly(n, log(1/δ)).

For our algorithm we will need uniform random examples which are labeled not
only according to the original tree f, but also according to certain subtrees obtained
by restricting a subset of the variables of f . Each such subset will lie along a root-
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LearnTree(n, d, δ, ε, EX(T,U))
(is given number of variables n, the depth d of the tree T to be learned, desired
confidence δ > 0, desired accuracy ε > 0, and access to EX(T,U)).

1. if d ≤ ( 1
2 log n)

2. return UnikDTLearn(n, ε, δ, EX(T,U))
3. endif
4. for i = 1, . . . , n
5. for b = −1, 1
6. Call FCExact(n− 1, δ/(4n2), EX(Txi←b,U)) to computêTxi←b(ej) for all j �= i
7. endfor
8. if none of the coefficients ̂Txi←b(ej) is odd
9. return tree consisting of root xi and children defined by

LearnTree(n− 1, d− 1, δ/4, ε, EX(Txi←b),U) for b = −1, 1.
10. endif
11. endfor
12. return “fail”

Fig. 4.1. The algorithm for learning random log-depth decision trees.

to-leaf path in f and—since we consider only trees of depth O(log n)—will therefore
have cardinality O(log n). We can simulate exactly an example oracle for such a
restricted f ′ given an oracle EX(f,U) by simply drawing examples from EX(f,U)
until we obtain one that satisfies the restriction on the O(log n) variables. Since each
example from EX(f,U) will satisfy such a restriction with probability 1/poly(n),
the probability of failing to obtain such an example after poly(n) many draws from
EX(f,U) can be made exponentially small. Thus the simulation of these subtree
oracles is both exact and efficient. We will use EX(f ′,U) to represent the simulated
oracle for a restriction f ′.

4. The algorithm for learning random decision trees. Our algorithm for
learning random decision trees, which we call LearnTree (see Figure 4.1), operates in
two phases. In the first phase (lines 4–11) the algorithm uses the Fourier properties
outlined above to find a root-like variable for the original tree. (Informally, a root-like
variable has the property that it can be taken as the root of the tree without increasing
the depth of the tree; we give precise definitions later.) Once this is done, it recursively
finds a good root for each of the two subtrees induced by this root, and so on. The
process stops at depth d− 1

2 log n, so when it stops there are at most 2d/
√
n subtrees

remaining, each of depth at most 1
2 log n. (Recall that w.l.o.g. we may assume the

algorithm knows the exact value of d.) In the second phase (lines 1–3) we employ an
algorithm UnikDTLearn(n, ε, δ, EX(T,U)) due to Hancock [7] to learn the remaining
“shallow” decision trees. (If d < 1

2 log n, then our algorithm performs only the second
phase.)

The intuition underlying the algorithm is that at each step in the first phase,
each of the two subtrees of the root xi of a decision tree T will obviously have depth
at least one less than that of the original tree. These subtrees will therefore contain
no odd first-order Fourier coefficients by Lemma 3.2, and thus the root xi will pass
the test at line 8. On the other hand, we will show that in our random decision tree
models, if we consider a variable xj which is not the root (or, more accurately, is not
root-like in a sense defined below), then projecting on xj will result in at least one
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projection containing odd first-order coefficients. (This will follow from our earlier
Fourier analysis of decision trees plus some combinatorial arguments showing that if
xj is not root-like, then with very high probability the trees resulting from restricting
on xj will have an ω(log n)-size collection C of preleaves as in Lemma 3.3.)

Hancock’s UnikDTLearn is efficient, so LearnTree clearly runs in time poly(n)
for any value d = O(log n). The rest of this paper shows that the algorithm with
high probability outputs an accurate decision tree for our various models of random
decision trees.

5. Bottlenecks and recursing the algorithm. The first phase of our algo-
rithm attempts to select recursively the root of the original tree T and its subtrees.
One difficulty is that T may have more than one variable that “acts like” a root, in
the sense that putting any of these variables at the root does not increase the depth of
the tree. For example, consider a decision tree representation of the function x1 ⊕x2.
Although we might represent this with a tree T having x1 at the root, it can be
represented equally well by a tree with x2 at the root.

The following definition captures the notion of a “root-like” variable for us.
Definition 5.1. A variable xi is a bottleneck for a decision tree T if T is

nontrivial and xi occurs on every root-to-leaf path in T .
Clearly the variable labeling the root is always a bottleneck for any tree. We note

that if xi is the root of a tree T , then a variable xj �= xi is a bottleneck in T if and
only if xj is a bottleneck in both the left and right subtrees of T . Notice also that
any bottleneck variable will pass the test at line 8 of LearnTree, so some variable xi

will pass the test at every stage of the recursion given that FCExact returns accurate
values for all first-order Fourier coefficients.

For the rest of this section let Td,n denote any fixed one of the three random
tree models T B

d,n, T C
d,n, T U

d,n. In later sections we will show that for a random tree T
drawn from Td,n, any nonbottleneck variable will with very high probability not pass
the test of line 8. Thus each recursive call of LearnTree is performed by restricting
some bottleneck variable; however, the bottleneck may or may not be the root. If
the root is the bottleneck chosen, then it is easy to see that each of the two subtrees
will be drawn from Td−1,n−1 (over a suitable set of n − 1 variables) as desired, and
the inductive assumption of LearnTree (that the tree it is given is drawn from Td,n)
will be valid. If a nonroot bottleneck is chosen, however, it is not a priori clear
that the two resulting subfunctions for the recursive call correspond to draws from
Td−1,n−1.

We will show shortly that as long as any bottleneck is chosen, the two resulting
subfunctions do indeed correspond to draws from Td−1,n−1. (The correspondence is
exact for the complete model; for the other models the subfunctions correspond to
draws from a distribution which has negligible statistical difference from Td−1,n−1.)
While the two draws are not independent of each other, this does not negatively
impact the algorithm.

First, we define some terms. Figure 5.1 defines a tree restructuring operation we
call a root swap. Notice that this operation can be performed on a tree only if the
children of the root are both labeled with the same variable; we call a tree with this
property root swappable. More generally, a swap operation takes a tree T and a node
η in the tree such that the subtree S rooted at η is root swappable and returns a tree
T ′ which is identical to T except that the subtree rooted at η is replaced with the
root swap of S.

We next define an equivalence relation on decision trees which we call structural
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xi

xj xj xi xi

xj

T1 T2 T3 T4 T1 T3 T2 T4

Fig. 5.1. Applying a root swap operation to the tree on the left (right) produces the tree on the
right (left). Note that the tree produced by a root swap computes the same function as the original
tree.

equivalence. Formally, this relation is defined inductively as follows.
Definition 5.2. (i) Two decision trees T and T ′, both of depth d< 1, are

structurally equivalent if and only if they are identical. (ii) Two decision trees T
and T ′, both of depth d ≥ 1, are structurally equivalent if and only if there exists a
sequence of swap operations that will transform T ′ to a tree T ′′ such that T and T ′′

have the same root variable and each of the child subtrees of the root of T ′′ is struc-
turally equivalent to its corresponding subtree in T . (iii) Two decision trees T and T ′

of different depths are not structurally equivalent.
Informally, two decision trees T and T ′ are structurally equivalent if T ′ can be

obtained from T by performing a sequence of swaps. Note that if two trees are
structurally equivalent, then they compute the same function. The following lemma,
which we prove in Appendix A, shows that bottleneck variables can be swapped to
the root of a tree in a way that preserves structural equivalence.

Lemma 5.3. Let T be any decision tree. If variable xi is a bottleneck for T , then
there is a tree T ′ having xi at its root that is structurally equivalent to T .

Let T i
d,n be the induced distribution over trees obtained by restricting T C

d,n to trees
for which xi is a bottleneck, and let T ĩ

d,n be the distribution over trees obtained by first
selecting a tree T according to T i

d,n and then performing a minimal sequence of swap
operations (as implicitly described in the proof of Lemma 5.3) to produce a struc-
turally equivalent T̃ having xi as its root. Finally, let T −1

d−1,n−1 (resp., T 1
d−1,n−1) repre-

sent the distribution over trees corresponding to a random variable that selects a tree T̃
according to T ĩ

d,n and then returns the left (resp., right) subtree as the value of the ran-
dom variable. Then for the complete model, it suffices to prove the following lemma.

Lemma 5.4. Let T i
d,n, T −1

d−1,n−1, and T 1
d−1,n−1 be as defined above. Then for all

1 ≤ i, d ≤ n, T −1
d−1,n−1 and T 1

d−1,n−1 are both identical to T C
d−1,n−1.

Proof. The proof is by induction on d. For the base case d = 1, any tree T
drawn from T i

1,n has either xi at the root or some other variable xj at the root and
xi as the root of both children of xj . In either case, the corresponding tree T̃ of the
process defining T ĩ

1,n will have xi at the root with two depth-0 children. It is easy
to see that, over random draws from T ĩ

1,n, the root variables of these children of xi

are each uniformly distributed over the n − 1 variables excluding xi (although the
distributions of these root variables are not necessarily independent). The values of
the leaves are also uniformly and independently distributed. Therefore, the base case
has been shown.

For the inductive case, consider a tree T drawn from T i
d,n for fixed d > 1. Since

xi must be a bottleneck in T , it either is the root of T or is a bottleneck in both
children of the root of T . If xi is the root of T , the lemma obviously holds. So we
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are left with the case in which some variable xj—uniformly chosen from the n − 1
variables excluding xi—labels the root of T and xi is a bottleneck in both children
of xj . Let T−1 (T1) represent the left (right) subtree of T , and let T̃−1 (T̃1) represent
the tree obtained by swapping xi to the root of T−1 (T1). Since xi is a bottleneck in
T−1 (T1), the children of xi in T̃−1 (T̃1) are drawn from T C

d−2,n−2, by the inductive

hypothesis.2 Notice also that, although the distribution over each child of xi in T̃−1

may be dependent on its sibling’s distribution, each is independent of both of the
distributions over children of xi in T̃1. Therefore, after performing a final swap of the
xi’s at the roots of T̃−1 and T̃1 with the root xj of T , we obtain a tree T̃ in which
each child of the root xi is a tree rooted at uniformly (over n− 1 variables) chosen xj

and in which the children of xj are independently distributed according to T C
d−2,n−2.

That is, each child of xi in T̃ is distributed according to T C
d−1,n−1. Since T̃ is by

construction distributed according to T ĩ
d,n, the lemma follows.

This proof does not immediately apply to either of the other two tree models.
The problem for balanced trees is in the base case: a swap in a balanced tree of depth
1 can produce a tree that is no longer balanced. For uniform trees, there is a technical
difficulty in that the distribution over children will only be exactly T U

d−1,n−1 in the
case in which no swap is performed (the root is chosen as the bottleneck variable). If
a nonroot bottleneck is chosen, a swap must be performed, and the children of the
root then must not be leaves. But leaves have nonzero probability in T U

d−1,n−1, so the

children are not distributed according to T U
d−1,n−1 in this case.

We can, however, still say that with very high probability over the choice of
tree according to either T B

d,n or T U
d,n, the choice of bottleneck variable on which to

recurse will not affect the distribution over the recursive subtree problems. We use
two lemmas to show this. First, we will later prove the following lemma in the context
of some of our other combinatorial lemmas in Appendix E.

Lemma 5.5. Let T be drawn from Td,n where d ≥ 1
2 log n and d = O(log n). The

probability that T has any bottleneck variable which occurs at some depth k ≥ 1
8 log n

is 1/nω(1).
For the balanced model, this means that the sequence of swaps performed to

transform T chosen according to T B
d,n into T̃ having bottleneck xi at the root will

almost certainly not perform a swap involving xi nodes whose children are leaf bits.
And a simple modification to the proof of Lemma 5.4 shows the following.

Lemma 5.6. Let T ī
d,n be the induced distribution over trees obtained by restricting

T B
d,n to trees for which xi is a bottleneck that does not appear at depth d. Let T −1

d−1,n−1

and T 1
d−1,n−1 be induced distributions defined as before except relative to T ī

d,n rather

than T i
d,n. Then for all 1 ≤ i, d ≤ n, T −1

d−1,n−1 and T 1
d−1,n−1 are both identical to

T B
d−1,n−1.

So in the balanced model, there is a negligible chance that the choice of bottleneck
variable will negatively affect the algorithm. For the uniform model, we will also use
the following lemma, which is again proved in Appendix E.

Lemma 5.7. Let T be drawn from T U
d,n, where d ≥ 1

4 log n. The probability that T

has a leaf at depth less than d− 1
4 log n is 1/2n

Ω(1)

.

2Strictly speaking, the children of xi are fixed for any given T . What we are actually claiming
here is that over draws of T from T i

d,n, for fixed d > 1, the children of xi in T̃−1 are distributed
according to T C

d−2,n−2. But for ease of exposition, here and below we often blur the distinction
between a single tree produced by one application of a random process defining a distribution over
trees and the distribution itself.
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Combining this with Lemma 5.5, for d ≥ 1
2 log n, with probability at least 1 −

1/nω(1) (which we will refer to in this section as “very high probability”), a tree T
drawn from T U

d,n has no leaves through depth d− 1
4 log n, while all bottleneck variables

are at shallower depths. Fix t to be any depth ( 3
16 log n will do) such that with very

high probability all the bottleneck variables in T drawn from T U
d,n have depth less

than t and all leaves have depth greater than t.

Notice that (with very high probability) we have 2t nodes at depth t in T and
that the subtrees rooted at these nodes are independently and identically (up to
variable renaming) distributed according to T U

d−t,n−t. Furthermore, notice that all of
the nodes labeled by any bottleneck variable are with very high probability located
in the portion of the tree above these new “leaves.” So the proof of Lemma 5.4 shows
that, with very high probability, swapping a bottleneck variable xi to the root of T
produces a tree T̃ in which the children of xi are each distributed according to the
complete distribution down to depth t − 1 and then according to T U

d−t,n−t. But this
is just T U

d−1,n−1 restricted to contain no leaves until depth t, which by Lemma 5.7 is
negligibly different from T U

d−1,n−1.

Therefore, in the uniform model, the recursive distributions obtained if a nonroot
bottleneck is chosen are negligibly different from the distributions that would be
obtained if the root variable were selected. Thus, in both the balanced and the uniform
models, the probability that LearnTree fails as a result of distribution differences
induced by selecting a nonroot bottleneck is negligibly small. This failure probability
will be covered by a portion of the PAC confidence parameter δ.

It remains to show that LearnTree will with high probability choose a bottleneck
at each stage of the recursion in the first phase, and that Hancock’s algorithm can be
used to efficiently learn Td,n-random trees of depth 1

2 log n with high probability. We
address the second point first in the next section.

6. Learning random (1
2
log n)-depth trees. We stop the recursion in Learn-

Tree at depth 1
2 log n because our analysis depends on trees being somewhat deep. So

we use another method for learning random trees of depth less than 1
2 log n, which is

based on the following lemma plus the UnikDTLearn algorithm due to Hancock [7].

Recall that a decision tree T is read-k if each variable labels at most k nodes in
T . We again write Td,n to represent any of our three random tree models. We prove
the following easy lemma in Appendix B.

Lemma 6.1. Let r = ((1 − ε) log n) − 2 for some constant ε > 0. Let C be any
constant. Then we have PrT∈Tr,n [T is not read-k] ≤ 1/nC for k = (C + 2)/ε.

Thus, if r = ( 1
2 log n), then for any constant C we may take k = 8C+16, and with

probability at least 1 − 4
(n−2)C

a tree T drawn from Td,n is read-k (since each of the

four subtrees of depth r−2 is not read-(2C+4) with probability at most 1/(n−2)C).

Hancock [7] has given an algorithm UnikDTLearn and shown that it (or more
precisely, a version which takes k as an input along with the parameters given earlier)
efficiently learns read-k trees with respect to the uniform distribution, producing a
decision tree (not necessarily read-k) as its hypothesis. Given any constant k, his
algorithm terminates in time polynomial in n, 1/ε, and 1/δ, regardless of whether
or not the target function f is actually a read-k decision tree. So our version of
UnikDTLearn(n, ε, δ, EX(T,U)) will begin by finding the smallest integer C such that
1/nC ≤ δ/2. If the δ originally provided to LearnTree is inverse polynomial in n, then
this value C will be a constant independent of n. Taking k = 8C+16, this means that
the target function provided to UnikDTLearn is a read-k decision tree with probability
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at least 1 − δ/2. Then running Hancock’s original UnikDTLearn with this value of k
and with δ/2 as the confidence parameter will succeed at learning an ε-approximating
tree with probability at least 1− δ/2, for an overall success probability at the bottom
of the recursion of 1 − δ. In short, we have the following lemma.

Lemma 6.2. If the function f in the oracle EX(f,U) in the call to UnikDTLearn
in LearnTree is distributed according to Td,n, then UnikDTLearn returns a decision
tree that ε-approximates f with probability (over the random choice of T and the
randomness in EX(f,U)) at least 1 − δ.

It remains to show that the first stage of the algorithm successfully finds a bottle-
neck variable with high probability given a decision tree drawn at random according
to one of our tree models and with depth at least 1

2 log n. Throughout the rest of the
paper we thus have d = Θ(logn), d ≥ 1

2 log n. We will consider each model separately,
beginning with the complete model.

7. Identifying bottlenecks in the complete model T C
d,n. Since we have

already shown that any bottleneck makes an equally good root in the hypothesis, and
since it is easily seen that all bottlenecks (including the root of T ) will pass the test
at line 8 of LearnTree, it remains to show the following: for each i = 1, . . . , n, if xi is
not a bottleneck in a random tree T , then the probability that xi passes the test in
line 8 is negligibly small.

Our general plan of attack is as follows: we will prove that if x1 is not a bottleneck,
then with 1 − 1

nω(1) probability there are many root-to-leaf paths in T that do not
include x1. We then argue that, conditioned on there being many such paths, among
these preleaves there is a collection C satisfying the condition of Lemma 3.3 which
has |C| = ω(log n). Combining this with the Fourier properties of random decision
trees derived earlier gives us our result.

More precisely, the argument is as follows. Let S be a random variable which
denotes the number of x1-free paths from the root to a preleaf in T ∈ T C

d,n. (Note
that each such path ends at a depth-d preleaf since we are in the complete model.
Note also that since we are in the complete model, S > 0 if and only if x1 is not a
bottleneck.) We will prove the following lemmas in Appendix C.

Lemma 7.1. For 0 ≤ d ≤ n− 1 we have PrT∈T C
d,n

[S = 0] ≤ 1
n−d .

Lemma 7.2. For any value 1 ≤ k ≤ (log n)3/2 we have Pr[S = k] = 1/nω(1).
Lemma 7.3. Let T be drawn from T C

d,n conditioned on its having some set of

(log n)3/2 preleaves at depth d, each of which has no x1-labeled node as an ancestor.
Then with probability 1 − 1/nω(1) there is a set C of (log n)5/4 preleaves at depth d,
each labeled with a distinct variable, each of which has no ancestor labeled with x1 or
with a variable that labels any element of C.

From these lemmas it is easy to prove that each nonbottleneck will pass the test
at line 8 with negligible probability.

Theorem 7.4. Let T ∈ T C
d,n, where d = Θ(logn), d ≥ 1

2 log n. If x1 is not a

bottleneck, then the probability that x1 passes the test in line 8 is 1/nω(1).
Proof. Since S = 0 if and only if x1 is a bottleneck, we have

Pr
T∈T C

d,n

[S < (log n)3/2 | x1 is not a bottleneck] =
Pr[S < (log n)3/2 & S > 0]

Pr[S > 0]

=
Pr[1 ≤ S < (log n)3/2]

Pr[S > 0]

= 1/nω(1),
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where the last equality follows from Lemmas 7.1 and 7.2. Thus we may assume that
S ≥ (log n)3/2. Lemma 7.3 now implies that there is a set C of (logn)5/4 preleaves
with the stated properties. Now we observe that if a preleaf belongs to C, then under
any restriction x1 ← b, the preleaf will still occur at depth d with the desired property
(that no variable labeling any node of C occurs as an ancestor of any node of C) in
the tree resulting from the restriction. Thus by Lemma 3.3, the probability that all
variables labeling nodes in C have even coefficients in the restricted tree is at most

1/2(log n)5/4

= 1/nω(1). Hence x1 passes the test at line 8 with negligible probability,
and the theorem is proved.

Combined with our earlier remarks, this establishes the following theorem.
Theorem 7.5. For any n, any polynomial p(·), any δ > 1/p(n), and any ε > 0,

algorithm LearnTree will with probability at least 1−δ (over a random choice of tree T
from T C

d,n and the randomness of the example oracle) produce a hypothesis decision tree
T ′ that ε-approximates the target with respect to the uniform distribution. LearnTree
runs in time polynomial in n and 1/ε.

Proof. By Lemma 6.2, the base case of the algorithm will succeed with probability
at least 1 − δ as long as it is run on a tree drawn from T C

c,n for some c ≤ 1
2 log n. In

the recursive phase, all first-order Fourier coefficients will be computed exactly with
probability at least 1− δ/4. Furthermore, assuming that the coefficients are correctly
computed, every bottleneck variable will pass the test at line 8 of LearnTree, and by
the preceding theorem the probability is negligible that any nonbottleneck variable
will pass this test. Thus, in the recursive phase of the algorithm, with probability at
least 1 − δ/4 a bottleneck variable will be chosen by the test. By the arguments of
section 5, the two functions obtained by restricting on either value of this bottleneck
variable will both be distributed according to T C

d,n. Therefore, the two recursive
calls to LearnTree will succeed with probability at least 1 − δ/2, so that overall the
recursive phase succeeds with probability at least 1− δ. Furthermore, it is easy to see
that the tree returned by the recursive phase will be an ε-approximator to the target
if each of the subtrees returned by the recursive call is an ε-approximator. Finally,
for d = O(log n), the number of recursive calls is clearly polynomially bounded, and
thus the algorithm runs in the time claimed given the previously mentioned bounds
on UnikDTLearn and FCExact.

8. Identifying bottlenecks in the balanced model T B
d,n. We first need an

analogue of Lemma 3.3 for the balanced model. Let T be a decision tree drawn from
T B
d,n. Let T ′ be the tree that results from applying the restriction x1 ← 1 to T ; i.e.,

T ′ is obtained from T by replacing each occurrence of x1 in T with its right subtree.
As in Lemma 3.3, each internal node of T ′ has a “parity” which is defined exactly

as in the proof of Lemma 3.3, and each variable xi has a parity which equals the parity
of the parity of all nodes labeled xi in T ′. It is easily seen that rule 1 contributes to the
parity of xi in T ′ precisely once for each occurrence of xi as a preleaf in T which lies
on an x1-free path from the root in T ; let Ni,1 denote the number of such occurrences.
Rule 2 contributes to the parity of xi in T ′ precisely once for each occurrence of x1

as a preleaf in T which lies on a path from the root in T which contains xi; let Ni,2

denote the number of such occurrences. (Rule 3 can never be satisfied since each pair
of sibling leaf bits in T ′ must have opposite signs.) Note that the values of Ni,1 and
Ni,2 are independent of whether we defined T ′ by the restriction x1 ← −1 or x1 ← 1
in the previous paragraph.

As in section 7, to prove that LearnTree succeeds for random T drawn from T B
d,n,

we must show that if x1 is not a bottleneck in a random T drawn from T B
d,n, then
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the probability that x1 passes the test in line 8 is 1/nω(1). From the discussion of the
previous paragraph, this is equivalent to showing that

Pr[Ni,1 + Ni,2 is even for all i = 2, . . . , n] = 1/nω(1).(8.1)

We prove this as follows. As in section 7 let S be a random variable which
denotes the number of x1-free paths from the root to a preleaf in T. (The difference
is that now T is drawn from T B

d,n instead of T C
d,n; however, these two distributions

are identical as regards the internal nodes of a tree drawn from one of them.) By
Lemmas 7.1 and 7.2 we know that conditioned on x1 not being a bottleneck in T, we
have PrT∈T B

d,n
[S > (log n)3/2] = 1− 1/nω(1) (these lemmas are easily seen to hold for

T B
d,n as well as T C

d,n). We thus may safely assume that there are S ≥ (log n)3/2 many
root-to-preleaf x1-free paths in T .

Now fix any set of S preleaf nodes in a complete binary tree of depth d. Fix a
labeling of variables for each node on each of these paths except for the preleaves
themselves (where the labeling is nonredundant and never uses x1); call this labeling
L. Fix any bit string v = v2, . . . , vn ∈ {0, 1}n−1 corresponding to the parities of
N2,2, . . . , Nn,2. We will show that conditioned on L being the labeling of the set of
nonpreleaf nodes on the x1-free paths in T, the probability (over the random labeling
of the S preleaf nodes) that each variable x2, . . . , xn occurs with the “right” parity
v2, . . . , vn among the S preleaf nodes is 1/nω(1). (In other words, we will show that
regardless of what parities N2,2, . . . , Nn,2 have, the probability that each Ni,1 exactly
matches the corresponding parity of Ni,2 is 1/nω(1).) This suffices to establish (8.1).
Thus, it suffices to prove the following lemma (the proof is given in Appendix D).

Lemma 8.1. Fix S ≥ 2(log n)3/2. For i = 1, . . . , S fix Pi to be some set of
exactly n − d “permissible” elements of {1, . . . , n}. Fix v = v1, . . . , vn ∈ {0, 1}n. Let
P denote P1 × P2 × · · · × PS, so |P | = (n − d)S . Given z = (z1, . . . , zS) ∈ P , for
j = 1, . . . , n let parj(z) denote the number of occurrences modulo 2 of j in z. Then
we have Prz∈P [parj(z) = vj for all j = 1, . . . , n] = 1

nω(1) .
We thus have the following balanced model analogues of Theorems 7.4 and 7.5.
Theorem 8.2. Let T ∈ T B

d,n, where d = Θ(logn), d ≥ 1
2 log n. If x1 is not a

bottleneck, then the probability that x1 passes the test in line 8 is 1/nω(1).
Theorem 8.3. For any n, any polynomial p(·), any δ > 1/p(n), and any ε > 0,

algorithm LearnTree will with probability at least 1−δ (over a random choice of tree T
from T B

d,n and the randomness of the example oracle) produce a hypothesis decision tree
T ′ that ε-approximates the target with respect to the uniform distribution. LearnTree
runs in time polynomial in n and 1/ε.

9. Identifying bottlenecks in the uniform model T U
d,n. As in section 7, it

suffices to prove that if x1 is not a bottleneck in a random tree T drawn from T U
d,n,

then Pr[x1 passes the test in line 8] = 1/nω(1). Our basic approach is similar to
section 7, but there are some differences, as shown below.

We now let S be a random variable which denotes the number of x1-free paths
from the root to a preleaf of depth d in a random T drawn from T U

d,n. Note that in

T U
d,n it is possible to have S = 0 even if x1 is not a bottleneck; this can happen if

there exist x1-free root-to-preleaf paths in T but all such pre-leaves have depth less
than d. We will establish the following lemma in Appendix E.

Lemma 9.1. For any value 0 ≤ k ≤ (log n)3/2 we have PrT∈T U
d,n

[S = k | x1 is

not a bottleneck ] = 1/nω(1).
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With this lemma we can prove a uniform model analogue of Theorem 7.4.
Theorem 9.2. Let T ∈ T U

d,n, where d = Θ(logn), d ≥ 1
2 log n. If x1 is not a

bottleneck, then the probability that x1 passes the test in line 8 is 1/nω(1).
Proof. Since x1 is not a bottleneck, we have S ≥ (log n)3/2 with probability

1− 1
nω(1) by Lemma 9.1. We now observe that Lemma 7.3 holds identically (with the

same proof) if in its statement T is drawn from T U
d,n and we further condition on x1

not being a bottleneck in T. We thus have that with 1 − 1
nω(1) probability there is a

set C of (logn)5/4 variables with the properties stated in Lemma 7.3. The rest of the
proof follows exactly the proof of Theorem 7.4.

Now a nearly3 identical proof to that of Theorem 7.5 gives us our main learning
result for uniform random trees.

Theorem 9.3. For any n, any polynomial p(·), any δ > 1/p(n), and any ε > 0,
algorithm LearnTree will with probability at least 1−δ (over a random choice of tree T
from T U

d,n and the randomness of the example oracle) produce a hypothesis decision tree
T ′ that ε-approximates the target with respect to the uniform distribution. LearnTree
runs in time polynomial in n and 1/ε.

10. Conclusions and future work. We have given positive results for learn-
ing several natural models of random log-depth decision trees under the uniform
distribution. Many interesting questions remain about related models of average-case
learning:

• Can similar results be established for natural models of random decision trees
of polynomial size (as opposed to logarithmic depth)?

• Can similar results be established for random disjunctive normal form (DNF)
formulas or random monotone DNF?

• Can our results be extended to learning under a broader class of distribu-
tions?

• Can similar ideas be used to learn with high probability when the target is
drawn randomly from an interesting nonuniform distribution over log-depth
trees?

It seems possible that progress in these directions could eventually lead to useful
practical algorithms.

Appendix A. Proof of Lemma 5.3. The proof is by induction on the depth d
of T. If d < 1, then the only possible bottleneck in T is the root and the lemma holds
vacuously. For the inductive step, consider a tree T of depth d ≥ 1.

• If xi is the root of T , then T ′ is just T .
• If xi is not the root of T , then T has some variable xj at the root with left

subtree denoted by T1 and right subtree T2. Since xi is a bottleneck in T but
is not the root of T , xi must be a bottleneck in T1 and in T2. By the induction
hypothesis there are trees T ′

1, T
′
2 each of which has xi at its root and such

that each is structurally equivalent to T1, T2, respectively. By definition of
structural equivalence, the tree T ′′ with xj at its root and T ′

1, T
′
2 as the left

and right child subtrees of the root is structurally equivalent to T . Performing
a root swap on T ′′ gives the required T ′.

Appendix B. Proof of Lemma 6.1. We prove the lemma for the complete
tree model T C

d,n; the proof holds unchanged for T B
d,n and is easily adapted to T U

d,n. We

3We need to fold the distribution irregularity noted in section 5 into δ at the obvious point in
the proof.
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have

Pr[T is not read-k] ≤ n · Pr[x1 occurs k′ > k times in T for some k′].

Since T is of depth r, there are 2r+1−1 occurrences of variables in T. The probability

that x1 occurs k′ times in T is at most
(
2r+1−1

k′

)
·
(

1
n−r

)k′

. This is because there are

at most
(
2r+1−1

k′

)
possible sets of locations for the k′ occurrences of x1 in T, and for

each location the probability that x1 actually occurs there is at most 1/(n− r) (even
conditioned on any labeling of the other nodes of the tree), since each location has at
most r ancestors.

Since
(
a
b

)
≤ ab and 1/(n− r) < 2/n, we can upper bound this probability by

2(r+1)k′ · 2k′
/nk′

= 2(r+2)k′
/nk′

= n(1−ε)k′
/nk′

= 1/nεk′ ≤ 1/nεk.

Since there are at most n possible values of k′ ≥ k (no variable can occur more than
n times since the size of the tree is less than n) all in all we have

Pr
T∈Tr,n

[T is not read-k] ≤ 1/nεk−2 = 1/nC .

Appendix C. Proofs of Lemmas 7.1, 7.2, and 7.3. We first prove Lemma
7.1. Let us write pd,n to denote the probability that S = 0 for a random T drawn
from T C

d,n, i.e.,

pd,n = Pr
T∈T C

d,n

[x1 is a bottleneck in T ].

Lemma 7.1 follows directly from the following.
Proposition C.1. For 0 ≤ d ≤ n− 1 we have pd,n ≤ 1

n−d .

Proof. Clearly p0,n = 1
n . For d ≥ 1, n ≥ 1 we have pd,n = 1

n + n−1
n (pd−1,n−1)

2.
This is because with probability 1

n the root is x1. With probability n−1
n the root is

some xj �= x1, in which case each of the subtrees of the root is drawn from T C
d−1,n−1,

and x1 is a bottleneck if and only if it is a bottleneck in each of these two subtrees.
Fix any m > 0. We prove that for all d ≥ 0 we have pd,d+m ≤ 1

m ; the proof is by
induction on d. The base case holds since p0,m = 1

m . For the induction step, we have

pd+1,d+m+1 =
1

d + m + 1
+

d + m

d + m + 1
(pd,d+m)2 ≤ 1

d + m + 1
+

d + m

d + m + 1

(
1

m

)2

=
m2 + m + d

m2(m + d + 1)
.

This is at most 1
m if and only if m3 + dm+m2 ≤ m3 + dm2 +m2, which is true since

m ≥ 1, so the proposition is proved.
We will prove Lemma 7.2 in a moment using Lemma C.2 below. First, a definition

and some introductory analysis.
Let pk,d,n denote PrT∈T C

d,n
[S = k]. For k ≥ 1 and d ≥ 1 we have

pk,d,n =
n− 1

n

k∑
i=0

pi,d−1,n−1pk−i,d−1,n−1.(C.1)

To see this, note that there are exactly k x1-free root-to-preleaf paths in T if and
only if (1) the root is some variable other than x1, and (2) the left and right subtrees
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(each of which is drawn from T C
d−1,n−1) have i and k− i x1-free root-to-preleaf paths,

respectively, for some 1 ≤ i ≤ k. For the base cases, we have pc,0,n = 0 for c ≥ 2 since
it is impossible to have two paths to preleaves in a tree of depth 0. p1,0,n = n−1

n since
there is exactly one x1-free path as long as the root is not x1. p0,0,n = 1

n by the same
reasoning. Finally, p0,d,n ≤ 1

n−d by Lemma 7.1.
The following lemma is proved in section C.1.
Lemma C.2. Let c = Θ(logn), c ≥ 3

8 log n, and � ≤ poly(n). Then

p�,c,n ≤ t(n) +

(log n)1/3∑
j=1

�−(1/4) log n−1∑
i=(1/4) log n+1

pi,c−j,n−j ,(C.2)

where t(n) = 1/nω(1).
Proof of Lemma 7.2. Recall that k ≤ (log n)3/2, d = Θ(logn), and d ≥ 1

2 log n.
By Lemma C.2 we have

pk,d,n ≤ t(n) +

(log n)1/3∑
j=1

k−(1/4) log n−1∑
i=(1/4) log n+1

pi,d−j,n−j .(C.3)

We now repeatedly apply Lemma C.2 to the right-hand side of inequality (C.3). The
key observation is that each time we apply Lemma C.2 to bound some p�,c,n′ by
the right side of (C.2), the first subscript (�) decreases by at least 1

4 log n in every
new occurrence of p·,·,·. Hence the “depth” of this repeated replacement will be at
most 4(log n)1/2 (since k ≤ (log n)3/2), at which point the summation over i in the
right-hand side of (C.2) will be empty.

We now observe that each application of Lemma C.2 replaces one p·,·,· with at
most (log n)1/3 · (log n)3/2 < (log n)2 new p·,·,·’s. Since the replacement depth is at
most 4(log n)1/2 and t(n) = 1/nω(1), it follows that

pk,d,n ≤ 1

nω(1)
·
(
(log n)2

)4(log n)1/2

=
1

nω(1)
· 28(log n)1/2 log log n =

1

nω(1)
,

and Lemma 7.2 is proved.
Now we prove Lemma 7.3.
Proof of Lemma 7.3. Fix any set R of (logn)3/2 preleaf nodes in a complete binary

tree structure of depth d. Fix any nonredundant labeling of all of the ancestors of all
of these preleaves which does not use x1 anywhere. Now each labeling of the nodes
in R which does not use x1 and maintains nonredundancy is equally as likely under
the conditioning of the lemma. Note that for each node in R there are n− d− 1 legal
labelings (since the label must not use x1 or any of the d ancestors of the node).

Consider a random legal labeling of the nodes in R. Partition the nodes of R into
(log n)5/4 disjoint subsets R1, . . . , R(log n)5/4 each of size (log n)1/4. Let F denote a
set of “forbidden” labels; initially F is the set of all variables which label ancestors
of nodes in R (plus x1). Let F0 denote the size of this initial set, so initially we
have |F | = F0 ≤ 1 + d(log n)3/2 = O((log n)5/2). We consider the subsets R1, . . . in
turn. The probability that every node in R1 is assigned a forbidden label is at most(

F0

n−d−1

)(log n)1/4

= 1/nω(1). Thus we may suppose that there is some preleaf v1 ∈ R1

which receives a nonforbidden label; we add this label to F . Now the probability that

every node in R2 receives a forbidden label is at most
(

F0+1
n−d−1

)(log n)1/4

= 1/nω(1),
so we may suppose that there is some preleaf v2 ∈ R2 which receives a nonforbidden
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label; we add this label to F. Continuing in this fashion for (logn)5/4 steps, and noting
that |F | never exceeds O((log n)5/2), we have that with probability 1− 1/nω(1) there
is a set v1, . . . , v(log n)5/4 of nodes each of which receives a nonforbidden label. This
set is easily seen to satisfy the desired conditions for C.

C.1. Proof of Lemma C.2. Our proof of Lemma C.2 will use the following
intermediate lemma. Note that we allow a slightly weaker bound on d than usual in
this lemma; we will need this slightly weaker bound later.

Lemma C.3. For any value 1 ≤ k ≤ 1
4 log n and any value d ≥ 1

3 log n we have

pk,d,n = PrT∈T C
d,n

[S = k] = 1/nω(1).

Proof. We first consider the case k = 1. There are exactly 2d possible locations
(preleaves) where an x1-free path from the root to a preleaf could end. Consider
any such location. In order for this to be the only x1-free path to a preleaf in T, it
must be the case that every node on this path (except the root) has the property
that the subtree rooted at its sibling has x1 as a bottleneck. These d subtrees are
clearly disjoint; the one at depth � is drawn from T C

d−�,n−� (over a suitable set of n− �
variables which includes x1 since the path is x1-free), and hence by Lemma 7.1 each
subtree has x1 as a bottleneck with probability at most 2

n . Thus Pr[S = 1] is at most

2d ·
(

2
n

)d
=

(
4
n

)d
, which is 1/nω(1) since d ≥ 1

3 log n.
The general case for any 1 ≤ k ≤ 1

4 log n is similar. We use the following fact,
which we prove later.

Fact 1. Fix any set of k root-to-preleaf paths in T . Let N be the number of
subtrees of T which are rooted at an internal node and (1) are not rooted on any of
these k paths, but (2) have their parent on one of these k paths. Then N ≥ d− log k.

There are
(
2d

k

)
possible sets of k preleaves where the x1-free paths might end. As

in the case k = 1, each subtree as in Fact 1 must have x1 as a bottleneck, but as in
the k = 1 case each such subtree has x1 as a bottleneck with probability at most 2/n.
Thus the probability that S = k is at most (by Fact 1)

(
2d

k

)
·
(

2

n

)d−log k

≤ 2dk
(

2

n

)d−log k

≤ nd/4 ·
(

2

n

)d

· nlog k = nlog k

(
2

n3/4

)d

,

where the second inequality uses k ≤ 1
4 log n. This is 1/nω(1) since d ≥ 1

3 log n and
k ≤ 1

4 log n.
Proof of Fact 1. It is clear that there are exactly 2d−k preleaves contained in the

desired subtrees of T. Each subtree contains 2i of these preleaves for some i, and clearly
different subtrees have disjoint sets of preleaves. Since the binary representation of
2d − k starts with d − log k ones, there must be at least d − log k such subtrees (it
is impossible to add up t powers of 2 and get a binary number with more than t
ones).

Now we prove Lemma C.2. From the recursive equation (C.1) we have

p�,c,n ≤ 2p0,c−1,n−1p�,c−1,n−1 +

�−1∑
i=1

pi,c−1,n−1p�−i,c−1,n−1

≤ 4

n
p�,c−1,n−1 +

�−1∑
i=1

pi,c−1,n−1p�−i,c−1,n−1,(C.4)

where the last inequality holds (with room to spare) by Lemma 7.1 since c = Θ(logn) <
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n/2. Repeatedly applying (C.4), we have

p�,c,n ≤
(

4

n

)2

p�,c−2,n−2 +
4

n

�−1∑
i=1

pi,c−2,n−2p�−i,c−2,n−2 +

�−1∑
i=1

pi,c−1,n−1p�−i,c−1,n−1

≤ · · ·

≤
(

4

n

)c

p�,0,n−c +

c∑
j=1

(
4

n

)j−1 �−1∑
i=1

pi,c−j,n−jp�−i,c−j,n−j .

Since each value p·,·,· is a probability, it is easy to see that for any value of j the inner
sum over i is at most � =poly(n). Recalling that c ≥ 3

8 log n, we may truncate the

sum over j at (say) (log n)1/3 and thus have

p�,c,n ≤ 1

nω(1)
+

(log n)1/3∑
j=1

�−1∑
i=1

pi,c−j,n−jp�−i,c−j,n−j

≤ 1

nω(1)
+

(log n)1/3∑
j=1

⎡
⎣2

(1/4) log n∑
i=1

pi,c−j,n−j +

�−(1/4) log n−1∑
i=(1/4) log n+1

pi,c−j,n−j

⎤
⎦.

Since c− (log n)1/3 is at least (1/3) log n, Lemma C.3 implies that the first sum over
i inside the brackets is 1/nω(1) for all j = 1, . . . , (log n)1/3. We thus have

p�,c,n ≤ 1

nω(1)
+

(log n)1/3∑
j=1

�−(1/4) log n−1∑
i=(1/4) log n+1

pi,c−j,n−j

as desired, and Lemma C.2 is proved.

Appendix D. Proof of Lemma 8.1. We say that z ∈ P yields v ∈ {0, 1}n
if parj(z) = vj for all j. Let V ⊆ P denote the set of all z which yield v; thus our
goal is to show that |V |/|P | = 1/nω(1). We do this by defining a mapping M with the
following properties:

1. M assigns to each z ∈ V a set of (n− d− 2 log n)log n strings all of which are
in P − V.

2. For each z ∈ V, for any x ∈ M(z), the number of z′ ∈ V such that x ∈ M(z′)
is at most (1/nω(1)) · (n− d− 2 log n)logn.

These properties imply that |V |/|P − V | = 1/nω(1), which establishes the lemma.
The mapping M is defined as follows: given z ∈ V, the elements of M(z) are those

x ∈ P which satisfy the following conditions:
• xi = zi for all i = 1, . . . , S − log n.
• For i = S − log n+ 1, . . . , S, coordinate xi is an element of Pi which (a) does

not occur in the last logn coordinates of z, and (b) does not equal xj for any
other value j ∈ S − log n + 1, . . . , S.

There are at least (n − d − 2 log n)logn elements of M(z) since the second condition
above rules out at most 2 log n of the n− d elements of Pi for each i.

Fix some z ∈ V and some x ∈ M(z). We now show that there are few z′ ∈ V such
that x ∈ M(z′). Note first that in order for z′ to have x ∈ M(z′) it must be the case
that z′i = zi for all i = 1, . . . , S − log n. Let z∗ denote this S − log n character prefix
z1 . . . zS−logn. We now show that only a small number of the (n − d)logn possible
completions σ ∈ PS−logn+1 × · · · × PS will be such that z′ = z∗σ belongs to V.
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We prove this by showing that in fact only a small number of the nlogn possible
completions σ ∈ {1, . . . , n}logn will be such that z∗σ belongs to V. To see this, note
that in order for z∗σ to belong to V, each j ∈ {1, . . . , n} must occur either an even
or an odd number of times in σ (depending on whether parj(z

∗) does or does not
match vj). Now we observe that the probability that these n parity conditions are all
satisfied by a random σ ∈ {1, . . . , n}logn is precisely the probability that a uniform
random walk in the Boolean cube {0, 1}n ends up, after precisely logn steps, at
some particular vertex w ∈ {0, 1}n (where the walk starts at 0n and proceeds to a
randomly chosen neighbor of the current node at each step). Since d = Θ(logn) we
have (n−d−2 log n)logn/nlogn = Θ(1), and thus Lemma 8.1 follows from the following
elementary fact, which for completeness we now prove.

Proposition D.1. For all w ∈ {0, 1}n, the probability that a uniform random
walk of precisely log n steps starting at 0n ends at w is 1/nω(1).

Proof. Let |w| denote the number of nonzero coordinates in w. Let pw denote
the probability that the walk ends at w. We first observe that if |w| = |w′|, then
by symmetry pw = pw′ . Thus for any w such that |w| ≥ 1

3 log n we clearly have

pw ≤ 1/
(

n
(1/3) log n

)
= 1/nω(1). Thus we may suppose that |w| ≤ 1

3 log n. Any walk

of logn steps which ends at such a w must select at most 2
3 log n distinct indices

from {1, . . . , n} in total, since at most 1
3 log n of the indices selected are selected

exactly once. The number of possible logn step walks which select at most 2
3 log n

distinct indices is at most
(

n
(2/3) log n

)
· (2/3 log n)logn, since there are

(
n

(2/3) log n

)
ways

to choose the selected indices and then (2/3 log n)logn ways to choose the walk using
these indices. This is less than n2/3 log n · (n1/6)logn = n(5/6) log n, and hence such
walks occur with total probability at most 1/n(1/6) log n since there are nlogn possible
walks in total.

Appendix E. Proofs of Lemmas 9.1, 5.5, and 5.7. Before proving Lemma
9.1 we first establish some useful notation and observations.

Let Cd,n denote the number of nonredundant decision trees over {x1, . . . , xn} of
depth at most d. (So C−1,n = 2 since a single leaf can be either −1 or 1; C0,n = 2+4n
since there are 4n possibilities for a depth-0 tree depending on the variable at the
root and the two leaf bits; etc.) The following observation will be useful.

Observation 2. Drawing a random T from T U
d,n is equivalent to generating T

via the following randomized process which we call MakeTreed,n:
• With probability 1/Cd,n take T to be the one-node tree +1 and halt. Likewise,

with probability 1/Cd,n take T to be the one-node tree −1 and halt.
• With probability 1 − 2/Cd,n pick a random variable from x1, . . . , xn as the

root of T. Construct its left and right subtrees by independently performing
two calls to MakeTreed−1,n−1, using for each call the set of n − 1 variables
which were not selected for the root.

We write qd,n to denote 1 − 2
Cd,n

; i.e., qd,n is the probability that a randomly

drawn T from T U
d,n is nontrivial (recall that there are exactly two trivial trees).

We now write pd,n to denote the probability that a random T drawn from T U
d,n

has x1 as a bottleneck:

pd,n ≡ Pr
T∈T U

d,n

[x1 is a bottleneck].

We have the following analogue of Lemma 7.1.
Lemma E.1. For all 0 ≤ d ≤ n− 1, pd,n ≤ 1

n−d .
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Proof. The proof differs only slightly from that of Lemma 7.1. We now have
p0,n = 4

4n+2 < 1
n since exactly four of the 4n + 2 trees of depth at most 0 have x1 as

a bottleneck (i.e., as the root). For d ≥ 1, n ≥ 1 we now have

pd,n = qd,n

(
1

n
+

n− 1

n
(pd−1,n−1)

2

)
.(E.1)

To see this, note that x1 is a bottleneck only if T is nontrivial, which occurs with
probability qd,n. If T is nontrivial, then with probability 1

n the root is x1, in which
case x1 is a bottleneck. Otherwise, x1 is a bottleneck if and only if x1 is a bottleneck
in the left and right subtrees of T , each of which is drawn from T U

d−1,n−1.
Comparing the initial conditions and recurrence relation for pd,n with those of

Lemma 7.1 it is clear that the current pd,n is dominated by the earlier recurrence, and
the lemma is proved.

Now we can prove Lemma 9.1. We have that

Pr
T∈T U

d,n

[S = k | x1 is not a bottleneck] =
Pr[S = k & x1 is not a bottleneck]

Pr[x1 is not a bottleneck]

< 2 Pr[S = k & x1 is not a bottleneck]

≤ 2 Pr[S = k],

where the first inequality is by Lemma E.1. Thus it suffices to prove the following
two lemmas.

Lemma E.2. For all 1 ≤ k ≤ (log n)3/2 we have PrT∈T U
d,n

[S = k] = 1/nω(1).

Lemma E.3. For d ≥ 1
2 log n, d = Θ(logn), PrT∈T U

d,n
[S = 0 | x1 is not a

bottleneck] = 1/nω(1).
(Note that bounding Pr[S = 0 | x1 is not a bottleneck] by 2 Pr[S = 0] is a bad

idea since S = 0 whenever x1 is a bottleneck, and this occurs with probability roughly
1/n; hence we use the above approach of handling S = 0 separately by bounding the
conditional probability directly.)

Proof of Lemma E.2. We closely imitate the proof of Lemma 7.2. Let pk,d,n now
denote PrT∈T U

d,n
[S = k]. For k ≥ 1 and d ≥ 1 we now have

pk,d,n = qd,n · n− 1

n
·

k∑
i=0

pi,d−1,n−1pk−i,d−1,n−1.(E.2)

(The qd,n · n−1
n is present because in order for S to be nonzero it must be the case

that T is nontrivial and that the root is not x1. If this is the case, then the left and
right subtrees (which, under this conditioning, are drawn from T U

d−1,n−1) must have i
and k− i x1-free paths from their respective roots to preleaves at depth d−1 in those
subtrees.) As before we have pc,0,n = 0 for c ≥ 2 since there cannot be two paths
to preleaves in a depth-0 tree. We have p1,0,n = q0,n · n−1

n since there is one x1-free
path if and only if the tree is nontrivial and the root is not x1. Moreover, we have
p0,0,n = 6

4n+2 since the only trees of depth at most 0 which have S = 0 are the four
trees with x1 at the root and the two trivial trees.

Finally, if k = 0 and d > 0, then we have

p0,d,n = (1 − qd,n) + qd,n · 1

n
+ qd,n · n− 1

n
(p0,d−1,n−1)

2.(E.3)
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(We have that S = 0 if T is trivial, or if T is nontrivial and x1 is the root, or if T is
nontrivial, some other variable is the root, and both subtrees have no x1-free paths to
preleaves at depth d− 1.) Equation (E.3), combined with the fact that 1 − qd,n < 1

n
for d ≥ 0, implies that for d ≥ 1 we have

p0,d,n ≤ 2

n
+

n− 1

n
(p0,d−1,n−1)

2.

A straightforward analysis of this recurrence shows that p0,d,n < 3
n for all d =

O(log n).
Now let p̃k,d,n be defined by the same base case conditions (for k = 0 or d = 0)

that we have just given, but be defined for k ≥ 1, d ≥ 1 by the rule from section C,
i.e.,

p̃k,d,n =
n− 1

n

k∑
i=0

p̃i,d−1,n−1p̃k−i,d−1,n−1.

(Note that these base conditions differ only slightly from the base conditions on pk,d,n
in section C; the bound 3

n which we have on p̃0,d,n is slightly weaker than the 2
n bound

we used in the earlier proof, and the p̃0,0,n bound of 6
4n+2 is slightly weaker than the

old bound of 1
n .) A proof entirely similar to that of Lemma 7.2 now establishes that

p̃k,d,n = 1/nω(1) for 1 ≤ k ≤ (log n)3/2 and d ≥ 1
2 log n, d = Θ(logn). We now observe

that the recurrence for p̃k,d,n dominates the recurrence which we have in this section
for pk,d,n, and hence pk,d,n ≤ p̃k,d,n = 1/nω(1) as well. (Note that we cannot argue
directly that the old pk,d,n recurrence dominates the new one, since some initial values
of the new recurrence are as noted earlier slightly higher than the old values.) This
proves Lemma E.2.

It remains to prove Lemma E.3.
Proof of Lemma E.3. We have that

Pr
T∈T U

d,n

[S = 0 | x1 is not a bottleneck] =
Pr[S = 0 & x1 is not a bottleneck]

Pr[x1 is not a bottleneck]

< 2 Pr[S = 0 & x1 is not a bottleneck]

since Pr[x1 is not a bottleneck] = 1− pd,n ≥ 1
2 by Lemma E.1. Since S = 0 whenever

x1 is a bottleneck, we have that

Pr[S = 0 & x1 is not a bottleneck] = Pr[S = 0] − Pr[x1 is a bottleneck].

Thus it suffices to bound εd,n ≡ p0,d,n − pd,n. Combining (E.1) and (E.3) we have

εd,n = (1 − qd,n) + qd,n · n− 1

n

[
(p0,d−1,n−1)

2 − (pd−1,n−1)
2
]

= (1 − qd,n) + qd,n · n− 1

n
[(p0,d−1,n−1 − pd−1,n−1)(p0,d−1,n−1 + pd−1,n−1)]

= (1 − qd,n) + qd,n · n− 1

n
[εd−1,n−1(p0,d−1,n−1 + pd−1,n−1)].

Our bounds on p0,d,n and pd,n imply that p0,d−1,n−1 + pd−1,n−1 ≤ 5
n−1 . The above

thus implies

εd,n ≤ (1 − qd,n) + εd−1,n−1 ·
5

n− 1
.
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It is clear that for �≥ 1
4 log n, we have 1−q�,n = 2

C�,n
= 1/2n

Ω(1)

. Since ε 1
4 logn,n−d+ 1

4 log n

is clearly at most 1, expanding out the above recurrence we thus have

εd,n <
d− 1

4 log n

2nΩ(1)
+

(
10

n

)d− 1
4 logn

.

Since d ≥ 1
2 log n, d = Θ(logn) this is 1

nω(1) , and the lemma is proved.
Finally, we can also now prove two lemmas used in section 5.

Proof of Lemma 5.7. It is easy to see that Ct,Ω(n) = 2n
Ω(1)

for t ≥ 1
4 log n. Also,

there are only poly(n) chances for MakeTree to output a trivial tree down to depth
d− 1

4 log n. Therefore, the chance of any leaf being output before depth 1
4 log n is at

most 2n
Ω(1)

.
Proof of Lemma 5.5. In all three models we have that if d = O(log n), then

pd,n < 2/n. If T is drawn according to Td,n and has a bottleneck variable x1 labeling
node v at depth k ≥ 1

8 log n, then the sibling of v and the sibling of each of v’s nonroot
ancestors must have x1 as a bottleneck. These probabilities are all independent, and
each is at most (2/n).
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A NEW MULTILAYERED PCP AND THE HARDNESS OF
HYPERGRAPH VERTEX COVER∗
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Abstract. Given a k-uniform hypergraph, the Ek-Vertex-Cover problem is to find the smallest
subset of vertices that intersects every hyperedge. We present a new multilayered probabilistically
checkable proof (PCP) construction that extends the Raz verifier. This enables us to prove that
Ek-Vertex-Cover is NP-hard to approximate within a factor of (k − 1 − ε) for arbitrary constants
ε > 0 and k ≥ 3. The result is nearly tight as this problem can be easily approximated within
factor k. Our construction makes use of the biased long-code and is analyzed using combinatorial
properties of s-wise t-intersecting families of subsets.

We also give a different proof that shows an inapproximability factor of � k
2
� − ε. In addition to

being simpler, this proof also works for superconstant values of k up to (logN)1/c, where c > 1 is a
fixed constant and N is the number of hyperedges.

Key words. hypergraph vertex cover, hardness of approximation, probabilistically checkable
proof, multilayered outer verifier, long-code
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1. Introduction. A k-uniform hypergraph H = (V,E) consists of a set of ver-
tices V and a collection E of k-element subsets of V called hyperedges. A vertex cover
of H is a subset S ⊆ V such that every hyperedge in E intersects S; i.e., e∩S �= ∅ for
each e ∈ E. An independent set in G is a subset whose complement is a vertex cover
or, in other words, a subset of vertices that contains no hyperedge entirely within it.
The Ek-Vertex-Cover problem is the problem of finding a minimum size vertex cover
in a k-uniform hypergraph. This problem is alternatively called the minimum hitting
set problem with sets of size k (and is equivalent to the set cover problem where each
element of the universe occurs in exactly k sets).

The Ek-Vertex-Cover problem is a fundamental NP-hard optimization problem.
For k = 2, it is just the famous vertex cover problem on graphs. Owing to its NP-
hardness, one is interested in how well it can be approximated in polynomial time.
A very simple algorithm that is often taught in an undergraduate algorithms class is
the following: greedily pick a maximal set of pairwise disjoint hyperedges and then
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include all vertices in the chosen hyperedges in the vertex cover. It is easy to show that
this gives a factor k approximation algorithm for Ek-Vertex-Cover. State-of-the-art
techniques yield only a tiny improvement, achieving a k − o(1) approximation ratio
[14]. This raises the question of whether achieving an approximation factor of k − ε
for any constant ε > 0 could be NP-hard. In this paper, we prove a nearly tight
hardness result for Ek-Vertex-Cover, as described in the following theorem.

Theorem 1.1 (main theorem). For every integer k ≥ 3 and every ε > 0, it is
NP-hard to approximate Ek-Vertex-Cover within a factor of (k − 1 − ε).

Previous hardness results. The vertex cover problem on hypergraphs where
the size of the hyperedges is unbounded is nothing but the set cover problem. For
this problem there is a lnn approximation algorithm [23, 20] and a matching hardness
factor of (1 − o(1)) lnn due to Feige [10]. Feige showed that an approximation algo-
rithm achieving a factor of (1 − o(1)) lnn would imply NP ⊆ DTIME(nO(log log n)),
where n is the number of hyperedges. The best NP-hardness result (where the reduc-
tion is polynomial time) is due to Raz and Safra [25], who showed that it is NP-hard
to approximate set cover to within c · log n for some small c > 0. The first explicit
hardness result shown for Ek-Vertex-Cover was due to Trevisan [27], who considered
the approximability of bounded degree instances of several combinatorial problems
and specifically showed an inapproximability factor of Ω(k1/19) for Ek-Vertex-Cover.
Holmerin [18] showed that E4-Vertex-Cover is NP-hard to approximate within (2−ε).
Independently, Goldreich [12] showed a direct “FGLSS”-type [11] reduction (involving
no use of the long-code, a crucial component in most recent probabilistically checkable
proof (PCP) constructions) attaining a hardness factor of (2−ε) for Ek-Vertex-Cover
for some constant k. Later, Holmerin [19] showed that Ek-Vertex-Cover is NP-hard
to approximate within a factor of Ω(k1−ε), and also that it is NP-hard to approximate
E3-Vertex-Cover within factor (3/2 − ε).

More recently Dinur, Guruswami, and Khot [7] gave a fairly simple proof of
an α · k hardness result for Ek-Vertex-Cover for some α > 1

3 . The proof takes a
combinatorial view of Holmerin’s construction and instead of Fourier analysis uses
some properties concerning intersecting families of finite sets. The authors also give
a more complicated reduction that shows a factor (k− 3− ε) hardness for Ek-Vertex-
Cover. The crucial impetus for that work came from the recent result of Dinur and
Safra [9] on the hardness of approximating vertex cover (on graphs), and, as in [9], the
notion of biased long-codes and some extremal combinatorics relating to intersecting
families of sets play an important role. In addition to ideas from [9], the factor
(k− 3− ε) hardness result also exploits the notion of covering complexity introduced
by Guruswami, H̊astad, and Sudan [13]. Neither the α ·k result nor the k−3−ε result
has been published (an ECCC manuscript exists [7]) since they have been subsumed
by the work presented herein.

Our result and techniques. In this paper we improve upon all the above
hardness results by proving a factor (k−1−ε) inapproximability result for Ek-Vertex-
Cover. Already for k = 3, this is an improvement from 3/2 − ε to 2 − ε. Improving
our hardness factor from (k− 1− ε) to (k− ε) appears highly nontrivial (although it
was recently proved under a certain conjecture [22]). Note that such a bound would
imply a factor 2−ε hardness for vertex cover on graphs, a problem that is notoriously
difficult. While our proof shares some of the extremal combinatorics flavor of [9] and
[7], it draws its strength mainly from a new multilayered outer verifier system for NP
languages. This multilayered system is constructed using the Raz verifier [24] as a
building block.
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The Raz verifier, which serves as the starting point or “outer verifier” in most
(if not all) recent hardness results, can be described as follows. There are two sets
of (non-Boolean) variables Y and Z, and for certain pairs of y ∈ Y and z ∈ Z,
a constraint πy→z. The constraints are projections; i.e., for each assignment to y
there exists exactly one assignment to z such that the constraint πy→z is satisfied.
The goal is to find an assignment A to the variables so that a maximum number of
constraints πy→z are satisfied, i.e., have the property πy→z(A(y)) = A(z). By the
PCP theorem [2, 1] together with the parallel repetition theorem [24], we know that
for every ε > 0 it is NP-hard to distinguish between the case where all the constraints
can be satisfied and the case where no more than a fraction ε of the constraints can
be satisfied.

In [7], the α·k hardness result is obtained by replacing every Y -variable by a block
of vertices (representing its long-code). Hyperedges connect y1-vertices to y2-vertices
only if there is some z ∈ Z such that πy1→z, πy2→z are constraints in the system.
This construction has an inherent symmetry between blocks which deteriorates the
projection property of the constraints, limiting the hardness factor one can prove to
at most k/2. Since this is a relatively simple reduction, we include a proof showing a
hardness of approximation factor of (�k/2	−ε). The improvement over the factor k/3
in [7] is obtained using a better result on s-wise t-intersecting set families. We also
remark that this result itself suffices for the recent reduction from Ek-Vertex-Cover
to asymmetric K-center [5]. Moreover, this result has the advantage of working for
much larger superconstant values of k (up to (logN)1/c for some absolute constant c,
where N is the number of hyperedges).

Another way of reducing the Raz verifier to Ek-Vertex-Cover is by maintaining
the asymmetry between Y and Z, introducing a block of vertices for each variable in
Y and in Z (representing their long-code). Each constraint πy→z can be emulated by
a set of hyperedges, where each hyperedge consists of both y-vertices and z-vertices.
The hyperedges can be chosen so that if the initial PCP instance were satisfiable, then
taking a particular fraction 1/k of the vertices in each block would be a vertex cover.
However, this reduction has a basic “bipartiteness” flaw: the underlying constraint
graph, being bipartite with parts Y and Z, has a vertex cover of size at most one-half
of the number of vertices. Taking all the vertices of, say, the Z-variables will be a
vertex cover for the hypergraph regardless of whether or not the initial PCP instance
was satisfiable. This, once again, limits the gap to no more than k/2.

We remark that this “bipartiteness” flaw naturally arises in other settings as well.
One example is approximate hypergraph coloring, where indeed our multilayered PCP
construction has been successfully used for showing hardness; see [8, 21].

The multilayered PCP. We overcome the k/2 limit by presenting a new, multi-
layered PCP. In this construction we maintain the projection property of the con-
straints that is a strong feature of the Raz verifier, while overcoming the “bipartite-
ness” flaw. In the usual Raz verifier we have two “layers,” the first containing the
Y -variables and the second containing the Z-variables. In the multilayered PCP, we
have � layers containing variables X1, X2, . . . , X�, respectively. Between every pair of
layers i1 and i2, we have a set of projection constraints that represent an instance of
the Raz verifier. In the multilayered PCP, it is NP-hard to distinguish between (i)
the case where there exists an assignment that satisfies all the constraints, between
every pair of layers, and (ii) the case where for every i1, i2 it is impossible to satisfy
more than a fraction ε of the constraints between Xi1 and Xi2 .

In addition, we prove that the underlying constraint graph no longer has the
“bipartiteness” obstacle; i.e., it no longer has a small vertex cover, and hence it
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has no large independent set. Indeed we show that the multilayered PCP has a
certain “weak-density” property: for any set containing an ε fraction of the variables
there are many constraints between variables of this set. This guarantees that “fake”
independent sets in the hypergraph (i.e., independent sets that occur because there
are no constraints between the variables of the set) contain at most an ε fraction of
the vertices.

We mention that the PCP presented by Feige in [10] has a few structural simi-
larities with ours. Most notably, both have more than two types of variables. How-
ever, while in our construction the types are layered with decreasing domain sizes,
in Feige’s construction the different types are all symmetric. Furthermore, and more
importantly, the constraints tested by the verifier in Feige’s construction are not pro-
jections, while this is a key feature of our multilayered PCP, crucially exploited in our
analysis.

We view the construction of the multilayered PCP as a central contribution of
our paper and believe that it could be a powerful starting point for other hardness of
approximation results as well. In fact, as mentioned above, our multilayered construc-
tion has already been used in obtaining strong hardness results for coloring 3-uniform
hypergraphs [8, 21] (namely, the hardness of coloring a 2-colorable 3-uniform hyper-
graph using an arbitrary constant number of colors), a problem for which no nontrivial
inapproximability results are known using other techniques. We anticipate that this
new outer verifier will also find other applications besides the ones in this paper and
in [8, 21].

The biased long-code. Our hypergraph construction relies on the long-code that
was introduced in [3] and, more specifically, on the biased long-code defined in [9].
Thus, each PCP-variable is represented by a block of vertices, one for each “bit” of the
biased long-code. More specifically, in x’s block we have one vertex for each subset of
R, where R is the set of assignments for the variable x. However, rather than taking
all vertices in a block with equal weight, we attach weights to the vertices according to
the p-biased long-code. The weight of a subset F is set to p|F |(1−p)|R\F |, highlighting
subsets of cardinality p · |R|. Thus we actually construct a weighted hypergraph; we
will later describe how it can be translated to a nonweighted one.

The vertex cover in the hypergraph is shown to have relative size of either 1 − p
in the good case or almost 1 in the bad case. Choosing large p = 1− 1

k−1−ε yields the

desired gap of 1
1−p ≈ k − 1 − ε between the good and bad cases. The reduction uses

the following combinatorial property: a family of subsets of a set R, where each subset
has size p |R|, either contains very few subsets, or it contains some k−1 subsets whose
common intersection is very small. We will later show that this property holds for
p < 1 − 1

k−1 , and hence we obtain a gap of k − 1 − ε. As can be seen, this property

does not hold for p > 1 − 1
k−1 , and hence one cannot improve the k − 1 − ε result by

simply increasing p.

Weighted versus unweighted. As mentioned above, our construction yields
a weighted hypergraph: each vertex is associated with a weight, and the goal is to
minimize the weight of the vertex cover. By appropriately duplicating vertices, we
can obtain an unweighted hypergraph (for more detail, see [6, 9]). We note that in
all of our constructions, duplicating vertices does not change the asymptotic size of
the hypergraph, and hence all of our results carry over to the unweighted case.

Location of the gap. All of our hardness results have the gap between sizes of
the vertex cover at the “strongest” location. Specifically, to prove a factor (k− 1− ε)
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hardness we show that it is hard to distinguish between k-uniform hypergraphs that
have a vertex cover of weight 1

k−1 + ε and those whose minimum vertex cover has
weight at least (1 − ε). This result is stronger than a gap of about (k − 1) achieved,
for example, between vertex covers of weight 1

(k−1)2 and 1
k−1 . In fact, by adding

dummy vertices, our result implies that for any c < 1 it is NP-hard to distinguish
between hypergraphs whose minimum vertex cover has weight at least c and those
which have a vertex cover of weight at most

(
c

k−1 + ε
)
. Put another way, our result

shows that for any k ≥ 3 there exists an α = α(k) > 0 such that for arbitrarily
small ε > 0, it is NP-hard to find an independent set consisting of a fraction ε of
the vertices in a given k-uniform hypergraph, even if the hypergraph is promised to
contain an independent set comprising a fraction α of the vertices. We remark that
such a result is not known for graphs and seems out of the reach of current techniques.
(The 1.36 hardness result for vertex cover on graphs due to Dinur and Safra [9], for
example, shows that it is NP-hard to distinguish between cases when the graph has
an independent set of size 0.38 · n and cases when no independent set has more than
0.16 · n vertices.) This gap location feature was crucial to the recent tight Ω(log∗ n)
inapproximability result for asymmetric K-center [5].

Organization. We begin in section 2.1 by developing the machinery from ex-
tremal combinatorics concerning intersecting families of sets that will play a crucial
role in our proof. This is followed by a statement of the starting point of our reduc-
tion, which is the standard gap instance obtained by combining the PCP theorem
with Raz’s parallel repetition theorem. In section 3, we present a relatively simple
reduction that shows an inapproximability factor of �k/2	 − ε for arbitrary ε > 0.
As explained earlier, this is as far as we can go using just the “bipartite” Raz outer
verifier. In section 4, we present the multilayered PCP construction, which offers hope
of breaking the k/2 barrier. In section 5, we present our reduction to a gap version of
Ek-Vertex-Cover which allows us to prove a factor (k−1−ε) inapproximability result
for this problem. Finally, we discuss the case when k is not a constant but instead is
a growing function of the number of hyperedges in section 6.

2. Preliminaries.

2.1. Intersecting families. In this section we define the notion of an s-wise
t-intersecting family and prove an important property of such families. For a compre-
hensive survey, see [15]. Denote [n] = {1, . . . , n} and 2[n] = {F | F ⊆ [n]}. We start
with the following definition.

Definition 2.1. A family F ⊆ 2[n] is called s-wise t-intersecting if for every s
sets F1, . . . , Fs ∈ F , we have |F1 ∩ · · · ∩ Fs| ≥ t.

For example, the family of all sets F ∈ 2[n] such that [t] ⊆ F is an s-wise t-
intersecting family. A more interesting example is given by the family of all sets
F ∈ 2[n] such that |F ∩ [t + s]| ≥ t + s − 1. Each set in this family has at most one
“hole” in [t + s]. Therefore, any intersection of s sets of this family contains at least
t + s − s = t elements from the range [t + s]. More generally, for any j ≥ 0, we can
define the family of all sets F ∈ 2[n] such that |F ∩ [t + js]| ≥ t + (s− 1)j; it is easy
to see that this is an s-wise t-intersecting family.

We need another important definition.
Definition 2.2. For a bias parameter 0 < p < 1 and a ground set R, the weight

of a set F ⊆ R is

μR
p (F )

def
= p|F | · (1 − p)|R\F |.
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When R is clear from the context we write μp for μR
p . The weight of a family F ⊆ 2R

is μp(F) =
∑

F∈F μp(F ).

The weight of a subset is precisely the probability of obtaining this subset when
one picks every element in R independently with probability p.

The following is the main lemma of this section. It shows that for any p < s−1
s , a

family of nonnegligible μp-weight (i.e., μp(F) ≥ ε) cannot be s-wise t-intersecting for
sufficiently large t.

Lemma 2.3. For arbitrary ε, δ > 0, and integer s ≥ 2, let p = 1 − 1
s − δ. Then,

there exists t = t(ε, s, δ) such that for any s-wise t-intersecting family F ⊆ 2[n],
μp(F) < ε. Moreover, it is enough to choose t(ε, s, δ) = Ω( 1

δ2 (log 1
ε + log(1 + 1

sδ2 ))).

Proof. In order to prove this lemma, we need to introduce the notion of a left-
shifted family. Performing an (i, j)-shift on a family consists of replacing the element
j with the element i in all sets F ∈ F such that j ∈ F , i /∈ F , and (F \{j})∪{i} /∈ F .
A left-shifted family is a family which is invariant with respect to (i, j)-shifts for any
1 ≤ i < j ≤ n. For any family F , by iterating the (i, j)-shift for all 1 ≤ i < j ≤ n we
eventually get a left-shifted family which we denote by S(F). The following simple
lemma summarizes the properties of the left-shift operation.

Lemma 2.4 (see [15, Lemma 4.2, p. 1298]). For any family F ⊆ 2[n], there exists
a one-to-one and onto mapping τ from F to S(F) such that |F | = |τ(F )| for every
F ∈ F . In other words, left-shifting a family maintains its size and the size of the
sets in the family. Moreover, if F is an s-wise t-intersecting family, then so is S(F).

It can be easily checked that the examples given after Definition 2.1 are all left-
shifted. As the next lemma shows, those examples essentially represent all possible
sets in any left-shifted s-wise t-intersecting family.

Lemma 2.5 (see [15, Lemma 8.3, p. 1311]). Let F ⊆ 2[n] be a left-shifted s-wise
t-intersecting family. Then, for every F ∈ F , there exists a j ≥ 0 with |F ∩ [t+ sj]| ≥
t + (s− 1)j.

Proof. For completeness, we sketch the proof of the lemma. For two equally sized
sets A = {a1, . . . , al}, 1 ≤ a1 < · · · < al ≤ n, and B = {b1, . . . , bl}, 1 ≤ b1 < · · · <
bl ≤ n, we say that A  B if ai ≤ bi for all i = 1, . . . , l. Then, we claim that for such
A,B, if [n]\A ∈ F , then also [n]\B ∈ F . We prove this by induction: for i = 0, . . . , l
define the set Fi = [n]\{a1, . . . , ai, bi+1, . . . , bl}. Notice that Fl = [n]\A and therefore
Fl ∈ F . Next, we show that Fi ∈ F implies that Fi−1 ∈ F . If ai = bi, then the claim
is obvious. Otherwise, ai < bi and hence bi ∈ Fi. Since F is left-shifted and ai /∈ Fi,
it follows that Fi \{bi}∪{ai} = Fi−1 is in F . This proves our claim since F0 = [n]\B.

Let us now complete the proof of the lemma. Assume on the contrary that there
exists F ∈ F such that for all j ≥ 0, |F ∩ [t+ sj]| < t+ (s− 1)j. Let A = {a1, . . . , al}
be such that F = [n] \A and assume that a1 < · · · < al. The above condition implies
that F contains at least i “holes” in [t + (i − 1)s] and therefore ai ≤ t + (i − 1)s. It
also implies that l ≥ �(n− t)/s	 + 1.

For k = 0, . . . , s − 1, define the set Bk = {bk,1, . . . , bk,l} by bk,i = min{t + k +
(i − 1)s, n − (l − i)}. Since ai ≤ t + (i − 1)s and ai ≤ n − (l − i) (just because
ai < ai+1 < · · · < al ≤ n are all integers), we obtain that ai ≤ b0,i. In other words,
A  B0. Moreover, since bk,i ≤ bk+1,i, we see that A  B0  B1  · · ·  Bs−1. Using
the claim we proved before, we obtain that for all k = 0, . . . , s− 1, [n] \Bk ∈ F . But
this is a contradiction since ([n] \ B0) ∩ · · · ∩ ([n] \ Bs−1) ⊆ [t − 1] and in particular
its size is less than t.

We now complete the proof of Lemma 2.3. We follow the general outline of the
proof of Theorem 8.4 in [15, p. 1311]. Let F be an s-wise t-intersecting family where
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t will be determined later. According to Lemma 2.4, S(F) is also s-wise t-intersecting
and μp(S(F)) = μp(F). By Lemma 2.5, for every F ∈ S(F) there exists a j ≥ 0 such
that |F ∩ [t+ sj]| ≥ t+(s−1)j. We can therefore bound μp(S(F)) from above by the
probability that such a j exists for a random set chosen according to the distribution
μp. We now prove an upper bound on this probability, which will give the desired
bound on μp(S(F)) and hence also on μp(F).

The Chernoff bound [4] says that for a sequence of m independent random vari-
ables X1, . . . , Xm on {0, 1} such that for all i, Pr[Xi = 1] = p for some p,

Pr
[∑

Xi > (p + τ)m
]
≤ e−2mτ2

.

Hence, for any j ≥ 0, Pr[ |F ∩ [t + sj]| ≥ t + (s− 1)j ] is at most

Pr[ |F ∩ [t + sj]| − p(t + sj) ≥ δ(t + sj) ] ≤ e−2(t+sj)δ2

.

Summing over all j ≥ 0 we get

μp(S(F)) ≤
∑
j≥0

e−2(t+sj)δ2

=
e−2tδ2

(1 − e−2sδ2)
≤ e−2tδ2

(
1 +

1

2sδ2

)
,

which is smaller than ε for t = Ω( 1
δ2 (log 1

ε + log(1 + 1
sδ2 ))).

2.2. The PCP theorem and the parallel repetition theorem. As is the
case with many inapproximability results (e.g., [3, 16, 17, 26]), we begin our reduction
from the Raz verifier described next. Let R be some parameter and let Ψ be a
collection of two-variable constraints, where the variables are of two types, denoted
Y and Z. Let RY denote the range of the Y -variables and RZ the range of the
Z-variables,1 where |RZ | ≤ |RY | and both are at most RO(1). Assume that each
constraint π ∈ Ψ depends on exactly one y ∈ Y and one z ∈ Z and furthermore, that
for every value ay ∈ RY assigned to y there is exactly one value az ∈ RZ to z such
that the constraint π is satisfied. Therefore, we can write each constraint π ∈ Ψ as a
function from RY to RZ and use notation πy→z : RY → RZ . Furthermore, we assume
that the underlying constraint graph is biregular; i.e., every Y -variable appears in the
same number of constraints in Ψ, and every Z-variable appears in the same number
of constraints in Ψ. Both of these numbers are assumed to be at most RO(1).

The following theorem follows by combining the PCP theorem with Raz’s parallel
repetition theorem. The PCP given by this theorem will henceforth be called the Raz
verifier.

Theorem 2.6 (PCP theorem [1, 2] and Raz’s parallel repetition theorem [24]).
Let Ψ be as above. There exists a universal constant γ > 0 such that for every (large
enough) constant R it is NP-hard to distinguish between the following two cases:

• Yes. There is an assignment A : Y → RY , A : Z → RZ such that all π ∈ Ψ
are satisfied by A, i.e., for all πy→z ∈ Ψ, πy→z(A(y)) = A(z).

• No. No assignment can satisfy more than a fraction 1
Rγ of the constraints in

Ψ.
Remark. The reduction, from 3SAT say, proving the above hardness can be

assumed to run in time nO(logR), where n is the size of the 3SAT instance. Also recall
that the constraint graph of Ψ is biregular with Y and Z degrees dl and dr, where
both dl, dr ≤ RO(1).

1Readers familiar with the Raz verifier may prefer to think concretely of RY = [7u] and RZ = [2u]
for some number u of repetitions.
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3. A factor k/2 inapproximability result. In this section, we prove the
factor (�k/2	 − ε) hardness result for Ek-Vertex-Cover for k ≥ 4. We will show this
by proving a factor (k/2− ε) hardness for even k ≥ 4 (the result for odd k follows by
a trivial reduction that adds a new vertex to every hyperedge of a hard instance of
the (k − 1)-uniform hypergraph).

Let IS(G) denote the weight of vertices contained in the largest independent set
of the hypergraph G.

Theorem 3.1. Let k ≥ 4 be an arbitrary even integer. Then for every ε > 0, it
is NP-hard to approximate Ek-Vertex-Cover within a factor of (k/2−ε). More specif-
ically, for every ε, δ > 0, it is NP-hard to distinguish, given a k-uniform hypergraph
G, between the following two cases:

• IS(G) ≥ 1 − 2
k − δ.

• IS(G) ≤ ε.
Proof. Start with a PCP instance, as given in Theorem 2.6, namely, a set of

local constraints Ψ over variables Y ∪ Z, whose respective ranges are RY , RZ . For
parameters, we pick t to be larger than t( ε2 ,

k
2 , δ) in Lemma 2.3, say, t = O( 1

δ3 log 1
ε )

with some large enough constant. Moreover, take R > ( 2t2

ε )1/γ , where γ > 0 is
the universal constant from Theorem 2.6. From Ψ, we now construct a (weighted)
k-uniform hypergraph G whose minimum vertex cover has weight ≈ 2/k or ≈ 1
depending on whether Ψ is satisfiable or not.

For a set R we denote by 2R the power set of R. The vertex set of G is

V
def
= Y × 2RY ;

i.e., for each y ∈ Y we construct a block of vertices denoted V [y] = {y} × 2RY

corresponding to all possible subsets of RY . The weight of each vertex 〈y, F 〉 ∈ V is

Λ(〈y, F 〉) def
=

1

|Y | ·
μ

1− 2
k−δ(F ).

The hyperedges are defined as follows. For every pair of local constraints πy1→z, πy2→z ∈
Ψ sharing a common variable z ∈ Z, we add the hyperedge{

〈y1, F
1
1 〉, 〈y1, F

1
2 〉, . . . , 〈y1, F

1
k/2〉

}⋃{
〈y2, F

2
1 〉, 〈y2, F

2
2 〉, . . . , 〈y2, F

2
k/2〉

}
if and only if there is no r1 ∈

⋂
1≤j≤k/2 F

1
j and r2 ∈

⋂
1≤j≤k/2 F

2
j such that πy1→z(r1) =

πy2→z(r2). Formally,

E
def
=

⋃
πy1→z,πy2→z∈Φ

{{
〈y1, F

1
1 〉, . . . , 〈y1, F

1
k/2〉, 〈y2, F

2
1 〉, . . . , 〈y2, F

2
k/2〉

} ∣∣∣
πy1→z(F

1
1 ∩ · · · ∩ F 1

k/2) ∩ πy2→z(F
2
1 ∩ · · · ∩ F 2

k/2) = ∅
}
,

where the union is taken over all pairs of local constraints with a common variable z.
Lemma 3.2 (completeness). If Ψ is satisfiable, then IS(G) ≥ 1 − 2

k − δ.
Proof. Assume a satisfying assignment A : Y ∪Z → RY ∪RZ for Ψ. The following

set is an independent set of G:

I = {〈y, F 〉 ∈ V [y] | y ∈ Y, A(y) ∈ F } .(1)

For every hyperedge e = {〈y1, F
1
1 〉, . . . , 〈y1, F

1
k/2〉, 〈y2, F

2
1 〉, . . . , 〈y2, F

2
k/2〉} either A(y1) �∈

F 1
1 ∩ · · ·∩F 1

k/2 or A(y2) �∈ F 2
1 ∩ · · ·∩F 2

k/2; otherwise since A(y1), A(y2) agree on every
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common Z-variable, we have πy1→z(F
1
1 ∩ · · ·∩F 1

k/2)∩πy2→z(F
2
1 ∩ · · ·∩F 2

k/2) �= ∅, and
e would not have been a hyperedge.

Now note that the weight of the family {F | A(y) ∈ F} with respect to the bias
parameter (1 − 2/k − δ) is (1 − 2/k − δ). Hence the weight of the independent set I
in (1) is 1 − 2/k − δ.

Lemma 3.3 (soundness). If IS(G) ≥ ε, then there exists an assignment A :
Y ∪ Z → RY ∪RZ that satisfies more than a fraction 1/Rγ of the constraints in Ψ.

Proof. Let S ⊂ V be such an independent set of weight at least ε. We consider
the set Y ′ ⊆ Y of all variables y for which the weight (under Λ) of S ∩ V [y] in V [y]
is at least ε/2. A simple averaging argument shows that |Y ′| ≥ |Y |ε/2.

For each y ∈ Y ′, define

Fy = {F ∈ 2RY | 〈y, F 〉 ∈ S}.

Thus we have for all y ∈ Y ′, μ
1− 2

k−δ(Fy) ≥ ε
2 . By Lemma 2.3, applied with the

choice s = k/2 and ε/2 in place of ε, there must exist F y
1 , F

y
2 , . . . , F

y
k/2 ∈ Fy such that

|F y
1 ∩ F y

2 ∩ · · · ∩ F y
k/2| ≤ t, where t is as defined before. Let us denote by B(y) the

intersection F y
1 ∩ F y

2 ∩ · · · ∩ F y
k/2; we will refer to B(y) as the core of assignments for

y. Intuitively, for any y for which the independent set S has large intersection with
V [y], we can decode a small collection of potential values from RY , specifically the
core B(y), that may be assigned to y.

We next translate these cores into an assignment satisfying more than a fraction
1
Rγ of the constraints in Ψ. Observe that for every z ∈ Z and y1, y2 ∈ Y ′, y1 �= y2,
such that πy1→z, πy2→z ∈ Ψ, we must have

πy1→z(B(y1)) ∩ πy2→z(B(y2)) �= ∅.(2)

Indeed, otherwise the set {〈y1, F
y1

1 〉, . . . , 〈y1, F
y1

k/2〉, 〈y2, F
y2

1 〉, . . . , 〈y2, F
y2

k/2〉} would be

a hyperedge whose vertices all lie in S, contradicting the assumption that S is an
independent set. Let us now slightly modify the definition of B(y): for any y such
that B(y) is empty, we add to B(y) some arbitrary element of RY . Notice that (2)
still holds; moreover, it also holds in the case that y1 and y2 are equal.

Let Z ′ ⊆ Z denote the set of all Z-variables of the instance Ψ that participate in

some constraint with some y ∈ Y ′. Formally, Z ′ def
= {z | πy→z ∈ Ψ for some y ∈ Y ′}.

Associate each such z ∈ Z ′ with an arbitrary y ∈ Y ′ for which πy→z ∈ Ψ, and let

B(z)
def
= πy→z(B(y)) ⊆ RZ . Now define a random assignment A by independently

selecting for each y ∈ Y ′, z ∈ Z ′ a random value from B(y), B(z), respectively. Assign
the rest of the variables (Y \Y ′)∪ (Z \Z ′) with any arbitrary value. To complete the
proof, we prove

EA

[∣∣{πy→z ∈ Ψ | πy→z is satisfied by A}
∣∣] ≥ ε

2t2
· |Ψ| .(3)

Here the expectation is taken over the choice of the random assignment A. We
will show that for every y ∈ Y ′, each constraint πy→z ∈ Ψ is satisfied by A with
probability ≥ 1

t2 ; thus the expected number of local constraints satisfied by A is
|Y ′|
|Y | · 1

t2 |Ψ| ≥ ε
2t2 · |Ψ| (because each y ∈ Y appears in the same number of local

constraints).
So, let πy→z ∈ Ψ for arbitrary y ∈ Y ′. Assume z is associated with some y′ ∈ Y ′

possibly equal to y. By (2), we have

πy→z(B(y)) ∩B(z) = πy→z(B(y)) ∩ πy′→z(B(y′)) �= ∅.
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Therefore, there is at least one value ay ∈ B(y) such that πy→z(ay) ∈ B(z). Since for
every y ∈ Y ′, |B(y)| ≤ t, there is at least a 1

t2 probability of having πy→z(A(y)) =
A(z), thereby showing (3).

Thus, there exists some assignment A that meets the expectation, which means
it satisfies at least ε

2t2 > 1
Rγ (by our choice of R) of the local constraints in Ψ. This

completes the proof of the soundness Lemma 3.3.

Theorem 3.1 now follows from Lemmas 3.2 and 3.3 and Theorem 2.6.

Let us compute some parameters of the reduction, which will be useful in section 6
where we will consider the case with superconstant values of k. First, let us compute
R. The condition R ≥ (2t2/ε)1/γ , together with our choice of t, implies that it suffices
if

R =
( 1

εδ

)O(1)

.

By the remark following Theorem 2.6, the number of variables in the PCP instance
is at most nO(logR) = nO(log(1/εδ)), where n is the size of the original 3SAT instance.

Since there is a block of 2R
O(1)

vertices corresponding to all subsets of Ry for each of
these variables, the number of vertices in the hypergraph produced by the reduction
is at most

nO(log(1/εδ))2R
O(1) ≤ nO(log(1/εδ))2(1/εδ)O(1)

.(4)

The degree of the hypergraph, i.e., the maximum number of hyperedges in which each

vertex appears, is at most 2R
O(1)k · RO(1), since each variable in the PCP instance

appears in at most RO(1) constraints. Hence, the degree is at most

2k/(εδ)
O(1)

.

Finally, the running time of the reduction is polynomial in the number of hyperedges.
A bound on the latter can be obtained by combining the two previous bounds:

nO(log(1/εδ))2(1/εδ)O(1) · 2k/(εδ)O(1) ≤ nO(log(1/εδ))2k/(εδ)
O(1)

.(5)

4. The multilayered PCP. As discussed in the introduction, a natural ap-
proach to build a hypergraph from the PCP Ψ is to have a block of vertices for every
variable y or z and define hyperedges of the hypergraph so as to enforce the constraints
πy→z. For every constraint πy→z, there will be hyperedges containing vertices from
the block of y and the block of z. However, this approach is limited by the fact
that the constraint graph underlying the PCP has a small vertex cover. Since each
hyperedge contains vertices from both the Y and Z “sides,” the subset of all vertices
on the Y (resp., Z) “side” already covers all of the hyperedges regardless of whether
the initial PCP system was satisfiable or not.

This difficulty motivates our construction of a multilayered PCP where we have
many types of variables (rather than only Y and Z) and the resulting hypergraph is
multipartite. The multilayered PCP is able to maintain the properties of Theorem
2.6 between every pair of layers. Moreover, the underlying constraint graph has a
special “weak-density” property that, roughly speaking, guarantees it will have only
tiny independent sets (thus any vertex cover for it must contain almost all of the
vertices).
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4.1. Layering the variables. Let �, R > 0. Let us begin by defining an �-
layered PCP. In an �-layered PCP there are � sets of variables denoted by X1, . . . , X�.
The range of variables in Xi is denoted Ri, with |Ri| = RO(�). For every 1 ≤ i <
j ≤ � there is a set of constraints Φij where each constraint π ∈ Φij depends on
exactly one x ∈ Xi and one x′ ∈ Xj . For any two variables we denote by πx→x′ the
constraint between them if such a constraint exists. Moreover, the constraints in Φij

are projections from x to x′; that is, for every assignment to x there is exactly one
assignment to x′ such that the constraint is satisfied.

In addition, as mentioned in the introduction, we would like to show a certain
“weak-density” property of our multilayered PCP. This property is defined in the
following definition.

Definition 4.1. An �-layered PCP is said to be weakly-dense if for any δ,
2/� < δ < 1, given m ≥ � 2

δ � layers i1 < · · · < im, and given any sets Sj ⊆ Xij for
j ∈ [m] such that Sj ≥ δ|Xij |, there always exist two sets Sj and Sj′ such that the

number of constraints between them is at least a δ2

4 fraction of the constraints between
the layers Xij and Xij′ .

Theorem 4.2. There exists a universal constant γ > 0 such that for any
parameters �, R, there is a weakly-dense �-layered PCP Φ = ∪Φij such that it is
NP-hard to distinguish between the following two cases:

• Yes. There exists an assignment that satisfies all the constraints.
• No. For every i < j, not more than 1/Rγ of the constraints in Φij can be

satisfied by an assignment.
Moreover, the theorem holds even if every variable participates in RO(�) constraints.

Proof. Let Ψ be a constraint system as in Theorem 2.6. We construct Φ = ∪Φij

as follows. The variables Xi of layer i ∈ [�] are the elements of the set Zi ×Y �−i, i.e.,
all �-tuples where the first i elements are Z-variables and the last �−i elements are Y -
variables. The variables in layer i have assignments from the set Ri = (RZ)i×(RY )�−i

corresponding to an assignment to each variable of Ψ in the �-tuple. It is easy to see
that |Ri| ≤ RO(�) for any i ∈ [�] and that the total number of variables is no more

than |Ψ|O(�)
. For any 1 ≤ i < j ≤ � we define the constraints in Φij as follows. A

constraint exists between a variable xi ∈ Xi and a variable xj ∈ Xj if they contain the
same Ψ variables in the first i and the last �− j elements of their �-tuples. Moreover,
for any i < k ≤ j there should be a constraint in Ψ between xi,k and xj,k. More
formally, denoting xi = (xi,1, . . . , xi,�) for xi ∈ Xi = Zi × Y �−i,

Φij =

{
πxi,xj

xi ∈ Xi, xj ∈ Xj

∀k ∈ [�] \ {i + 1, . . . , j}, xi,k = xj,k,

∀k ∈ {i + 1, . . . , j}, πxi,k→xj,k
∈ Ψ

}
.

As promised, the constraints πxi→xj are projections. Given an assignment a =
(a1, . . . , a�) ∈ Ri to xi, we define the consistent assignment b = (b1, . . . , b�) ∈ Rj

to xj as bk = πxi,k→xj,k
(ak) for k ∈ {i + 1, . . . , j} and bk = ak for all other k.

In how many constraints does a variable x participate? Let x ∈ Xi for some
i ∈ [�]. Then x = (x1, . . . , x�) has a constraint with x′ = (x′

1, . . . , x
′
�) ∈ Xj if i < j

and on each coordinate k ∈ {i + 1, . . . , j}, Ψ contains a constraint between x′
k and

xk. For each k there are at most RO(1) constraints in Ψ that touch xk, so altogether
there are RO(j−i) such constraints that touch x. This is similar for the case where
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j < i, and summing these together there are at most � · RO(�) = RO(�) constraints
that touch any given x.

The completeness of Φ follows easily from the completeness of Ψ. That is, assume
we are given an assignment A : Y ∪Z → RY ∪RZ that satisfies all the constraints of Ψ.
Then, the assignment B :

⋃
Xi →

⋃
Ri defined by B(x1, . . . , x�) = (A(x1), . . . , A(x�))

is a satisfying assignment.
For the soundness part, assume that there exist two layers i < j and an assignment

B that satisfies more than a 1/Rγ fraction of the constraints in Φij . We partition
Xi into classes such that two variables in Xi are in the same class if and only if
they are identical except possibly on coordinate j. The variables in Xj are also
partitioned according to coordinate j. Since more than 1/Rγ of the constraints in Φij

are satisfied, it must be the case that there exist a class xi,1, . . . , xi,j−1, xi,j+1, . . . , xi,�

in the partition of Xi and a class xj,1, . . . , xj,j−1, xj,j+1, . . . , xj,� in the partition of
Xj between which there exist constraints and the fraction of satisfied constraints is
more than 1/Rγ . We define an assignment to Ψ as

A(y) = (B(xi,1, . . . , xi,j−1, y, xi,j+1, . . . , xi,�))j

for y ∈ Y and as

A(z) = (B(xj,1, . . . , xj,j−1, z, xj,j+1, . . . , xj,�))j

for z ∈ Z. Notice that there is a one-to-one and onto correspondence between the
constraints in Ψ and the constraints between the two chosen classes in Φ. Moreover,
if the constraint in Φ is satisfied, then the constraint in Ψ is also satisfied. Therefore,
A is an assignment to Ψ that satisfies more than 1/Rγ of the constraints.

To prove that this multilayered PCP is weakly-dense, we recall the biregularity
property mentioned above; i.e., each variable y ∈ Y appears in the same number of
constraints, and also each z ∈ Z appears in the same number of constraints. Therefore,
the distribution obtained by uniformly choosing a variable y ∈ Y and then uniformly
choosing one of the variables in z ∈ Z with which it has a constraint is a uniform
distribution on Z.

Take any m = � 2
δ � layers i1 < · · · < im and sets Sj ⊆ Xij for j ∈ [m] such that

Sj ≥ δ|Xij |. Consider a random walk beginning from a uniformly chosen variable
x1 ∈ X1 and proceeding to a variable x2 ∈ X2 chosen uniformly among the variables
with which x1 has a constraint. The random walk continues in a similar way to a
variable x3 ∈ X3 chosen uniformly among the variables with which x2 has a constraint
and so on up to a variable in X�. Denote by Ej the indicator variable of the event
that the random walk hits an Sj-variable when in layer Xij . From the uniformity
of Ψ it follows that for every j, Pr[Ej ] ≥ δ. Moreover, using the inclusion-exclusion
principle, we get

1≥ Pr
[∨

Ej

]
≥

∑
j

Pr[Ej ] −
∑
j<k

Pr[Ej ∧ Ek]

≥
⌈

2

δ

⌉
· δ −

(
m

2

)
max
j<k

Pr[Ej ∧ Ek]

≥ 2 −
(
m

2

)
max
j<k

Pr[Ej ∧ Ek],

which implies

max
j<k

Pr[Ej ∧ Ek] ≥ 1/

(
m

2

)
≥ δ2

4
.



HARDNESS OF HYPERGRAPH VERTEX COVER 1141

Fix j and k such that Pr[Ej ∧ Ek] ≥ δ2

4 and consider a shorter random walk
beginning from a random variable in Xij and proceeding to the next layer and so
on until hitting layer ik. Since Ej is uniform on Xij we still have that Pr[Ej ∧
Ek] ≥ δ2

4 where the probability is taken over the random walks between Xij and Xik .
Also, notice that there is a one-to-one and onto mapping from the set of all random

walks between Xij and Xik to the set Φij ,ik . Therefore, at least a fraction δ2

4 of the
constraints between Xij and Xik are between Sj and Sk, which completes the proof
of the weak-density property.

5. A factor (k − 1 − ε) inapproximability result.

Theorem 1.1 (main theorem). For any k ≥ 3, it is NP-hard to approximate Ek-
Vertex-Cover within any factor less than k − 1. More specifically, for every ε, δ > 0,
it is NP-hard to distinguish, given a k-uniform hypergraph G, between the following
two cases:

• IS(G) ≥ 1 − 1
k−1 − δ.

• IS(G) ≤ ε.

Proof. Fix k ≥ 3 and arbitrarily small ε, δ > 0. Define p = 1− 1
k−1 − δ. Let Φ be

a PCP instance with layers X1, . . . , X�, as described in Theorem 4.2, with parameters
� = 33ε−2 and R large enough to be chosen later. We present a construction of
a k-uniform hypergraph G = (V,E). We use the long-code introduced by Bellare,
Goldreich, and Sudan [3]. A long-code over domain R has one bit for every subset
v ⊆ R. An encoding of element x ∈ R assigns bit-value 1 to the sets v such that
x ∈ v and assigns 0 to the sets which do not contain x. In the following, the bits in
the long-code will be vertices of the hypergraph. The vertices that correspond to a
bit-value 0 are (supposedly) the vertices of a vertex cover.

Vertices. For each variable x in layer Xi we construct a block of vertices V [x].
This block contains a vertex for each subset of Ri. Throughout this section we slightly
abuse notation by writing a vertex rather than the set it represents. The weight of
each vertex in the block V [x] is set according to μRi

p ; i.e., the weight of a subset

v ⊆ Ri is proportional to μRi
p (v) = p|v|(1 − p)|Ri\v| as in Definition 2.2. All blocks

in the same layer have the same total weight, and the total weight of each layer is 1
� .

Formally, the weight of a vertex v ∈ V [x], where x ∈ Xi, is given by

1

�|Xi|
μRi
p (v).

Hyperedges. We construct hyperedges between blocks V [x] and V [y] such that
there exists a constraint πx→y. We connect a hyperedge between any v1, . . . , vk−1 ∈
V [x] and u ∈ V [y] whenever πx→y(

⋂k−1
i=1 vi) ∩ u = ∅.

The intuition for the hyperedges comes from the proof of completeness. In fact,
the hypergraph is constructed by first deciding how to map a satisfying assignment
for Φ into a subset of G’s vertices. Then, we construct the hyperedges so as to ensure
that such subsets are independent sets in G.

Let IS(G) denote the weight of vertices contained in the largest independent set
of the hypergraph G.

Lemma 5.1 (completeness). If Φ is satisfiable, then IS(G) ≥ p = 1 − 1
k−1 − δ.

Proof. Let A be a satisfying assignment for Φ; i.e., A maps each i ∈ [�] and x ∈ Xi

to an assignment in Ri such that all the constraints are satisfied. Let I ⊆ V contain
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in the block V [x] all the vertices that contain the assignment A(x):

I =
⋃
x

{v ∈ V [x] | v � A(x)} .

We claim that I is an independent set. Take any v1, . . . , vk−1 in I ∩ V [x] and a
vertex u in I ∩ V [y]. The vertices v1, . . . , vk−1 intersect on A(x) and therefore the
projection of their intersection contains πx→y(A(x)) = A(y). Since u is in I ∩ V [y]
it must contain A(y). The proof is completed by noting that inside each block, the
weight of the set of all vertices that contain a specific assignment is exactly p.

We now turn to the soundness of the construction.
Lemma 5.2 (soundness). If IS(G) ≥ ε, then Φ is satisfiable.
Proof. Let I be an independent set of weight ε. We consider the set X ′ of all

variables x for which the weight of I ∩V [x] in V [x] is at least ε/2. A simple averaging
argument shows that the weight of

⋃
x∈X′ V [x] is at least ε

2 . Another averaging
argument shows that in at least ε

4� >
8
ε layers, X ′ contains at least an ε

4 fraction of

the variables. Using the weak-density property of the PCP (see Definition 4.1) with
the choice δ = ε/4, we conclude that there exist two layers Xi and Xj such that an
ε2

64 fraction of the constraints between them are constraints between variables in X ′.
Let us denote by X the variables in Xi ∩X ′ and by Y the variables in Xj ∩X ′.

We first find, for each variable x ∈ X, a short list B(x) of values that are “as-
signed” to it by I. Indeed consider the vertices in I ∩V [x]. Define t to be O( 1

δ3 log 1
ε )

with some large enough constant. Then, since t ≥ t( ε2 , k − 1, δ), Lemma 2.3 implies
that there exist k − 1 vertices in I ∩ V [x] that intersect in at most t assignments.
We denote these vertices by vx,1, . . . , vx,k−1 and their intersection by B(x), where
|B(x)| ≤ t.

In the following we define an assignment to the variables in X and Y such that
many of the constraints between them are satisfied. For a variable y ∈ Y we choose
the assignment that is contained in the largest number of projections of B(x):

A(y) = maxvar
a∈RY

|{x ∈ X | a ∈ πx→y(B(x))}|.

For a variable x ∈ X we simply choose A(x) to be a random assignment from the
set B(x) (or some arbitrary assignment in case B(x) is empty). We will prove that
indeed A(y) occurs in many of the projections of B(x).

Claim 5.3. Let y ∈ Y , and let X(y) be the set of all variables x ∈ X that have
a constraint with y. Then,

Pr
x∈X(y)

[A(y) ∈ πx→y(B(x))] > ε1
def
=

1

t log
(
ε
4

)
/ log(1 − 1/(k − 1)t)

.

Before we prove the claim let us see how it concludes the proof. Indeed, the
fraction of constraints between Y and X satisfied by A is, in expectation, at least ε1/t.
This is because for every y, the fraction of x ∈ X(y) for which A(y) ∈ πx→y(B(x)) is
by Claim 5.3 at least ε1. For such x, the probability that A(x) was randomly chosen
so that πx→y(A(x)) = A(y) is at least 1

|B(x)| ≥
1
t .

Thus, there must be some assignment A that attains the expectation and satisfies

at least ε1
t of the constraints between X and Y . This amounts to an ε1

t · ε2

64 fraction
of the total constraints, which would imply that Φ is satisfiable, as long as

1

t log( ε4 )/ log(1 − 1/(k − 1)t)
· 1

t
· ε

2

64
≥ 1

Rγ
.(6)
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Proof of Claim 5.3. Let y ∈ Y , x ∈ X(y). By definition, there are no hyperedges
of the form (vx,1, . . . , vx,k−1, u) for any vertex u ∈ I ∩ V [y]. In other words, every
vertex u ∈ I ∩ V [y] must intersect πx→y(B(x)). Let xi1 , . . . , xiN be the variables in
X such that the constraint πxij

→y exists, and consider the collection of sets Aj =

πxij
→y(B(xij )) for j = 1, . . . , N . Clearly |Aj | ≤ t, and let D denote the maximum

number of disjoint sets inside this family. We will show that D cannot be too large
by estimating the maximum possible weight of the vertices in I ∩ V [y]. Indeed the
vertices in I ∩ V [y] must intersect every Aj . The constraint imposed by one Aj in
isolation reduces the maximum possible weight of the vertices in I ∩ V [y] by a factor
of 1 − (1 − p)|Aj | ≤ 1 − (1 − p)t. Moreover, for disjoint Aj ’s, these constraints are
independent, so the total weight becomes at most (1 − (1 − p)t)D. Since the weight
of I ∩ V [y] is at least ε

4 , we have

ε

4
≤ (1 − (1 − p)t)D <

(
1 − 1

(k − 1)t

)D

so

D < log
(ε

4

)
/ log(1 − 1/(k − 1)t) .

To finish, we need the following simple claim.
Claim 5.4. Let A1, . . . , AN be a collection of N sets, each of size at most T ≥ 1.

If there are not more than D pairwise disjoint sets in this collection, then there is an
element that is contained in at least N

TD sets.
Proof. Take any maximal collection of pairwise disjoint sets and let A′ denote

their union. Notice that |A′| ≤ TD and that any set not in this collection must
contain one of the elements of A′. Hence, there must exist an element of A′ that is
contained in at least 1 + N−D

TD ≥ N/TD sets.
Claim 5.4 implies that there exists an assignment for y that is contained in at

least

N

t · log( ε4 )/ log(1 − 1/(k − 1)t)

of the Aj ’s.
This completes the soundness proof (Lemma 5.2).
Theorem 1.1 now follows from Lemmas 5.1 and 5.2, since the ratio between the

sizes of the vertex cover in the yes and no cases is at least 1−ε
1−p = (1 − ε)/( 1

k−1 + δ),
which can be made arbitrarily close to k − 1.

As before, let us compute some parameters of the reduction, which will be useful
in the next section. We start by choosing R so that (6) is satisfied. Since 1

(k−1)t is

small, we estimate log(1 − x) ≈ −x and get

R ≥ Ω

(
1

ε2
log

1

ε
· t2 · (k − 1)t

)1/γ

.(7)

By plugging in the value for t, we obtain that choosing

R = 2O(δ−3 log k log 1
ε )

suffices. The number of variables in the multilayered PCP is nO(� logR), which, using
� = O(1/ε2), is at most

n( log k
εδ )

O(1)

.
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Hence, the number of vertices in the hypergraph is at most

n( log k
εδ )

O(1)

· 2RO(l) ≤ n( log k
εδ )

O(1)

· 22(
log k
εδ )

O(1)

.

Since the number of constraints in which each variable participates is at most RO(�),
the degree of the hypergraph is at most

RO(�) · 2O(kRO(�)) ≤ 22(
log k
εδ )

O(1)

.

Finally, the running time of the reduction is polynomial in the number of hyperedges,
which is at most

22(
log k
εδ )

O(1)

· n( log k
εδ )

O(1)

.(8)

6. Nonconstant values of k. In this section we outline what happens to our
construction when we increase k beyond a constant. This should be contrasted with
the general hypergraph vertex cover problem in which k is unbounded (i.e., the set
cover problem). It is well known that if N is the number of hyperedges, the greedy
algorithm achieves a factor lnN approximation, and no polynomial time algorithm can
achieve an approximation factor of (1−o(1)) lnN , unless NP ⊆ DTIME(nO(log log n)) [10].

Below, we discuss in turn the extension of both the k−1 and k/2 hardness bounds
from sections 5 and 3, respectively, to the case when k is superconstant. We note that
in this context the k/2 result is not subsumed by the (k− 1) result since it works for
much larger values of k (as a function of the number of hyperedges in the hypergraph).
We discuss the (k− 1) result first since this reduction and the calculations at the end
of section 5 are, we hope, fresh in the reader’s mind at this point of reading.

6.1. The (k − 1 − ε) inapproximability bound.
Theorem 6.1. There exists some c > 0 such that unless NP ⊆ DTIME(nO(log log n)),

there is no polynomial time algorithm for approximating Ek-Vertex-Cover for k ≤
(log logN)1/c to within a factor of k − 1.01, where N is the number of hyperedges in
the k-uniform hypergraph.

Proof. Recall the calculation at the end of section 5, specifically the bound on
the number of hyperedges from (8). The produced hypergraph G has

N = 22(
log k
εδ )

O(1)

· n( log k
εδ )

O(1)

hyperedges, when starting from a 3SAT instance of size n. Furthermore, the reduction
runs in time polynomial in the number of hyperedges.

The gap in vertex cover sizes equals

1 − ε

1/(k − 1) + δ
≥ (k − 1)(1 − ε)(1 − kδ) ≥ (k − 1.01)

if we set ε = 1/(200k) and δ = 1/(200k2). For these choices of ε, δ, the number of

hyperedges N is at least 22kO(1)

, so the largest value of k we can set is k = (log logn)1/c
′

for a large enough constant c′. For this choice of k, the number of hyperedges N and
the runtime of the reduction can both be bounded above by nO(log log n). For large
enough n, log logN ≤ 2 log log n for this choice of parameters, so we get a result that
works for k ≤ (log logN)1/c for some fixed constant c.
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6.2. The (k/2−ε) inapproximability bound. We can obtain a similar result
corresponding to the factor k/2 hardness result, as stated below. Note that this result
works for k up to (logN)1/b for some fixed constant b > 0.

Theorem 6.2. There exists some b > 0 such that unless NP ⊆ DTIME(nO(log log n)),
there is no polynomial time algorithm for approximating Ek-Vertex-Cover for k ≤
(logN)1/b to within a factor of �k

2 	 − 0.01, where N is the number of hyperedges in
the k-uniform hypergraph.

Proof. Recall the calculation at the end of section 3, specifically (4) and (5). The

produced hypergraph G has n0 ≤ nO(log(1/εδ))2(1/εδ)O(1)

vertices and N = n02
k/(εδ)O(1)

hyperedges, when starting from a 3SAT instance of size n. Furthermore, the reduction
runs in time polynomial in the number of hyperedges.

By plugging in k = (logn)1/b
′

for a large enough constant b′ > 0, ε = 1/(100k)

and δ = 1/(100k2), we get log(1/εδ) ≤ log log n, and 2k/(εδ)
O(1) ≤ n. Thus, the

reduction runs in time nO(log log n) and produces a hypergraph with N = nO(log log n)

hyperedges, with a gap in vertex cover sizes (assuming k is even for convenience) of

1 − ε

2/k + δ
≥ k

2
(1 − ε)(1 − kδ) ≥ k

2
− 1

100

by our choices of ε, δ. Since for large enough n, log n ≥
√

logN for the above choice
of parameters, we get a result that works for k ≤ (logN)1/b for some fixed constant
b.
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[13] V. Guruswami, J. Håstad, and M. Sudan, Hardness of approximate hypergraph coloring,
SIAM J. Comput., 31 (2002), pp. 1663–1686.



1146 I. DINUR, V. GURUSWAMI, S. KHOT, AND O. REGEV

[14] E. Halperin, Improved approximation algorithms for the vertex cover problem in graphs and
hypergraphs, SIAM J. Comput., 31 (2002), pp. 1608–1623.

[15] R. L. Graham, M. Grötschel, and L. Lovász, eds., Handbook of Combinatorics, Vols. 1
and 2, Elsevier Science, Amsterdam, 1995.
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THE DIFFICULTY OF TESTING FOR ISOMORPHISM
AGAINST A GRAPH THAT IS GIVEN IN ADVANCE∗

ELDAR FISCHER†

Abstract. Motivated by a question from [E. Fischer, G. Kindler, D. Ron, S. Safra, and
A. Samorodnitsky, J. Comput. System Sci., 68 (2004), pp. 753–787], we investigate the number
of queries required for testing that an input graph G is isomorphic to a fixed graph H that is given
in advance. We correlate this number with a measure of the “complexity” of H that we define here,
by proving both an upper bound and a lower bound on the number of queries that depends on this
new measure. As far as we know this is the first characterization of this type for graphs.

Key words. property testing, graph isomorphism, regularity lemma
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1. Introduction. Combinatorial property testing deals with the following task:
For a fixed ε > 0 and a fixed property P , distinguish using as few queries as possible
(and with probability at least 2

3 ) between the case that an input of length m satisfies
P , and the case that the input is ε-far (with respect to an appropriate metric) from
satisfying P . In our context the inputs are boolean functions, and the distance from
P is measured by the minimum number of bits that have to be modified in the input
in order to make it satisfy P , divided by the input length m. Many cases of interest
involve tests that have a number of queries that depends only on the approximation
parameter ε and is independent of the input length. In this paper we define a measure
of complexity for the properties we consider and use it to bound the number of queries
required for the test.

We start with some historical background: The first time a question formulated
in terms of property testing was considered was in the work of Blum, Luby, and
Rubinfeld [3], and the general notion of property testing was first formally defined by
Rubinfeld and Sudan [12], mainly for the context of the algebraic properties (such as
linearity) of functions over finite fields and vector spaces. The first investigation in
the combinatorial context was that of Goldreich, Goldwasser, and Ron [9], where the
testing of combinatorial graph properties was first formalized; their framework will
also be the one used here. In recent years the field of property testing has enjoyed
rapid growth, as witnessed in the surveys [11] and [5].

In the context of boolean functions, it was proved in [6] that for a fixed k and ε
one can ε-test a boolean function f : {0, 1}n → {0, 1} for the property of depending
on only k of its variables, where the number of queries depends on only ε and k. As a
corollary, it was then shown that if a function h : {0, 1}n → {0, 1} is “simple,” in the
sense that it depends on only k of its variables, then one can ε-test an input function

∗Received by the editors August 10, 2004; accepted for publication (in revised form) January
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f , for the property of being identical to h up to a permutation of its variables, using
a number of queries that depends on only k and ε.

In [6] there were also examples of functions h : {0, 1}n → {0, 1}, depending on k
variables, for which the number of required queries is at least a function of k. However,
not all functions that are far from depending on a few variables require many queries.
The question of finding a complexity measure for which both upper and lower bounds
hold for every function h was posed in [6] and to our knowledge is still open.

Here we consider an analogous question for graphs: Given a graph H, how many
queries are required to test an input graph G for the property of being isomorphic
to H? Here too, one would assume that the answer depends on some measure of the
“complexity” of H.

First we need a criterion for simplicity, similar in spirit to that of depending on few
variables in the case of boolean functions. Such a natural criterion is that the graph
H is the result of only a few basic operations (defined below), taken over a constant
number of subsets of its vertices. Alternatively, one can formulate the criterion of
H having a partition of its vertex set into a constant number of subsets W1, . . . ,Wk,
such that for every 1 ≤ i ≤ j ≤ k the pair Wi,Wj either contains no edge at all or
contains all possible edges (the gap between the first and the second approach turns
out to be not more than an exponent, which is irrelevant for the purpose here).

Our main result shows both an upper bound and a lower bound on the number
of queries required for the test that a graph is isomorphic to H, given in terms of the
complexity parameter of H. We thus obtain that a simple graph (or a graph that
is close enough to simple) admits an easy isomorphism test, while a graph far from
all simple graphs does not admit such a test. In contrast, the result from [6] about
boolean functions provides only an upper bound.

The rest of the paper is organized as follows. Some preliminaries, the definition of
our complexity measure for H, and the formal statement of the main result are all in
section 2. The upper bound part of the main result is proved in section 3. Section 4
introduces Szemerédi’s regularity lemma and other tools used in the proofs following
it, and section 5 proves the lower bound part of our main result. All positive results
here deal with 2-sided tests, which is not a coincidence as section 6 contains a simple
proof of a nonconstant lower bound for 1-sided testing for isomorphism, even against
a graph comprised of just one clique and an additional set of isolated vertices. Finally,
section 7 contains some discussion and concluding comments.

We note here that the upper bound part of the main result is rather easy, using the
results of [9]. The lower bound, however, uses Szemerédi’s regularity lemma, known
usually for its strength in proving upper bounds about graph property testing. This
lemma, which enables us to find random-like structures in any graph, is used here to
construct a “rerandomization” of H that provides a graph H ′ that is far from being
isomorphic to H and yet is not distinguishable from it by any testing algorithm using
too few queries.

2. Preliminaries and statement of the main result. The most central no-
tion to property testing is that of the distance between inputs and properties. We
deal with the “dense” model of graph property testing, first defined in [9], as per the
following definition.

Definition 1. Given two (labeled) graphs G and G′ on the same vertex set V ,
the distance between G and G′ is the size of the symmetric difference between the edge
sets of G and G′, divided by

(|V |
2

)
.



DIFFICULTY OF TESTING AGAINST A GIVEN GRAPH 1149

Given a graph G and a graph property (a set of graphs that is closed under graph
isomorphisms) P , the distance between G and P is the minimum distance between G
and any graph G′ on the same vertex set which satisfies P .

Using this definition of the distance, we give a formal definition of a graph testing
algorithm.

Definition 2. An ε-testing algorithm with q queries for a property P is a
probabilistic algorithm that for any input graph G makes up to q queries (a query
consisting of finding whether two vertices u, v of G form an edge of G or not) and
satisfies the following.

1. If G satisfies P , then the algorithm accepts G with probability at least 2
3 .

2. If G is ε-far from P , that is, the distance of G from P is more than ε, then
the algorithm rejects G with probability at least 2

3 .

The measure of the complexity of a graph H is formalized in the following. We
also formulate an approximate notion, of only being close to a simple graph. We
need this technicality because such graphs also admit an efficient isomorphism test,
as one can just test the input graph for isomorphism with the simple graph close to
H, instead of testing for isomorphism with H itself.

Definition 3. The algebra number of a graph H, denoted by Algnum(H), is the
minimal number k for which there exist cliques H1, . . . , Hk over subsets of the vertex
set of H, such that H is in the boolean algebra generated by H1, . . . , Hk (that is, the
edge set of H can be generated from the edge sets of H1, . . . , Hk by the appropriate
set operations).

The ε-approximate algebra number, denoted by Algnumε(H), is the minimal k
such that H is ε-close (i.e., has distance at most ε) to some graph whose algebra
number is k.

For stating the main result, it is convenient to define the number of queries
required for ε-testing a graph for the property of being isomorphic to H as a parameter
of H.

Definition 4. The ε-testing number of a graph H, denoted by Testnumε(H),
is the minimum q for which there exists an ε-testing algorithm with q queries for the
property of being isomorphic to H.

We are now ready for the formal statement of the main result.

Theorem 2.1. For every ε there exists a pair of functions Lε(t) and Uε(t),
with limt→∞ Lε(t) = ∞, such that for every graph H we have Lε(Algnum3ε(H)) ≤
Testnumε(H) ≤ Uε(Algnumε/3(H)).

As a final note, it is not a coincidence that our results provide 2-sided algorithms,
that is, algorithms that may err with some small probability on both sides. Section 6
contains a proof that 1-sided algorithms (algorithms that accept a graph that is iso-
morphic to H with probability 1) require an unbounded number of queries even for a
graph H for which Algnum(H) = 1.

3. Isomorphism testing against a simple graph. To prove that it is easy to
test an input graph for isomorphism against a simple graph that is given in advance,
we use the result of [9] about the efficiency of testing for properties defined by the
existence of a partition with prescribed densities, as stated in the following.

Definition 5. For two disjoint sets U,W of vertices of a graph G we define
d(U,W ) as the number of edges between U and W , divided by |U ||W |. In addition
we define d(U,U) for every U as the number of edges of G internal to U , divided by(|U |

2

)
.
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Suppose we are given parameters m, (αi)1≤i≤m, (α′
i)1≤i≤m, (βi,j)1≤i≤j≤m, and

(β′
i,j)1≤i≤j≤m satisfying 0 ≤ αi < α′

i ≤ 1 and 0 ≤ βi,j < β′
i,j ≤ 1. We say that a

graph G satisfies the partition property with respect to these parameters if there exists
a partition V1, . . . , Vm of the vertex set of G such that αi ≤ 1

n |Vi| ≤ α′
i for every

1 ≤ i ≤ m, and βi,j ≤ d(Vi, Vj) ≤ β′
i,j for every 1 ≤ i ≤ j ≤ m.

Lemma 3.1 (partition testing [9]). Given parameters m, (αi)1≤i≤m, (α′
i)1≤i≤m,

(βi,j)1≤i≤j≤m, and (β′
i,j)1≤i≤j≤m satisfying 0 ≤ αi < α′

i ≤ 1 and 0 ≤ βi,j < β′
i,j ≤

1, the partition property with respect to these parameters is testable with ε−poly(m)

queries, a number that depends on only m and the distance parameter ε.
We first prove as a warm-up that if H has a small algebra number (and not just

a small approximated algebra number), then there is a test for being an isomorphism
of H that uses few queries. The following lemma shows in essence that a graph with a
small algebra number can be approximated by a partition property (in fact if we were
allowed to choose αi = α′

i and βi,j = β′
i,j , then there would be a partition property

identical to the property of being an isomorphism of H).
Lemma 3.2. If Algnum(H) = k, then for every ε, there exist for some m ≤ 2k

parameters for the partition property (as it appears in Lemma 3.1) satisfying the
following.

H satisfies the partition property with respect to the parameters, and, moreover,
every graph G that satisfies it is 1

2ε-close to being isomorphic to H.
Proof. We look at the construction of H from the cliques H1, . . . , Hk, and let

W1, . . . ,Wm be the atoms of the boolean algebra generated from the vertex sets of H
and H1, . . . , Hk (in other words, W1, . . . ,Wm are the smallest nonempty vertex sets
that can be constructed from the vertices of H and H1, . . . , Hk by set operations).
Note that m ≤ 2k. We now note that for this partition, for every 1 ≤ i ≤ j ≤ m
the graph H either has all possible edges between Wi and Wj , or it has no such
edge. From this it is not hard to see that the following parameters will satisfy the
assertions of the lemma: αi = max{0, 1

n |Wi| − 1
8mε}, α′

i = min{1, 1
n |Wi| + 1

8mε},
βi,j = max{0, d(Wi,Wj) − 1

4ε}, and β′
i,j = min{1, d(Wi,Wj) + 1

4ε} (note that here
there are only two possible values for βi,j and β′

i,j , as d(Wi,Wj) is either 1 or 0).
From Lemma 3.2 it is not hard to construct an ε-test for the property of being

an isomorphism of an H with a small algebra number—we just apply a 1
2ε-test as

guaranteed by Lemma 3.1 for the property given by Lemma 3.2. Such a test uses for
a fixed ε a number of queries that is exponential in some power of m ≤ 2Algnum(H).

The following is a strengthening of Lemma 3.2, in that it holds also for graphs
with a small approximated algebra number.

Lemma 3.3. If Algnumε/3(H) = k, then there exist partition parameters as in

the formulation of Lemma 3.1, where m ≤ 2k, such that the partition property with
respect to these parameters satisfies the following.

H satisfies the partition property, and, moreover, every graph that satisfies it is
8
9ε-close to being isomorphic to H.

Proof. We again construct W1, . . . ,Wm as the smallest nonempty vertex sets
that can be generated from the vertex sets of the appropriate cliques, but instead of
doing this for H we do it for a graph H ′ that is 1

3ε-close to H and whose algebra
number is k. We then set αi = max{0, 1

n |Wi| − 1
18mε}, α′

i = min{1, 1
n |Wi| + 1

18mε},
βi,j = max{0, d(Wi,Wj) − 1

9ε}, and β′
i,j = min{1, d(Wi,Wj) + 1

9ε}, where d(Wi,Wj)
denotes the density of the respective pair in the graph H and not in H ′ (this is
important).

Again it is easy to see that H satisfies the partition property. On the other hand,



DIFFICULTY OF TESTING AGAINST A GIVEN GRAPH 1151

any graph that satisfies the partition property is 2
9ε-close to some graph that has a

partition into W1, . . . ,Wm with exactly the same set sizes as H and exactly the same
pair densities as H.

A graph H̃ having the same densities as H is 2
3ε-close to it because H is 1

3ε close
to H ′: For every Wi,Wj , the number of vertex pairs between Wi and Wj for which H

and H̃ differ is clearly bounded by 2 min{d(Wi,Wj), 1 − d(Wi,Wj)} times the total

number of vertex pairs (|Wi||Wj | if i < j and
(|Wi|

2

)
if i = j), and by the information

on H the sum of these differences when taken over all 1 ≤ i ≤ j ≤ m is bounded
by 2

3ε
(
n
2

)
. From this we conclude that a graph that satisfies the partition property is

8
9ε-close to being isomorphic to H.

Proposition 3.4 (part 1 of Theorem 2.1). For every fixed ε there exists a
function Uε(t) such that Testnumε(H) ≤ Uε(Algnumε/3(H)) for every graph H.

Proof. If Algnumε/3(H) ≤ k, then we construct a test whose number of queries
depends on only ε and k as follows. We take the partition property provided for H
by Lemma 3.3 and 1

9ε-test for it using the testing algorithm provided by Lemma 3.1.
It is clear why this algorithm accepts (with probability at least 2

3 ) a graph that is
isomorphic to H (and hence satisfies the partition property); on the other hand, if
the input graph G is ε-far from being isomorphic to H, then by Lemma 3.3 and the
triangle inequality it is at least 1

9ε-far from the partition property, and so it is rejected
by the algorithm.

We close this section with some remarks about the running time of the testing
algorithm. In general, the partition testing algorithm provided in [9] consists of choos-
ing a uniformly random set U of vertices of G, with a constant number of vertices (this
number is a polynomial in ε whose coefficients and degree depend on m), and then
checking all possible partitions of the subgraph induced by U for certain properties.
The running time of such a test is thus exponential in the number of queries.

Given a bound on Algnum(H) (and not just on the approximated algebra num-
ber), it seems that by the methods of [9] one can devise a test in which only partitions
of the induced subgraph into m sets, for which all set pairs are either full (of density
1) or edgeless (of density 0), need be considered. These partitions can be calculated
in only a polynomial time in the number of queries, by sorting the vertices according
to their sets of neighbors, yielding a corresponding reduction in the running time of
the test.

4. Further preliminaries and Szemerédi’s regularity lemma. The most
common use of Szemerédi’s regularity lemma in graph property testing is in proving
upper bounds such as, e.g., those in [1] and [4]. Here it will be used for proving a lower
bound—the existence of regular pairs (as defined below) will be used in constructing a
graph that is far from the original H, but in a way that is not detectable by a testing
algorithm. First we define the regularity of pairs.

Definition 6. For two nonempty disjoint vertex sets A and B of a graph H, we
say that the pair A,B is γ-regular if, for any two subsets A′ of A and B′ of B satisfying
|A′| ≥ γ|A| and |B′| ≥ γ|B|, the edge densities satisfy |d(A′, B′) − d(A,B)| < γ.

A first observation about regular pairs is the following well-known fact that reg-
ularity is somewhat preserved when considering large enough subsets of the original
pair.

Observation 4.1. If A,B is a γ-regular pair with density η and A′ ⊂ A and B′ ⊂ B
satisfy |A′| ≥ δ|A| and |B′| ≥ δ|B| for some δ ≥ γ, then A′, B′ is a max{2, δ−1}γ-
regular pair, with density at least η − γ and at most η + γ.

The following lemma shows how much regular pairs have in common with random
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bipartite graphs. Its proof is not new (similar lemmas have been used extensively in
the literature), but it is given here for completeness. To clarify the presentation of
the mathematical formulas in the following, functions that are defined in a statement
of a lemma are indexed with the lemma’s number.

Lemma 4.2. For every fixed t and ε > 0 there exists γ = γ4.2(ε, t) with the
following property.

Suppose that I is a graph with vertices v1, . . . , vt and that V1, . . . , Vt is a t-tuple of
disjoint vertex sets of H such that for every 1 ≤ i < j ≤ t the pair Vi, Vj is γ-regular.
Define ηi,j to be d(Vi, Vj) if vivj is an edge of I and 1 − d(Vi, Vj) if vivj is not an
edge of I. Then, the number of t-tuples w1 ∈ V1, . . . , wt ∈ Vt that span induced copies
of I, where each wi plays the role of vi, is between (

∏
1≤i<j≤t ηi,j − ε)

∏t
l=1 |Vl| and

(
∏

1≤i<j≤t ηi,j + ε)
∏t

l=1 |Vl|.
Proof. We will prove here the existence of γ′ = γ′(ε, t) such that the number of

copies of I as per the assertion of the lemma is at least (
∏

1≤i<j≤t ηi,j − ε)
∏t

l=1 |Vl|.
We can then set γ = γ′(2−(t

2)ε, t), because then the full assertion of the lemma (both
upper and lower bounds) follows from the correctness of the above for every one of

the 2(t
2) possible graphs I.

In proving the existence of γ′ we assume without loss of generality that I is the
clique with t vertices. In this case we may also assume that ηi,j = d(Vi, Vj) > ε for
every 1 ≤ i < j ≤ t, as otherwise the above assertion is trivial. The proof is by
induction on t, where the case t = 2 is trivial.

We set γ′ = min{ε/4
(
t−1
2

)
, ε/4(t − 1), 3

4εγ
′( 1

4ε, t − 1)}. We look at the vertices
of Vt. Because of the regularity property, for every 1 ≤ i < t there are at least
(1 − ε/4(t − 1))|Vt| vertices of Vt that have at least (ηi,t − ε/4(t − 1))|Vi| neighbors
in Vi, as otherwise the set V ′

t of vertices that do not satisfy this with the set Vi will
contradict the regularity of the pair Vi, Vt. Thus there are at least (1− 1

4ε)|Vt| vertices
of Vt for which the degree condition is true for every 1 ≤ i < t.

For every vertex v of Vt satisfying the above, let V ′
i be the set of neighbors of v in

Vi for 1 ≤ i ≤ t− 1, and accordingly set η′i,j = d(V ′
i , V

′
j ) for every 1 ≤ i < j ≤ t− 1.

We note that |V ′
i | ≥ (ηi,t− ε/4(t− 1))|Vi| (and in particular |V ′

i | ≥ 3
4ε|Vi|) for every i,

that η′i,j ≥ ηi,j − ε/4
(
t−1
2

)
for every i < j, and that every pair V ′

i , V
′
j is in particular

γ′( 1
4ε, t − 1)-regular by Observation 4.1. We now use the induction hypothesis to

obtain that V ′
1 , . . . , V

′
t−1 admit sufficiently many cliques with t− 1 vertices, one from

every V ′
i , where each such clique makes a copy of I with v ∈ Vt added. Specifically,

the number of such cliques is at least⎛
⎝ ∏

1≤i<j≤t−1

η′i,j −
1

4
ε

⎞
⎠ t−1∏

l=1

|V ′
l | ≥

⎛
⎝ ∏

1≤i<j≤t−1

ηi,j −
2

4
ε

⎞
⎠ t−1∏

l=1

|V ′
l |

≥

⎛
⎝ ∏

1≤i<j≤t

ηi,j −
3

4
ε

⎞
⎠ t−1∏

l=1

|Vl|.

Multiplying this by the number of vertices v ∈ Vt for which the analysis holds, we
obtain the required number of copies of I.

In our lower bound proof we construct a graph that is hard to distinguish from
H by a testing algorithm. We construct it by replacing some of the regular pairs of H
with actual random subgraphs. But to find these regular pairs, we need Szemerédi’s
regularity lemma.
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Definition 7. An equipartition of a graph H is a partition of its vertex set into
sets whose sizes differ from each other by no more than 1. A γ-regular partition is
an equipartition of H into k sets such that all

(
k
2

)
set pairs but at most γ

(
k
2

)
of them

are γ-regular.
Lemma 4.3 (Szemerédi’s regularity lemma [13]). For every m and γ > 0 there

exists T = T4.3(m, γ) with the following property.
If H is a graph with n ≥ T vertices, and A is an equipartition of the vertex set

of H into m sets, then there exists an equipartition B that is a refinement of A into
k sets, where m ≤ k ≤ T , and such that B is a γ-regular partition.

For the proof of the lower bound we will need an equipartition of the vertices of
H so that many of its pairs, apart from being regular, also have densities that are not
too close to 0 or 1. A high approximate algebra number guarantees this.

Lemma 4.4. For every ε > 0, γ > 0, and m there exists T = T4.4(ε, γ,m) such
that if H is a graph with Algnum3ε(H) > T , then there exists a γ-regular partition
B = {V1, . . . , Vk} of H with m ≤ k ≤ T , for which(

k

2

)−1 ∑
1≤i<j≤k

min{d(Vi, Vj), 1 − d(Vi, Vj)} > 2ε.

Proof. We set T =
(
T4.3(max{m,2/ε},γ)+1

2

)
. We first use Lemma 4.3 to find the

appropriate γ-regular partition B with k sets, where k ≤ T4.3(max{m, 2/ε}, γ) (we
let A be an arbitrary equipartition with max{m, 2/ε} sets), and then prove that
Algnum3ε(H) ≤

(
k+1
2

)
unless B satisfies the assertion of the lemma.

We let H ′ be the graph obtained from H by the following modifications: For
every i we add all possible edges inside Vi, and in addition for every pair Vi, Vj , if
d(Vi, Vj) >

1
2 , then we add all possible edges between Vi and Vj , and if d(Vi, Vj) ≤ 1

2 ,
then we remove all edges between these sets.

The distance between H ′ and H is bounded by

ε +

(
k

2

)−1 ∑
1≤i<j≤k

min{d(Vi, Vj), 1 − d(Vi, Vj)}.

On the other hand, the algebra number of H ′ is no more than
(
k+1
2

)
, because its

edge set is the union of the edge sets of the following cliques: the clique on Vi for
every 1 ≤ i ≤ k and the clique on Vi ∪ Vj for every 1 ≤ i < j ≤ k for which
d(Vi, Vj) > 1

2 . This means that if the assertion of the lemma does not hold, then

Algnum3ε(H) ≤
(
k+1
2

)
, a contradiction.

To prove lower bounds it is best if we can restrict ourselves to relatively simple
algorithms. In the context of graph properties, this can be done with the following.

Lemma 4.5 (from [10]). If there exists an ε-testing algorithm for a graph property
that makes q queries, then there exists an ε-testing algorithm that makes its queries
by uniformly and randomly choosing a set of 2q vertices and querying all their pairs.
In particular, it is a nonadaptive ε-test making

(
2q
2

)
queries.

5. Isomorphism testing against a complex graph. Given a graph H, we
would like to construct a graph H ′ that is far from being isomorphic to H, but in a way
that cannot be detected by a testing algorithm of the type depicted in Lemma 4.5.
The way to do this is to replace regular pairs in H with alternative regular pairs.
We would like to construct them at random; for such considerations the following
well-known large deviation inequality comes in handy.
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Lemma 5.1 (see, e.g., [2, Appendix A]). Suppose that we are given m indepen-
dent random variables X1, . . . , Xm, each of which receiving a value of 1 with proba-
bility pi and a value of 0 with probability 1 − pi. The probability that | 1

m

∑m
i=1 Xi −

1
m

∑m
i=1 pi| > δ is bounded by 2e−2δ2m.

The following lemma now allows us to construct regular pairs at random.

Lemma 5.2. For every γ > 0 and ε > 0 there exists α = α5.2(γ, ε) > 0 and
N = N5.2(γ, ε) with the following property: If I is a random bipartite graph with
color classes A and B where |A| ≥ N and |B| ≥ N , in which every pair of vertices
is taken to be an edge independently with probability η, then with probability at least
1 − 2−α|A||B| the pair A,B will be a γ-regular pair (with respect to I) whose density
is between η − ε and η + ε.

Proof. For proving the required regularity and density properties, it is not hard
to see that it is enough to prove that with the asserted probability, every A′ ⊂ A
with |A′| = γ|A| and B′ ⊂ B with |B′| = γ|B| satisfy |d(A′, B′) − η| ≤ min{ 1

2γ, ε}.
For every fixed A′ and B′, using Lemma 5.1 (where the variables X1, . . . , Xm are
defined as the indicator variables for the edges between |A′| and |B′|) implies that

the probability that the above is not satisfied is at most 2e−2(min{γ/2,ε})2|A′||B′| ≤
2−β|A′||B′| = 2−β′|A||B| for the appropriate β and β′ = γ2β. To bound the probability
that the above is not satisfied for any of the possible pairs |A′|, |B′|, whose number is
no more than 2|A|+|B|, we set α = 1

2β
′ and N = 4/β′ (for which |A|+ |B| ≤ 1

2β
′|A||B|

holds).

We also need the following rather trivial observation about distance of random
graphs.

Observation 5.3. For every ε there exists α = α5.3(ε) > 0 such that if J is any
fixed bipartite graph with vertex classes A and B, and I is a random bipartite graph
with the same vertex classes, where every pair of vertices is taken to be an edge
independently with probability η, then with probability at least 1 − 2−α|A||B|, the
number of pairs that belong to the symmetric difference between the edges of I and
J is at least (min{η, 1 − η} − ε)|A||B|.

Proof sketch. Assume without loss of generality that η ≤ 1
2 , and define the

random variables X1, . . . , Xm as the indicator variables, each for the event that a
specific vertex pair belongs to the symmetric difference between the edges of I and
those of the original graph J . One can easily see that regardless of the original graph,
1
m

∑m
i=1 pi ≥ η, and then use Lemma 5.1.

We now formalize which features of an input graph a testing algorithm of the
type depicted in Lemma 4.5 can detect.

Definition 8. The t-statistic of a graph H is the distribution over labeled graphs
with t vertices that results from choosing uniformly an ordered set (with no repetitions)
of t vertices of H, and looking at the appropriate induced subgraph.

The variation distance between the t-statistics of a graph H and a graph H ′ is
defined as the usual variation distance between the corresponding distributions. That
is, if we denote by μ the t-statistic of H and by μ′ the t-statistic of H ′, then the
variation distance is equal to 1

2

∑
K |Prμ[K]−Prμ′ [K]|, where the index K runs over

possible labeled graphs with a fixed set of t vertices.

The following lemma is then immediate from Lemma 4.5.

Lemma 5.4. If H and H ′ have 2q-statistics which differ by less than 1
3 in the

variation distance and H ′ is ε-far from being isomorphic to H, then Testnumε(H) > q.

Proof. If there exists an ε-test for the property of being isomorphic to H that
makes at most q queries, then by Lemma 4.5 there exists such a test that chooses
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a uniformly random set of 2q vertices and bases its decision solely on the subgraph
induced on this set. However, if such an algorithm accepts H with probability at least
2
3 , then the variation distance between the 2q-statistics of H and H ′ implies that the
algorithm accepts H ′ with probability more than 1

3 , a contradiction.

The main lemma is the following. It shows how, given a regular partition of a
graph in which many pairs have densities that are not close to 0 or 1, one can construct
a graph H ′ that is the one we need for a lower bound on the testing number.

Lemma 5.5. For every t and ε there exist m = m5.5(t, ε) and γ = γ5.5(t, ε),
such that for every T ≥ m there exists N = N5.5(t, ε, T ) with the following property.
Suppose that for a graph H with n > N vertices there exists a γ-regular partition

V1, . . . , Vk with m ≤ k ≤ T that also satisfies
(
k
2

)−1 ∑
1≤i<j≤k min{d(Vi, Vj), 1 −

d(Vi, Vj)} > 2ε. Then there exists a graph H ′ that is ε-far from being isomorphic to
H, and such that the t-statistics of the two graphs have variation distance less than 1

3
between them.

Proof. We choose

γ = min

{
2−(t

2)/15

(
t

2

)
, γ4.2

(
2−(t

2)/15

(
t

2

)
, t

)
,
1

3
ε

}

and

m = max

{
15

(
t

2

)
, 3/ε

}
.

H ′ is constructed from H as follows: For every γ-regular pair Vi, Vj in the equipartition
of H, we let the edges of H ′ between Vi and Vj be randomly and independently taken
with probability ηi,j = d(Vi, Vj) each. For every i, j such that i = j or Vi, Vj is not
a regular pair, we just let the corresponding edges of H ′ be identical to those of H
(this is an arbitrary choice, and any other choice for such a pair will also do here).

To analyze the t-statistics we consider a uniformly random ordered set of vertices
(with no repetitions), v1, . . . , vt. For 1 ≤ j ≤ t we define ij to be such that vj ∈ Vij ;
with probability at least 14

15 the indexes i1, . . . , it will be all different, because m ≥
15
(
t
2

)
. Given this event, with probability at least 14

15 (for the choice of v1, . . . , vt) all

the pairs in Vi1 , . . . , Vit are γ-regular with respect to H, because γ ≤ 1/30
(
t
2

)
.

We assume that N is, in particular, chosen to be large enough so that with
probability at least 3

4 over the choice of H ′, the following holds: Every pair Vi, Vj

that was γ-regular with respect to H will also be γ-regular with respect to H ′, and

its density will be between ηi,j − 2−(t
2)/15

(
t
2

)
and ηi,j + 2−(t

2)/15
(
t
2

)
, on account of

Lemma 5.2 (we choose N so that the probability for every such pair to be otherwise
is bounded by 1/4

(
T
2

)
).

The above choices guarantee that with probability at least 3
4 over the choice of H ′,

the graphs H and H ′ have t-statistics that differ by less than 1
3 . This is because when

we condition the choice of v1, . . . , vt on a particular outcome of i1, . . . , it that are all
different and for which all pairs are γ-regular (in both graphs), Lemma 4.2 guarantees
that the two conditioned distributions on the induced subgraphs differ from each
other by no more than 3/15, because for every fixed labeled graph with t vertices the

respective probabilities for its occurrence differ by no more than 3 · 2−(t
2)/15. The

bound on the difference is because Lemma 4.2 is invoked once for H and once for

H ′ (accounting for a possible 2−(t
2)/15 difference from the corresponding product of
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pair densities in each invocation), while there may be up to an additional 2−(t
2)/15

difference between the products of the pair densities for H and H ′.

To make sure that H and H ′ are also ε-far from being isomorphic, in addition to
the choice of the parameters above, we assume that N is chosen to be large enough
so that with probability at least 3

4 over the choice of H ′, the following occurs: For
every pair Vi, Vj of H ′ that corresponds to a γ-regular pair of H, when its edges
are compared to the edges of H between any two disjoint labeled vertex sets U1, U2

of the same sizes as Vi, Vj , the number of vertex pairs in the symmetric difference
will be at least (min{ηi,j , 1 − ηi,j} − 1

3ε)|Vi||Vj |. A large enough N will satisfy this,
because the number of all possibilities for choosing U1 and U2 and labeling them for
correspondence with Vi and Vj , respectively, is clearly bounded by n!, while the bound
on the probability for a lesser difference between the edges of H ′ over Vi, Vj and the

edges of H over U1, U2 is 2−Θ(n2) by Observation 5.3, which decreases more rapidly
than 1/n!.

When this occurs, there is at least a
(
k
2

)−1(∑
1≤i<j≤k min{ηi,j , 1− ηi,j}

)
− ε ≥ ε

distance between H and H ′, so with probability at least 1
2 the graph H ′ has all the

required properties.

Proposition 5.6 (part 2 of Theorem 2.1). For every fixed ε there exists a
function Lε(t), with limt→∞ Lε(t) = ∞, such that Lε(Algnum3ε(H)) ≤ Testnumε(H)
for every graph H.

Proof. We construct the inverse function of Lε(t), that is, we prove that for every
q there exists A = Aε(q) such that if Algnum3ε(H) > A, then Testnumε(H) > q. We
will first prove the above only for graphs with n > N vertices for some N = Nε(q).
From this we can conclude the proof, as we can use A′ = max{A,

(
N
2

)
} instead of A

and then remove the condition that n > N , because clearly Algnum(G) ≤
(
n
2

)
for

any graph G with n vertices. We now choose A = T4.4(ε, γ5.5(2q, ε),m5.5(2q, ε)) and
N = N5.5(2q, ε, A).

If H has n > N vertices and satisfies Algnum3ε(H) > A, we construct an H ′ that
is ε-far from being isomorphic to H, and such that the 2q-statistics of H and H ′ differ
by less than 1

3 , which by Lemma 5.4 implies that Testnumε(H) > q. For this we use
Lemma 4.4 to find a partition satisfying the conditions of Lemma 5.5, through which
we construct H ′.

6. The difficulty of 1-sided testing for isomorphism against H. The test
constructed in section 3 for graphs with a small approximate algebra number has
a 2-sided error, and the lower bounds for graphs with a large approximate algebra
number hold for the general 2-sided error algorithms as well. If one insists on the
more restricted framework of a 1-sided testing algorithm, where the testing algorithm
must accept a graph that is isomorphic to H with probability 1, then the situation is
much worse, as a bounded Algnum(H) does not guarantee any bound on the testing
number of H.

Observation 6.1. Let H be a graph with n vertices, constructed by taking a
clique with 1

2n vertices and adding to it 1
2n additional isolated vertices (note that in

particular Algnum(H) = 1). A 1-sided 1
4 -test for being isomorphic to H requires at

least 1
4n queries.

Proof. If G is a random permutation of H, then any test making fewer than 1
4n

queries will, with some positive (albeit small) probability, fail to find any edge of G.
This is because the 1

4n queries of the algorithm cannot involve more than 1
2n vertices,

and with some (small but positive) probability none of these vertices will belong to
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the clique. If the algorithm has 1-sided error, then it must accept G with probability 1
even when encountering this small probability case. But this means that the algorithm
will also accept the null (edgeless) graph with n vertices with probability 1, which is
a contradiction.

In fact, any graph H with n vertices that admits a 1-sided ε-test for isomorphism
making o(log n) queries is either ε-close to being a clique or ε-close to being edgeless
for n large enough. To prove this, one can use Ramsey’s theorem to find in H either a
clique with Ω(logn) vertices or an edgeless set of this size, and then proceed similarly
to the proof above to show that the 1-sided ε-testing algorithm must also accept either
the clique with n vertices or the edgeless graph with n vertices with probability 1.

7. Concluding comments.

The question of a combinatorial characterization of all testable graph
properties. The question of a logical characterization of the testable graph prop-
erties seems very hard. Just as this work provides a combinatorial characterization
for a graph admitting an easy isomorphism test, one could hope for a combinato-
rial characterization of whole properties for admitting an easy test, which motivated
a joint work with Newman [8]. It is hinted there that a testable graph property
may be characterized as being approximable by properties concerning regular graph
partitions.

The resulting “characterization” is, however, convoluted and not really a charac-
terization in the strictest sense of the word. However, for the purpose of [8] it was
used to prove that for every testable graph property, one can actually approximate
the distance of any graph from satisfying it using a number of queries that depends
only on the (additive) tolerance.

Worst cases and unknown graphs. After showing that the testing number
of a graph depends on a measure of its complexity, there is still the question of the
worst case. In other words, there is the question of estimating the maximum for
Testnumε(H) where ε is fixed and H ranges over all graphs with n vertices.

If we disregard running time, then it is not hard to construct an ε-testing algorithm
that uses Õ(n) queries for any graph H that is given in advance, where the tilde
notation here and in the following is used to hide polylogarithmic factors in n. This
holds because, for an input graph G and a graph H that is given in advance, and
for a particular labeling of the vertices of G, it takes Õ(n) queries to detect with
probability at least 1 − 1

3n! whether G differs from H in at least ε
(
n
2

)
labeled pairs.

By using a union bound over all n! possible labelings of the vertices of G, one set of
Õ(n) queries is sufficient to completely test G for having any labeling that can serve
as an isomorphism function with H. A joint work with A. Matzliah [7] suggests that
the true bound for 2-sided error algorithms is in fact a smaller power of n.

Another problem is deciding whether two graphs G and H that are both given as
input (with only the number of vertices n being given in advance) are isomorphic. This
property, used in [1] to prove the existence of a first-order graph property that is hard
to test, is also investigated in [7]. Ignoring again the running time and concentrating
on the number of queries, there seem to be an Ω̃(n) lower bound and an upper bound
of nα queries for some 1 ≤ α < 2 for this problem.

Narrowing the gap between Uε and Lε. There is a huge gap between the
lower bound function and the upper bound function, on account of the lower bound
proof using Szemerédi’s regularity lemma. In fact, Uε(t) is a tower in a polynomial of
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Lε(t) (when comparing their values for the same t). It would be interesting to prove
a better lower bound using a weaker version of Szemerédi’s regularity lemma.

The gap between the approximation parameters. In Theorem 2.1, the ε-
testing number is compared from above with the ε/3-approximate algebra number,
and from below it is compared with the 3ε-approximate algebra number. In the
upper bound the approximation parameter can be made closer to ε/2, and in the
lower bound it can be made closer to ε, but it would still be interesting to be able to
make all approximation parameters arbitrarily close to each other (with the closeness
parameter being an additional parameter of the bounding functions).

Back to boolean functions. The main question treated in this paper was mo-
tivated by a question about boolean functions, so now the original question motivates
the following: Is there any analogue of Szemerédi’s regularity lemma that can be used
to prove lower bounds on testing that a function f : {0, 1}n → {0, 1} is identical to a
given function g up to a permutation of the variables?

There are indications that this question is rather hard. For example, it is not yet
entirely clear what the complexity measure for boolean functions should be. Being
dependent on a small number of variables cannot be the sole parameter of simplicity,
because functions like the parity function on all n variables admit an efficient test
despite not being close to any function depending on a small number of variables.

Acknowledgment. I wish to thank an anonymous referee for many useful sug-
gestions and comments.
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FAIR SIMULATION RELATIONS, PARITY GAMES, AND STATE
SPACE REDUCTION FOR BÜCHI AUTOMATA∗

KOUSHA ETESSAMI† , THOMAS WILKE‡ , AND REBECCA A. SCHULLER§

Abstract. We give efficient algorithms, improving optimal known bounds, for computing a
variety of simulation relations on the state space of a Büchi automaton. Our algorithms are derived
via a unified and simple parity-game framework. This framework incorporates previously studied
notions like fair and direct simulation, but also a new natural notion of simulation called delayed
simulation, which we introduce for the purpose of state space reduction. We show that delayed
simulation—unlike fair simulation—preserves the automaton language upon quotienting and allows
substantially better state space reduction than direct simulation.

Using our parity-game approach, which relies on an algorithm by Jurdziński, we give efficient
algorithms for computing all of the above simulations. In particular, we obtain an O(mn3)-time and
O(mn)-space algorithm for computing both the delayed and the fair simulation relations. The best
prior algorithm for fair simulation requires time and space O(n6). Our framework also allows one
to compute bisimulations: we compute the fair bisimulation relation in O(mn3) time and O(mn)
space, whereas the best prior algorithm for fair bisimulation requires time and space O(n10).

Key words. fair simulation relations, parity games, state space reduction, Büchi automata

AMS subject classification. 68Q45

DOI. 10.1137/S0097539703420675

1. Introduction. There are at least two distinct purposes for which it is useful
to compute simulation relationships between the states of automata: (1) to efficiently
establish language containment among nondeterministic automata; and (2) to reduce
the state space of an automaton by obtaining its quotient with respect to the equiv-
alence relation underlying the simulation preorder.

For state machines without acceptance conditions, there is a well-understood
notion of simulation with a long history (see, e.g., [20, 16]), mainly aimed at comparing
the branching behavior of such machines (rather than just their sets of traces). For
ω-automata, where acceptance (fairness) conditions are present, there are a variety of
different simulation notions (see, e.g., [14, 11]). At a minimum, for such a simulation
to be of use for purpose (1), it must have the following property:

(*) whenever state q′ “simulates” state q, the language of the automaton with
start state q′ contains the language of the automaton with start state q.

As we will see in section 5, however, this property alone is not sufficient to assure
usefulness for purpose (2), which requires the following stronger property:

(**) the “simulation quotient” preserves the language of the automaton.
We will state precisely what is meant by a simulation quotient later.

In [14], a number of different simulation notions for ω-automata were studied
using a game-theoretic framework. The authors also introduced a new natural notion
of simulation, titled fair simulation. They showed how to compute fair simulations
for both Büchi and, more generally, Streett automata. For Büchi automata, their
algorithm requires O(n6) time to determine, for one pair of states (q, q′), whether q′
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fairly simulates q. Their algorithm relies on an algorithm for tree automaton emptiness
testing developed in [19]. In this paper, we present a new comparatively simple
algorithm for Büchi automata. Our algorithm reduces the problem to a parity game
computation, for which we use a recent elegant algorithm by Jurdziński [17], along
with some added enhancements to achieve our bounds. Our algorithm determines in
time O(mn3) and space O(mn) all such pairs (q, q′) of states in an input automaton A
where q′ simulates q. Here m denotes the number of transitions and n the number of
states of A. In other words, our algorithm computes the entire maximal fair simulation
relation on the state space in the stated time and space bound.

In [14], the authors were interested in using fair simulation for purpose (1) and
thus did not consider quotients with respect to fair simulation. The question arises
whether fair simulation can be used for purpose (2), i.e., whether it satisfies property
(**). The answer is no: we show that quotienting with respect to fair simulation fails
badly at preserving the underlying language, under any reasonable definition of a quo-
tient. (Closely related observations were also made in [15].) On the other hand, there
is an obvious and well-known way to define simulation so that quotients do preserve
the underlying language: direct simulation1 [6] simply accommodates acceptance into
the standard definition of simulation [20] by asserting that only an accept state can
simulate another accept state. Direct simulation has already been used extensively
(see, e.g., [8, 22]) to reduce the state space of automata. See also [5], where simulation
minimization for ordinary Kripke structures was studied. Both [8] and [22] describe
tools for optimized translations from linear temporal logic to automata, where one
of the key optimizations is simulation reduction. However, as noted in [8], direct
simulation alone is not able to reduce many obviously redundant state spaces. Recall
that, in general, it is PSPACE-hard to find the minimum equivalent automaton for a
given nondeterministic automaton. Thus, there is a need for efficient algorithms and
heuristics that reduce the state space substantially.

We introduce a natural intermediate notion between direct and fair simulation,
called delayed simulation, which satisfies property (**). We show that delayed simu-
lation can yield substantially greater reduction—by an arbitrarily large factor—than
direct simulation. We provide an algorithm for computing the entire delayed simu-
lation relation which arises from precisely the same parity-game framework and has
the same complexity as our algorithm for fair simulation.

Last, our parity-game framework also easily accommodates computation of bisim-
ulation relations (which are generally less coarse than simulation). In particular, we
show that the fair bisimulation relation on Büchi automata can be computed in time
O(mn3) and space O(mn). Fair bisimulation was studied in [15] for Büchi and Streett
automata, where for Büchi automata they gave an O(n10)–time and space algorithm
to compute whether one state is fair bisimilar to another.

This paper is based on the conference paper [9]. Several papers have since ap-
peared that build on and/or use our work: [13, 10, 7, 4]. Independent of [9], in [3]
Bustan and Grumberg obtained an algorithm for computing fair simulation which,
while it did not improve the O(n6)-time complexity of [14], improved the space com-
plexity to O(mn). The algorithms described here have been implemented in the TMP
tool, available for download at http://www1.bell-labs.com/project/TMP/.

The paper is organized as follows: in section 2, we define all (bi)simulation notions
used in the paper. In section 3 we show how for each simulation notion (and fair
bisimulation), given a Büchi automaton, we can define a parity game that captures

1Direct simulation is called strong simulation in [8].
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the (bi)simulation. In section 4, we use our variant of Jurdziński’s algorithm for parity
games to give efficient algorithms for computing several such (bi)simulation relations.
In section 5, we prove that the delayed simulation quotient can be used to reduce
automaton size, and yields better reduction than direct simulation, but that the fair
simulation quotient cannot be so used. We conclude in section 6.

For background on simulation and its versions incorporating acceptance, see, e.g.,
[20, 16] and [14], respectively. For background on Büchi automata and automata on
infinite words in general, see [23, 24, 12].

We thank an anonymous referee for pointing out that an earlier version of the
algorithm in Figure 2 was too complicated.

2. Simulation and bisimulation relations. We now define various notions
of simulation, including fair and the new delayed simulation, in terms of appropriate
games.

2.1. Büchi automata. As usual, a Büchi automaton A = 〈Σ, Q, qI ,Δ, F 〉 has
an alphabet Σ, a state set Q, an initial state qI ∈ Q, a transition relation Δ ⊆ Q ×
Σ×Q, and a set of final states F ⊆ Q. We will henceforth assume that the automaton
has no dead ends; i.e., from each state of A there is a path of length at least 1 to some
state in F . Unless the automaton is trivial (i.e., has an empty ω-language), it is easy
to make sure this property holds without changing the accepting runs from any state,
using a simple search to eliminate unnecessary states and transitions. (Also, it is easy
to check nontriviality while doing the same search. The running time of the search is
linear in the size of the automaton.)

Recall that a run of A is a sequence π = q0a0q1a1q2 . . . of states alternating
with letters such that for all i, (qi, ai, qi+1) ∈ Δ. The ω-word associated with π is
wπ = a0a1a2 . . . The run π is initial if it starts with qI ; it is accepting if there exist
infinitely many i with qi ∈ F . The language defined by A is L(A) = {wπ ∈ Σω |
π is an initial, accepting run of A}. We may want to change the start state of A to a
different state q; the revised automaton is denoted by A[q].

2.2. Simulation relations. As in [14], we define simulation game-theoretically.
We will focus on simulations between distinct states of the same automaton (“autosim-
ulations”), because we are primarily interested in state space reduction. Simulations
between different automata can be treated by considering autosimulations between
the states of the automaton consisting of their disjoint union. In [14], the authors
presented their work in terms of Kripke structures with fairness constraints. We
use Büchi automata directly, where labels are on transitions instead of states. This
difference is inconsequential for our results.

We will consider four kinds of simulations: ordinary simulation, which ignores
acceptance, as well as three variants which incorporate acceptance conditions of the
given automaton, in particular, our new delayed simulation. All four simulations are
based on the same game, which is described first. They differ only in the winning
condition.

Let A be a Büchi automaton as above and q0 and q′0 arbitrary states of A. The
basic game GA(q0, q

′
0) is played by two players, Spoiler and Duplicator, in rounds,

where, at the beginning and at the end of each round, two pebbles, Red and Blue, are
placed on two states (possibly the same). At the start, round 0, Red and Blue are
placed on q0 and q′0, respectively. Assume that, at the beginning of round i, Red is
on state qi and Blue is on q′i. Then:

1. Spoiler chooses a transition (qi, a, qi+1) ∈ Δ and moves Red to qi+1.
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2. Duplicator, responding, must choose a transition (q′i, a, q
′
i+1) ∈ Δ and moves

Blue to q′i+1. If no a-transition starting from q′i exists, then the game halts and Spoiler
wins.

Either the game halts, in which case Spoiler wins, or the game produces two infinite
runs, π = q0a0q1a1q2 . . . and π′ = q′0a0q

′
1a1q

′
2 . . . , built from the transitions visited

by the two pebbles (and such that the same word is associated with them). The pair
(π, π′) is called an outcome of the game. Given such an outcome, the following rules
are used to determine the winner.

Definition 1 (simulation games). Let A be a Büchi automaton, let (q0, q
′
0) ∈

Q2, and let (π, π′) be an outcome of GA(q0, q
′
0) with π = q0a0q1a1q2 . . . and π′ =

q′0a0q
′
1a1q

′
2 . . .

1. The ordinary simulation game, denoted by Go
A(q0, q

′
0), is the basic game

GA(q0, q
′
0) extended by the rule that the outcome (π, π′) is winning for Duplicator

(i.e., as long as the game does not halt, Duplicator wins).
2. The direct (strong) simulation game, denoted by Gdi

A (q0, q
′
0), is the basic game

GA(q0, q
′
0) extended by the rule that the outcome (π, π′) is winning for Duplicator iff,

for all i, if qi ∈ F , then also q′i ∈ F .
3. The delayed simulation game, denoted by Gde

A (q0, q
′
0), is the basic game

GA(q0, q
′
0) extended by the rule that the outcome (π, π′) is winning for Duplicator

iff, for all i, if qi ∈ F , then there exists j ≥ i such that q′j ∈ F .

4. The fair simulation game, denoted by Gf
A(q0, q

′
0), is the basic game GA(q0, q

′
0)

extended by the rule that the outcome (π, π′) is winning for Duplicator iff there are
infinitely many j such that q′j ∈ F or there are only finitely many i such that qi ∈ F .

In all other cases, Spoiler wins.

In other words, in ordinary simulation games, fairness conditions are ignored;
Duplicator wins as long as the game does not halt. And in fair simulation games,
Duplicator’s winning condition is as follows: if there are infinitely many i such that
qi ∈ F , then there are also infinitely many j such that q′j ∈ F .

Remark 1. Let A be a Büchi automaton and � ∈ {di , de, f}. If (π, π′) is the
outcome of a play of G�

A(q, q′) which Duplicator wins, then π′ is accepting if π is.

Let � ∈ {o, di , de, f}. A strategy for Duplicator in game G�
A(q0, q

′
0) is a partial

function f : Q(QΣQ)∗ → Q which, given the history of the game up to a certain point,
determines the next move of Duplicator. Formally, f is a strategy for Duplicator if
f(q0) = q′0 and (q′i, ai, q

′
i+1) ∈ Δ holds for every sequence q0q

′
0a0q1q

′
1a1 . . . aiqi+1 with

(qj , aj , qj+1) ∈ Δ and q′j = f(q0q
′
0a0 . . . ajqj) for j ≤ i. Observe that the existence

of a strategy implies that Duplicator has a way of playing such that the game does
not halt. A strategy f for Duplicator is a winning strategy if, no matter how Spoiler
plays, Duplicator always wins. Formally, a strategy f for Duplicator is winning if
whenever π = q0a0q1a1 . . . is a run through A and π′ = q′0a0q

′
1a1q

′
2 . . . is the run

defined by

q′i+1 = f(q0q
′
0a0q1q

′
1a1 . . . qi+1),(1)

then (π, π′) is winning for Duplicator (as specified in Definition 1). Observe that π′

is well-defined.

Definition 2 (simulation relations). Let A be a Büchi automaton. A state q′

ordinary, direct, delayed, fair simulates a state q if there is a winning strategy for
Duplicator in G�

A(q, q′) where � = o, di, de, or f , respectively. We denote such a
relationship by q 	� q′ (where A is implicit).
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Our game definition of fair simulation deviates very slightly from that given in
[14], but is equivalent since we consider only automata with no dead ends.

We first prove fundamental properties of the defined simulation relations.
Proposition 3. Let A be a Büchi automaton.

1. For � ∈ {o, di , de, f}, 	� is a reflexive, transitive relation (also called pre-
order or quasi-order) on the state set Q.

2. The relations are ordered by containment: 	di ⊆ 	de ⊆ 	f ⊆ 	o.
3. For � ∈ {di , de, f}, if q 	� q′, then L(A[q]) ⊆ L(A[q′]).

Proof. Reflexivity is obvious, as is part 2. To prove transitivity, suppose that
q0 	� q′0 	� q′′0 for some � ∈ {o, di , de, f}. Then, by definition, Duplicator has
winning strategies in both G�

A(q0, q
′
0) and G�

A(q′0, q
′′
0 ), say f and f ′. We combine

these to get a winning strategy f ′′ for Duplicator in the game G�
A(q0, q

′′
0 ) as fol-

lows. If f(q0q
′
0a0q1q

′
1a1 . . . qi+1) = q′i+1 and f ′(q′0q

′′
0a0q

′
1q

′′
1a1 . . . q

′
i+1) = q′′i+1, we set

f(q0q
′′
0a0q1q

′′
1a1 . . . qi+1) = q′′i+1. It is easy to see that this defines a strategy for Du-

plicator. To see that f ′′ is in fact winning, let π = q0a0q1a1 . . . be a run through A
and let π′′ = q′′0a0q

′′
1a1 . . . be the run defined by

q′′i+1 = f ′′(q0q
′′
0a0q1q

′′
1a1 . . . qi+1).(2)

We need to argue that (π, π′′) is winning for Duplicator. By induction, one easily
proves that if π′ = q′0a0q

′
1a1 . . . is defined by (1), then

q′′i+1 = f ′(q′0q
′′
0a0q

′
1q

′′
1a1 . . . q

′
i+1).(3)

This means that (π, π′) is winning for Duplicator in G�
A(q0, q

′
0) and (π′, π′′) is winning

for Duplicator in G�
A(q′0, q

′′
0 ). For instance, when � = de, this implies the following: if

qi ∈ F , there exists j ≥ i such that q′j ∈ F , which, in turn, means there exists k ≥ j

such that q′′k ∈ F . That is, (π, π′′) is winning for Duplicator in Gde
A (q0, q

′′
0 ). Similar

arguments apply in the other cases.
To prove part 3, assume � ∈ {di , de, f}, q0 	� q′0, and w ∈ L(A[q0]) with w =

a0a1 . . . . Then there exists a winning strategy f for Duplicator in G�
A(q0, q

′
0) and

an accepting run π = q0a0q1a1 . . . of A starting with q0. Imagine Spoiler plays in
G�

A(q0, q
′
0) just as π prescribes this and Duplicator replies according to f . Then a

run π′ = q′0a0q
′
1a1 . . . of A is built up according to (1). Since π is accepting and f is

winning, π′ will also be accepting; see Remark 1.
Thus, delayed simulation is a new notion of intermediate “coarseness” between

direct and fair simulation. We will see in section 5 why it is more useful for state
space reduction.

2.3. Bisimulation relations. For all the mentioned simulations there are cor-
responding notions of bisimulation, defined via a modification of the game. We will
not provide detailed definitions for bisimulation; instead we describe intuitively the
simple needed modifications.

The bisimulation game differs from the simulation game in that Spoiler gets to
choose in each round which of the two pebbles, Red or Blue, to move, and Duplicator
has to respond with a move of the other pebble.

The winner of the game is determined very similarly: if the game comes to a
halt, Spoiler wins. If not, the winning condition for fair bisimulation (see [15]) is
as follows: “if an accept state appears infinitely often on one of the two runs π and
π′, then an accept state must appear infinitely often on the other as well.” The
winning condition for delayed bisimulation is as follows: “if an accept state is seen at
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position i of either run, then an accept state must be seen thereafter at some position
j ≥ i of the other run.” The winning condition for direct bisimulation becomes “if an
accept state is seen at position i of either run, it must be seen at position i of both
runs.”

Strategies and winning strategies for the bisimulation games are defined similarly.
Note, however, that the definitions have to take into account that Spoiler may choose
his pebble.

Bisimulations define an equivalence relation ≈bi
� (not only a preorder) on the state

space, and the following containments hold: ≈bi
di ⊆ ≈bi

de ⊆ ≈bi
f ⊆ ≈bi

o . Generally,
bisimulation is less coarse than the equivalence derived from the simulation preorder,
which we describe in section 5, i.e., ≈bi

� ⊆ ≈�.

3. Reformulating simulations and bisimulations as parity games.

3.1. Simulation. We now show how, given a Büchi automaton A and � ∈
{o, di , de, f}, we can obtain in a straightforward way a parity-game graph G�

A such
that the winning vertices in G�

A for Even (a.k.a. Player 0) in the parity game deter-
mine precisely the pairs of states (q, q′) of A where q′ �-simulates q. Importantly, the
size of these parity-game graphs will be O(|Q||Δ|), and the nodes of the game graphs
will be labeled by at most three distinct “priorities.” In fact, only one priority will
suffice for Go

A and Gdi
A , while Gde

A and Gf
A will use three priorities.

We briefly review here the basic formulation of a parity game. A parity-game
graph G = 〈V0, V1, E, p〉 has two disjoint sets of vertices, V0 and V1, whose union is
denoted V . There is an edge set E ⊆ V × V , and p : V → {0, . . . , d− 1} is a mapping
that assigns a priority to each vertex.

A parity game on G, starting at vertex v0 ∈ V , is denoted P(G, v0), and is played
by two players, Even and Odd. The play starts by placing a pebble on vertex v0.
Thereafter, the pebble is moved according to the following rule: with the pebble
currently on a vertex vi, and vi ∈ V0 (V1), Even (Odd, respectively) plays and moves
the pebble to a neighbor vi+1, that is, such that (vi, vi+1) ∈ E.

If ever the above rule cannot be applied, i.e., someone can’t move because there are
no outgoing edges, the game ends, and the player who cannot move loses. Otherwise,
the game goes on forever and defines a path π = v0v1v2 . . . in G, called a play of
the game. The winner of the play is determined as follows. Let kπ be the minimum
priority that occurs infinitely often in the play π, i.e., so that for infinitely many i,
p(vi) = kπ and kπ is the least number with this property. Even wins if kπ is even,
whereas Odd wins if kπ is odd.

We now show how to build the game graphs G�
A. All the game graphs are built

following the same general pattern, with some minor alterations. We start with Gf
A.

The game graph Gf
A = 〈V f

0 , V f
1 , Ef

A, p
f
A〉 will have three priorities (i.e., the range of pfA

will be {0, 1, 2}). For each pair of states (q, q′) ∈ Q2, there will be a vertex v(q,q′) ∈ V f
0

such that Even has a winning strategy from v(q,q′) iff q′ fair simulates q. Formally,

Gf
A is defined by

V f
0 = {v(q,q′,a) | q, q′ ∈ Q ∧ ∃q′′((q′′, a, q) ∈ Δ)},(4)

V f
1 = {v(q,q′) | q, q′ ∈ Q},(5)

Ef
A = {(v(q1,q′1,a), v(q1,q′2)

) | (q′1, a, q
′
2) ∈ Δ}

∪ {(v(q1,q′1)
, v(q2,q′1,a)) | (q1, a, q2) ∈ Δ},(6)
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pfA(v) =

⎧⎨
⎩

0 if v = v(q,q′) and q′ ∈ F ,
1 if v = v(q,q′), q ∈ F , and q′ /∈ F ,
2 otherwise.

(7)

Let’s first explain the underlying idea. The parity game mimics the simulation game.
Even takes over the role of Duplicator and Odd takes over the role of Spoiler: when
in the parity game the current position is node v(q,q′), it denotes the situation in
the simulation game when the red pebble is on q, the blue pebble is on q′, and it is
Spoiler’s turn to move; v(q,q′,a) denotes the situation where the red pebble is on q,
the blue pebble is on q′, it is Duplicator’s turn to move, and the last transition taken
by Spoiler was labeled by a. The priority function is defined in such a way that every
time Duplicator visits a final state, the priority function returns 0. It returns only 1 if
Spoiler visits a final state, but Duplicator does not. In all other cases, 2 is returned.
That is, Spoiler wins iff he visits an accept state infinitely often but Duplicator does
not. This is exactly what is needed.

We now describe how Gf
A can be modified to obtain Go

A and Gdi
A , both of which

require only trivial modification to Gf
A. The parity-game graph Go

A is exactly the

same as Gf
A, except that all nodes will receive priority 0, i.e., po

A(v) = 0 for all v. This
reflects the winning condition of the ordinary simulation game.

The parity-game graph Gdi
A is just like Go

A, meaning every vertex has priority 0,
but some edges (the ones into and out of states of the form v(q,q′) where q ∈ F but
q′ /∈ F ) are eliminated in order to take care of the winning condition of the direct
simulation game:

Edi
A = Ef

A \ ({(v, v(q,q′)) | q ∈ F ∧ q′ /∈ F} ∪ {(v(q,q′), w) | q ∈ F ∧ q′ /∈ F}).(8)

Finally, to define Gde
A we need to modify the game graph somewhat more. For

each vertex of Gf
A there will be at most two corresponding vertices in Gde

A :

V de
0 = {v(b,q,q′,a) | q, q′ ∈ Q ∧ b ∈ {0, 1} ∧ ∃q′′((q′′, a, q) ∈ Δ)},(9)

V de
1 = {v(b,q,q′) | q, q′ ∈ Q ∧ b ∈ {0, 1} ∧ (q′ ∈ F → b = 0)}.(10)

The extra bit b encodes whether or not, thus far in the simulation game, the red
pebble has witnessed an accept state without the blue pebble having witnessed one
since then. The edges of Gde

A are as follows:

Ede
A = {(v(b,q1,q′1,a), v(b,q1,q′2)

) | (q′1, a, q
′
2) ∈ Δ ∧ q′2 /∈ F}

∪ {(v(b,q1,q′1,a), v(0,q1,q′2)
) | (q′1, a, q

′
2) ∈ Δ ∧ q′2 ∈ F}

∪ {(v(b,q1,q′1)
, v(b,q2,q′1,a)) | (q1, a, q2) ∈ Δ ∧ q2 /∈ F}

∪ {(v(b,q1,q′1)
, v(1,q2,q′1,a)) | (q1, a, q2) ∈ Δ ∧ q2 ∈ F}.(11)

Last, we describe the priority function of Gde
A :

pdeA (v) =

{
b if v = v(b,q,q′),
2 if v ∈ V de

0 .
(12)

In other words, we will assign priority 1 to only those vertices in V1 that signify that
an “unmatched” accept has been visited by the red pebble.2 The priority function

2Note that it is possible to use only two priorities in pde
A by assigning a vertex v the priority b,

where b is the indicator bit of v. However, it turns out that using two priorities is a disadvantage
over three because the encoding would not have property 3 of Lemma 4, which we need for our
complexity bounds.
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makes sure that the smallest number occurring infinitely often is 1 iff from some point
onwards the bit in the first component is 1. Now observe that this bit is 1 iff a final
state has been visited by Spoiler but not yet matched by Duplicator. In this way the
winning condition of the delayed simulation game is transferred to the parity game.

The following lemma gathers a collection of facts we will need.

Lemma 4. Let A be a Büchi automaton.

1. For � ∈ {o, di , f}, Even has a winning strategy in P(G�
A, v(q0,q′0)

) iff q′0 �-
simulates q0 in A.
For � = de, this statement holds if v(q0,q′0)

is replaced by v(b,q0,q′0)
, letting b = 1 if

q0 ∈ F and q′0 �∈ F , and b = 0 otherwise.
2. For � ∈ {o, di , de, f}, |G�

A| ∈ O(|Δ||Q|), i.e., the number of vertices and the
number of edges is O(|Δ||Q|).

3. For � ∈ {f, de}, |{v ∈ V �
A | p�A(v) = 1}| ∈ O(|Q|2).

Proof. Part 1 is obvious from the explanations given above.

To prove part 2, first consider the case where � ∈ {f, o}. In this case, V �
1 contains

exactly |Q|2 vertices, and since by assumption every state of A has a transition leaving
it, |Q|2 ≤ |Δ||Q|. Similarly, V �

0 has, for every q′, a state v(q,q′,a) iff there is a transition
to q labeled by a. Thus |V0| ≤ |Δ||Q|.

As far as |Ef
A|, for every transition (q, a, q′) ∈ Δ, and every q′′ ∈ Q, there is

an edge (v(q,q′′), v(q′,q′′,a)) ∈ E�. There are |Δ||Q| such edges. Likewise, there are

≤ |Δ||Q| edges from V �
0 to V �

1 . So |Ef
A| ∈ O(|Δ||Q|). Thus, the size of G�

A is
O(|Δ||Q|). Now observe that if � = o, the vertices do not change and the edge set is
a subset, and if � = de, the number of vertices and edges is larger by at most a factor
of 2.

Last, since the vertices labeled by priority 1 in both Gf and Gde are a subset of
V0, clearly |p−1(1)| ∈ O(|Q|2).

Since vertices of Go
A and Gdi

A only get assigned a single priority, we can dispense
with algorithms for computing ordinary and direct simulation right away, matching
the best known upper bounds:

Proposition 5 (see [16, 2]). Given a Büchi automaton A, with n states and m
transitions, both 	o and 	di can be computed in time and space O(mn).

Proof. G�
A here has size O(|Δ||Q|) and only one priority. For such game graphs, we

can compute the winning set for Even using a variant of AND/OR graph accessibility,
which can be computed in linear time (see, e.g., [1]). The only vertices in the game
graph that have no outgoing edges are in V0. These are losing positions for Even, as
are any other vertices from which these are accessible in the and/or sense (vertices
from V0 are considered “and nodes” and vertices from V1 are considered “or nodes”).
All the remaining vertices are winning positions for Even.

Algorithms for computing the other simulation relations will be presented in sec-
tion 4.

3.2. Bisimulation. For � ∈ {o, di , de, f}, �-bisimulations can also be reformu-
lated as parity games. For improving the complexity, such a reformulation helps only
for fair bisimulation. Ordinary and direct bisimulation have known O(m log n)-time
algorithms (see [21]), and we will see that delayed bisimulation corresponds to di-
rect bisimulation after some linear-time preprocessing on accept states of the Büchi
automaton.

We formulate fair bisimulation with a parity-game graph Gfbi
A as follows. The
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vertex sets of Gfbi
A are

V fbi
0 = {v(q,q′,a,b1,b2) | q, q′ ∈ Q ∧ b1, b2 ∈ {0, 1} ∧ ∃q′′((q′′, a, q) ∈ Δ)},(13)

V fbi
1 = {v(q0,q1,b2) | q, q′ ∈ Q ∧ b2 ∈ {0, 1}}.(14)

The two bits b1 and b2 will encode (1) which pebble was moved by Spoiler in this
round, and (2) which of the two pebbles was latest to visit an accept state (prior to
this round and with precedence for the red pebble, with 0 encoding the red pebble).
For q0, q1 ∈ Q and b2 ∈ {0, 1}, let

new(q0, q1, b2) =

⎧⎨
⎩

0 if q0 ∈ F ,
1 if q0 �∈ F and q1 ∈ F ,
b2 otherwise.

(15)

The edge set Efbi
A is the union of

{(v(q0,q1,b2), v(q′0,q
′
1,a,b1,new(q0,q1,b2))) | (qb1 , a, q

′
b1) ∈ Δ ∧ q1−b1 = q′1−b1}(16)

and

{(v(q0,q1,a,b1,b2), v(q′0,q
′
1,b2)

) | (q1−b1 , a, q
′
1−b1) ∈ Δ ∧ qb1 = q′b1}.(17)

The priority of a vertex is determined using the following function. For q0, q1, b let

pr(q0, q1, b) =

⎧⎨
⎩

0 if q1−b ∈ F ,
1 if q1−b �∈ F and qb ∈ F ,
2 otherwise.

(18)

For v ∈ V0, p
fbi
A (v) = 2, and for v(q0,q1,b2) ∈ V1,

pfbi
A (v(q0,q1,b2)) = pr(q0, q1, b2).(19)

The correspondence of this parity game and fair bisimulation is as follows, similar
to Lemma 4.

Lemma 6. Let A be a Büchi automaton.
1. Even has a winning strategy in P(Gfbi

A , v(q0,q1,0)) iff q0 and q1 are fair-
bisimilar in A.

2. |Gfbi
A | ∈ O(|Δ||Q|) and |{v ∈ V fbi

A | pfbi
A (v) = 1}| ∈ O(|Q|2).

Proof. It is clear that the parity game models the bisimulation game in a straight-
forward way as far as the sequence of the visited positions is concerned. We show
that the winning condition is also taken care of.

Assume π = q0a0q1a1 . . . and π′ = q′0a0q
′
1a1 . . . are two runs. Let b0b1 . . . be the

sequence of bits defined by b0 = 0 and bi+1 = new(qi, q
′
i, bi). Finally, let pi be defined

by pi = pr(qi, q
′
i, bi). This describes exactly what happens in the game. We proceed

by a case distinction.
Clearly, if π and π′ are not accepting, then pj = 2 for all j large enough and Even

wins, which is required. Next, assume π is accepting, and π′ is not. Then there exists
i such that q′j /∈ F for j ≥ i and qj ∈ F for infinitely many j, say i0 < i1 < i2 < · · ·
are such that qij ∈ F for every j. Assume ik > i. According to the definition of new,
bij = 0 for j > k. Thus, by definition of pr, for every j > ik, pj = 1 if j = il for
some l > k and pj = 2 otherwise—Even loses. The same argument applies if π is not
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accepting but π′ is. (The precedence for red does not play any role here.) Finally,
assume π and π′ are accepting. Let i0 < i1 < · · · be an infinite sequence such that
qij ∈ F for all j. For j, let i′j be the least k > ij such that q′k ∈ F . We will have
bk = 0 for ij < k ≤ i′j , which means pi′

j
= 0 for every j—Even wins.

The claim about the size of Gfbi
A and the number of its vertices of priority 1 can

be proved along the same lines as Lemma 4.

This enables us to give an efficient algorithm for computing fair bisimulation in
section 4.

To compute delayed bisimulation efficiently, we show that the delayed bisimu-
lation relation corresponds to the direct bisimulation relation after some linear-time
preprocessing on the accept states of the Büchi automaton. Consider the following
closure operation on the set of accept states. Let cl(A) be the Büchi automaton ob-
tained from A by repeating the following until a fixed point is reached: while there is
a state q such that all of its successors are in F , put q in F . Call the revised set of
accept states F ′. Clearly, cl(A) can be computed in linear time and L(A) = L(cl(A)).

Proposition 7. Let A be a Büchi automaton. For any two states q and q′,
q ≈bi

de q′ in A iff q ≈bi
di q

′ in cl(A).

Proof. We show that for every pair (q, q′) of states, a winning strategy for Du-
plicator in the delayed bisimulation game on (q, q′) in A is a winning strategy for
Duplicator in the direct bisimulation game on (q, q′) in cl(A), and vice versa. By
definition of the bisimulation relations, this proves the proposition.

First, let f be a winning strategy for Duplicator in the delayed bisimulation game
on (q0, q

′
0) in A. Suppose that with Duplicator playing according to strategy f the

direct bisimulation game reaches (qi, q
′
i) after i rounds. We have to show that qi ∈ F ′

iff q′i ∈ F ′. Suppose, for contradiction, that qi /∈ F ′, while q′i ∈ F ′ (the other situation
is symmetric). We will show how Spoiler can win the delayed bisimulation game.
Since qi /∈ F ′, there is an infinite path leaving qi such that no state on this path is
an accepting state. Spoiler’s strategy is to play this path. Since q′i ∈ F ′, there is no
such path (without an accept state on it) starting at q′i. Therefore, regardless of how
Duplicator plays, when (q0a0q1a1 . . . , q

′
0a0q

′
1a1 . . . ) is the outcome of the play, then

q′i ∈ F ′, but qj /∈ F ′ for all j ≥ i—Spoiler wins the delayed bisimulation game.

Second, let f be a winning strategy for Duplicator in the direct bisimulation
game on (q, q′) in cl(A) and suppose Duplicator plays according to f in the delayed
bisimulation game. Let (q0a0q1a1 . . . , q

′
0a0q

′
1a1 . . . ) be any outcome of such a play.

We have to show that it satisfies Duplicator’s winning condition. So let i be any index
such that qi ∈ F . Then, by definition of F ′, qi ∈ F ′. But since f is a winning strategy
in the direct bisimulation game, this implies q′i ∈ F ′. As every infinite path out of q′i
contains an accept state, there must be a j ≥ i such that q′j ∈ F . Symmetrically, if
q′i ∈ F , then there exists j ≥ i such that qj ∈ F .

Taking into account that direct bisimulation can be computed in time O(m log n)
(see [21]), we conclude with the following result.

Corollary 8. Delayed bisimulation can be computed in time O(m log n).

4. Fast parity-game algorithm to compute simulations (and bisimula-

tions) efficiently. Using the parity-game graphs Gf
A, Gfbi

A , and Gde
A , we give fast

algorithms for computing the relations 	f , ≈bi
f , and 	de . To this effect, we describe

an efficient implementation of an algorithm for solving parity games presented by
Jurdziński in [17]. This algorithm uses progress measures (see also [18, 25]) to com-
pute the set of vertices in a parity game from which Even has a winning strategy.
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Henceforth, we assume all parity-game graphs have neither self loops nor dead
ends. (We can always obtain an “equivalent” such graph in linear time.) We start with
some terminology, closely following the notation of [17]. Let G be a parity-game graph
as before, n′ its number of vertices, m′ its number of edges. For computing simulations,
we only need assume there are only three priorities, that is, p : V → {0, 1, 2}. However,
we will present the algorithm in its full generality, i.e., p : V → {0, 1, . . . , d− 1}, since
the algorithm is of much broader interest.

Let [n] = {0, . . . , n − 1}, and let ni = |p−1(i)|. The algorithm assigns to each
vertex a “progress measure” from M∞

G = MG ∪ {∞}, where

MG =

{
[1] × [n1 + 1] × [1] × [n3 + 1] × · · · [1] × [nd−1 + 1] if d is even,
[1] × [n1 + 1] × [1] × [n3 + 1] × · · · [1] × [nd−2 + 1] if d is odd.

(20)

In other words, a progress measures is either ∞ or a length d vector which at even
index positions is 0, and at odd index positions i ranges over {0, . . . , ni}.

Initially, every vertex is assigned 0, the all-zero vector. The measures are repeat-
edly “incremented” in a certain fashion until a fixed point is reached.

We first explain the increment operation, which is at the heart of Jurdziński’s
algorithm. For i < d and x ∈ M∞

G we define 〈x〉i as follows. For x = (l0, . . . , ld−1),
〈x〉i = (l0, . . . , li, 0, 0, . . . , 0). In other words, we set positions indexed > i to 0.
Moreover, 〈∞〉i = ∞. We define a lexicographic total order on M∞

G , denoted >.
Here, index 0 is the most significant position, and ∞ is greater than all other vectors.
In addition, for d-vectors x and y, we write x >i y iff 〈x〉i > 〈y〉i according to the
above ordering. For example, (0, 3, 0, 1) >1 (0, 2, 0, 3). Note that x > y iff x >d−1 y.
Now, we can say what it means to “increment” a progress measure. For each i ∈ [d],
let

incri(x) =

⎧⎨
⎩
〈x〉i if i is even x �= ∞,
min{y ∈ M∞

G | y >i x} if i is odd, x �= ∞,
∞ if x = ∞.

(21)

Observe that, for a fixed i, the operation incri(·) is monotone with respect to the
ordering <; that is, if x ≤ x′, then incri(x) ≤ incri(x

′).
For simplicity in notation, if v ∈ V , we write 〈x〉v and incrv(x) for 〈x〉p(v) and

incrp(v)(x), respectively. For every assignment ρ : V → M∞
G of progress measures to

the vertices of a game graph, which we call an assignment for short, and for v ∈ V ,
let

best-nghb-ms(ρ, v) =

{
〈min({ρ(w) | (v, w) ∈ E})〉v if v ∈ V0,
〈max({ρ(w) | (v, w) ∈ E})〉v if v ∈ V1.

(22)

Here, best-nghb-ms(ρ, v) stands for the set of best neighbors of v with respect to the
measure we have defined. Jurdziński defines a “lifting” operator, which, given an
assignment ρ and v ∈ V , gives a new assignment. In order to define it, he first defines
how an individual vertex’s measure is “updated” with respect to those of its neighbors:

update(ρ, v) = incrv(best-nghb-ms(ρ, v)).(23)

The “lifted” assignment, lift(ρ, v) : V → D, is then defined as follows:

lift(ρ, v)(u) =

{
update(ρ, v) if u = v,
ρ(u) otherwise.

(24)
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1 for v ∈ V do
2 ρ(v) := 0
3 endfor
4 while there exists a v such that update(ρ, v) �= ρ(v) do
5 ρ := lift(ρ, v)
6 endwhile

Fig. 1. Jurdziński’s lifting algorithm.

Observe that for every v, the operator lift(·, v) is a monotone operator with respect
to the complete partial ordering where ρ ≤ ρ′ if ρ(v) ≤ ρ′(v) for all v ∈ V .

Jurdziński’s algorithm is depicted in Figure 1. The outcome determines the win-
ning set of vertices for each player as follows.

Theorem 9 (see [17]). Let G be a parity game. Even has a winning strategy
from precisely the vertices v such that, after the lifting algorithm depicted in Figure 1
halts, ρ(v) < ∞.

Jurdziński’s algorithm needs at most n′NG iterations of the while loop where

NG = |M∞
G | = 1 +

∏
i : 0<2i+1≤d−1

n2i+1.(25)

More precisely, Jurdziński argues as follows. Each vertex can only be lifted NG times.
A lifting operation at v can be performed in time O(|Sucs(v)|), where Sucs(v) denotes
the set of successors of v. So, overall, he concludes, the running time is O(m′NGd).
In this analysis, it is implicitly assumed that one can, in constant time, decide if there
is a vertex v such that update(ρ, v) �= ρ(v), and find such a vertex. We provide an
implementation of Jurdziński’s algorithm that achieves this.

Our algorithm, depicted in Figure 2, maintains a set L of “pending” vertices v
whose measure needs to be considered for lifting, because a successor has recently
been updated resulting in a requirement to update ρ(v). This set L is implemented
as a list together with a bit array; extracting an element, adding an element, and
membership test can then be carried out in constant time. Further, we maintain
arrays B and C that store, for each vertex v, the value best-nghb-ms(ρ, v) and the
number of successors u of v with 〈ρ(u)〉v = best-nghb-ms(ρ, v), denoted cnt(ρ, v).

Whether a vertex w needs to be placed on L is determined in constant time
by maintaining, for each vertex w, the current “best measure” B(w) of any of its
successors, as well as the count C(w) of how many such neighbors there are with the
“best measure.” This is only necessary for w ∈ V0, because if this is the case we need
to be able to realize when all neighbors with the current minimum value have “died
out,” while for w ∈ V1 we look at the maximum of all neighbors.

Lemma 10. The lifting algorithm depicted in Figure 2 computes the function ρ
from Jurdziński’s algorithm in time O(m′NGd) and space O(dm′).

Proof. The correctness follows from the above explanation. The running time
follows because each vertex can enter L at most n1 + 1 times, and the time taken
by the body of the while loop is proportional to the number of edges incident on the
vertex.

The bound on the running time can be explained as follows. The initialization
(lines 1–4) takes time O(m′d). If a vertex enters L in the body of the while loop, then
its ρ-value will be incremented next time the vertex is removed from L. That means
every vertex enters L at most NG times. The time it takes to process a vertex v taken



FAIR SIMULATION RELATIONS 1171

1 foreach v ∈ V do
2 B(v) := 0; C(v) := |{w | (v, w) ∈ E}|; ρ(v) := 0;
3 endfor
4 L := {v ∈ V | p(v) is odd};
5 while L �= ∅ do
6 let v ∈ L; L := L \ {v};
7 t := ρ(v);
8 B(v) := best-nghb-ms(ρ, v); C(v) := cnt(ρ, v); ρ(v) := incrv(B(v));
9 P := {w ∈ V | (w, v) ∈ E};

10 foreach w ∈ P such that w /∈ L do
11 if w ∈ V0, 〈t〉w = B(w), and 〈ρ(v)〉w > B(w) then
12 if C(w) = 1 then L := L ∪ {w};
13 if C(w) > 1 then C(w) := C(w) − 1;
14 if w ∈ V1 and 〈ρ(v)〉w > B(w) then
15 L := L ∪ {w};
16 endfor
17 endwhile

Fig. 2. Efficient implementation of the lifting algorithm.

from the loop is O(# vertices incident on v). This means that lines 5–17 take time
O(m′NGd). This proves the claim.

We can now state one of our main theorems.
Theorem 11. For a Büchi automaton A, the relations 	f , ≈bi

f , and 	de can all

be computed in time O(|Δ||Q|3) and space O(|Q||Δ|).
Proof. The theorem follows from Lemmas 4 and 10. Observe that in the (bi)sim-

ulation games involved we have NG = n1 + 1 = O(|Q|2).
As mentioned, in prior work O(|Q|6)–time and space [14], and O(|Q|10)–time

and space [15] algorithms were given for deciding whether q 	f q′, and, respectively,
q ≈bi

f q′, hold for a single pair of states (q, q′).

5. Reducing state spaces by quotienting: Delayed simulation is bet-
ter. In this section, we show that (1) quotienting with respect to delayed simulation
preserves the recognized language; (2) this is not true with fair simulation; and (3)
quotients with respect to delayed simulation can indeed be substantially smaller than
quotients with respect to direct simulation, even when the latter is computed on the
“accept closure” cl(A) (unlike what we saw with delayed bisimulation). We first define
quotients.

Definition 12. For a Büchi automaton A, and an equivalence relation ≈ on
the states of A, let [q] denote the equivalence class of q ∈ Q with respect to ≈. The
quotient of A with respect to ≈ is the automaton

A/≈ = 〈Σ, Q/≈,Δ≈, [qI ], F/≈〉,(26)

where

Δ≈ = {([q], a, [q′]) | ∃ q0 ∈ [q], q′0 ∈ [q′] such that (q0, a, q
′
0) ∈ Δ}.(27)

In order to apply our simulation relations, we define, corresponding to each sim-
ulation preorder, an equivalence relation ≈o , ≈di , ≈de , and ≈f , where q ≈� q′ iff
q 	� q′ and q′ 	� q. Note that both ≈� and A/≈� can be computed from 	� re-
quiring no more time (asymptotically) than that needed to compute 	� on A. The
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quotient with respect to ≈di preserves the language of any automaton, while this is
obviously not true for ≈o . We will later see that this is not true for ≈f either. But
first we show that this is true for ≈de .

We start with a lemma.

Lemma 13. Let A be a Büchi automaton.

1. If q0 	de q′0 and (q0, a, q1) ∈ Δ, then there exists q′1 with q1 	de q′1 and
(q′0, a, q

′
1) ∈ Δ.

2. If q0 	de q′0 and [q0]de a0 [q1]de a1 . . . is a finite or infinite run of A/≈de ,
then there exists a run q′0a0q

′
1a1 . . . of A of the same length such that qi 	de q′i for

every i.
3. If q0 	de q′′0 and [q0]de a0 [q1]de a1 . . . is an infinite run of A/≈de with q0 ∈ F ,

then there exists a finite run q′′0a0 . . . ar−1q
′′
r of A such that qj 	de q′′j for j ≤ r and

q′′r ∈ F .

Proof. For the first part, recall that by definition of 	de , we know Duplicator wins
Gde

A (q0, q
′
0). Let f be a winning strategy for him, and let q′1 = f(q0q

′
0aq1). Then, by

definition, (q′0, a, q
′
1) ∈ δ. Also, it is easy to see that f ′ defined by f ′(ρ) = f(q0q

′
0aρ)

is a winning strategy for Duplicator in Gde
A (q1, q

′
1). Therefore, the claim holds.

For the second part, observe that by definition of A/≈de there exist q̂0 and q̂1
such that (i) q0 ≈de q̂0, (ii) q1 ≈de q̂1, and (iii) (q̂0, a0, q̂1) ∈ Δ. From (i), we obtain
q̂0 	de q′0 by transitivity of 	de . So, from (iii) and the first part of the lemma, we
can conclude there exists (q′0, a, q

′
1) ∈ Δ such that q̂1 	de q′1. From (ii), we obtain

q1 	de q′1. Hence, we have constructed the first transition of the desired run and are
in a completely analogous situation. The rest follows by induction.

For the third part, first set q′0 = q0. Let q′0a0q
′
1a1 . . . be the infinite run which

we know exists by the second part. Next, let f be a winning strategy of Duplicator
in Gde

A (q′0, q
′′
0 ). Consider q′′0a0q

′′
1a1 . . . defined by q′′i+1 = f(q′0q

′′
0a0 . . . q

′
i). Just as in

the proof of the first part, it can be argued that qj 	de q′j 	de q′′j holds for every j.
Because of q′0 = q0 ∈ F , we conclude there exists r such that q′′r ∈ F , which completes
the proof.

Theorem 14. For any Büchi automaton A, L(A) = L(A/≈de).

Proof. To see that L(A) ⊆ L(A/≈de), consider any accepting run π = q0a0q1a1 . . .
of A. By definition of A/≈de , [q0]a0[q1]a1 . . . is an accepting run of A/≈de . This holds
for any of our simulation notions.

To show L(A/≈de) ⊆ L(A), consider an accepting run [q0]a0[q1]a1 . . . of A/≈de .
Although we cannot guarantee that q0a0q1a1 . . . is a run of A, we can construct
another accepting run over the same word.

We may assume that q0 = qI and that there are infinitely many i such that qi ∈ F .
We construct a sequence ρ0, ρ1, . . . of finite runs of A on prefixes of a0a1 . . . where
ρl+1 strictly extends ρl and contains at least l + 1 elements from F . So the limit of
the ρi’s will be the run we are looking for.

We start with ρ0 = q0. Assume ρl = q′0a0 . . . q
′
i has already been constructed in

such a way that qi 	de q′i. There exists j > i such that qj ∈ F . So, by the second
part of the previous lemma, we know there exists a run q′iai . . . q

′
j such that qj 	de q′j .

By the third part of the lemma, we know there exists k ≥ j and a run q′jaj . . . q
′
k such

that qk 	de q′k and q′k ∈ F . We set ρl+1 = ρaiq
′
i+1 . . . q

′
k.

We can thus use A/≈de to reduce the size of A, just as with direct simulation. In
fact, A/≈de can be smaller than A/≈di (as well as cl(A)/≈di) by an arbitrarily large
factor.

Proposition 15. For n ≥ 2, there is a Büchi automaton An with n + 1 states



FAIR SIMULATION RELATIONS 1173
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Fig. 3. Family of automata An.
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Fig. 4. Family of automata Bn.

such that An/≈de has 2 states but An/≈di has n + 1 states (and An = cl(An)).
Proof. Consider automaton An in Figure 3. It is not hard to establish that in An

each outer state delayed simulates each other outer state. Thus An/≈de has 2 states.
On the other hand, An = cl(An), and no state of An direct simulates any other state
of An. Thus An/≈di = An and has n + 1 states.

Next we see that Theorem 14 fails badly for fair simulation and bisimulation; that
is, fair (bi)simulation cannot be used for state space reduction via quotienting under
any reasonable definition of quotient. [15] already makes a very closely related obser-
vation, showing an automaton whose fair bisimulation quotient is not fair bisimilar
to itself.

Proposition 16. For n ≥ 2, there is a Büchi automaton Bn with n states, each
of which fairly (bi)simulates every other state, but such that no Büchi automaton with
fewer than n states accepts L(Bn). In particular, L(Bn) �= L(Bn/≈bi

f ).
Proof. Consider the automaton Bn shown in Figure 4. It has n states and an

alphabet Σ = {a1, . . . , an−1}. To see that every state of Bn fair simulates (and fair
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bisimulates) every other state, first note that because the automaton is deterministic
Duplicator has no choice in her strategy. A run (played by Spoiler) goes through
the accept state infinitely often iff each ai is encountered infinitely often. But this
statement holds no matter which state the run begins from. Thus Duplicator’s unique
strategy from the initial state pair will be a winning strategy. The language L(Bn)
contains precisely those ω-words where each ai occurs infinitely often. It is not hard
to show that there are no Büchi automata recognizing L(Bn) with fewer than n
states.

6. Conclusions. We have presented a unified parity-game framework in which
to understand optimal known algorithms for a variety of simulation notions for Büchi
automata. In particular, we have improved upon the best bounds for fair simulation
(and fair bisimulation), matched the best bound for ordinary simulation, and pre-
sented an algorithm for the new notion of delayed simulation. Our algorithms employ
a relatively simple fixed point computation, an implementation of an algorithm by
Jurdziński for parity games, and should perform well in practice.

Our own main aim in using simulations is efficient state space reduction, as in [8].
We introduced delayed simulation and showed that, unlike fair simulation, delayed
simulation quotients can be used for state space reduction, and allow greater reduction
than direct (strong) simulation, which has been used in the past. Optimization of
property automata prior to model checking is an ingredient in making explicit state
model checkers such as SPIN more efficient. Preliminary results indicate that in
practice delayed simulation does outperform direct simulation on many inputs; further
studies need to be carried out to get a clearer picture of the relative advantages of
delayed simulation.
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space reduction for Büchi automata, in Proceedings of the 28th International Colloquium
on Automata, Languages and Programming, ICALP 2001, Crete, Greece, 2001, Lecture
Notes in Comput. Sci. 2076, F. Orejas, P. G. Spirakis, and J. van Leeuwen, eds., Springer-
Verlag, Berlin, 2001, pp. 694–707.



FAIR SIMULATION RELATIONS 1175

[10] C. Fritz and Th. Wilke, State space reductions for alternating Büchi automata: Quotient-
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THE COMPLEXITY OF FINDING PATHS IN
GRAPHS WITH BOUNDED INDEPENDENCE NUMBER∗

ARFST NICKELSEN† AND TILL TANTAU†

Abstract. We study the problem of finding a path between two vertices in finite directed graphs
whose independence number is bounded by some constant k. The independence number of a graph
is the largest number of vertices that can be picked such that there is no edge between any two of
them. The complexity of this problem depends on the exact question we ask: Do we wish only to
tell whether a path exists? Do we also wish to construct such a path? Are we required to construct
the shortest one? Concerning the first question, we show that the reachability problem is first-order
definable for all k and that its succinct version is ΠP

2 -complete for all k. In contrast, the reachability
problems for many other types of finite graphs, including dags and trees, are not first-order definable,
and their succinct versions are PSPACE-complete. Concerning the second question, we show not only
that we can construct paths in logarithmic space, but that there even exists a logspace approximation
scheme for this problem. The scheme gets a ratio r > 1 as additional input and outputs a path that
is at most r times as long as the shortest path. Concerning the third question, we show that even
telling whether the shortest path has a certain length is NL-complete and thus is as difficult as for
arbitrary directed graphs.

Key words. reachability, connectivity, shortest paths, distance in graphs, logarithmic space,
tournaments, first-order definability, polynomial hierarchy, completeness, approximation algorithms,
succinct representations
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1. Introduction. Finding paths in graphs is one of the most fundamental prob-
lems in graph theory and has both practical and theoretical applications in many
different areas. For this problem we are given a graph G and two vertices s and t,
the source and the target, and we are asked to find a path from s to t. The problem
comes in different versions: The most basic is the reachability problem, which just
asks whether such a path exists. This problem is also known as the “graph accessi-
bility problem” or “s-t-connectivity problem.” The construction problem asks us to
construct a path, provided one exists. The optimization problem asks us to construct
not just any path, but a shortest one. Closely related to the optimization problem
is the distance problem, which asks us to decide whether the distance of s and t is
bounded by a given number. If the optimization problem is difficult to solve, we can
consider the approximation problem, which asks us to construct a path that is not
necessarily a shortest path, but that is no longer than the distance of s and t times a
constant factor.

In this paper we show that for directed graphs whose independence number is
bounded by some constant k, the reachability problem, the construction problem,
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and the optimization problem have fundamentally different computational complex-
ities. The independence number α(G) of an (undirected or directed) graph G is the
maximum number of vertices that can be picked from G such that there is no edge
between any two of these vertices. Our main results are the following:

1. The reachability problem for finite graphs with independence number at
most k is first-order definable for all k. This does not hold for infinite graphs
for any k.

2. The reachability problem for succinctly represented graphs with independence
number at most k is ΠP

2 -complete for all k.
3. There exists an algorithm that needs space O

(
(α(G) + logm) log n

)
on n-

vertex graphs to compute a path between two given connected vertices whose
length is at most 1 + 1/m times their distance.

4. The distance problem for graphs with independence number at most k is
NL-complete for all k.

The most prominent examples of graphs with bounded independence number are
tournaments [21, 24], which are directed graphs with exactly one edge between any two
vertices. Their independence number is 1. The reachability problem for tournaments
arises naturally if we try to rank or sort objects according to a comparison relation that
for any two objects tells us which one “beats” the other, but which is not necessarily
acyclic. A different example of graphs with bounded independence number, studied
in [7], are directed graphs G = (V,E) whose underlying undirected graph is claw-
free, i.e., does not contain the graph K1,m for some constant m, and whose minimum
degree is at least |V |/3. Their independence number is at most 3m− 3.

To gain some understanding of the behavior of the independence number function,
first note that independence is a monotone graph property: adding edges to a graph
can only decrease the independence number, and deleting edges can only increase
it. Given two graphs with the same vertex set and independence numbers α and α′,
the independence number of their union is at most the minimum of α and α′, and
the independence number of their disjoint union is α + α′. Thus if a graph consists
of, say, four disjoint tournaments with arbitrary additional edges connecting these
tournaments, its independence number is at most 4. Intuitively, a graph with a low
independence number must have numerous edges, and, indeed, at least

(
n
2

) / (
α(G)+1

2

)
edges must be present in any n-vertex graph G. This abundance of edges might suggest
that if paths between two given vertices exist, there should also exist a short path
between them. While this is true for the undirected case, in the directed case (which
interests us in this paper) the distance between two vertices can become as large as
n− 1, even in n-vertex tournaments.

1.1. How difficult is it to tell whether a path exists? The reachability
problem for finite directed graphs, which will be denoted reach in the following, is
well known to be NL-complete [16, 17] and thus “easy” from a computational point
of view. The complexity of the reachability problem drops if we restrict the type of
graphs for which we try to solve it. The reachability problem reachu for finite undi-
rected graphs is SL-complete [19] and thus presumably easier to solve. The even more
restricted problem reachforest for directed forests and the problem reachout≤1 for di-
rected graphs in which all vertices have out-degree at most 1 are L-complete [4]. Here
and in the following, “completeness” is meant with respect to first-order reductions
(≤fo-reductions) in the sense of Immerman [15], where ordering and the bit predicate
are available. Barrington, Immerman, and Straubing [2] have shown that first-order
reductions are the same as dlogtime-uniform many-one AC0-reductions.
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The complexity of the reachability problem for finite directed graphs whose inde-
pendence number is bounded by a constant k is much lower: Somewhat surprisingly,
this problem is first-order definable for all k. Formally, for each k the language
reachα≤k := reach ∩ {〈G, s, t〉 | α(G) ≤ k} is first-order definable, where 〈 〉 de-
notes a standard binary encoding. First-order definability means the following: Let
τ = (E2, s, t) be the signature of directed graphs with two distinguished vertices. The
binary relation symbol E represents an edge relation, and the constant symbols s
and t represent a source and a target vertex. We show that for each k there exists a
first-order formula φreach,α≤k over the signature τ for which the following holds: For
all finite directed graphs G = (V,E) and all s, t ∈ V the τ -structure (V,E, s, t) is a
model of φreach,α≤k if

1. α(G) ≤ k and
2. there is path from s to t in G.

The formulas will require neither an ordering on the universe nor the bit predicate;
see [15] for a discussion of the importance of these predicates. Note, however, that
we implicitly use these predicates in the first-order reductions that we present.

Languages whose descriptive complexity is first-order are known to be very simple
from a computational point of view. They can be decided by a family of dlogtime-
uniform AC0-circuits [2], in constant parallel time on concurrent-read, concurrent-
write parallel random access machines [14], and they constitute a small subclass of
the class L of logarithmic space. Since it is known that L-hard sets cannot be first-order
definable [1, 9], reachα≤k is unconditionally easier to solve than reach, reachu,
and reachforest. It is even easier than the seemingly trivial reachability problem
for graphs that are directed paths, which Etessami [6] has shown to be L-complete.
For the special case of tournaments, conditions for strong connectedness (and thus,
implicitly, for reachability) were proved in [12], but these conditions yield weaker
bounds on the complexity of the reachability problem for tournaments than those
shown in the present paper.

Our results on the first-order definability of reachα≤k apply only to finite graphs.
Let reach

∞
α≤k denote the class of all triples (G, s, t) such that G is a (possibly infinite)

directed graph with α(G) ≤ k in which there is a path from s to t. We show that
no set of first-order formulas (not even an infinite one) has reach

∞
α≤k as its class of

models for any k.

When studying the complexity of a graph problem, one usually assumes (as we
did above) that the input graph is encoded as a binary string “in some standard-
ized way,” for example, using adjacency lists. Which particular encoding method
is chosen is of little or no concern for the computational complexity of the prob-
lem. This is no longer true if the input graphs are encoded succinctly, as is often
the case, for instance, in hardware design. Succinctly represented graphs are given
indirectly via a program or a circuit that decides the edge relation of the graph.
For reachability problems, Papadimitriou and Yannakakis [23] and Wagner [35, 36]
have shown that succinct-reach, succinct-reachu, succinct-reachforest, and
succinct-reachout≤1 are all PSPACE-complete. In contrast to this, we show that
succinct-reachα≤k is complete for the second level of the polynomial hierarchy,
more precisely for ΠP

2 , for all k. Interestingly, the succinct version of the dominating
set problem for tournaments is complete for ΣP

2 , as shown by Umans [33].

1.2. How difficult is it to construct a path? The low complexity of the
reachability problem seemingly settles the complexity of finding paths in graphs with
bounded independence number. At first sight, the path construction problem appears
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to reduce to the reachability problem via a simple algorithm: Starting at the source
vertex, for each successor of the current vertex check whether we can reach the target
from it (for at least one successor this test will be true); make that successor the
current vertex; and repeat until we have reached the target. Unfortunately, this
algorithm is flawed since it can lead us around in endless cycles in graphs that are
not acyclic. A correct algorithm does not move to an arbitrary successor, but to the
successor that is nearest to the target. This corrected algorithm produces not only
some path, but a shortest one. However, the algorithm now needs to compute the
distance between vertices internally, which is conceptually a more difficult problem
than deciding whether two vertices are connected.

Nevertheless, we show that a path between any two connected vertices can be
constructed in logarithmic space in graphs with bounded independence number. There
even exists a logspace approximation scheme for this problem. This means that for
each r > 1 and each k there exists a logspace-computable function that maps an input
〈G, s, t〉 with α(G) ≤ k to a path from s to t of length at most r times the distance
of s and t. If no path exists, the function outputs “no path exists.”

1.3. How difficult is it to construct a shortest path? Our final result
settles the complexity of constructing a shortest path in a graph with bounded in-
dependence number. We show that even for tournaments this problem is as difficult
as constructing a shortest path in an arbitrary graph. As pointed out above, the
complexity of constructing a shortest path hinges on the complexity of the distance
problem distancetourn :=

{
〈G, s, t, d〉 | G is a tournament in which there is a path

from s to t of length at most d
}
. We prove that this problem is NL-complete. Thus

distance and distancetourn are ≤fo-equivalent, but reach and reachtourn are not.
The succinct version of distancetourn is PSPACE-complete.

1.4. Organization of this paper. In section 2 we study graph-theoretic defini-
tions and results. We prove a general theorem that relates the independence number
of a graph to its different domination numbers. We believe this theorem to be of
independent interest. In section 3 we study the reachability problem. We show that
the problem reachα≤k is first-order definable by explicitly giving a defining formula,
that the infinite version is not first-order definable, and that the succinct version is
ΠP

2 -complete. In section 4 we present a logspace approximation scheme for construct-
ing paths in graphs with bounded independence number. In section 5 we prove that
the distance problem for tournaments is NL-complete and that its succinct version is
PSPACE-complete.

2. Graph-theoretic definitions and results. In this section we first fix the
notation and terminology for basic graph-theoretic concepts. Then we prove a gen-
eralization of the so-called Lion King lemma; see Theorem 2.2. At the end of the
section we prove Theorem 2.3, which will be the crucial building block of our first-
order definition of reachα≤k.

A directed graph or just a graph is a nonempty set V of vertices together with
a set E ⊆ V × V of directed edges. A tournament is a graph with exactly one edge
between any two different vertices and (v, v) /∈ E for all v ∈ V . A (rooted) tree is a
graph in which there is a unique path from the root vertex to each vertex. A forest
is the disjoint union of trees.

The out-degree of a vertex u is the number of vertices v with (u, v) ∈ E. A path
of length � in a graph G = (V,E) is a sequence (v1, . . . , v�+1) of distinct vertices with
(vi, vi+1) ∈ E for i ∈ {1, . . . , �}. A vertex t is reachable from a vertex s if there is a
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path from s to t. The distance d(s, t) of two vertices is the length of the shortest path
between them or is undefined, if no path exists. For sets U,U ′ ⊆ V let d(U,U ′) :=
min{d(u, u′) | u ∈ U, u′ ∈ U ′}. For i ∈ N, a vertex u ∈ V is said to i-dominate a vertex
v ∈ V if d(u, v) ≤ i. Let domi(U) denote the set of all vertices that are i-dominated
by vertices in U . A set U ⊆ V is an i-dominating set for G if domi(U) = V . The
i-domination number βi(G) is the minimum size of an i-dominating set for G. A set
U ⊆ V is independent if there is no edge in E connecting vertices in U . The maximum
size of independent sets in G is its independence number α(G).

Turán [31], referenced in [32], gives an exact formula for the minimum number
of edges in a graph as a function of the independence number. However, the simpler
bound from the following lemma will be more appropriate for our purposes.

Lemma 2.1. Let G = (V,E) be a finite graph, n := |V |, α := α(G) < n. Then
G has at least

(
n
2

) / (
α+1

2

)
edges, and there exists a vertex with out-degree at least

(n− 1)
/

2
(
α+1

2

)
.

Proof. The number of (α + 1)-element subsets of V is
(

n
α+1

)
for α < n. Every

such set contains two vertices linked by an edge. Every such edge is in
(
n−2
α−1

)
different

(α+1)-element subsets of V . Therefore there are at least
(

n
α+1

) / (
n−2
α−1

)
=

(
n
2

) / (
α+1

2

)
edges in G. The average out-degree in G hence must be at least

1

n

(
n
2

)
(
α+1

2

) =
n− 1

2
(
α+1

2

) .
Since this is a lower bound on the average out-degree, at least one vertex must have
at least this out-degree.

Theorem 2.2. Let G = (V,E) be a finite graph with at least two vertices,
n := |V |, α := α(G) < n, and c := (α2 + α)/(α2 + α− 1). Then

1. β1(G) ≤ �logc n	 and
2. β2(G) ≤ α.

Proof. We greedily construct a 1-dominating set D1 for G of size at most �logc n	.
In each step we put a vertex vi into D1 that dominates as many vertices as possible
of the subset Vi ⊆ V not dominated so far. Formally, let V0 := V and for i ≥ 0, as
long as Vi is not empty, choose a vertex vi ∈ Vi such that Vi+1 := Vi \ dom1

(
{vi}

)
is

as small as possible. Let imax be the first i such that Vi is empty. By Lemma 2.1 the
out-degree of each vi with i ∈ {0, . . . , imax−1} is at least

(
|Vi|−1

) /
2
(
α+1

2

)
and thus

|Vi+1| ≤ |Vi| − 1 − |Vi| − 1

2
(
α+1

2

) < |Vi| −
|Vi|

2
(
α+1

2

)
= |Vi|

(
1 − 1

2
(
α+1

2

)) = |Vi|
(
α2 + α− 1

α2 + α

)
=

|Vi|
c

.

This shows that the size of Vi decreases by at least the factor c in each step. Thus
after at most �logc n	 iterations the set Vi is empty and D1 := {v0, . . . , vimax−1} is the
desired 1-dominating set.

We next construct a 2-dominating set D2 of size at most α by removing super-
fluous vertices from D1. Formally, let Wimax := ∅ and

Wi :=

{
Wi+1 if vi ∈ dom1(Wi+1),

Wi+1 ∪ {vi} otherwise.
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Clearly, D2 := W0 is a 2-dominating set. To prove |D2| ≤ α, assume that D2 contains
at least α + 1 vertices vi1 , . . . , viα+1 ∈ D1. Since the set of these vertices cannot
be independent, there must exist indices ir and is such that (vir , vis) ∈ E. By
construction of the set D1, this can be the case only if is > ir. But then vir /∈ D2 by
construction of Wir , a contradiction.

For tournaments G, Theorem 2.2 yields β1(G) ≤ �log2 n	 and β2(G) = 1. The
first result was first proved by Megiddo and Vishkin in [20], where it was used to
show that the dominating set problem for tournaments is not NP-complete, unless
NP ⊆ DTIME

[
nO(log n)

]
. The second result is also known as the Lion King lemma,

which was first noticed by Landau [18] in the study of animal societies, where the
dominance relations in prides of lions form tournaments. It has applications in the
study of P-selective sets [13] and many other fields.

Theorem 2.3. Let G = (V,E) be a finite graph with at least two vertices,
n := |V |, α := α(G) < n, c := (α2 +α)/(α2 +α−1), and s, t ∈ V . Then the following
statements are equivalent:

1. There is no path from s to t in G.
2. There is a subset D1 ⊆ V with |D1| ≤ �logc n	 such that dom1(D1) is closed

under reachability, s ∈ dom1(D1) and t ∈ dom1(D1).
3. There is a subset D2 ⊆ V with |D2| ≤ α such that dom2(D2) is closed un-

der reachability, s ∈ dom2(D2) and t ∈ dom2(D2).
Proof. The second and third statements imply the first since no path starting at a

vertex s inside a set that is closed under reachability can “leave” this set to arrive at a
vertex t outside this set. To show that the first statement implies the second, consider
the set S of vertices reachable from s in G. Then S is closed under reachability, s ∈ S
and t ∈ S. The induced graph G′ :=

(
S,E ∩ (S × S)

)
also has independence number

at most α. If G′ contains at least two vertices, Theorem 2.2 tells us that the graph G′

has a 1-dominating set D1 of size at most �logc n	. If G′ contains only one vertex, it
trivially has a 1-dominating set of size 1 ≤ �logc n	. To show that the first statement
implies the third, consider the same graph G′ once more. By Theorem 2.2 it also has
a 2-dominating set D2 of size at most α.

3. Complexity of the reachability problem. In this section we answer the
following question: How difficult is it to tell whether there is a path between two ver-
tices in a directed graph with bounded independence number? In the first subsection,
we answer it for finite graphs, in the second for infinite ones, and in the third for
succinctly represented graphs.

3.1. First-order definability of the reachability problem. The reachability
problem for graphs with bounded independence number is first-order definable. Before
we prove this claim, let us review some basic notions from descriptive complexity
theory.

First-order definability is a language property. It can be defined as follows for
the special case of languages A ⊆ {〈V,E, s, t〉 | (V,E) is a finite graph, s, t ∈ V }: Let
τ = (E2, s, t) be the signature of graphs with two designated vertices. A first-order
τ -formula is a first-order formula that contains, other than quantifiers, variables, and
connectives, only the binary relation symbol E and the constant symbols s and t.
An example is the formula ∃x

[
E(s, x) ∧ E(x, t)

]
. A τ -structure is a tuple (V,E, s, t)

consisting of a graph (V,E) and two vertices s, t ∈ V . A τ -structure is a model of a
τ -formula if the formula holds when we interpret the relation symbol E as the edge
relation E and the constant symbols s and t as the vertices s and t. For example,
the τ -formula ∃x

[
E(s, x)∧E(x, t)

]
is a model of every τ -structure (V,E, s, t) in which
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there is a path (more precisely, a walk) from s to t in the graph (V,E) of length
exactly 2. The language A is first-order definable if there exists a τ -formula φ such
that 〈V,E, s, t〉 ∈ A if and only if (V,E, s, t) is a model of φ.

Theorem 3.1. For each k, reachα≤k is first-order definable.
Proof. Let k ≥ 1 be fixed. We give a stepwise construction of a formula φreach,α≤k

such that (V,E, s, t) |= φreach,α≤k if and only if 〈V,E, s, t〉 ∈ reachα≤k. Roughly, the
formula φreach,α≤k will say “α(G) ≤ k, and it is not the case that condition 3 of
Theorem 2.3 holds for s and t.”

Let φdistinct(v1, . . . , vm) ≡
∧

i �=j [vi = vj ]. This formula expresses that vertices are
distinct. The property “α(G) ≤ k” can be expressed as

φα≤k ≡ (∀v1, . . . , vk+1)
[
φdistinct(v1, . . . , vk+1) →

∨
i �=j

E(vi, vj)
]
.

The next two formulas express that a vertex v or a set {v1, . . . , vm} of vertices
2-dominates a vertex u:

φ2-dom(v, u) ≡ v = u ∨ E(v, u) ∨ (∃z)
[
E(v, z) ∧ E(z, u)

]
,

φ2-dom(v1, . . . , vm, u) ≡ φ2-dom(v1, u) ∨ · · · ∨ φ2-dom(vm, u).

Since β2(G) ≤ α(G) ≤ k, condition 3 of Theorem 2.3 can be expressed as

φcondition ≡ (∃v1, . . . , vk)[
φ2-dom(v1, . . . , vk, s) ∧ ¬φ2-dom(v1, . . . , vk, t)

∧ (∀u, v)
[(
φ2-dom(v1, . . . , vk, u) ∧ E(u, v) → φ2-dom(v1, . . . , vk, v)

)]]
.

The desired formula φreach,α≤k is given by φα≤k ∧ ¬φcondition. Note that its
quantifier complexity (nesting depth) is k + 3 and that the number of quantifier
alternations is three, beginning with a universal quantifier.

Corollary 3.2. The language reach can be decided in space O
(
α(G) log n

)
.

Proof. On input of a coded tuple 〈G, s, t〉 with G = (V,E), s, t ∈ V , n := |V |, and
α := α(G), we can compute α in space O(α log n) by iteratively testing for increasing
values of α whether there exists a subset of α many vertices that is independent.
Once we know α, we check whether (V,E, s, t) |= φreach,α≤k for k := α. This check
can also be performed in space O(α log n), since we need log n bits to iterate over
all possible assignments of a variable bound by a quantifier and since the number of
nested quantifiers in φreach,α≤k is k + 3.

Theorem 3.1 can easily be extended to the following larger class of graphs: De-
fine the q-independence number αq(G) of a graph G as the maximum size of a q-
independent set in G, which is a vertex subset such that there is no path (in all of G)
of length at most q between any two vertices in this subset. Then reachability in
graphs with αq(G) ≤ k is first-order definable for all k, q ∈ N.

3.2. Infinite version of the reachability problem. In this subsection we
study the class reach

∞
α≤k and show that the first-order definability of reachα≤k

does not carry over to reach
∞
α≤k. This class contains all triples (G, s, t) such that G

is a (possibly infinite) graph with α(G) ≤ k in which there is a path from s to t.
Let us fix the model-theoretic notations and terminology. Once more, we restrict

our attention to the signature τ = (E2, s, t) of graphs with two designated vertices.
The notions of τ -structures, first-order τ -formulas, and models are defined as be-
fore. A class K of τ -structures, i.e., a class of possibly infinite graphs, each together
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with two designated vertices, is called elementary (over finite structures) if there ex-
ists a first-order τ -formula φ such that for every (finite) τ -structure (V,E, s, t) we
have (V,E, s, t) |= φ if and only if (V,E, s, t) ∈ K. A class K of τ -structures is
Δ-elementary if there exists a set Φ of first-order τ -formulas such that for every τ -
structure (V,E, s, t) we have (V,E, s, t) |= φ for all φ ∈ Φ if and only if (V,E, s, t) ∈ K.
Some authors use “finitely axiomatizable” instead of “elementary.” With these def-
initions, Theorem 3.1 states that reach

∞
α≤k is elementary over finite structures for

all k. This is no longer true for infinite structures, as the following theorem shows.

Theorem 3.3. reach
∞
α≤k is not Δ-elementary for any k.

Proof. The proof follows the standard pattern of proofs applying the compactness
theorem. Assume that there exist a set Φ of first-order τ -formulas and a number k ≥ 1
such that (V,E, s, t) |= Φ if and only if (V,E, s, t) ∈ reach

∞
α≤k. For each n ∈ N let

ψn be a formula that is satisfied by a graph if there is a path from s to t of length
exactly n. Consider the set Ψ := Φ∪ {¬ψ0,¬ψ1,¬ψ2,¬ψ3, . . . }. We claim that every
finite Ψ0 ⊆ Ψ has a model (V,E, s, t). To see this, let n be large enough such that for
all i ≥ n we have ¬ψi ∈ Ψ0 and define a tournament G = (V,E) by V := {1, . . . , n+1}
and (i, j) ∈ E if and only if j ≤ i + 1. Then α(G) = 1 ≤ k and the shortest path
from s := 1 to t := n + 1 has length n. Thus (V,E, s, t) is a model of Ψ0. By the
compactness theorem, Ψ has a model (V ′, E′, s′, t′) since every finite subset of Ψ has
a model. Since this model satisfies ¬ψn for all n, there cannot be a path of finite
length from s′ to t′ in G′ = (V ′, E′). Thus Φ ⊆ Ψ has a model that is not an element
of reach

∞
α≤k.

3.3. Succinct version of the reachability problem. Up to now, we have
not addressed the question of how we encode graphs. Varying the encoding method
typically has no effect on the complexity of graph problems, but this is no longer
true if we use succinct graph representations. In this subsection we show that the
complexity of reachα≤k jumps from first-order definable to ΠP

2 -complete if we use
succinct representations instead of the usual ones (such as adjacency matrices).

Succinctly represented graphs are given implicitly via a description in some de-
scription language. Since succinct representations allow the encoding of large graphs
by small codes, numerous graph properties are (provably) harder to check for suc-
cinctly represented graphs than for graphs coded in the usual way. Papadimitriou
and Yannakakis [23] and Wagner [36] have shown that most interesting graph prob-
lems become PSPACE-complete or even NEXP-complete for succinctly represented
graphs. For tournaments, Umans [33] has shown that the succinct version of the
dominating set problem is ΣP

2 -complete. There are other problems that become com-
plete for levels of the polynomial hierarchy if the instances are succinctly represented
by circuits. Schaefer has shown [26] that the problem of determining the Vapnik–
Chervonenkis dimension of a succinctly represented family of subsets of a finite set is
ΣP

3 -complete. For an overview of results of this type, see the survey of Schaefer and
Umans [27]. Succinct representations are known to be closely related to the concept
of leaf languages; see Borchert and Lozano [3] and Veith [34].

The following formalization of succinct graph representations follows Galperin
and Wigderson [10], but others are also possible [11, 36].

Definition 3.4. A succinct representation of a graph G =
(
{0, 1}n, E

)
is a

2n-input circuit C such that for all u, v ∈ {0, 1}n we have (u, v) ∈ E exactly if
C(uv) = 1.

The circuit tells us, for any two vertices of the graph, whether there is a directed
edge between them or not. Note that C will have size at least 2n since it has 2n input
gates.
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Having defined succinct versions of graphs, we can next define succinct versions
of languages. Our definition is not the most general possible; we focus on succinct
versions of languages that contain (the standard binary encoding of) graphs together
with vertices or numbers (numbers are useful for the distance problem). We represent
only the graphs succinctly; the vertex codes and numbers are left unchanged.

Definition 3.5. Let A ⊆
{
〈G, b1, . . . , bm〉 | G = (V,E) is a finite graph, bi ∈ V

or bi ∈ N for all i
}
. Then succinct-A is the set of all 〈C, b1, . . . , bm〉 such that C is

a succinct representation of a graph G with 〈G, b1, . . . , bm〉 ∈ A.

Theorem 3.6. For each k, succinct-reachα≤k is ΠP
2 -complete.

Proof. Our first aim is to show succinct-reachα≤k ∈ ΠP
2 . Let 〈C, s, t〉 be

an input and let C represent a graph G = (V,E) with V = {0, 1}n. Note that
log2 |V | = n. We first check whether α(G) ≤ k holds, which can easily be done
using a coNP-machine. We then check whether there is a path from s to t in G. By
Theorem 2.3 this is the case if for all sets D1 ⊆ {0, 1}n of size at most β1(G) either
s ∈ dom1(D1) or t ∈ dom1(D1) or dom1(D1) is not closed under reachability; i.e., there
exist vertices u ∈ dom1(D1) and v ∈ {0, 1}n \ dom1(D1) such that C(uv) = 1. Since
β1(G) ≤ �logc 2n	 = �n logc 2	, the size of each D1 that needs to be checked is linear
in n, and testing for membership in dom1(D1) can be performed in polynomial time.
Putting it all together, we see that the “for all . . . exists . . . ”-test is a ΠP

2 -algorithm.

Our second aim is to prove that even the reachability problem for tournaments,
succinct-reachtourn, is ≤fo-hard for ΠP

2 . Let L ∈ ΠP
2 by any language. By the

quantifier characterization of the polynomial hierarchy [37] there exists a polynomial-
time-decidable ternary relation R and a constant d such that

L =
{
x | ∀y ∈ {0, 1}|x|d ∃z ∈ {0, 1}|x|d R(x, y, z)

}
.

To simplify the following presentation, we assume that for every x there exists some

z ∈ {0, 1}|x|d such that R
(
x, 1|x|

d

, z
)

holds. In other words, we assume that the
“last” y is not important for deciding whether x ∈ L holds.

The desired ≤fo-reduction from L to succinct-reachtourn is obtained in three
steps.

1. We describe a mapping of inputs x to exponentially large tournaments G =
(V,E) and vertices s, t ∈ V such that x ∈ L if and only if (G, s, t) ∈ reachtourn.

2. We explain how a succinct representation of the highly structured tourna-
ment G can be computed in polynomial time.

3. We use an argument of Veith [34] to show that the polynomial-time compu-
tation can be replaced by a first-order query.

For the first step, the construction of the tournament G, let n denote the length
of x and let � := nd. The vertex set of G is V = {0, 1}2�. The first � bits of a vertex
v ∈ V will be called its row, and the last � bits its column. In other words, the vertices
are arranged in a big grid consisting of 2� rows and 2� columns. All vertices on the
same row are connected such that they form a strongly connected subtournament
of G. Let us say that the lexicographically smallest row is the topmost row and that
the lexicographically largest row is the bottommost row.

Edges between different rows generally point “upward,” i.e., from rows farther
down to rows farther up. The only exception are edges between a vertex v = yz on
row y and column z and the vertex on the same column in the row directly below.
Such an edge points “downward” if R(x, y, z). The source s is the upper-left corner
of the grid, i.e., the vertex s = 0�0�. The target t is the lower-left corner, i.e., the
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s y1z2 y1z3 y1z4 y1z5 y1z6 y1z7 y1z8

y2z1 y2z2 y2z3 y2z4 y2z5 y2z6 y2z7 y2z8

y3z1 y3z2 y3z3 y3z4 y3z5 y3z6 y3z7 y3z8

y4z1 y4z2 y4z3 y4z4 y4z5 y4z6 y4z7 y4z8

y5z1 y5z2 y5z3 y5z4 y5z5 y5z6 y5z7 y5z8

y6z1 y6z2 y6z3 y6z4 y6z5 y6z6 y6z7 y6z8

y7z1 y7z2 y7z3 y7z4 y7z5 y7z6 y7z7 y7z8

t y8z2 y8z3 y8z4 y8z5 y8z6 y8z7 y8z8

Fig. 3.1. Example of a tournament G constructed in the proof of Theorem 3.6 for � = 3. There
are 2� rows y1 = 000, y2 = 001, . . . , y8 = 111 and 2� columns z1 = 000, z2 = 001, . . . , z8 = 111.
Most arrows have been omitted for clarity; the missing arrows point upward for vertices on different
rows and right for vertices on the same row. Downward arrows correspond to positions for which
the predicate R is true. For example, the downward arrow between the first two rows indicates that
R(x, y1, z3) holds. A path from s to t, which is indicated in bold, exists since for each yi there exists
some zj such that R(x, yi, zj) holds.

vertex 1�0�. An example of a tournament G constructed in this way is depicted in
Figure 3.1.

We claim that (G, s, t) ∈ reachtourn if and only if x ∈ L. First, observe that
G is a tournament. Next, note that from each row y one can go directly (at best)
only one row down since all edges between nonneighboring rows point upward. Since
all vertices on the same row are connected, if we can reach a vertex v on row y,
we can reach any vertex on the row directly below if and only if R(x, y, z) holds for
some z ∈ {0, 1}�. So we can “go all the way from the source down to the target” if for
all y ∈ {0, 1}� there exists a z ∈ {0, 1}� such that R(x, y, z). Recall that we assumed
that for y = 1� there always exists some z ∈ {0, 1}� with R(x, y, z).

For the second step we argue that a succinct representation C of G can be com-
puted in time polynomial in n. The circuit C has 4� input gates. Through these gates
two vertices v, v′ ∈ {0, 1}2� are fed into the circuit. In order to decide whether there
is an edge pointing from v to v′ in G, the circuit disassembles v and v′ into their row
parts y and y′ and their column parts z and z′. If the vertices lie on the same row, i.e.,
if y = y′, the circuit normally outputs 1 if z is lexicographically smaller than z′ except
for the edge from column 0� to column 1�, which is turned around. This ensures that
the vertices on each row form a strongly connected subtournament. If y = y′, the
circuit normally outputs 1 if y′ is lexicographically smaller than y, which ensures that
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edges between different rows point “upward.” The exception occurs when z = z′ and
y and y′ are only one row apart. In this case, the circuit outputs 1 if R(x, y, z) and y′

is the lexicographic successor of y. For the check whether R(x, y, z) holds, C contains
a subcircuit that evaluates R. Since R is polynomial-time decidable, this subcircuit
can be obtained in polynomial time. Hence, it takes only polynomial time to write
down the code of a circuit C that performs all of the above computations.

For the final step we invoke an observation of Veith [34], who showed that ev-
ery polynomial-time many-one reduction to a succinctly represented problem can be
turned into a ≤fo-reduction to the same problem by “shifting” most of the computa-
tion done by the polynomial-time reduction machine into the circuit that succinctly
represents a problem instance. However, Veith points out that this result is somewhat
sensitive to the exact definition of succinctness and applies only if the polynomial-time
reduction’s output does not contain any parts that are not succinctly represented—
such as the source and target in our definition or the length of the encoded bitstring
in Borchert and Lozano’s definition [3].

Although we cannot apply Veith’s result directly, we can use the following key
observation, which is implicit in Veith’s paper: Let f be a polynomial-time computable
function that outputs codes of circuits. Then there exists a first-order query f ′ that
also outputs codes of circuits such that for all x the circuits encoded by f(x) and f ′(x)
compute the same function. We can now assemble the desired ≤fo-reduction from L to
succinct-reachtourn as follows: By the observation, there exists a first-order query
that maps the input x to a circuit C ′ that, just like C, is a succinct representation
of G. The source s = 0�0� and the target t = 1�0� can clearly be computed by
first-order queries. Putting it all together, we get the desired reduction.

The tournament constructed in the above proof is a strong tournament (a strongly
connected tournament) if and only if there is a path from s to t. This proves the
following corollary.

Corollary 3.7. succinct-strong-tournament is ΠP
2 -complete.

As mentioned earlier, succinct representations are closely related to leaf classes.
Borchert and Lozano [3] and Veith [34] have shown that succinct-A is complete for
the balanced leaf class BLEAFP(A). The above completeness results can thus be stated
equivalently as BLEAFP(reachα≤k) = ΠP

2 and BLEAFP(strong-tournament) =
ΠP

2 .

4. Complexity of the construction problem. In this section we show that
for graphs with bounded independence number we not only can tell in logarithmic
space whether a path exists between two vertices, but also can construct such a path.
While it seems difficult to construct the shortest path in logarithmic space (by the
results of the next section this is impossible unless L = NL), it is possible to find a
path that is approximately as long as the shortest path. Even better, there exists a
logspace approximation scheme for constructing paths whose lengths are as close to
the length of the shortest path as we would like. This logspace approximation scheme
can be obtained from the following theorem, which relates the space complexity of the
reachability problem to the independence number α and to the desired approximation
ratio r = 1 + 1/m, by fixing the maximum independence number and the ratio.

Theorem 4.1. There exists a deterministic Turing machine M with read-only
access to the input tape and write-only access to the output tape with the following
properties: On input 〈G, s, t,m〉, where G = (V,E) is a graph, s, t ∈ V , m ≥ 1,
n := |V |, and α := α(G),

1. if 〈G, s, t〉 ∈ reach, then M outputs a path from s to t of length at most
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(1 + 1/m) d(s, t) and uses O
(
(α + logm) log n

)
space on the work tape; and

2. if 〈G, s, t〉 /∈ reach, it outputs “no path exists” and uses O(α log n) space on
the work tape.

The theorem’s proof uses three lemmas. The first of these lemmas is a “construc-
tive version” of Savitch’s theorem [25]. Similarly to Theorem 4.1, the lemma relates
the space complexity of the reachability problem to a graph parameter, namely, to
the length of the shortest path.

Lemma 4.2. There exists a deterministic Turing machine MSavitch with read-only
access to the input tape and write-only access to the output tape with the following
properties: On input 〈G, s, t〉, where G = (V,E) is a graph, s, t ∈ V , and n := |V |,

1. if 〈G, s, t〉 ∈ reach, then MSavitch outputs a shortest path from s to t and
uses O

(
log d(s, t) log n

)
space on the work tape; and

2. if 〈G, s, t〉 /∈ reach, it outputs “no path exists” and uses O(log2 n) space on
the work tape.

Proof. We augment Savitch’s algorithm [25] by a construction procedure that
outputs paths. The main difficulty is that if there are several shortest paths, then
the procedure must “decide on one of them” and must do so “within the recursion.”
Since it will be useful later, the construction procedure outputs the list of edges on
the shortest path, not only the vertices themselves.

Let reachable(u, v, �) be Savitch’s procedure for testing whether there is a path
from u to v of length at most �: For � = 1, it checks whether (u, v) ∈ E. For
larger �, it checks whether for some vertex z both the calls reachable(u, z, ��/2�) and
reachable(z, v, �−��/2�) succeed; see Figure 4.1 for pseudocode. As noted by Savitch,
since we can reuse space, we can compute reachable(u, v, �) in space O(log � log n).

We next define a procedure construct-path(u, v, �) that writes the edges of a path
of length � from u to v onto an output tape, provided reachable(u, v, �) holds. For
� = 1, construct-path outputs (u, v). For larger �, it finds the first vertex z for which
both the calls reachable(u, z, ��/2�) and reachable(z, v, � − ��/2�) succeed. For this
vertex z it first calls construct-path(u, z, ��/2�) and then construct-path(z, v, �−��/2�);
see Figure 4.1 once more.

The machine MSavitch iteratively calls reachable(s, t, �) for increasing values of �.
For the first value � for which this test succeeds, it calls construct-path(s, t, �) and
quits. If the tests do not succeed for any � ≤ n, it outputs “no path exists.”

Lemma 4.3. Let G = (V,E) be a graph and let u, v, v′ ∈ V be vertices with
d(u, v) = d(u, v′). Let T be the set of edges on the paths p and p′ output by MSavitch

on the inputs 〈G, u, v〉 and 〈G, u, v′〉, respectively. Then (V, T ) is a tree, i.e., the paths
do not “split and join again.”

Proof. We prove the claim by induction on the distance d = d(u, v) = d(u, v′).
The claim is true for distance 1. For the inductive step, consider the two vertices z
and z′ on the paths p and p′ at distance �d/2� from u. If z = z′, then the paths p
and p′ are identical up to z, and they form a tree after the vertex z by the induction
hypothesis applied to the three vertices z, v, and v′ for the distance d − �d/2� < d.
If z = z′, then the parts of p and p′ leading to z and z′ form a tree by the induction
hypothesis applied to u, z, and z′ for the distance �d/2� < d. Furthermore, z = z′

implies that the rest of the paths are completely disjoint since v is not reachable
from z′ and v′ is not reachable from z (otherwise MSavitch would not have chosen two
different midpoints z and z′).

Lemma 4.4. There exists a logspace-computable function that maps every input
〈G, s, t〉 ∈ reachforest to the shortest path from s to t in G and all other inputs to
“no path exists.”
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Procedure reachable(u, v, �)
Input: Vertices u, v ∈ V , a distance �
Return Value: Does a path exist?
1 if � = 0 then return yes if u = v and no if u �= v
2 else if � = 1 then return yes if (u, v) ∈ E and no if (u, v) /∈ E
3 else

4 for i ← 1 to n do

5 if reachable(u, vi, ��/2�) and reachable(vi, v, �− ��/2�) then

6 return yes

7 return no

Procedure construct-path(u, v, �)
Input: Vertices u, v ∈ V , a distance �
Output: Edges on a path from u to v
Precondition: 1 ≤ d(u, v) ≤ �
1 if � = 1 then output “(u,v)”; exit

2 else

3 for i ← 1 to n do

4 if reachable(u, vi, ��/2�) and reachable(vi, v, �− ��/2�) then

5 call construct-path(u, vi, ��/2�)
6 call construct-path(vi, v, �− ��/2�)
7 exit

Fig. 4.1. Savitch’s algorithm reachable(u, v, �) decides whether d(u, v) ≤ � holds in some graph
G = (V,E) with V = {v1, . . . , vn}. Its “constructive” version construct-path(u, v, �) outputs such a
path, more precisely, the list of edges on this path. Here and in the following we do not explicitly
list the immutable G as an input parameter. Rather, G is treated as a “global constant.”

Proof. The problem reachforest is L-complete as shown in [4]. In order to compute
the shortest path from s to t we iterate the following instructions, starting at v = s:
For each successor v′ of the current vertex v, we check whether t is reachable from v′.
There is exactly one vertex v′ for which this test succeeds. We output this v′ or, if
preferred, the edge (v, v′), make v′ the new current vertex, and repeat the procedure
until we reach t.

Proof of Theorem 4.1. Let an input 〈G, s, t,m〉 be given. Let G = (V,E) and
n := |V |. By Corollary 3.2 we can check in space O(α log n) whether 〈G, s, t〉 ∈ reach

holds and output “no path exists” if this is not the case. Otherwise we proceed as
follows.

Our algorithm is the composition of three functions. Each function takes the input
of the previous function and maps it to an output, using space O

(
(α+logm) log n

)
on

the work tape. More precisely, the first two functions need space O
(
(α+logm) log n

)
,

the last one only O(log n). Although the intermediate outputs are too large “to be
written down” on the work tape of the composed machine, we can use the standard
trick of composing logspace-computable functions: Whenever one of the functions
needs a bit of the output of the previous function, we recalculate this bit “on the fly.”
This allows us to compute the composed function in space O

(
2(α + logm) log n +

log n
)

= O
(
(α + logm) log n

)
.

The first function: Construction of the Ui. The first function takes the original
input 〈G, s, t,m〉 and maps it to a sequence U1, U2, . . . , U� ⊆ V of vertex sets with
U1 = {s} and U� = {t}. For the construction of Ui we access only Ui−1 and use space
O
(
(α+logm) log n

)
. Once we have constructed Ui, we erase Ui−1 from the work tape

and reuse the space it had occupied.
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Procedure compute-next-dominating-set(Ui−1)
Input: Previous set Ui−1

Return Value: Next set Ui

1 foreach U ⊆ V with |U | ≤ α do

2 foreach u ∈ U do

3 if not d(Ui−1, u) = 2m + 2 then

4 continue with next U on line 1

5 foreach v ∈ V do

6 if d(Ui−1, v) = 2m + 2 and not d(U, v) ≤ 2 then

7 continue with next U on line 1

8 return U

Procedure output-all -U
Output: The list (U1, . . . , U�)
Precondition: t is reachable from s
1 i ← 1
2 U ← {s}
3 output “U1 = {s}”
4 while not d(U, t) ≤ 2m + 2 do

5 U ← compute-next-dominating-set(U)
6 i ← i + 1
7 output “Ui = U”
8 � ← i + 1
9 output “U� = {t}”

Fig. 4.2. Pseudocode for the computation of the sets Ui. To store U and Ui−1, we need space
O(α logn). To perform the checks d(Ui−1, u) = 2m + 2 and d(U, t) ≤ 2m + 2, we need extra space
O(logm logn). In total, the procedure outputs all Ui using space O

(
(α + logm) logn

)
.

The set Ui is obtained from Ui−1 as follows: If d(Ui−1, t) ≤ 2m+ 2, let Ui := {t}.
Otherwise let Si := {v ∈ V | d(Ui−1, v) = 2m+ 2} be the set of all vertices that have
distance exactly 2m + 2 from Ui−1. Choose Ui ⊆ Si as a 2-dominating vertex subset
of size at most α of the graph G′ :=

(
Si, E ∩ (Si × Si)

)
induced on the vertices in Si.

Since α(G′) ≤ α, such a 2-dominating set Ui exists by Theorem 2.2. We can obtain
it in space O

(
(α + logm) log n

)
as follows: For each subset U ⊆ V of size at most α

we check whether all u ∈ U are in Si—which can be checked in space O(logm log n)
for each u using the procedure reachable from Lemma 4.2—and then check whether
all elements of Si are 2-dominated by U . A set U passing these checks can be used
as Ui. Pseudocode for the computation of the Ui is given in Figure 4.2.

The sets Ui have the following properties for i ∈ {2, . . . , �− 1}:
1. All elements of Ui are reachable from s.
2. |Ui| ≤ α.
3. d(Ui−1, u) = 2m + 2 for all u ∈ Ui.
4. d(Ui, t) ≤ d(Ui−1, t) − 2m and hence d(Ui, t) ≤ d(s, t) − 2m(i− 1).

To see that the last property holds, note that d(Ui, t) ≤ d(Si, t) + 2 and that
d(Si, t) = d(Ui−1, t) − 2m − 2. For i = �, the first two properties are also true, and
the third becomes d(Ui−1, t) ≤ 2m + 2.

Intuitively, in each iteration we reduce the distance between Ui and t by at
least 2m, and each Ui−1 can be connected to the next Ui by a path of length 2m+ 2;
see also Figure 4.3. It remains to explain how to connect the Ui’s correctly.

The second function: Construction of the tree. In order to output the desired
path from s to t of length at most (1 + 1/m) d(s, t), we first construct a tree T that
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Ui−1 tv1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

Ui ⊆ Si
Si

≤ 2

2m + 2

2m
+ 2

di−1 − (2m + 2)

≤ di−1 − 2m

di−1

Fig. 4.3. Visualization of the idea behind the construction of the set Ui, whose elements are
shown in bold, based on the set Ui−1. The set Si = {v1, . . . , v12} contains all vertices at distance
exactly 2m + 2 from Ui−1. The 2-dominating set Ui for Si typically does not contain the vertex v1

that is on the shortest path from Ui−1 to t. However, it will contain a vertex v2 that is at most two
steps removed from v1. If the distance from Ui−1 to t is di−1, then the distance from v2 to t is at
most di−1 − 2m. Thus, investing 2m + 2 steps to get to v2 gets us 2m steps nearer to the target.

contains this path. The shortest path in the tree will be the desired path. The second
function takes the list of Ui’s computed by the first function as input and outputs the
tree T .

The tree is the union of forests Fi for i ∈ {2, . . . , �}. Each Fi contains for each
u ∈ Ui the vertices and edges of a specific shortest path from Ui−1 to u. This path
is constructed by calling the machine MSavitch from Lemma 4.2 on input 〈G, u′, u〉
for the first vertex u′ ∈ Ui−1 for which d(u′, u) = d(Ui−1, u) holds, i.e., for which
d(u′, u) is minimal. Since d(Ui−1, u) ≤ 2m + 2, this call needs space O(logm log n).
Pseudocode for the construction of the Fi is given in Figure 4.4. An example of a tree
constructed in this way is depicted in Figure 4.5.

We claim that each graph Fi is a forest. First, if the paths to two vertices
u1, u2 ∈ Ui start at two distinct vertices u′

1, u
′
2 ∈ Ui−1, then these paths must be

completely disjoint (otherwise we would have chosen the same starting vertex). Thus,
Fi can be partitioned into independent subgraphs, each containing exactly the paths
originating at one vertex in Ui−1, and all these paths have the same length d(Ui−1, Ui).
By Lemma 4.3 each of the subgraphs is a tree and thus the whole graph Fi is a forest.

Let T be the union of all the forests Fi constructed during the run of the algorithm.
This union is a tree since

1. every vertex in the union is reachable from the source by construction and
2. there cannot be two different paths to the same vertex v in T since they

would induce, inside one of the forests Fi, two different paths to v from different roots
of Fi.

The third function: Constructing the shortest path in the tree. The final function
outputs the shortest path from s to t in T , using the algorithm from Lemma 4.4. This
path passes through all Ui. For i ∈ {1, . . . , �} let ui ∈ Ui be the last vertex of Ui

on this path. The total length of the path is given by
∑�−1

i=1 d(ui, ui+1). We have
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Procedure output-forest(Ui−1, Ui)
Input: Pair (Ui−1, Ui)
Output: List of edges in the forest Fi

1 d ← d(Ui−1, Ui)
2 foreach u ∈ Ui do

3 foreach u′ ∈ Ui−1 do

4 if d(u′, u) = d then

5 call construct-path(u′, u, d)
6 continue with next u on line 2

Procedure output-tree(U1, . . . , U�)
Input: The list (U1, . . . , U�)
Output: List of edges in the tree T
1 for i ← 2 to � do
2 call output-forest(Ui−1, Ui)

Fig. 4.4. Procedures for computing the Fi and the complete tree T . In the inner loop of
output-forest, the vertices of Ui−1 are processed in the same order each time. Each call of the
procedure construct-path will output edges of the forest Fi. Some edges might be output repeatedly,
but this is not a problem for the subsequent computation.

s

S2

U2

S3

U3

S4

U4

S�−1

U�−1 t

2m + 2

︸ ︷︷ ︸
F2

2m + 2

︸ ︷︷ ︸
F3

2m + 2

︸ ︷︷ ︸
F4

≤ 2m + 2

︸ ︷︷ ︸
F�

. . .

. . .

. . .

Fig. 4.5. Example for the construction of the tree T , shown in bold, for m = 1. It is the union
of the forests Fi, which connect the vertices from Ui to Ui−1. For example, the forest F2 consists
of the two paths leading from U1 = {s} to the two vertices of U2. The forest F3 consists of the two
paths from the top vertex of U2 to the vertices in U3. The approximation algorithm outputs the path
from s to t inside the tree T . This path is not the shortest path, which follows the bottommost edges,
but it is not much longer.

d(ui, ui+1) = 2m + 2 for i ∈ {1, . . . , �− 2}. Thus the total length is

(2m + 2)(�− 2) + d(u�−1, t) = (2m + 2)(�− 2) + d(U�−1, t)

≤ (2m + 2)(�− 2) + d(s, t) − 2m(�− 2)

= d(s, t) + 2(�− 2)

≤ d(s, t) + d(s, t)/m.
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For the two inequalities, both times we used the last property of U�−1, by which
d(U�−1, t) ≤ d(s, t) − 2m(�− 2) and hence also 2(�− 2) ≤ d(s, t)/m.

The space bound from Theorem 4.1 is optimal in the following sense: Suppose
we could construct a machine M ′ that uses space O(log1−ε m log n) for some α and
achieves the same as M for that particular α. This would imply distancetourn ∈
DSPACE[log2−ε n], because M ′ outputs the shortest path for m = n + 1, and for
tournaments we have α = 1. The results of the next section show that this would
imply NL ⊆ DSPACE[log2−ε n].

5. Complexity of the distance problem. In this section we study the com-
plexity of the distance problem for graphs with bounded independence number. This
problem asks us to decide whether the distance of two vertices in a graph is smaller
than a given input number. We show that this problem is NL-complete even for
tournaments and that the succinct version is PSPACE-complete.

The distance problem is closely linked to the problem of constructing a shortest
path in a graph: As argued in the introduction, we can construct a shortest path
in a graph if we have oracle access to the distance problem for this graph. The
other way round, we can easily solve the distance problem if we have oracle access to
an algorithm that constructs shortest paths. Because of this close relationship, the
completeness result dashes any hope of finding a logspace algorithm for constructing
shortest paths in tournaments unless L = NL.

Theorem 5.1. The problem distancetourn is NL-complete.
Proof. We show reach ≤fo distancetourn. Let an input 〈G, s, t〉 be given. Our

first-order reduction maps this to an instance 〈G′, s′, t′, d〉 for distancetourn. Let
G = (V,E) and n := |V |. The tournament G′ = (V ′, E′) is constructed as follows:
The vertex set V ′ is {1, . . . , n}×V . We can think of this vertex set as a grid consisting
of n rows and n columns. There is an edge in G′ from a vertex (r1, v1) to a vertex
(r2, v2) if and only if one of the following conditions holds (see also Figure 5.1):

1. r2 = r1 + 1 and (v1, v2) ∈ E or v1 = v2; i.e., if v1 and v2 are connected in G
or if they are the same, then there is an edge leading “downward” between them on
adjacent rows.

2. r2 = r1 and v1 < v2; i.e., the vertices on the same row are ordered by the
linear ordering to which the first-order reduction has access.

3. r2 = r1 − 1, (v1, v2) /∈ E, and v1 = v2; i.e., if v1 and v2 are not connected
in G and if they are different, then there is an edge leading “upward” between them
on adjacent rows.

4. r2 ≤ r1 − 2, i.e., all edges spanning at least two rows point “upward.”
Clearly, the above conditions for the edge relation E′ can be expressed by a

first-order formula φE′(r1, v1, r2, v2). The new source s′ := (1, s), the new target
t′ := (n, t), and the distance d := n− 1 are also first-order definable.

To see that this reduction works, first assume that there exists a path from s to t
in G of length m ≤ n− 1. Let (s, v2, . . . , vm, t) be this path. Then

(
(1, s), (2, v2), . . . ,

(m, vm), (m + 1, t), . . . , (n, t)
)

is a path in G′ of length n − 1. Second, assume that
there exists a path from s′ to t′ in G′ of length m ≤ n − 1. Then m = n − 1 since
any path from the first row to the last row must “brave all rows”—there are no edges
that allow us to skip a row. Let (v′1, . . . , v

′
n) be this path. Then v′i = (i, vi) for some

vertices vi ∈ V . The sequence (v1, . . . , vn) is “almost” a path from s to t in G: For
each i ∈ {1, . . . , n− 1} we have either vi = vi+1 or (vi, vi+1) ∈ E. Thus, by removing
consecutive duplicates and loops, we obtain a path from s to t in G.

By the above theorem, distance and distancetourn are ≤fo-equivalent, while
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Graph G

s = v1 v2 v3 v4 = t

Tournament G′

s′ = (1, v1) (1, v2) (1, v3) (1, v4)

(2, v1) (2, v2) (2, v3) (2, v4)

(3, v1) (3, v2) (3, v3) (3, v4)

(4, v1) (4, v2) (4, v3) (4, v4) = t′

Fig. 5.1. Example of the construction from Theorem 5.1. Arrows have been omitted on the
right-hand side for clarity; all missing arrows point upward. The first-order reduction maps an input
(G, s, t), shown on the left-hand side, to the tournament on the right-hand side. There is a path
from s to t in G if and only if there is a path from s′ to t′ in G′ of length n− 1 = 3. Examples of
such paths are shown in bold.

reach and reachtourn are not. The “complexity jump” that occurs from reachtourn

to distancetourn is reflected by a similar jump for the succinct versions.
Theorem 5.2. succinct-distancetourn is PSPACE-complete.
Proof. Since distancetourn ∈ NL, we have

succinct-distancetourn ∈ NPSPACE = PSPACE.

For the hardness, let A ∈ PSPACE be an arbitrary language and let M be a poly-
nomial-space machine that accepts A. We show A ≤fo succinct-distancetourn. For
an input x, let G denote the configuration graph of M on input x, let s be the
initial configuration, let t be the (unique) accepting configuration, and let n be the
(exponential) size of G’s vertex set. Let (G′, s′, t′, n− 1) be the instance constructed
in Theorem 5.1. Then x ∈ A if and only if 〈G′, s′, t′, n− 1〉 ∈ distancetourn.

To finish the proof, we argue similarly as in the proof of Theorem 3.6: A succinct
representation C of G′ can be constructed in polynomial time. Invoking Veith’s
observation yields that a circuit C ′ computing the same function as C can even be
obtained by a first-order query. Next, the source s′, the target t′, and the distance
d = n− 1 can also be obtained from x via first-order queries. Putting them together
yields the desired first-order reduction from A to succinct-distancetourn.

6. Conclusion. How difficult is it to find paths in graphs with bounded inde-
pendence number? Our results answer the question in three different ways, depending
on exactly what is meant by this question. Checking only whether a path exists in a
given graph can be done using AC0-circuits. Constructing a path between two vertices
can be done in logarithmic space. Constructing the shortest path in logarithmic space
was shown to be impossible, unless L = NL.

These results settle the approximability of the (logspace) optimization problem
“shortest paths in graphs with bounded independence number.” We have shown that
this minimization problem cannot be solved exactly in logarithmic space (unless L =
NL), but it can be approximated well: There exists a logspace approximation scheme
for it. We pointed out that the space dependency O

(
(α+logm) log n

)
of our algorithm

on the desired approximation ratio 1+1/m is essentially optimal—any approximation
scheme that does substantially better could be used to show the unlikely inclusion
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NL ⊆ DSPACE[log2−ε n]. It seems appropriate to call our scheme a “fully logspace
approximation scheme” in analogy to “fully polynomial-time approximation schemes.”

The shortest path problem for tournaments is not the only logspace optimiza-
tion problem with surprising properties: The distance problem for undirected graphs
is also NL-complete, while the reachability problem is SL-complete. The proof of
the NL-completeness follows the same pattern as our completeness proof for tourna-
ments, except that “upward” edges are omitted and “downward” edges are turned
into undirected edges; detailed proofs are given in the technical reports of Toda [30]
and Tantau [28]. On the other hand, the distance problem for directed graphs is
just as hard as the reachability problem for directed graphs. This shows that, just
as in the polynomial-time setting, logspace optimization problems can have different
approximation properties, although their underlying decision problems have the same
complexity.

The complexity of problems where some parameter—like the graph parameter
“independence number”—is fixed is studied extensively in the theory of fixed param-
eter tractability. Our results can be interpreted as fixed parameter results, although
they obviously do not fit directly into the classical framework of polynomial-time fixed
parameter tractability.

We would like to recommend the following problems for further research:
1. We do not know whether the quantifier complexity k + 3 in the first-order

formula for reachα≤k is necessary but conjecture that this is the case. We were able
to prove this conjecture for tournaments using an Ehrenfeucht–Fräıssé game played
on two appropriate tournaments with 64 vertices. Ehrenfeucht–Fräıssé games [5, 8]
seem particularly well-suited for proving matching lower bounds here, since we do not
refer to an ordering relation in our first-order formula.

2. In the succinct setting we proved that the problem succinct-reachα≤k

is ΠP
2 -complete for all k. In contrast to this, for q > 1 our arguments show only

succinct-reachαq≤k ∈ ΠP
3 , where αq is the q-independence number defined at the

end of section 3.1. In particular, we would like to know the exact complexity of
succinct-reachα2≤1, i.e., the exact complexity of the reachability problem for suc-
cinctly represented graphs that become tournaments when squared.
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SEPARATING THE POWER OF MONOTONE SPAN PROGRAMS
OVER DIFFERENT FIELDS∗
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Abstract. Monotone span programs represent a linear-algebraic model of computation. They
are equivalent to linear secret sharing schemes and have various applications in cryptography and
complexity. A fundamental question regarding them is how the choice of the field in which the
algebraic operations are performed affects the power of the span program. In this paper we prove
that the power of monotone span programs over finite fields of different characteristics is incompa-
rable; we show a superpolynomial separation between any two fields with different characteristics,
solving an open problem of Pudlák and Sgall [Algebraic models of computation and interpolation
for algebraic proof systems, in Proof Complexity and Feasible Arithmetic, DIMACS Ser. Discrete
Math. Theoret. Comput. Sci. 39, P. W. Beame and S. Buss, eds., AMS, Providence, RI, 1998, pp.
279–296]. Using this result we prove a superpolynomial lower bound for monotone span programs
for a function in uniform-NC2 (and therefore in P), solving an open problem of Babai, Gál, and
Wigderson [Combinatorica, 19 (1999), pp. 301–319]. (All previous superpolynomial lower bounds for
monotone span programs were for functions not known to be in P.) Finally, we show that quasi-linear
secret sharing schemes, a generalization of linear secret sharing schemes introduced in Beimel and
Ishai [On the power of nonlinear secret-sharing, in Proceedings of the 16th Annual IEEE Conference
on Computational Complexity, 2001, pp. 188–202], are stronger than linear secret sharing schemes.
In particular, this proves, without any assumptions, that nonlinear secret sharing schemes are more
efficient than linear secret sharing schemes.

Key words. monotone span programs, algebraic models of computation, lower bounds, secret
sharing
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1. Introduction. The relation between computational complexity and linear
algebra is an important research direction with two main avenues. On one hand,
algebraic techniques were used to prove lower bounds in combinatorics [1, 15, 18] and
complexity; see, e.g., [21, 25, 28]. On the other hand, algebraic computational models,
which capture the essence of linear algebra, were defined. Such models include, for
example, arithmetic circuits, Boolean circuits with MODp gates, and the Blum–Shub–
Smale model of computation [9].

In this paper we discuss the algebraic computational model of span programs,
introduced by Karchmer and Wigderson [19]. Intuitively, span programs capture
the power of basic linear algebraic operations—the rank and dependency of a set of
vectors. More specifically, a monotone span program is presented as a matrix over
some field, with rows labeled by variables. The span program accepts an input if the
rows whose variables are satisfied by the input span a fixed nonzero vector. The size
of a span program is its number of rows. A detailed definition is given in section 2.

This paper deals with the role of the field in algebraic models of computation. Part
of the specification of algebraic models of computation, in particular span programs,
is the field in which the arithmetic operations are performed. A fundamental question
is how the choice of the field, and especially its characteristic, affects the power of
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the model. As different fields may differ substantially in their structures, especially
when the characteristics of the fields are different, it would be natural to expect
computational models defined over different fields to differ significantly in their power.
A major result separating the power of algebraic models of computation over fields was
the seminal paper by Smolensky for bounded depth circuits with MODp gates [28].
Lower bounds related to the characteristic of the field are also known for polynomial
calculus proofs [6]. However, the power of the field in algebraic models of computation
is yet to be fully understood.

Our results. The main contribution of this paper is showing that the power
of monotone span programs over finite fields of different characteristic is incompara-
ble. Prior to this work, the best separation known for monotone span programs was a
logarithmic separation for the threshold function [19].1 In this paper we show a super-
polynomial separation between any two fields with different characteristics, solving an
open problem of [24]. That is, for every fixed prime number p, we describe a function,
which has a small monotone span program over the field with p elements, but requires
a monotone span program of size nΩ(

√
logn) over any field whose characteristic is not

p (including fields with characteristic 0).
Our second contribution concerns the functions for which lower bounds for mono-

tone span programs have been proved. The best known lower bound for monotone
span programs, proved by Gál [13], is nΩ(log n) (improving previous results of [3, 2]).
However, all the known superpolynomial lower bounds [2, 13, 14] were for functions

in NP, not known to be in P. We show a lower bound of nΩ(
√

logn) for a function in
uniform-NC2 (and therefore in P), thus solving an open problem of [2].2

Our third contribution concerns secret sharing schemes, which are an important
tool in cryptography, introduced by Blakley [8], Shamir [26], and Ito, Saito, and
Nishizeki [16, 17]. A secret sharing scheme enables a dealer to share a secret among
a set of parties, such that only some predefined authorized subsets will be able to
reconstruct the secret from their shares. The authorized sets correspond to a mono-
tone Boolean function f : {0, 1}n → {0, 1}, where n is the number of parties and
the authorized subsets are the subsets with their characteristic vectors in f−1(1).
The efficiency of a secret sharing scheme is the overall size of the shares given to
the parties. Monotone span programs are equivalent to a subclass of secret sharing
schemes called linear secret sharing schemes. Monotone span programs were also used
in other cryptographic applications; see, e.g., [23, 11]. Beimel and Ishai [4] showed
functions that, under plausible assumptions, have no efficient linear secret sharing
scheme but yet have an efficient nonlinear secret sharing scheme. Furthermore, they
introduced the class of quasi-linear secret sharing schemes. In this paper we show that
quasi-linear secret sharing schemes are stronger than linear schemes. In particular,
this proves, without any assumptions, that nonlinear schemes are more efficient than
linear schemes.

Highlights of the techniques. Proving a separation between the power of
two models of computation requires a function with both a lower bound for one
model and an upper bound for the other. To get the lower bound for monotone span
programs over a certain field, we use the method of [13], which is based on [25]. In
the center of Gál’s method is a matrix whose rank over the field is much larger than

1It was known that span programs over finite fields with the same characteristics basically have
the same power.

2We note that every function which has a polynomial size monotone NC1 circuit has a polynomial
size monotone span program, and every function which has a polynomial size span program over a
small field has a polynomial size NC2 circuit.
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its combinatorial cover number. To get the upper bound for the same function for
monotone span programs over another field, we require the cover to have an additional
property, which is related to the characteristic of the field. As an example, for GF(2)
we require that each entry of the matrix be covered by an odd number of rectangles.
Our use of combinatorial covers and their properties is borrowed from communication
complexity (see [20] for background on communication complexity). In particular,
we use ideas similar to [12], which considered the model of counting communication
complexity.

The main technical contribution of this paper is constructing such a matrix and
proving that it satisfies the desired properties. In particular, the matrix we construct
checks whether two linear subspaces over GF(p) have a nontrivial intersection. Not
surprisingly, the matrix reflects linear-algebraic computations over GF(p), which are
difficult to simulate over fields with characteristics different than p.

Organization. In section 2 we supply some preliminaries. In section 3 we give
a general method for proving a separation between the power of monotone span pro-
grams over fields with different characteristics. In section 4 we apply this general
method to achieve a separation of nΩ(

√
logn) for an explicit function. Finally, in sec-

tion 5, we use this separation to exhibit a monotone function in uniform-NC2 that
has no polynomial size monotone span program, and to prove that there exist secret
sharing schemes stronger than the linear secret sharing schemes.

2. Preliminaries. We start with the definition of our main computational model,
span programs.

Definition 2.1 (span program [19]). A span program over a field F is a triplet

M̂ = 〈M,ρ,�v〉, where M is a matrix over F , �v is a nonzero row vector called the
target vector (it has the same number of coordinates as the number of columns in M),
and ρ is a labeling of the rows of M by literals from {x1, . . . , xn, x1, . . . , xn} (every
row is labeled by one literal, and the same literal can label many rows).

A span program accepts or rejects an input by the following criterion. For every
input u ∈ {0, 1}n define the submatrix Mu of M consisting of those rows whose labels

are satisfied by the assignment u. The span program M̂ accepts u if and only if
�v ∈ span(Mu), i.e., some linear combination of the rows of Mu gives the target vector
�v. A span program computes a Boolean function f if it accepts exactly those inputs
u, where f(u) = 1. The size of M̂ is the number of rows in M .3

A span program is called monotone if the labels of the rows are only positive literals
{x1, . . . , xn}. Monotone span programs compute only monotone functions, and every
monotone Boolean function can be computed by a monotone span program. The size of
the smallest monotone span program over F that computes f is denoted by mSPF (f).

Example 2.2. Consider the following monotone span program over GF(2):

x2 1 1 0 0 0
x2 0 1 1 1 0
x1 0 1 1 1 0
x3 0 1 0 1 1
x4 0 0 1 0 1

3The choice of the fixed nonzero vector �v does not affect the size of the span program. It is
always possible to replace �v with another nonzero vector �v′ via a change of basis without changing
the function computed and the size of the span program. Most often �v is chosen to be the �1 vector
(with all entries equal 1).
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In this example, the target vector is �v = 〈1, 0, 0, 1, 1〉. There are 4 different variables
labeling the rows of the matrix and the inputs are of size 4. Consider the input
〈0, 1, 0, 1〉. Since x2 and x4 are satisfied by the input, we consider the submatrix
consisting of rows labeled by these variables:

x2 1 1 0 0 0
x2 0 1 1 1 0
x4 0 0 1 0 1

The question is whether the rows of this submatrix span the target vector 〈1, 0, 0, 1, 1〉.
Since 〈1, 0, 0, 1, 1〉 is the sum, over GF(2), of the rows of the submatrix, the input is
accepted by the program.

Now consider the input 〈1, 1, 0, 0〉. Again, we focus on the submatrix of rows
labeled by x1 and x2, the variables satisfied by the input assignment:

x2 1 1 0 0 0
x2 0 1 1 1 0
x1 0 1 1 1 0

Looking at the rightmost coordinate, we see that all the submatrix entries in this
column are 0, while in the target vector 〈1, 0, 0, 1, 1〉 the rightmost entry is 1. Hence,
no linear combination of the rows of the submatrix gives the target vector. Therefore,
the input is rejected by the program.

Combinatorial rectangles and covers. Combinatorial rectangles and covers
are useful tools in communication complexity and are used in this work in a similar
way. Let X and Y be arbitrary finite sets. A combinatorial rectangle is a set X0×Y0,
where X0 ⊆ X and Y0 ⊆ Y . A cover of X×Y is a set R of rectangles such that every
pair 〈x, y〉 ∈ X × Y belongs to at least one rectangle in R.

Let M be a Boolean |X|× |Y | matrix such that the rows of M are indexed by the
elements of X, and the columns of M are indexed by the elements of Y . We say that
a rectangle R0 = X0 × Y0, where X0 ⊆ X and Y0 ⊆ Y , is a monochromatic rectangle
if there exists a b ∈ {0, 1} such that for every x ∈ X0 and y ∈ Y0 it holds that
M [x, y] = b. If b = 1, we call R0 a 1-rectangle, and if b = 0, we call R0 a 0-rectangle.
We say that a cover R is a monochromatic cover of M if every rectangle R ∈ R is a
monochromatic rectangle. If R is a set of 1-rectangles that covers all the 1-entries of
M , then R is called a 1-cover of M . If R is a set of 0-rectangles that cover all the
0-entries of M , we call R a 0-cover of M .

Linear subspaces. We use basic linear algebra to find a function that is easy
for span programs over one field and hard for span programs over another field. For
a prime number p, we denote by GF(p) the unique finite field with p elements.

Let k be a positive integer, and let p be a prime. Denote by V 2k
k (p) the set of

all k-dimensional subspaces of GF(p)2k, and denote by v2k
k (p) the number of such

subspaces, that is, v2k
k (p) =

∣∣V 2k
k (p)

∣∣. To prove our result, we count the number of
subspaces satisfying a certain property. Toward this aim, we will use the following
easy algebraic claim. We say that two linear spaces U and W are different if there
exists a vector �v such that �v ∈ U and �v /∈ W or vice versa.

Claim 2.3. Let k be a positive integer, F be a field, and M be a matrix with
k rows such that rankF (M) = k. Let T1, T2 be matrices with k rows each, where
T1 �= T2. Define M1 (respectively, M2) to be the matrix resulting from concatenating
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the matrix T1 (respectively, T2) to M , that is, Mi = (M |Ti) for i ∈ {1, 2}. Then, the
linear spaces spanned by the rows of M1 and M2 are different.

Proof. Since T1 �= T2, there exists an index j ∈ {1, . . . , k}, such that the rows
T1[j] and T2[j] are different. Let �r = M1[j]; that is, �r is the jth row of M1. We show
that �r is not spanned by the rows of M2. Assume there exists a combination of the
rows of M2 that spans �r. That is, �r =

∑k
i=1 αiM2[i] for some α1, . . . , αk ∈ F . Let

m be the number of columns in M , and consider the restriction of the above sum to
the first m coordinates. It holds that M [j] =

∑k
i=1 αiM [i]. Since M has k rows and

rankF (M) = k, we get that αj = 1 and αi = 0 for every i �= j. Thus, �r = M2[j]; that
is, M1[j] = M2[j], contradicting the fact that T1[j] �= T2[j].

One application of Claim 2.3 is the following known corollary, which gives a lower
bound on v2k

k (p).4

Corollary 2.4. Let k be a positive integer, and let p be a prime. Then v2k
k (p) ≥

pk
2

.

Proof. Let Ik be the k×k unit matrix, T be an arbitrary k×k matrix over GF(p),

and M1 be the k×2k matrix that is a concatenation of Ik and T . There are pk
2

different
choices of T , and therefore pk

2

different ways to construct M1. By Claim 2.3, each
such M1 represents a different element of V 2k

k (p), and thus v2k
k (p) ≥ pk

2

.

It is easy to see that v2k
k (p) < p2k2

, since this is the number of ways to choose

any k vectors from GF(p)2k, and thus, we have pk
2 ≤ v2k

k (p) < p2k2

.5

We will denote by �ej the jth unit vector, that is, the vector that is 1 in the jth
coordinate and 0 in all the others. We say that a nonzero vector has a leading 1 if the
first nonzero coordinate in the vector is 1. Let p be a prime, � be a positive integer,
and U be a subspace of dimension � over GF(p). Then, the number of vectors with

a leading 1 in U is p�−1
p−1 . We will denote by char(F ) the characteristic of the field F .

Finally, we denote by [n] the set {1, . . . , n}.

3. The general method for separation. We want to construct a function
that is hard for monotone span programs over fields with characteristic different than
p and easy for monotone span programs over GF(p), where p is a prime. We use the
method of [13] to get the lower bound for monotone span programs over fields with
characteristic different than p. In the center of this method is a matrix with a large
gap between its rank and the size of its monochromatic cover. To get a small upper
bound for monotone span programs over GF(p), we shall require the cover to have an
additional property, which we call 1-mod-p; that is, for every entry of the matrix, the
number of rectangles covering it is equivalent to 1 modulo p. Generally speaking, the
number of variables in f , the function for which we prove the separation, is equal to
the number of rectangles in a cover. A detailed description is given below.

3.1. The lower bound. Let M be a matrix and R be a monochromatic cover of
M . Recall that R is a set of rectangles. Denote n = |R|, and R = {R1, . . . , Rn}, where
Ri = Xi × Yi. A vector in {0, 1}n can be viewed as a characteristic vector of a subset
of R. Throughout the paper, we identify each such vector with its corresponding
subset. We define two subsets of {0, 1}n, Acc and Rej. These are exactly the same
sets defined by Razborov in [25], proving that a monotone function can be associated

4Corollary 2.4 can be proved by directly counting the elements of V 2k
k . However, since we need

Claim 2.3 for other purposes, we use it to prove Corollary 2.4 as well.
5Actually, v2k

k (p) = O(pk
2
).
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with any cover. We will focus on functions that accept every x ∈ Acc and reject every
y ∈ Rej.

We first define a set Acc. For every row x of M we define a vector �zx ∈ {0, 1}n.
The ith coordinate in �zx indicates if the rectangle Ri covers the row x of M . That is,
�zx[i] = 1 if x ∈ Xi, and �zx[i] = 0 otherwise. The set Acc contains the vectors �zx for
every row x of the matrix M . That is, Acc = {�zx : x ∈ X}. An example for Acc is
described in Figure 3.1. For example, the set in Acc corresponding to x in the figure
is {R4, R5, R6}, the rectangles that cover the row x, and �zx = 〈0, 0, 0, 1, 1, 1〉.

We now define a set Rej. For every column y of M we define a vector �wy ∈
{0, 1}n. The ith coordinate of �wy indicates if the rectangle Ri does not cover the
column y of the matrix M . That is, �wy[i] = 1 if y /∈ Yi, and �wy[i] = 0 otherwise.
The set Rej contains the vectors �wy for every column y of the matrix M . That
is, Rej = {�wy : y ∈ Y }. For example, the set in Rej corresponding to y described
in Figure 3.1 is {R1, R2, R4}, the rectangles that do not cover the column y, and
�wy = 〈1, 1, 0, 1, 0, 0〉.

x

R1

R3

R2

R4

R5

R6

y

Fig. 3.1. An illustration of elements in the sets Acc and Rej. Note that the rectangles in the
figure do not form a cover.

The lower bound on the size of monotone span programs is achieved using the
following theorem, which is a (slightly different) restatement of Theorem 4.1 of [13].

Theorem 3.1 (see [13]). Let M be a Boolean matrix, R be a monochromatic
cover of M of size n, and Acc and Rej be as defined above. If f : {0, 1}n → {0, 1} is
a monotone function such that f(x) = 1 for every x ∈ Acc, and f(y) = 0 for every
y ∈ Rej, then mSPF (f) ≥ rankF (M) for every field F .

That is, we get the lower bound for every function f accepting Acc and rejecting
Rej. Note that there are no requirements concerning inputs t /∈ (Acc ∪ Rej) (except
for monotonicity). One can observe that such a function exists.

3.2. The upper bound. To prove a gap between the power of monotone span
programs over the different fields, we need a function that has a small monotone span
program over GF(p). Toward this aim, we require the cover R to be a monochromatic
1-mod-p cover according to the following definition.

Definition 3.2. Let M be a Boolean matrix. A set R of combinatorial rectangles
is called a monochromatic 1-mod-p cover of M if R is a monochromatic cover of M ,
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and, for each entry of M , the number of rectangles covering it is equivalent to 1
modulo p.

Given a small monochromatic 1-mod-p cover of M , we construct a monotone
span program over GF(p) that accepts Acc and rejects Rej. The gap will hold for the
function computed by this span program.

Consider the following monotone span program P̂ over GF(p). The program P̂
associates a row with each rectangle of R, and a column with each column of the
matrix M . Therefore, the rectangle Rj ∈ R is represented by the variable xj . The
row associated with the rectangle Ri = Xi × Yi is 1 in the column labeled y if y ∈ Yi,
that is, if the rectangle Ri covers the column y in M . Otherwise, this entry in P̂ is 0.
Note that size(P̂ ) = n; that is, there is exactly one row for each variable.

The following lemma is a simple special case of the upper bound part of Theorem
3.4 in [13]. In fact, the program P̂ considered here is exactly the program that one
obtains by applying the construction from the proof of the upper bound in [13] to this
simple special case.

Lemma 3.3. The program P̂ accepts every �zx ∈ Acc and rejects every �wy ∈ Rej.

Proof. We first prove that P̂ accepts every �zx ∈ Acc. Specifically, we will show
that since R is a 1-mod-p cover, the sum of the rows labeled by the rectangles of
�zx is the vector �1, and thus �zx, is accepted by P̂ . That is, we show that for every
column of P̂ , the rows labeled by variables satisfied by �zx sum to 1 in this column.
Toward this goal, fix a column y. Since �zx ∈ Acc, it is the characteristic vector of
the set of rectangles covering the row x of M . According to the definition of P̂ , for
every rectangle Rj such that �zx[j] = 1, the entry 〈Rj , y〉 of P̂ is 1 if and only if Rj

covers the column y, that is, y ∈ Yj . On the other hand, �zx[j] = 1 if and only if Rj

covers the row x. Thus, the sum over the rows of P̂ associated with �zx in the column
y is exactly the number of rectangles covering both y and x, that is, the number of
rectangles covering the entry 〈x, y〉 in M . Since R is a 1-mod-p cover, this number is
1 modulo p. To conclude, the sum of the rows labeled by variables that are satisfied
by �zx is the vector �1, and �zx is accepted by P̂ .

Let �wy ∈ Rej. We show that there is no linear combination of the rows labeled by

the rectangles of y that give the vector �1. Since �wy ∈ Rej, it is the characteristic vector
of the subset of rectangles from R that do not cover the column y of M . Hence, all the
rows of P̂ corresponding to variables satisfied by �wy are 0 in the column associated
with y. Therefore, every combination of the rows labeled by variables satisfied by �wy

is 0 in this column. Thus, the vector �1 is not a linear combination of these rows, and
�wy is rejected by P̂ .

Combining Theorem 3.1 and Lemma 3.3, we get the separation theorem.

Theorem 3.4 (separation theorem). Let M be a Boolean matrix and R be a
monochromatic 1-mod-p cover of M of size n. Then there exists a monotone function
f , with n variables, such that mSPGF(p)(f) = n and mSPF (f) ≥ rankF (M) for every

field F .

Proof. Denote by fP̂ the function computed by P̂ . By Lemma 3.3, fP̂ accepts
Acc and rejects Rej, and thus by Theorem 3.1 mSPF (fP̂ ) ≥ rankF (M). On the other

hand, size(P̂ ) = n, and thus mSPGF(p)(f) = n. The function fP̂ is monotone, as it

is computed by a monotone span program.

4. The linear subspaces zero intersection function. In this section we show
an explicit matrix, with a high rank over fields with characteristic different than p,
and a small monochromatic 1-mod-p cover. Thus, by Theorem 3.4 we get a function
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f with a superpolynomial gap between mSPGF(p)(f) and mSPF (f), where F is any

field such that char(F ) �= p. We define the desired matrix in two steps: in the first
step we define the matrix MZI and prove it has full rank over fields with char(F ) �= p.
In the second step we use MZI to define another matrix, MLZI, which has both a high
rank over fields with char �= p, and a small monochromatic 1-mod-p cover.

Let k be a positive integer and p be a prime.6 The zero intersection (ZI) function
determines whether the intersection of two k-dimensional linear subspaces of GF(p)2k

is the subspace {�0}. More formally, define ZIpk : V 2k
k (p) × V 2k

k (p) → {0, 1} as follows:
ZIpk(U,W ) = 1, where U and W are subspaces in V 2k

k (p), if and only if dim(U∩W ) = 0.
Recall that the intersection of any two linear subspaces is a linear subspace.

We represent ZIpk by a v2k
k (p) × v2k

k (p) matrix denoted MZIpk
. Each row and each

column of MZIpk
is labeled by a subspace U ∈ V 2k

k (p), and each entry MZIpk
[U,W ]

is equal to ZIpk(U,W ). Denote by rU the row in MZIpk
associated with the subspace

U ∈ V 2k
k (p). We will use ZI instead of ZIpk, and MZI instead of MZIpk

, when k and p
are clear from the context.

4.1. Analyzing the rank of MZI. The next theorem shows that MZI has full
rank over any field with char �= p.

Theorem 4.1. Let k be a positive integer, p be a prime, and F be a field such
that char(F ) �= p. Then, MZIpk

has full rank over F .
Proof. To prove that the matrix has full rank, it is sufficient to show that any unit

vector is spanned by the rows of the matrix. Recall that the columns of the matrix are
labeled by subspaces from V 2k

k (p). For every U ∈ V 2k
k (p) we consider the unit vector

�eU ∈ GF(p)v
2k
k (p) and show that it is spanned by the rows of MZI. Specifically, we

show a combination of the rows of the matrix spanning �eU having a special structure:
The coefficient of �rZ , the row labeled Z ∈ V 2k

k (p), depends only on the dimension of
the subspace U ∩Z. More precisely, we show there are constants α0, . . . , αk ∈ F , such
that

�eU =

k∑
d=0

αd

∑
Z∈V 2k

k
(p)

dim(Z∩U)=d

�rZ .(4.1)

Fix W ∈ V 2k
k (p) and consider �cW , the column of MZI associated with W . We have to

show that with the appropriate constants α0, . . . , αk ∈ F , the above expression is 0
in this column if W �= U and is 1 if W = U . When computing the sum in the column
�cW , we add αd for every subspace Z such that ZI(Z,W ) = 1 (i.e., dim(Z ∩W ) = 0)
and dim(Z ∩ U) = d. This motivates the following definition.

Definition 4.2. Let U,W ∈ V 2k
k (p) be subspaces, and let � be an integer such

that dim(U ∩W ) = �. Define Hp
k (�, d) to be the number of subspaces Z ∈ V 2k

k (p) such
that dim(U ∩ Z) = d and dim(W ∩ Z) = 0.

From symmetry arguments, the number Hp
k (�, d) is independent of the choice of

U and W . We will write Hk(�, d) instead of Hp
k (�, d) when p is clear from the context.

To summarize, we need to show that there are constants α0, . . . , αk ∈ F such that
the following hold:

1. For each 0 ≤ � ≤ k − 1, it holds that
∑k

d=0 αd · Hk(�, d) = 0. That is, the
sum over any column labeled with W �= U equals 0, where for a subspace W ∈ V 2k

k (p)
such that dim(U ∩W ) = �, the relevant equation is the �th equation.

6Throughout this section the reader should think of k as small. That is, we construct a function
with n variables and k ≈

√
logn.
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2.
∑k

d=0 αd ·Hk(k, d) = 1. That is, the sum over the column associated with U
is 1.

Putting things differently, we view the numbers Hk(�, d) for �, d ∈ {0, . . . , k} as a
(k+ 1)× (k+ 1) matrix over F .7 According to the above conditions we have to prove
there are α0, . . . , αk ∈ F such that Hk〈α0, α1, . . . , αk〉T = 〈0, . . . , 0, 1〉T . We show
that Hk is invertible over F , and thus we can find α0, . . . , αk using H−1

k as follows:
〈α0, α1, . . . , αk〉T = H−1

k 〈0, . . . , 0, 1〉T .
In the next two claims, we show that Hk is upper-left triangular, where the

numbers on the secondary diagonal are nonzero in F , and thus Hk has full rank
over F . The structure of Hk is illustrated in Figure 4.1. In Claim 4.3 we show that
the numbers below the secondary diagonal are all 0. In Claim 4.4 we show that
the numbers on the secondary diagonal are all powers of p, which are nonzero since
char(F ) �= p. The numbers above the secondary diagonal may take any value from F .

k + 1

k + 1

...
?

0
p�(k+d)

p�(k+d)

p�(k+d)

p�(k+d)

Fig. 4.1. The structure of the matrix Hk.

Claim 4.3. Let k be a positive integer, � and d be nonnegative integers, p be a
prime, and Hk be as above. If � + d > k, then Hp

k (�, d) = 0.
Proof. Let U,W ∈ V 2k

k (p), where dim(U ∩W ) = �. We have to show that since
�+d > k, there is no subspace Z ∈ V 2k

k (p) such that dim(Z∩U) = d and dim(Z∩W ) =
0. Assume toward contradiction that there exists such Z. Let BU∩W = 〈�w1, . . . , �w�〉
be a basis of the subspace U ∩ W . Let BU∩Z = 〈�z1, . . . , �zd〉 be a basis for U ∩ Z.
Consider the set of vectors X = BU∩W ∪ BU∩Z . First note that X ⊆ U ; that is, all
the vectors in X are in the subspace U . Since dim(U) = k and |X| = � + d > k,
the set X must be linearly dependent. Thus, there must be a nontrivial combination
of the vectors of X, giving the vector �0, that is,

∑�
i=1 λi �wi +

∑d
i=1 δi�zi = �0. Since

both BU∩W and BU∩Z are linearly independent, the nonzero vector �v =
∑�

i=1 λi �wi

is spanned by both BU∩W and BU∩Z . Since U ∩ W ⊆ W and U ∩ Z ⊆ Z, we
get that �v ∈ W ∩ Z, and thus dim(W ∩ Z) > 0, contradicting the assumption that
dim(W ∩ Z) = 0.

We need the following notation for the next claim: Let B = 〈�v1, . . . , �v2k〉 be a
basis of GF(p)2k. Let Z ∈ V 2k

k (p) and BZ = 〈�z1, . . . , �zk〉 be a basis for Z. Thus

there must be unique constants such that for every i ∈ [k] we have zi =
∑2k

j=1 βi,j�vj .
Then we call the k × 2k matrix (βi,j) the representation matrix of BZ according to
B. Notice that for every basis B of Z we get a different representation.

7Since Hk(�, d) may be a number not in F , we will replace it with Hk(�, d) mod c, where c is the
characteristic of F . If the characteristic of F is 0, Hk(�, d) will always be in F .
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Claim 4.4. Let k be a positive integer, � and d be nonnegative integers, and p be
a prime. If � + d = k, then Hp

k (�, d) = p�(k+d).
Proof. Let U,W ∈ V 2k

k (p) be any subspaces such that dim(U ∩W ) = �. We must
show that the number of subspaces Z such that dim(Z∩U) = d and dim(Z∩W ) = 0 is
p�(k+d). We will first define the term canonical representation of a subspace in V 2k

k (p).
Next, we will show that each subspace Z, such that dim(Z ∩ U) = d and dim(Z ∩
W ) = 0, has a canonical representation. Then we will show that every canonical
representation is associated with a unique subspace Z such that dim(Z ∩ U) = d
and dim(Z ∩ W ) = 0. Thus, the number of such subspaces is equal to the number
of different canonical representations. To complete the proof, we will show that the
number of such canonical representations is p�(k+d). The canonical representation is
defined according to a specific basis of GF(p)2k. Consider a basis BU,W of GF(p)2k

defined as follows:

BU,W = 〈�v1, . . . , �v�, �u1, . . . , �ud, �w1, . . . , �wd, �x1, . . . , �x�〉,

where
(i) 〈�v1, . . . , �v�〉 is a basis of U ∩W . Recall that dim(U ∩W ) = �.
(ii) 〈�u1, . . . , �ud〉 is an expansion of 〈�v1, . . . , �v�〉 to a basis of U . Recall that

dim(U) = k and d + � = k.
(iii) 〈�w1, . . . , �wd〉 is an expansion of 〈�v1, . . . , �v�〉 to a basis of W . Recall that

dim(W ) = k as well.
(iv) 〈�x1, . . . , �x�〉 is an expansion of 〈�v1, . . . , �v�, �u1, . . . , �uk−�, �w1, . . . , �wk−�〉 to a

basis of GF(2)2k. Here there are � vectors since 2k − (� + d + d) = �.
We say that a subspace Z ∈ V 2k

k (p) has a canonical representation according to
BU,W if it has a basis whose representation matrix according to BU,W is as described
in Figure 4.2. The matrix in Figure 4.2 is a k × 2k matrix. Each entry in zones (b),
(g), and (h) must be 0. The entries in zones (d) and (f) must form the unit matrices
I� and Id, respectively. Each entry in zones (a), (c), and (e) can take any value from
GF(p).

Y

Z\Y�

dd �
(d)

(e)

�
(b) (c)

d

(f) (h)

(a)

(g)

0

0

?

u1, . . . , ud w1, . . . , wd x1, . . . , x�

I�

? Id

?

0

v1, . . . , v�

Fig. 4.2. A canonical representation of a subspace Z ∈ V 2k
k (p) with dim(U ∩ Z) = d and

dim(W ∩ Z) = 0.

First, we show that every subspace Z ∈ V 2k
k (p) such that dim(Z ∩ U) = d and

dim(Z ∩ W ) = 0 has a canonical representation according to BU,W . Let Y = Z ∩
U . Note that dim(Y ) = d. Let BY = 〈�y1, . . . , �yd〉 be a basis of Y , and let BZ =
〈�y1, . . . , �yd, �z1, . . . , �z�〉 be an expansion of BY to a basis of Z. Consider MZ , the
representation matrix of BZ according to BU,W . Since Y ⊆ U , all the entries in
the zones (g) and (h) are 0 as required. We claim that we can perform elementary
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operations on the lower part of MZ so that we get the matrix Id in zone (f). Otherwise,
we would get a row �r that is �0 in zone (f), but this would leave all the nonzero entries
of �r in zone (e). Since zone (e) represents the basis vectors from U ∩W , this would
mean dim(Z ∩ W ) > 0, contradicting the properties of Z. It is left to set zone (d)
to I� and all the entries in zone (b) to 0. Setting all the entries in zone (b) to 0 can
be done by elementary operations on the upper part of MZ using the rows from the
lower part, which now form the unit matrix Id in zone (f). (This would change the
entries in zone (a), but we have no constraints on this zone.) We claim that we can
set zone (d) to be I� by elementary operations on the upper part of MZ . Otherwise
we would get a row �r that is all zero in zone (d). Thus �r has nonzero entries only
in zones (a) and (c), but then it again implies that �r represents a vector from W ,
contradicting the fact that dim(Z ∩W ) = 0.

Next we prove that every subspace Z ∈ V 2k
k (p), which can be represented in

the above canonical form, satisfies dim(Z ∩ W ) = 0 and dim(Z ∩ U) = d. Let MZ

be a canonical representation of Z according to BU,W . Since MZ has I� and Id as
submatrices, we have rankGF(p)(MZ) = k, and thus Z ∈ V 2k

k (p). Now suppose

dim(Z ∩ W ) > 0. Then we can span a vector w ∈ W by the rows of MZ . This
vector has to be zero in the coordinates labeled by �u1, . . . , �ud, and by �x1, . . . , �x�,
but this cannot be done by a nontrivial combination of the rows of MZ . Thus,
dim(W ∩ Z) = 0. The lower part of MZ is nonzero only in coordinates labeled by
vectors from U , and since it has Id as a submatrix, we get that dim(Z ∩U) ≥ d. Now
suppose that dim(Z ∩U) = d′ > d. Then we have dim(Z ∩U) = d′, dim(Z ∩W ) = 0,
and dim(U ∩ W ) = �, where � + d′ > � + d = k, which is impossible by Claim 4.3.
Therefore, dim(U ∩ Z) = d.

To complete the proof, we show that any two subspaces having different canonical
representations over BU,W are different. To see this, note that the matrix

S =

(
0 I�
Id 0

)

is a submatrix of any canonical representation. The matrix S is clearly of rank k,
and thus, by Claim 2.3 any two subspaces with different canonical representation are
different.

Therefore, when constructing a subspace Z, with dim(Z ∩ U) = d and dim(Z ∩
W ) = 0, the freedom in exactly in the entries marked with “?” in Figure 4.2. Since
there are p possibilities for every such entry, and the number of such entries is (k ·
�) + (� · d) = �(k + d), we conclude that Hk(�, d) = p�(k+d).

Since the characteristic of F is different than p, every power of p is nonzero over
F . Therefore, as argued above, we proved that Hk has full rank over F , and the
theorem follows.

In Corollary 2.4 we proved that v2k
k (p) ≥ pk

2

. Since MZIk is a v2k
k (p) × v2k

k (p)

matrix, rankF (MZIk) ≥ pk
2

.

4.2. A small 1-mod-p cover for the zeros of MZI. To apply Theorem 3.4
to an explicit matrix, we need this matrix to have a small monochromatic 1-mod-p
cover. We next show that there is a small 1-mod-p cover for the 0’s of MZI. We do
not know if there exists a small 1-mod-p cover for the 1’s of MZI. Thus, we are not
able to use MZI directly, and we use it in section 4.3 to build the matrix MLZI, which
has a small 1-mod-p cover for both the 1’s and the 0’s.

To gain some insight into the cover of MLZI we show a 1-mod-p cover for the
0’s of MZI of size less than p2k. This should be compared to the number of rows in
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MZI, which is pΘ(k2). Define the cover R as follows: Let �v ∈ GF (p)2k be a vector
with a leading 1; that is, the first nonzero coordinate of �v is 1. We add the rectangle
R�v = X�v × Y�v to the cover R, where

X�v =
{
U ∈ V 2k

k (p) : �v ∈ U
}

and Y�v =
{
W ∈ V 2k

k (p) : �v ∈ W
}
.

That is, R�v contains the rows and columns of MZI labeled by subspaces that contain
the vector �v. The rectangle R�v is a 0-rectangle, since for each U ∈ X�v and W ∈ Y�v
it holds that �v ∈ U ∩W , hence dim(U ∩W ) �= 0, and thus ZI(U,W ) = 0. We claim
R is a 1-mod-p cover of the 0’s of MZI. Let 〈U,W 〉 be an entry of MZI such that
ZI(U,W ) = 0. Then dim(U ∩W ) > 0. Therefore, the entry 〈U,W 〉 is covered by any
rectangle R�v such that �v ∈ U ∩ W , and �v has a leading 1. Since U ∩ W is a linear

subspace of GF (p)2k, it has p�−1
p−1 vectors with a leading 1, where � = dim(U ∩W ) ≥ 1.

Since p�−1
p−1 ≡ −1

−1 ≡ 1 (mod p), the number of rectangles covering the entry 〈U,W 〉
is equivalent to 1 modulo p. Since there are p2k−1

p−1 different vectors with a leading 1

in GF(p)2k, the size of the 0-cover is p2k−1
p−1 .

4.3. The list version of the zero intersection function. To get a matrix
with a high rank over fields with characteristic different than p, and a small monochro-
matic 1-mod-p cover, we define the function LZI, the list version of the ZI function.
The idea of using the list version of functions has been used in communication com-
plexity [21] (see, e.g., [20]). Define LZIpk : (V 2k

k (p))k × (V 2k
k (p))k → {0, 1} as follows:

LZIpk(〈A1, . . . , Ak〉, 〈B1, . . . , Bk〉) = 1 ⇐⇒ ∃i ∈ {1 . . . k} such that ZIpk(Ai, Bi) = 1.

That is, LZIpk gets k instances of ZIpk, and outputs the value 1 if and only if ZIpk
outputs 1 on at least one of the given instances. The matrix MLZI, representing LZI,
is defined in a similar way to MZI. The next two lemmas show that MLZI has a small
1-mod-p cover.

Lemma 4.5. There is a monochromatic 1-mod-p cover of the 0’s of MLZI of size
smaller than p2k2

.
Proof. We build the 0-cover R0 of the 0’s of MLZI in a similar way to the 0-cover

for MZI built in section 4.2. Let 〈�v1, . . . , �vk〉 ∈ (GF(p)2k)k be a tuple of k vectors from
GF(p)2k, each with a leading 1. The rectangle in R0 corresponding to 〈�v1, . . . , �vk〉 is
R = X × Y , where

X = {〈A1, . . . , Ak〉 ∈ (V 2k
k (p))k : �vi ∈ Ai for each i ∈ [k]}, and

Y = {〈B1, . . . , Bk〉 ∈ (V 2k
k (p))k : �vi ∈ Bi for each i ∈ [k]}.

First we show R is a 0-rectangle. If 〈A1, . . . , Ak〉 ∈ X and 〈B1, . . . , Bk〉 ∈ Y , then
�vi ∈ Ai ∩ Bi for every i ∈ [k], and thus ZI(Ai, Bi) = 0 for every i ∈ [k]. Therefore,
LZI(〈A1, . . . , Ak〉, 〈B1, . . . , Bk〉) = 0.

Next we show that for every 0-entry of MLZI, the number of rectangles covering it
is equivalent to 1 modulo p. Let 〈〈A1, . . . , Ak〉, 〈B1, . . . , Bk〉〉 ∈ (V 2k

k (p))k× (V 2k
k (p))k

such that LZI(〈A1, . . . , Ak〉, 〈B1, . . . , Bk〉) = 0. The entry 〈〈A1, . . . , Ak〉, 〈B1, . . . , Bk〉〉
is covered by any rectangle associated with a tuple of k nonzero vectors 〈�v1, . . . , �vk〉,
such that �vi ∈ Ai ∩ Bi, for every i ∈ [k], and has a leading 1. Since Ai ∩ Bi is a

linear subspace, the number of vectors with a leading 1 in Ai∩Bi is p�i−1
p−1 , where �i =

dim(Ai∩Bi) ≥ 1. Thus, the number of rectangles covering 〈〈A1, . . . , Ak〉, 〈B1, . . . , Bk〉〉
is a product of numbers that are equivalent to 1 modulo p, and therefore is equivalent
to 1 modulo p itself.
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The number of 0-rectangles in R0 is the number of tuples of k vectors with a

leading 1 from GF(p)2k, that is, (p
2k−1
p−1 )k < p2k2

. (This is much smaller than the

number of rows in MLZI, which is pΩ(k3).)
Now we show a cover R1 for the 1’s of MLZI. The natural way to do this is

to associate a rectangle R = X × Y with each pair 〈i, U〉, such that i ∈ [k], and
U ∈ V 2k

k (p), where

X =
{
〈A1, . . . , Ak〉 ∈ (V 2k

k (p))k : Ai = U
}

and

Y =
{
〈B1, . . . , Bk〉 ∈ (V 2k

k (p))k : dim(U ∩Bi) = 0
}
.

That is, any input pair having ZI(Ai, Bi) = 1 in the ith instance will be covered by
the rectangle associated with i and Ai.

The problem with this choice of R1 is that it is not a 1-mod-p cover. For ex-
ample, if 〈A1, . . . , Ak〉 and 〈B1, . . . , Bk〉 have exactly p instances 〈Ai, Bi〉 such that
ZI(Ai, Bi) = 1, then the number of rectangles covering the entry

〈〈A1, . . . , Ak〉, 〈B1, . . . , Bk〉〉

will be equivalent to 0 modulo p. To solve this problem, we require i to be the index
of the first instance of ZI such that ZI(Ai, Bi) = 1.

Lemma 4.6. There is a monochromatic 1-mod-p cover for the 1’s of MLZI of size
smaller than p4k2

.8

Proof. Associate a rectangle R = X × Y with any pair 〈〈�v1, . . . , �vi−1〉, U〉, where
〈�v1, . . . , �vi−1〉 is a tuple of i−1 vectors with a leading 1 from GF(p)2k, where 1 ≤ i ≤ k,
and U ∈ V 2k

k (p) is a subspace. The sets X and Y are defined as follows:

X = {〈A1, . . . , Ak〉 ∈ (V 2k
k (p))k : �vj ∈ Aj for each j ∈ [i− 1] and Ai = U} and

Y = {〈B1, . . . , Bk〉 ∈ (V 2k
k (p))k : �vj ∈ Bj for each j ∈ [i− 1] and dim(Bi ∩ U) = 0}.

To see that R is a 1-rectangle, take 〈A1, . . . , Ak〉 ∈ X and 〈B1, . . . , Bk〉 ∈ Y .
Then, dim(Ai ∩ Bi) = dim(U ∩ Bi) = 0, and thus ZI(Ai, Bi) = 1. Therefore,
LZI(〈A1, . . . , Ak〉, 〈B1, . . . , Bk〉) = 1.

We next show that for every 1-entry of MLZI, the number of rectangles covering it
is equivalent to 1 modulo p. Let 〈〈A1, . . . , Ak〉, 〈B1, . . . , Bk〉〉 ∈ (V 2k

k (p))k× (V 2k
k (p))k

such that LZI(〈A1, . . . , Ak〉, 〈B1, . . . , Bk〉) = 1. Let i be the smallest index such
that dim(Ai ∩ Bi) = 0. Then the entry 〈〈A1, . . . , Ak〉, 〈B1, . . . , Bk〉〉 is covered by
a rectangle if and only if it is associated with a pair 〈〈�v1, . . . , �vi−1〉, Ai〉 such that
�vj ∈ Aj ∩Bj for every j ∈ {1, . . . , i− 1}. Since the number of vectors with a leading 1
in Aj ∩Bj for every j ∈ [i] is equivalent to 1 modulo p, the number of such rectangles
is equivalent to 1 modulo p as well.

The size of R1 is smaller than the number of ways to choose k vectors with
a leading 1 from GF(p)2k, and a subspace from V 2k

k (p), and thus is smaller than

p2k2 · v2k
k (p) < p4k2

.
By taking the union of the 0-cover from Lemma 4.5 and the 1-cover from Lemma 4.6,

we get the following corollary.

8It may seem that this number is too big, but this should be compared to the dimensions of

MLZI , which is pΩ(k3).
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Corollary 4.7. MLZI has a monochromatic 1-mod-p cover of size smaller than
p5k2

.
We proved in Theorem 4.1 that rankF (MZIk) ≥ pk

2

. We use this to analyze the
rank of MLZIk over F . Let A be an m × n matrix and B be an r × s matrix. Then
the Kronecker product of A and B, denoted A ⊗ B, is an mr × ns matrix formed
by multiplying each element of A by the entire matrix B and putting it in the place
of the element of A. For any field F , for every two matrices A and B, it holds
that rankF (A ⊗ B) = rankF (A) rankF (A). This property of the Kronecker product,
together with the De Morgan laws, implies the following lemma.

Lemma 4.8. Let k be a positive integer and let p be a prime. Then

rankF (MLZIpk
) = pΩ(k3).

We are ready to prove our main result.
Theorem 4.9 (main result). Let p be a fixed prime. Then there exists a fam-

ily of functions {fn}n∈N such that mSPGF(p)(fn) = n and, for every field F with

characteristic different than p, it holds that mSPF (fn) = nΩ(
√

logn).
Proof. For a positive number k, denote by nk the size of the monochromatic 1-

mod-p cover for MLZI given by Corollary 4.7. We first show fn for each n of the form
n = nk for some positive k. According to Corollary 4.7, MLZIk has a monochromatic

1-mod-p cover of size n, which is smaller than p5k2

. According to Lemma 4.8, we have
that rankF (MLZIk) = pΩ(k3). In terms of n, we have

n
√

logp n ≤ (p5k2

)

√
logp(p5k2 )

= (p5k2

)
√

5k2
.

By Theorem 3.4, there is a function fn in n variables such that mSPGF(p)(f) = n

and mSPF (f) ≥ pΩ(k3) = nΩ(
√

logn). The last equality holds since p is a constant. By
padding arguments, we find that the result holds for every value of n.

5. A superpolynomial lower bound for a function in uniform-NC2. In
this section we show a monotone function that is computable by uniform-NC2 circuits
and does not have a polynomial size monotone span program over any field.9 For
comparison, all the previous superpolynomial lower bounds were proved for functions
not known to be in P.

Denote by f2 =
{
f2
n

}
n∈N and f3 =

{
f3
n

}
n∈N the families of functions given

by Theorem 4.9 for p = 2 and p = 3, respectively. Define the family of functions
f = {f2n}n∈N as f2n(x1, . . . , xn, y1, . . . , yn) = f2

n(x1, . . . , xn) ∧ f3
n(y1, . . . , yn).

We show a uniform-NC2 family of circuits for f . Let P̂2 be the monotone span
program over GF(2) that computes f2. Recall that size(P̂2) = n. As mentioned

in section 2, we can assume w.l.o.g. that the number of columns in P̂2 is not larger
than the number of rows, which is n. Therefore, since linear algebra over fixed finite
fields is in log-space uniform-NC2 [7, 22, 10, 19], there exists an NC2 circuit C2 that
computes f2. Similarly, there exists an NC2 circuit C3 that computes f3. Thus, the
NC2 circuit C = C2 ∧ C3 computes f .

The problem with the circuit C, as described, is that it is not uniform. The
mere existence of a monotone span program with a small number of columns does
not yield a uniform-NC2 circuit. To get uniform circuits we have to show an explicit

9In this paper, uniform means log-space uniform.
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monotone span program with a small number of columns that can be generated in
space O(log n). We do this in section 5.1.

We next show that f has no small monotone span program over any field. Assume
there is a polynomial size monotone span program Q̂ that computes f over some field
F . Let c be the characteristic of F . If c �= 2, then the restriction of Q̂ to inputs of
the form x1, . . . , xn · 1n gives a new monotone span program Q̂2 of polynomial size
over F that computes f2 (as any restriction of a function with a small monotone span
program has a small monotone span program [19]), contradicting the fact that f2 has
no polynomial size monotone span program over fields with characteristic different
than 2. If c = 2, then c �= 3 and we get the contradiction for f3 in a similar way.
Thus, we have the following theorem.

Theorem 5.1. There exists a family of monotone functions {fn}n∈N that is

computable by a uniform-NC2 family of circuits having mSPF (fn) = nΩ(
√

logn) for
every field F .

5.1. Reducing the number of columns. In Theorem 4.9 we introduced a
function fP̂ such that mSPGF(p)(fn) = n and mSPF (fn) = nΩ(

√
logn). In this section

we want to construct a family of uniform-NC2 circuits for a function that accepts Acc
and rejects Rej.

It is known that any function that has a polynomial size monotone span program
has a family of NC2 circuits. Since any monotone span program with m rows that
computes a function f has an equivalent monotone span program with no more than
m columns, we can deduce the existence of a family of NC2 circuits that computes
f . However, we want a uniform family of circuits. Since any transformation from
a monotone span program with an arbitrary number of columns to an equivalent
program with a smaller number of columns has to go over all the columns of the large
original program, we cannot use the generic span program for fP̂ , as presented in
section 3.4. In this section we show a monotone span program, with a linear number
of both rows and columns, that accepts Acc and rejects Rej. We show that the span
program can be generated in space O(log n), and we ensure the uniformity of the NC2

circuits.

Let RLZI be the monochromatic 1-mod-p cover of MLZI described in Corollary 4.7,
and consider the following monotone span program Ŝ:10 The program Ŝ has a column
for each k-tuple 〈�v1, . . . , �vk〉 ∈ (GF(p)2k)k, where each �vi is a vector with a leading

1 from GF(p)2k. Thus, the number of columns in Ŝ is smaller than the number of
rectangles in RLZI, and hence is linear in the number of variables. Intuitively, the
columns of Ŝ form a basis of the columns of the program P̂ from section 4.

Recall that in RLZI there are two types of rectangles as follows:

• 0-rectangles. We associated a 0-rectangle with every k-tuple of vectors
〈�v1, . . . , �vk〉 ∈ (GF(p)2k)k, each with a leading 1.

• 1-rectangles. We associated a 1-rectangle R = X × Y with any pair
〈〈�v1, . . . , �vi−1〉, U〉 such that 〈�v1, . . . , �vi−1〉 is a tuple of i − 1 vectors with
a leading 1 from GF(p)2k, where 1 ≤ i ≤ k, and U ∈ V 2k

k (p) is a subspace.

Every rectangle is assigned a row in Ŝ. Let R be a rectangle in RLZI, and let c be
a column in Ŝ labeled with the tuple 〈�v1, . . . , �vk〉. Then the value of the entry Ŝ[R, c]
is defined as follows:

10We do not know if the function computed by the monotone span program Ŝ is the same as the
function from Theorem 4.9.
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• For a 0-rectangle R, let 〈�u1, . . . , �uk〉 be the k-tuple of vectors associated with

R. We set Ŝ[R, c] = 1 if �uj = �vj for every j ∈ [k]. Otherwise, Ŝ[R, c] = 0.
• For a 1-rectangle R, let 〈〈�u1, . . . , �ui−1〉, Ui〉 be the (i−1)-tuple of vectors and

the subspace associated with R. In this case set Ŝ[R, c] = 1 if �uj = �vj for

every j ∈ [i− 1] and vi /∈ Ui. Otherwise Ŝ[R, c] = 0.

By putting the rows corresponding to 0-rectangles in the upper part of Ŝ, the
upper block of Ŝ is in fact the unit matrix I. To compute an entry in the lower
part of Ŝ, we need only check if a vector in GF(p)2k belongs to a subspace, where

k = O(
√

log n). This can be easily done in space O(log n). Thus, Ŝ can be generated
in log-space. To construct a circuit that simulates the span program, we need a
circuit that tests the rank of a matrix over GF(p). This can also be done in space

O(log n) [7, 22, 10, 19]. We next prove that the function computed by Ŝ can be used

for obtaining our lower bounds. That is, the program Ŝ accepts every �zx ∈ Acc and
rejects every �wy ∈ Rej. This fact is proved in the following two claims.

Claim 5.2. The program Ŝ accepts every �zx ∈ Acc.

Proof. Let �zx ∈ Acc. Throughout the proof we view the characteristic vector �zx
as the set of rectangles it represents. We show that the vector �1 is the sum of the
rows labeled by rectangles R ∈ �zx, where the computations are done over GF(p).

Since �zx ∈ Acc, it is the characteristic vector of the set of all the rectangles in
RLZI covering the row x of MLZI. Let 〈X1, . . . , Xk〉 be the k-tuple of subspaces from
V 2k
k labeling the row x in MLZI. Then the rectangles in �zx are of the following two

types:

(i) 0-rectangles, labeled by 〈�x1, . . . , �xk〉, where �xj ∈ Xj for every j ∈ [k].
(ii) 1-rectangles, labeled by 〈〈�x1, . . . , �xi−1〉, Xi〉, where �xj ∈ Xj for every j ∈

[i− 1].

Let c be a column in Ŝ. Assume that c is labeled by 〈�v1, . . . , �vk〉. We show that the
sum of the rows labeled by rectangles from �zx in the column c is 1. More specifically,
we show that there is exactly one row labeled by �zx that is 1 in the column c. We
consider the following two different cases:

(i) �vj ∈ Xj for every j ∈ [k]. We divide the rectangles in �zx into three as
follows:

1. The unique 0-rectangle R ∈ �zx labeled by 〈�v1, . . . , �vk〉. According to the defini-

tion of Ŝ, we have Ŝ[R, c] = 1.

2. Other 0-rectangles. Since the upper block of Ŝ is the unit matrix I, we have
Ŝ[R, c] = 0 for any such rectangle.

3. 1-rectangles. If R is a 1-rectangle labeled by 〈〈�x1, . . . , �xi−1〉, Xi〉, then we have

that Ŝ[R, c] = 0 since �vi ∈ Xi.

Thus, there is exactly one rectangle R ∈ �zx such that Ŝ[R, c] = 1, and hence the
sum of the rows labeled by rectangles from �zx, in the column c is 1.

(ii) If case (i) does not hold, there exists an index � ∈ [k] such that �vj ∈ Xj for
every j ∈ [�− 1] and �v� /∈ X�. In this case, for every 0-rectangle R ∈ �zx, it holds that

Ŝ[R, c] = 0, since for every such rectangle �x� ∈ X�, while �v� /∈ X�, and thus �x� �= �v�.
Let R ∈ �zx be a 1-rectangle labeled by 〈〈�x1, . . . , �xi−1〉, Xi〉, for some i ∈ [k], where
�xj ∈ Xj for every j ∈ [i− 1]. We have to check three cases.

Case I. i < �. In this case �vi ∈ Xi, because i ∈ [�− 1], and thus Ŝ[R, c] = 0.

Case II. i > �. In this case �x� ∈ X�, since � ∈ [i− 1]. On the other hand, �v� /∈ X�,

and thus �v� �= �x�, with � ∈ [i− 1], and so Ŝ[R, c] = 0.
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Case III. i = �. In this case the only rectangle R ∈ �zx satisfying Ŝ[R, c] = 1 is
the rectangle labeled by 〈〈�v1, . . . , �vi−1〉, Xi〉.

Therefore, again there is exactly one rectangle R ∈ �zx such that Ŝ[R, c] = 1, and

the sum of the rows labeled by rectangles from �zx, in the column c is 1. Thus, Ŝ
accepts Acc.

It is left to prove that Ŝ rejects Rej. This part is a little more complicated than
the generic case discussed in Lemma 3.3.

Claim 5.3. The program Ŝ rejects every �wy ∈ Rej.
Proof. Let �wy ∈ Rej. Throughout the proof we view the characteristic vector

�wy as the set of rectangles it represents. Then there exists a column labeled by
〈Y1, . . . , Yk〉 in MLZI, such that �wy is the set of all the rectangles in RLZI that do
not cover this column. The rectangles in �wy, i.e., rectangles not covering the column
labeled by 〈Y1, . . . , Yk〉, are of the following types:

• 0-rectangles. If R is a 0-rectangle labeled by 〈�x1, . . . , �xk〉 not covering the
column 〈Y1, . . . , Yk〉, then there exist an index i ∈ [k] such that �xi /∈ Yi.

• 1-rectangles. If R is a 1-rectangle labeled by 〈〈�x1, . . . , �xi−1〉, Xi〉 and not
covering 〈Y1, . . . , Yk〉, then either there exists an index j ∈ [i − 1] such that
�xj /∈ Yj or dim(Xi ∩ Yi) > 0.

Assume toward contradiction that the vector �1 is a linear combination of the rows
labeled by rectangles from �wy. Denote by Cy the set of columns of Ŝ, labeled by a
k-tuple of vectors 〈�y1, . . . , �yk〉 such that �yi ∈ Yi, and �yi has a leading 1 for every

i ∈ [k]. We will use the submatrix of Ŝ defined by the rows of �wy and the columns Cy

to contradict the existence of the above linear combination. We claim that for every
R ∈ �wy, the sum of the entries in the row labeled by R, over the columns in Cy, is 0.
See the following claim.

Claim 5.4. For every R ∈ �wy,∑
c∈Cy

Ŝ[R, c] = 0.

Proof. If R ∈ �wy is a 0-rectangle labeled by 〈�x1, . . . , �xk〉, and c is a column in
Cy labeled by 〈�y1, . . . , �yk〉, then there is an index i ∈ [k] such that �xi /∈ Yi, and since

�yj ∈ Yj for every j ∈ [k], we get that �xi �= �yi and thus Ŝ[R, c] = 0. Therefore,∑
c∈Cy

Ŝ[R, c] = 0.

If R ∈ �wy is a 1-rectangle labeled by 〈〈�x1, . . . , �xi−1〉, Xi〉, then either there exists
an index j ∈ [i− 1] such that �xj /∈ Yj or dim(Xi ∩ Yi) > 0. If the former is true, then
for every column c ∈ Cy labeled by 〈�y1, . . . , �yk〉 we have �xj /∈ Yj and �yj ∈ Yj , and

thus �xj �= �yj . Since j ∈ [i− 1], this leads to Ŝ[R, c] = 0.
The only case left to discuss is that when R ∈ �wy is a 1-rectangle labeled by

〈〈�x1, . . . , �xi−1〉, Xi〉, such that �xj ∈ Yj for every j ∈ [i− 1], and dim(Xi ∩Yi) �= 0. We

get that Ŝ[R, c] = 1 for every column c ∈ Cy labeled by

〈�x1, . . . , �xi−1, �yi, . . . , �yk〉,

where �yi /∈ Xi. The number of choices for a vector �yi with a leading 1 such that �yi ∈ Yi

and �yi /∈ Xi is the number of vectors with a leading 1 in the set Yi\Xi = Yi\(Yi∩Xi).
Since both Yi and Yi∩Xi are linear subspaces, the number of vectors with a leading 1
is equivalent to 1 modulo p in both of them. Thus the number of choices for such �yi is
equivalent to 0 modulo p. To get the number of columns c ∈ Cy such that Ŝ[R, c] = 1,
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we have to multiply the number of ways to choose �yi by the number of ways to choose
�yi+1, . . . , �yk, but the result is still equivalent to 0 modulo p.

The number of columns in Cy is the product of the number of vectors with a
leading 1 in Yi for i ∈ [k]. Since each such number is 1 modulo p, the number of
columns in Cy is equivalent to 1 modulo p.

Recall that we assumed �1 is a linear combination of the rows corresponding to
the rectangles in �wy. Therefore, we can write∑

R∈�wy

αR · ŜR = �1,

where for each R ∈ �wy the constant αR is in GF(p), and ŜR is the row in Ŝ corre-
sponding to R. We compute the sum∑

R∈�wy

αR

∑
c∈Cy

Ŝ[R, c]

in two different ways. Since for every column c it holds that∑
R∈�wy

αRŜ[R, c] = 1,

we get ∑
R∈�wy

αR

∑
c∈Cy

Ŝ[R, c] =
∑
c∈Cy

∑
R∈�wy

αRŜ[R, c] =
∑
c∈Cy

1 = |Cy| = 1 mod p.

On the other hand, according to Claim 5.4, the sum over any row R ∈ �wy of the
entries in the columns of Cy is equivalent to 0 modulo p, and we get that∑

R∈�wy

αR

∑
c∈Cy

Ŝ[R, c] =
∑

R∈�wy

αR · 0 = 0 mod p,

a contradiction. Thus �1 is not a linear combination of the rows of Ŝ labeled by �wy,

and hence Ŝ rejects �wy.

5.2. Span programs and secret sharing schemes. Secret sharing schemes,
introduced by Blakley [8], Shamir [26], and Ito, Saito, and Nishizeki [16, 17], are a
cryptographic tool allowing a dealer to share a secret between a set of parties such
that only some predefined authorized subsets of parties can reconstruct the secret from
their shares. The reader is referred to [27] and [29] for a more formal and detailed
discussion on secret sharing schemes.

The authorized sets in a secret sharing scheme are described by a monotone
Boolean function f : {0, 1}n → {0, 1}, where n is the number of parties and the
authorized subsets are the subsets with their characteristic vectors in f−1(1). Most
of the known secret sharing schemes are linear schemes, that is, schemes in which the
shares are a linear combination of the secret and some random field elements. Linear
schemes are equivalent to monotone span programs, where the total size of the shares
is the size of the corresponding monotone span program. Beimel and Ishai [4] showed
functions that, under plausible assumptions, have no efficient linear secret sharing
scheme but yet have an efficient nonlinear secret sharing scheme. However, prior to
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this work, no secret sharing schemes were proved more powerful than linear schemes,
without any assumptions.

A quasi-linear secret sharing scheme [4] is obtained by composing linear secret
sharing schemes, possibly over different fields. Beimel and Ishai [4] have shown
that under the assumption that the power of monotone span programs over differ-
ent fields is incomparable, quasi-linear schemes are superpolynomially stronger than
linear schemes. Their proof is very similar to the proof of Theorem 5.1. That is,
the functions described in Theorem 5.1 have, by definition, a small quasi-linear secret
sharing scheme but cannot have a small linear scheme.

Theorem 5.5. There is an explicit family of functions {fn}n∈N such that the

complexity of every linear secret sharing scheme for the family is nΩ(
√

logn), and yet
the family has a polynomial quasi-linear secret sharing scheme.
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EFFICIENCY OF OBLIVIOUS VERSUS NONOBLIVIOUS
SCHEDULERS FOR OPTIMISTIC, RATE-BASED FLOW CONTROL∗

PANAGIOTA FATOUROU† , MARIOS MAVRONICOLAS‡ , AND PAUL SPIRAKIS§

Abstract. Two important performance parameters of distributed, rate-based flow control al-
gorithms are their locality and convergence complexity. The former is characterized by the amount
of global knowledge that is available to their scheduling mechanisms, while the latter is defined as
the number of update operations performed on rates of individual sessions until max-min fairness
is reached. Optimistic algorithms allow any session to intermediately receive a rate larger than its
max-min fair rate; bottleneck algorithms finalize the rate of a session only if it is restricted by a
certain, highly congested link of the network. In this work, we present a comprehensive collection of
lower and upper bounds on convergence complexity, under varying degrees of locality, for optimistic,
bottleneck, rate-based flow control algorithms.

Say that an algorithm is oblivious if its scheduling mechanism uses no information of either the
session rates or the network topology. We present a novel, combinatorial construction of a capaci-
tated network, which we use to establish a fundamental lower bound of dn

4
+ n

2
on the convergence

complexity of any oblivious algorithm, where n is the number of sessions laid out on a network, and
d, the session dependency, is a measure of topological dependencies among sessions. Moreover, we
devise a novel simulation proof to establish that, perhaps surprisingly, the lower bound of dn

4
+ n

2
on convergence complexity still holds for any partially oblivious algorithm, in which the scheduling
mechanism is allowed to use information about session rates, but is otherwise unaware of network
topology.

On the positive side, we prove that the lower bounds for oblivious and partially oblivious algo-
rithms are both tight. We do so by presenting optimal oblivious algorithms, which converge after
dn
2

+ n
2

update operations are performed in the worst case. To complete the picture, we show that
linear convergence complexity can indeed be achieved if information about both session rates and
network topology is available to schedulers. We present a counterexample, nonoblivious algorithm,
which converges within an optimal number of n update operations.

Our results imply a surprising convergence complexity collapse of oblivious and partially oblivious
algorithms, and a convergence complexity separation between (partially) oblivious and nonoblivious
algorithms for optimistic, bottleneck rate-based flow control.

Key words. distributed algorithms; lower bounds; rate-based flow control; max-min fairness;
convergence complexity; oblivious, partially oblivious, and nonoblivious algorithms; bottleneck algo-
rithms
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1. Introduction. In many modern communication networks, a connection be-
tween different users is established by a session, a virtual circuit of infinite duration
that involves a fixed path between a source and a destination. The role of flow control
algorithms is to alleviate throughput degradation, unfairness, deadlocks, and failures
by preventing buffer overflow from arising in situations where the externally injected
load is larger than what can be accommodated even with optimal routing (see, e.g.,
[2, Chapter 6] or [3, 6, 12, 14, 15, 16, 17, 22]). In particular, rate-based flow control al-
gorithms adjust transmission rates of different sessions in an end-to-end manner, with
the objective to optimize network utilization while still maintaining fairness between
different sessions (see, e.g., [1, 2, 4, 5, 11, 13, 16, 18]).

For a range of settings including both high-speed networks and Internet applica-
tions, max-min fairness [1, 2, 5, 6, 7, 13, 14, 15, 16, 17, 19] has emerged as a widely
accepted formulation of fairness for flow control; roughly speaking, max-min fairness
requires that it be impossible for any session to receive an infinitesimally larger rate
on the account of a session with a smaller or equal rate [15, 16, 17, 21]. Call max-min
fair rates those achieving max-min fairness.

Any rate-based flow control algorithm can be classified as one of two broad classes,
conservative and optimistic, according to the way in which rates of sessions are ad-
justed. Conservative algorithms (see, e.g., [2, Chapter 6]) do not provide for decreases
to the rates of sessions; in contrast, optimistic algorithms allow decreases, so that rates
may go up and down and a session can intermediately receive a rate larger than its
final. Afek, Mansour, and Ostfeld [1] introduced optimistic algorithms and advocated
them as fitting better than the conservative ones into real dynamic networks; indeed,
in such networks, new sessions may join in, so that it is desirable to incrementally
adjust rates by decreasing the rates of some of them.

A crucial component of a rate-based flow control algorithm is its scheduler, the
abstract mechanism it uses to decide which session’s rate to adjust next. Apparently,
it is desirable that the scheduler does not require global knowledge of either the session
rates or the network topology. Clearly, no-knowledge schedulers are not only more
efficient in terms of communication and computation, but they also adjust more easily
to dynamic changes in network topology. So, one important performance parameter
of a rate-based flow control algorithm is its locality, measured by the amount of global
knowledge required by the scheduler.

Call a scheduler that uses no information of either the session rates or the network
topology an oblivious scheduler. On the opposite extreme, a nonoblivious scheduler
requires full knowledge of both session rates and network topology. There is, in
addition, an important middle ground between oblivious and nonoblivious schedulers:
schedulers which, although unaware of network topology, do have access to session
rates; call these schedulers partially oblivious. Clearly, a partially oblivious scheduler
is superior to a nonoblivious scheduler in terms of robustness to dynamic changes
in network topology, while it is surpassed by an oblivious scheduler. Afek et al.
[1, sections 4 and 5] presented two interesting, partially oblivious schedulers called
GlobalMinSched and LocalMinSched, respectively; these schedulers always choose for
an increase the session whose rate is the globally and locally smallest, respectively.

A second crucial component of a rate-based flow control algorithm is its termi-
nator, the abstract mechanism it uses to decide which sessions to terminate at each
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specific instant.1 Bottleneck terminators [16] finalize the rate of a session, thereby
terminating the session, only if its rate is restricted on some particular network link
that allows for the least possible share of bandwidth to each session traversing it; call
such a link a bottleneck edge [16].

When a session is scheduled for an increase, its rate is increased by the minimum
possible share of bandwidth along its path; this may involve possible decreases to
the rates of crossing sessions (see, e.g., [5, 6, 7, 18, 19]). The convergence complexity
of a rate-based flow control algorithm is the number of individual rate adjustments
performed in the worst case until the algorithm terminates and rates have reached
max-min fairness (so that they do not change any further). Thus, convergence com-
plexity models the number of rounds of communication and local computation needed
for convergence to max-min fairness, so that it is another significant performance pa-
rameter of such distributed algorithms.

We measure convergence complexity in terms of a particular, simple abstraction
of rate adjustments, called an update operation, which was introduced in [1, sec-
tion 2.1]. In essence, an update operation atomically adjusts the rates of a group of
neighboring sessions in a fair and optimistic way.2 We note that some of the essential
intricacies encountered when designing practical, distributed flow-control algorithms
[4, 5, 6, 7, 18, 19, 22] include scheduling the rate adjustments, minimizing the com-
munication, and converging to fairness quickly. Although we do not address in this
work implementation issues for the model used, we feel that it captures most of these
intricacies. (For a discussion of such issues for this model, see [9].)

This work presents a comprehensive collection of bounds on convergence complex-
ity under varying degrees of locality for optimistic, bottleneck, rate-based flow control
algorithms; more specifically, we show upper and lower bounds (sections 5 and 7, resp.)
on convergence complexity for oblivious, partially oblivious, and nonoblivious such al-
gorithms. The lower bounds demonstrate that achieving oblivious, or even partially
oblivious, scheduling, and therefore locality, necessarily imposes a nonconstant, multi-
plicative overhead on convergence complexity. These are the first general lower bounds
ever shown on the convergence of rate-based flow control algorithms. In addition, our
algorithms span a wide spectrum of convergence complexity bounds and locality prop-
erties, while they improve significantly upon all previous optimistic algorithms with
respect to the combination of these two performance measures. To establish these
upper bounds, we offer several new basic properties and tools for the design and anal-
ysis of optimistic, bottleneck, rate-based flow control algorithms (section 4); these
properties significantly extend and strengthen the corresponding ones shown in [1].

Our bounds are expressed in terms of n, the total number of sessions laid out
on the network, and a new parameter d, called session dependency, through which
we derive more accurate bounds on convergence complexity. Specifically, d is the
maximum number of sessions that share an edge either directly or indirectly. In the
rest of this paper, we will focus on optimistic and bottleneck algorithms; we sometimes
refer to them simply as algorithms.

1In all of our discussion, a terminated session is meant to be one that has reached its final
(max-min fair) rate, so that its rate value will not change any further.

2In more detail, an update operation increases, if possible, the rate of one session, so that
it becomes the session with the maximum rate on some particular link that allows the minimum
possible increase. The new value is a function of the link capacity and the rates of other sessions
traversing the link. Conflicting sessions whose rates exceed the new value have their rates decreased
to the new value, while rates of other sessions remain unchanged. These adjustments saturate that
particular link.
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Our first major result is a fundamental lower bound on the convergence com-
plexity of oblivious algorithms. Its proof relies on constructing, given any arbitrary
oblivious algorithm, a specific network, as a function of the algorithm’s scheduler, so
that if sessions are scheduled on this network according to the scheduler and the al-
gorithm computes the max-min fair rates, then Ω(dn) update operations are required
before convergence (section 6). The construction is novel, purely combinatorial, and
of independent interest. We rely on the algorithm being optimistic and bottleneck to
show that convergence is slow.

Although intuition may suggest that knowledge of session rates can be crucial
to performance, we surprisingly establish that the lower bound of Ω(dn) that we
show on the convergence complexity of oblivious algorithms applies also to partially
oblivious algorithms. We use a powerful simulation proof to simulate any partially
oblivious scheduler on some network by an oblivious scheduler on the same network.
The simulation inherits the Ω(dn) lower bound shown for oblivious algorithms down
to partially oblivious algorithms.

We show a matching upper bound on the convergence complexity of oblivious
and partially oblivious algorithms. We present a class of oblivious algorithms, called
d-Epoch, with convergence complexity Θ(dn); an example is algorithm RoundRobin,
which uses the simple and natural idea of scheduling sessions in a round-robin order.
We note that the partially oblivious algorithms GlobalMin and LocalMin from [1, sec-
tions 4 and 5] also achieve convergence complexity Θ(dn), which implies the tightness
of our lower bound for partially oblivious algorithms; however, any d-Epoch algorithm
improves over these two algorithms since it is oblivious.

At this point, it is only natural to ask whether it is possible to overcome the
Θ(dn) barrier on convergence complexity achievable by oblivious or partially oblivious
algorithms, possibly at the cost of sacrificing locality. Perhaps not very surprisingly,
it turns out that the locality enjoyed by oblivious and partially oblivious algorithms
comes at a multiplicative in d overhead on convergence complexity. We present a
counterexample, nonoblivious and optimistic algorithm called Linear that achieves an
exact bound of n on convergence complexity; Linear follows the earlier idea of selecting
and conservatively increasing the rate of any session that traverses the most highly
congested link in the network (see, e.g., [2, section 6.4.2] or [15]). We emphasize that
Linear, although theoretically efficient, is clearly impractical.

Our work differs at first from earlier work on rate-based flow control carried out
in the data networks community (see, e.g., [2, 3, 11, 12, 15, 16, 17, 22]) in adopting the
optimistic approach introduced in [1]. We have been able to show that certain classical
scheduling policies, such as round-robin [13, 14] or scheduling a session that traverses
the most congested link [15], are correctly applicable in the optimistic framework.
Most interestingly, we have shown the first general lower bounds on the convergence
complexity of rate-based flow control algorithms; these imply that some scheduling
policies are provably superior over some other policies, in terms of either convergence
complexity or locality (or both), and even optimal.

2. Model. Many of our definitions formalize and refine those from [1] and [2,
Chapter 6]. A communication network is a graph G = (V,E), where vertices and edges
represent switches and links, respectively. A set S of n ≥ 1 sessions is laid out on G.
Each session Si (also denoted as i) passes through a sequence of edges and has a rate
r(Si). The vector r = 〈r(S1), . . . , r(Sn)〉 is the rate vector. Each edge has a capacity
c(e) > 0, which the sum of the rates of the sessions traversing it cannot exceed; when
this sum equals the capacity, the edge is saturated. In a max-min fair rate vector
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[15, 16, 17, 21], an increase to the rate of any session requires either exceeding an
edge capacity or decreasing the rate of another session with equal or lower rate.

The communication network is abstracted as a state machine. Each state Q =
〈rQ,AQ〉 consists of a rate vector rQ and a set AQ ⊆ S of active sessions. Intuitively,
an active session is one that has not yet reached its max-min fair rate. Denote by
DQ = S \AQ the set of done sessions in state Q. In the initial state Qin, all sessions
are active and have zero rates. A state is final if all sessions have reached their
max-min fair rates.

An operation defines a procedure to compute new rates for a set of sessions on
the basis of their old rates. Formally, an operation is a function operation that takes
as input a session Si and a state Q, and outputs new rates for Si and all sessions Sj

sharing edges with Si. Say that operation is conservative if it decreases no individual
rate; else operation is optimistic.

We will consider a specific optimistic operation, called update, which we describe
below. For a state Q and each edge e traversed by Si, ΔQ(i, e) is the maximum
amount by which rQ(Si) can be increased (without exceeding the capacity of e) while
decreasing down to the increased rate of Si the rates of other active sessions passing
through e and exceeding the increased rate. Notice that these rate adjustments satu-
rate e. Intuitively, ΔQ(i, e) is the maximum amount by which rQ(Si) can be increased
in a fair manner if edge e were the only edge constraining Si. Finally, Si’s rate is
increased by ΔQ(i), called the increase for Si in Q, which is the minimum of these
maximum amounts over all edges that Si passes through. In addition, each (active)
session Sj sharing an edge with Si has its rate decreased down to the new rate r(Si)
(unless it is already less). We remark that the rates computed by update saturate the
edge(s) realizing ΔQ(i), but no other edges. Notice also that the update operation
uses only local information with respect to session Si [17, section IV]. From now on,
we will consider only optimistic algorithms that employ the update operation.

A scheduler decides the order of sessions on which to perform the update oper-
ation. Formally, a scheduler (cf. [1]) is a function Sched that maps a pair 〈G,S〉, a
state Q, and a state index l ≥ 1 to a session i = Sched (〈G,S〉 , Q, l). A termina-
tor is a function Term that maps a pair 〈G,S〉 and a state Q to a set of sessions
T = Term (〈G,S〉 , Q) ⊆ AQ; intuitively, Term decides which active sessions will be
terminated (and their rates will not change any further). An algorithm is a pair
Alg = 〈Sched,Term〉. The classification of operations into conservative and optimistic
leads to the corresponding classification of algorithms in a natural way.

An oblivious scheduler uses no knowledge of either the topology of the network
or the rates and statuses (active or done) of sessions. Thus, an oblivious scheduler
is a (finite or infinite) sequence Sched = i1, i2, . . . , where for each l ≥ 1, il ∈ [n]. A
partially oblivious scheduler uses no knowledge of the topology of the network, while
it may use knowledge of the rates (and statuses) of sessions. Notice that any oblivious
scheduler is also partially oblivious, but not vice versa. A nonoblivious scheduler is a
scheduler that is not partially oblivious. The classification of schedulers into oblivi-
ous, partially oblivious, and nonoblivious leads to the corresponding classification of
algorithms in a natural way.

For any edge e ∈ E and state Q, the allotted capacity of e in Q [1, section 2.1],
denoted allotQ(e), is the total rate already allocated to done sessions passing through
the edge. Clearly,

∑
S∈AQ|e rQ(S) ≤ c(e)− allotQ(e), where AQ | e denotes the set of

active sessions traversing e in Q. For any state Q and for any edge e with |AQ | e| > 0
active sessions, the fair share of e in state Q [1, section 2.1], denoted FSQ(e), is
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defined to be FSQ(e) =
c(e) − allotQ(e)

|AQ | e| ; intuitively, FSQ(e) is the per-session share of

the portion of the capacity of edge e which has not yet been allocated to sessions done
in state Q that traverse the edge. For any state Q, a bottleneck edge for Q [16] is an
edge e such that for each active session passing through e, FSQ(e) is the minimum
fair share over all edges traversed by the session.

A terminator Term is bottleneck [16] if for any state Q and session S, S ∈
Term (〈G,S〉, Q) if (and only if) there exists an edge e traversed by S such that
(1) e is a bottleneck edge for Q, and (2) rQ(S) = FSQ(e). Whenever such an edge e
exists for state Q and Term is bottleneck, we will say that e causes the termination
of session S in Q. Say that an algorithm Alg is bottleneck if Term is.

The execution α of Alg on 〈G,S〉 is an infinite sequence of alternating states and
session indices α = Q0, i1, Q1, . . . , il, Ql, . . . , satisfying the following conditions:

(1) Q0 = Qin and AQ0
= AQ1

= S;
(2) for each l ≥ 1, il = Sched (〈G,S〉 , Ql−1, l − 1);
(3) for each l ≥ 1, if il ∈ DQl

or ΔQl−1
(il) = 0, then rQl

= rQl−1
and AQl+1

=
AQl

; else
(a) (i) rQl

(il) := rQl−1
(il) + ΔQl−1

(il);
(ii) for each session i ∈ AQl

, i �= il, such that Si ∩ Sil �= ∅,

rQl
(i) := min{rQl−1

(i), rQl−1
(il) + ΔQl−1

(il)};

(b) AQl+1
= AQl

\ Term (〈G,S〉 , Ql).
Call each state Ql in an execution α, where l ≥ 1, a reachable state. Say that Alg

computes the max-min fair rate vector if for each execution of Alg a final state Q is
reachable such that rQ is a max-min fair rate vector.

The number of update operations in any execution α of Alg is the number of state
indices l ≥ 1 such that il ∈ AQl−1

. The convergence complexity of Alg on network G
with session set S, denoted UAlg (〈G,S〉), is the number of operations in the execution
of Alg on G with S. The convergence complexity of Alg, denoted UAlg, is the maximum,
over all pairs 〈G,S〉, of the convergence complexity of Alg on G with S.

3. Notation. We collect here some notation that will be used in most of the
following sections. For each edge e and for any set of sessions S ′ ⊆ S, denote S ′ | e to
be the set of sessions in S ′ traversing e. We will sometimes treat a session Si as the
set of its links; so, for any edge e traversed by Si, we will write e ∈ Si. For an edge
e and for a rate vector r, denote by r | e the restriction of r to sessions traversing e.
We will sometimes abuse notation by writing rAQ

and rDQ
to denote the restriction

of rQ to active and done sessions, respectively, in Q.
Define the share-an-edge relation on S, denoted ‖S , as follows. For any pair of

sessions Si, Sj ∈ S, Si ‖S Sj if Si and Sj traverse a common edge. The transitive
closure of ‖S is an equivalence relation on S, which partitions S into equivalence
classes S1, . . . ,Sc, called clusters, where 1 ≤ c ≤ n. The session dependency d is the
maximum size of a cluster. Call a cluster Sj an active cluster in state Q if it contains
at least one session that remains active in Q.

The set of active edges of the cluster Sj in state Q, denoted AEQ(Sj), contains all
edges of the network traversed by at least one active session in Q that belongs to Sj .
The set of active edges of the network in state Q, denoted AEQ, contains all edges
of the network traversed by at least one active session in Q. The residual capacity of
edge e in state Q, denoted residQ(e), is the difference between the capacity of e and
the total rate of sessions traversing e in Q.
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The set of edges with minimum fair share for cluster Sj in state Q is defined as
MFSEQ(Sj) = {e ∈ AEQ(Sj) | FSQ(e) ≤ FSQ(e′) for each e′ ∈ AEQ(Sj)}. The
set of edges with minimum fair share in state Q, denoted MFSEQ, is defined to be
MFSEQ =

⋃
1≤j≤c MFSEQ(Sj).

An execution fragment α of Alg is a contiguous subsequence of some execution of
Alg starting with the state first(α); if α is finite, it ends with the state last(α). For
each execution (resp., execution fragment) α of Alg, the schedule σ(α) is the sequence
of session indices in α. If α is a finite execution fragment and α′ is any execution
fragment such that first(α′) = last(α), then α · α′ is the concatenation of α and α′,
eliminating the duplicate occurrence of last(α) = first(α′).

For any index l ≥ 1, the preceding state of Ql in execution α, denoted
←−
Ql , is the

state Ql−1; for any index l ≥ 0, the successor state of Ql in α, denoted
−→
Ql , is the state

Ql+1. For any indices l and l′ > l, write Ql
α−→ Ql′ to denote that Ql precedes Ql′ ;

moreover, write Ql
α−→ Ql′ if additionally Ql and Ql′ may coincide. For any index

l ≥ 1, we will sometimes abuse language and say that session l is scheduled in front
of state Ql. For any state Q, denote iQ the session scheduled in front of Q. The least

schedule for Ql in α, denoted l̂, is the index of the earliest state following Ql by which
all sessions that remain active in Ql have been scheduled at least once, or infinite if
no such state exists. Define l̂ | e in the natural way.

4. Bottleneck algorithms. In this section, we present basic properties of bot-
tleneck algorithms, which will be useful in what follows. These properties refer to an
execution α = Q0, i1, Q1, . . . , il, Ql, . . . of any bottleneck algorithm. To prove these
properties, some more general properties are also proved in section 4.1.

4.1. Preliminaries. We study how several quantities of interest change during
an execution. We first state an immediate consequence of the definitions of allotted
capacity and execution; we then prove a similar simple fact that will be helpful in
later proofs.

Lemma 4.1. For each integer l ≥ 1, and for any edge e,

allotQl
(e) = allotQl−1

(e) +
∑

i∈(AQl−1
\AQl

)|e
rQl−1

(i).

Lemma 4.2. For any integers l0 and l, 0 ≤ l0 < l, and for any edge e,∑
i∈(AQl0

\AQl
)|e

rQl0
(i) = allotQl

(e) − allotQl0
(e).

Proof. Clearly, i ∈ (AQl0
\ AQl

) | e if and only if i ∈ (DQl
\ DQl0

) | e. Hence, it
follows that ∑

i∈(AQl0
\AQl

)|e
rQl

(i)

=
∑

i∈(DQl
\DQl0

)|e
rQl

(i)

=
∑

i∈DQl
|e

rQl
(i) −

∑
i∈DQl0

|e
rQl

(i) (since DQl0
⊆ DQl

)

= allotQl
(e) − allotQl0

(e),
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as needed.

We continue to prove that the saturation of an edge depends in a critical way on
how rates of sessions traversing the edge compare to each other.

Lemma 4.3. For any integer l0 ≥ 0, assume that edge e is active in state Ql0 .
Then, for each integer l ≥ l0, the following hold:

(1) if for each session i ∈ AQl0
| e, rQl

(i) = FSQl0
(e), then e is saturated in Ql;

(2) if for each session i ∈ AQl0
| e, rQl

(i) < FSQl0
(e), then e is not saturated

in Ql;
(3) there exists no session k ∈ AQl0

| e such that rQl
(k) > FSQl0

(e), while for
each session i ∈ AQl0

| e, i �= k, rQl
(i) ≥ FSQl0

(e).

Proof. We start by proving (1). Clearly,

∑
i∈AQl

|e
rQl

(i)

=
∑

i∈AQl0
|e

rQl
(i) −

∑
i∈(AQl0

\AQl
)|e

rQl
(i) (since AQl

| e ⊆ AQl0
| e)

=
∑

i∈AQl0
|e

FSQl0
(e) −

(
allotQl

(e) − allotQl0
(e)

)
(by assumption and Lemma 4.2)

=
∣∣AQl0

| e
∣∣ · FSQl0

(e) − (allotQl
(e) − allotQl0

(e))

= c(e) − allotQl0
(e) − (allotQl

(e) − allotQl0
(e)) (by definition of fair share)

= c(e) − allotQl
(e),

as needed to establish that e is saturated in state Ql.
Condition (2) is proved in an almost identical way. (The only difference is

that now the assumption for (2) and Lemma 4.2 imply that
∑

i∈AQl0
|e rQl

(i) −∑
i∈(AQl0

\AQl
)|e rQl

(i) <
∑

i∈AQl0
|e FSQl0

(e) − (allotQl
(e) − allotQl0

(e).)

We finally prove (3). Assume otherwise; so, there exists some session k ∈ AQl0
| e

such that rQl
(k) > FSQl0

(e), while for each i ∈ AQl0
| e, i �= k, rQl

(i) ≥ FSQl0
(e).

Then

∑
i∈AQl

|e
rQl

(i)

=
∑

i∈AQl0
|e
rQl

(i) −
∑

i∈(AQl0
\AQl

)|e
rQl

(i) (since AQl
|e ⊆ AQl0

| e)

=
∑

i∈AQl0
|e
rQl

(i) − (allotQl
(e) − allotQl0

(e)) (by Lemma 4.2)

= rQl
(k) +

∑
i∈AQl0

|e,i 	=k

rQl
(i) − allotQl

(e) + allotQl0
(e)

>FSQl0
(e) +

∑
i∈AQl0

|e,i 	=k

FSQl0
(e)−allotQl

(e) + allotQl0
(e) (by assumption)
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=
∑

i∈AQl0
|e

FSQl0
(e) − allotQl

(e) + allotQl0
(e))

=
∣∣AQl0

| e
∣∣ · FSQl0

(e) − allotQl
(e) + allotQl0

(e)

= c(e) − allotQl0
(e) − allotQl

(e) + allotQl0
(e) (by definition of fair share)

= c(e) − allotQl
(e),

so that
∑

i∈AQl
|e rQl

(i) > c(e) − allotQl
(e). This is a contradiction.

The next claim follows directly from the definitions of bottleneck edge and fair
share.

Lemma 4.4. Let e and e′ be bottleneck edges for state Q such that (AQ | e)
⋂

(AQ | e′) �= ∅. Then FSQ(e) = FSQ(e′).

The following (easy to prove) claim is a direct consequence of the definitions of a
bottleneck edge and a minimum fair share edge for some particular cluster.

Lemma 4.5. For any state Q and cluster Sj, consider an edge e ∈ MFSEQ(Sj).
Then e is a bottleneck edge for Q.

We are interested in algorithms for which a final state is reachable for each possible
execution. Bottleneck algorithms (whether conservative or optimistic) enjoy a related,
interesting property [15].

Proposition 4.6 (Hayden [15]). Assume that Alg is a bottleneck algorithm.
Then, for any reachable final state Q of Alg, rQ is a max-min fair rate vector.

Proposition 4.6 implies that in order to show that any given bottleneck algorithm
computes the max-min fair rate vector, it suffices to prove that it reaches a final state.
We continue with an interesting monotonicity property of fair share.

Lemma 4.7 (Afek, Mansour, and Ostfeld [1]). Assume that Alg is a bottleneck
algorithm. Then, for each integer l ≥ 1 and for any edge e ∈ AEQl

, FSQl
(e) ≥

FSQl−1
(e).

4.2. Properties of bottleneck edges. We strengthen Lemma 4.7 for the spe-
cial case of bottleneck edges. We present a collection of invariant properties for any
edge that becomes bottleneck in the course of an execution of a bottleneck algorithm
(whether conservative or optimistic).

Proposition 4.8 (invariants of bottleneck edge). Assume that Alg is bottleneck.
For any integer l0 ≥ 0, fix any edge e that is a bottleneck edge for Ql0 . Then, for any
integer l ≥ l0 such that e ∈ AEQl

, the following hold:

(1) FSQl
(e) = FSQl0

(e);
(2) e is a bottleneck edge for Ql;
(3) for any session i ∈ (AQl0

\ AQl+1
) | e, rQl

(i) = FSQl0
(e).

Roughly speaking, Proposition 4.8 establishes that no change in the fair share of
an active edge occurs once the edge has become bottleneck, so that the edge remains
bottleneck; moreover, the final rate of any active session traversing it is equal to this
constant fair share.

Proof. The proof is by induction on l. For the basis case where l = l0, condition (1)
holds trivially, condition (2) holds by assumption, and condition (3) holds by definition
of a bottleneck algorithm. Assume inductively that for some integer l ≥ l0, the claims
hold for any integer l′ where l0 ≤ l′ < l. For the induction step, we show that the
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claims hold for integer l. We start by proving condition (1). Clearly,

FSQl
(e)

=
c(e) − allotQl

(e)

|AQl
| e|

=
c(e) − allotQl−1

(e) −
∑

i∈(AQl−1
\AQl

)|e rQl−1
(i)

|AQl
| e| (by Lemma 4.1)

=

∣∣AQl−1
| e

∣∣ FSQl−1
(e) −

∑
i∈(AQl−1

\AQl
)|e rQl−1

(i)

|AQl
| e| (by definition of fair share).

Consider any session i ∈ (AQl−1
\ AQl

) | e. Since AQl−1
⊆ AQl0

, this implies that
i ∈ (AQl0

\ AQl
) | e, so that by the induction hypothesis (condition (3)), rQl−1

(i) =
FSQl0

(e). So,

FSQl
(e)

=

∣∣AQl−1
| e

∣∣ FSQl−1
(e) −

∑
i∈(AQl−1

\AQl
)|e FSQl0

(e)

|AQl
| e|

=

∣∣AQl−1
| e

∣∣ FSQl0
(e) −

∑
i∈(AQl−1

\AQl
)|e FSQl0

(e)

|AQl
| e| (by the induction hypothesis)

=

∣∣AQl−1
| e

∣∣ FSQl0
(e) −

∣∣(AQl−1
\ AQl

) | e
∣∣ FSQl0

(e)

|AQl
| e|

=
(
∣∣AQl−1

| e
∣∣− ∣∣(AQl−1

\ AQl
) | e

∣∣)FSQl0
(e)

|AQl
| e|

=
|AQl

| e| FSQl0
(e)

|AQl
| e|

= FSQl0
(e),

which completes the proof of condition (1).
We now prove condition (2). Take any session i ∈ AQl

| e. Clearly, i ∈ AQl0
| e.

Since e is a bottleneck edge for Ql0 , FSQl0
(e) = MFSQl0

(i) = mine′∈Si FSQl0
(e′).

Consider any edge e′ ∈ Si. Since i ∈ AQl
| e, it follows that e′ ∈ AEQl

; thus,
by Lemma 4.7, FSQl

(e′) ≥ FSQl0
(e′). Since e′ was chosen arbitrarily, this implies

that mine′∈Si FSQl
(e′) ≥ mine′∈Si FSQl0

(e′). It follows that mine′∈Si FSQl
(e′) ≥

FSQl0
(e). By condition (1) above, this implies that mine′∈Si FSQl

(e′) ≥ FSQl
(e).

Since e ∈ Si, mine′∈Si
FSQl

(e′) ≤ FSQl
(e). It follows that FSQl

(e) = mine′∈Si
FSQl

(e′).
Since i was chosen arbitrarily, this implies that e is a bottleneck edge for Ql, which
completes the proof of condition (2).

We finally prove condition (3). Take any session i ∈ (AQl0
\ AQl+1

) | e. Since
i �∈ AQl+1

, there exists some integer l′, l0 < l′ ≤ l, such that i ∈ Term(Ql′). Since
Term is bottleneck, there exists some edge e′ ∈ Si such that e′ is a bottleneck edge
for Ql′ , and rQl′ (i) = FSQl′ (e

′).
Either l0 < l′ < l or l′ = l. If l0 < l′ < l, then the induction hypothesis

(condition (2)) implies that e is a bottleneck edge for Ql′ ; if, on the other hand, l′ = l,
then condition (2) above implies that e is a bottleneck edge for Ql′ . Thus, in either
case, e is a bottleneck edge for Ql′ . Since both e and e′ are bottleneck edges for state
Q′

l and Si ∈ (AQl′ | e)
⋂

(AQl′ | e′), Lemma 4.4 implies that FSQl′ (e) = FSQl′ (e
′).
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Since rQl′ (i) = FSQl′ (e
′), this implies that rQl′ (i) = FSQl′ (e). Since l ≥ l′ and

i ∈ Term(Ql′), rQl
(i) = rQl′ (i). Either l0 < l′ < l or l′ = l. If l0 < l′ < l, then

the induction hypothesis (condition (1)) implies that FSQl′ (e) = FSQl0
(e); if, on the

other hand, l′ = l, then condition (1) implies that FSQl′ (e) = FSQl0
(e). Thus, in

either case, FSQl′ (e) = FSQl0
(e). Hence, it follows that rQl

(i) = FSQl0
(e), which

completes the proof of condition (3).

4.3. Properties of minimum fair share edges. We start by proving a simple
invariant property for any edge that becomes a minimum fair share edge for any
particular cluster in the course of an execution of a bottleneck algorithm. We establish
that the edge remains a minimum fair share edge (as long as it is active).

Proposition 4.9 (invariant of minimum fair share edge). Assume that Alg is
bottleneck. For any integer l0 ≥ 0, fix any edge e ∈ MFSEQl0

(Sj) for some active
cluster Sj in Ql0 . Then, for any integer l ≥ l0 such that e ∈ AEQl

, e ∈ MFSEQl
(Sj).

Proof. Consider any edge e′ ∈ AEQl
(Sj); clearly, e′ ∈ AEQl0

(Sj). Since e ∈
MFSEQl0

(Sj), it follows that FSQl0
(e) ≤ FSQl0

(e′). By Lemma 4.5, e is a bottleneck
edge for Ql0 ; thus, by Proposition 4.8 (condition (2)), FSQl

(e) = FSQl0
(e). By

Lemma 4.7, FSQl0
(e′) ≤ FSQl

(e′). So, FSQl
(e) ≤ FSQl

(e′). Since e′ is arbitrary, it
follows that e ∈ MFSEQl

(Sj).
Similarly to Proposition 4.8, Proposition 4.9 holds for any bottleneck algorithm

(whether conservative or optimistic) as well. However, the rest of the properties
established in this section require the assumption of optimistic, bottleneck algorithms.
We first prove a safety property for any edge that becomes a minimum fair share edge
for any particular cluster during the execution of an optimistic, bottleneck algorithm.

Proposition 4.10 (safety property of minimum fair share edge). Assume that
Alg is optimistic and bottleneck. For any integer l0 ≥ 0, fix any edge e ∈ MFSEQl0

(Sj)
for some active cluster Sj in Ql0 . Consider any session i ∈ AQl0

| e such that
rQl0

(i) ≥ FSQl0
(e). Then, for any integer l ≥ l0, rQl

(i) ≥ FSQl0
(e).

Proposition 4.10 considers any (active) session traversing a minimum fair share
edge; roughly speaking, it establishes that no decrease to its rate below this particular
minimum fair share is possible if the rate is initially no less than the minimum fair
share.

Proof. The proof is by induction on l. For the basis case where l = l0, the
claim holds by our assumption. Assume inductively that for some integer l > l0,
rQl−1

(i) ≥ FSQl0
(e). For the induction step, we show that rQl

(i) ≥ FSQl0
(e).

Assume first that rQl
(i) ≥ rQl−1

(i). By the induction hypothesis, this implies
that rQl

(i) ≥ FSQl0
(e), as needed. So assume that rQl

(i) < rQl−1
(i). By definition

of execution and update operation, this implies that Si intersects the session Sil ,
scheduled in front of state Ql; moreover, rQl

(i) = rQl
(il). Let e′ be an edge such that

ΔQl−1
(il) = ΔQl−1

(il, e
′). We prove the following.

Lemma 4.11. rQl
(il) ≥ FSQl

(e′).
Proof. Assume otherwise; so, rQl

(il) < FSQl
(e′). By definition of the update

operation, e′ is saturated in Ql; moreover, for any session k ∈ AQl0
| e′, rQl

(il) ≥
rQl

(k). Thus, FSQl
(e′) > rQl

(k). Lemma 4.3 (condition (2)) implies that e′ is not
saturated in Ql. This is a contradiction.

Since rQl
(i) = rQl

(il), Lemma 4.11 implies that rQl
(i) ≥ FSQl

(e′). Also, by
Lemma 4.7, FSQl

(e′) ≥ FSQl0
(e′), so that rQl

(i) ≥ FSQl0
(e′). Since e ∈ MFSEQl0

(Sj),
FSQl0

(e′) ≥ FSQl0
(e). It follows that rQl

(i) ≥ FSQl0
(e), as needed.

The next claim complements Proposition 4.10 by giving a corresponding liveness
property.
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Proposition 4.12 (liveness property of minimum fair share edge). Assume that
Alg is optimistic and bottleneck. For any integer l0 ≥ 0, fix any edge e ∈ MFSEQl0

(Sj)
for some active cluster Sj in Ql0 , such that l̂0 | e < ∞. Consider any session

i ∈ AQl0
| e. Then, for any integer l ≥ l̂0 | e, rQl

(i) ≥ FSQl0
(e).

Proposition 4.12 considers any active session traversing a minimum fair share
edge; roughly speaking, it establishes that eventually, once all active sessions travers-
ing this minimum fair share edge have been scheduled at least once, the rate of the
session will be no less than this particular minimum fair share.

Proof. We start with an informal outline of the proof. We consider the point
of the execution following state Ql0 where session i is scheduled; clearly, that point
comes no later than when all sessions have been scheduled at least once. We establish
that at this point, the rate of Si is no less than the fair share of edge e in state Ql0 .
We also argue that e remains a minimum fair share edge beyond state Ql0 ; this allows
us to exploit the safety property of minimum fair share edges in order to argue that
the rate of Si will subsequently remain no less than the fair share of e in state Ql0 .
We now present the details of the formal proof.

Since e ∈ MFSEQl0
(Sj), Lemma 4.5 implies that e is a bottleneck edge for state Ql0 .

Since i ∈ AQl0
| e, it follows by definition of l̂0 | e that there exists a least index l′, l0 <

l′ ≤ l̂0 | e, such that i is scheduled in front of state Ql′ . We proceed by case analysis.

1. Assume first that i is not active in state Ql′ . Since i ∈ AQl0
, there exists

an index l′′, l0 ≤ l′′ < l′, such that i ∈ Term(Ql′′). Since Term is bottle-
neck, it follows that there exists some edge e′ traversed by session i that is
a bottleneck edge for state Ql′′ , and rQl′′ (i) = FSQl′′ (e

′). Since i ∈ AQl′′

and i traverses e, e is an active edge at Ql′′ . By Proposition 4.8 (conditions
(1) and (2)), FSQl′′ (e) = FSQl0

(e), and e is a bottleneck edge for Ql′′ . By
Lemma 4.4, FSQl′′ (e

′) = FSQl′′ (e), so that FSQl′′ (e
′) = FSQl0

(e). It follows

that rQl′′ (i) = FSQl0
(e). Now take any integer l ≥ l̂0 | e. Clearly, l ≥ l′′.

Since i ∈ Term(Ql′′), rQl
(i) = rQl′′ (i) = FSQl0

(e), which establishes the
claim in this case.

2. Assume now that i is active in state Ql′ . Since i traverses edge e, it follows
that e is active in state Ql′ . By Proposition 4.8 (conditions (1) and (2)),
FSQl′ (e) = FSQl0

(e), and e is a bottleneck edge for Ql′ . We prove the
following.
Lemma 4.13. rQl′ (i) ≥ FSQl0

(e).
Proof. Assume, by way of contradiction, that rQl′ (i) < FSQl0

(e). Let e′ be an
edge such that ΔQl′ (i) = ΔQl′ (i, e

′). By definition of the update operation,
e′ is saturated in state Ql′ . Since e is a bottleneck edge for state Ql′ , and i
traverses both e and e′, FSQl′ (e) ≤ FSQl′ (e

′). Since FSQl′ (e) = FSQl0
(e),

this implies that FSQl0
(e) ≤ FSQl′ (e

′). Since rQl′ (i) < FSQl0
(e), it follows

that rQl′ (i) < FSQl′ (e
′). By definition of the update operation, for any

session k ∈ AQl′ | e, rQl′ (k) ≤ rQl′ (i), so that rQl′ (k) < FSQl′ (e
′). It follows

by Lemma 4.3 (condition (2)) that e′ is not saturated in state Ql′ . This is a
contradiction.
Now take any integer l ≥ l̂0 | e. Clearly, l ≥ l′. Since e is a minimum fair
share edge for Ql0 , Proposition 4.9 implies that e is a minimum fair share
edge for Ql′ as well. Moreover, by Lemma 4.13, rQl′ (i) ≥ FSQl0

(e). Since
FSQl′ (e) = FSQl0

(e), this implies that rQl′ (i) ≥ FSQl′ (e). It follows by
Proposition 4.10 (taking l′ for l0) that rQl

(i) ≥ FSQl0
(e), which establishes

the claim in this case.
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The proof of Proposition 4.12 is now complete.

4.4. Termination properties. The first property considers active sessions in
any particular cluster that traverse a minimum fair share edge; it is established that
once each such session has been scheduled at least once, all of these sessions must
have become done.

Proposition 4.14 (termination of all sessions). Assume that Alg is optimistic
and bottleneck. For any integer l0 ≥ 0, fix any edge e ∈ MFSEQl0

(Sj) for some active
cluster Sj in Ql0 such that l̂0 | e < ∞. Then, for any session i ∈ AQl0

| e, i ∈ D −→
Q

l̂0|e
.

Proof. We start with an informal outline of the proof. We consider any session
active in state Ql0 , and we argue that after all sessions have been scheduled at least
once, the session will receive a rate equal to the fair share of e in Ql0 . We will exploit
the fact that e is a bottleneck edge for Ql0 in order to argue that e remains bottleneck
subsequently, and that its fair share does not change. Since Alg is a bottleneck
algorithm, this will be sufficient for deducing that the session has reached its final
rate. We now present the details of the formal proof.

Fix any session i ∈ AQl0
| e. We start by proving the following.

Lemma 4.15. rQ
l̂0|e

(i) = FSQl0
(e).

Proof. Assume, by way of contradiction, that rQ
l̂0|e

(i) �= FSQl0
(e). By Proposi-

tion 4.12, rQ
l̂0|e

(i) ≥ FSQl0
(e). It follows that rQ

l̂0|e
(i) > FSQl0

(e). We proceed by

case analysis.
Assume first that there exists no session k ∈ AQl0

| e with k �= i; thus, AQl0
| e =

{i}. Denote by Ql the latest state in execution α, such that Ql0
α−→ Ql

α−→ Ql̂0|e,

and AQl
�= ∅. Thus, AQl

| e = AQl0
| e and allotQl

(e) = allotQl0
(e). Clearly,

∑
k∈AQl

|e
rQl

(k)

= rQl
(i) (since AQl0

| e = {i})
= rQ

l̂0|e
(i) (by definition of state Ql)

> FSQl0
(e) (by assumption)

= c(e) − allotQl0
(e) (by definition of fair share and since

∣∣AQl0
| e

∣∣ = 1)

= c(e) − allotQl
(e).

This is a contradiction.
Assume now that there exists some session k ∈ AQl0

| e with k �= i. By Propo-
sition 4.12, rQ

l̂0|e
(k) ≥ FSQl0

(e). Together with rQ
l̂0|e

(i) > FSQl0
(e), this implies a

contradiction to Lemma 4.3 (condition (3)), and the proof is now complete.
We continue with the proof of Proposition 4.14. In case i ∈ DQl

for some state Ql

in α such that Ql0
α−→ Ql

α−→ Ql̂0|e, the definition of execution implies that i ∈ D −→
Q

l̂0|e
.

So, assume that for each state Ql in execution α such that Ql0
α−→ Ql

α−→ Ql̂0|e, i ∈
AQl

. Denote by Ql the latest state in execution α such that both Ql0
α−→ Ql

α−→ Ql̂0|e
and rQl

(i) = rQ
l̂0|e

(i).

Since e ∈ MFSEQl0
, Lemma 4.5 implies that e is a bottleneck edge for Ql0 . Since

i ∈ AQl
and i traverses edge e, it follows that AQl

| e �= ∅. Hence, Proposition 4.8
(conditions (1) and (2)) implies that FSQl

(e) = FSQl0
(e), and e is a bottleneck edge

for Ql. By Lemma 4.15, rQ
l̂0|e

(i) = FSQl0
(e). It follows that rQl

(i) = FSQl
(e).
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In total, e is a bottleneck edge for state Ql, traversed by session i for which

rQl
(i) = FSQl

(e). Since Alg is bottleneck, it follows that i ∈ D−→
Ql

. Since Ql →
−→
Ql̂0|e,

it follows that i ∈ D −→
Q

l̂0|e
.

The final termination property is a direct consequence of Proposition 4.14. In
essence, we establish that scheduling any sequence of sessions that includes all cur-
rently active ones must result in finalizing the rate of at least one active session per
cluster.

Proposition 4.16 (termination of at least one session per cluster). Assume
that Alg is optimistic and bottleneck. For any integer l0 ≥ 0 such that AQl0

�= ∅ and

l̂0 < ∞, fix any active cluster Sj in Ql0 . Then there exists some session Si ∈ Sj∩AQl0

such that Si ∈ D−→
Q

l̂0

.

Proof. Since Sj is active in QAQl0
, it follows that MFSEQl0

(Sj) �= ∅. Fix any

edge e ∈ MFSEQl0
(Sj), and consider any session i ∈ AQl0

| e. By Proposition 4.14,
i ∈ D−→

Q
l̂0

.

5. Upper bounds.

5.1. Oblivious algorithms. This section presents the algorithm RoundRobin
and shows the following.

Theorem 5.1 (upper bound for oblivious algorithms). RoundRobin computes the
max-min fair rate vector within dn

2 + n
2 update operations.

The scheduler of RoundRobin conducts scheduling rounds. In each round, each of
the n sessions is scheduled in round-robin order. Moreover, RoundRobin is bottleneck.
By definition of RoundRobin, each session is scheduled once in each round. Thus,
Proposition 4.16 implies that at least one session per cluster becomes done in each
round. Since each cluster contains at most d sessions, all sessions are done after d
rounds, whence the network enters a final state. So, Proposition 4.6 immediately
implies that RoundRobin computes the max-min fair rate vector.

We now establish an upper bound on the convergence complexity of RoundRobin.
Since at least one session per cluster becomes done in each round, at most |Sj |− l+1
update operations are executed in round l, 1 ≤ l ≤ |Sj |, on sessions in any cluster Sj .
Summing up over all clusters and rounds yields that

URoundRobin ≤
∑
j≥1

∑
1≤l≤d

max {0, (|Sj | − l + 1)}

≤
∑
j≥1

∑
1≤l≤|Sj |

(|Sj | − l + 1)

=
∑
j≥1

|Sj |(Sj + 1)

2

≤ dn

2
+

n

2
.

RoundRobin extends naturally to a class of bottleneck algorithms d-Epoch. The
scheduler d-EpochSched = d-EpochSched1 . . . d-EpochSchedd d-EpochSched′ of algo-
rithm d-Epoch is a sequence such that for each index r, 1 ≤ r ≤ d, all sessions are
included in d-EpochSchedr. An argument identical to the one applied to RoundRobin
immediately implies the following.

Theorem 5.2 (upper bound for oblivious algorithms). d-Epoch computes the
max-min fair rate vector within dn

2 + n
2 update operations.
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5.2. Nonoblivious algorithms. This section presents the algorithm Linear and
shows the following.

Theorem 5.3 (upper bound for nonoblivious algorithms). Linear computes the
max-min fair rate vector within exactly n update operations.

The scheduler of Linear maintains an active edge of minimum fair share and
schedules all active sessions traversing it in any order. Once it finishes, it chooses any
other (active) edge of minimum fair share, and so on. Moreover, Linear is bottleneck.

Consider any state Ql0 and an arbitrary edge e ∈ MFSEQl0
. Clearly, e ∈

MFSEQl0
(Sj) for some cluster Sj . By definition of Linear, each session traversing

e is scheduled exactly once, so that the state Ql̂0|e is reached; by Proposition 4.14,

each such session is done in state Ql̂0|e. It follows that all sessions eventually become

done and a final state is reached. Hence, Proposition 4.6 immediately implies that
Linear computes the max-min fair rate vector.

Linear incurs n update operations. Recall that all rates are initially zero. Since
all capacities exceed zero, all rates in a max-min fair rate vector exceed zero as well.
Since each update increases the rate of exactly one session, it follows that at least n
update operations are needed, so that UAlg ≥ n for every Alg. Thus, Linear is optimal.

6. Network construction. We present a generic, combinatorial construction
of a network associated with any sequence Seq = i1, i2, . . . , where for each l ≥ 1,
il ∈ [n]. For any sequence Seq, denote |Seq| to be the length of Seq; an infinite
sequence has infinite length. For a sequence Seq of session indices, and for any set
of sessions S ′ ⊆ S, denote by Seq | S ′ the restriction of Seq to indices of sessions
in S ′. Denote by Seq ↑ S ′ the shortest prefix of Seq | S ′ that includes the indices
of all sessions in S ′, in the order they appear in this prefix of Seq | S ′ and with no
repetitions; in case no such prefix exists, Seq ↑ S ′ results from Seq | S ′ by removing
repetitions, while, however, preserving the order of the indices. Denote by Seq ↓ S ′

the remaining suffix of Seq | S ′. For example, if Seq = 1, 5, 4, 2, 1, 3, 3, 3, 5, 4 and
S ′ = {1, 3, 4} ⊂ {1, 2, 3, 4, 5}, then Seq | S ′ = 1, 4, 1, 3, 3, 3, 4, Seq ↑ S ′ = 1, 4, 3, and
Seq ↓ S ′ = 3, 3, 4.

Fix any even integer d, and choose any integer n that is a multiple of d.3 We
construct a network G = G(Seq) = (V (Seq) , E (Seq)), as a function of Seq, with a
set of sessions S = {S1, S2, . . . , Sn} laid out on G. For assigning capacities to network
edges, we will use two (finite) sequences of real numbers, b and p (for bottom and
potential, resp.), each of length d

2 , defined recursively as follows.
• b0 = p0 = 0, b1 = 0, and p1 = 2p for some integer p ≥ d;
• for each index r, 1 < r ≤ d

2 , br = br−1 + pr−1

2 and pr = pr−1

4 .
Partition S into n

d clusters S1,S2, . . . ,Sn/d so that for each j, 1 ≤ j ≤ n
d , Sj

contains sessions S(j−1)d+1, S(j−1)d+2, . . . , S(j−1)d+d; notice that |Sj | = d. For each
cluster Sj , we construct a network Gj = Gj (Seq | Sj) = (Vj (Seq | Sj) , Ej (Seq | Sj)),
with Sj laid out on Gj (Seq | Sj), so that

G (Seq) =

⎛
⎝ ⋃

1≤j≤n/d

Vj (Seq | Sj) ,
⋃

1≤j≤n/d

Ej (Seq | Sj)

⎞
⎠;

thus, each individual network Gj is a function of the sequence Seq | Sj , and the
network G is the resulting composition.

3Standard “padding” techniques can be used to handle the case where n is not a multiple of d.
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The construction of the network Gj proceeds in a sequence of d
2 epochs; in

epoch r, 1 ≤ r ≤ d
2 , the network G

(r)
j = (V

(r)
j , E

(r)
j ) is constructed, so that Gj =

(
⋃

1≤r≤d/2 V
(r)
j ,

⋃
1≤r≤d/2 E

(r)
j ); thus, the network Gj is the composition of the indi-

vidual networks G
(r)
j .

For each r, 1 ≤ r ≤ d
2 , the construction of G

(r)
j uses br and pr as parameters. It

also uses the following sets and sequences:

• a set of indices I(r)
j ⊆ Sj such that |I(r)

j | = d− 2(r − 1);

• a sequence Seq
(r)
j , which is a suffix of Seq | Sj ;

• a set {i(r)f , i
(r)
l } ⊆ I(r)

j ; roughly speaking, i
(r)
f and i

(r)
l will be defined to be

the first and last indices, respectively, of Seq
(r)
j ↑ I(r)

j , or some of them will

be set to arbitrary indices from I(r)
j in case |Seq

(r)
j ↑ I(r)

j | < 2.
These sets and sequences are inductively defined as follows. For the basis case where

r = 1, I(1)
j := Sj , Seq

(1)
j := Seq | Sj , and the set {i(1)f , i

(1)
l } is defined as follows:

(1) First, assume that Seq
(1)
j = λ, the empty sequence, so that Seq

(1)
j ↑ I(1)

j = λ;

then fix i
(1)
f and i

(1)
l to be any arbitrary indices in I(1)

j .

(2) Now assume that Seq
(1)
j �= λ, so that Seq

(1)
j ↑ I(1)

j �= λ; there are two cases
to consider.
(a) First, take |Seq

(1)
j ↑ I(1)

j | = 1; then i
(1)
f := Seq

(1)
j ↑ I(1)

j , and fix i
(1)
l to

be any arbitrary index in I(1)
j \ {i(1)f }.

(b) Finally, take |Seq
(1)
j ↑ I(1)

j | > 1, so that Seq
(1)
j ↑ I(1)

j = if , . . . , il; then

i
(1)
f := if and i

(1)
l := il.

Informally, I(1)
j contains indices of all sessions in cluster Sj , while Seq

(1)
j is the

restriction of Seq to indices of sessions in cluster Sj ; moreover, i
(1)
f and i

(1)
l are the

indices of sessions in cluster Sj appearing first and last, respectively, in Seq
(1)
j ↑ I(1)

j

or some of them will be set to be arbitrary indices if Seq
(1)
j ↑ I(1)

j misses any such
indices.

Assume inductively that we have defined I(r−1)
j , Seq

(r−1)
j , and {i(r−1)

f , i
(r−1)
l }

for some integer r, where 2 ≤ r ≤ d
2 . For the induction step, we show how to

construct I(r)
j , Seq

(r)
j , and {i(r)f , i

(r)
l }. Define I(r)

j := I(r−1)
j \{i(r−1)

f , i
(r−1)
l }, Seq

(r)
j :=

(Seq
(r−1)
j ↓ I(r−1)

j ) | I(r)
j , and the set {i(r)f , i

(r)
l } is defined through a case analysis

identical to the one for the basis case.
(1) Assume first that Seq

(r)
j = λ, so that Seq

(r)
j ↑ I(r)

j = λ; then fix i
(r)
f , i

(r)
l to

be any arbitrary indices in I(r)
j .

(2) Now assume that Seq
(r)
j �= λ, so that Seq

(r)
j ↑ I(r)

j �= λ; there are two cases
to consider.
(a) First, take |Seq

(r)
j ↑ I(r)

j | = 1; then i
(r)
f := Seq

(r)
j ↑ I(r)

j , and fix i
(r)
l to

be any arbitrary index in I(r)
j ;

(b) Finally, take |Seq
(r)
j ↑ I(r)

j | > 1, so that Seq
(r)
j ↑ I(r)

j = if , . . . , il; then

i
(r)
f := if and i

(r)
l := il.

Informally, I(r)
j is obtained by removing i

(r−1)
f and i

(r−1)
l from I(r−1)

j , while Seq
(r)
j

results from Seq
(r−1)
j by chopping off its shortest prefix that includes all indices in
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I(r−1)
j and restricting the remaining suffix to indices in I(r)

j ; moreover, i
(r)
f and i

(r)
l

are the indices of sessions in I(r)
j that appear first and last, respectively, in this suffix,

or some of them will be set to arbitrary indices in case this suffix misses any such
indices.

Since two different sessions are extracted from Sj in each of the d
2 epochs, all d

sessions in Sj will eventually be extracted. We now describe the construction of G
(r)
j ,

1 ≤ r ≤ d
2 :

• sessions i
(r)
f and i

(r)
l traverse some edge e

(r)
il

with c(e
(r)
il

) = 2br + pr

2 ;

• for each i ∈ I(r)
j \ {i(r)f , i

(r)
l }, sessions i

(r)
f and i traverse some edge e

(r)
i with

c(e
(r)
i ) = 2br + pr.

Informally, i
(r)
f shares an edge with every other session in I(r)

j ; the capacity of the

edge shared with i
(r)
l is the smallest, while all other capacities are equal. All other

sessions traverse only the edge shared with i
(r)
f . We finally state an easy to prove

property of the construction.
Lemma 6.1. For each integer r, where 1 < r ≤ d

2 , for each index r′ where

1 ≤ r′ < r, let e(r) and e(r′) be any edges in E
(r)
j and E

(r′)
j , respectively. Then

c(e(r)) > c(e(r′)).
Example. Fix d = 6 and choose n = 12. Consider the (infinite) elevator sequence

ElevSched = 1, 2, . . . , 11, 12, 12, 11, . . . , 2, 1, . . . , 1, 2, . . . , 11, 12, 12, 11, . . . , 2, 1, . . . .

We construct the network G = G (ElevSched) = (V (ElevSched) , E (ElevSched)) as
a function of ElevSched, with a set of sessions S = {S1, . . . , S12} laid out on G.
Partition S into 12

6 = 2 clusters S1 and S2, each containing six sessions, so that S1 =
{S1, . . . , S6} and S2 = {S7, . . . , S12}. Fix p = 10, so that b1 = 0 and p1 = 210 = 1024.

For the basis case where r = 1, which corresponds to the first epoch, I(1)
1 = S1,

and

ElevSched
(1)
1 = ElevSched | S1

= 1, 2, . . . , 6, 6, 5, . . . , 1, . . . , 1, 2, . . . , 6, 6, 5, . . . , 1, . . . .

Thus, ElevSched
(1)
1 ↑ S(1)

1 = 1, 2, . . . , 6, so that i
(1)
f = 1 and i

(1)
l = 6. We continue

to describe the construction of the network G
(1)
1 :

• sessions 1 and 6 traverse edge e
(1)
6 with c(e

(1)
6 ) = 2b1 + p1

2 = 512;

• for each i ∈ {2, 3, 4, 5}, sessions 1 and i traverse e
(1)
i with c(e

(1)
i ) = 2b1 + p1 =

1024.
The construction of the network G

(1)
2 is similar; it can be found in Figure 1. We

proceed to the case r = 2, corresponding to the second epoch, where I(2)
1 = I(1)

1 \
{1, 6} = {2, 3, 4, 5} and

ElevSched
(2)
1 =

(
ElevSched

(1)
1 ↓ I(1)

1

)
| I(2)

1

= 5, 4, 3, 2, 2, 3, 4, 5, . . . , 5, 4, 3, 2, 2, 3, 4, 5, . . . .

Thus, ElevSched
(2)
1 ↑ I(2)

1 = 5, 4, 3, 2, so that i
(2)
f = 5 and i

(2)
l = 2. We continue to

describe the construction of G
(2)
1 :

• sessions 5 and 2 traverse edge e
(2)
2 with c(e

(2)
2 ) = 2b2 + p2

2 = 1152;
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Fig. 1. The network G(ElevSched).

• for each i ∈ {3, 4}, sessions 5 and i traverse edge e
(2)
i with c(e

(2)
i ) = 2b2 + p2 =

1280.

The construction of the network G
(2)
2 is similar; it can be found in Figure 1. We

proceed to the case r = 3, corresponding to the third epoch, where I(3)
1 = I(2)

1 \
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{2, 5} = {3, 4} and

ElevSched
(3)
1 =

(
ElevSched

(2)
1 ↓ I(2)

1

)
| I(3)

1

= 3, 4, 4, 3, . . . , 3, 4, 4, 3, . . . .

Thus, ElevSched
(3)
1 ↑ I(3)

1 = 3, 4, so that i
(3)
f = 3 and i

(3)
l = 4. We continue to describe

the construction of G
(3)
1 :

• sessions 3 and 4 traverse edge e
(3)
4 with c(e

(3)
4 ) = 2b3 + p3

2 = 2 ·640+ 64
2 = 1312.

The construction of the network G
(3)
2 is similar; it can be found in Figure 1, which

also depicts the complete network G(ElevSched).

7. Lower bounds.

7.1. Oblivious algorithms. We present a lower bound of Ω(dn) on the con-
vergence complexity of any optimistic, oblivious, and bottleneck algorithm Alg =
〈Sched,Term〉 that computes the max-min fair rate vector. The proof uses the net-
work G (Sched) constructed in section 6. We start with two immediate technical
lemmas that quantify ΔQ(i, e) in case edge e is traversed by only two sessions that
remain active in state Q. (These lemmas will be used for Proposition 7.3.)

Lemma 7.1. For an edge e traversed only by sessions i, i′ ∈ AQ | e, ΔQ(i, e) =

c(e) − rQ(i) − min{ c(e)
2 , rQ(i′)}.

Since in the setting of Claim 7.1, c(e) − rQ(i) − rQ (i′) = residQ(e), Lemma 7.2
follows.

Lemma 7.2. For an edge e traversed only by sessions i, i′ ∈ AQ | e, ΔQ(i, e) ≥
residQ(e).

We restrict our attention to the execution α of Alg on the network G(Sched | Sj)
with any particular cluster Sj ; for notational simplicity, we shall abuse notation and
use G (Sched) to denote G(Sched | Sj) and S to denote Sj .

For an execution α, for any indices l1 and l2, 0 ≤ l1 ≤ l2, define the set S |α
(Ql1 , Ql2 ] ⊆ S to be S |α (Ql1 , Ql2 ] =

{
il | l1 < l ≤ l2 and il ∈ AQl1

}
; roughly

speaking, S |α (Ql1 , Ql2 ] contains indices of all sessions active in Ql1 that are scheduled
in front of any state following Ql1 and up to and including Ql2 . Notice that if l1 = l2,
S |α (Ql1 , Ql2 ] = ∅. For an execution α, for any index l1 ≥ 0, define the set S |α
(Ql1 ,∞) ⊆ S to be S |α (Ql1 ,∞) =

{
il | l1 < l and il ∈ AQl1

}
; roughly speaking,

S |α (Ql1 ,∞) contains indices of all sessions active in Ql1 that are scheduled in front
of any state following Ql1 . Define S |α (Ql1 , Ql2 ] | e and S |α (Ql1 ,∞) | e in the

natural way. Recall that for any state Ql, l̂ is the least integer l′ ≥ l such that
S |α (Ql, Ql′ ] = AQl

, or infinite if no such integer exists.
Define inductively the index sequence l0, l1, . . . as follows. For the basis case,

l0 = 0. Assume inductively that for any integer r ≥ 1, we have defined l1, . . . , lr−1. For

the induction step, define lr = l̂r−1. Define also the execution fragments α(1), α(2), . . . ,
where for any integer r ≥ 1, α(r) = Qlr−1 , . . . , ilr , Qlr . Call each α(r), r ≥ 1, an

execution epoch in α. Note that in case lr = ∞, for any integer r ≥ 1, α(r) is the
infinite suffix of α following state Qlr−1 . Thus, write α = α(1) · α(2) . . . . We remark
that in case α is infinite, the number of execution epochs in α can still be finite if
(and only if) there exists some integer r ≥ 0 such that lr = ∞. To simplify notation,
denote each state Qlr , r ≥ 0, as Q(r). Thus, Q(r) is the latest state in execution epoch
α(r) of α. (Note that Q(r) exists if and only if lr < ∞.)

The backbone of our analysis is a technical proposition (Proposition 7.3) that
describes the states of execution α. The first part of Proposition 7.3 (part (A)) deals
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with each state starting from Q(r−1), 1 ≤ r ≤ d
2 , such that not all active sessions

in
−→

Q(r−1) have yet been scheduled until this state. Thus, Q(r) would be the state
immediately following this sequence of states; we will later show that Q(r) is well
defined. Observe that the states considered in part (A) for any particular integer
r, 1 ≤ r ≤ d

2 , are precisely the states in execution epoch α(r) excluding state Q(r).

Part (B) explores properties of state Q(r).
Proposition 7.3 (properties of execution α). For each integer r, 1 ≤ r ≤ d

2 ,

the following hold for states in execution epoch α(r):

(A) (properties of states from Q(r−1) to
←−
Q(r)) Consider any state Q such that

Q(r−1) α−→ Q and A −→
Q(r−1) �⊆ S |α

(
Q(r−1), Q

]
. Then the following conditions

hold:
(1) for each session i ∈ A −→

Q(r−1) ,

rQ(i) =

{
br + pr

2 if i ∈ S |α
(
Q(r−1), Q

]
,

br−1 + pr−1

2 otherwise;

(2) for each session i ∈ A −→
Q(r−1) ,

FSQ(e
(r)
i ) =

{
br + pr

2 if i �∈
{
i
(r)
f , i

(r)
l

}
,

br + pr

4 if i = i
(r)
l ;

(3) for the edges of G(Sched), it holds, for Q �= Q(r−1), that

(a) edge e
(r)

i
(r)
l

is a bottleneck edge for state Q;

(b) for each session i ∈ A −→
Q(r−1) \ {i(r)f , i

(r)
l },

FSQ(e
(r)
i ) �= MFSQ(i

(r)
f ),

so that edge e
(r)
i is not a bottleneck edge for state Q;

(c) for any integer r′, 1 ≤ r′ < r, and for any edge e(r′) ∈ E(r′) (Sched)
traversed by session i ∈ A −→

Q(r−1) ,

FSQ(e(r′)) �= MFSQ(i),

so that edge e(r′) is not a bottleneck edge for state Q;
(d) for any integer r′, r < r′ ≤ d

2 , and for any edge e(r′) ∈ E(r′) (Sched)

traversed by session i ∈ A −→
Q(r−1) \ {i(r)f , i

(r)
l },

FSQ(e(r′)) �= MFSQ(i),

so that e(r′) is not a bottleneck edge for state Q;
(4) for each session i ∈ A −→

Q(r−1) , i /∈ Term(Q);

(5) for each session i ∈ A −→
Q(r−1) \S |α

(
Q(r−1), Q

]
scheduled in front of state−→

Q ,

ΔQ(i) =

{
pr

2 if i �= i
(r)
l ,

pr

4 otherwise.
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(B) (properties of state Q(r)) The following conditions hold for state Q(r):
(1) lr < ∞;
(2) for each session i ∈ A −→

Q(r−1) ,

rQ(r)(i) =

⎧⎨
⎩

br + pr

4 if i ∈
{
i
(r)
f , i

(r)
l

}
,

br + pr

2 if i ∈ A −→
Q(r−1) \

{
i
(r)
f , i

(r)
l

}
;

(3) for each session i ∈ A −→
Q(r−1) , i ∈ {i(r)f , i

(r)
l } if and only if i ∈ Term(Q(r));

(4) for each session i ∈ A −→
Q(r−1) \ {i(r)f , i

(r)
l } and for any integer r′, 1 ≤ r′ ≤

r, for any edge e
(r′)
i ,

(a) residQ(r)(e
(r′)
i ) ≥ pr

4 ;

(b) FS −→
Q(r)

(e
(r′)
i ) ≥ br + 3 pr

4 .

Proposition 7.3 deals mainly with sessions active in state
−→

Q(r−1) for any index r,
1 ≤ r ≤ d

2 . We start with an informal description of the conditions in part (A). Condi-
tion (A/1) determines rates of active sessions in state Q. Condition (A/2) determines

the fair shares of all edges in epoch r; condition (A/3) establishes that edge e
(r)

i
(r)
l

is the

only bottleneck edge for state Q. Condition (A/4) guarantees that no session is termi-
nated in state Q. Finally, condition (A/5) determines the increase in state Q for ses-

sions active in
−→

Q(r−1) that are not yet scheduled. We now continue with the conditions

in part (B). Condition (B/1) asserts that all active sessions in state
−→

Q(r−1) must be
scheduled in execution epoch α(r); condition (B/2) specifies their rates upon comple-
tion of α(r). Moreover, condition (B/3) determines which of these sessions are termi-
nated upon completion of α(r). Condition (B/4) provides lower bounds on the residual
capacity and fair share of some edges from previous epochs upon completion of α(r).

We note that conditions (B/1) and (B/3) will suffice by themselves to imply the
lower bound. However, the rather technical remaining conditions are necessary to
assume inductively in the proof of conditions (B/1) and (B/3). To simplify notation,

we will denote e
(r)

i
(r)
l

as e
(r)
l .

Proof. The proof is by induction on r. For the sake of shortening the proof, we
merge the proof for the basis case (where r = 1) and the proof for the induction step;
thus, the case r = 1 will be treated separately (where needed) along the proof of the
induction step.

We assume, as our induction hypothesis, that the claims hold for all integers less
than some fixed integer r, 1 ≤ r ≤ d

2 . Notice that if r = 1, the induction hypothesis
is empty. We proceed to the induction step, where we prove the claims for r.

Proof of part (A). The proof is by induction on Q. For the sake of shortening the
proof, we again merge the proof for the basis case (where Q = Q(r−1)) and the proof
for the induction step; thus, the case Q = Q(r−1) will be treated separately (where
needed) along the proof for the induction step (on states).

Fix any state Q such that Q(r−1) α−→ Q and A −→
Q(r−1) �⊆ S |α

(
Q(r−1), Q

]
, and

assume that for each state Q′ such that Q(r−1) α−→ Q′ α−→ Q, the claims of part (A)
hold for Q′; thus, we assume, as our induction hypothesis, that the claims of part (A)
hold for all states from Q(r−1) through but not including state Q. Notice that if
Q = Q(r−1), the induction hypothesis is empty. We now proceed with the induction
step, where we prove the claims for Q.

Proof of (A/1). There are two cases to consider.
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(1) Assume first that Q = Q(r−1). Then S |α
(
Q(r−1), Q

]
= ∅. In case r = 1, Q =

Q0, and condition (A/1) holds trivially since all session rates are initially zero
and b0 = p0 = 0. So assume r > 1. By the induction hypothesis of induction

on r (condition (B/3)), A −→
Q(r−1) = A −→

Q(r−2) \ {i(r−1)
f , i

(r−1)
l }. Hence, condition

(A/1) follows from the induction hypothesis of induction on r (condition
(B/2)).

(2) Now assume that Q �= Q(r−1). We proceed by case analysis on iQ (the session
scheduled in front of state Q).
(a) Assume first that iQ /∈ A −→

Q(r−1) . (Notice that this case need not be con-

sidered when r = 1, since all sessions are active in
−→
Q(0)= Q1.) Then

S |α
(
Q(r−1), Q

]
= S |α (Q(r−1),

←−
Q ]. Since, in addition, no session

rates change from
←−
Q to Q, the claim follows inductively. So we proceed

to the cases where iQ ∈ A −→
Q(r−1) .

(b) Next assume that iQ = i
(r)
f . There are two subcases to consider.

(i) First, take i
(r)
f �∈ S |α (Q(r−1),

←−
Q ]; that is, i

(r)
f has not been sched-

uled in front of any state between Q(r−1) and Q. Recall that i
(r)
f is

the session scheduled first (following state Q(r−1)) among active ses-

sions in
−→

Q(r−1); so, for each session i ∈ A −→
Q(r−1) , i �∈ S |α (Q(r−1), Q].

Thus, by the induction hypothesis of induction on states (condition
(A/1)), r←−

Q
(i) = br−1 + pr−1

2 = br (by recursive definition of br). In

particular, r←−
Q

(i
(r)
f ) = br. By the induction hypothesis of induction

on states (condition (A/5)), Δ←−
Q

(i
(r)
f ) = pr

2 . Thus, by the update

operation, rQ(i
(r)
f ) = r←−

Q
(i

(r)
f ) + Δ←−

Q
(i

(r)
f ) = br + pr

2 .

Since pr �= 0, it follows that for each session i ∈ A −→
Q(r−1) \ {i(r)f },

r←
Q

(i) < rQ(i
(r)
f ). Thus, by the update operation, rQ(i) = r←

Q
(i) =

br−1 + pr−1

2 . Since S |α (Q(r−1), Q] = {i(r)f }, it follows that for each

session i ∈ A −→
Q(r−1) ,

rQ(i) =

{
br + pr

2 if i ∈ S |α
(
Q(r−1), Q

]
,

br−1 + pr−1

2 otherwise.

(ii) Now take i
(r)
f ∈ S |α (Q(r−1),

←−
Q ]. Then S |α (Q(r−1), Q] =

S |α (Q(r−1),
←−
Q ]. Clearly, i

(r)
l �∈ S |α (Q(r−1),

←−
Q ], while i

(r)
f ∈

S |α (Q(r−1),
←−
Q ]. By construction of G(Sched), session i

(r)
f tra-

verses edge e
(r)
l with c(e

(r)
l ) = 2br + pr

2 , as does session i
(r)
l . By

the induction hypothesis of induction on states (condition (A/1)),

r←−
Q

(i
(r)
f ) = br + pr

2 , while r←−
Q

(i
(r)
l ) = br−1 + pr−1

2 = br. By

Lemma 7.1,

Δ←−
Q

(i
(r)
f , e

(r)
l )

= c(e
(r)
l ) − r←−

Q
(i

(r)
f ) − min

{
c(e

(r)
l )

2
, r←−

Q
(i

(r)
l )

}

= 2 br +
pr
2

−
(
br +

pr
2

)
− min

{
br +

pr
2
, br

}
= 0,
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so that Δ←−
Q

(i
(r)
f ) = 0. Thus, by the update operation, for each

session i ∈ A←
Q

, rQ(i) = r←−
Q

(i). By the induction hypothesis of

induction on states (condition (A/4)), it follows that A←
Q

= A −→
Q(r−1) .

Hence, the induction hypothesis of induction on states (condition
(A/1)) implies that for each session i ∈ A −→

Q(r−1) ,

rQ(i) =

{
br + pr

2 if i ∈ S |α
(
Q(r−1), Q

]
,

br−1 + pr−1

2 otherwise.

(c) Assume now that iQ �= i
(r)
f . There are two subcases to consider.

(i) First consider the case where iQ /∈ S |α (Q(r−1),
←−
Q ]. By the

induction hypothesis of induction on states (condition (A/1)), it
follows that r←

Q
(iQ) = br−1 + pr−1

2 = br; moreover, by condition

(A/5), Δ←
Q

(iQ) = pr

2 . Thus, by the update operation, rQ(iQ) =

r←−
Q

(iQ) + Δ←−
Q

(iQ) = br + pr

2 .

By induction hypothesis of induction on states (condition (A/1)),
it follows that for each session i ∈ A −→

Q(r−1) \ {iQ}, r←
Q

(i) ≤ br + pr

2 ;

hence, r←
Q

(i) ≤ rQ(iQ). Thus, by the update operation, rQ(i) =

r←
Q

(i). Since S |α (Q(r−1), Q] = S |α (Q(r−1),
←−
Q ]

⋃
{iQ}, the in-

duction hypothesis of induction on states (condition (A/1)) implies
now that for each session i ∈ A −→

Q(r−1) ,

rQ(i) =

{
br + pr

2 if i ∈ S |α
(
Q(r−1), Q

]
,

br−1 + pr−1

2 otherwise.

(ii) Finally, consider the case where iQ ∈ S |α (Q(r−1),
←−
Q ] \ {i(r)f }.

Then S |α (Q(r−1), Q] = S |α (Q(r−1),
←−
Q ]. Clearly, both iQ, i

(r)
f ∈

S |α (Q(r−1),
←−
Q ]. Thus, by the induction hypothesis of induc-

tion on states (condition (A/1)), r←−
Q

(iQ) = r←−
Q

(i
(r)
f ) = br + pr

2 .

By construction of G(Sched), c(e
(r)
iQ

) = 2 br + pr. It follows that

r←−
Q

(iQ) = r←−
Q

(i
(r)
f ) =

c(e
(r)
iQ

)

2 . Hence, Lemma 7.1 implies that

Δ←
Q

(iQ, e
(r)
iQ

) = 0, so that Δ←
Q

(iQ) = 0. Thus, by the update op-

eration, for each session i ∈ A←
Q

, rQ(i) = r←
Q

(i). By the induction

hypothesis of induction on states (condition (A/4)), it follows that
A←

Q
= A −→

Q(r−1) . Hence, the induction hypothesis of induction on
states (condition (A/1)) implies that for each session i ∈ A −→

Q(r−1) ,

rQ(i) =

{
br + pr

2 if i ∈ S |α
(
Q(r−1), Q

]
,

br−1 + pr−1

2 otherwise.

Proof of (A/2). First consider edge e
(r)
i for any session i ∈ A −→

Q(r−1) \ {i(r)f , i
(r)
l },

with capacity c(e
(r)
i ) = 2 br + pr, which is traversed by sessions i

(r)
f and i. Either

by definition of Q0 in case Q = Q(r−1) and r = 1, or by the induction hypothesis of
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induction on r (condition (B/3)) in case Q = Q(r−1) and r �= 1, or by the induction
hypothesis of induction on states (condition (A/4)) in case Q �= Q(r−1), it follows that

both i
(r)
f , i ∈ AQ, so that AQ | e(r)

i = {i(r)f , i}. Hence,

FSQ(e
(r)
i ) =

c(e
(r)
i ) − allotQ(e

(r)
i )

|AQ | e(r)
i |

=
c(e

(r)
i )

2

= br +
pr
2
.

Now consider edge e
(r)
l with capacity c(e

(r)
l ) = 2br + pr

2 , which is traversed by

sessions i
(r)
f and i

(r)
l . Either by definition of Q0 in case Q = Q(r−1) and r = 1, or

by the induction hypothesis of induction on r (condition (B/3)) in case Q = Q(r−1)

and r �= 1, or by the induction hypothesis of induction on states (condition (A/4)) in

case Q �= Q(r−1), it follows that both i
(r)
f , i

(r)
l ∈ AQ, so that AQ | e(r)

l = {i(r)f , i
(r)
l }.

Hence,

FSQ(e
(r)
l ) =

c(e
(r)
l ) − allotQ(e

(r)
l )∣∣∣AQ | e(r)

l

∣∣∣
=

c(e
(r)
l )

2

= br +
pr
4
.

Proof of (A/3/a). By construction of G(Sched), edge e
(r)
l is traversed by sessions

i
(r)
f and i

(r)
l . We prove that each of them receives its minimum fair share on edge e

(r)
l .

(1) First, take session i
(r)
f , which traverses the following edges.

• edge e
(r)
l ; by condition (A/2) shown above, FSQ(e

(r)
l ) = br + pr

4 ;

• edge e
(r)
i for each session i ∈ A −→

Q(r−1) \ {i(r)f , i
(r)
l }; by condition (A/2)

shown above, FSQ(e
(r)
i ) = br + pr

2 ;

• edge e(r′) ∈ E(r′) (Sched) for each integer r′, 1 ≤ r′ < r, in case r > 1.
By the induction hypothesis of induction on r (condition (B/4/b)),
FS −→

Q(r−1)(e(r′)) ≥ br−1 + 3 pr−1

4 = br + pr (by recursive definition of

br and pr). Since Q �= Q(r−1), the induction hypothesis of induction on
states (condition (A/4)) is nonempty and implies that AQ = A −→

Q(r−1) . It

follows that FSQ(e(r′)) = FS −→
Q(r−1)(e(r′)), so that FSQ(e(r′)) ≥ br + pr.

Hence, MFSQ(i
(r)
f ) = br + pr

4 , so that MFSQ(i
(r)
f ) = FSQ(e

(r)
l ).

(2) Now take session i
(r)
l , which traverses the following edges.

• edge e
(r)
l ; by condition (A/2) shown above, FSQ(e

(r)
l ) = br + pr

4 ;

• edge e(r′) ∈ E(r′) (Sched) for each integer r′, 1 ≤ r′ < r, in case r > 1.
By the induction hypothesis of induction on r (condition (B/4/b)),
FS −→

Q(r−1)(e(r′)) ≥ br−1 + 3 pr−1

4 = br + pr. Since Q �= Q(r−1), the in-
duction hypothesis of induction on states (condition (A/4)) implies that
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AQ = A −→
Q(r−1) . It follows that FSQ(e(r′)) = FS −→

Q(r−1)(e(r′)), so that

FSQ(e(r′)) ≥ br + pr.

These imply that MFSQ(i
(r)
l ) = br + pr

4 , so that MFSQ(i
(r)
l ) = FSQ(e

(r)
l ).

Hence MFSQ(i
(r)
f ) = MFSQ(i

(r)
l ) = FSQ(e

(r)
l ), so that e

(r)
l is a bottleneck edge

for Q.

Proof of (A/3/b). Consider edge e
(r)
i for any session i ∈ A −→

Q(r−1) \ {i(r)f , i
(r)
l },

which is traversed by sessions i
(r)
f and i. By condition (A/3/a) shown above, edge

e
(r)
l , traversed by session i

(r)
f , is a bottleneck edge for state Q, so that MFSQ(i

(r)
f ) =

FSQ(e
(r)
l ). By condition (A/2) shown above, FSQ(e

(r)
l ) = br + pr

4 and FSQ(e
(r)
i ) =

br + pr

2 . Since pr �= 0, it follows that FSQ(e
(r)
l ) < FSQ(e

(r)
i ), so that MFSQ(i

(r)
f ) <

FSQ(e
(r)
i ). It follows that e

(r)
i is not a bottleneck edge for Q.

Proof of (A/3/c). The claim holds vacuously in case r = 1. So assume r > 1.
Consider any edge e(r′) ∈ E(r′) (Sched) for any integer r′, 1 ≤ r′ < r, traversed by
some session i ∈ A −→

Q(r−1) . By the induction hypothesis of induction on r (condition

(B/4/b)), FS −→
Q(r−1)(e(r′)) ≥ br−1+ 3 pr−1

4 . Since Q �= Q(r−1), the induction hypothesis
of induction on states (condition (A/4)) is nonempty and implies that AQ = A −→

Q(r−1) .

It follows that FSQ(e(r′)) = FS −→
Q(r−1)(e(r′)), so that FSQ(e(r′)) ≥ pr−1 + 3 pr−1

4 = br +

pr. Session i also traverses edge e
(r)
i . By condition (A/2) shown above, FSQ(e

(r)
i ) ≤

br + pr

2 .

Since pr �= 0, it follows that FSQ(e(r′)) > FSQ(e
(r)
i ), so that FSQ(e(r′)) >

MFSQ(i). It follows that e(r′) is not a bottleneck edge for Q.

Proof of (A/3/d). Consider any edge e(r′) ∈ E(r′)(Sched) for any integer r′,
r < r′ ≤ d

2 . Take any session i traversing e(r′); by construction of G(Sched), i ∈
A −→

Q(r−1) \ {i(r)f , i
(r)
l }, and i traverses also e

(r)
i with c(e

(r)
i ) = 2 br + pr. By condition

(A/2) shown above, FSQ(e
(r)
i ) = br + pr

2 =
c(e

(r)
i )
2 . Since Q �= Q(r−1), the induction

hypothesis of induction on states (condition (A/4)) is nonempty and implies that both

sessions traversing e(r′) are active in Q. So, FSQ(e(r′)) = c(e(r
′))

2 .

By Lemma 6.1, c(e
(r)
i ) < c(e(r′)). So, FSQ(e

(r)
i ) < FSQ(e(r′)). By definition of

minimum fair share, MFSQ(i) < FSQ(e(r′)). Hence, e(r′) is not a bottleneck edge
for Q.

Proof of (A/4). If Q = Q(r−1), the claim holds trivially. So assume Q �= Q(r−1).

By condition (A/3/b) shown above, any edge e
(r)
i with i ∈ A −→

Q(r−1)
\ {i(r)f , i

(r)
l } is not

a bottleneck edge for Q. Moreover, by conditions (A/3/c) and (A/3/d) shown above,
neither is any edge e(r′) ∈ E(r′)(Sched) with 1 ≤ r′ < r or r < r′ ≤ d

2 . Since Alg
is bottleneck, none of these edges causes the termination of a session in Q. Thus, it
remains to prove only that edge e

(r)

i
(r)
l

does not cause either the termination of any of

the sessions i
(r)
f and i

(r)
l traversing it.

Since pr �= 0, conditions (A/1) and (A/2) shown above imply that rQ(i
(r)
f ) �=

FSQ(e
(r)
l ) and rQ(i

(r)
l ) �= FSQ(e

(r)
l ). Since Alg is bottleneck, it follows that i

(r)
f , i

(r)
l /∈

Term (Q).
Proof of (A/5). The proof is obtained by case analysis on i.

1. Assume first that i = i
(r)
f . We first prove by case analysis on Q that, in this

case, for each session k ∈ A −→
Q(r−1)

, rQ(k) = br. (This will be useful for some
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later calculations.)
• First take Q = Q(r−1). In case r = 1 where Q = Q0, all session rates

are zero in Q0. Since b0 = p0 = 0, it follows that rQ(k) = br−1 + pr−1

2 .
Assume now that r > 1. Since k ∈ A −→

Q(r−1) , by construction of G(Sched)
and by the induction hypothesis of induction on r (condition (B/3)),

k �∈ {i(r−1)
f , i

(r−1)
l }. Thus, the induction hypothesis of induction on r

(condition (B/2)) implies that rQ(k) = br−1 + pr−1

2 .

• Now take Q �= Q(r−1). Since i
(r)
f ∈ A −→

Q(r−1) \ S |α
(
Q(r−1), Q

]
, k ∈

A −→
Q(r−1) \ S |α

(
Q(r−1), Q

]
as well. So, by condition (A/1) shown above,

rQ(k) = br−1 + pr−1

2 .

So, in all cases, rQ(k) = br−1 + pr−1

2 = br. By construction of G(Sched), i
(r)
f

traverses the following edges.

• edge e
(r)
l with c(e

(r)
l ) = 2br + pr

2 ;

• edge e
(r)
k for each session k ∈ A −→

Q(r−1) \{i(r)f , i
(r)
l }, with c(e

(r)
k ) = 2br+pr;

• edge e(r′) ∈ E(r′) (Sched) for each index r′, 1 ≤ r′ < r, in case r > 1.

We next calculate separately the increases for i
(r)
f in Q allowed by these edges.

(a) First consider edge e
(r)
l , which is also traversed by i

(r)
l ∈ A −→

Q(r−1) . By
Lemma 7.1,

ΔQ(i
(r)
f , e

(r)
l ) = c(e

(r)
l ) − rQ(i

(r)
f ) − min

{
c((e

(r)
l )

2
, rQ(i

(r)
l )

}

= 2br +
pr
2

− br − min
{
br +

pr
4
, br

}
=

pr
2
.

(b) Next consider any edge e
(r)
k for any session k ∈ A −→

Q(r−1) \ {i(r)f , i
(r)
l },

which is also traversed by session k. By Lemma 7.1,

ΔQ(i
(r)
f , e

(r)
k ) = c(e

(r)
k ) − rQ(i

(r)
f ) − min{c(e

(r)
k ), rQ(k)}

= 2 br + pr − br − min
{
br +

pr
2
, br

}
= pr.

(c) Finally, consider edge e(r′) for any integer r′, 1 ≤ r′ < r, in case r >
1. By the induction hypothesis of induction on r (condition (B/4/a)),
residQ(r−1)(e(r′)) ≥ pr−1

4 . Recall that i
(r)
f is the session scheduled first

(following state Q(r−1)) among active sessions in
−→

Q(r−1). Since i
(r)
f ∈

A −→
Q(r−1)\S |α

(
Q(r−1), Q

]
, it follows that for each session i ∈ A −→

Q(r−1) , i ∈
A −→

Q(r−1) \S |α
(
Q(r−1), Q

]
. Thus, rates of all sessions are preserved from

state Q(r−1) to Q. Hence, residQ(e(r′)) = residQ(r−1)(e(r′)) ≥ pr−1

4 = pr.

By Lemma 7.2, it follows that ΔQ(i
(r)
f , e(r′)) ≥ residQ(e(r′)) ≥ pr.

Thus, by definition of increase, it follows that ΔQ(i
(r)
f ) = pr

2 .

2. Now assume that i �∈ {i(r)f , i
(r)
l }. Since i ∈ A −→

Q(r−1) \S |α
(
Q(r−1), Q

]
, by con-

dition (A/1) shown above, we have that rQ(i) = br−1 + pr−1

2 . By construction
of G(Sched) i traverses the following edges.
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• edge e
(r)
i with c(e

(r)
i ) = 2 br + pr;

• edge e(r′) ∈ E(r′) (Sched) for each integer r′, 1 ≤ r′ < r, in case r > 1;
• edge e(r′′) ∈ E(r′′) (Sched) for any integer r′′, r < r′′ ≤ d

2 .
We next calculate separately the increases for i in Q allowed by these edges.

(a) First consider edge e
(r)
i , which is also traversed by i

(r)
f . Since i is sched-

uled in front of state
−→
Q , it follows that i

(r)
f ∈ S |α

(
Q(r−1), Q

]
. Thus,

condition (A/1) shown above implies that rQ(i
(r)
f ) = br + pr

2 =
c(e

(r)
i )
2 .

By Lemma 7.1,

ΔQ(i, e
(r)
i ) = c(e

(r)
i ) − rQ(i) − min

{
c(e

(r)
i )

2
, rQ(i

(r)
f )

}

= c(e
(r)
i ) − rQ(i) − c(e

(r)
i )

2

=
c(e

(r)
i )

2
−
(
br−1 +

pr−1

2

)
.

Alternatively, we derive that ΔQ(i, e
(r)
i ) = br + pr

2 −(br−1 + pr−1

2 ) = pr

2 .4

(b) Next consider edge e
(r′)
i for any integer r′, 1 ≤ r′ < r, in case r > 1,

which is also traversed by i
(r′)
f �∈ {i(r)f , i

(r)
l }. Induction hypothesis of

induction on r (condition (B/3)) implies that i
(r′)
f /∈ A −→

Q(r−1) ; hence,

i
(r′)
f /∈ AQ. So, rQ(r−1)(i

(r′)
f ) = rQ(i

(r′)
f ). Recall that rQ(i) = br−1 +

pr−1

2 . On the other hand, by the induction hypothesis of induction on r
(condition (B/2)), rQ(r−1)(i) = br−1 + pr−1

2 . Hence, rQ(i) = rQ(r−1)(i).

It now follows that residQ(e
(r′)
i ) = residQ(r−1)(e

(r′)
i ). By the induction

hypothesis of induction on r (condition (B/4/a)), residQ(r−1)(e
(r′)
i ) ≥

pr−1

4 , so that residQ(e
(r′)
i ) ≥ pr−1

4 . By Lemma 7.2, ΔQ(i, e
(r′)
i ) ≥ pr−1

4 =
pr.

(c) Finally, consider edge e(r′′) for any integer r′′, r < r′′ ≤ d
2 , which is also

traversed by some other session k ∈ A −→
Q(r−1) \ {i(r)f , i

(r)
l }. By condition

(A/1) shown above and by recursive definition of br, rQ(k) ≤ br + pr

2 =
c(e

(r)
i )
2 . By Lemma 6.1, c(e(r′′)) > c(e

(r)
i ). By Lemma 7.1,

ΔQ(i, e(r′′)) = c(e(r′′)) − rQ(i) − min

{
c(e(r′′))

2
, rQ(k)

}

≥ c(e(r′′)) − rQ(i) − min

{
c(e(r′′))

2
,
c(e

(r)
i )

2

}

≥ c(e(r′′)) − rQ(i) − c(e(r′′))

2

=
c(e(r′′))

2
−
(
br−1 +

pr−1

2

)
.

4Both expressions provided for ΔQ(i, e
(r)
i ) will be needed in the rest of the proof.
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Since c(e(r′′)) > c(e
(r)
i ), comparing the first expression for ΔQ(i, e

(r)
i ) to

ΔQ(i, e(r′′)) implies that ΔQ(i, e(r′′)) > ΔQ(i, e
(r)
i ).

Thus, by definition of increase, it follows that ΔQ(i) = pr

2 .

3. Finally, assume that i = i
(r)
l . Since i

(r)
l ∈ A −→

Q(r−1) \ S |α
(
Q(r−1), Q

]
, by

condition (A/1) shown above, we have that rQ(i
(r)
l ) = br−1 + pr−1

2 = br. By

construction of G(Sched), i
(r)
l traverses the following edges.

• edge e
(r)
l with capacity c(e

(r)
l ) = 2 br + pr

2 ;

• edge e(r′) ∈ E(r′) (Sched) for each integer r′, 1 ≤ r′ < r, in case r > 1.

We next calculate separately the increases for i
(r)
l in Q allowed by these

edges.

(a) First consider edge e
(r)
l , which is also traversed by session i

(r)
f . Since

i
(r)
l is scheduled in front of

−→
Q , it follows that i

(r)
f ∈ S |α

(
Q(r−1), Q

]
.

Thus, condition (A/1) shown above implies that rQ(i
(r)
f ) = br + pr

2 . By
Lemma 7.1,

ΔQ(i
(r)
l , e

(r)
l ) = c(e

(r)
l ) − rQ(i

(r)
l ) − min

{
c(e

(r)
l )

2
, rQ(i

(r)
f )

}

= 2 br +
pr
2

− br − min
{
br +

pr
4
, br +

pr
2

}

=
pr
4
.

(b) Finally, consider any edge e(r′) for some integer r′, 1 ≤ r′ < r, in

case r > 1, which is also traversed by session i
(r′)
f �∈ {i(r)f , i

(r)
l }. In-

duction hypothesis of induction on r (condition (B/3)) implies that

i
(r′)
f /∈ A −→

Q(r−1) , so that i
(r′)
f /∈ AQ. It follows that rQ(r−1)(i

(r′)
f ) =

rQ(i
(r′)
f ). Recall that rQ(i

(r)
l ) = br−1 + pr−1

2 . On the other hand,
by the induction hypothesis of induction on r (condition (B/2)), we

have that rQ(r−1)(i
(r)
l ) = br−1 + pr−1

2 . Hence, rQ(i
(r)
l ) = rQ(r−1)(i

(r)
l ).

It now follows that residQ(e(r′)) = residQ(r−1)(e(r′)). By the induc-

tion hypothesis of induction on r (condition (B/4/a)), residQ(r−1)(e(r′))

≥ pr−1

4 , so that residQ(e(r′)) ≥ pr−1

4 as well. By Lemma 7.2, it follows

that ΔQ(i
(r)
l , e(r′)) ≥ pr−1

4 = pr.

Thus, by definition of increase, it follows that ΔQ(i
(r)
l ) = pr

4 .

The proof of part (A) is now complete. We continue with the proof of part (B).

Proof of part (B).

Proof of (B/1). Assume, by way of contradiction, that lr = ∞. Then there
exists some session i ∈ A −→

Q(r−1) which is not scheduled in front of any state following

Q(r−1). By condition (A/5) shown above, it follows that for any state Q such that

Q(r−1) α−→ Q, ΔQ(i) ≥ pr

4 > 0 (since pr > 0). Thus, by the update operation, the
rate of session i can be increased without causing any decrease to the rate of any
other session with smaller rate. This is in contradiction to max-min fairness.
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Condition (B/1) establishes that state Q(r) is well defined. Recall that in part (A)

we considered all states from Q(r−1) through
←−
Q(r). We now explore further properties

of Q(r).

Proof of (B/2). Recall that session i
(r)
l is scheduled in front of Q(r). By condition

(A/1) shown above, r ←−
Q(r)

(i
(r)
f ) = br + pr

2 , while r ←−
Q(r)

(i
(r)
l ) = br−1 + pr−1

2 = br.

Moreover, by condition (A/5) shown above, Δ ←−
Q(r)

(i
(r)
l ) = pr

4 . Thus, by the update

operation, rQ(r)(i
(r)
l ) = r ←−

Q(r)
(i

(r)
l ) + Δ ←−

Q(r)
(i

(r)
l ) = br + pr

4 ; moreover, rQ(r)(i
(r)
f ) =

min{rQ(r)(i
(r)
l ), r ←−

Q(r)
(i

(r)
f )} = min

{
br + pr

4 , br + pr

2

}
= br + pr

4 .

Consider now any session i ∈ A −→
Q(r−1) \ {i(r)f , i

(r)
l }. By definition of Q(r), i ∈ S |α

(Q(r−1),
←−
Q(r)]. Thus, condition (A/1) shown above implies that r ←−

Q(r)
(i) = br + pr

2 .

Since, by construction of G(Sched), i ∩ i
(r)
l = ∅, the update operation implies that

rQ(r)(i) = r ←−
Q(r)

(i) = br + pr

2 .

Proof of (B/3). By condition (A/4) shown above, it follows that fair shares of

all active edges are preserved from
←−
Q(r) to Q(r). Since Alg is bottleneck and the

termination condition for bottleneck algorithms is a predicate on session rates and
fair shares, it follows that the only sessions that are candidates to be terminated in
state Q(r) are those whose rates are changed in Q(r); by conditions (A/1) and (B/1)

shown above, these are sessions i
(r)
f and i

(r)
l .

By condition (A/3/a) shown above, edge e
(r)
l is a bottleneck edge for

←−
Q(r). Con-

dition (A/4) shown above implies that both i
(r)
f , i

(r)
l ∈ AQ(r) , so that e

(r)
l ∈ AEQ(r) .

Thus, Proposition 4.8 (condition (2)) implies that e
(r)
l is a bottleneck edge for Q(r).

Recall that FSQ(r)(e
(r)
l ) = FS ←−

Q(r)(e
(r)
l ). Thus, by condition (A/2) shown above, it

follows that FSQ(r)(e
(r)
l ) = br + pr

4 . By condition (B/2) shown above, this implies

that rQ(r)(i
(r)
f ) = rQ(r)(i

(r)
l ) = FSQ(r)(e

(r)
l ). Since Alg is bottleneck, it follows that

i
(r)
f , i

(r)
l ∈ Term

(
Q(r)

)
.

Proof of (B/4). Take any session i ∈ A −→
Q(r−1) \ {i(r)f , i

(r)
l }, and fix any integer r′,

1 ≤ r′ ≤ r. The proof is by case analysis on r′.

1. First consider the case where r′ = r. By construction of G(Sched), edge e
(r)
i

with capacity c(e
(r)
i ) = 2 br + pr is traversed by sessions i

(r)
f and i. So,

residQ(r)(e
(r)
i )

= c(e
(r)
i ) − rQ(r)(i

(r)
f ) − rQ(r)(i)

= 2 br + pr −
(
br +

pr
4

)
−
(
br +

pr
2

)
(by condition (B/2) shown above)

=
pr
4
,

which establishes condition (B/4/a) in this case.

We continue with condition (B/4/b). By condition (B/3) shown above, i
(r)
f /∈
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A −→
Q(r)

, while i ∈ A −→
Q(r)

, so that |A −→
Q(r)

|e(r)
i | = 1. Thus,

FS −→
Q(r)

(e
(r)
i )

=
c(e

(r)
i ) − allot −→

Q(r)
(e

(r)
i )∣∣∣∣A −→

Q(r−1)
| e(r)

i

∣∣∣∣
=

2br + pr − (br + pr

4 )

1
(by conditions (B/1) and (B/3) shown above)

= br +
3

4
pr,

which establishes condition (B/4/b) in this case.
2. Now consider the case where r′ < r. Clearly, r > 1 in this case, so that the

induction hypothesis of induction on r is nonempty. Fix any edge e
(r′)
i ∈

E(r′)(Sched). Condition (B/3) shown above implies that i
(r′)
f /∈ A −→

Q(r−1) , so

that rQ(r)(i
(r′)
f ) = rQ(r−1)(i

(r′)
f ). By condition (B/2) shown above, rQ(r)(i) =

br+ pr

2 , while by the induction hypothesis of induction on r (condition (B/2)),
rQ(r−1)(i) = br−1 + pr−1

2 = br. Thus,

residQ(r−1)(e
(r′)
i ) − residQ(r)(e

(r′)
i )

= (c(e
(r′)
i ) − rQ(r−1)(i

(r′)
f ) − rQ(r−1)(i))

− (c(e
(r′)
i ) − rQ(r)(i

(r′)
f ) − rQ(r)(i))

= (rQ(r)(i) − rQ(r−1)(i)) − (rQ(r)(i
(r′)
f ) − rQ(r−1)(i

(r′)
f ))

=
(
br +

pr
2

)
− br − 0

=
pr
2
.

By the induction hypothesis of induction on r (condition (B/4/a)), it follows

that residQ(r−1)(e
(r′)
i ) ≥ pr−1

4 = pr. Thus, residQ(r)(e
(r′)
i ) ≥ pr − pr

2 > pr

4 ,
which establishes condition (B/4/a) in this case.

We continue with condition (B/4/b). Recall that i
(r′)
f /∈ A −→

Q(r−1) , so that

i
(r′)
f /∈ A −→

Q(r)
, and r −→

Q(r−1)
(i

(r′)
f ) = r −→

Q(r)
(i

(r′)
f ); on the other hand, i ∈ A −→

Q(r)
,

so that i ∈ A −→
Q(r−1) . It follows that FS −→

Q(r−1)(e
(r′)
i ) = FS −→

Q(r)
(e

(r′)
i ). By the

induction hypothesis of induction on r (condition (B/4/b)), it follows that

FS −→
Q(r−1)(e

(r′)
i ) ≥ br−1 + 3 pr−1

4 = br + pr. Thus, FS −→
Q(r)

(e
(r′)
i ) ≥ br + pr >

br + 3 pr

4 , which establishes condition (B/4/b) in this case.
The proof of Proposition 7.3 is now complete.

We are now ready to prove the following.
Theorem 7.4 (lower bound for oblivious algorithms). Assume that Alg is opti-

mistic, oblivious, and bottleneck, and that it computes the max-min fair rate vector.
Then UAlg ≥ dn

4 + n
2 .

Proof. We will show that UAlg(〈G(Sched),S〉) = dn
4 +n

2 , where Alg = 〈Sched,Term〉
and G (Sched) is the network constructed in section 6. To do so, we calculate
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UAlg(〈G (Sched) ,Sj〉) for any particular cluster Sj , j ≥ 1, and we add up over all n
d

clusters. By Proposition 7.3 (condition (B/1)), the execution of Alg on G (Sched | Sj)
is divided into d

2 execution epochs α(1), . . . , α(d/2) such that all active sessions are
scheduled at least once in each epoch; condition (B/3) implies that only two such
sessions are terminated in each epoch. Thus, at least d− 2 (r− 1) update operations
are executed in α(r), 1 ≤ r ≤ d

2 . Summing up over all clusters and execution epochs

yields that UAlg (G,S) ≥
∑n/d

j=1

∑d/2
r=1(d− 2(r − 1)) = nd

4 + n
2 , as needed.

7.2. Partially oblivious algorithms. In this section, we present a lower bound
of Ω(dn) on the convergence complexity of any optimistic, partially oblivious, and
bottleneck algorithm that computes the max-min rate vector.

For the sake of clarity of presentation, we first consider the special case where
d = n. (We remark that this is the case where the lower bound to be shown is
maximum over all possible values of d, 1 ≤ d ≤ n.) The backbone of our proof for
this case will be a simulation lemma that establishes a correspondence between the
executions of any partially oblivious algorithm and a suitable oblivious algorithm on
the network constructed from the latter as in section 6 (assuming d = n). We will
then use the simulation lemma to prove a lower bound of Ω(n2) for this case. We
finally consider the general case of arbitrary d; we state the Ω(dn) lower bound for
it and discuss its proof, which relies on a generalization of the simulation lemma to
general d. We start with the simulation lemma for the case d = n.

Proposition 7.5 (simulation lemma). Assume that Alg is optimistic, partially
oblivious, and bottleneck, and that it computes the max-min fair rate vector. Then
there exists some optimistic, oblivious, and bottleneck algorithm OAlg = 〈OSched,
OTerm〉 such that there exist execution prefixes α = α1 · α2 · . . . · αd/2 of OAlg and
β = β1 · β2 · . . . · βd/2 of Alg, on network G (OSched), such that for each integer r,

1 ≤ r ≤ d
2 , the following conditions hold:

(1) αr and βr are identical;
(2) all sessions active in first (βr) are scheduled at least once in βr and only two

of them terminate in βr.
We first provide an informal, high-level outline of our proof. Given any partially

oblivious algorithm, we derive some oblivious algorithm such that the executions of the
two algorithms on the network constructed from the oblivious one in section 6 are iden-
tical. The execution of the oblivious algorithm is described by Proposition 7.3; since
the two executions are shown to be identical, this will eventually imply the claimed
lower bound for the partially oblivious algorithm. In order to derive the oblivious
algorithm with the required properties, we start with the set of all n-epoch, oblivious
algorithms; we inductively restrict this set until it contains only algorithms that are
compatible with the partially oblivious algorithm (with respect to their schedulers)
and perform sufficiently many update operations. All intermediate sets of oblivious
algorithms contain only algorithms that induce executions identical to the partially
oblivious algorithm up to each intermediate point. In more detail, the partial execu-
tion of each oblivious algorithm in any intermediate set on the network constructed
from the algorithm in section 6 is identical to the partial execution of the partially
oblivious algorithm on the same network. Each individual intermediate step is ex-
tended progressively by considering the session scheduled next by the partially obliv-
ious algorithm and restricting the intermediate set of oblivious algorithms to those
that schedule the same session next. (The construction follows an outer induction on
execution epochs and an inner induction on states within each epoch.)

Proof. For each index r, 1 ≤ r ≤ d
2 , we will construct a set A(r) of opti-
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mistic, oblivious, and bottleneck algorithms that compute the max-min fair rate
vector such that for each algorithm OAlg ∈ A(r), there exist execution prefixes
α (OAlg) = α1 (OAlg) . . . αr (OAlg) of OAlg and β (OAlg) = β1 (OAlg) . . . βr (OAlg)
of Alg on network G (OSched) so that

(1) for each algorithm OAlg ∈ A(r) for each integer r′, 1 ≤ r′ ≤ r, αr′ (OAlg) and
βr′ (OAlg) are identical;

(2) α (OAlg) is identical over all algorithms OAlg ∈ A(r);
(3) β (OAlg) is identical over all algorithms OAlg ∈ A(r);
(4) for each algorithm OAlg ∈ A(r) for each integer r′, 1 ≤ r′ ≤ r, all sessions

active in state first (βr′ (OAlg)) are scheduled at least once in βr′ (OAlg), but
only two of them terminate in βr′ (OAlg).

Any algorithm OAlg in the final set A(d/2) will satisfy the claim due to conditions (1)
and (4) guaranteed by the construction.

The construction will be by induction on r, 1 ≤ r ≤ d
2 . The construction employs

the set of all optimistic, oblivious, bottleneck, n-epoch algorithms, which we denote
as A(0). By Theorem 5.2, any algorithm from A(0) computes the max-min fair rate
vector. Our construction will progressively restrict the set A(0) so that A(d/2) ⊆
· · · ⊆ A(r) ⊆ · · · ⊆ A(0). Hence, for each integer r, 1 ≤ r ≤ d

2 , any algorithm

from A(r) computes the max-min fair rate vector. This property will be needed later,
whenever we use Proposition 7.3, which assumes it. For each algorithm OAlg ∈ A(0),
consider the initial state Q0 (OAlg) of network G (OSched) (with all rates zero and
all sessions active). Set α0 (OAlg) := Q0 (OAlg) and β0 (OAlg) := Q0 (OAlg). For
the sake of shortening the construction, we merge the construction for the basis case
(where r = 1) and the construction for the induction step. Thus, the case r = 1 will
be treated separately (where needed) along the construction for the induction step.

Fix any integer r, 1 ≤ r ≤ d
2 , and assume inductively that we have constructed

a set A(r−1) with the required properties. Notice that if r = 1, then A(r−1) = A(0)

and the induction hypothesis is empty.
For the induction step, we construct a set A(r) ⊆ A(r−1) with the required prop-

erties. This construction is progressive and uses induction on states, starting with
last (β (OAlg)) for any algorithm OAlg ∈ A(r−1). We will prove that conditions (1),
(2), and (3) are preserved along the inductive construction on states, while (4) holds
when the construction of A(r) is complete.

For the basis case (of induction on states), take A(r) := A(r−1); for any al-
gorithm OAlg = 〈OSched,OTerm〉 ∈ A(r−1), set αr (OAlg) = last (αr−1 (OAlg)) and
βr (OAlg) = last (βr−1 (OAlg)). In case r = 1, by definition of initial state (Q0 (OAlg)),
α1 (OAlg) (resp., β1 (OAlg)) is identical for all algorithms OAlg ∈ A(1), implying (2)
and (3). By construction, for each algorithm OAlg ∈ A(1), it trivially holds that
α1 (OAlg) and β1 (OAlg) are identical, which implies (1). In case r > 1, by the induc-
tion hypothesis of induction on r, conditions (1), (2), and (3) hold.

We now continue with the induction step (induction on states) of the inductive
construction of A(r). Take any algorithm OAlg ∈ A(r) and consider α (OAlg). (By the
induction hypothesis of induction on states (condition (2)), the choice of OAlg does not
matter.) In case r = 1, all sessions are active in state last (βr−1 (OAlg)) = Q0 (OAlg).
In case r > 1, since r − 1 < d

2 , Proposition 7.3 (condition (B/3)) implies that the set
of active sessions in state last (αr−1 (OAlg)) is nonempty; the induction hypothesis
of induction on states (condition (1)) implies now that the set of active sessions in
state last (βr−1 (OAlg)) is nonempty as well. If all such sessions have been scheduled
at least once in αr (OAlg), then the inductive construction of A(r) is complete and
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conditions (1), (2), and (3) hold by the induction hypothesis of induction on states.
(Condition (4) will be shown later.) So assume that there exists at least one such active
session i (OAlg) that has not been scheduled in βr (OAlg). By the induction hypothesis
of induction on states (condition (1)), αr (OAlg) and βr (OAlg) are identical. It follows
that i (OAlg) has not been scheduled in αr (OAlg) either. Proposition 7.3 (condition
(A/5)) implies that the increase for session i (OAlg) in state last (αr (OAlg)) is nonzero.
By the induction hypothesis of induction on states (condition (1)), it follows that
the increase for session i (OAlg) in state last (βr (OAlg)) is nonzero as well. By the
update operation, it follows that an increase to the rate of i (OAlg) in last (βr (OAlg))
is possible without decreasing the rate of any other session. So, max-min fairness
has not been reached yet and some session rate must change. However, a session
rate changes only when an active session is scheduled. Since Alg computes the max-
min fair rate vector, it follows that at least one active session in last (βr (OAlg)) is
scheduled after last (βr (OAlg)). An inductive application of this argument implies
that all sessions active in first (βr (OAlg)) are scheduled at least once in βr (OAlg). It
follows that the inductive construction of A(r) eventually terminates.

Denote by i′ (OAlg) the session scheduled by Alg immediately after last (βr (OAlg))
on network G (OSched). By the induction hypothesis of induction on states (condi-
tion (3)), it follows that last (βr (OAlg)) is identical for all OAlg ∈ A(r). Since Alg
is partially oblivious, this implies that i′ (OAlg) is identical for all OAlg ∈ A(r) as
well; so, denote it i′. Fix any algorithm OAlg ∈ A(r) and restrict A(r) to the set of
all optimistic, oblivious, bottleneck, n-epoch algorithms whose schedulers have prefix
σ (αr (OAlg)) i′.

We now argue that A(r) is nonempty and unique. Any sequence of sessions
σ (βr (OAlg)) i′ can be extended to an n-epoch scheduler (by appropriate padding).
This implies that A(r) is nonempty. By the induction hypothesis of induction on
states (condition (3)), βr (OAlg) is identical over all algorithms OAlg ∈ A(r), so that
σ (βr (OAlg)) i′ is also identical over all OAlg ∈ A(r). It follows that the constructed
A(r) is unique.

Take any algorithm OAlg = 〈OSched,OTerm〉 ∈ A(r).
• Define Q (OAlg) to be the state that results when Alg, starting from state

last (βr (OAlg)) of the network G (OSched), schedules session i′ on G (OSched)
and set βr (OAlg) := βr (OAlg), i′, Q (OAlg).

• Similarly, define Q′ (OAlg) to be the state that results when OAlg, start-
ing from last (αr (OAlg)) of the network G (OSched), schedules session i′ on
G (OSched) and set αr (OAlg) := αr (OAlg), i′, Q′ (OAlg).

We now prove the required properties for the sets

α (OAlg) =
{
α1 (OAlg) · . . . · αr (OAlg) | OAlg ∈ A(r)

}
and

β (OAlg) =
{
β1 (OAlg) · . . . · βr (OAlg) | OAlg ∈ A(r)

}
of execution prefixes.

We start by proving (1). Take any algorithm OAlg = 〈OSched,OTerm〉 ∈ A(r).
By the induction hypothesis of induction on states (condition (1)), Alg and OAlg start
from identical states of the network G (OSched); hence, scheduling the same session
(i′) on the network G (OSched) results in identical states, which inductively extends
the claim.
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We now treat (2) and (3). Since i′ (OAlg) is identical over all OAlg ∈ A(r), the
induction hypothesis of induction on states (condition (2)) implies that the set of
sessions scheduled in αr (OAlg) is identical over all OAlg ∈ A(r). So, Proposition 7.3
(conditions (A/1) and (A/4)) implies that Q′ (OAlg) is identical over all OAlg ∈ A(r).
Induction hypothesis of induction on states (condition (2)) and the fact that i′ (OAlg)
is identical over all OAlg ∈ A(1) imply that αr (OAlg) is identical over all OAlg ∈ A(r),
which proves (2). Now (3) follows from (1) and (2).

We finally prove (4) for the set A(r) constructed when the induction on states
is complete. Fix any algorithm OAlg ∈ A(r). Recall that all sessions active in
first (βr (OAlg)) are scheduled at least once in βr (OAlg); moreover, the termination
condition used in the construction of A(r) implies that βr (OAlg) is the shortest such
fragment. By condition (1) shown above, this implies that αr (OAlg) is the short-
est execution fragment such that all sessions active in first (αr (OAlg)) are scheduled
at least once in αr (OAlg). So, by Proposition 7.3 (condition (B/3)), only two ses-
sions terminate in αr (OAlg). Hence, the induction hypothesis of induction on states
(condition (1)) implies that only two sessions terminate in βr (OAlg), as needed.

The proof of the simulation lemma is now complete.
We are now ready to prove the lower bound for the case where d = n.
Theorem 7.6 (lower bound for partially oblivious algorithms). Assume that Alg

is optimistic, partially oblivious, and bottleneck, and that it computes the max-min

rate vector. Then UAlg ≥ n2

4 + n
2 .

Proof. Proposition 7.5 implies that there exists some optimistic, oblivious, and
bottleneck algorithm OAlg = 〈OSched,OTerm〉 such that there exists an execution
prefix β = β1 · β2 · . . . · βd/2 of Alg on network G (OSched) such that for each integer

r, 1 ≤ r ≤ d
2 , all sessions active in first (βr) are scheduled at least once in βr and

only two of them terminate in βr. Hence, at least n− 2 (r− 1) update operations are
executed in βr, 1 ≤ r ≤ n

2 . Summing up over all r epochs, 1 ≤ r ≤ n
2 , yields that

UAlg (G (OSched) ,S) ≥
∑n/2

r=1 (n− 2 (r − 1)) = n2

4 + n
2 .

As a direct generalization of the simulation lemma for the case d = n, we obtain
the following.

Proposition 7.7 (simulation lemma). Assume that Alg is optimistic, partially
oblivious, and bottleneck, and that it computes the max-min fair rate vector. Partition
S into disjoint clusters S1, . . . ,Sn/d with d sessions each. Then there exists some
optimistic, oblivious, and bottleneck algorithm OAlg = 〈OSched,OTerm〉 such that
there exist execution prefixes α of OAlg and β of Alg, on network G (OSched), such
that for each cluster Sj, 1 ≤ j ≤ n

d , α and β can be written as α = α1 · α2 · . . . · α d
2

and β = β1 ·β2 · . . . ·β d
2

so that for each integer r, 1 ≤ r ≤ d
2 , the following conditions

hold:
(1) αr and βr are identical;
(2) all sessions from Sj active in first (βr) are scheduled at least once in βr and

only two of them terminate in βr.
The execution prefixes α and β in Proposition 7.7 are constructed in a similar

inductive manner to the corresponding prefixes in Proposition 7.5. The additional
complications stem from the fact that the execution fragments αr and βr, 1 ≤ r ≤ d

2 ,
may now be different for each cluster; thus, the inductive construction in the proof
of Proposition 7.5 needs to be adjusted in order to accommodate chopping off α and
β into the suitable execution fragments αr and βr, 1 ≤ r ≤ d

2 , for each particular
cluster. We finally use Proposition 7.7 to show our final lower bound; its proof is
similar to the one of Theorem 7.6 that used Proposition 7.5.
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Theorem 7.8 (lower bound for partially oblivious algorithms). Assume that Alg
is optimistic, partially oblivious, and bottleneck, and that it computes the max-min
rate vector. Then UAlg ≥ dn

4 + n
2 .

Consider the partially oblivious algorithm GlobalMinSched introduced by Afek,
Mansour, and Ostfeld [1, section 4], whose scheduler chooses, for each state Q, the
active session with the minimum rate. We note that [1, Theorem 4.3] implies an

upper bound
|Sj | (|Sj |+1)

2 on the number of update operations executed by GlobalMin
on network G with session set Sj for any particular cluster Sj . So, UGlobalMin ≤∑

j≥1
|Sj | (|Sj |+1)

2 ≤ maxj≥1|Sj |+1

2

∑
j≥1 |Sj | = dn

2 + n
2 . This implies that the lower

bound established in Theorem 7.8 is tight (within a factor of 2).

8. Discussion and directions for further research. We have presented a
comprehensive collection of lower and upper bounds on the convergence complexity
of optimistic, bottleneck, rate-based flow control algorithms, under varying degrees of
the knowledge used by the scheduling component of the algorithms. In particular, we
have defined and studied oblivious, partially oblivious, and nonoblivious algorithms.
We have shown that, perhaps surprisingly, the classes of oblivious algorithms and
partially oblivious algorithms collapse with respect to convergence complexity; we
have also shown a convergence complexity separation between (partially) oblivious
algorithms and nonoblivious algorithms. A more complete presentation of results for
the model studied in this paper (and extensions of it) can be found in [8].

For the sake of completeness and comparison, we summarize in Table 1 all known
lower and upper bounds on the convergence complexity of optimistic, bottleneck algo-
rithms for rate-based flow control, established in this work and in the preceding work
by Afek, Mansour, and Ostfeld [1]. We remark that RoundRobin represents an expo-
nential improvement over the previous algorithm Arbitrary [1, section 6] for the class
of oblivious algorithms we introduced. (The algorithm Arbitrary schedules sessions in
any arbitrary way.)

Table 1

Summary of known lower and upper bounds on convergence complexity for optimistic, bottleneck
rate-based flow control algorithms.

Scheduler types Lower bounds Upper bounds

Oblivious dn
4

+ n
2

dn
2

+ n
2

(RoundRobin)
Θ(2n) (Arbitrary [1])

Partially oblivious dn
4

+ n
2

dn
2

+ n
2

(LocalMin or GlobalMin [1])

Nonoblivious n n (Linear)

Our work leaves open several important questions. The most obvious open ques-
tion would be how to close the gap between the lower bound of dn

4 + n
2 and the upper

bound of dn
2 + n

2 we have shown on the convergence complexity of oblivious algorithms.
The model considered in this work is simple and elegant, yet structured enough

to capture several significant ingredients of distributed rate-based flow control; there
remain, however, a number of significant practical issues untouched by our model and
analysis. In the first place, we feel that the max-min fairness criterion may be undue in
some realistic situations, where sessions have different demands. (Some results in this
direction have been obtained in [10].) Second, the limitation to static sets of sessions
is somehow restrictive; it would be significant to extend our model and techniques to
handle set-up and take-down of sessions. Third, practical considerations may demand
that rate-based flow control algorithms avoid too small or too large adjustments to
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session rates. Encompassing such practical considerations, and analyzing their impact
on convergence complexity, into the framework of rate-based flow control algorithms
is an interesting research problem.

Kleinberg, Rabani, and Tardos [20] formulated some natural approximations to
max-min fairness and advocated them as suitable fairness conditions for certain rout-
ing and load balancing applications. It would be interesting to study the convergence
complexity of such approximations within the framework of rate-based flow control
algorithms.

Acknowledgments. Our thanks go to the anonymous PODC 1997 and SIAM
Journal on Computing reviewers for their helpful comments.
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OPTIMAL TWO-STAGE ALGORITHMS FOR GROUP TESTING
PROBLEMS∗
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Abstract. Group testing refers to the situation in which one is given a set of objects O, an
unknown subset P ⊆ O, and the task of determining P by asking queries of the type “does P
intersect Q?”, where Q is a subset of O. Group testing is a basic search paradigm that occurs in
a variety of situations such as quality control testing, searching in storage systems, multiple access
communications, and data compression, among others. Group testing procedures have been recently
applied in computational molecular biology, where they are used for screening libraries of clones with
hybridization probes and sequencing by hybridization.

Motivated by particular features of group testing algorithms used in biological screening, we
study the efficiency of two-stage group testing procedures. Our main result is the first optimal two-
stage algorithm that uses a number of tests of the same order as the information-theoretic lower
bound on the problem. We also provide efficient algorithms for the case in which there is a Bernoulli
probability distribution on the possible sets P, and an optimal algorithm for the case in which the
outcome of tests may be unreliable because of the presence of “inhibitory” items in O. Our results
depend on a combinatorial structure introduced in this paper. We believe that it will prove useful
in other contexts, too.

Key words. group testing, cover-free families
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1. Introduction and contributions. In group testing, the task is to determine
the positive members of a set of objects O by asking subset queries of the form “does
the subset Q ⊆ O contain a positive object?” The answer to each query informs the
tester whether or not the subset Q (in common parlance called a pool) has a nonempty
intersection with the subset of positive members denoted by P. A negative answer to
this question informs the tester that all the items belonging to pool Q are negative,
i.e., nonpositive. The aim of group testing is to identify the unknown subset P using
as few queries as possible.

Group testing was originally introduced as a potential approach to economical
mass blood testing [23]. However, due to its basic nature, it has been proven to be
applicable in a surprising variety of situations, including quality control in product
testing [52], searching files in storage systems [36], sequential screening of experimental
variables [40], efficient contention resolution algorithms for multiple-access communi-
cation [36, 55], data compression [31], and computation in the data stream model
[16]. Group testing has also exhibited strong relationships with several disciplines
such as coding theory, information theory, complexity, computational geometry, and
computational learning theory, among others.
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Probably the most important modern applications of group testing are in the
realm of computational molecular biology, where it is used for screening libraries of
clones with hybridization probes [5, 10, 9] and sequencing by hybridization [45, 49].
We refer to [6, 24, 29, 32] for an account of the fervent development of the area. The
applications of group testing to biological screening present some distinctive features
that pose new and challenging research problems. For instance, in the biological
setting, screening one pool at the time is far more expensive than screening many pools
in parallel. This strongly encourages the use of nonadaptive procedures for screening,
that is, procedures in which all tests must be specified in advance without the tester
knowing the outcomes of other tests. Instead, in adaptive group testing algorithms
the tests are performed one by one, and the outcomes of previous tests are assumed
known at the time of determining the current test. Unfortunately, nonadaptive group
testing strategies are inherently much more costly than adaptive algorithms. This
can be seen by observing that nonadaptive group testing algorithms are essentially
equivalent to superimposed codes [25, 28, 36] (equivalently, cover-free families) and
by using known nonexistential results on the latter [30, 25, 51]. More precisely, any
nonadaptive group testing algorithm must use a number of tests Ω((p2/ log p) log n),
where p is the maximum number of positives and n = |O|, and the best known
algorithms use a number of tests O(p2 log n). Closing the gap between the above
upper and lower bounds would also imply solving a major open problem in extremal
combinatorics, that is, that of estimating the exact maximum size of p-cover-free
families [28]. In contrast, adaptive algorithms that use an optimal number of tests
O(p log n) are known [24].

A nearly nonadaptive algorithm that is of considerable interest for screening prob-
lems is the so called trivial two-stage algorithm [37]. Such an algorithm proceeds in
two stages. In the first stage certain pools are tested in parallel; in the second stage
individual objects may be tested separately, depending on the outcomes of the first
stage. The following quotation from [37, p. 371] well emphasizes the importance of
such an algorithm:

It is generally feasible to construct a number of pools (much fewer
than the number of clones) initially by exploiting parallelism, but
adaptive construction of pools with many clones during the testing
procedure is discouraged. The technicians who implement the pool-
ing strategies generally dislike even the 3-stage strategies that are
often used. Thus the most commonly used strategies for pooling
libraries of clones rely on a fixed but reasonably small set on non-
singleton pools. The pools are either tested all at once or in a small
number of stages (usually at most 2) where the previous stage deter-
mines which pools to test in the next stage. The potential positives
are then inferred and confirmed by testing of individual clones. In
most biological applications each positive clone must be confirmed
even if the pool results unambiguously indicate that it is positive.
This is to improve the confidence in the results, given that in prac-
tice the tests are prone to errors.

Our first result is rather surprising: we prove that the best trivial two-stage
algorithms are asymptotically as efficient as the best fully adaptive group testing
algorithms, that is, algorithms with arbitrarily many stages. More precisely, we prove
that there are trivial two-stage algorithms that determine all positives using a worst-
case number of tests equal to the information-theoretic lower bound on the problem.
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The information-theoretic lower bound is evidently a lower bound on the number of
tests required by any algorithm, and it is independent from the number of performed
stages.

There is another feature that differentiates biologically motivated group testing
problems from traditional ones. In the classical scenario it is assumed that the pres-
ence of a single positive object in a pool is sufficient for the test to produce a positive
result. However, recent work [29, 56] suggests that classical group testing procedures
should take into account the possibility of the existence of “inhibitory items,” that is,
objects whose presence in the tested set could render the outcome of the test mean-
ingless, as far as the detection of positive objects is concerned. In other words, if
during the execution of an algorithm we tested a subset Q ⊆ O containing positive
items and inhibitory items, we would get the same answer as if Q did not contain
any positive object. Similar issues were considered in [20], where further motivations
for the problem were given. Our contribution to the latter issue is an algorithm that
determines all positives in a set of objects, containing also up to a certain number of
inhibitory items, and that uses the optimal worst-case number of tests, considerably
improving the results of [21] and [29]. An interesting feature of our algorithm is that
it can be implemented to run in only four stages.

We also consider the important situation in which a trivial two-stage strategy is
used to find the set of positives, given that some prior information about them has
been provided in terms of a Bernoulli probability distribution; that is, it is assumed
that each object has a fixed probability q of being positive. Usually q is a function q(n)
of n = |O|. This situation has received much attention [7, 8, 9, 43], starting from the
important work [37]. The relevant parameter in this scenario is the average number of
tests necessary to determine all positives. We prove that trivial two-stage strategies
can asymptotically attain the information-theoretic lower bound for a large class of
probability functions q(n). It should be remarked that for two-stage group testing
algorithms there are values of q(n) for which lower bounds on the average number of
tests exist that are better than the information-theoretic lower bounds [7, 37].

Our results depend on a combinatorial structure we introduce in this paper:
(k,m, n)-selectors, to be formally defined in section 2. Our definition of (k,m, n)-
selectors includes, as particular cases, well-known combinatorial objects such as su-
perimposed codes [36, 28] and k-selectors [13]. Superimposed codes and k-selectors are
very basic combinatorial structures and find application in a variety of areas such as
cryptography, data security [39, 54], computational molecular biology [6, 21, 24, 32],
multiaccess communication [24, 36], database theory [36], pattern matching [34], dis-
tributed coloring [41], circuit complexity [12], broadcasting in radio networks [13, 15],
and other areas in computer science. We believe that our (k,m, n)-selectors will prove
useful in several different areas.

1.1. Previous results. We refer the reader to the excellent monographs [1, 2,
24] for a survey of the vast literature on group testing. The papers [32, 37, 29] include
a very nice account of the most important results on biologically motivated group
testing problems. To the best of our knowledge, our paper is the first to address the
problem of estimating the worst-case complexity of trivial two-stage group testing
algorithms. The problem of estimating the minimum expected number of tests of
trivial two-stage group testing algorithms when it is known that any item has a
probability p = p(n) of being positive has been studied in [7, 8, 9, 37, 43]. The papers
most closely related to our results are [37, 8]. In particular, the paper [37] proves
that, for several classes of probability functions p(n), trivial two-stage group testing
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procedures are inherently more costly than fully adaptive group testing procedures
(interestingly, we prove that this is not so in the worst-case analysis). The paper [8],
with a real tour de force of the probabilistic method, provides a sharp estimate of the
minimum expected number of tests of trivial two-stage procedures for an ample class
of probability functions p(n). Our approach is simpler and still allows us to obtain
the correct order of magnitude of the minimum expected number of tests of the trivial
two-stage group testing procedure for several classes of probability functions. A more
detailed comparison of our results with those of [8] will be given at the end of section
4. Finally, the study of group testing in the presence of inhibitory items, the subject
of section 5, was initiated in [29], continued in [21] and, under different models, also
appears in [22] and [20].

1.2. Summary of the results and structure of the paper. In section 2 we
formally define our main combinatorial tool, (k,m, n)-selectors, and we give bounds
on their sizes. These bounds will be crucial for all our subsequent results. In section
3 we present a two-stage group testing algorithm with asymptotically optimal worst-
case complexity. In section 3 we also present some related results of independent
interest. For instance, we prove an Ω(k log n) lower bound on the size of k-selectors
defined in [13], improving on the lower bound Ω( k

log k log n) mentioned in [35]. This

bound shows that the construction in [13] is optimal. Also in section 3 we establish an
interesting link between our findings and the problem of learning Boolean functions in
a constant number of rounds, in the sense of [17]. In section 4 we present our results
on two-stage group testing algorithms for the case when a probability distribution on
the possible set of positives is assumed. Finally, in section 5 we present a worst-case
optimal algorithm for group testing in the presence of inhibitory items, improving on
the algorithms given in [21, 29, 33]. We conclude the paper with a discussion of our
main findings and of possible future lines of research.

2. (k, m, n)-selectors and bounds on their sizes. In this section we in-
troduce our main combinatorial tools, (k,m, n)-selectors. We point out their rela-
tionships with other well-known combinatorial objects and provide upper and lower
bounds on their sizes.

Definition 1. Given integers k, m, and n, with 1 ≤ m ≤ k ≤ n, we say that a
Boolean matrix M with t rows and n columns is a (k,m, n)-selector if any submatrix of
M obtained by choosing k out of n arbitrary columns of M contains at least m distinct
rows of the identity matrix Ik. The integer t is the size of the (k,m, n)-selector.

One can prove that k-cover-free families [28], disjunctive codes [24], superim-
posed codes [36], and strongly selective families [15, 13] correspond to our notion of a
(k + 1, k + 1, n)-selector. The k-selectors of [13] coincide with our definition of
(2k, 3k/2 + 1, n)-selectors.

We are interested in providing upper and lower bounds on the minimum size
t = t(k,m, n) of (k,m, n)-selectors. Upper bounds will be obtained by translating the
problem into the hypergraph language. Given a finite set X and a family F of subsets
of X, a hypergraph is a pair H = (X,F). Elements of X will be called vertices of H,
and elements of F will be called hyperedges of H. A cover of H is a subset T ⊆ X
such that for any hyperedge E ∈ F we have T ∩E �= ∅. The minimum size of a cover
of H will be denoted by τ(H). A fundamental result by Lovász [42] implies that

τ(H) <
|X|

minE∈F |E| (1 + ln Δ),(1)

where Δ = maxx∈X |{E: E ∈ F and x ∈ E}|.
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Essentially, Lovász proves that, by greedily choosing vertices in X that intersect
the maximum number of yet nonintersected hyperedges of H, one obtains a cover of a
size smaller than the right-hand side of (1). Our aim is to show that (k,m, n)-selectors
are covers of properly defined hypergraphs. Lovász’s result (1) will then provide us
with the desired upper bound on the minimum selector size.

We shall proceed as follows. Let X be the set of all binary vectors x = (x1, . . . , xn)
of length n containing n/k 1’s (the value n/k is a consequence of an optimized choice
whose justification can be skipped here). For any integer i, 1 ≤ i ≤ k, let us denote by
ai the binary vector of length k having all components equal to zero with the exception
of the component in position i, that is, a1 = (1, 0, . . . , 0), a2 = (0, 1, . . . , 0),. . . ,
ak = (0, 0, . . . , 1). Moreover, for any set of indices S = {i1, . . . , ik}, with 1 ≤ i1 ≤ i2 <
· · · < ik ≤ n, and for any binary vector a = (a1, . . . , ak) ∈ {a1, . . . ,ak}, let us define
the set of binary vectors Ea,S = {x = (x1, . . . , xn) ∈ X : xi1 = a1, . . . , xik = ak}.
For any set A ⊆ {a1, . . . ,ak} of size r, r = 1, . . . , k, and any set S ⊆ {1, . . . , n},
with |S| = k, let us define EA,S =

⋃
a∈A Ea,S . For any r = 1, . . . , k we define

Fr = {EA,S : A ⊂ {a1, . . . ,ak}, |A| = r, and S ⊆ {1, . . . , n}, |S| = k} and the
hypergraph Hr = (X,Fr). We claim that any cover T of Hk−m+1 is a (k,m, n)-
selector; that is, any submatrix of k arbitrary columns of T contains at least m
distinct rows of the identity matrix Ik. The proof is done by contradiction. Assume
that there exists a set of indices S = {i1, . . . , ik} such that the submatrix of T obtained
by considering only the columns of T with indices i1, . . . , ik contains at most m − 1
distinct rows of Ik. Let such rows be aj1 , . . . ,ajs , with s ≤ m−1; let A be any subset
of {a1, . . . ,ak} \ {aj1 , . . . ,ajs} of cardinality |A| = k − m + 1; and let EA,S be the
corresponding hyperedge of Hk−m+1. By construction we have that T ∩ EA,S = ∅,
contradicting the fact that T is a cover for Hk−m+1.

The above proof that (k,m, n)-selectors coincide with the covers of Hk−m+1 allows
us to use Lovász’s result (1) to give upper bounds on the minimum size of selectors.

Theorem 1. For any integers k, m, and n, with 1 ≤ m ≤ k < n, there exists a
(k,m, n)-selector of size t, with

t <
ek2

k −m + 1
ln

n

k
+

ek(2k − 1)

k −m + 1
,

where e = 2.7182 . . . is the base of the natural logarithm.
Proof. From the arguments preceding the theorem and (1), in order to upper

bound t we need only evaluate the quantities

|X|, min{|E| : E ∈ Fk−m+1} and Δ

for the hypergraph Hk−m+1. We shall do it here.
By definition X =

(
n

n/k

)
. Moreover, each hyperedge EA,S of Hk−m+1 is the union

of k −m + 1 disjoint sets Ea,S ; therefore it has cardinality

|EA,S | = (k −m + 1) · |Ea,S | = (k −m + 1)

(
n− k

n/k − 1

)
.

To compute Δ, observe that each x ∈ X belongs to
(
n/k
1

)(
n−n/k
k−1

)
distinct sets

Ea,S , and each Ea,S belongs to
(
k−1
k−m

)
distinct hyperedges EA,S . Therefore, for

Hk−m+1 we have

Δ =

(
k − 1

k −m

)(
n/k

1

)(
n− n/k

k − 1

)
.
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Hence one has

t <

(
n

n/k

)
(k −m + 1)

(
n−k

n/k−1

) [1 + ln

(
k − 1

k −m

)(
n/k

1

)(
n− n/k

k − 1

)]
.(2)

For k ∈ {1, 2}, it is
( n
n/k)

( n−k
n/k−1)

< 2k, whereas for k ≥ 3 it is

(
n

n/k

)
(

n−k
n/k−1

) = k
n− 1

n− n/k
· n− 2

n− n/k − 1
× · · · × n− k + 1

n− k − n/k + 2

≤ k

(
n− k + 1

n− k − n/k + 2

)k−1

= k

(
k(n− k + 1)

k(n− k + 1) − (n− k)

)k−1

= k

(
1 +

n− k

k(n− k + 1) − (n− k)

)k−1

≤ k

(
1 +

1

k − 1

)k−1

< ek.

Moreover, using the well-known inequality
(
a
b

)
≤ (ea/b)b, one can conclude

(
k − 1

k −m

)(
n/k

1

)(
n− n/k

k − 1

)
≤

(
k − 1

k −m

)k−m

ek−mn

k

(
n− n/k

k − 1

)k−1

ek−1

= e2k−m−1

(
1 +

m− 1

k −m

)k−m (n
k

)k

≤ e2k−m−1

(
1 +

m

k −m

)k−m (n
k

)k

≤ e2k−m−1em
(n
k

)k

.

The theorem now follows from (2) and the above inequalities.
Remark. Applying the above theorem to (k, k, n)-selectors, that is, to (k − 1)-

cover-free-families, one recovers the usual upper bound of O(k2 log n) on their sizes
[25, 28]. Applying the above theorem to (2k, 3k/2 + 1, n)-selectors (that is, to k-
selectors in the sense of [13]), one gets the same upper bound of O(k log n) on their
sizes, with a better constant (22 versus 87). By concatenating (k, αk, n)-selectors,
α < 1, of suitably chosen parameter k, one gets in a simple way the important
combinatorial structure of [38], with the same asymptotic upper bound given therein,
but our constants are much better (44 versus ∼ 5 · 105, according to [11]).

To present our first lower bound on the size of (k,m, n)-selectors, we need to recall
the definition of (p, q)-superimposed codes [21, 25].

Definition 2. Given integers p, q, and n, with p+ q ≤ n, we say that a Boolean
matrix M with n columns and t rows is a (p, q)-superimposed code if for any choice
of two subsets P and Q of columns of M , where P ∩ Q = ∅, |P | = p, and |Q| = q,
there exists a row in M in which entries corresponding to the columns in P contain
at least one nonzero value and all entries corresponding to the columns in Q are set
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to zero. The integers n and t are the size and the length of the (p, q)-superimposed
code, respectively. The minimum length of a (p, q)-superimposed code of size n will be
denoted by ts(p, q, n).

It can be seen that (k,m, n)-selectors are (k − m + 1,m − 1)-superimposed
codes with additional properties. Therefore, lower bounds on the length of (p, q)-
superimposed codes translates into lower bounds on selectors. The following theorem
provides a lower bound on the length of (p, q)-superimposed codes, and its proof
uses the techniques developed in [3, 51] to lower bound the length of classical (1, q)-
superimposed codes. The theorem improves the results of [25]. A similar result also
has been obtained by Dyachkov [27].

Theorem 2. For any positive integers p, q, and n, with n > q2/(4p) the minimum
length ts(p, q, n) of a (p, q)-superimposed code of size n is bounded from below by

ts(p, q, n) >

⎧⎪⎨
⎪⎩

q log
(

n
e(p+q−1)

)
if 1 ≤ q < 2p,

p(�q/(2p)�)2
log(eq2/(4p)) log

(
4(n−2(p−1)−q/2)

eq2

)
if q ≥ 2p.

Proof. For q < 2p the stated bound immediately follows from Proposition 2
of [25], which implies ts(p, q, n) ≥ �log

(
n
q

)
− log

(
p+q−1

q

)
�, and from the well-known

inequality (
m

k

)
≤ 2k log(em/k).(3)

Let us consider the case when q ≥ 2p and assume for the moment that q is a
multiple of 2p.

Let F be the family associated with a (p, q)-superimposed code M of length t and
size n; that is, F is a family of subset of {1, . . . , t}, |F| = n, such that the column
vectors of M are the characteristic vectors of the subsets in F . By Definition 2 we
have that for any p+q pairwise different members F1, . . . , Fp, G1, . . . , Gq it holds that

F1 ∪ · · · ∪ Fp �⊆ G1 ∪ · · · ∪Gq.(4)

To prove our lower bound we first transform F into a family F ′ with members of size
at most �2t/q�. As long as F contains a set H of size larger than �2t/q�, we remove
H from F and replace any other set G ∈ F with G′ = G \H. Since the elements of
F are subsets of {1, . . . , t}, this process terminates after at most � ≤ q/2 steps. If for
some G ∈ F it results in G′ = G \ (H1 ∪ · · · ∪H�) = ∅, then we remove G′ from F .
Notice that there are no more than p − 1 such sets; otherwise there would be p sets
whose union is contained in H1 ∪ · · · ∪ H�, thus violating (4). The resulting family
F ′ therefore has size |F ′| ≥ |F| − p + 1 − q/2 and it results in |F ′| ≤ �2t/q� for any
F ′ ∈ F ′. It is possible to see that

F ′
1 ∪ · · · ∪ F ′

p �⊆ G′
1 ∪ · · · ∪G′

q/2(5)

for any choice of p+ q/2 sets F ′
1, . . . , F

′
p, G

′
1, . . . , G

′
q/2 ∈ F ′. Assume by contradiction

that F ′ contains F ′
1, . . . , F

′
p, G

′
1, . . . , G

′
q/2 such that F ′

1 ∪ · · · ∪ F ′
p ⊆ G′

1 ∪ · · · ∪ G′
q/2;

then the union of the p sets of F from which F ′
1, . . . , F

′
p were obtained would be

contained in the union of at most q sets given by G′
1, . . . , G

′
q/2 and the � removed sets,

contradicting (4).
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For each subfamily {F ′
1, . . . , F

′
p} ⊂ F ′, there is a set X{F ′

1,...,F
′
p} with |X{F ′

1,...,F
′
p}| ≤

�4tp/q2� such that X{F ′
1,...,F

′
p} ⊆ F ′

j for some F ′
j ∈ {F ′

1, . . . , F
′
p}, and X{F ′

1,...,F
′
p} �⊆ F ′

for any F ′ ∈ F ′ \ {F ′
1, . . . , F

′
p}. Suppose by contradiction that there exists no

such set X{F ′
1,...,F

′
p}; then we can partition each F ′

1, . . . , F
′
p into q

2p subsets of size

at most �4tp/q2� such that each of those subsets is contained in some member of
F ′ \ {F ′

1, . . . , F
′
p}. It follows that each F ′

1, . . . , F
′
p is contained in the union of at most

q
2p other members of F ′ \ {F ′

1, . . . , F
′
p}, and consequently the union F ′

1 ∪ · · · ∪ F ′
p is

contained in the union of at most q/2 other members of F ′, which is a contradiction
to (5). Let us now group all but at most p− 1 members of F ′ into �|F ′|/p� pairwise
disjoint subfamilies of size p and let P denote the set of those subfamilies. From
the above argument, the family G = {X{F ′

1,...,F
′
p} : {F ′

1, . . . , F
′
p} ∈ P} is a Sperner

family (i.e., an antichain) consisting of |P| sets of size at most �4tp/q2�, and con-

sequently it is |P| = |G| ≤
(

t′

�4tp/q2	
)
, where t′ =

∣∣⋃
F ′∈F ′ F ′∣∣ ≤ t. It follows that

|F ′| ≤ p|P| + p− 1 ≤ p
(

t
�4tp/q2	

)
+ p− 1, and consequently,

|F| ≤ |F ′| + p− 1 + q/2 ≤ p

(
t

�4tp/q2�

)
+ 2(p− 1) + q/2.

From the above inequality and from inequality (3) it follows

|F| ≤ p2�4pt/q
2	 log(eq2/(4p)) + 2(p− 1) + q/2.(6)

Inequality (6) implies

t >
q2

4p log(eq2/(4p))
log

(
4(n− 2(p− 1) − q/2)

eq2

)
.(7)

To obtain the lower bound in the theorem, we need to deal with the case when q ≥ 2p
is not a multiple of 2p. In this case, we observe that any (p, q)-superimposed code is a
(p, 2p�q/2p�)-superimposed code and, exploiting lower bound (7), we get the following
lower bound that holds for any q ≥ 2p and n ≥ q2/4p:

t >
(2p� q

2p�)2

4p log(ep(� q
2p�)2)

log

(
4(n− 2(p− 1) − p� q

2p�)
e(2p� q

2p�)2

)
.(8)

Inequalities (6) and (8) imply the stated lower bound on ts(p, q, n).
By setting p = k −m + 1 and q = m − 1 in the above lower bound, one obtains

the following lower bound on the size of (k,m, n)-selectors.
Corollary 1. For any integers k, m, and n, with 1 ≤ m ≤ k ≤ n, n >

(m−1)2

4(k−m+1) , the minimum size t(k,m, n) of a (k,m, n)-selector is at least

t(k,m, n) ≥ (m− 1)2

16(k −m + 1) log( (m−1)2+(k−m+1)2

k−m+1 )
log

4(n−m + 1)

e((m− 1)2 + k −m + 1)
.(9)

3. Application of (k, m, n)-selectors to optimal two-stage group testing.
We have a set of objects O, |O| = n and a subset P ⊆ O of positives |P| ≤ p. Our
task is to determine the members of P by asking subset queries of the form “does
the subset Q ⊆ O contain a positive object?” We focus on the so-called trivial two-
stage algorithms. Recall that these algorithms consist of two stages: in the first stage
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certain pools are tested in parallel and in the second stage only individual objects are
tested (always in parallel). Which individual objects are tested may depend on the
outcomes of the first stage.

In the following we provide a two-stage algorithm that uses an asymptotically
optimal number of tests. We associate each item of the input set O with a distinct
column of a (k, p+1, n)-selector M = [M(i, j)]. Let t denote the size of the (k, p+1, n)-
selector. For i = 1, . . . , t, we define Ti = {j ∈ {1, . . . , n} : M(i, j) = 1}. The first
stage of the algorithm consists of testing the t pools T1, . . . , Tt in parallel. Let f denote
the binary vector collecting the answers of the t tests (here a “yes” answer to test
Ti corresponds to a 1 entry in the ith position of f , and a “no” answer corresponds
to a 0 entry). If O contains q ≤ p positive items, then f is the Boolean sum of the
q columns associated with the q positives. It is easy to see that, in addition to the
columns associated with the positives items, there are at most k − q − 1 columns
“covered” by f , that is, have the 1’s in a subset of the positions in which the vector
f also has 1’s. Let y1, . . . , yq denote the q positives. Assume by contradiction that
there are more than k − q − 1 columns, other than those associated with y1, . . . , yq,
which are covered by f . Let z1, . . . , zk−q denote k − q ≥ k − p such columns and let
us consider the submatrix of M consisting of y1, . . . , yq, z1, . . . , zk−q. By Definition 1,
this submatrix contains at least p + 1 rows of the identity matrix Ik. At least one of
these p + 1 rows of Ik has a 1 in one of the columns z1, . . . , zk−q. Let � denote the
index of such a row. Since the columns associated with y1, . . . , yq have the �th entry
equal to 0, then the �th entry of f is 0, thus contradicting the hypothesis that f covers
all columns z1, . . . , zk−q. Using this argument, one concludes that if we discard all
columns not covered by f , then we are left with k− 1 columns, q of which correspond
to the q positives. Stage 2 consists of individually probing these k − 1 elements. The
following theorem holds.

Theorem 3. Let t be the size of a (k, p+ 1, n)-selector. There exists a two-stage
group testing algorithm for finding up to p positives out of n items and that uses a
number of tests equal to t + k − 1.

From Theorems 1 and 3 we get the following.
Corollary 2. For any integers k, p, and n, with 1 ≤ p < k ≤ n, there exists a

two-stage group testing algorithm for finding up to p positives using a number of tests
less than

ek2

k − p
ln

n

k
+

ek(2k − 1)

k − p
+ k − 1.(10)

By optimizing the choice of k to k = 2p in (10), we get the main result of this section.
Corollary 3. For any integers p and n, with 1 ≤ p ≤ n, there exists a two-stage

group testing algorithm for finding up to p positives using a number of tests less than

4ep ln
n

2p
+ p(8e + 2) − 2e− 1 < 7.54p log2

n

p
+ 16.21p− 2e− 1.

The two-stage algorithm of the above corollary is asymptotically optimal because
of the information-theoretic lower bound on the number of tests given by

log2

(
n

p

)
> p log2

n

p
,(11)

that holds also for fully adaptive group testing algorithms.
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Corollaries 2 and 3 also can be used to solve the open problem, mentioned in [29],
of providing estimates for the maximum size of a search space in which it is possible
to successfully search for p positives, using at most v pools and no more than h tests
involving single elements. This problem is equivalent to fixing the cardinality of the
search space and trying to minimize the number of constructed pools. This equivalent
problem is solved by the above corollaries since in our algorithm the number of pools
coincides with the number of performed tests.

3.1. Deriving a lower bound on the size of (k, m, n)-selectors via two-
stage group testing. Let g(p, n) denote the minimum number of tests needed to
identify p positive items out of n items by a group testing strategy. Theorem 3 and
the information-theoretic lower bound (11) give

log2

(
n

p

)
≤ g(n, p) ≤ t(k, p + 1, n) + k − 1,

from which we get the following result that also provides a lower bound on the size
of (k,m, n)-selectors for values of k and m not covered by (9).

Theorem 4. For any integers k, m, and n, with 1 ≤ m ≤ k < n, the minimum
size t(k,m, n) of a (k,m, n)-selector satisfies

t(k,m, n) ≥ log

(
n

m− 1

)
− k + 1 ≥ (m− 1) log

n

m− 1
− k + 1.

The bound given in Theorem 4 improves on the bound given in Corollary 1 for
all values of k and m such that m = αk for constant α, 0 < α < 1. Theorem 4 also
implies a lower bound of Ω(k log n

k ) on the size of the k-selectors of [13] (that is, of our

(2k, 3k/2 + 1, n)-selectors), improving on the lower bound of Ω( k
log k log n

k ) mentioned

in [35]. Our lower bound is optimal since it matches the upper bound on the size of
k-selectors given in [13].

3.2. A remark on learning monotone Boolean functions. We consider
here the well-known problem of exact learning of an unknown Boolean function of n
variables by means of membership queries, provided that at most k of the variables
(attributes) are relevant. This is known as attribute-efficient learning. By membership
queries we mean the following [4]: The learner chooses a 0-1 assignment x of the n
variables and gets the value f(x) of the function at x. The goal is to learn (identify)
the unknown function f exactly, using a small number of queries. Typically, one
assumes that the learner knows in advance that f belongs to a restricted class of
Boolean functions, since the exact learning problem in the full generality admits only
trivial solutions. In this scenario, the group testing problem is equivalent to the
problem of exactly learning an unknown function f , where it is known that f is an
OR of at most p variables.

Recently, in a series of papers [17, 18, 19] Damaschke studied the power of adap-
tive versus nonadaptive attribute-efficient learning. In this framework he proved that
adaptive learning algorithms are more powerful than nonadaptive ones. More pre-
cisely, he proved that in general it is impossible to learn monotone Boolean functions
with k relevant variables in less than Ω(k) stages, if one insists that the total number
of queries be of the same order as that used by the best fully adaptive algorithm (i.e.,
an algorithm that may use an arbitrary number of stages; see [17, 18] for details). In
view of Damaschke’s results, we believe it worthwhile to state our Corollary 3 in the
following form.
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Corollary 4. Boolean functions made by the disjunction of at most p variables
are exactly learnable in only two stages by using a number of queries of the same order
as that of the best fully adaptive learning algorithm.

The above remark raises the interesting problem of how to characterize monotone
Boolean functions which are “optimally” learnable in a constant number of stages.
Another example of a class of functions optimally learnable in a constant number of
stages will be given at the end of section 5.

4. Two-stage algorithms for probabilistic group testing. In this section
we assume that objects in O, |O| = n, independently of each other, have some proba-
bility q = q(n) of being positive. This means that the probability distribution on the
possible subsets of positives is a binomial distribution, which is a standard assump-
tion in the area of probabilistic group testing (see, e.g., [7, 8, 37]). In this scenario
one is interested in minimizing the average number of queries necessary to identify
all positives. Shannon’s source coding theorem implies that the minimum average
number of queries is lower bounded by the entropy

n(−q(n) log q(n) − (1 − q(n)) log(1 − q(n))).(12)

It is also known [7, 37] that for two-stage group testing algorithms there are values
of the probability q(n) for which the lower bound (12) is not reachable, in the sense
that better lower bounds exist. Our algorithm for the probabilistic case is very simple
and is based on the following idea. Given the probability q = q(n) that a single
object in O is positive, we estimate the expected number of positives μ = nq(n).
We now run the two-stage algorithm described in section 3, using a (k,m, n)-selector
with parameters m = (1 + δ)μ + 1, with δ > 0, and k = 2(1 + δ)μ. Denote by X
the random variable taking the value i if and only if the number of positives in O
is exactly i. X is distributed according to a binomial distribution with parameter q
and mean value μ. If the number of positives is at most (1 + δ)μ, and this happens
with probability Pr[X ≤ (1 + δ)μ], then by the result of section 3 the execution of
the queries of Stage 1 will restrict our search to 2(1 + δ)μ− 1 elements, which will be
individually probed during Stage 2. Stage 1 requires O(m log n

m ) queries. If, on the
contrary, the number of positives is larger than (1 + δ)μ, then the feedback vector f
might cover more than 2(1 + δ)μ − 1 columns of the selector. Consequently a larger
number of elements, potentially all n elements, must be individually probed in Stage 2.
The crucial observation is that this latter unfavorable event happens with probability
Pr[X > (1+δ)μ]. Altogether, the above algorithm uses an average number of queries
E given by

E = O
(
m log

n

m

)
+ nPr[X > (1 + δ)μ].(13)

Choosing δ ≥ 2e and by recalling that m = (1 + δ)μ+ 1, we get from (13) and by the
Chernoff bound (see [46, p. 72]) that

E = O

(
nq(n) log

1

q(n)

)
+ n2−(1+δ)nq(n).(14)

A similar idea was used in [8]. However, the authors of [8] used classical su-
perimposed codes in the first stage of their algorithm, and since these codes have
sizes much larger than our selectors, their results are worse than ours. Recalling now
the information-theoretic lower bound (12) on the expected number of queries, we
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get from (14) that our algorithm is provably asymptotically optimal whenever the
probability function q(n) satisfies the condition

q(n) ≥ 1

n

(
log

1

q(n)
− log log

1

q(n)
−O(1)

)
.(15)

For instance, q(n) = c logn
n for any positive constant c or q(n) such that q(n)n

logn → ∞
satisfy (15). The previous two cases were explicitly considered in [7], where the authors
obtained results similar to ours, with better constants. Nevertheless, our condition
(15) is more general. Also, our method is rather flexible since one can “tune” the
choice of m to some value f(n)δμ, for a suitably chosen function f(n), in order to get
good performances also when q(n) does not satisfy (15).

The main difference between our results and those of [7] consists of the following.
Here we estimate the average number of queries of our explicitly defined algorithm.
Instead, the authors of [7] estimate the average number of queries performed by a two-
stage algorithm, where the Boolean matrix used in the first stage is randomly chosen
among all m×n binary matrices, where the choice of m depends on q(n). Using a very
complex yet accurate analysis, they probabilistically show the existence of two-stage
algorithms with good performances. For several classes of probability functions q(n),
they are able to give asymptotic upper and lower bounds on the minimum average
number of queries that differ in several cases only by a multiplicative constant.

5. An optimal four-stage group testing algorithm for the GTI model.
In this section we consider the group testing with inhibitors (GTI) model introduced
in [29]. We recall that, in this model, in addition to positive items and regular items,
there is also a category of items called inhibitors. The inhibitors are the items that
interfere with the test by hiding the presence of positive items. As a consequence,
a test yields a positive feedback if and only if the tested pool contains one or more
positives and no inhibitors. We present an optimal worst-case four-stage group testing
algorithm to find p positives in the presence of up to r inhibitors.

Stage 1. The goal of this stage is to find a pool Q ⊆ O which tests positive.
To this aim, we associate each item with a distinct column of a (p, r)-superimposed
code M = [M(i, j)]. Let t be the length of the code. For i = 1, . . . , t we construct
the pool Ti = {j ∈ {1, . . . , n} : M(i, j) = 1}. If we test pools T1, . . . , Tt, then the
feedback vector has the ith entry equal to 1 if and only if at least one the columns
associated with the p positives has the ith entry equal to 1, whereas none of the
columns associated with the inhibitors has the ith entry equal to 1. It is easy to prove
that such an entry i exists by using the fact that the code M is (p, r)-superimposed.
Stage 1 returns Q = Ti.

Stage 2. The goal of this stage is to remove all inhibitors from the set O. To this
aim we associate each item not in Q with a distinct column of a (k′, r + 1, n − |Q|)-
selector M ′. Let t′ be the size of the selector. For i = 1, . . . , t′ we construct the pool
T ′
i = {j ∈ {1, . . . , n} : M ′(i, j) = 1}. Let s ≤ r denote the number of inhibitors in

O. If we test pools T ′
1 ∪Q, . . . , T ′

t′ ∪Q, then the feedback vector f ′ has the ith entry
equal to 0 if and only if T ′

i contains one or more inhibitors. Hence, the feedback
vector f ′ is equal to the intersection (Boolean product) of the bitwise complement of

the s columns associated with the inhibitors. Let f
′
be the bitwise complement of f ′.

The column f
′

is equal to the Boolean sum of the s columns associated with the s
inhibitors. Using an argument similar to that used for the two-stage group testing

algorithm of section 3, one has that f
′
covers at most k′ − s− 1 columns in addition
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to those associated with the s inhibitor items. We set apart all k′ − 1 items covered

by f
′
. These k′ − 1 items will be individually probed in Stage 4 since some of them

might be defective.
Stage 3. The goal of this stage is to discard a “large” number of regular items

from the set of n − k′ items remaining after Stage 2. The present stage is similar to
Stage 1 of our two-stage algorithm of section 3. We associate each of the n− k′ items
with a distinct column of a (k′′, p + 1, n − k′)-selector M ′′. Let t′′ be the size of the
selector. For i = 1, . . . , t′′ we construct the pool T ′′

i = {j ∈ {1, . . . , n} : M ′′(i, j) = 1}
and test pools T ′′

1 , . . . , T
′′
t′′ . Notice that after Stage 2 there is no inhibitor among the

searched set of items and, consequently, the feedback vector f ′′ is equal to the Boolean
sum of the columns associated with the positive items in the set (those which have
not been set apart in Stage 2). After these t′′ tests we discard all items but those
corresponding to columns covered by the feedback vector f ′′. Hence, we are left with
k′′ − 1 items.

Stage 4. We individually probe the k′ − 1 items returned by Stage 2 and the
k′′ − 1 items returned by Stage 3.

The above algorithm provides the following general result.
Theorem 5. Let k′, k′′, n, p, and r be integers with 1 ≤ r < k′ < n and

1 ≤ p < k′′ < n − k′. There exists a four-stage group testing algorithm for finding p
positives in the presence of up to r inhibitors by

ts(p, r, n) + t(k′, r + 1, n− |Q|) + t(k′′, p + 1, n− k′) + k′ + k′′ − 2

tests.
The following main corollary of Theorem 5 holds.
Corollary 5. Let p and r be integers with 1 ≤ r < n and 1 ≤ p < n−2r. There

exists a four-stage group testing algorithm for finding p positives in the presence of up
to r inhibitors by

ts(p, r, n) + O

(
r log

n

r
+ p log

n− r

p

)
(16)

tests, and this upper bound is asymptotically optimal.
Proof. By setting k′ = 2r and k′′ = 2p in Theorem 5 and using the bound of

Theorem 1 on the size of selectors, one gets the following upper bound on the number
of tests performed by the four-stage algorithm:

ts(p, r, n) + 4er ln
n− |Q|

2r
+ 2e(4r − 1) + 4ep ln

n− 2r

2p
+ 2e(4p− 1) + 2r + 2p.(17)

We now prove that the above upper bound is asymptotically optimal. In [21] the
authors proved the following lower bound of

Ω

(
ts(p, r, n− p− 1) + ln

(
n

p

))
(18)

on the number of tests required by any algorithm (using any number of stages) to find p
defectives in the presence of r inhibitors. It is easy to see that any (p, r)-superimposed
code of size n−p−1 and length t can be transformed into a (p, r)-superimposed code
of size n and length t + p + 1. Indeed, let M be a (p, r)-superimposed code of size
n − p − 1 and length t, and let cj , j = 1, . . . , p + 1, denote the binary column of
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length t+ p+ 1 with all entries, except that in position t+ j, equal to zero. If we add
p+1 entries equal to zero at the end of each column of M and introduce the columns
c1, . . . , cp+1 in the resulting code, then we obtain a (p, r)-superimposed code of size
n and length t + p + 1. It follows that ts(p, r, n− p− 1) + p + 1 = Ω(ts(p, r, n)) and,
consequently, the lower bound (18) is

Ω

(
ts(p, r, n) + ln

(
n

p

))
.(19)

It is possible to see that expression (19) is Ω(ts(p, r, n) + r log n
r + p log n

p ). If p > r,
this is immediate. If p ≤ r, Theorem 2 implies that

ts(p, r, n) = Ω
(
r log

n

r

)
.(20)

Therefore expression (19) is Ω(ts(p, r, n)+ r log n
r + p log n

p ). It follows that the upper

bound (17) on the number of tests performed by the four-stage algorithm is tight with
lower bound (18).

We can employ a (p + r, r + 1, n)-selector in Stage 1 of the four-stage algorithm
and use the bound of Theorem 1 on the size of selectors to estimate the number of
tests performed by this stage. Notice that the weight of the rows of the (p+r, r+1, n)-
selector corresponds to the size of the pools tested during Stage 1 and, consequently,
to that of the set Q returned by this stage. By using the construction of Theorem 1
one has that the size of Q is n

r+p . Hence, the following result holds.
Corollary 6. For any integers p, r, and n, with p ≥ 1, r ≥ 0 and p + r ≤ n,

there exists a four-stage group testing algorithm for finding p positives in a set of n
elements, up to r of which can be inhibitors, using a number of tests at most

e(p + r)2

p
ln

n

p + r
+ 4er ln

n(r + p− 1)

2r(r + p)
+ 4ep ln

n− 2r

2p

+ (10e + 2)p + (12e + 2)r − 5e +
er(2r − 1)

p
− 2.

It is remarkable that for r = O(p) Corollary 6 implies that our deterministic
algorithm attains the same asymptotic complexity O((r+ p) log n) of the randomized
algorithm presented in [29].

Notice that the algorithm presented in this section actually discovers both the
positives and the inhibitors. Therefore, in the same spirit of section 3.2, we observe
that the problem of finding p positives and r inhibitors is equivalent to the problem
of learning an unknown Boolean function of the form (x1 ∨ · · · ∨ xp)∧ (y1 ∨ · · · ∨ yr).
Hence, the above results can be rephrased as follows.

Corollary 7. For any p and r, Boolean functions of the form (x1 ∨ · · · ∨ xp) ∧
(y1 ∨ · · · ∨ ys), s ≤ r, are exactly learnable in only four stages by using a number of
queries of the same order as that of the best fully adaptive learning algorithm.

6. Final discussion. The main result obtained in this paper is the first two-
stage group testing algorithm that uses a number of tests of the same order as the
information-theoretic lower bound on the problem. In retrospect, it could be useful
to see how we have reached our goal. The first stage of our algorithm is conceptually
similar to a classical totally nonadaptive group testing algorithm that first encodes
the items of the search space O with the column vectors of a superimposed code and
then performs tests according to the subsets of O specified by the rows of the matrix
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constituting the code (recall section 3). Unfortunately, any matrix that represents a
superimposed code has Ω((p2/ log p) log n) number of rows, where p is the known upper
bound on the number of positive elements, and therefore the number of performed
tests is well above the information-theoretic lower bound log

(
n
p

)
. Hence, we are lead

to look for combinatorial objects satisfying weaker conditions and having a number of
rows at most O(p log n) so that, by using them to specify the tests of the first stage, we
would remain close to the information-theoretic lower bound. Of course, if we used
such objects, whatever they are, at the end of the first stage we would necessarily
have unclassified items (recall the lower bound of Ω((p2/ log p) log n) on the number
of tests for one-stage algorithms that correctly discriminate all items in positives and
negatives). Luckily, by using our selectors of length O(log

(
n
p

)
), at the end of the first

stage the number of unclassified items is very small, at most 2p − 1, and by testing
them one by one we find all positives, and we remain asymptotically within the border
of the information-theoretic lower bound. We recall that our algorithm uses an overall
number of tests that is less than 7p log n

p + O(p); therefore the relevant constant in

O(p log(n/p)) is also reasonably small.
It would be interesting to see whether this approach of “weakening” combinato-

rial structures that are used in totally nonadaptive search procedures could be used
also for other problems to obtain “few-stages” algorithms, with the same asymptotic
performances of totally adaptive algorithms. The general approach should be the fol-
lowing: since it may be too expensive to determine in a totally nonadaptive fashion the
exact solution to the problem, one first nonadaptively individuates an “approximate”
solution to the problem, that is, a small set of potential solutions, and thereafter one
searches for the exact solution in this small set.

There are numerous problems that are possible candidates for such an investiga-
tion; potentially, many of the search problems mentioned in [2, 24], for which there
exists a gap between the complexity of adaptive and nonadaptive algorithms, could
be studied in this light. A particularly interesting one is the so-called “group test-
ing for complexes” [26, 44]. Here the elements of O are positive or negative not by
themselves, but only in conjunction with some others (imagine some chemical sub-
stances that react with others and therefore cannot be mixed with them, but yet are
nonreacting with other, different substances). The problem is to identify all positive
subsets, that is, to remain in the chemical scenario, to identify all groups of mutu-
ally reacting substances. The best nonadaptive algorithm for the above problem has
huge complexity [26], and an interesting open problem would be to see whether our
approach could lead to efficient “few-stage” algorithms.

In general, our study raises the following question: How much adaptiveness is
really needed in search procedures to obtain the optimal performances of fully adaptive
algorithms? Our results show that in group testing one needs to use adaptiveness only
once. There are other situations in which this phenomenon occurs. For instance, for
the well-known Renyi–Ulam game [48, 50, 53], in which one looks for an unknown
number by asking arbitrary yes/no questions, at most a fixed number of which can
receive an erroneous answer, the authors of [14] have shown that there exist two-
stage search strategies using a number of questions exactly equal to the information-
theoretic lower bound, and that one-stage search strategies cannot reach this lower
bound. Conversely, it is also known that there are natural search problems for which
fully adaptive algorithms are better than any k-stage algorithm (see, e.g., [47]). A
better understanding of the above issues is worth pursuing.
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[42] L. Lovàsz, On the ratio of optimal integral and fractional covers, Discrete Math., 13 (1975),

pp. 383–390.
[43] A. J. Macula, Probabilistic nonadaptive and two-stage group testing with relatively small

pools and DNA library screening, J. Comb. Optim., 2 (1999), pp. 385–397.
[44] A. J. Macula, P. Vilenkin, and D. Torney, Two-stage group testing for complexes in

the presence of errors, in Discrete Mathematical Problems with Medical Applications,
DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 55, AMS, Providence, RI, 2000, pp.
145–157.

[45] D. Margaritis and S. Skiena, Reconstructing strings from substrings in rounds, in Proceed-
ings of the Thirty-seventh IEEE Annual Symposium on Foundations of Computer Science
(FOCS ’95), IEEE, Piscataway, NJ, 1995, pp. 613–620.

[46] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, Cam-
bridge, UK, 1995.

[47] A. Pelc, Weakly adaptive comparison searching, Theoret. Comput. Sci., 66 (1989), pp. 105–
111.

[48] A. Pelc, Searching games with errors—fifty years of coping with liars, Theoret. Comput.
Sci., 243 (2002), pp. 71–109.

[49] P. A. Pevzner and R. J. Lipshutz, Towards DNA sequencing chips, in Proceedings of
the 19th International Symposium on Mathematical Foundations of Computer Science,
Lecture Notes in Comput. Sci. 841, Springer-Verlag, Berlin, 1994, pp. 143–158.

[50] R. L. Rivest, A. R. Meyer, D. J. Kleitman, K. Winklmann, and J. Spencer, Coping
with errors in binary search procedures, J. Comput. System Sci., 20 (1980), pp. 396–404.



1270 ANNALISA DE BONIS, LESZEK GA̧SIENIEC, AND UGO VACCARO
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STRICTLY NONBLOCKING MULTIRATE logd(N, m, p) NETWORKS∗
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Abstract. We give necessary and sufficient conditions for the d-nary multilog network to be
strictly nonblocking under the discrete multirate model, and we give sufficient conditions for the
same under the continuous multirate model.

Key words. strictly nonblocking network, multirate model, multilog network, Cantor network

AMS subject classifications. 68M10, 90B18

DOI. 10.1137/S0097539703433158

1. Introduction. In a multirate network, each link has a (normalized) capacity
1 and each request for connection is associated with a weight (bandwidth requirement)
w. Many paths can go through a link simultaneously as long as their total weight has
not exceeded unity. In particular, an input or output (link) can generate or receive
many requests as long as their total weight does not exceed unity. Often, the weight
of a request is bounded in the range [b,B]. A more general model is to assume that
an input or output link has capacity β ≤ 1 to reflect the reality that many networks
need an internal-to-external speed-up to be more efficient. In the discrete case (the
channel model), we assume that each internal link has f1 channels, each input or
output has f0 ≤ f1 channels, and a request is associated with a positive integer
number q, 1 ≤ q ≤ Q, where Q ≤ f0 is an upper bound of the number of channels a
request can demand.

A network state is a set of paths connecting a set of requests {(ix, oy, w)} such
that no link carries a load exceeding 1 (or f1), where ix is an input, oy is an output,
and w is the associated weight. Given a state, a new request (i, o, w) must satisfy the
condition that i has not generated and o has not received requests whose total weight
exceeds 1 − w (or f0 − w). A network is strictly nonblocking if, at any state, a new
request can always be connected without having any links carrying a load exceeding
1 (or f1).

Strictly nonblocking multirate networks have been studied for the 3-stage Clos
network [3] and the d-nary Cantor network [1], d ≥ 2. In this paper, we extend the
results of the Cantor network to the more general logd(N,m, p) network (also called
the d-nary multilog network), where the Cantor network is the special case with
m = n− 1. In particular, we give necessary and sufficient conditions for logd(N,m, p)
to be multirate strictly nonblocking.
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2. The channel model. The logd(N,m, p) network was first proposed by Shyy
and Lea [6], extending the logd(N, 0, p) network proposed by Lea [4]. The logd(N,m, p)
network has an input (output) stage consisting of N = dn 1 × p (p × 1) crossbars
and p copies of the d-nary m-extra-stage, 0 ≤ m ≤ n − 1, inverse banyan network
BY −1

d (n,m), where each input and output crossbar is connected to every copy of
BY −1

d (n,m). We will label the n + m + 2 stages by 0, 1, . . . , n + m + 1. Figure 1
illustrates an example of logd(N,m, p).

l0 l1 l2 l4l3
s tage 1s tage 0 s tage 2 s tage 3 s tage 4 s tage 5

i o

Fig. 1. A log2(8, 1, 2) network.

Next we study the channel model in this section.
Theorem 2.1. Consider the (Q, f0, f1) channel model with d�

n−1
2 �f0 ≥ f1 + 1.

Then logd(N, 0, p) is multirate strictly nonblocking if and only if

p ≥
⌊
d�

n−1
2 �f0 −Q

f1 −Q + 1

⌋
+

⌊
d�

n−1
2 �f0 −Q

f1 −Q + 1

⌋
+ 1.

Proof. Suppose the new request is (i, o, q). Call an internal link q-saturated if it
carries a load exceeding f1 − q + 1 (and hence cannot carry a new q-request). Note
that the channel graph between i and o is just a single path l. An intersecting path
is a path p from input i′ �= i to output o′ �= o such that p shares a link with l. In
particular, let lj denote the stage-j link (a link between stage j and stage j + 1) in l
(see Figure 1). Then a j-intersecting path is one which intersects l at lj . Note that
a j-intersecting path can also be a j′-intersecting path for j �= j′. Further, l0 (ln)
cannot be saturated since its load is from i (o). Therefore we need only look inside
the BY −1

d (n, 0) for saturated links.
Sufficiency. The new request cannot be carried in a copy of BY −1

d (n, 0) if and
only if there exists an lj which is q-saturated by j-intersecting paths. We divide l into
two disjoint halves:

H1 = {lj : 1 ≤ j ≤ �(n− 1)/2�},

H2 = {lj : �(n + 1)/2� ≤ j ≤ n− 1}.
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Note that only d�(n−1)/2� inputs can generate j-intersecting paths over all j in H1. The
total weight of these paths is bounded by d�(n−1)/2�f0 − q since the weight of the new
request must be excluded. In the right-hand side of the inequality in Theorem 2.1,
the first term is an upper bound of the number of q-saturated lj over all j in H1.
Similarly, only d�(n−1)/2� outputs can generate j-intersecting paths for j in H2, and
the second term in the inequality is an upper bound of the number of q-saturated lj
over all j in H2. Thus their sum is an upper bound of the number of saturated links
in l, and hence an upper bound of the number of blocked copies of BY −1

d (n, 0). One
more copy suffices to route the new request.

Necessity. It suffices to construct a set of connections intersecting the (i, o,Q)

request with total weights of �d�n−1
2

�f0−Q
f1−Q+1 � and �d�n−1

2
�f0−Q

f1−Q+1 �. With respect to l, an

input (output) is called j-marginal, 1 ≤ j ≤ n− 1, if it can generate a j-intersecting
path but not a (j−1)-intersecting ((j+1)-intersecting) path. Let WIj (WOj) denote
the total weight of requests which can be generated by j-marginal inputs (outputs).
Then

WI1 = df0 − q, WIj = (dj − dj−1)f0 for 2 ≤ j ≤ n− 1,

WOj = WIn−j for 1 ≤ j ≤ n− 1.

Note that

WIj < WOj for j ∈ H1

and

WIj > WOj for j ∈ H2.

Compute the maximum number b1 of Q-saturated links generated by 1-marginal
inputs. Assign a total weight of b1(f1 − Q + 1) of requests to 1-marginal outputs
(doable by the above inequalities), and mix the remaining requests of weight df0 −
Q − b1(f1 − Q + 1) with requests generated by 2-marginal inputs. Again, compute
the maximum number b2 of Q-saturated links generated by this mixture of requests.
Assign requests with a total weight b2(f1 − Q + 1) to 2-marginal outputs, and mix
the rest with requests from 3-marginal inputs. Proceed like this until the last step
s = �(n − 1)/2�. At step s, assign requests with a total weight of bs(f1 − Q + 1)
to s-marginal outputs and ignore unassigned requests. It is straightforward to verify
that the number of saturated lj for j in H1 constructed by this assignment is the
first term in the inequality of Theorem 2.1. Similarly, the corresponding number for
j in H2 is the second term. Thus their sum plus one copy is the necessary number of
copies needed to route the new request.

Next we consider the general m case. Define

gm(q) =

m∑
j=1

1

dj

{⌊
djf0 − q

f1 − q + 1

⌋
−
⌊
dj−1f0 − q

f1 − q + 1

⌋}
for 0 ≤ m ≤ n− 1.

Theorem 2.2. Consider the (Q, f0, f1) channel model with d�
n−1

2 �f0 ≥ f1 + 1.
Then logd(N,m, p) is multirate strictly nonblocking for 0 ≤ m ≤ n− 1 if and only if
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p ≥
⌊
2gm(Q) +

⌊
d�

n+m−1
2 �f0 −Q− �dmf0−Q

f1−Q+1 �(f1 −Q + 1)

f1 −Q + 1

⌋
1

dm

+

⌊
d�

n+m−1
2 �f0 −Q− �dmf0−Q

f1−Q+1 �(f1 −Q + 1)

f1 −Q + 1

⌋
1

dm

⌋
+ 1.

Proof. Our strategy is to partition the BY −1
d (n,m) stages into two parts as

follows: the outer part consists of m + 1 outer stages from the input side and m + 1
outer stages from the output side; and the inner part consists of n−m inner stages,
i.e., stage m + 1 to stage n, composed of dm copies of BY −1

d (n −m, 0). (Note that
stage m + 1 (n) is in both parts.) For the outer part, we adopt (and extend) the
approach of Chung and Ross [2] given for the special case of the Cantor network. For
the inner part we apply Theorem 2.1.

More specifically, for the outer part, we compute the total weight of requests
which can reach a stage-j link, 1 ≤ j ≤ m, in the (i, o) channel graph that is djf0 − q,
while a q-saturated link carries a load of at least f1 − q + 1. Thus, at most⌊

djf0 − q

f1 − q + 1

⌋

links in the channel graph at or before stage j can be saturated. The worst case is to
assign the saturated links to as early a stage as possible since links in the early stages
have more blocking power. This results in assigning⌊

djf0 − q

f1 − q + 1

⌋

saturated links to stage j, each of which blocks 1/dj copies of BY −1
d (n,m). Thus

�gm(q)� is the number of copies of BY −1
d (n,m) blocked by paths intersecting the

links of the (i, o) channel graph in the first or last m stages.
The total weight of requests which can reach a stage-�(n + m− 1)/2� link is

d�(n+m−1)/2�f0 − q.

But a total weight of ⌊
dmf0 − q

f1 − q + 1

⌋
(f1 − q + 1)

was already connected in the first m stages. Therefore only the difference of these two
weights can be used to saturate stage-j links for m+1 < j ≤ �(n+m−1)/2�. Since the
logd(N,m, p) network between these stages consists of dm copies of BY −1

d (n−m, 0),
we apply Theorem 2.1 (only the input side) to the number of copies of BY −1

d (n −
m, 0) blocked, which must be divided by dm to convert to the number of copies of
BY −1

d (n,m) blocked.
The argument for the output side is analogous. One extra channel then guarantees

the routing of the current request. Therefore

p ≥ max
1≤q≤Q

{
�2gm(q) +

⌊
d�

n+m−1
2 �f0 − q − �dmf0−q

f1−q+1 �(f1 − q + 1)

f1 − q + 1

⌋
1

dm⌊
d�

n+m−1
2 �f0 − q − �dmf0−q

f1−q+1 �(f1 − q + 1)

f1 − q + 1

⌋
1

dm
�
}

+ 1(1)
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is a sufficient condition for logd(N,m, p) to be multirate strictly nonblocking for 0 ≤
m ≤ n− 1. We show that the maximum is achieved at q = Q. To see this, define

Aj =

⌊
djf0 − q

f1 − q + 1

⌋
, j = 0, 1, . . . ,

⌊
n + m− 1

2

⌋

for simplicity. Then, trivially, A0 = � f0−q
f1−q+1� = 0 and Aj ≥ 0 is nondecreasing in q

for every j = 0, 1, . . . , �n+m−1
2 �. We have

gm(q) +

⌊
d�

n+m−1
2 �f0 − q − �dmf0−q

f1−q+1 �(f1 − q + 1)

f1 − q + 1

⌋
1

dm

= gm(q) +

(⌊
d�

n+m−1
2 �f0 − q

f1 − q + 1

⌋
−
⌊
dmf0 − q

f1 − q + 1

⌋)
1

dm

=
1

d
(A1 −A0) +

1

d2
(A2 −A1) + · · · + 1

dm
(Am −Am−1) +

1

dm
(A�n+m−1

2 � −Am)

=

(
1

d
− 1

d2

)
A1 +

(
1

d2
− 1

d3

)
A2 + · · · +

(
1

dm−1
− 1

dm

)
Am−1 +

1

dm
A�n+m−1

2 �.

Since every term is positive and nondecreasing in q, we conclude that

gm(q) +

⌊
d�

n+m−1
2 �f0 − q − �dmf0−q

f1−q+1 �(f1 − q + 1)

f1 − q + 1

⌋
1

dm

is maximized at Q. A similar conclusion holds for the term

gm(q) +

⌊
d�

n+m−1
2 �f0 − q − �dmf0−q

f1−q+1 �(f1 − q + 1)

f1 − q + 1

⌋
1

dm
.

It follows that (1) is maximized at Q.
The necessity part follows from the fact that both the conditions of Chung and

Ross and those of Theorem 2.1 are necessary. However, the j-marginal input is defined
only for 1 ≤ j ≤ n since they use up all inputs. Similarly, the j-marginal output is
defined only for n ≤ j ≤ n + m − 1, and WOj = WIn+m−j . Therefore we need to
slightly modify the assignment of requests from j-marginal inputs and outputs. It is
easily verified as follows:

m∑
j=1

WIj < WOm and

n+m−1∑
j=n

WOj < WIn.

The modification is to assign requests from j-marginal inputs for all 1 ≤ j ≤ m to
m-marginal outputs and requests for j-marginal outputs for all n ≤ j ≤ n + m −
1 to n-marginal inputs. The above inequalities ensure that such assignments are
doable.

Note that for m = 0, gm(Q) = 0, and �dmf0−Q
f1−Q+1 � = 0, Theorem 2.2 is reduced to

Theorem 2.1. For m = n− 1, the terms⌊
d�

n+m−1
2 �f0 −Q− �dmf0−Q

f1−Q+1 �(f1 −Q + 1)

f1 −Q + 1

⌋
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and ⌊
d�

n+m−1
2 �f0 −Q− �dmf0−Q

f1−Q+1 �(f1 −Q + 1)

f1 −Q + 1

⌋

equal 0. Theorem 2.2 is reduced to the result on the Cantor network in [2].
We further study the situation when the internal links have different capacities.

Suppose the input and output have capacity f0, the stage-j links and stage-(n − j)
links have capacity fj , j = 1, 2, . . . , �n+m−1

2 	, and fj−1 ≤ fj .
We define

lk(q) =

⌊
dkf0 − q −

∑k−1
i=1 (fi − q + 1)li(q)

fk − q + 1

⌋
for 1 ≤ k ≤

⌈
n + m− 1

2

⌉
,

and

gm(q) =

m∑
j=1

1

dk
lk(q) for 0 ≤ m ≤ n− 1.

Theorem 2.3. Consider the (Q, f0, f1, . . . , f�n+m−1
2 �) channel model with d�

n−1
2 �f0

≥ f1 + 1. Then logd(N,m, p) is multirate strictly nonblocking for 0 ≤ m ≤ n − 1 if
and only if

p ≥ max
1≤q≤Q

⎧⎨
⎩
⎢⎢⎢⎣2gm(q) +

1

dm

�n+m−1
2 �∑

m+1

lk(q) +
1

dm

�n+m−1
2 �∑

m+1

lk(q)

⎥⎥⎥⎦
⎫⎬
⎭ + 1.

Proof. The proof is analogous to the proof of Theorem 2.2. The assumption
fj−1 ≤ fj for j = 1, 2, . . . , �n+m−1

2 	 is needed to guarantee

f0

fk − q + 1
· 1

dk
>

f0

fk+1 − q + 1
· 1

dk+1
for 1 ≤ k ≤ m,

f0

fk − q + 1
· 1

dm
>

f0

fk+1 − q + 1
· 1

dm
for 1 ≤ k ≤

⌊
n + m− 1

2

⌋
,

such that if an intersecting path intersects at several stages, the blocking effect is
always greatest at the outmost stage, justifying our assigning it to that stage.

3. The continuous model. We first quote a lemma proved by Melen and
Turner [5].

Lemma 3.1. � a−w
b−w+ε� = �a−w

b−w 	 − 1 if a ≥ b, where ε is positive and tends to 0.
Theorem 3.2. Consider the (b,B, β) continuous model satisfying b + B ≤ 1.

Then logd(N, 0, p) is strictly nonblocking if

p ≥
⌈
d�

n−1
2 �β −B

1 −B

⌉
+

⌈
d�

n−1
2 �β −B

1 −B

⌉
− 1,

and the condition is necessary if b = 0.
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Proof. With an argument analogous to the proof of Theorem 2.1, we obtain the
sufficient condition to route an (i, o, w) new request to be⌊

d�
n−1

2 �β − w

1 − w + ε

⌋
+

⌊
d�

n−1
2 �β − w

1 − w + ε

⌋
+ 1

=

⌈
d�

n−1
2 �β − w

1 − w

⌉
+

⌈
d�

n−1
2 �β − w

1 − w

⌉
− 1,

which is maximized at w = B.
To prove the necessity, note that for b = 0 we can always generate requests with

suitable weights such that every saturated link carries a load of 1 − w − ε.
Theorem 3.3. Consider the (b,B, β) continuous model satisfying b + B > 1.

Then logd(N, 0, p) is strictly nonblocking if and only if

p ≥
⌊
β

b

⌋
(d�

n−1
2 � − 1) +

⌊
β

b

⌋
(d�

n−1
2 � − 1) + 1.

Proof. Let the new request be (i, o, w). Note that the channel graph between i
and o is just a single path l. Similar to the proof of Theorem 2.1, d�(n−1)/2�−1 inputs
other than i can generate j-intersecting paths for j in H1, and d�(n−1)/2� − 1 outputs
can generate j-intersecting paths for j in H2. Since either an input or an output can
generate at most �β/b� requests, then⌊

β

b

⌋
(d�

n−1
2 � − 1) +

⌊
β

b

⌋
(d�

n−1
2 � − 1)

is an upper bound of the number of intersecting paths, and hence an upper bound of
the number of blocked copies. Thus one extra copy suffices to carry the new request.
Note that whether the extra copy carries any load from i or o is immaterial since the
load cannot exceed β − w.

On the other hand, suppose w = B. Then, analogous to Theorem 2.1, the worst
case described above can occur and the new request cannot be routed through any
link already carrying a load b. Hence the sufficient condition is also necessary.

Next we consider m > 0 case. Define

gm(w) =

m∑
j=1

1

dj

{⌈
djβ − w

1 − w

⌉
−
⌈
dj−1β − w

1 − w

⌉}
for 1 ≤ m ≤ n− 1.

Theorem 3.4. Consider the (b,B, β) continuous model satisfying b + B ≤ 1.
Then logd(N,m, p) is strictly nonblocking if

p ≥
⌊
2gm(B) +

⌈
d�

n+m−1
2 �β −B − (�dmβ−B

1−B 	 − 1)(1 −B)

(1 −B)

⌉
1

dm

+

⌈
d�

n+m−1
2 �β −B − (�dmβ−B

1−B 	 − 1)(1 −B)

(1 −B)

⌉
1

dm

⌋
− 1,

and the condition is necessary if b = 0.
Proof. The proof is analogous to the proof of Theorem 2.2.
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Theorem 3.5. Consider the (b,B, β) continuous model satisfying b + B > 1.
Then logd(N,m, p) is strictly nonblocking if and only if

p ≥ 2

⌊
m(d− 1)�β/b�

d

⌋
+

⌊
(d�

n+m−1
2 � − dm)�β/b�

dm

⌋
+

⌊
(d�

n+m−1
2 � − dm)�β/b�

dm

⌋
+ 1.

Proof. Each input can generate at most �β/b� requests. Let each internal link
carry at most one request. Then there are dj−dj−1 inputs generating (dj−dj−1)�β/b�
requests to intersect a stage-j link in the (i, o) channel graph for 1 ≤ j ≤ m. Since
each such intersecting path blocks 1/dj copies of BY −1

d (n,m), a total of⎢⎢⎢⎣ m∑
j=1

(dj − dj−1)�β/b�
dj

⎥⎥⎥⎦ =

⌊
m(d− 1)�β/b�

d

⌋

copies is blocked. Similarly, the output side blocks the same number of copies. Finally,
stage m + 1 to stage n−m− 1 consists of dm copies of BY −1

d (n−m, 0). We use an
argument analogous to the proof of Theorem 2.2 to compute the number of copies
blocked in these stages to be⌊

(d�
n+m−1

2 � − dm)�β/b�
dm

⌋
+

⌊
(d�

n+m−1
2 � − dm)�β/b�

dm

⌋
.

So one extra copy suffices to route the new request.
To prove the necessity, let w = B. Then the worst case discussed above can

occur.
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SRT DIVISION ALGORITHMS AS DYNAMICAL SYSTEMS∗
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Abstract. Sweeney–Robertson–Tocher (SRT) division, as it was discovered in the late 1950s,
represented an important improvement in the speed of division algorithms for computers at the
time. A variant of SRT division is still commonly implemented in computers today. Although
some bounds on the performance of the original SRT division method were obtained, a great many
questions remained unanswered. In this paper, the original version of SRT division is described
as a dynamical system. This enables us to bring modern dynamical systems theory, a relatively
new development in mathematics, to bear on an older problem. In doing so, we are able to show
that SRT division is ergodic, and is even Bernoulli, for all real divisors and dividends. With the
Bernoulli property, we are able to use entropy to prove that the natural extensions of SRT division
are isomorphic by way of the Kolmogorov–Ornstein theorem. We demonstrate how our methods and
results can be applied to a much larger class of division algorithms.

Key words. SRT division, ergodic, Bernoulli, dynamical systems, entropy

AMS subject classifications. 68W40, 37E05

DOI. 10.1137/S009753970444106X

1. Introduction. Since the discovery of the first radix-2 Sweeney–Robertson–
Tocher (SRT) division algorithm, the use of the term “SRT division” has expanded
to include a wide variety of higher radix nonrestoring division algorithms that are
loosely based on the original. For example, there is the infamous implementation
of a radix-4 SRT division algorithm in the first release of the Pentium CPU that
has become widely known as the “Pentium Bug.” One major difference between
this implementation of radix-4 SRT division and the original radix-2 SRT division
is that the former produces a constant number of quotient bits per step, while the
latter produces a variable number. Modern implementations of SRT division use
carry-save adders to perform additions and subtractions in constant time. Earlier
implementations, however, used carry-propagate adders with delays that grow with
the word length. Therefore, the primary goal of the early investigators was to reduce
the number of uses of the costly adder. In the late 1950s, Sweeney [3], Robertson
[17], and Tocher [21] independently made the observation that whenever a partial
remainder is in the range (− 1

2 ,
1
2 ), there will be one or more leading zeros that can be

shifted through in a very short amount of time (usually one cycle) thereby reducing
the use of the adder. Although the aforementioned have received most of the credit for
the algorithm named after them, it can be argued that Nadler described an equivalent
algorithm in a 1956 paper [13]. The description of higher radix SRT division, which
is the basis for modern SRT division, is generally attributed to Atkins [1], but this is
not the version of division that we will be concerned with in this paper.
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Although what is considered to be “costly” for a division algorithm has changed,
it is still interesting to study and important to understand the behavior of successive
partial remainders on average for a given divisor. Surprisingly, some of the most
basic questions that one might have concerning the behavior of partial remainders for
even simple radix-2 SRT division have remained unanswered for over 40 years. The
difficulty that early investigators experienced in answering such questions was mainly
due to a lack of necessary mathematical tools and results. During that past 30 years,
the field of “dynamical systems theory” or “ergodic theory” has come into existence
in mathematics and has been greatly developed. In this paper we show how to apply
some of what is now known in dynamical systems theory to the earliest version of SRT
division. In doing so, we are able to prove several previously unknown properties for
simple SRT division. The results are quite general and can be adapted to other
division algorithms. We view the value of these results as lying in the establishment
of a connection between a well-developed area of mathematics and digital division,
rather than in any practical consequences for division algorithms. For the remainder of
this paper, the term SRT division will refer to the original algorithm unless otherwise
stated.

The SRT division algorithms analyzed by Freiman [5] and Shively [20] are the
same, but the authors differ in what they take to be a step of the algorithm: Freiman
defines a step to be the operations from one use of the adder to the next, while Shively
defines it to be the operations from one normalizing shift (of a single place) to the
next. The following definitions are consistent with Shively’s:

1. n represents the number of iterations performed in the algorithm.
2. p0 is the dividend (or initial partial remainder) normalized so that p0 ∈ [ 12 , 1).
3. pi ∈ (−1, 1), i ∈ N, is the partial remainder after the ith step.
4. D is the divisor normalized to [12 , 1).
5. qi ∈ {−1, 0, 1} (i ∈ {0, . . . , n− 1}) is the quotient digit generated by the ith

step.
6. Qn =

∑n−1
i=0

qi
2i is the “rounded off” quotient generated after n steps of the

algorithm.
Given the above definitions, after n steps of the division algorithm, we would like

it to be true that

p0 = DQn + ε(n),

where ε(n) is a term that goes to zero as n goes to infinity.
A recurrence relation for the SRT division algorithm can be stated as

(pi+1, qi) =

⎧⎪⎨
⎪⎩

(2pi, 0) : |pi| < 1
2 ,

(2(pi −D), 1) : |pi| ≥ 1
2 and pi ≥ 0,

(2(pi + D), −1) : |pi| ≥ 1
2 and pi < 0.

By observing that

pi+1 =

⎧⎪⎨
⎪⎩

2(pi − (0)D) : |pi| < 1
2 ,

2(pi − (1)D) : |pi| ≥ 1
2 and pi ≥ 0,

2(pi − (−1)D) : |pi| ≥ 1
2 and pi < 0,

we can rewrite the definition of pi+1 as

pi+1 = 2(pi − qiD) .
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After n steps have been completed, we have

pn = 2np0 − 2nq0D − 2n−1q1D − · · · − 21qn−1D ,

and then after dividing by 2n and solving for p0 we find that

p0 =
pn
2n

+
q0D

20
+

q1D

21
+ · · · + qn−1D

2n−1

= D

n−1∑
i=0

qi
2i

+
pn
2n

= DQn +
pn
2n

.

Now let ε(n) = pn/2
n and let Q∗ = limn→∞ Qn. Since |pn| < 1, in the limit as n goes

to infinity,

p0 = DQ∗ .

The generated quotient bits (−1, 0, +1 valued) are not in a standard binary
representation, but it is a simple matter to convert the answer back to standard
binary without using any expensive operations. Table 1 shows an example of using
the SRT division algorithm to divide 0.67 by 0.75. The steps that produce nonzero
quotient bits have been shown. In this example, after six uses of the adder, the
quotient (0.893) has been determined to four digits of precision.

Table 1

SRT division where p0 = 0.67 and D = 0.75.

p0 = 0.67 = 0.67
p1 = 2(0.67 −D) = −0.16 q0 = 1 Q0 = 1
p4 = 2(22(−0.16) + D) = 0.22 q3 = −1 Q3 = 0.875
p7 = 2(22(0.22) −D) = 0.26 q6 = 1 Q6 = 0.890625
p9 = 2(21(0.26) −D) = −0.46 q8 = 1 Q8 = 0.89453125
p11 = 2(21(−0.46) + D) = −0.34 q10 = −1 Q10 = 0.8935546875
p13 = 2(21(−0.34) + D) = 0.14 q12 = −1 Q12

.
= 0.8933105469

Now, with this simple system of division in hand, we might want to ask certain
questions about its performance. For example, we could ask, “How many bits of
precision are generated per iteration of the algorithm on average?” To answer this
question, we must look at the magnitude of |Q∗ −Qn| = |pn/2n|. The number of
bits of precision on the nth step is then n − log2 pn. In the worst case, pn is close
to 1, and therefore we get at least one bit of precision per iteration of the algorithm,
regardless of the values of D or p0. Of course, a designer of actual floating-point
hardware probably wants to know the expected performance based on the expected
values of pn. To answer the many variants of this type of question, it is clear that
we must know something about the distribution of partial remainders over time. The
remainder of this paper is devoted to extending what is known about the answer to
this type of question as it relates to SRT division and its variants.

2. SRT division as a dynamical system. The example in Table 1 makes it
clear that keeping track of the signs of successive partial remainders is irrelevant in
determining how many times the adder will be used for a particular calculation. For
this reason, we need only consider the magnitudes of successive partial remainders.
We now give a reformulation of SRT division that will allow us to look at division as
a dynamical system.
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Definition 1 (SRT division transformation). For D ∈ [ 12 , 1), we define the
function TD : [0, 1) → [0, 1) as

TD(x) =

⎧⎪⎨
⎪⎩

2x : 0 ≤ x < 1
2 ,

2(D − x) : 1
2 ≤ x < D,

2(x−D) : D ≤ x < 1.

This transformation of the unit interval represents the successive partial remainders
that arise as SRT division is carried out by a divisor D on a dividend x. D is
normalized to [ 12 , 1). The dividend x is normalized to [ 12 , 1) initially, while each of the
successive partial remainders Tn

D(x) (n ∈ N) subsequently ranges through [0, 1).
By using the characteristic function for a set Δ defined as

1Δ(x) =

{
1 : x ∈ Δ,

0 : x �∈ Δ,

we can rewrite TD as

TD(x) = 2x · 1[0, 12 )(x) + 2(D − x) · 1[ 12 ,D)(x) + 2(x−D) · 1[D,1)(x) .(1)

If we plot (1) on the unit interval, we obtain a very useful visualization of our
transformation. Figure 1 shows the plot of T0.75(x) combined with a plot of the
successive partial remainders that arise while dividing 0.67 by 0.75. This is the same
system that was presented earlier in Table 1. Notice that a vertical line in the interval
[ 12 , D) corresponds to a subsequent flip in the sign of the next partial remainder.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

T
0
.7

5
(x

)

|p0|

|p3| |p6||p8|

|p10|

Fig. 1. Graphic representation of partial remainder magnitudes for D = 0.75 and p0 = 0.67.

Figure 1 shows an example of following the trajectory of a single partial remainder
for a particular divisor. In this figure, the heavy solid lines represent the transfor-
mation T0.75, while the abscissa of the thin vertical lines represents successive partial
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remainder magnitudes. After 10 applications of the T0.75, there is not any obvious
regular pattern, although we expect to see one eventually since the quotient is rational
in this case.1 Of course, most numbers are not rational and we can deduce that for
most numbers, the transformation will never exhibit a repeating pattern. In Figures
2 and 3, we see that a very small change in the value of the initial partial remainder
quickly produces large differences in the observed behavior of the subsequent partial
remainders. As we show in the appendix, our system is actually chaotic, and there-
fore we will gain little understanding by studying the trajectories of individual partial
remainders. The logical next step is to study the behavior of distributions of points
over the whole interval.

0 20 40 60 80 1000

0.25

0.5

0.75

1

n

T
n 4
/
5
(x

)

Fig. 2. The result of applying T4/5 to x = π
7

one hundred times.

0 20 40 60 80 1000

0.25

0.5

0.75

1

n

T
n 4
/
5
(x

)

Fig. 3. The result of applying T4/5 to x = π
7

+ 0.00001 one hundred times.

Understanding the behavior of ensembles of points under repeated transforma-
tion is in the realm of dynamical systems theory. For the remainder of this paper,
we assume a certain amount of familiarity with the fundamentals of dynamical sys-
tems theory (or ergodic theory), which requires some basic understanding of measure
theory. We will include a few helpful background material definitions as they are
needed, but mostly we will provide references. A very good introduction to the study
of chaotic systems is Lasota and Mackey’s book [8]. For a more detailed introduction
to ergodic theory (along with the necessary measure theory needed to understand this
paper), Walters’s book [22] and Petersen’s book [16] are highly recommended.

1With redundant representations, rational numbers can have aperiodic representations, though
we do not expect this to happen.
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Definition 2 (probability space). If B is a σ-algebra on subsets of a set X
and if m is a measure on B, where m(X) = 1, then the triple (X,B,m) is called a
probability space. (See [22, pp. 3–9] and [8, pp. 19–31] for a good overview of basic
measure theory and Lebesgue integration.)

Definition 3 (Perron–Frobenius operator). For a probability space (X,B,m),2

the Perron–Frobenius operator P : L1 → L1 associated with a nonsingular transfor-
mation T : X → X is defined by∫

B

Pf(x) dm =

∫
T−1(B)

f(x) dm for B ∈ B .

For a piecewise monotonic C2 transformation3 T with n monotonic pieces, we can
give an explicit formula for the Perron–Frobenius operator. Let A = {A1, A2, . . . , An}
be the partition of X which separates T into n pieces. For i ∈ {1, . . . , n}, let ti(x)
represent the natural extension of the ith C2 function T (x)|Ai . The Perron–Frobenius
operator for T is then

Pf(x) =

n∑
i=1

∣∣∣∣ d

dx
t−1
i (x)

∣∣∣∣ f(t−1
i (x)) · 1ti(Ai)(x) .

In particular, for TD (as in (1)),

Pf(x) = 1
2f( 1

2x) · 1[0,1)(x) + 1
2f(D − 1

2x) · 1(0,2D−1](x) + 1
2f(D + 1

2x) · 1[0,2−2D)(x).

(2)

With (2) we can show precisely what happens to an initial distribution of points
(described by an integrable function) after they are repeatedly transformed under
TD. Figures 4 and 5 show what happens to two different initial distributions of points
after five applications of the Perron–Frobenius operator associated with T3/5(x). By
the fifth application, the distributions look remarkably similar. One might guess that
they are both approaching the same final distribution. This situation is in marked
contrast to chaotic behavior observed in Figures 2 and 3.

Definition 4 (stationary distribution). Let (X,B,m) be a probability space,
let P be the Perron–Frobenius operator associated with a nonsingular transformation
T : X → X, and let L1 denote the L1 space of (X,B,m). If f ∈ L1 is such that
Pf = f a.e.,4 then f is called a stationary distribution of T .

A practical use of the Perron–Frobenius operator is in deriving and verifying the
equations of stationary distributions for given divisors. As an example of this, we
verify the correctness of a previously known stationary distribution for D ∈ [ 34 , 1).
An exact equation was first given by Freiman [5] and is restated by Shively [20] as

f(x) =
1

D
1[0,2D−1)(x) +

1

2D
1[2D−1,1)(x) .(3)

This relation can be verified by applying the Perron–Frobenius operator as given in
(2) to (3). Such exact equations are not known in general for all D ∈ [ 12 ,

3
4 ). This

issue is discussed further in the conclusion.

2For a probability space (X,B,m), the L1 space of (X,B,m) is the set of f : X → R satisfying∫
X |f(x)| dm < ∞.

3C2 denotes the set of all functions with two continuous derivatives.
4a.e. indicates that the given relation holds almost everywhere, that is, everywhere except possibly

on a set of measure zero.
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Fig. 4. The result of applying the Perron–Frobenius operator P associated with T3/5 to f(x) = 1
six times.
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Fig. 5. The result of applying the Perron–Frobenius operator P associated with T3/5 to
f(x) = (1/x loge 2) · 1

[
1
2
,1)

(x) six times.

In the case of variable quotient-bits-per-cycle algorithms such as the original SRT
division, one of the primary uses of a formula for the distribution of partial remainders
is for calculating the shift average for a given divisor. (Note that higher shift averages
are desirable.) The shift average is the average number of uses of the shift register (sin-
gle shift or multiplication by two) between uses of the adder. Under the assumption
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that a register shift is a much faster operation than using the adder, the shift average
gives a useful characterization of the expected performance of our algorithm for a
given divisor. With (3), we know the fraction of bits which require the use of the
adder. To calculate the average number of zero bits generated between nonzero bits
(bits requiring use of the adder), we take the reciprocal of the fraction of bits which
do not require the adder. For D ∈ [ 34 , 1), the shift average function is

s(D) =

(
1 − 1

2D

)−1

=
2D

2D − 1
.(4)

Unfortunately, since we have not proven that the stationary distributions from
SRT division are unique, we have no way of knowing whether or not a shift average
calculation in (4) is correct for all initial probability distributions. To prove that
all stationary distributions are unique, we need to show that TD is ergodic for all
D ∈ [ 12 , 1).

Definition 5 (ergodic; see [8]). Let (X,B,m) be a probability space and let a
nonsingular transformation T : X → X be given. Then T is ergodic if for every set
B ∈ B such that T−1(B) = B, either m(B) = 0 or m(X \B) = 0.

Freiman [5] shows that TD is ergodic for rational D, but we extend this result to
real D. In the next section we show that all TD are Bernoulli and it is known that
having the Bernoulli property implies ergodicity.

3. Bernoulli property. Our central result, which we present in this section, is
that the class of transformations of the interval that characterizes SRT division for all
real divisors D has the property that each transformation TD is Bernoulli. Although
the basic concept of a Bernoulli shift (the things to which transformations having
the Bernoulli property are isomorphic) is not difficult, a complete definition requires
enough auxiliary concepts from measure theory (concepts not used anywhere else in
this paper) that we refer the interested reader to [15, 16, 19, 22]. Neither an under-
standing of Bernoulli shifts nor a formal definition of what it means to be Bernoulli
is required to follow the proofs in this section. Having said this, we should mention
informally the connection between Bernoulli shifts and transformations having the
Bernoulli property.

The transformation TD is a noninvertible endomorphism of the unit interval. This
means that from a given partial remainder we can predict all future partial remainders,
but we cannot uniquely predict past partial remainders. There is a natural way (called
the natural extension) to make our transformation invertible (an automorphism) on a
larger space. Specifically, each noninvertible transformation TD having the Bernoulli
property has an extension to an automorphic transformation, isomorphic to a two-
sided Bernoulli shift [16, pp. 13, 276]. From the way that entropy for a transformation
is defined, the entropy for an automorphic Bernoulli transformation associated with a
noninvertible Bernoulli transformation is the same as the entropy for the noninvertible
Bernoulli transformation. By proving that all transformations TD are Bernoulli, and
by proving that the entropy of each TD is the same, we will be able to conclude that
the natural extensions of SRT division algorithms are isomorphic to each other for all
divisors.

Definition 6 (expanding; see Bowen [2]). We will say that a transformation
T on an interval is expanding if it has the property that supn>0 μ(TnU) = 1 for all
open intervals U with μ(U) > 0, where μ is any normalized measure that is absolutely
continuous with respect to Lebesgue measure.
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Definition 7 (straddle). Let U be an interval of reals (either open, closed, or
half open) and let p ∈ R

+. If p ∈ U◦,5 then we say that U straddles p.

Theorem 8. The SRT division transformation is expanding for all real divisors.

Proof. Let (X,B,m) be a probability space, where X = [0, 1), B is the Borel
σ-algebra on X, and m is the Lebesgue measure on B.6 Let TD : X → X be the SRT
division transformation for a given normalized divisor D as defined in (1).

Let us define an infinite sequence of intervals U = {Ui}i∈N as

U1 = U and

Ui+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TD(Ui) : U◦
i ⊆ [0, 1

2 ) or U◦
i ⊆ [ 12 , 1),

TD(Ui ∩ [0, 1
2 )) : U◦

i �⊆ [0, 1
2 ) and U◦

i �⊆ [ 12 , 1) and

m(Ui ∩ [0, 1
2 )) ≥ m(Ui ∩ [ 12 , 1)),

TD(Ui ∩ [ 12 , 1)) : U◦
i �⊆ [0, 1

2 ) and U◦
i �⊆ [ 12 , 1) and

m(Ui ∩ [0, 1
2 )) < m(Ui ∩ [ 12 , 1)) .

Property 1. For all Ui such that 1
2 �∈ U◦

i and D �∈ U◦
i , m(Ui+1) = 2m(Ui).

Proof. If a U◦
i is a subset of either [0, 1

2 ), [12 , D), or [D, 1), then we are in the first
case of the U definition and we apply TD directly. Since each of the three cases of the
TD expands an interval by a factor of two, it is clear that m(TD(Ui)) = m(Ui+1) =
2m(Ui).

Property 2. For all Ui where D �∈ Ui, m(Ui+1) ≥ m(Ui).

Proof. Assume that D �∈ Ui. If 1
2 �∈ Ui, then according to Property 1, Ui+1

doubles. Otherwise, 1
2 ∈ Ui, and therefore, to find Ui+1, we must consider the second

and third cases of the U sequence. In the worst case, m(Ui ∩ [0, 1
2 )) = m(Ui ∩ [ 12 , D)),

and regardless of which half we choose, m(Ui ∩ [0, 1
2 )) = m(Ui ∩ [ 12 , D)) = 1

2m(Ui).
By applying TD to this truncated interval, we double what we halved so that m(Ui) =
m(Ui+1).

By way of contradiction, let us assume that there exists an initial U such that
the sequence U never expands to fill X. Such a sequence can never include the point
D; if it did, there would be a small interval about D that would be mapped to [0, ε)◦,
and this interval would quickly expand to fill the whole interval. We can show that
the following property will hold.

Property 3. There exists N such that for all i ≥ N ,

(a) m(Ui ∩ [0, 1
2 )),m(Ui ∩ [ 12 , 1)) > 0 (in other words, all subsequent intervals

must straddle 1
2 ), and

(b) m(Ui∩ [0, 1
2 )) < m(Ui∩ [ 12 , 1)) (in other words, all subsequent Ui must be such

that the right half of Ui is not discarded by the definition of U).

Proof of Property 3(a). Property 1 says that the only way not to double is to
straddle 1

2 . Therefore, at a minimum, it must be the case that 1
2 is eventually included

every time or else the interval will double a sufficient number of times to include D,
which would be a contradiction.

Proof of Property 3(b). If m(Ui ∩ [0, 1
2 )) ≥ m(Ui ∩ [ 12 , 1)), then we have Ui =

( 1
2 − ε, 1

2 + ε′), where ε > ε′. Now Ui+1 = TD(Ui) = TD( 1
2 − ε, 1

2 ) = (1 − 2ε, 1). But,

5The symbol ◦ as the exponent of an interval denotes an open version of the interval.
6For an interval [a, b], the Lebesgue measure is defined as m([a, b]) = b− a.
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since D is not in Ui+1,
1
2 cannot be in Ui+1 and Property 3(a) fails, resulting in a

contradiction.
By Property 3(a), we will eventually be in a situation where Ui = ( 1

2 − ε′, 1
2 + ε),

ε′ < ε, and Property 3(a) will hold for every subsequent interval. So then

Ui+1 = TD( 1
2 − ε′, 1

2 + ε) = TD[ 12 ,
1
2 + ε) = (2D − 1 − 2ε, 2D − 1]

by Property 3(b). But again by Property 3(a),

Ui+2 = TD(2D − 1 − 2ε, 2D − 1] = TD[ 12 , 2D − 1] = [2 − 2D, 2D − 1] .

It is now clear that 1
2 is at the midpoint of Ui+2 and that we must now pick the left

half of the interval, which contradicts Property 3(b). Therefore, D will eventually be
included in an interval and the sequence will expand to fill all of X.

We can now prove that the SRT division process is weak-mixing, and therefore
Bernoulli, by two theorems of Bowen [2].

Theorem 9 (see Bowen [2]). Let T be a piecewise C2 map of [0, 1], μ be a smooth
T -invariant probability measure, and λ = inf0≤x≤1 |f ′(x)| > 1. If the dynamical
system (T, μ) is weak-mixing, then the natural extension of (T, μ) is Bernoulli.

We mention here that the natural extension of (T, μ) is the associated automorphic
transformation that we alluded to at the beginning of this section. See Petersen [16,
p. 13] for an exact definition.

Theorem 10 (see Bowen [2]). With T and μ as in Theorem 9, (T, μ) will be
weak-mixing if T is expanding.

Theorem 11 (see Lasota and Yorke [9]). Let (X,B,m) be a probability space
and let T : X → X be a piecewise C2 function such that inf |T ′| > 1. If P is
the Perron–Frobenius operator associated with T , then for any f ∈ L1, the sequence
( 1
n

∑n−1
k=0 P

kf)∞n=1 is convergent in norm to a function f∗ ∈ L1. The limit function
f∗ has the property that Pf∗ = f∗ and, consequently, the measure dμ∗ = f∗ dm is
invariant under T .

Having established that TD is expanding, we now use the above three theorems
to prove the central result of this paper.

Theorem 12. TD is Bernoulli.
Proof. From the definition of TD, we see that TD is C2 and that

inf
0≤x≤1

∣∣TD
′(x)

∣∣ = 2 > 1

since
∣∣TD

′(x)
∣∣ = 2 for all x, for which the derivative is defined. Since

inf
0≤x≤1

∣∣TD
′(x)

∣∣ > 1,

by Theorem 11 there exists at least one μ such that μ is a smooth TD-invariant
probability measure. By Theorem 8, we see that Theorem 10 holds. Hence, (TD, μ)
is weak-mixing, and by Theorem 9 (TD, μ) is Bernoulli.

That all TD are Bernoulli is a very useful property because we can use entropy
as a complete invariant to show isomorphism among the two-sided Bernoulli shifts
associated with TD that have the same entropy. This comes from the contribution of
Ornstein to the Kolmogorov–Ornstein theorem.

Theorem 13 (see Kolmogorov [6, 7] and Ornstein [14]). Two Bernoulli shifts
are isomorphic if and only if they have the same entropy.
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Before we calculate the entropy, we review the definition of entropy for a transfor-
mation along with some supporting definitions that follow the development presented
by Walters [22, pp. 75–87].

Definition 14 (partition). A partition of (X,B,m) is a disjoint collection of
nonempty elements of B whose union is X.

Definition 15 (join). Let P and Q be finite partitions of (X,B,m). Then
P ∨ Q = {P ∩Q : P ∈ P and Q ∈ Q} \ {∅} is called the join of P and Q. Note that
P ∨Q is also a finite partition of (X,B,m).

Definition 16 (entropy of a partition). Let (X,B,m) be a probability space and
let P = {P1, . . . , Pk} be a finite partition of (X,B,m). The entropy of the partition
is defined as

H(P) = −
k∑

i=1

m(Pi) logm(Pi) .

Definition 17 (entropy of a transformation with respect to a partition). Suppose
T : X → X is a measure-preserving transformation of the probability space (X,B,m).
If P is a finite partition of (X,B,m), then

h(T,P) = lim
n→∞

1

n
H

(
n−1∨
i=0

T−iP
)

is called the entropy of T with respect to partition P.
Definition 18 (entropy of a transformation). Let T : X → X be a measure-

preserving transformation of the probability space (X,B,m) and suppose h(T ) =
suph(T,P), where the supremum is taken over all finite partitions P of (X,B,m).
Then h(T ) is called the entropy of T .

In general it can be very difficult to calculate the entropy for a class of transforma-
tions directly from the definition of entropy. Even with the many standard formulas
that have been derived for calculating entropy, a great number of systems found in
practice are not covered. Simple SRT division is one such dynamical system for which
it is not easy to calculate the entropy from results found in standard textbooks on
ergodic theory. Fortunately, a result by Ledrappier does allow us to calculate the
entropy for simple SRT division.

The following definitions and theorems involving C-maps and PC-maps are taken
from a paper of Ledrappier [10] and have been streamlined for our argument.

Definition 19 (C-map; see Ledrappier [10]). A real function f defined on an
interval [a, b] is said to be a C-map if f is continuously differentiable and its derivative
f ′ has the following properties:

(a) f ′ satisfies a Hölder condition7 of order ε > 0.
(b) There are only a finite number of points x ∈ [a, b] where f ′(x) = 0. We denote

them by a ≤ a1 < a2 · · · < an ≤ b with f ′(ai) = 0 for 0 < i ≤ n.
(c) There exist positive numbers k−i (k+

i ) such that∣∣∣∣∣log
|f ′(x)|

|x− a|k
−(+)
i

∣∣∣∣∣
is bounded in a left (right) neighborhood of ai.

7A function f(x) defined on an interval [a, b] satisfies a Hölder condition of order ε ∈ R
+ if there

exists c ∈ R
+ such that for any two points p1, p2 ∈ [a, b], |f(p1) − f(p2)| ≤ c |p1 − p2|ε.
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Definition 20 (PC-map; see Ledrappier [10]). A map f : [0, 1) → [0, 1) is called
a PC-map if there exists a finite partition 0 < b1 < b2 · · · < bm < 1 such that f is a
C-map from [bj , bj+1] into [0, 1) for any j.

Theorem 21 (see Ledrappier [10]). Let f be a PC-map. If μ is an a.c.i.m. (ab-
solutely continuous invariant measure), then

h(f) =

∫
log |f ′| dμ.(5)

This formula was shown by Rohlin [18] to hold for a smaller class of transforma-
tions, which does not include the TD associated with SRT division.

Theorem 22. The entropy h(TD) of TD for D ∈ [ 12 , 1) is equal to
∫

log
∣∣TD

′∣∣ dμ =
log 2.

Proof. By the definition of a PC-map, TD is a PC-map if each of the three
functions TD|

[0,
1
2 )

, TD|[ 12 ,D), and TD|[D,1) is a C-map.

Trivially, each TD restricted to any of the three domains [0, 1
2 ), [12 , D), and [D, 1)

satisfies a Hölder condition of order ε = 1 because each piece of TD is just a line of
slope two. Thus condition (a) of Definition 19 is satisfied. Conditions (b) and (c) are
satisfied because there are no points for which the derivative is equal to zero within
a given line segment. Thus each of the three segments of TD are C-maps and, by
Definition 20, TD is a PC-map.

Now, since each TD is Bernoulli, there exists a unique a.c.i.m. (call it μ) for each
TD. By Theorem 21, we can use (5) to calculate the entropy:

h(TD) =

∫
log

∣∣TD
′∣∣ dμ = log 2

∫
dμ = log 2.

With the proof of Theorem 22 we have established isomorphism among the auto-
morphic transformations (or natural extensions) associated with simple SRT division
transformations by an application of the Kolmogorov–Ornstein theorem. The key to
obtaining this result was being able to show that TD has Bowen’s expanding prop-
erty. In the following section, we extend these results to a more general type of SRT
division.

4. Multithreshold SRT division. A simple optimization to the original SRT
division algorithm, at least with the historical concern of avoiding additions and sub-
tractions in mind, is the inclusion of additional divisors to increase the shift average.
In this section, we prove that all such division algorithms with reasonable assump-
tions on the separation of the divisor multiples have the expanding property. It will
be useful to precisely define a class of “multithreshold” SRT transformations.

Definition 23. Let α ∈ R
n be such that

(a) 0 < α1 < α2 < · · · < αn, and
(b) for all x,D ∈ [ 12 , 1), there exists i ∈ {1, . . . , n} such that |αiD − x| < 1

2 .
We define An to be the set of all α ∈ R

n satisfying conditions (a) and (b). Also,
A =

⋃
n∈N

An.
Definition 24 (peaks and valleys). Given an α ∈ An≥2, the point of intersection

between two lines f(x) = 2(x − αiD) and g(x) = 2(αi+1D − x) will be called a peak
and is denoted by ψi = ( 1

2D(αi+1 +αi), D(αi+1−αi)). For convenience, we will refer
to the abscissa as ψx

i = 1
2D(αi+1 + αi) and to the ordinate as ψy

i = D(αi+1 − αi).
The point of intersection of the two lines f(x) = 2(αiD − x) and g(x) = 2(x− αiD)
is (αiD, 0) and will be called a valley.
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Definition 25. For a D ∈ [ 12 , 1) and an α ∈ A, define the transformation
TD,α(x) : [0, 1) → [0, 1). For α ∈ A1, we get the familiar transformation

TD,α(x) =

{
2x : 0 ≤ x < 1

2 ,

|2(D − x)| : 1
2 ≤ x < 1 .

For α ∈ A2,

TD,α(x) =

⎧⎪⎨
⎪⎩

2x : 0 ≤ x < 1
2 ,

|2(α1D − x)| : 1
2 ≤ x < ψx

1 ,

|2(α2D − x)| : 1
2 ≤ x and ψx

1 ≤ x < 1 .

For α ∈ An≥3,

TD,α(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2x : 0 ≤ x < 1
2 ,

|2(α1D − x)| : 1
2 ≤ x < ψx

1 ,

|2(αiD − x)| : 1
2 ≤ x and ψx

i ≤ x < ψx
i+1,

|2(αnD − x)| : 1
2 ≤ x and ψx

n−1 ≤ x < 1 .

Definition 26. Define Mn = {TD,α : D ∈ ( 1
2 , 1], α ∈ An} and define M =⋃

n∈N
Mn. We call Mn the set of all n-threshold SRT division transformations and

call M the set of multithreshold SRT division transformations.
Table 2 shows an example of dividing 0.67 by 0.75 using multithreshold SRT

division with α = (0.75, 1, 1.25). This is the same example calculation as in Table
1, but here the dividend has been computed to twice as many digits of precision
with the same effective number of uses of the adders. We say “effective” because in
multithreshold SRT division, there are several adders working in parallel. In a real
implementation of multithreshold SRT division, the values for α must be carefully
chosen so that not too much overhead is required to select a good partial remainder.
There is also a tradeoff between the amount of overhead in choosing a good partial
remainder and the precision to which a good partial remainder is selected.

Table 2

An example of multithreshold SRT division.

p0 = 0.67 = 0.67
p1 = 2(0.67 − α2D) = −0.16 q0 = α2 Q0 = 1
p4 = 2(22(−0.16) + α1D) = −0.155 q3 = −α1 Q3 = 0.90625
p7 = 2(22(−0.155) + α1D) = −0.115 q6 = −α1 Q6 = 0.89453125
p11 = 2(23(−0.115) + α3D) = 0.035 q10 = −α3 Q10

.
= 0.8933105469

p16 = 2(24(0.035) − α1D) = −0.005 q15 = α1 Q15
.
= 0.8933334351

p24 = 2(27(0.005) + α1D) = −0.155 q23 = −α1 Q23
.
= 0.8933333456

Condition (b) in Definition 23 guarantees that the division algorithm generates a
new quotient bit at every step. Although the condition makes sense intuitively, it is
not immediately obvious just by inspection if an α satisfies the condition. Lemma 28
below provides an easier way to check.

Lemma 27. If α = (α1), then condition (b) of Definition 23 is satisfied if and
only if α1 = 1.

Proof. If α1 = 1, then maxD,x∈[1/2,1) |α1D − x| < 1
2 . Now consider the cases

when α1 �= 1 and ε ∈ R
+. If α1 = 1 + ε, then when D = 1

1+ε and x = 1
2 , |α1D − x| =
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1 − 1
2 = 1

2 �< 1
2 . On the other hand, if α1 = 1 − ε, then when D = 1

2 and x = 1 − ε
2 ,

|α1D − x| = 1 − ε
2 − (1 − ε) 1

2 = 1
2 �< 1

2 .

Lemma 28. An α ∈ An that satisfies condition (a) of Definition 23 also satisfies
condition (b) if and only if for some i, j ∈ {1, . . . , n} (possibly i = j) either

(i) αi ∈ (0, 1
2 ] and αj ∈ [1, 1 + αi], or

(ii) αi ∈ [ 12 , 1] and αj ∈ [1, 3αi].

Proof (sketch). Lemma 27 has shown that a single component α of α with α = 1
is sufficient to ensure that the range of f(x) = 2 |αD − x| is equal to [0, 1) as x and
D range over [12 , 1). It is easy to see, based on the proof of Lemma 27, that if there
does not exist i ∈ {1, . . . , n} such that αi = 1, then there must exist i, j ∈ {1, . . . , n}
(i < j), where αi < 1 and αj > 1.

Let us assume that i is the largest value, where αi < 1, and let us assume that j
is the smallest value, where αj > 1 (therefore j = i+ 1). We make these assumptions
because no other scalars of D will have an influence on whether or not condition (b)
is satisfied. Consider the case when αi ∈ (0, 1

2 ]. In this case, when D is close enough
to 1, some of the line f(x) = 2(x − αiD) appears in the region (denoted R), when
1
2 ≤ x < 1, 0 ≤ Tα(x) < 1. When a portion of the line f(x) appears in region R, we
must put restrictions on αj in terms of αi so that the peak ψ1 is always in R. ψy

i is
greatest when D = 1. We find the maximum allowable value of αj by setting D = 1
and solving ψy

i = 1 for αj :

ψy
i = 1 ⇒ D(αj − αi) = 1 ⇒ αj = αi + 1 .

Therefore, if αi ∈ (0, 1
2 ], then αj ∈ [1, 1 + αi].

In the case when αi ∈ [ 12 , 1], for large enough values of D, the line f(x) =
2(x−Dαi) crosses the line x = 1 in the range [0, 1). Because of this, we must loosen
the restriction that αj ∈ [1, 1+αj ]. It is straightforward to calculate that f(x) begins
to cross the line x = 1 in the range [0, 1) when D = 1

2αi
. By solving ψy

i = 1 for αj

when D = 1
2αi

we can ensure that as D becomes smaller, the peak ψi will always be
in region R:

ψy
i = 1 ⇒ D(αj − αi) = 1 ⇒ 1

2αi
(αj − αi) = 1 ⇒ αj = 3αi .

Therefore, if αi ∈ [ 12 , 1], then αj ∈ [1, 3αi].

Definition 29 (separation). For α ∈ An, we define the separation in α as

sep(α) = max
i∈{1,...,n−1}

αi+1

αi
.

Limiting the separation is a convenient way to restrict the subset of A being considered.
If sep(α) = r, we say that “the divisor multiples in α are separated by at most a factor
of r.”

We are now ready to show that all multithreshold SRT division transformations
are Bernoulli, given a necessary restriction on the multiples of the divisor. As in the
case for a single divisor, it will be useful to define a sequence of intervals that are
subsets of the sequence of sets that would arise from repeatedly applying TD,α to an
initial open interval. Unless otherwise noted, assume that the function m denotes the
Lebesgue measure.

Definition 30. Given an initial open interval U ⊂ [0, 1) and TD,α ∈ M, we
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define the infinite sequence of intervals U = {Ui}i∈N as

U1 = U and

Ui+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TD,α(Ui) : U◦
i ⊆ [0, 1

2 ) or U◦
i ⊆ [ 12 , 1),

TD,α(Ui ∩ [0, 1
2 )) : U◦

i �⊆ [0, 1
2 ) and U◦

i �⊆ [ 12 , 1) and

m(Ui ∩ [0, 1
2 )) ≥ m(Ui ∩ [ 12 , 1)),

TD,α(Ui ∩ [ 12 , 1)) : U◦
i �⊆ [0, 1

2 ) and U◦
i �⊆ [ 12 , 1) and

m(Ui ∩ [0, 1
2 )) < m(Ui ∩ [ 12 , 1)) .

Definition 31 (critical points). For a given TD,α where α ∈ An, define the set

C = {ci : i ∈ {1, . . . ,m}, ci ∈ B ∪ {0, 1
2 , 1}}

where B = {b : 1
2 < b < 1 and b ∈ {α1D, . . . , αnD} ∪ {ψx

1 , . . . , ψ
x
n−1}} and c1 < c2 <

· · · < 1. C is called the set of critical points for TD,α.
Lemma 32 (doubling). Given TD,α ∈ M, let the sequence of intervals U be

defined as in Definition 30 and let Ui be some interval in the sequence. Furthermore,
let C = {c1, . . . , cm} be the set of critical points for TD,α. If Ui ⊆ [cj , cj+1] for some
j ∈ {1, . . . ,m− 1}, then m(Ui+1) = 2m(Ui).

Proof. Since Ui ⊆ [cj , cj+1] for some j ∈ {1, . . . ,m − 1}, because we are in the
first case of the definition of U , either U◦

i ⊆ [0, 1
2 ) or U◦

i ⊆ [ 12 , 1). By simple inspection
of the individual cases that define TD,α, it is apparent that all of Ui, except possibly
the points cj and cj+1, fall within the same case of TD,α. Therefore, the resulting
interval Ui+1 will be double the length of Ui.

Definition 33 (active valleys). Given TD,α ∈ Mn, define

V = {αiD : i ∈ {1, . . . , n} and 1
2 < αiD < 1} .

V is called the set of active valleys for TD,α.
Definition 34 (active peaks). Given TD,α ∈ Mn, define

P = {ψx
i : i ∈ {1, . . . , n− 1} and 1

2 < ψx
i < 1} .

P is called the set of active peaks for TD,α.
Lemma 35 (nonshrinking). Given TD,α ∈ Mn with sep(α) ≤ 5

3 , let the sequence
of intervals {Ui}i∈N be defined as above and let V denote the set of active valleys for
TD,α. For any interval Ui ∈ U such that V ∩ Ui = ∅, either m(Ui+1) ≥ m(Ui) or
m(Ui+2) ≥ m(Ui).

Proof. sep(α) ≤ 5
3 implies that αi+1 ≤ 5

3αi. For a given separation, the value of
ψy
i is maximized when ψx

i = 1. This implies that αi = 3
4D . We calculate the value of

ψy
i with the assumption that ψx

i = 1 to get a bound on ψy
i for D < 1:

ψy
i ≤ D( 5

3αi − αi) = D( 2
3αi) = D( 2

3
3

4D ) = 1
2 .

Case 1. Consider when Ui ⊆ [0, 1
2 ]. In this case, m(Ui+1) = 2m(Ui).

Case 2. Consider when Ui ⊆ [ 12 , 1). The interval Ui can span at most one peak.
Therefore, m(Ui+1) ≥ m(Ui). A further observation is that since Ui+1 ⊆ [0, 1

2 ],
m(Ui+2) = 2m(Ui).
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Case 3. Consider when Ui �⊆ [0, 1
2 ] and Ui �⊆ [ 12 , 1). In this case, Ui straddles 1

2 .
From the definition of U , we see that in the worst case we might throw away up to half
of Ui. Call the part not thrown away Ui

′ and observe that m(Ui
′) ≥ 1

2m(Ui). Now,
either Ui

′ ⊆ [0, 1
2 ] or Ui

′ ⊆ [ 12 , 1). If Ui
′ ⊆ [0, 1

2 ], then m(Ui+1) = 2m(Ui
′) ≥ m(Ui).

If Ui
′ ⊆ [ 12 , 1), then m(Ui+2) = 2m(Ui

′) ≥ m(Ui).
Lemma 36. A multithreshold SRT division transformation TD,α ∈ M is expand-

ing when sep(α) ≤ 5
3 .

Proof. Let V be the set of active valleys (as defined in Definition 33) for a
TD,α. Let P be the set of active peaks (as defined in Definition 34) for a TD,α. Let
U = {Ui}i∈N be the sequence of intervals associated with a TD,α and an initial interval
U .

By way of contradiction, assume that a TD,α is not expanding. This means that
for some TD,α, there does not exist an interval Ui where any of the points in V are
contained in Ui. This is true because if any of the valley points are in Ui, then
Ui+1 = [0, ε) or Ui+1 = [0, ε], and after a finite number of steps, Ui will have grown
to include all of [0, 1).

If there is a sequence U that avoids all points in V , then by Lemma 35 it must
be true that the intervals in the sequence can double only a finite number of times.
Let i ∈ N be the first index for which there is no j > i such that m(Uj) ≥ 2m(Ui).
It now follows that Ui straddles 1

2 . The proof for Lemma 35 reveals that this is
the only situation where it is not necessarily the case that either m(Ui+1) = 2m(Ui)
or m(Ui+2) = 2m(Ui). In fact, Ui must straddle both 1

2 and minP . If minP is
not straddled and m(Ui ∩ [0, 1

2 )) < m(Ui ∩ [ 12 , 1)), then either m(Ui+2) ≥ 2m(Ui)
or m(Ui+3) ≥ 2m(Ui). In the other possibility, where minP is not straddled and
m(Ui ∩ [0, 1

2 )) ≥ m(Ui ∩ [ 12 , 1)), we find that m(Ui+2) ≥ 2m(Ui).
Assuming that Ui straddles both 1

2 and minP , we also observe that there can
be no j > i such that m(Uj ∩ [0, 1

2 )) ≥ m(Uj ∩ [ 12 , 1)) because this quickly leads to
doubling. In other words, the right side must be larger than the left side whenever
we straddle 1

2 . Therefore, we must be in the situation where

Ui = ( 1
2 − ε′, 1

2 + ε), ε′ < ε

⇒ Ui+1 = (min{2( 1
2 − αiD), 2(αi+1D − ( 1

2 + ε))}, ψy
i )

⇒ Ui+2 = (2 min{2( 1
2 − αiD), 2(αi+1D − ( 1

2 + ε))}, 2ψy
i )

⇒ Ui+3 = (min{2( 1
2 − αiD), 2(αi+1D − 2ψy

i )}, ψy
i )

⇒ Ui+4 = (2 min{2( 1
2 − αiD), 2(αi+1D − 2ψy

i )}, 2ψy
i )

⇒ Ui+5 = (min{2( 1
2 − αiD), 2(αi+1D − 2ψy

i )}, ψy
i ) = Ui+3 .

It is apparent that the interval represented by Ui+4 will re-occur every other
interval ad infinitum. We now use this interval to show that in fact such a sequence
of nonexpanding intervals is not possible.

Since Ui+4 straddles 1
2 , we can compare the length of the left and right sides

of Ui+4. Let R = [ 12 , 2ψ
y
i ) denote the right side and let L = (4( 1

2 − αiD), 1
2 ) and

L′ = (4(αi+1D − 2ψy
i ), 1

2 ) denote the two possibilities for the left side. The length of
the right side is

m(R) = 2ψy
i − 1

2 ,

while the length of the left side is the larger of two possible lengths

m(L) = 1
2 − 4( 1

2 − αiD)
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and

m(L′) = 1
2 − 4(αi+1D − 2ψy

i ) .

We then compare the differences between the right side and each of the two possible
left sides. The first possibility is

m(R) −m(L) = 2ψy
i − 1

2 − ( 1
2 − 4( 1

2 − αiD))

= 2D(αi+1 − αi) − 1 + 2 − 4αiD

= 2αi+1D − 6αiD + 1 ,

while the second possibility is

m(R) −m(L′) = 2ψy
i − 1

2 − ( 1
2 − 4(αi+1 − 2ψy

i ))

= 2D(αi+1 − αi) − 1 + 4(αi+1D − 2D(αi+1 − αi))

= −2αi+1D + 6αiD − 1 .

It is now clear that

m(R) −m(L) = − (m(R) −m(L′)) .

But this means that the length of the left side is always greater than or equal to the
length of the right side, which contradicts our assumption that the right side must be
bigger than the left side whenever the interval straddles 1

2 .
Theorem 37. TD,α ∈ M is Bernoulli when sep(α) ≤ 5

3 .
Proof. Let T = TD,α. From the definition of T , we see that TD,α is C2 and that

inf0≤x≤1 |T ′(x)| = 2 > 1 since |T ′(x)| = 2 for all x for which the derivative is defined.
Since inf0≤x≤1 |T ′(x)| > 1, by Theorem 11, there exists at least one μ such that μ is
a smooth T -invariant probability measure. By Lemma 36 we see that Theorem 10
holds when sep(α) ≤ 5

3 . Hence, (T, μ) is weak-mixing and, by Theorem 9, (T, μ) is
Bernoulli when sep(α) ≤ 5

3 .
The calculation for entropy in multithreshold SRT division follows the same

method used for single divisor SRT division. We begin by showing that TD,α is a
PC-map.

Lemma 38. TD,α ∈ M is a PC-map (as defined in Definition 20).
Proof. By inspection, each TD,α is a finite collection of line segments, each with

slope 2. Each of these line segments is a C-map by the same argument used in the
proof for Theorem 22. Therefore, by definition, each TD,α is a PC-map.

Theorem 39. The entropy of any TD,α ∈ M with sep(α) ≤ 5
3 is log 2.

Proof. By Lemma 38, all TD,α ∈ M are PC-maps. By Theorem 37, TD,α is
Bernoulli when sep(α) ≤ 5

3 , and hence there exists a unique a.c.i.m. μ. Theorem 21
says that Rohlin’s formula for the entropy is true, and therefore

h(TD,α) =

∫
log

∣∣TD,α
′∣∣ dμ = log 2

∫
dμ = log 2.

5. Some restrictions on α for multithreshold division. In section 4, we
showed that for all TD,α ∈ M, if sep(α) ≤ 5

3 , then TD,α is Bernoulli. In this section,
we construct examples of T ∈ Mn, for every n, that fail to be Bernoulli when the
restriction that sep(α) ≤ 5

3 is relaxed.
Theorem 40. For TD,α ∈ Mn≥4, if sep(α) > 5

3 , then for each D ∈ [ 12 , 1), there
exist uncountably many α for which TD,α is not ergodic.
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Proof. We begin this proof by considering T ∈ Mn=4.

Assume that we relax the restrictions on α by ε > 0. This means that sep(α) ≤
5
3 + ε and that no peak can be above the line f(x) = 4+6εx

8+3ε . With this relaxation,
we can define α = (α1, α2, α3, α4) with respect to a given D so that a subset of
[0, 1) is nonexpanding. We let α1 = 30+27ε

80D+48Dε , α2 = 50+57ε
80D+48Dε , α3 = 30−9ε

40D+24Dε , and

α4 = 50+21ε
40D+24Dε . For our constructed α to be valid, we must be careful that conditions

(a) and (b) of Definition 23 hold. Condition (a) requires that the components of α
remain in ascending order. This is satisfied when ε ∈ (0, 2

15 ]. Since ordering is main-
tained, sep(α) < 3, and minD∈[1/2,1), ε∈(0,2/15] α4 = 1.2 ≥ 1, to verify that condition
(b) of Definition 23 holds, it is sufficient to show (by Lemma 28) that for all values of
D and ε, either α1, α2, or α3 ∈ [ 12 , 1]. By maximizing and minimizing over ε and D,
we find that α1 ∈ [0.375, 0.7] and α2 ∈ [0.625, 1.3]. Figure 6 provides a visual proof
that as ε is varied over [0, 2

15 ] and D is varied over [12 , 1], it is never the case that both
α1 ≤ 1

2 and α2 ≥ 1. Therefore, it is always the case that either α1 or α2 ∈ [ 12 , 1].

Having verified that our defined α satisfies Definition 23, we calculate that peak
ψ1 = ( 20+21ε

40+24ε ,
10+15ε
40+24ε ) and peak ψ3 = ( 20+3ε

20+12ε ,
10+15ε
20+12ε ). With this definition for α,

and our assumption that ε ∈ [0, 2
15 ), the point ψ3 will always touch the line f(x)

while remaining above the line g(x) = 1
2 , and the point ψ1 will always be slightly

below f(x) while remaining above the line g(x) = 1
4 . All of the definitions have been

chosen so that 1−ψx
3 = ψy

3 − 1
2 = 2(ψx

1 − 1
2 ) = 2(ψy

1 − 1
4 ). Another important feature

in this construction is the interval between α2D and α3D. Since ψ2 is not used in our
construction, it is possible to insert an arbitrary number of divisor multiples between
α2D and α3D. Thus, the results in this proof apply to T ∈ Mn for arbitrarily large
n.

We are now in a position to show that there exists a set of points A with 0 <
m(A) < 1, for which TD,α(A) = A. This is the definition of a transformation being
nonergodic [8, p. 59]. Define A = A1∪A2∪A3, where A1 = [ 14−(ψx

1 − 1
2 ), 1

4 +(ψx
1 − 1

2 )],
A2 = [ 12 − 2(ψx

1 − 1
2 ), 1

2 + 2(ψx
1 − 1

2 )], and A3 = [1− 2(1−ψx
3 ), 1]. It can be shown by

calculation that TD,α(A1) = A2, TD,α(A2) = A1∪A3, and TD,α(A3) = A2. Therefore,
TD,α(A) = A, and by definition, TD,α is nonergodic or nonexpanding.
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0.6 0.7 0.8 0.9 1
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0.06

0.08

0.1

0.12

DD

εε

α1 ≤ 1
2α2 ≥ 1

Fig. 6. Combined plot of the regions where α1 ≤ 1
2

and α2 ≥ 1.

Figure 7 illustrates the type of transformation that we have constructed in the
proof of Theorem 40. In this figure, n = 4, D = 11

16 , α = ( 37
66 ,

21
22 , 1,

59
33 ), and sep(α) =

5
3+ 5

51 . The thick lines represent TD,α. The coarse dashed line represents the necessary
separation restriction on α to guarantee that TD,α is ergodic. In this case, partial
remainders in the set A = [ 1148 ,

13
48 ] ∪ [ 2248 ,

26
48 ] ∪ [ 4448 , 1) are mapped back to A by TD,α.
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Fig. 7. An example of a nonergodic system for TD,α ∈ Mn≥4.

Theorem 41. For TD,α ∈ M3, if sep(α) ≥ 9
5 , then for each D ∈ [ 12 , 1), there

exists an α for which TD,α is not ergodic.
Proof. The proof for this theorem comes as a special case from the proof for

Theorem 40. Consider α = (α1, α2, α3, α4) as defined in the proof for Theorem 40.
When sep(α) = 9

5 = 5
3 + 2

15 , we are in the special situation where α2 = α3. Since
all of the results for the proof of Theorem 40 still hold, we now have an example
transformation T with only three unique multiples of D, and this T has been proven
to be nonergodic.

Figure 8 gives an example of a nonergodic transformation for D = 7
12 and α

= (2
3 ,

8
7 ,

44
21 ). In this case, partial remainders in the set A = [ 4

18 ,
5
18 ]∪ [ 8

18 ,
10
18 ]∪ [ 1618 , 1)

are mapped back to A by TD,α.
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Fig. 8. An example of a nonergodic system for TD,α ∈ M3.

Theorem 42. For TD,α ∈ M2, if sep(α) > 3, then for some D ∈ ( 1
2 , 1), there

exist uncountably many α for which TD,α is not ergodic.
Proof. Assume that sep(α) ≤ 3 + ε and D ∈ ( 1

2 ,
2+ε
4 ). First, we choose α1 = 1

4D
so that α1D = 1

4 and α2 = 1+α1. Our restriction on D in terms of ε has been chosen
so that α2/α1 < 3 + ε when α2 = 1 + α1. Since α2 > α1, condition (a) of Definition
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23 is satisfied. Since α1 ∈ ( 1
4 ,

1
2 ) and α2 ∈ (1, 1 + α1] by Lemma 28, condition (b) of

Definition 23 is satisfied. Thus, our defined α is always valid. Define A = [ 12 , D]. We
now apply T = TD,α to A:

T [ 12 , D] = [min{2( 1
2 − α1D), 2(α2D −D)}, ψy

1 ]

= [min{2( 1
2 − D

4D ), 2(D + 1
4 −D)}, D(α2 − α1)]

= [min{ 1
2 ,

1
2}, D(1 + 1

4D − 1
4D )]

= [ 12 , D] .

Now, since 1
2 < D < 1, 0 < m(A) < 1, and TD,αA = A, by definition TD,α is not

ergodic.
Figure 9 shows an example of a nonergodic system for TD,α ∈ M2. In this

example, D = 3
5 and α = ( 5

12 ,
17
12 ). Partial remainders within the interval [12 ,

3
5 ] map

back to [12 ,
3
5 ].
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Fig. 9. An example of a nonergodic system for TD,α ∈ M2.

6. Conclusions. The original question that inspired this paper was, “Is simple
SRT division ergodic for all real divisors?” In pursuing the solution to this problem,
we discovered that not only is simple SRT division ergodic for all divisors, but it
is also Bernoulli. Having established a Bernoulli property, and having calculated
the entropy for our transformations, we were able to use the Kolmogorov–Ornstein
theorem to conclude that our transformations are equivalent to each other in the sense
that their natural extensions are isomorphic. In proving these important properties
for simple SRT division, we made extensive use of more general results from dynamical
systems theory. Consequently, our results were shown to be easily extensible to more
general division systems. In general, it is difficult to prove that a particular class of
transformations is ergodic or Bernoulli. Our results have provided an effective means
of proving both of these properties for a large class of SRT-like division algorithms.

From the standpoint of understanding an algorithm’s expected performance, it is
necessary to know that when a stationary distribution is found, it is unique. Having
established the uniqueness of stationary distributions, the next step is to find the
actual stationary distribution for as wide a class of transformations as possible. In
section 2, we gave the stationary distribution function for TD, where D ∈ [ 34 , 1). Many
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of the stationary distribution functions have been classified by Shively and Freiman
for D ∈ [ 35 ,

3
4 ], although the derivations are not nearly as simple as for D ∈ [ 34 , 1). It

turns out that things become very complicated when D ∈ [ 12 ,
3
5 ]. In his thesis [20],

Shively shows many interesting properties for the stationary distribution functions in
this region. For example, he shows that there are many different intervals of D, where
there are an infinite number of different stationary distribution equations. As such,
the graph of the shift average for D ∈ [ 12 ,

3
5 ] is far from complete and appears to have

a complex pattern (from the few points that have been plotted in this region). This
is surprising, considering the simplicity of the underlying transformation. A better
understanding of this final region of simple SRT division would be an interesting goal
to pursue.

In the work of Freiman [5], it was first shown that the shift average for D ∈ [ 35 ,
3
4 ]

is constantly 3, which can be easily shown to be the maximum possible shift average.
This property was then used by Metze [12] to obtain a version of SRT division that
has an expected shift average of 3 for all divisors. Another area to pursue would be
to explore shift averages for multithreshold SRT division and, if other plateaus are
found, they could possibly be used to obtain higher expected shift averages for all
possible divisors. Undoubtedly, obtaining a complete understanding of the stationary
distribution functions for multithreshold division would be even more difficult than
it is for simple SRT division. It is possible that such results in this area could lead
to improvements in modern SRT division. Related to this, it would be interesting to
attempt to extend the results of this paper to modern SRT division.

Appendix. SRT division is chaotic. In section 2 we mentioned that SRT
division is chaotic, and we prove this fact here for SRT division with the expansion
property (see Definition 6). Simple SRT division was shown to be expanding for
all divisors (see Theorem 8). Multithreshold SRT division, of which simple SRT
division is a special case, was shown to be expanding when there is a restriction on
the separation of the divisor multiples (see Lemma 36).

Although there are several definitions for what it means to be “chaotic,” the one
given by Devaney [4] is commonly used. The following definitions are taken from [4,
pp. 49, 50].

Definition 43 (sensitivity). A transformation f : X → X has sensitive depen-
dence on initial conditions if there exists δ > 0 such that, for any x ∈ X and any
neighborhood N about x, there exists y ∈ X and n ≥ 0 such that |fn(x) − fn(y) > δ|.

Definition 44 (topological transitivity). A transformation f : X → X is topo-
logically transitive on X if, for any pair of open sets U , V ⊂ X, there exists n such
that fn(U) ∩ V �= ∅.

Definition 45 (chaotic). Let f : X → X be a transformation of the set X. f is
said to be chaotic on X if

(a) f has sensitive dependence on initial conditions;
(b) f is topologically transitive;
(c) periodic points are dense in X.
Theorem 46. Every multithreshold SRT division transformation with the expan-

sion property is chaotic.
Proof. Let T be a multithreshold SRT division transformation on [0, 1) having

the expansion property.
To prove sensitivity to initial conditions, we notice, by the expansion property,

that for any open neighborhood N about a point x, the successive images of N under
T expand to be arbitrarily close to filling the entire interval densely after a finite



1300 MARK MCCANN AND NICHOLAS PIPPENGER

number n of steps. In particular, since fn(x) must be at least distance 1
2 away from

either 0 or 1, for any 1
2 > δ > 0, there is y ∈ N such |fn(x) − fn(y)| > δ. Therefore,

T is sensitive to initial conditions on [0, 1).
Again, by the expansion property of T , the successive images of any two open

intervals will intersect within a finite number of steps. Therefore, T is topologically
transitive on [0, 1).

The expansion property alone is not sufficient to ensure that periodic points are
dense. However, the existence of a particular sequence U of nonempty subintervals as
given in Definition 30 is sufficient, in general, for dense periodic points.

Let V1 be an open interval on part of the domain where T is continuous. In the
proof of Lemma 36, we showed that sequence {T i(V1)}∞i=1 necessarily expands after
a finite number of steps to fill the unit interval by proving that another sequence
U = {Ui} of intervals expands to fill the unit interval where Ui ⊆ Vi for i ≥ 0. For a
given Ui, Ui+1 is chosen to be the largest subinterval of T (Ui) on a continuous part
of T ’s domain. In the event of equal-length subintervals, we choose the left half to
be Ui’s successor. U induces another (possibly not unique) sequence of intervals {Ii},
where Ii is any subinterval of Ui, where T (Ii) = Ui+1. In any situation where part
of T (Ui) is discarded, there exists at least one interval Ii ⊂ Ui, where T (Ii) = Ui+1

because Ui is chosen such that T is continuous on Ui. Note that T |Ii : Ii → Ui+1

is a continuous onto map. Eventually, by the expansion property, it must be true
that Un ⊇ U1 = V1 for some n. We now have a sequence of continuous onto maps
T |U1

: I1 → U2, T |U2
: I2 → U3, . . . , T |Un−1

: In−1 → Un and it follows that there is a

nonempty interval U ′ ⊆ U1 such that Tn−1(U ′) = T|Un−1
◦T|Un−2

◦· · ·◦T|U1
(U ′) = Un.

Since Tn−1|U ′ is continuous, there exists x ∈ V1 such that Tn−1(x) = x.
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Abstract. A disk graph is the intersection graph of a set of disks with arbitrary diameters in
the plane. For the case that the disk representation is given, we present polynomial-time approxi-
mation schemes (PTASs) for the maximum weight independent set problem (selecting disjoint disks
of maximum total weight) and for the minimum weight vertex cover problem in disk graphs. These
are the first known PTASs for NP-hard optimization problems on disk graphs. They are based on
a novel recursive subdivision of the plane that allows applying a shifting strategy on different levels
simultaneously, so that a dynamic programming approach becomes feasible. The PTASs for disk
graphs represent a common generalization of previous results for planar graphs and unit disk graphs.
They can be extended to intersection graphs of other “disk-like” geometric objects (such as squares
or regular polygons), also in higher dimensions.
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1. Introduction. Intersection graphs are graphs whose vertices are represented
by sets such that two vertices are adjacent if and only if the corresponding sets have
a nonempty intersection. They have been studied by many authors [12, 6, 24]. We
are interested in approximation algorithms for NP-hard optimization problems on
intersection graphs of geometric objects, in particular approximation algorithms for
independent set and vertex cover. Two prominent applications of geometric intersec-
tion graphs are frequency assignment in cellular networks [13, 22] and map labeling
[1].

The goal of the maximum weight independent set problem (MWIS) is to compute,
for a given set of geometric objects with certain weights, a subset of disjoint (non-
overlapping) objects with maximum total weight. The goal of the minimum weight
vertex cover problem (MWVC) is to compute a subset of the given objects with
minimum total weight such that, for any two intersecting objects, at least one of the
objects is contained in the subset. MIS and MVC refer to the unweighted versions of
these problems. We obtain polynomial-time approximation schemes for MWIS and
MWVC in the intersection graphs of disks, squares, or other “disk-like” objects, also
in higher dimensions.

1.1. Preliminaries. For a set V of geometric objects, the corresponding inter-
section graph is the undirected graph with vertex set V and an edge between two
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vertices if the corresponding objects intersect.
Assume that we are given a set D = {D1, . . . , Dn} of n (topologically closed)

disks in the plane, where Di has diameter di, center ci = (xi, yi), and weight wi. For
a subset U ⊆ D, w(U) denotes the sum of the weights of the disks in U . Disks Di

and Dj intersect if dist(ci, cj) ≤ (di + dj)/2, where dist(p1, p2) denotes the Euclidean
distance between two points p1 and p2 in the plane. A disk graph is the intersection
graph of a set of disks. We assume that the input to our algorithms is the set D of
disks, not only the corresponding intersection graph. This is an important distinction,
because determining for a given graph whether it is a disk graph is known to be NP-
hard [16], and hence no efficient method is known for computing a disk representation
if only the intersection graph is given.

Interestingly, every planar graph is a coin graph, i.e., the intersection graph of a
set of interior-disjoint disks [21]. Therefore, the class of disk graphs properly contains
the class of planar graphs.

For a given set D of disks in the plane, we let OPT IS(D) and OPTV C(D) denote
the total weight of an optimal solution for MWIS and MWVC, respectively. An
algorithm is a ρ-approximation algorithm for MWIS if it runs in polynomial time
and always computes an independent set of total weight at least 1

ρOPT IS(D). An
algorithm is a ρ-approximation algorithm for MWVC if it runs in polynomial time and
always computes a vertex cover of total weight at most ρOPTV C(D). An algorithm is
a polynomial-time approximation scheme (PTAS) for MWIS if it takes an additional
parameter ε > 0 and always computes an independent set of total weight at least

1
1+εOPT IS(D), where the running-time is polynomial in the size of the representation
of D for fixed ε > 0. A PTAS for MWVC is defined analogously. If an algorithm is a
ρ-approximation algorithm, the algorithm is also said to have approximation ratio ρ.

Note that the complement of an independent set is a vertex cover, and vice
versa. Therefore, we have OPT IS(D) = w(D) − OPTV C(D). Nevertheless, taking
the complement of the solution output by a ρ-approximation algorithm for MWIS
does in general not provide a ρ-approximation for MWVC, and vice versa.

In general graphs with n vertices, there cannot be a polynomial-time approx-
imation algorithm for MWIS with approximation ratio n1−ε for any ε > 0 unless
NP = co-RP [14]. MWVC is MAX SNP-hard in general graphs and cannot be ap-
proximated within a constant smaller than 7/6 unless P = NP [15]. For MWVC in
general graphs, a 2-approximation algorithm is known [3]. For intersection graphs of
geometric objects, better approximation ratios are often possible.

1.2. Related work on disk graphs. For unit disk graphs (intersection graphs
of disks with equal diameter), MWIS and MWVC remain NP-hard [9], but PTASs
exist for MWIS, MWVC, and the minimum dominating set problem if the disk rep-
resentation is given as part of the input [18]. For intersection graphs of disks with
arbitrary diameters, the best previously known approximation algorithms achieve ap-
proximation ratio 5 for MIS [23] and 3

2 for MWVC [22]. In [18] and [22], the question
was raised whether a PTAS exists for disk graphs. As the class of disk graphs contains
the class of unit disk graphs and the class of planar graphs, a PTAS for disk graphs
would generalize the results for unit disk graphs due to Hunt et al. [18] and the results
for planar graphs due to Baker [2]. This paper resolves this question by presenting
PTASs for MWIS and MWVC in disk graphs (with given representation).

A PTAS for the fractional chromatic number problem on disk graphs, using our
PTAS for MWIS as a subroutine, was obtained in [20, 19].

1.3. Related work on map labeling. Map labeling refers to a family of tasks
concerning the placement of labels on a map. Often it is assumed that the features
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to be labeled are points and that the labels can be modeled as rectangles (just take
the bounding box of the label text). For each feature, there are certain admissible
positions of the labeling rectangle: for example, the rectangle must be placed so
that the feature coincides with a corner of the rectangle. Rectangles can be assigned
weights that represent the importance of including that label on the map. Then it is
meaningful to study the problem of maximizing the total weight of labeled features
subject to the constraint that different labels must not overlap. This is just MWIS in
the intersection graph of a set of (topologically closed) axis-aligned rectangles.

Agarwal, van Kreveld, and Suri [1] give an O(log n)-approximation algorithm
for MIS in an intersection graph of n axis-aligned rectangles. Their algorithm can be
adapted to the weighted case in a straightforward way, thus yielding an approximation
ratio of O(log n) also for MWIS. For the special case that all rectangles have the same
height (which is meaningful if the labels are text labels of a certain font size), they
obtain a PTAS.

Doddi et al. [10] consider sliding labels (a point can lie anywhere on the boundary
of its label) and assume that labels may be placed in any orientation. They provide
constant-factor approximation algorithms for maximizing the size of the labels (as-
suming that all features must be labeled and that all labels are circles or squares with
identical size). These were recently improved in [11]. In [10], bicriteria approximation
algorithms that label a (1−ε)-fraction of all features with labels whose size is at least
a 1

1+ε -fraction of the optimal size are also discussed. These algorithms use a PTAS for
MWIS as a subroutine. In [10], it is mentioned that their algorithms can be extended
to the case of nonuniform squares if the ratio between the size of the largest square
and the smallest square is bounded by a constant. Using our new PTAS for MWIS in
the intersection graphs of squares, their algorithms can now be extended to labeling
with nonuniform squares where this ratio is arbitrary.

Van Kreveld, Strijk, and Wolff [27] investigate the question of how many features
in a map can be labeled with rectangular labels if different restrictions on the label-
ing model are enforced (feature must be at a corner of the rectangle versus sliding
rectangles). They present a practical 2-approximation algorithm and a PTAS for
maximizing the number of labeled features in the case of sliding rectangular labels of
equal height.

An up-to-date bibliography of publications on map labeling can be found on the
Web [28].

1.4. Our results. In this paper we present PTASs for MWIS and MWVC in the
intersection graphs of “disk-like” objects. In sections 2 and 3, we present the details
of the PTASs for MWIS and MWVC in disk graphs. In section 4, we discuss how
our approach can be extended to other geometric objects (such as squares or regular
polygons) and to higher dimensions. We give our conclusions and mention some open
problems in section 5.

Our PTASs are based on a sophisticated use of the shifting strategy [2, 17] that was
previously employed, among other results, for obtaining PTASs for various optimiza-
tion problems in planar graphs [2] and unit disk graphs [18]. We partition the given
disks into levels according to their diameters and use a novel recursive subdivision of
the plane that allows us to apply the shifting strategy on all levels simultaneously.

We outline the basic idea of the PTAS for MWIS. The plane is partitioned into
squares on each level, and some of the disks are removed from the input so that
different squares on the same level yield independent subproblems with respect to all
disks that are on this level or on a level with disks of smaller diameter. Furthermore,
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at most a constant number of disks with larger diameter can be disjoint and intersect
a square on the current level. Hence, all such sets of disks can be enumerated in
polynomial time for each square, and a dynamic programming approach becomes
feasible. The details are given in the next section.

2. A PTAS for independent set in disk graphs. Let k > 1 be a fixed
positive integer. Scale all disks so that the largest disk has diameter 1. Let dmin

be the diameter of the smallest disk. Let � = �logk+1(1/dmin)�. We partition the
given set D of disks into � + 1 levels. For 0 ≤ j ≤ �, level j consists of all disks Di

with diameter di satisfying (k + 1)−j ≥ di > (k + 1)−(j+1). Note that the disk with
diameter dmin is on level �.

An example with three levels is sketched in Figure 2.1.

⇒ ⇒ ⇒

Level 0: Level 1: Level 2:

Fig. 2.1. Partitioning the disks into levels (k = 2).

2.1. Subdividing the plane. For each level j, 0 ≤ j ≤ �, we impose a grid
on the plane that consists of lines that are (k + 1)−j apart from each other. The
vth vertical line, v ∈ Z, is at x = v(k + 1)−j . The hth horizontal line, h ∈ Z, is
at y = h(k + 1)−j . We say that the vth vertical line has index v and that the hth
horizontal line has index h. Furthermore, we say that a disk Di with center (xi, yi)
and diameter di hits a vertical line at x = a if a− di/2 < xi ≤ a+ di/2. Similarly, we
say that Di hits a horizontal line at y = b if b − di/2 < yi ≤ b + di/2. Intuitively, a
disk hits a line if it intersects that line, except if it only touches the line from the left
or from below. Note that every disk can hit at most one horizontal line and at most
one vertical line on its level.

Let 0 ≤ r, s < k and consider the vertical lines whose index modulo k equals r
and the horizontal lines whose index modulo k equals s. We say that these lines are
active for (r, s). Figure 2.2 illustrates the horizontal grid lines and active lines on two
consecutive levels.

Define D(r, s) to be the set of disks that is obtained from D by deleting all disks
that hit a line that is on the same level as the disk and that is active for (r, s). See
Figure 2.3 for an example.

In the following, we write OPT as shorthand for OPT IS .
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Fig. 2.2. Horizontal grid lines on level j (left-hand side) and level j + 1 (right-hand side) for
k = 5. Active lines are drawn bold.

Fig. 2.3. Example of grid and active lines on level j (coarse grid) and on level j +1 (fine grid)
for k = 5. The big disks have level j, and the small disks have level j + 1. All disks shown have
the maximum possible diameter on their level. Active lines are drawn bold. Disks that hit active
lines are drawn dashed. Note that a disk on level j can hit an active line only if its center is in the
shaded strip along that active line.

Lemma 2.1. For at least one pair (r, s), 0 ≤ r, s < k, we have OPT (D(r, s)) ≥
(1 − 1

k )2OPT (D).

Proof. Let S∗ ⊆ D be any set of disjoint disks with total weight OPT (D).

For 0 ≤ r < k, let S∗
r be the set of all disks in S∗ that hit a vertical line on their

level whose index modulo k is r. As the sets S∗
r are disjoint, the weight of at least

one of them must be at most a 1
k -fraction of the weight of S∗. For this set S∗

r , let
T ∗ = S∗ \ S∗

r and note that the weight of T ∗ is at least (1 − 1
k )OPT (D).

For 0 ≤ s < k, let T ∗
s be the set of all disks in T ∗ that hit a horizontal line on

their level whose index modulo k is s. The weight of at least one of these sets T ∗
s
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must be at most a 1
k -fraction of the weight of T ∗. For this set T ∗

s , let U∗ = T ∗ \ T ∗
s .

Note that U∗ ⊆ D(r, s) and the weight of U∗ is at least (1 − 1
k )2OPT (D).

The algorithm considers all k2 possible values for r and s such that 0 ≤ r, s <
k. For each possibility, an optimal independent set in D(r, s) is computed using
dynamic programming. Among the k2 sets obtained in this way, the one with largest
weight is output. By Lemma 2.1, this set has total weight at least (1 − 1

k )2OPT (D).
Therefore, the algorithm achieves approximation ratio (1 + 1

k−1 )2. As k gets larger,
the approximation ratio gets arbitrarily close to 1.

It remains to show how an optimal independent set in D(r, s) can be computed
using dynamic programming and that the running-time of the algorithm is polynomial
in the size of the input for a fixed value of k.

2.2. Dynamic programming. Let 0 ≤ r, s < k. In this section we discuss
the dynamic programming algorithm for computing an optimal independent set in
D(r, s).

Consider one particular level j, 0 ≤ j ≤ �. The lines on level j that are active for
(r, s) partition the plane into squares. More precisely, for consecutive active vertical
lines at x = a1 and x = a2 and consecutive active horizontal lines at y = b1 and
y = b2, one square {(x, y) | a1 < x ≤ a2, b1 < y ≤ b2} is obtained. We refer to these
squares on level j as j-squares.

By definition of D(r, s), every disk in D(r, s) that is on level j is completely
contained in some j-square. Furthermore, we have the following lemma about the
relationship between squares on different levels.

Lemma 2.2. For any j, 0 ≤ j < �, every (j + 1)-square is completely contained
in some j-square.

Proof. We prove the lemma by showing that every line that is active for (r, s) on
level j is also active for (r, s) on level j + 1. Figure 2.2 illustrates this claim for the
horizontal lines: note that the active lines on level j are active on level j+1 also after
the active lines are “shifted” up or down on their respective levels.

Without loss of generality, consider only the horizontal lines. Let y = h(k + 1)−j

be an active horizontal line on level j. This means that h mod k = s. This line is
identical to the line y = h(k + 1)(k + 1)−(j+1), which is on level j + 1 and has index
h(k + 1). Obviously, h(k + 1) mod k = h mod k = s. Hence, the line is also active on
level j + 1.

Corollary 2.3. Every j-square is the union of (k + 1)2 (j + 1)-squares.
Call a j-square S relevant if D(r, s) contains at least one disk of level j that is

contained in S. For a relevant j-square S and a relevant j′-square S′, j′ > j, we say
that S′ is a child or child square of S (and S is a parent of S′) if S′ is contained in S
and if there is no relevant j′′-square S′′, j′ > j′′ > j, such that S′ is contained in S′′

and S′′ is contained in S.
The algorithm processes all relevant squares in order of nonincreasing levels.

When a j-square S is processed, a table TS is computed. For every set I of disjoint
disks of level smaller than j that intersect S, the table entry TS(I) is a maximum
weight set of disjoint disks of level at least j that are contained in S and disjoint from
the disks in I. To formalize this property, we introduce the following definition.

Definition 2.4. Let S be a relevant j-square and let I be a set of disjoint disks
of level less than j that intersect S. Then the table entry TS(I) is called good if it
satisfies the following properties:

(a) TS(I) ⊆ D(r, s) consists of disks that are contained in S and have level at
least j.
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(b) I ∪ TS(I) is an independent set.
(c) w(TS(I)) is maximum among all sets that satisfy (a) and (b).
Provided that tables with good entries have been computed for all relevant squares,

it is clear that the algorithm can output a maximum weight independent set in D(r, s)
by taking the union of the sets TS(∅) for all relevant squares S that do not have a
parent. In the next section, we give an algorithm to efficiently compute the table TS

for a j-square S provided that the tables TS′ have already been computed for all child
squares S′ of S.

2.3. Computing the table for a relevant square. Consider some relevant j-
square S. First, we give a bound on the number of sets I for which a table entry TS(I)
needs to be computed. For this purpose, we show that the number of disjoint disks
of level smaller than j that can intersect a j-square is bounded by O(k2). Figure 2.3
can serve as an illustration of this fact: only O(k2) disjoint disks whose diameter is
larger than that of the big disks can intersect the j-square shown in the figure.

Lemma 2.5. Let S be some j-square and let I ⊆ D be a set of disjoint disks such
that each disk in I has level at most j − 1 and intersects S. Then there is a constant
C such that |I| ≤ Ck2.

Proof. Let S̄ be a square that consists of S and a strip of width (k + 1)−j

surrounding S. As the disks in I have level at most j − 1, they have diameter larger
than (k + 1)−j and, therefore, area larger than π((k + 1)−j/2)2. Furthermore, each
disk in I occupies an area larger than π((k + 1)−j/2)2 within S̄: a disk of diameter
(k + 1)−j that intersects S would have to be completely contained in S̄, and larger
disks that intersect S would have to occupy an area of S̄ that is even larger. The area
of S̄ is ((k + 2)(k + 1)−j)2. Therefore, we must have

|I| ≤ ((k + 2)(k + 1)−j)2

π((k + 1)−j/2)2
=

4

π
(k + 2)2 < 6k2.

Hence, we can choose C = 6.
By Lemma 2.5, the algorithm can enumerate all independent sets I of disks that

have level smaller than j and that intersect S as follows: It simply enumerates all
subsets of at most Ck2 disks of level smaller than j that intersect S and checks for
each of them whether it is an independent set. This enumeration can be performed
in time nO(k2).

We consider one such set I and show how TS(I) is computed. Assume for now
that the j-square S has either no child square at all or exactly (k + 1)2 child squares
on level j + 1. Denote the child squares by S′

g,h, where g is the row index and h is
the column index, 0 ≤ g, h ≤ k. Thus, S′

0,0 is the bottom left child square of S, and
S′
k,k is the top right child square. We will show later how to deal with the case that

some child squares of S are at a level larger than j + 1.
We can assume that TS′

g,h
has already been computed for each such child square

S′
g,h. A first approach to computing TS(I), which we have used in an earlier version

of our result, is to enumerate all sets I ′ of disjoint disks of level j that intersect S
and that are disjoint from the disks in I, and to look up, for each such set I ′, the
table entries TS′

g,h
(I ′g,h), where I ′g,h is the set of disks in I ∪ I ′ that intersect S′

g,h.

The union of I ′ and all sets of the form TS′
g,h

(I ′g,h) forms a candidate set, and the

candidate set of largest weight yields TS(I). The cardinality of I ′ can be bounded

by O(k4), and so this approach leads to a running-time of nO(k4). In the following,
we present an improved algorithm based on dynamic programming that allows us to
reduce the running-time to nO(k2).
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By S′
g1··g2,h1··h2

, where 0 ≤ g1 ≤ g2 ≤ k and 0 ≤ h1 ≤ h2 ≤ k, we denote the
union of all child squares S′

g,h with g1 ≤ g ≤ g2 and h1 ≤ h ≤ h2. We call such a
union of child squares a rectangle. We say that a disk D intersects the boundary of a
rectangle R if D ∩R and D \R are both nonempty.

In order to determine TS(I), the algorithm computes an auxiliary table ATS,I

with entries ATS,I(S
′
g1··g2,h1··h2

, J) for certain values of g1, g2, h1, h2, where J is a set
of disks of level j that intersect the boundary of S′

g1··g2,h1··h2
and have the property

that I∪J is an independent set. The table entry ATS,I(S
′
g1··g2,h1··h2

, J) is a maximum
weight set J ′ of disks that have level at least j, are contained in S′

g1··g2,h1··h2
, and have

the property that I ∪J ∪J ′ is an independent set. This property is captured formally
in the following definition.

Definition 2.6. Let S be a relevant j-square and let I be a set of disjoint disks
of level less than j that intersect S. Let S′

g1··g2,h1··h2
be a rectangle of child squares of

S, and let J be a set of disks of level j that intersect the boundary of S′
g1··g2,h1··h2

and
have the property that I ∪ J is an independent set.

Then the table entry ATS,I(S
′
g1··g2,h1··h2

, J) is called good if it satisfies the fol-
lowing properties:

(a) ATS,I(S
′
g1··g2,h1··h2

, J) ⊆ D(r, s) consists of disks that are contained in
S′
g1··g2,h1··h2

and have level at least j.
(b) I ∪ J ∪ ATS,I(S

′
g1··g2,h1··h2

, J) is an independent set.
(c) w(ATS,I(S

′
g1··g2,h1··h2

, J)) is maximum among all sets that satisfy (a) and
(b).

Once a good table entry ATS,I(S
′
0··k,0··k, ∅) is computed, it immediately yields

TS(I).
Table entries ATS,I(S

′
g1··g2,h1··h2

, J) are again computed by dynamic program-
ming. First, we bound the number of different sets J that must be considered as
table index for a rectangle S′

g1··g2,h1··h2
.

Lemma 2.7. Let S′
g1··g2,h1··h2

be a rectangle and let J be a set of disjoint disks of
level j such that all disks in J intersect the boundary of S′

g1··g2,h1··h2
. Then there is a

constant C ′ such that |J | ≤ C ′k2.
Proof. Let R = S′

g1··g2,h1··h2
. The boundary B of R consists of line segments with

total length at most 4k(k + 1)−j . Let B̄ be obtained by extending B by a strip of
width (k + 1)−(j+1) on the inside of B and on the outside of B. The total area of B̄
is at most 8k(k + 1)−2j−1. Each disk of level j that intersects B occupies an area at
least π(k + 1)−2(j+1)/4 of B̄. Therefore, J can contain at most

8k(k + 1)−2j−1

π
4 (k + 1)−2(j+1)

=
32

π
k(k + 1) ≤ 16k2

disjoint disks. So we can take C ′ = 16.
Lemma 2.7 shows that for each rectangle S′

g1··g2,h1··h2
, there are at most nO(k2)

different sets J that need to be considered as table index with respect to ATS,I

(S′
g1··g2,h1··h2

, J).
Here and in the following, we use ATS,I(S

′
g1··g2,h1··h2

, ∗) as a shorthand notation
to refer to the table entries ATS,I(S

′
g1··g2,h1··h2

, J) for all relevant values of J .
As the basis of the dynamic programming, the table entries ATS,I(S

′
g··g,h··h, ∗)

are computed for 0 ≤ g, h ≤ k as shown in Figure 2.4. Note that S′
g··g,h··h = S′

g,h.
For each child square S′

g,h, all independent sets U of disks of level j intersecting

S′
g,h are enumerated. This can be done in time nO(k2) by Lemma 2.5. If I ∪ U is
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Input: square S on level j,
set I of disjoint disks of level < j intersecting S,
integers g, h with 0 ≤ g, h ≤ k

Output: table entries ATS,I(S
′
g,h, J) for all J

ATS,I(S
′
g,h, ∗) ← undefined;

Q ← all disks in D(r, s) of level j intersecting S′
g,h;

for all U ⊆ Q such that |U | ≤ Ck2 do
if the disks in I ∪ U are disjoint then

I ′ ← {D ∈ I | D intersects S′
g,h};

X ← TS′
g,h

(I ′ ∪ U);

X ← X ∪ {D ∈ U | D is contained in S′
g,h};

J ← {D ∈ U | D intersects the boundary of S′
g,h};

if ATS,I(S
′
g,h, J) is undefined or

w(X) > w(ATS,I(S
′
g,h, J)) then

ATS,I(S
′
g,h, J) ← X;

fi
fi

od

Fig. 2.4. Computing the auxiliary table ATS,I(S
′
g,h, ∗).

(a) (b) (c)

Fig. 2.5. Example of table lookups for a square S at level j in case k = 2. (a) shows 13 disks
in D(r, s) that intersect S: 2 disks of level less than j, 2 disks on level j, and 9 disks on level j + 1.
(b) displays an independent set I consisting of 1 disk of level less than j. (c) illustrates that lookups
are performed in 9 tables TS′

g,h
during the computation of the table entries ATS,I(S

′
g,h, ∗).

an independent set, the optimal way of extending the set I ∪ U to a larger weight
independent set by adding disks of larger levels that are contained in S′

g,h is computed
by looking up TS′

g,h
(I ′ ∪ U), where I ′ = {D ∈ I | D intersects S′

g,h}. (If S does not

have any relevant child squares, all lookups in tables TS′
g,h

are taken to return the

empty set.) Let J = {D ∈ U | D intersects the boundary of S′
g,h}. If the independent

set obtained in this way has larger weight than the previous set stored in table entry
ATS,I(S

′
g,h, J), the entry is updated to store the new set. An example of the table

lookups performed for a relevant j-square S in the tables TS′
g,h

of subsquares at level

j + 1 is sketched in Figure 2.5.

Next, we show how to combine the information from the table entries of two
rectangles to obtain the table entries for the rectangle representing the union of the
two rectangles. Without loss of generality, we discuss only the case where the two
rectangles share a horizontal edge and have the same width. The combination of
rectangles that share a vertical edge and have the same height is analogous. It is clear
that (k+1)2−1 such combinations suffice to obtain the table entry ATS,I(S

′
0··k,0··k, ∅),
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Fig. 2.6. Combining subsquares into rectangles.

Input: square S on level j,
set I of disjoint disks of level < j intersecting S,
integers g1, g2, g3 with 0 ≤ g1 ≤ g2 < g3 ≤ k,
integers h1, h2 with 0 ≤ h1 ≤ h2 ≤ k,
previously computed table entries ATS,I(S

′
g1··g2,h1··h2

, ∗)
and ATS,I(S

′
g2+1··g3,h1··h2

, ∗)
Output: table entries ATS,I(S

′
g1··g3,h1··h2

, J) for all J

R1 ← S′
g1··g2,h1··h2

;

R2 ← S′
g2+1··g3,h1··h2

;

ATS,I(S
′
g1··g3,h1··h2

, ∗) ← undefined;

Q ← all disks in D(r, s) of level j intersecting the boundary of R1 or R2;
for all U ⊆ Q such that |U | ≤ 2C ′k2 do

if the disks in I ∪ U are disjoint then
for i = 1 to 2 do

Ui ← {D ∈ U | D intersects the boundary of Ri};
Xi ← ATS,I(Ri, Ui);

od;
X ← X1 ∪X2 ∪ {D ∈ U | D does not intersect the boundary of

S′
g1··g3,h1··h2

};
J ← {D ∈ U | D intersects the boundary of S′

g1··g3,h1··h2
};

if ATS,I(S
′
g1··g3,h1··h2

, J) is undefined or

w(X) > w(ATS,I(S
′
g1··g3,h1··h2

, J) then

ATS,I(S
′
g1··g3,h1··h2

, J) ← X;

fi
fi

od

Fig. 2.7. Computing the auxiliary table ATS,I(S
′
g1··g3,h1··h2

, ∗).

which then gives TS(I). See Figure 2.6 for an example with k = 4 in which first the
horizontally adjacent rectangles within each row are combined and then the vertically
adjacent row rectangles are combined.

The algorithm for computing the table entries ATS,I(S
′
g1··g3,h1··h2

, ∗) from the
table entries ATS,I(S

′
g1··g2,h1··h2

, ∗) and ATS,I(S
′
g2+1··g3,h1··h2

, ∗) for some g1 ≤ g2 <

g3, h1 ≤ h2 is shown in Figure 2.7. Let R1 = S′
g1··g2,h1··h2

and R2 = S′
g2+1··g3,h1··h2

.

The algorithm enumerates all independent sets U of disks of level j that intersect the
boundary of R1 or R2. As each such set has cardinality at most 2C ′k2, where C ′

is the constant from Lemma 2.7, there are at most nO(k2) such sets. If I ∪ U is an
independent set, the optimal way of extending the set to a larger weight independent
set by adding disks of level at least j that are contained in R1 or R2 is computed by
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looking up ATS,I(R1, U1) and ATS,I(R2, U2), where Ui for i = 1, 2 is the set of disks
in U that intersect the boundary of Ri. Then the table entry ATS,I(S

′
g1··g3,h1··h2

, J)
is updated for the appropriate choice of J provided that the new set is better than
the previously stored entry. When all sets U have been processed in this way, the
table entries ATS,I(S

′
g1··g3,h1··h2

, ∗) have their final values.
So far we have assumed that the current j-square S has either no child squares or

exactly (k + 1)2 child squares on level j + 1. It is easy to handle the case that S has
fewer than (k+1)2 child squares on level j+1 and possibly some child squares on levels
larger than j +1: Just before the computation of TS , we compute the tables TS′

g,h
for

all (k+1)2 (j+1)-squares S′
g,h contained in S. For the (j+1)-squares that are relevant,

the tables are already computed. For every (j+1)-square S′
g,h that is not relevant, we

can enumerate all nO(k2) sets I of disjoint disks of level at most j that intersect S′
g,h

and compute TS′
g,h

(I) by taking the union of the sets TS′′(IS
′′
) for all child squares

S′′ of S that are contained in S′
g,h. Here, IS

′′
= {D ∈ I | D intersects S′′}. It is clear

that the table entries TS′
g,h

(I) computed in this way are good provided that good

entries of the tables TS′′ have been computed previously.
This completes the description of the algorithm. In summary, the optimal inde-

pendent set in D(r, s) is computed by dynamic programming on the relevant squares
using table entries TS(I), while each such entry is computed by dynamic programming
on rectangles within the current square using auxiliary table entries ATS,I(S

′
g1··g2,h1··h2

,
J).

2.4. Running-time of the algorithm.
Lemma 2.8. The running-time of the algorithm is nO(k2) and hence polynomial

for any fixed k > 1.
Proof. There are k2 sets D(r, s) that have to be considered. As there are at most

n disks in D(r, s), there can be at most n relevant squares. The relevant squares and
their forest structure (the links between every relevant square and its children) can
be computed easily in time polynomial in n.

For each relevant square S, the algorithm first computes the missing tables TS′
g,h

for (j + 1)-squares S′
g,h that are contained in S, as discussed at the end of section

2.3. Each of the O(k2) such (j + 1)-squares can be handled in time nO(k2). Then

the algorithm enumerates nO(k2) sets I for which a table entry TS(I) has to be com-
puted. Each such entry is determined by using dynamic programming to fill the table
ATS,I . Table entries ATS,I(S

′
g1··g2,h1··h2

, J) are computed for O(k2) different rectan-

gles S′
g1··g2,h1··h2

, and for each rectangle the computation takes time nO(k2), as can be
seen from the pseudocode in Figures 2.4 and 2.7.

Thus, the total running-time can be bounded by

k2 · nO(1) ·
(
O(k2) · nO(k2) + nO(k2) ·O(k2) · nO(k2)

)
= nO(k2).

2.5. Correctness of the algorithm.
Lemma 2.9. The entries of all the tables TS and ATS,I computed by the algorithm

are good.
Proof. First, it is clear that the table entries computed by the algorithm satisfy

properties (a) and (b) of Definitions 2.4 and 2.6. It remains to show that the sets
stored in the tables are indeed of maximum weight.

The proof is by induction on the number of squares processed by the algorithm.
Initially, the claim of the lemma holds vacuously. Now assume that the algorithm



APPROXIMATION SCHEMES FOR GEOMETRIC GRAPHS 1313

processes a relevant j-square S and that good entries for the tables TS′ have been
computed for all relevant squares S′ that were processed before S. Let I be a set of
disjoint disks of level smaller than j that intersect S.

Consider the computation of the table entries ATS,I(S
′
g,h, J) as shown in Fig-

ure 2.4. Fix some set J of disks at level j intersecting the boundary of S′
g,h such that

I ∪J is an independent set. Let X∗ be a maximum weight set of disks at level at least
j that are contained in S′

g,h such that I ∪ J ∪X∗ is an independent set. Let X∗
=j be

the set of disks at level j in X∗ and let U∗ = J ∪ X∗
=j . Then U∗ is one of the sets

U enumerated by the algorithm, and we consider the iteration of the for-loop when
this set is processed. Since the entries of TS′

g,h
are good, the lookup in TS′

g,h
(I ′ ∪ U)

returns a set of weight at least w(X∗ \X∗
=j). Then the set

X = TS′
g,h

(I ′ ∪ U) ∪ {D ∈ U | D is contained in S′
g,h}

= TS′
g,h

(I ′ ∪ U) ∪X∗
=j

computed by the algorithm has weight at least w(X∗ \ X∗
=j) + w(X∗

=j) = w(X∗).
Hence, the table entry ATS,I(S

′
g,h, J) contains a set X of weight at least w(X∗) when

the algorithm of Figure 2.4 terminates. Since ATS,I(S
′
g,h, J) satisfies properties (a)

and (b) of Definition 2.6 and X∗ is a maximum weight set with this property, we get
that w(ATS,I(S

′
g,h, J)) = w(X∗). Hence, the computed table entry ATS,I(S

′
g,h, J) is

good.
Consider the computation of a table entry ATS,I(S

′
g1··g3,h1··h2

, J) as shown in
Figure 2.7. Assume that the previously computed entries ATS,I(S

′
g1··g2,h1··h2

, ∗) and
ATS,I(S

′
g2+1··g3,h1··h2

, ∗) are good. Let R1 = S′
g1··g2,h1··h2

and R2 = S′
g2+1··g3,h1··h2

.
Fix some set J of disks at level j intersecting the boundary of S′

g1··g3,h1··h2
=

R1 ∪ R2 such that I ∪ J is an independent set. Let X∗ be a maximum weight set
of disks at level at least j that are contained in R1 ∪ R2 such that I ∪ J ∪ X∗ is
an independent set. Let X∗

1,2 be the set of disks at level j in X∗ that intersect the
boundary of R1 and the boundary of R2. Let X∗

1 and X∗
2 be the set of disks in X∗

that are contained in R1 and in R2, respectively.
Let U∗ = J ∪X∗

1,2. Then U∗ is one of the sets U enumerated by the algorithm.
For this set U∗, the table lookups ATS,I(Ri, Ui) for i = 1, 2, with Ui calculated as
shown in Figure 2.7, yield disjoint sets X1 and X2 of weight at least w(X∗

1 ) and
w(X∗

2 ), respectively. Then the set

X = X1 ∪X2 ∪ {D ∈ U | D does not intersect the boundary of S′
g1··g3,h1··h2

}
= X1 ∪X2 ∪X∗

1,2

calculated by the algorithm has weight at least w(X∗
1 ) + w(X∗

2 ) + w(X∗
1,2) = w(X∗).

Hence, the table entry ATS,I(R1 ∪ R2, J) contains a set X of weight at least w(X∗)
when the algorithm of Figure 2.7 terminates, and is thus a good entry.

So we see that the computed auxiliary table entries ATS,I(S
′
g1··g2,h1··h2

, ∗) are
indeed good for the rectangles S′

g1··g2,h1··h2
. Since the algorithm then sets TS(I) equal

to ATS,I(S, ∅), this shows that the computed entries of TS(I) are good as well.
We observe that all disks in D(r, s) are contained in some relevant square without

parent, and that all relevant squares without parent are disjoint. By Lemma 2.9, the
computed table entries TS(∅) are good for all relevant squares without parent, and
this shows that the algorithm indeed computes an optimal independent set in D(r, s).
Together with the discussion in section 2.1, we have that the algorithm achieves
approximation ratio (1 + 1

k−1 )2 ≤ 1 + 3
k−1 . In order to achieve approximation ratio
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1 + ε, we can set k = �3/ε� + 1. The running-time is nO(k2) and hence polynomial
for any fixed k > 1. So the algorithm indeed constitutes a PTAS. We summarize our
result in the following theorem.

Theorem 2.10. There is a PTAS for MWIS in disk graphs, provided that a disk
representation of the graph is given. The running-time for achieving approximation
ratio 1 + ε is nO(1/ε2) for a disk graph with n disks.

3. A PTAS for vertex cover in disk graphs. In this section we describe
a PTAS for MWVC. The basic approach is similar to the PTAS for MWIS of the
previous section, but a number of details cause additional technical difficulties and
require a different treatment. One problem is that the size of a vertex cover cannot
be bounded by area arguments as the size of an independent set can. The main idea
to circumvent this problem is to work with the complements of vertex covers, which
are independent sets.

The partitioning of the disks into levels and the subdivision of the plane into
squares at each level is the same as for MWIS. Again, all values of r and s such
that 0 ≤ r, s < k are considered in turn. Note that the definition of the squares on
each level depends on r and s. Contrary to the PTAS for MWIS, disks that are not
completely contained in some square on their level are not removed; instead, these
disks are considered in all squares on their level that they intersect (there are at most
four such squares). Now a j-square S is called relevant if D contains a disk of level j
that intersects S.

Consider some j-square S and let DS denote the set of all disks in D that intersect
S. Let DS

<j be the set of disks in DS that have level smaller than j. Define DS
≤j , DS

=j ,

DS
≥j , and DS

>j analogously.

We say that a set Z ⊆ D is a pseudocover of S if, for any two disks D1, D2 ∈ DS

that intersect in S (i.e., D1 ∩D2 ∩ S �= ∅), Z contains D1 or D2 (or both). Note that
a pseudocover of S need not contain D1 or D2 if the only intersection of D1 with D2

is outside S. We observe that, for any two disks in D that intersect, there exists a
relevant square in which they intersect.

For any pseudocover Z of S, call DS
<j ∩ Z the projection of Z onto DS

<j . While
processing S, the algorithm considers only pseudocovers Z of S for which the projec-
tion of Z onto DS

<j equals DS
<j \ I for some independent set I ⊆ DS

<j . As the number

of independent sets in DS
<j is bounded by nO(k2) by Lemma 2.5, we can enumerate

all of them and thus, by taking the complements, also the corresponding projections
of pseudocovers of S onto DS

<j in time nO(k2).
As in the PTAS for MWIS, all relevant squares are processed in a bottom-up

fashion, and for each square S a table TS is computed. For a relevant j-square S and
a set I of disjoint disks in DS

<j , the table entry TS(I) has the following property.
Property 1. For every relevant j-square S and every set I of disjoint disks in

DS
<j, the table entry TS(I) is a subset of DS

≥j such that the set

(DS
<j \ I) ∪ TS(I)

is a pseudocover of S.
Unlike in the PTAS for MWIS, the entries TS(I) will not be optimal (minimum

weight) sets with the stated property, but will still be good enough to achieve the
desired approximation ratio. It is clear that we cannot expect to compute minimum
weight entries TS(I), as in that case the entry TS(∅) of a relevant square S without
parent would represent an optimal vertex cover of all disks contained in S, thus solving
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an NP-hard problem optimally. (Note that we do not delete any disks from the given
instance of MWVC in disk graphs before we compute the table entries, contrary to
our algorithm for MWIS.)

In the end, the algorithm outputs the union of the sets TS(∅) for all relevant
squares S without parent. By the definition of pseudocovers, this union is a vertex
cover of D.

At a relevant j-square S, all independent sets I in DS
<j are enumerated in time

nO(k2). The computation of the table entry TS(I) for one such set I is described in
the following.

Assume again that the j-square S has (k + 1)2 child squares on level j + 1 (with
the same justification as in the case of MWIS) and denote these child squares by S′

g,h,
where g is the row index and h is the column index, 0 ≤ g, h ≤ k. Since the algorithm
processes the relevant squares in order of nonincreasing levels, the table TS′

g,h
has

already been computed for each such child square S′
g,h.

In order to determine TS(I), the algorithm computes an auxiliary table ATS,I

with entries ATS,I(S
′
g1··g2,h1··h2

, J) for certain values of g1, g2, h1, h2, where J is a set
of disks that are on level j and intersect the boundary of S′

g1··g2,h1··h2
such that I ∪ J

is an independent set. For a rectangle R, let D∂R be the set of all disks in D that
intersect the boundary of R.

Property 2. Let S be a relevant j-square and I an independent set in DS
<j. Let

R = S′
g1··g2,h1··h2

be a rectangle of child squares of S and J a set of disks of level j
intersecting the boundary of R such that I ∪ J is an independent set. The table entry
ATS,I(R, J) is a set of disks in D that

• either have level j and are contained in R or
• have level at least j + 1 and intersect R

such that

(DS
<j \ I) ∪ (D∂R

=j \ J) ∪ ATS,I(R, J)

is a pseudocover of R.
Once the table entries ATS,I(S

′
0··k,0··k, J) = ATS,I(S, J) for all J are computed,

TS(I) is obtained by taking the set ATS,I(S, J)∪ (D∂S
=j \ J) of minimum weight (over

all J).
The table entries ATS,I(S

′
g1··g2,h1··h2

, J) are again computed by dynamic pro-

gramming. By Lemma 2.7, for each rectangle S′
g1··g2,h1··h2

there are at most nO(k2)

different sets that are relevant as table index J for ATS,I(S
′
g1··g2,h1··h2

, J).
As the basis of the dynamic programming, the table entries ATS,I(S

′
g··g,h··h, J)

are computed for 0 ≤ g, h ≤ k as shown in Figure 3.1. For each child square S′
g,h, all

independent sets U of disks of level j intersecting S′
g,h are enumerated in time nO(k2)

(by Lemma 2.5). If I ∪U is an independent set, the table entry TS′
g,h

(I ′∪U) is looked

up, where I ′ = {D ∈ I | D intersects S′
g,h}, in order to obtain the pseudocover of

S′
g,h given by the set

(DS
<j \ I) ∪ (DS′

g,h

=j \ U) ∪ TS′
g,h

(I ′ ∪ U).

Then J is taken to be the set of disks in U intersecting the boundary of S′
g,h, and

the table entry ATS,I(S
′
g,h, J) is updated appropriately if the current pseudocover

has smaller weight than the one previously stored. (Of course, if S does not have any
child squares, the table lookups TS′

g,h
(I ′ ∪ U) are taken to return the empty set.)
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Input: square S on level j,
set I of disjoint disks of level < j intersecting S,
integers g, h with 0 ≤ g, h ≤ k

Output: table entries ATS,I(S
′
g,h, J) for all J

ATS,I(S
′
g,h, ∗) ← undefined;

Q ← all disks in D of level j intersecting S′
g,h;

for all U ⊆ Q such that |U | ≤ Ck2 do
if the disks in I ∪ U are disjoint then

I ′ ← {D ∈ I | D intersects S′
g,h};

X ← TS′
g,h

(I ′ ∪ U);

X ← X ∪ {D ∈ DS′
g,h

=j | D is contained in S′
g,h and D /∈ U};

J ← {D ∈ U | D intersects the boundary of S′
g,h};

if ATS,I(S
′
g,h, J) is undefined or

w(X) < w(ATS,I(S
′
g,h, J) then

ATS,I(S
′
g,h, J) ← X;

fi
fi

od

Fig. 3.1. Computing the auxiliary table ATS,I(S
′
g,h, ∗) for MWVC.

Next, the information from the tables of two rectangles is combined to obtain the
table for the rectangle representing the union of the two rectangles. Again, we discuss
only the case where the two rectangles share a horizontal edge and have the same
width. The algorithm for computing the table ATS,I(S

′
g1··g3,h1··h2

, ∗) from the tables

ATS,I(S
′
g1··g2,h1··h2

, ∗) and ATS,I(S
′
g2+1··g3,h1··h2

, ∗) for some g1 ≤ g2 < g3, h1 ≤ h2 is

shown in Figure 3.2. Let R1 = S′
g1··g2,h1··h2

and R2 = S′
g2+1··g3,h1··h2

. The algorithm

enumerates all independent sets U of disks of level j that intersect the boundary of
R1 or R2. As each such set has cardinality at most 2C ′k2, where C ′ is the constant
from Lemma 2.7, there are at most nO(k2) such sets. If I ∪ U is an independent set,
the table entries X1 = ATS,I(R1, U1) and X2 = ATS,I(R2, U2), where U1 and U2

are calculated as shown in Figure 3.2, are looked up to obtain the pseudocover of
R1 ∪R2 = S′

g1··g3,h1··h2
given by the set

(DS
<j \ I) ∪ ((D∂R1

=j ∪ D∂R2
=j ) \ U) ∪X1 ∪X2.

Then the table entry ATS,I(S
′
g1··g3,h1··h2

, J) for

J = {D ∈ U | D intersects the boundary of S′
g1··g3,h1··h2

}

is updated appropriately if this pseudocover has smaller weight than the one previously
stored.

In the end, the algorithm outputs the union of the sets TS(∅), taken over all
relevant squares S that do not have a parent. We will see that this is a (1 + 6

k )-
approximation of the minimum weight vertex cover.

3.1. The algorithm outputs a vertex cover.
Lemma 3.1. The algorithm outputs a vertex cover of D.
Proof. We prove by induction on the number of processed squares that Proper-

ties 1 and 2 hold for all computed table entries. Let S be some j-square. Recall that
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Input: square S on level j,
set I of disjoint disks of level < j intersecting S,
integers g1, g2, g3 with 0 ≤ g1 ≤ g2 < g3 ≤ k,
integers h1, h2 with 0 ≤ h1 ≤ h2 ≤ k,
previously computed table entries ATS,I(S

′
g1··g2,h1··h2

, ∗) and

ATS,I(S
′
g2+1··g3,h1··h2

, ∗)
Output: table entries ATS,I(S

′
g1··g3,h1··h2

, J) for all J

R1 ← S′
g1··g2,h1··h2

;

R2 ← S′
g2+1··g3,h1··h2

;

ATS,I(S
′
g1··g3,h1··h2

, ∗) ← undefined;

Q ← all disks in D of level j intersecting the boundary of R1 or R2, i.e.,

D∂R1
=j ∪ D∂R2

=j ;

for all U ⊆ Q such that |U | ≤ 2C ′k2 do
if the disks in I ∪ U are disjoint then

for i = 1 to 2 do
Ui ← {D ∈ U | D intersects the boundary of Ri};
Xi ← ATS,I(Ri, Ui);

od;
X ← X1 ∪X2 ∪ {D ∈ Q \ U | D does not intersect the boundary of

S′
g1··g3,h1··h2

};
J ← {D ∈ U | D intersects the boundary of S′

g1··g3,h1··h2
};

if ATS,I(S
′
g1··g3,h1··h2

, J) is undefined or

w(X) < w(ATS,I(S
′
g1··g3,h1··h2

, J) then

ATS,I(S
′
g1··g3,h1··h2

, J) ← X;

fi
fi

od

Fig. 3.2. Computing the auxiliary table ATS,I(S
′
g1··g3,h1··h2

, ∗) for MWVC.

DS is the set of all disks in D that intersect S and that DS
<j denotes the set of disks

in DS whose level is smaller than j, and similarly for DS
≤j , DS

=j , DS
≥j , and DS

>j . Let

I be a set of disjoint disks in DS
<j .

Assume that the entries of all tables TS′ computed for previously processed
squares S′ satisfy Property 1. Then each set TS′

g,h
(I ′ ∪ U) that is looked up by

the algorithm of Figure 3.1 is such that

(DS′
g,h

≤j \ (I ′ ∪ U)) ∪ TS′
g,h

(I ′ ∪ U)

is a pseudocover of S′
g,h. Therefore, the set stored in ATS,I(S

′
g,h, J) for J = {D ∈ U |

D intersects the boundary of S′
g,h} satisfies Property 2.

Now assume that the information from table entries ATS,I(R1, ∗) and ATS,I(R2, ∗)
is combined to obtain the table entries ATS,I(R1 ∪R2, ∗) using the algorithm of Fig-
ure 3.2. Consider some iteration of the algorithm of Figure 3.2 and let U1 and U2 be
defined as calculated by the algorithm. Note that U1 ∪ U2 = U but U1 ∩ U2 can be
nonempty. Since table entries ATS,I(Ri, Ui) for i = 1, 2 satisfy Property 2, we have
that the set

(DS
<j \ I) ∪ ((D∂R1

=j ∪ D∂R2
=j ) \ (U1 ∪ U2)) ∪ ATS,I(R1, U1) ∪ ATS,I(R2, U2)
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is indeed a pseudocover of R1 and R2 and thus also of R1 ∪ R2. Therefore, the set
stored in ATS,I(R1 ∪R2, J) for J = {D ∈ U | D intersects the boundary of R1 ∪R2}
satisfies Property 2 as well.

When the auxiliary table entries ATS,I(S, ∗) have been computed, the algorithm
obtains TS(I) by taking the minimum weight set obtainable as ATS,I(S, J)∪(D∂S

=j \J).
Since the table entry ATS,I(S, J) leading to the minimum satisfies Property 2, the
resulting table entry TS(I) satisfies Property 1.

In the end, the algorithm outputs a union of pseudocovers TS(∅) in all rele-
vant squares S without parent. As every intersection of two disks is contained in
some relevant square without parent, the algorithm always outputs a vertex cover of
D.

3.2. Analysis of approximation ratio. Let C be any optimal vertex cover of
D. Every disk hits at most one vertical line on its level and at most one horizontal
line on its level. For any pair of values r and s, 0 ≤ r, s < k, let C(r, s) be the set
of all disks in C that hit a vertical line on their level whose index modulo k equals
r or a horizontal line on their level whose index modulo k equals s. Note that there
must be a value of r such that the total weight of disks in C that hit a vertical line on
their level whose index modulo k equals r is at most 1

kw(C). An analogous argument
shows that there is a value of s with the corresponding property for horizontal lines.
Therefore, there exist values of r and s such that the total weight of C(r, s) is at most
2
k times the weight of C. Consider the subdivision of the plane that results from this
choice of r and s.

Let R be the set of all relevant squares. For any j-square S, let C(S) denote the
disks in C that intersect S and that are on level j. Note that C =

⋃
S∈R C(S) but the

sets C(S) and C(S′) for S �= S′ need not be disjoint.

Lemma 3.2. We have
∑

S∈R w(C(S)) ≤ (1 + 6
k )w(C).

Proof. The only disks in C that are counted more than once in the sum on the
left-hand side are those that intersect several squares on their level. However, any
disk can intersect at most 4 squares on its level. Furthermore, only disks in C(r, s)
can intersect more than 1 square on their level. Thus, only disks of total weight
w(C(r, s)) ≤ 2

kw(C) are counted multiple times, and each disk is counted at most four
times on the left-hand side, while it is counted once in w(C). Thus

∑
S∈R w(C(S))

can exceed w(C) by at most 3 · 2
kw(C), establishing the claimed inequality.

Lemma 3.2 shows that the sum of the weights of the sets C(S) is only slightly
larger than the weight of C, although certain disks are counted several times in this
sum. The following lemma shows that the weight of the vertex cover output by our
algorithm does not exceed this sum. Intuitively, the lemma means that, on average,
for each square S on some level j the weight of the set of disks from DS

=j chosen by

the algorithm does not exceed the weight of the disks chosen from DS
=j in the optimal

solution.

Lemma 3.3. Let A be the vertex cover output by the algorithm. Then w(A) ≤∑
S∈R w(C(S)).

Proof. For any relevant j-square S or any rectangle R of child squares of S, let
CS and CR be the set of all disks in C that intersect S and R, respectively. Define
CS
<j , CS

≤j , CS
=j , etc. as usual. Observe that C(S) = CS

=j . We claim that, after TS has
been computed, we have

w(TS(DS
<j \ CS

<j)) ≤
∑

S′:S′≺S

w(C(S′)) ,(3.1)
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where S′ ≺ S means that S′ is a relevant square that is contained in S. Note that
S ≺ S.

The proof is by induction on the number of relevant squares that have been pro-
cessed by the algorithm. Assume that the algorithm is about to process the relevant
square S and that (3.1) holds for all squares that have been processed before S. One
of the independent sets I in DS

<j enumerated by the algorithm is equal to DS
<j \ CS

<j .
Consider that set I in the following.

We turn to the computation of the auxiliary table entries ATS,I(R, J), where
R = S′

g1··g2,h1··h2
is a rectangle of subsquares of S. We claim that when the table

entries ATS,I(R, ∗) are computed, we have

w(ATS,I(R, J)) ≤ w({D ∈ CR
=j | D is contained in R}) +

∑
S′:S′≺R,S′ 	=S w(C(S′))

for J = {D ∈ DR
=j \ C | D intersects the boundary of R} = D∂R

=j \ C.
(3.2)

Note that the sum in (3.2) is over all relevant j′-squares, j′ > j, that are contained
in R, and that the sum does not include the term w(C(S)) even if R = S.

First, consider the computation of ATS,I(S
′
g,h, ∗) by the algorithm of Figure 3.1.

In one of the iterations of the for-loop, the set U is equal to Q\C = DS′
g,h

=j \C. For this

set U , the table entry TS′
g,h

(I ′ ∪ U) = TS′
g,h

(DS′
g,h

≤j \ CS′
g,h

≤j ) is looked up. Since (3.1)

holds for TS′
g,h

, we get that w(TS′
g,h

(I ′ ∪ U)) ≤
∑

S′:S′≺S′
g,h

w(C(S′)). Hence, the set

X = TS′
g,h

(I ′ ∪ U) ∪ {D ∈ DS′
g,h

=j \ U | D is contained in S′
g,h}

stored in ATS,I(S
′
g,h, J) for

J = {D ∈ U | D intersects the boundary of S′
g,h}

= {D ∈ DS′
g,h

=j \ C | D intersects the boundary of S′
g,h}

has weight at most

∑
S′:S′≺S′

g,h

w(C(S′)) + w({D ∈ DS′
g,h

=j \ U | D is contained in S′
g,h})

=
∑

S′:S′≺S′
g,h

w(C(S′)) + w({D ∈ CS′
g,h

=j | D is contained in S′
g,h}).

From this we see that (3.2) is satisfied for R = S′
g,h.

Next, consider the combination of table entries ATS,I(R1, ∗) and ATS,I(R2, ∗) to
obtain table entries ATS,I(R1 ∪ R2, ∗) using the algorithm of Figure 3.2. In one of
the iterations of the for-loop, the set U is equal to the set

Q\C = {D ∈ DR1∪R2
=j \C | D intersects the boundary of R1 or R2} = (D∂R1

=j ∪D∂R2
=j )\C.

For this set U , the table entries ATS,I(Ri, Ui) are looked up for i = 1, 2, where

Ui = {D ∈ U | D intersects the boundary of Ri}. Thus, we have Ui = D∂Ri
=j \ C and

we know that (3.2) holds for table entries ATS,I(Ri, Ui). Then the weight of the set
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X = ATS,I(R1, U1) ∪ ATS,I(R2, U2) ∪ {D ∈ (D∂R1
=j ∪ D∂R2

=j ) \ U | D is contained

in R1 ∪R2}
= ATS,I(R1, U1) ∪ ATS,I(R2, U2) ∪ {D ∈ C ∩ (D∂R1

=j ∪ D∂R2
=j ) | D is contained

in R1 ∪R2}
= ATS,I(R1, U1) ∪ ATS,I(R2, U2) ∪ {D ∈ C∂R1

=j ∪ C∂R2
=j | D is contained in R1 ∪R2}

= ATS,I(R1, U1) ∪ ATS,I(R2, U2) ∪ {D ∈ C∂R1
=j ∩ C∂R2

=j | D is contained in R1 ∪R2}
= ATS,I(R1, U1) ∪ ATS,I(R2, U2) ∪ {D ∈ C∂R1∩∂R2

=j | D is contained in R1 ∪R2}

is at most

w({D ∈ CR1
=j | D is contained in R1}) +

∑
S′:S′≺R1

w(C(S′))

+ w({D ∈ CR2
=j | D is contained in R2}) +

∑
S′:S′≺R2

w(C(S′))

+ w({D ∈ C∂R1∩∂R2
=j | D is contained in R1 ∪R2})

=

⎛
⎝ ∑

S′:S′≺(R1∪R2),S′ 	=S

w(C(S′))

⎞
⎠ + w({D ∈ CR1∪R2

=j | D is contained in R1 ∪R2}).

The set X is stored in ATS,I(R1∪R2, J) for J = {D ∈ U | D intersects the boundary

of R1 ∪R2} = {D ∈ DR1∪R2
=j \ C | D intersects the boundary of R1 ∪R2} provided its

weight is smaller than that of the previously stored set. This shows that (3.2) holds
for R = R1 ∪R2 when the algorithm of Figure 3.2 terminates. Thus, by induction we
see that all table entries ATS,I(R, J) satisfy (3.2).

This implies that for J = D∂S
=j \C, the table entry ATS,I(S, J) has weight at most

w({D ∈ CS
=j | D is contained in S}) +

∑
S′:S′≺S,S′ 	=S w(C(S′)). Note that D∂S

=j \ J =

C∂S
=j . The set ATS,I(S, J) ∪ (D∂S

=j \ J), which is one of the candidates for the table
entry TS(I), has weight at most w(C(S)) +

∑
S′:S′≺S,S′ 	=S w(C(S′)). Thus, we get

that (3.1) holds for TS as well, and the inductive step with respect to the tables TS

is established.
Finally, let R0 be the set of all relevant squares without parent. The algorithm

outputs
⋃

S∈R0
TS(∅) as a solution. For any relevant j-square S ∈ R0, we have

CS
<j = ∅. Thus we get from (3.1) that

∑
S∈R0

w(TS(∅)) ≤
∑

S∈R w(C(S)).
Combining these lemmas, we get that the algorithm outputs a vertex cover whose

weight is at most a factor of 1 + 6
k larger than the weight of the optimal vertex cover.

Furthermore, by a similar analysis as in the case of MWIS, the running-time of the
algorithm is bounded by nO(k2). Thus we obtain our second main theorem.

Theorem 3.4. There is a PTAS for MWVC in disk graphs, provided that a disk
representation of the graph is given. The running-time for achieving approximation

ratio 1 + ε is nO(1/ε2) for a disk graph with n disks.

4. Extension to other geometric intersection graphs. In the previous sec-
tions we have presented PTASs for MWIS and MWVC in the intersection graphs of
disks with arbitrary diameters. Our approach does not make use of any specific prop-
erties of disks; it is required only that the given geometric objects can be partitioned
into levels such that only a constant number (for fixed k) of disjoint objects of level
smaller than j can intersect a square on level j. Therefore, the same approach can
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be used for other geometric objects such as squares or regular polygons. We can also
deal with rectangles if the ratio between the height and the width does not differ by
more than a constant factor between different rectangles, because it suffices to scale
the input along one axis so that the resulting rectangles are approximately squares.

Furthermore, the approach works for geometric objects in any d-dimensional space
provided that d is a constant. The space is partitioned into d-dimensional cubes on
each level, and instead of removing objects (in the case of MWIS) that hit certain
horizontal or vertical lines, we remove objects that hit certain hyperplanes.

More specifically, to obtain PTASs for MWIS and MWVC in the intersection
graphs of geometric objects in d dimensions, the following conditions are sufficient:

(i) d is a constant.
(ii) For each object i, a d-dimensional ball Bi that contains i can be determined

in polynomial time.
(iii) Let level j contain all given objects whose balls Bi have diameter di satis-

fying (k + 1)−j ≥ di > (k + 1)−(j+1). Then the number of disjoint objects of level
smaller than j that can intersect a d-dimensional cube with side length k(k + 1)−j

must be bounded by a constant (for fixed k), and the number of disjoint objects of
level j that can intersect the boundary of a d-dimensional hyperrectangle with sides
of length at most k(k + 1)−j must be bounded by a constant (for fixed k).

(iv) One can decide in polynomial time whether two of the given objects intersect
and whether an object intersects an arbitrary cube.
For example, our approach yields a PTAS for MWIS or MWVC in the intersection

graphs of n balls in d-dimensional space with running-time nO(1/ε2d−2) for any con-
stant d.

5. Conclusion and open problems. We have presented the first known PTASs
for MWIS and MWVC in the intersection graphs of disks. Our algorithms partition
the given disks into levels and apply a shifting strategy on all levels simultaneously.
The PTASs can be generalized to other “disk-like” geometric objects in d dimensions,

achieving running-time nO(1/ε2d−2) for any constant d. Another PTAS for MWIS in
disk graphs, based on ideas similar to ours but using shifted quadtrees in the recursive
subdivision strategy, was discovered recently by Chan [8]. Chan’s algorithm achieves

running-time nO(1/ε) for MWIS in disk graphs and nO(1/εd−1) for the d-dimensional
generalization. MWVC is not considered in Chan’s paper.

Our approximation schemes use a partitioning of the plane into squares on each
level, and this works only if the ratio of the height to the width is roughly the same for
all given geometric objects. It is not clear whether the approach can be extended to
the intersection graphs of arbitrary axis-parallel rectangles, for example. For comput-
ing a maximum independent set among n given rectangles, an O(log n)-approximation
algorithm was presented by Agarwal, van Kreveld, and Suri [1]. Berman et al. [4] im-
proved upon this result and gave a family of approximation algorithms with approxi-
mation ratio 1 + logn

c for any positive constant c. It is an open problem to devise an
approximation algorithm with constant approximation ratio or even a PTAS for this
problem, or to provide evidence that MWIS in intersection graphs of arbitrary rect-
angles is substantially harder to approximate than in intersection graphs of squares
or disks.

Concerning disk graphs, it would be interesting to see whether one can also find a
PTAS for the minimum dominating set problem, where the goal is to select a minimum
number of disks such that each given disk is either selected or intersects a disk that
is selected. For planar graphs and for unit disk graphs, PTASs for the minimum
dominating set problem have been found using the shifting strategy [2, 18], but we
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have not yet been able to adapt the approach of the present paper to the minimum
dominating set problem.

The PTASs for disk graphs require that the disk representation of the graph is
given as part of the input. It would be interesting to determine whether a PTAS
can be obtained even in the case without given representation. In this context we
note that for the maximum clique problem in unit disk graphs, which can be solved
in polynomial time [9], an exact algorithm that does not need the representation
has recently been found by Raghavan and Spinrad [26]. This is somewhat surprising
since it is NP-hard to determine whether a given graph is a unit disk graph [7].
In fact, the algorithm by Raghavan and Spinrad is robust in the sense that for any
given graph G, the algorithm either finds a maximum clique in G or asserts correctly
that G is not a unit disk graph. Robust algorithms solving MWIS optimally in certain
classes of graphs that are characterized by forbidden subgraphs have been presented by
Brandstädt [5]. The concept of robustness can be applied to approximation algorithms
for graph problems by calling an algorithm a robust ρ-approximation algorithm for a
graph class C if, for any input graph G, the algorithm either outputs a solution that is
within a factor ρ of the optimal solution or asserts correctly that G is not a member
of C. Recently, a robust PTAS that does not require the disk representation as part
of the input has been obtained for MWIS in unit disk graphs by Nieberg, Hurink, and
Kern [25].
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HARRY BUHRMAN† , CHRISTOPH DÜRR‡ , MARK HEILIGMAN§ , PETER HØYER¶,
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1. Introduction. In the last decade, quantum computing has become a promi-
nent and promising area of theoretical computer science. Realizing this promise will
require two things: actually building a quantum computer and discovering tasks where
a quantum computer is significantly faster than a classical computer. Here we are con-
cerned with the second issue. Few good quantum algorithms are known to date. The
two main examples are Shor’s algorithm for factoring [23], which achieves an ex-
ponential speed-up over the best known classical factoring algorithms, and Grover’s
search algorithm [15], which achieves a quadratic speed-up over classical search al-
gorithms. Whereas the first so far has remained a seminal but somewhat isolated
result, the second has been applied as a building block in quite a few other quantum
algorithms [6, 8, 9, 10, 21, 20, 7, 12].

The security of the widely used cryptosystem RSA is based on the assumption
that it is hard to factor integers. Shor’s algorithm solves precisely this task. In the
same vein, the security of digital signatures is based on the assumption that it is
difficult to find two items that map to the same value for some particular function.
This motivates the research on the quantum complexity of this task. We define
different variants of this problem. Though we do not improve the bounds for the
following problem, we define it first to start our explanation. We use [N ] to denote
{1, . . . , N}.
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Collision Problem

input f : [N ] → [M ] which is 2-to-1, i.e., ∀i ∈ [N ]∃!j ∈ [N ], i �= j :
f(i) = f(j)

output i, j ∈ [N ] with i �= j and f(i) = f(j)
complexity Classically, the bounded-error query complexity is

Θ(N1/2). For a quantum computer the bounded-error query
complexity is Θ(N1/3): In 1997 Brassard, Høyer, and Tapp [8]
gave a bounded-error quantum algorithm using O(N1/3) queries
to f , and in 2002 Aaronson and Shi [1] showed the matching
lower bound.

In the following problem we remove the assumption about the input. The birthday
paradox gives a simple relation between both problems. A random subset of size

√
N

of the domain of any 2-to-1 function contains with high probability a collision pair.
Therefore any bounded-error algorithm for Element Distinctness using O(Nα) queries
implies a bounded-error algorithm for the Collision Problem using O(Nα/2) queries.

Element Distinctness

input f : [N ] → [M ]
output i, j ∈ [N ] with i �= j and f(i) = f(j), or “all distinct” if f

is injective
complexity We present a bounded-error quantum algorithm which

makes O(N3/4) queries. It dates from early 2000 and first ap-
peared in [11]. However, recently the bounded-error quantum
query complexity was shown to be Θ(N2/3): The lower bound
follows from Aaronson and Shi [1] by the observation above, and
an algorithm matching this bound was found in 2003 by Am-
bainis [3] using a quantum walk. The classical bounded-error
query complexity is Θ(N) by a trivial reduction from the OR-
problem: For an OR-instance x ∈ {0, 1}N we define the function
f : [N + 1] → [N + 1], where f(N + 1) = 0 and for all i ∈ [N ]
f(i) = (1 − xi)i. Now OR(x) = 1 if and only if f contains a
collision pair.

The element distinctness problem has been well studied classically [24, 18, 14, 5].
It is particularly interesting because its classical complexity is related to that of sort-
ing, which is well known to require N logN + Θ(N) comparisons in the classical
world. If we sort f , we can decide element distinctness by going through the sorted
list once, which gives a classical upper bound of N logN + O(N) comparisons. Con-
versely, element distinctness requires Ω(N logN) comparisons in the case of classical
bounded-error algorithms (even in a much stronger model [14]), so sorting and ele-
ment distinctness are essentially equally hard classically. On a quantum computer,
the best known upper bound for sorting is 0.53 N logN comparisons [13], and such a
linear speed-up is best possible: quantum sorting requires Ω(N logN) comparisons,
even if one allows a small probability of error [16]. Accordingly, our O(N3/4 logN)
upper bound shows that element distinctness is significantly easier than sorting for a
quantum computer, in contrast to the classical case.

In this paper we also give algorithms for related problems. Typically, web search
engines like Google associate to every word a list of pages containing it (sorted in
order of its page rank) and when the query is “Rolling Stones,” for example, then
the search engine must output the intersection of the lists associated to the words
“Rolling” and “Stones.” Now imagine a search engine implemented on a quantum
computer. This motivates the following problem.
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List Intersection

input f, g : [N ] → [M ] each is monotone increasing
output i, j ∈ [N ] with i �= j and f(i) = f(j), or “lists disjoint” if

the images of f and g are disjoint
complexity We present a bounded-error quantum algorithm which

makes O(
√
Nclog

∗ N ) queries to f for some constant c > 1. A
trivial lower bound Ω(

√
N) can be obtained by a reduction from

the OR-problem: given an OR-instance x ∈ {0, 1}N , define
f, g : [N ] → [2N + 1] by f(i) = 2i + 1 and g(i) = 2i + xi

for all i ∈ [N ]. Then f and g are ordered, and OR(x) = 1 iff the
List Intersection problem has a solution. The same reduc-
tion shows that the classical bounded-error query complexity is
Θ(N).

The function log�(N) is defined as the minimum number of iterated applica-
tions of the logarithm function necessary to obtain a number less than or equal to 1:
log�(N) = min{i ≥ 0 | log(i)(N) ≤ 1}, where log(i) = log ◦ log(i−1) denotes the ith

iterated application of log, and log(0) is the identity function. Even though clog
�(N) is

exponential in log�(N), it is still very small in N , in particular clog
�(N) ∈ o(log(i)(N))

for any constant i ≥ 1.
To a function f : [N ] → [M ] we can associate a collision graph G(V,E) with

V = [N ] and (i, j) ∈ E if i �= j and f(i) = f(j). The Element Distinctness problem
simply consists of finding an edge in G. An interesting problem is to ask whether G
contains some fixed subgraph. A simple, yet nontrivial subgraph is the triangle, i.e.,
the complete graph on three vertices.

Triangle Finding

input the symmetric adjacency matrix M : [n] × [n] → {0, 1} of a
graph with m edges

output u, v, w ∈ [N ] such that M(u, v) = M(v, w) = M(w, u) = 1,
or “failure” if the graph contains no triangle

complexity We present a bounded-error quantum algorithm which
needs O(n+

√
nm) queries. A better algorithm has been found

in 2003, with O(n1.3) bounded-error query quantum complex-

ity [19], while Yao [25] showed a lower bound of Ω(n2/3 log1/6 n).
Classically a simple reduction from the OR-problem shows that
the bounded-error query complexity is Θ(n2), even if m = O(n).

2. Preliminaries. We assume the reader is familiar with the formalism of quan-
tum computing; otherwise we refer to [22]. The quantum ingredient of our algorithms
is amplitude amplification [7], which generalizes quantum search [15]. The essence of
amplitude amplification can be summarized by the following theorem.

Theorem 2.1 (amplitude amplification). There exists a quantum algorithm
QSearch with the following property. Let A be any quantum algorithm that uses no
measurements and that maps |0〉 to a superposition

∑
x∈X αx|x〉 for some set X. Let

g : X → {0, 1} be a function testing whether a basis state represents a solution or
not. Let p be the success probability of A, i.e., p2 =

∑
x:g(x)=1 |αx|2. Let Sg be an

operator implementing g such that Sg|x〉 = (−1)g(x)|x〉 for every x ∈ X. Then algo-
rithm QSearch finds a solution using an expected number of O(1/

√
p) applications of

A, A−1, and Sg if p > 0, and otherwise runs forever.
Note that when an algorithm A does make measurements during its computation

there is a standard trick that transforms it into an equivalent algorithm A′ that
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does not. We replace every measurement with an operator writing the value, which
would be the result of the measurement, in a new register, which initially is all zero.
In the rest of the computation, every computation depending on the result of the
measurement will depend rather on the content of this register.

QSearch works by iterating the unitary transformation Q = −AS0A−1Sg a
number of times, starting with initial state A|0〉. The operator S0 is defined as
S0|0〉 = −|0〉 and S0|x〉 = |x〉 for all x �= 0. The analysis of [7] shows that a measure-
ment after Θ(1/

√
p) iterations of Q yields a solution with probability close to 1. The

algorithm QSearch does not need to know the value of p in advance, but if p is known,
then a slight modification finds a solution with certainty using O(1/

√
p) applications

of A, A−1, and Sg.
Grover’s algorithm for searching a space of N items is a special case of ampli-

tude amplification, where A is the Hadamard transform on each qubit. This A has
probability p ≥ 1/N of finding a solution (if there is at least one), so amplitude am-
plification implies an O(

√
N) quantum algorithm for searching the space. We refer to

this process as “quantum searching.”

3. Element distinctness.
Algorithm: Find a collision pair in f : [N ] → [M ]

1. Partition the domain of f into disjoint sets S1, . . . , S√
N of size O(

√
N) each.

2. Apply amplitude amplification to the following inner block :
(a) Select a random subset Sk of the partition.
(b) Query all values f(i) for i ∈ Sk, and build a binary search tree over the

set f(Sk) := {f(i) : i ∈ Sk}. If Sk contains a collision pair, output it.
(c) Otherwise search j ∈ [N ]\Sk such that f(j) ∈ f(Sk). Use the quantum

search procedure which succeeds with probability at least 1/2 provided
Sk contains one element of a collision pair. In case of success, output
the collision pair.

Theorem 3.1. If f has a collision pair i, j, then the previous algorithm finds it
after an expected number of O(N3/4) queries to f .

Proof. With probability at least 1/
√
N , step 2(a) selects a subset containing i or

j. Suppose this is the case. Then either the set contains a collision pair or it does not.
If it does, then step 2(b) finds it, and if it does not, then with probability at least
1/2, step 2(c) finds a collision pair. Therefore amplitude amplification will iterate the
inner loop O(N1/4) expected times until it succeeds. Steps 2(b) and 2(c) each use
O(

√
N) queries, from which we conclude the claimed complexity.
A weaker model is the comparison model, where we are allowed to ask query

f(i) ≤ f(j) only for given indices i, j, rather than for the actual values f(i), f(j). The
previous algorithm can be adapted to that model with the price of an O(logN) factor
in steps 2(b) and 2(c). In contrast, for classical (exact or bounded-error) algorithms,
element distinctness is as hard as sorting and requires Θ(N logN) comparisons.

4. List intersection. We are given two monotone increasing functions f, g :
[N ] → [M ] and search for i, j ∈ [N ] such that f(i) = g(j). A simple algorithm
would be to make a quantum search for i ∈ [N ] such that there exists j ∈ [N ] with
f(i) = g(j). The quantum search of i will need O(

√
N) iterations, and the binary

search of j will need O(logN) queries. This gives a bounded-error quantum algorithm
using O(

√
N logN) queries. We now show how to get rid of most of the log factor by

exploiting the fact that both functions are monotone increasing.
Our quantum algorithm solves the problem using O

(√
Nclog

�(N)
)

comparisons for
some constant c > 0. We define a set of subproblems such that the original problem



1328 BUHRMAN ET AL.

(f, g) contains a collision pair if and only if at least one of the subproblems contains
one. We then solve the original problem by running the subproblems in quantum
parallel and applying amplitude amplification.

Let 1 ≤ r < N be an integer. For the purpose of defining subproblems we extend
the functions f and g to the domain [1, N+r], mapping f(N+i) = max{f(N), g(N)}+
i and g(N + i) = f(N + i) + r for all 1 ≤ i ≤ r and extending at the same time the
range of f and g to [M + 2r]. We also define the insertion point of some integer
x < h(N +1) in a monotone increasing function h : [N +r] → [M +2r] as the smallest
index i such that h(i) ≥ x.

We define 2
⌈
N
r

⌉
subproblems as follows. For each 0 ≤ i ≤ �N/r−1, consider the

subproblem (fi, g
′
i), where fi denotes the restriction of f to subdomain [ir+1, (i+1)r]

and g′i denotes the restriction of g to [j, j + r − 1], where j is the insertion point of
f(ir + 1) in g.

Similarly, for each 0 ≤ j ≤ �N/r − 1, consider the subproblem (f ′
j , gj), where

gj denotes the restriction of g to [jr + 1, (j + 1)r] and f ′
j denotes the restriction of f

to [i, i + r − 1], where i is the insertion point of g(jr + 1) in f .
Lemma 4.1. If i, j ∈ [N ] is a collision pair for (f, g), then it is also a collision

pair for one of the subproblems.
Proof. Let k = �i/r� + 1 and let k′ be the insertion point of f(k) in g. If

j ∈ [k′, k′ + r − 1], then (i, j) is also a collision pair for the subproblem (fk, g
′
k).

However, if j �∈ [k′, k′ + r − 1], then let � = �j/r� + 1. We have f(k) ≤ g(�) ≤ f(i).
Therefore the insertion point �′ of g(�) in f satisfies i ∈ [�′, �′ + r− 1], from which we
conclude that (i, j) is a collision pair for the subproblem (f ′

�, g�).
Theorem 4.2. There exists a quantum algorithm that outputs a collision pair

between f and g with probability at least 2
3 provided one exists, using O

(√
Nclog

�(N)
)

queries, for some constant c > 1.
Proof. Let T (N) denote the worst-case number of queries required if f and g have

domain of size N . We show that

T (N) ≤ c′
√

N

r
(�log(N + 1) + T (r))(4.1)

for some (small) constant c′. Let 0 ≤ i ≤ �N/r − 1 and consider the subproblem
(fi, g

′
i). To find the insertion point of f(�i/r� + 1) in g we need �log(N + 1) queries

by using binary search. Then we need at most T (r) additional queries to find a
collision pair for (fi, g

′
i). There are 2

⌈
N
r

⌉
subproblems, so by applying amplitude

amplification we can find a collision pair among any one of them with probability at
least 2

3 , provided there is one, using the number of queries claimed in (4.1).

We pick r = �log2(N). Since T (r) ≥ Ω(
√
r) = Ω(logN), (4.1) implies

T (N) ≤ c′′
√

N

r
T (r)(4.2)

for some constant c′′. Furthermore, our choice of r implies that the depth of the
recursion defined by (4.2) is on the order of log�(N), so unfolding the recursion gives
the theorem.

5. Triangle finding. Finally we consider a related search problem. Consider
an undirected graph G = (V,E) on |V | = n nodes with |E| = m edges. There are
N =

(
n
2

)
edge slots in E, which we can query in a black box fashion (see also [10,

section 7]). The goal is now to find distinct vertices a, b, c ∈ V such that (a, b), (a, c),
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(b, c) ∈ E. Since there are
(
n
3

)
triples a, b, c, and we can decide whether a given triple

is a triangle using three queries, we can use Grover’s algorithm to find a triangle
in O(n3/2) queries. Below we give an algorithm that has the same complexity for
dense graphs m = O(n2) but is more efficient for sparse graphs. In particular when
m = O(n), then the algorithm uses only O(n) queries, while any classical bounded-
error algorithm needs Ω(n2) queries by a sensitivity argument for distinguishing the
star graph, with the same graph augmented by a single edge.
Algorithm: Find a triangle

1. Use the bounded-error quantum counting procedure from [7, Theorem 18] to
get a factor-2 estimation m′ of the number of edges m, with O(n) expected
queries.

2. Apply amplitude amplification to the following inner block, interrupting it
after O(

√
m′) calls to the inner block.

(a) Use quantum search to find an edge (a, b) ∈ E among all
(
n
2

)
potential

edges, using at most O(n/
√
m′) queries.

(b) Use quantum search to find a node c ∈ V such that a, b, c is a triangle,
using at most (n) queries.

3. Repeat until a triangle is found.
Quantum search of an edge (a, b) ∈ E succeeds after O(n/

√
m) expected queries.

Since amplitude amplification forbids any observation in the inner block, we need
step 2 to get an estimation of m, which determines the number of queries after which
step 2(a) will be interrupted.

Theorem 5.1. If the graph contains a triangle, then the previous algorithm finds
one after O(n +

√
nm) expected queries.

Proof. Suppose the graph contains a triangle. Let an edge be good if it is part of
a triangle. Then step 2(a) finds one with probability at least 1/2m. Given this event,
step 2(b) finds a triangle with probability at least 1/2. Now suppose that step 1
found the correct estimation of m. Therefore due to the amplitude amplification
step 2 succeeds with probability at least 1/2.

Finally the expected number of repetitions generated by step 3 is constant.
Each iteration costs O(n +

√
nm′) queries, where m′ is the random outcome of

step 2 with expectation m. This establishes the claimed complexity.

6. Concluding remarks. An interesting related problem that is still wide open
is the issue of time-space tradeoffs for element distinctness. Such tradeoffs have been
studied for classical algorithms by Yao [24], Ajtai [2], Beame, Saks, Sun, and Vee [5],
and others. In particular, Yao shows that the time-space product of any classical de-
terministic comparison-based branching program solving element distinctness satisfies
TS ≥ Ω(N2−ε(N)), where ε(N) = 5/

√
lnN . An upper bound TS = O((N logN)2) is

achievable classically.
Ignoring logarithmic factors, the quantum algorithm presented here uses time T =

N3/4 and space S = N1/2. An alternative quantum algorithm is to search the space
of all

(
N
2

)
(x, y)-pairs to try to find a collision. This algorithm has roughly T = N and

S = logN . Third, Ambainis’s new algorithm has T = N2/3 and S = N2/3. All these
algorithms satisfy T 2S ≈ N2. In fact, for every space bound S less than N2/3, one
can find an algorithm whose time (or query) complexity T satisfies T 2S ≈ N2. We
conjecture that this is close to optimal. Proving this would be very interesting, since
no nontrivial quantum time-space tradeoff lower bounds are known for any decision
problem (some tradeoffs for multiple-output problems may be found in [17]).
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OUTPUT-SENSITIVE CONSTRUCTION OF THE UNION
OF TRIANGLES∗

ESTHER EZRA† AND MICHA SHARIR†

Abstract. We present an efficient algorithm for the following problem: Given a collection
T = {Δ1, . . . ,Δn} of n triangles in the plane, such that there exists a subset S ⊂ T (unknown to us)
of ξ � n triangles, such that

⋃
Δ∈S Δ =

⋃
Δ∈T Δ, construct efficiently the union of the triangles in

T . We show that this problem can be solved in randomized expected time O(n4/3 logn+nξ log2 n),
which is subquadratic for ξ = o(n/ log2 n). In our solution, we use a variant of the method of
Brönnimann and Goodrich [Discrete Comput. Geom., 14 (1995), pp. 463–479] for finding a set cover
in a set system of finite VC-dimension. We present a detailed implementation of this variant, which
makes it run within the asserted time bound. Our approach is fairly general, and we show that it
can be extended to compute efficiently the union of simply shaped bodies of constant description
complexity in R

d, when the union is determined by a small subset of the bodies.

Key words. union of geometric objects, hitting set, finite VC-dimension, random sampling, set
cover, ε-net, output sensitivity
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1. Introduction. Many problems in computational geometry involve the task of
constructing the boundary of the union of n geometric objects in the plane or in higher
dimensions. Problems of this kind include motion planning [26], where we wish to
construct the forbidden portions of the configuration space; hidden surface removal for
visibility problems in three dimensions [32]; finding the minimal Hausdorff distance
between two sets of points (or of segments) in R

2 [23]; applications in geographic
information systems [15]; and many others. In this paper, we focus mainly on the
problem of constructing the union of n triangles in R

2, but we also show that our
algorithm can be extended to other geometric objects in the plane and in higher
dimensions.

Computing the union by constructing the full arrangement of the n input triangles
requires Θ(n2) time in the worst case, which, in many instances, is wasteful, since
the combinatorial complexity of the union boundary might be considerably smaller.
Nevertheless, an algorithm for this problem that runs in subquadratic time when the
boundary of the union has subquadratic complexity1 is unlikely to exist, since this
problem belongs to the family of 3SUM-hard problems [21], which are problems that
are very likely to require Ω(n2) time in the worst case; see below for more details.

However, subquadratic algorithms exist in several special cases, such as the case
of fat triangles (namely, every angle of each triangle is at least some constant positive
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1This is one variant of output sensitivity that one may wish to attain. In this paper we use a

different notion of output sensitivity, described later in the introduction.
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t2

t1
t1

t5

t6

t4t3

t2

(a) (b)

Fig. 1. (a) An arrangement of six triangles, illustrating the first measure of output sensitivity.
The triangles t1 and t2 cover the entire union, so the output size is 2. (b) Illustrating the second
measure of output sensitivity. The union boundary is determined only by the triangles t1, . . . , t4,
even though the triangles t5 and t6 cover the hole created by

⋃
i≤4 ti. The output size is 4 according

to the second measure and 6 according to the first.

angle) or of triangles that arise in the union of Minkowski sums of a fixed convex poly-
gon with a set of pairwise disjoint convex polygons (which is the problem one faces in
translational motion planning of a convex polygon). In these cases, the union has only
linear or near-linear complexity [24, 28, 29], and more efficient algorithms, based on
either deterministic divide-and-conquer or on randomized incremental construction,
can be devised and are presented in the above-cited papers.

If the input consists of general triangles, then the complexity of the union can
be Θ(n2) in the worst case. If it happens to be smaller, one can attempt to compute
the union by employing the randomized incremental construction (RIC) of Agarwal
and Har-Peled [1], whose analysis is based on Mulmuley’s theta series [32]. Briefly,
the algorithm inserts the triangles one at a time in a random order and maintains
the union incrementally, updating it after each insertion. As is well known (and dis-
cussed in [18]), the RIC algorithm has good performance, even when the size of the
arrangement is quadratic, provided that the depth d(v) (i.e., the number of input
triangles containing v in their interior) of most of the vertices v in the arrangement
induced by the n input triangles is large enough. We refer to such vertices as being
deep. Otherwise, when most of the vertices in the arrangement are shallow, the RIC
algorithm performs poorly. In this case, one can employ the disjoint cover (DC) algo-
rithm proposed in [18], which has good performance in practice. This algorithm also
inserts the triangles one at a time, but it computes an insertion order that attempts
to cover as many shallow vertices as possible in each insertion step. However, from
a theoretical point of view (and in view of certain pathological examples presented
in [18]), the DC algorithm can produce Ω(n2) vertices of the arrangement, even if the
size of the output (i.e., the number of vertices on the boundary of the union) is only
linear or constant, and it can be beaten by the RIC algorithm in such cases.

Output sensitivity. In this paper we present an efficient algorithm that computes
the union in an “output-sensitive” manner. There are two obvious ways to define
output sensitivity. The first is to measure the output size in terms of the size of the
smallest subset S ⊂ T that satisfies

⋃
S =

⋃
T , where

⋃
S (resp.,

⋃
T ) denotes the

union of the triangles in S (resp., in T ). The second measure is in terms of the size
of the smallest subset S′ such that ∂

⋃
T ⊆ ∂

⋃
S′. See Figure 1 for an illustration of

the two measures. Note that if the output size is ξ, according to either measure, the
actual complexity of the union may be as large as Θ(ξ2) (but not larger).
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The second measure of output size is likely to be too weak. Indeed, consider
the reduction, as presented in [21], of an instance of 3sum (namely, the problem of
determining whether there exist a ∈ A, b ∈ B, c ∈ C satisfying a+ b+ c = 0 for three
given sets A, B, C of real numbers) to an instance of the problem of determining
whether the union of a given set of triangles fully covers the unit square. We can fur-
ther reduce this latter problem to our problem, as follows. Let A denote an algorithm
that efficiently computes the union of n triangles in the plane in terms of the second
measure, and let TA(n, ξ) denote its running time, expressed as a function of n and
of the “output size” ξ. We assume that TA(n, ξ) = o(n2) when ξ = o(n). In order
to determine efficiently whether the given triangles fully cover the unit square, we
consider only the portions of the triangles that are contained in the unit square and
retriangulate them if necessary. In addition, we add four thin and narrow triangles
that cover the boundary of the unit square. We now run A on the newly constructed
instance. Clearly, there are no holes in the union of the newly created triangles if
and only if the original union contains the unit square. In this case, the boundary
of the new union consists of only four triangles, and thus A will terminate in a pre-
dictable subquadratic time. We thus run A. If it terminates within the anticipated
(subquadratic) time, we can determine, at no extra cost, whether the union covers the
unit square. Otherwise, we stop A and correctly report that the union of the original
triangles does not cover the unit square. Hence an efficient output-sensitive solution,
under the second measure, would have yielded a subquadratic solution to 3sum and
is thus unlikely to exist.

In contrast, the first measure does lend itself to an efficient output-sensitive so-
lution, which is the main result of this paper.

Our results. Specifically, we present an efficient algorithm to construct the bound-
ary of the union of a set T = {Δ1, . . . ,Δn} of n triangles in the plane, under
the assumption that there exists a subset S ⊂ T of ξ � n triangles (unknown
to us) such that

⋃
S =

⋃
T . We present an algorithm whose running time is

O(n4/3 log n+nξ log2 n), which is subquadratic when ξ = o(n/ log2 n). Our approach
is a randomized algorithm based on the method of Brönnimann and Goodrich for
finding a set cover or a hitting set in a set system of finite VC-dimension, as pre-
sented in [10]. Their method is based on a randomized natural selection technique
used by Clarkson [12, 13], Littlestone [27], and Welzl [35]; see section 2.1 for a brief
review of this method. In our case, the objects are the triangles of T , and any point
v in the plane defines a set Tv = {Δ ∈ T | v ∈ int(Δ)}. The collection {Tv}v∈R2

forms a set system for which a hitting set H ⊂ T is a subset satisfying
⋃
H =

⋃
T ,

and thus a minimum-size hitting set is the object that we wish to compute. (It is well
known, and easy to verify, that this set system has finite VC-dimension; see below
for details.) Note that this set system is the same as the one generated by sampling
one point v in the interior of each cell of the arrangement A(T ). In general, the
Brönnimann–Goodrich technique is not efficient enough for our purposes, but we use
a variant of the algorithm which can be implemented efficiently. Specifically, we apply
the algorithm of Brönnimann and Goodrich in an “approximate setting,” fine-tuning
it (using randomization) so that it constructs a subset T ′ of O(ξ log ξ) triangles of T ,
whose union covers the overwhelming majority of the vertices (of positive depth) in
the arrangement A(T ). This allows us, with some care, to compute the portion of⋃

T that lies outside
⋃
T ′ in an efficient explicit manner. We note that when mea-

suring the expected number of vertices generated by the algorithm, it suffices (and
is appropriate) to consider only vertices at positive depth, since vertices at depth 0
are the vertices of the union, and they have to be constructed by any algorithm that
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computes the union. We call the latter quantity, namely, the number of positive-depth
vertices generated by the algorithm, the residual cost of the algorithm.

In section 2.1 we briefly recall the algorithm of Brönnimann and Goodrich and
present our approximate version of it. Then we derive an upper bound on the ex-
pected residual cost of the algorithm in its approximate version. Section 3 describes
a detailed implementation of our algorithm. In this implementation, we use generic
and simple techniques that can be easily extended to other geometric objects of con-
stant description complexity2 in the plane and in R

d. These extensions are discussed
in section 4. We give concluding remarks and suggestions for further research in
section 5.

2. The union construction as a set cover problem.

2.1. An overview of the Brönnimann–Goodrich technique. A technique
for finding a set cover of a set system of finite VC-dimension is described in detail
by Brönnimann and Goodrich [10]; for the sake of completeness, we provide a brief
overview of this approach, in the context of the union construction problem. Very
recently, Even, Rawitz, and Shahar [17] have proposed an alternative technique, based
on a linear programming formulation of the problem, that appears to be somewhat
simpler and more efficient.

We denote by V the set of vertices of the arrangement A(T ) at positive depth
(considering only intersection points of the triangle boundaries and ignoring triangle
vertices). A hitting set for the set system induced by {Tv}v∈V , where Tv consists of
all the triangles Δ ∈ T that contain v in their interior, is a subset of triangles H ⊂ T
such that

⋃
H covers all the vertices in V . It need not necessarily cover

⋃
T entirely,

but the pieces left uncovered are easily computable and will be computed in the final
stages of the algorithm. Thus we consider the set system (T, V ∗), where

V ∗ = {Tv : v ∈ V }.

Since this set system is dual to (V, T ), which has some finite VC-dimension d (see,
e.g., [6]), it follows that the VC-dimension of (T, V ∗) is also finite; as a matter of fact,
it does not exceed 2d+1 [8]. As already mentioned, our goal is to find a hitting set
for (T, V ∗), that is, a subset H ⊆ T that has a nonempty intersection with every set
Tv ∈ V ∗, v ∈ V .

The algorithm of Brönnimann and Goodrich finds a hitting set whose size is
O(h∗ log h∗), where h∗ is the smallest size of any hitting set. Note that the reported
hitting set is actually a set cover for the primal set system (V, T ), where a set cover, in
this case, is a collection C ⊆ T of triangles whose union covers the entire set V . (For
technical reasons, the method of Brönnimann and Goodrich computes a set cover
via a hitting set of the dual set system, which is why we also work with the dual
system; see [10] for further details.) Since, by definition, the size of the optimal cover
is assumed to be ξ, it follows that the size of the set cover reported by the algorithm
is at most O(ξ log ξ).

We first describe the algorithm of Brönnimann and Goodrich in its “ideal setting,”
where the entire set V is given, and then show how to modify this setting, so that it
suffices to consider only a small subset of vertices.

2A set in R
d is said to have constant description complexity if it is a semialgebraic set defined

as a Boolean combination of a constant number of polynomial equalities and inequalities of constant
maximum degree in a constant number of variables.
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The Brönnimann–Goodrich algorithm has two key subroutines: (i) a net finder
F for (T, V ∗), which is an algorithm that, given a parameter r ≥ 1 and a weight
distribution w on T , computes a (1/r)-net for the weighted system (T, V ∗) [6]. A
(1/r)-net is a subset N ⊆ T , which has a nonempty intersection with each set in V ∗

whose total weight is at least 1/r of the total weight of T ; (ii) a verifier V that, given a
subset H ⊆ T , either states (correctly) that H is a hitting set, or returns a nonempty
“witness” set Tv ∈ V ∗, for some v, such that Tv ∩H = ∅. In our context, V simply
has to output a vertex v ∈ V that is not contained in the interior of

⋃
H.

The Brönnimann–Goodrich algorithm then proceeds as follows. We guess the
value of ξ (homing in on the right value using an exponential search). We assign
weights to the triangles in T . Initially, all weights are 1. We then use the net finder F
to construct a (1/2ξ)-net N for (T, V ∗). If the verifier V outputs some set Tv that N
does not hit, we double the weights of the triangles in Tv and repeat the process with
the new weights. As shown in [10], a hitting set is found after at most 4ξ log (n/ξ)
iterations.

The problem with this ideal setting is that it requires the construction of all the
(positive-depth) vertices of A(T ), which is much too much to ask for, since it can be
too expensive (V can be quadratic in the worst case, while ξ can still be very small).
Instead, we use a smaller randomly sampled subset R ⊆ V of r elements, whose actual
computation is presented in section 3. We then feed the verifier V with R instead
of the entire set V . We show that once the verifier V announces that the subset H,
reported by the net finder F , covers R (actually, it suffices that H covers most of
R—see below), the actual number of vertices of V that remain uncovered is relatively
small, with high probability. We then compute the uncovered vertices in an explicit
manner and thereby complete the construction of

⋃
T .

2.2. A subquadratic residual cost via sampling. We begin the analysis
of our implementation of the Brönnimann–Goodrich technique with the following
lemma, which provides a lower bound for the size of the sample R, which is sufficient
to guarantee the property asserted at the end of the preceding subsection.

In what follows, we say that an event occurs with overwhelming probability (or
w.o.p., for short) if the probability that it does not occur is at most 1

nc for some
constant c ≥ 1.

Lemma 2.1. Let T = {Δ1, . . . ,Δn} be a given collection of n triangles in the
plane, let V denote the set of vertices of the arrangement A(T ) at positive depth, let
κ denote the size of V , and suppose that there are only ξ triangles of T whose union
is equal to

⋃
T . Let S ⊆ T denote a subset of triangles, and let R ⊆ V be a random

sample of r = Ω(tlog n) positive-depth vertices, sampled after S has been fixed for some
prespecified parameter t ≥ 1 and with a sufficiently large constant of proportionality.
If S covers all but r

S
< r vertices of R, then, w.o.p., the actual number κ

S
of vertices

of V that are not covered by the elements of S satisfies

κ
S
≤ max

{κ

t
, β

κ

r
r
S

}
(2.1)

for some absolute constant β > 1.
Proof. For simplicity of exposition, we present the analysis under the model where

R is obtained by drawing each point of V independently with probability p = r
κ .

Nevertheless, the assertion of the lemma also holds for other models of sampling R,
in particular, for the model we use in the actual implementation of the algorithm;
see section 3 and Appendix A for details. Since each point in V \

⋃
S is chosen
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independently with probability r
κ , the expected number of vertices of R that are not

covered by S is r
κκS

.
It suffices to consider the case κ

S
> κ

t , for otherwise (2.1) clearly holds.
Since R is sampled after S has been fixed, the number r

S
of vertices of R that

are not covered by
⋃
S is a random variable, which can be expressed as the sum of

κ
S

mutually independent indicator variables, X1, . . . , Xκ
S
, each satisfying

Pr[Xi = 1] = p, Pr[Xi = 0] = 1 − p for i = 1, . . . , κ
S
.

Fix a parameter r0 > 0 and consider the event

AS : r
S
− r

κ
κ

S
< −r0.

Using a large deviation bound given in [6, Theorem A.13], it follows that

Pr[AS ] < e
− r0

2

2 r
κ

κ
S .(2.2)

Putting r0 =
√

2c0
r
κκS

log n for some constant c0 ≥ 1, (2.2) implies that the

probability that the event AS does not occur is at most 1
nc0

. Hence, w.o.p.,

r
S
− r

κ
κ

S
≥ −

√
2c0

r

κ
κ

S
log n,

or

r
S
≥

√
r

κ
κ

S

[√
r

κ
κ

S
−

√
2c0 log n

]
.

Since we have assumed that κ
S
> κ

t and that r = Ω(t log n), with a sufficiently large
constant of proportionality, it follows that, w.o.p.,√

r

κ
κ

S
−

√
2c0 log n > α

√
r

κ
κ

S
(2.3)

for some absolute constant 0 < α < 1, which implies that

κ
S
≤ κ

αr
r
S
,

and thus the lemma follows.
Remarks. (1) Note that Lemma 2.1, as well as its variant discussed in Appendix

A, deals with abstract sets, and does not exploit any special property of vertices in
arrangements of triangles. We will therefore be able to use the lemma, more or less
verbatim, in the extensions presented in section 4.

(2) We reemphasize that Lemma 2.1 relies on the assumption that R is sampled
after S has been chosen (in our implementation, this choice will also be random).
In particular, for the lemma to be applicable at each iteration of the Brönnimann–
Goodrich algorithm, R should be redrawn from scratch before applying the verifier
V. (See section 3 for further details.)

Lemma 2.1 implies that if the triangles in S cover all but at most r
t of the elements

of R (and thus r
S

= O
(
r
t

)
), then, w.o.p., κ

S
≤ κ

t . We thus construct the union of the
input triangles in two steps: in the first we find a set H of O(ξ log ξ) triangles that
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covers all but at most κ
t vertices of V and compute the union

⋃
H, and in the second

step we handle efficiently all the remaining vertices of V that H does not cover; see
below for details. It thus follows that the overall expected number of positive-depth
vertices generated by the algorithm is O(ξ2 log2 ξ) (which is the number of vertices of
the arrangement of the triangles in H) in the first part, and at most κ

t in the second
part.

We have established the following theorem.

Theorem 2.2. Let T = {Δ1, . . . ,Δn} be a given collection of n triangles in the
plane, and assume that there exists a subset H ⊂ T of ξ � n triangles (unknown to us)
such that

⋃
H =

⋃
T . Let V , κ, and t be as in Lemma 2.1. Then one can implement

the Brönnimann–Goodrich algorithm, so that its residual cost is O(ξ2 log2 ξ + κ
t ),

w.o.p. In particular, for t = max{ κ
ξ2 , 1} the residual cost is O(ξ2 log2 ξ).

Discussion. Clearly, if our only concern is to have the algorithm generate as few
positive-depth vertices as possible, we should choose t as large as possible, thereby
making R larger and the set of vertices of V not covered by H smaller. For example,
as noted, if we choose t = max{ κ

ξ2 , 1}, then the residual cost of the algorithm is at

most O(ξ2 log2 ξ), w.o.p. Since there are only ξ triangles that define the union, the
combinatorial complexity of the boundary of the union is only O(ξ2). This implies that
for the above choice of t, the overall number of vertices that the algorithm generates is
O(ξ2 log2 ξ), which is subquadratic for ξ = o(n/ log n). However, if we are concerned
with the actual running time, large values of t will slow down the algorithm, because
sampling the sets R will be more expensive. Hence, in the actual implementation of
the algorithm, presented in section 3 below, we will choose a smaller value for t in
order to optimize the bound on the actual running time of the algorithm. This will
also affect the bound on the residual cost.

We also note that the bound O(ξ2 log2 ξ) on the complexity of the union of the
triangles computed in the first part of the algorithm may be too pessimistic in practice.
If the complexity of the union

⋃
H turns out to be smaller, the residual cost will be

smaller too.

3. Implementation of the algorithm. The actual cost of the algorithm de-
pends on the cost of several support routines (in addition to the cost of the actual
generation of positive-depth vertices), such as (i) constructing the random samples
R; (ii) finding a (1/2ξ)-net for the set system (T, V ∗); (iii) implementing the verifier
V, which in our case is an algorithm that efficiently decides whether a given subset S
of triangles covers (most of the elements of) another given subset R of positive-depth
vertices; and (iv) the actual construction of the union of the input triangles after an
approximate hitting set has been found. We present here an implementation that uses
generic and simple techniques and yields a subquadratic output-sensitive algorithm
for constructing the union.

In the following description, we denote by h the size of the set H computed in
the first stage of the algorithm.

Sampling R. The task at hand is to construct, at each iteration of the algorithm,
a random sample of (an expected number of) r = ct log n positive-depth vertices of
A(T ), for appropriate values of the parameter t and the constant c. (As already
mentioned and to be discussed below, we have to draw a new subset R in each iteration
of the algorithm in order to eliminate any dependence between the present subset of
triangles reported by the net finder F and the (current) sample R.)

We sample R using the following simple approach. Suppose that we have a guess
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for the values of ξ and κ (see below for details concerning these guesses). Let κ∗

denote the number of vertices on the boundary of
⋃
T . If κ = O(κ∗), then the en-

tire arrangement has only O(κ∗) = O(ξ2) vertices and can thus be constructed in
time O(n log n + ξ2), using any of the standard techniques [32]. We may thus as-
sume that κ > βκ∗ for some absolute constant β > 1. We also may assume that
κ > β max{ξ2, n4/3} for the same constant. Otherwise, we construct the entire ar-
rangement in time O((n + ξ2 + n4/3) log n) = O((ξ2 + n4/3) log n).

We now perform
9c′r(n2)

κ sampling steps, where in each step we choose, uniformly
and independently, a pair of edges of distinct triangles in T for an appropriate con-
stant c′ > 1 (we first select a random pair of triangles and then randomly choose a
pair of triangle edges out of the nine triangle edge pairs induced by the two chosen
triangles). Clearly, a real vertex of the arrangement A(T ) (that is formed by a pair of
intersecting triangle edges) is chosen in a single step with probability κ+κ∗

9(n2)
, and thus

the expectation of the number r′ of pairs of edges that actually intersect is

κ + κ∗

9
(
n
2

) ·
9c′r

(
n
2

)
κ

= Θ(r).

Applying the same deviation bound used in Lemma 2.1, it can be shown that, w.o.p.,
the actual number of such pairs satisfies

r′ ≥ E(r′) −

√
γ

κ

9
(
n
2

) 9c′r
(
n
2

)
κ

log n = E(r′) −
√
γc′r log n

for some constant γ ≥ 1. Since
√
γc′r log n = o(r) (by the choice of γ, c′, and r), there

is a constant 0 < α < 1, which can be made arbitrarily small (for a proper choice of
γ) such that, w.o.p.,

r′ ≥ (1 − α)E(r′) = Θ(r)

for a sufficiently large constant of proportionality that depends on c′ and γ.
Not all sampled vertices have positive depth. However, since κ > βκ∗, the over-

whelming majority of the sampled vertices will have positive depth. By choosing c′

to be sufficiently large, at least r of these vertices will have positive depth, w.o.p.

Implementing a net finder F and a verifier V. As already described in
the preceding section, we assign weights to the elements of T (initially, each triangle
gets the weight 1) and use a net finder F to construct a (1/2ξ)-net for the weighted
dual system (T, V ∗). We then apply the verifier V in order to decide whether H
covers (most of the elements of the newly resampled subset) R. If it does, the first
part of the algorithm terminates, and we proceed to the actual construction of the
union; otherwise, V returns a particular witness subset Tv ∈ V ∗, for some v ∈ R,
such that Tv ∩H = ∅. We then double the weights of the triangles in Tv, construct
a new (1/2ξ)-net and a new sample R, and repeat this process until we find a subset
of triangles that covers all but at most r

t elements of R. The analysis in [10] can
be modified to show that the number of iterations that this algorithm performs is
O(ξ log (n/ξ)). Indeed, as long as there exists some vertex of the new sample R that
is not covered by the set H constructed by F , we keep on doubling the weights of
the triangles covering this vertex, and, according to the analysis in [10], the overall
number of such iterations does not exceed 4ξ log (n/ξ).
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We start with the description of the net finder F . We use a simple method,
presented by Matoušek [30] and briefly reviewed in [10], for reducing the weighted
case to the unweighted one. In this method, we scale all weights of the triangles in
T such that the sum w(T ) of the weights of all the elements of T satisfies w(T ) = n.
We then take �w(Δ) + 1� copies of each element Δ ∈ T (where w(Δ) is the scaled
weight of Δ). Note that the multiset T ′ that we have constructed contains all the
elements of T and has at most 2n elements. It is shown in [30] that an ε-net for (the
unweighted set) T ′ is also an ε-net for the weighted set T . Finding a (1/2ξ)-net for
T ′ can be done by drawing O(ξ log ξ) random elements of T ′. As shown, e.g., in [6],
an appropriate choice of the constant of proportionality ensures that such a random
sample is a (1/2ξ)-net, w.o.p. Clearly, creating the multiset T ′ takes O(n) time, and
drawing O(ξ log ξ) random elements of T ′ takes an additional time of O(ξ log ξ). Thus
the overall running time of the net finder is O(n), for a total time of O(nξ log (n/ξ))
over all iterations of the algorithm. Note that if the random sample is not a (1/2ξ)-net
(which may happen with an overwhelmingly small probability for any ξ ≥ log n; see,
e.g., [22]), the number of iterations of the algorithm may exceed 4ξ log (n/ξ), and, in
this case, we may stop the whole process and restart it from scratch. The fact that
the process fails with an overwhelmingly small probability ensures that, w.o.p., the
number of such trials is not larger than some constant. (When ξ < log n, the number
of trials that guarantees success, w.o.p., is at most O(log n). However, this does not
affect the asymptotic running time of the algorithm; see section 3 for the specific
bound on the running time of the algorithm.)

In the implementation of the verifier V, we use brute force and iterate over all the
vertices of R and the triangles of H in O(rξ log ξ) time, to determine whether there
exists a vertex in R that is not covered by the triangles of H. We denote the set of
all such vertices of R by RH . Suppose RH contains at least r

t vertices (otherwise,
the first part of the algorithm terminates). Rather than just picking any v ∈ RH , we
sample a random vertex v from RH , obtain, by brute force, the set Tv of all triangles
in T that contain v in their interior (clearly, Tv ∩H = ∅), and if Tv = ∅, double their
weights. The reason for sampling is that R may in general also contain zero-depth
vertices, and Tv will be empty for such vertices v. To accommodate this case, we
use the sampling technique and stop when we find a positive-depth vertex in RH .
Since (i) |RH | ≥ r

t = Ω(log n), (ii) κ > βκ∗, and (iii) R is sampled after H has been
constructed, it follows that a constant positive fraction of the elements of RH have
positive depth, and that, w.o.p., such an element will be found after at most O(log n)
samplings. Hence, w.o.p., the total cost of this substep is O(n log n). Since we repeat
this procedure for O(ξ log (n/ξ)) steps, the overall cost of this stage is, w.o.p.,

O(ξ log (n/ξ)(rξ log ξ + n log n)) = O(rξ2 log ξ log (n/ξ) + nξ log (n/ξ) log n),

and this bounds the overall running time, for both the net finder F and the verifier
V, over all iterations of the first part of the algorithm.

The actual construction of the union. The implementation of the actual
construction of the union proceeds through two stages. We first construct the union
of the triangles in the set H and then compute the portion of A(T ) outside this union.
As argued earlier, this portion contains, w.o.p., at most κ

t positive-depth vertices of
A(T ).

We first construct the union of the h triangles of H in O(h2) = O(ξ2 log2 ξ) time
(using, e.g., randomized incremental construction [32]). Next, we efficiently find the
intersections of the boundary of each of the remaining triangles Δ with the boundary



1340 ESTHER EZRA AND MICHA SHARIR

U

t2

t1

t3

Fig. 2. The second stage of the actual construction of the union. U denotes the union of the
h triangles in the hitting set H and t1, t2, and t3 denote the remaining triangles to be inserted into
the union. Only the portions of t1, t2, and t3 that lie outside U are relevant.

of
⋃
H in order to collect all the portions of ∂Δ lying outside

⋃
H. We denote the

set of all such portions, over all the remaining triangles, by C. (See Figure 2 for an
illustration.)

In order to find those portions efficiently, we use the algorithm of Bentley and
Ottmann [9] (see also [16]) for reporting all k intersections in a set of n simply shaped
Jordan arcs in O(n log n+k log n) time. We partition the set of the remaining triangles
into � n

ξ log ξ � subsets, each containing O(ξ log ξ) triangles. We denote the collection

of all these subsets by S = {S1, . . . , S� n
ξ log ξ �}. Next, we compute, for every subset

S ∈ S, the arrangement A(S) induced by the triangles in S and then run the Bentley–
Ottmann algorithm on the combined collection of the edges of A(S) and the O(h2)
edges of

⋃
H. Since the edges of A(S) are pairwise openly disjoint, as are the edges

of
⋃
H, the algorithm will report only intersections between the boundary of

⋃
H

and the remaining triangles. Since the overall number of such intersections over all
subsets in S is at most κ

t , the overall cost of reporting all intersections is

O

((
n

ξ log ξ
· ξ2 log2 ξ

)
log n +

κ

t
log n

)
= O

(
nξ log ξ log n +

κ

t
log n

)
.

Next, we trim the edges of the remaining triangles to their portions outside
⋃
H

and then construct the entire union using another line-sweeping procedure on these
exterior edge portions and the boundary edges of

⋃
H [9]. Since there are at most κ

t
positive-depth vertices that are constructed during this process, the algorithm takes
O((n + ξ2 log2 ξ + κ

t ) log n) time.
This completes the detailed description of our algorithm, which is summarized in

the following procedure for which ξ is an input parameter. Since ξ is not known a
priori, we run this procedure with the values ξ = 1, 2, 4, . . . , 2i, . . . (where i < log n),
thereby guaranteeing a constant approximation of the actual value of ξ. The choice
of r (that is, of the parameter t) in this procedure will be specified later.
Procedure ConstructUnion(T , ξ)
1. Construct

⋃
T by a line-sweeping procedure on the triangles in T . Stop the

procedure as soon as it constructs more than max{ξ2, n4/3} vertices.
If it terminates goto 16.
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2. Initialize all weights of the triangles in T to 1.
3. repeat
4. H ← (1/2ξ)-net of size O(ξ log ξ) for the weighted system (T, V ∗).
5. Construct a new random sample R of r vertices out of the vertices of A(T ).
6. Apply the verifier V to H and R.
7. if H covers all but at most r

t vertices of R goto 11.
8. else
9. Double the weights of all the triangles in the subset Tv reported by V.
10. endrepeat
11. Construct the union of the triangles in H.
12. Partition T into subsets S1, . . . , S� n

ξ log ξ � of size O(ξ log ξ) each.

13. For each Si, compute A(Si) and find all intersections between its edges and
∂
⋃
H, using a line-sweeping procedure.

14. Trim the edges of the remaining triangles to their portions outside
⋃
H.

Denote the set of the resulting segments by C.
15. Construct

⋃
T by a line-sweeping procedure on C and the boundary edges of⋃

H.
16. end

We substitute r = ct log n for some absolute constant c and for the parameter t
that we still need to fix. Since the size h of H is O(ξ log ξ) and since the algorithm
terminates after O(ξ log (n/ξ)) iterations, the overall cost of the algorithm (including
the exponential search of the actual value of ξ) is

min

⎧⎪⎪⎨
⎪⎪⎩

O((n + κ) log n),

O
(

n2

κ rξ log (n/ξ) + nξ log (n/ξ) log n + hrξ log (n/ξ)

+nh log n + κ
t log n + h2 log n

)
⎫⎪⎪⎬
⎪⎪⎭

= min

⎧⎪⎪⎨
⎪⎪⎩

O((n + κ) log n),

O
(

n2

κ tξ log n log (n/ξ) + nξ(log (n/ξ) + log ξ) log n

+ ξ2t log ξ log n log (n/ξ) + κ
t log n

)
⎫⎪⎪⎬
⎪⎪⎭ .

Choosing

t = max

{ √
κ

ξ log n
, 1

}
,

the running time bound becomes

min

{
O((n + κ) log n), O

(
n2

√
κ

log (n/ξ) + ξ
√
κ log2 n + nξ(log (n/ξ) + log ξ) log n

)}
.

Since κ = O(n2) and ξ ≤ n, this is upper bounded by

min

{
O((n + κ) log n), O

(
n2

√
κ

log n + nξ log2 n

)}
.

The two terms involving κ are equal when κ = n4/3. Hence the running time is always
bounded by O(n4/3 log n + nξ log2 n).
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We have established the following theorem.
Theorem 3.1. Let T be a set of n triangles in the plane whose union is equal to

the union of an unknown subset of ξ � n triangles. Then the union can be constructed
in randomized expected time O(n4/3 log n + nξ log2 n), which is subquadratic for any
ξ = o( n

log2 n
).

4. Extensions. In this section we show how to extend our algorithm to compute
the union of other planar shapes, as well as unions of simply shaped bodies in three
and higher dimensions.

The analysis of the algorithm of [10] holds for any range space of finite VC-
dimension. Consider an input set S of bodies in R

d, and let V denote the set of
positive-depth vertices of A(S). It is well known that the range space (S, V ∗) has
finite VC-dimension if the objects have constant description complexity. This can
be shown, for instance, by the linearization technique (see, e.g., [31]). In this case,
the number of vertices that the objects in the set H, reported by the net finder F ,
can generate, among themselves, is O(ξd logd ξ). In addition, Lemma 2.1 continues
to hold in this case, since it does not make any assumptions on the input shapes.
It thus follows that Theorem 2.2 can be easily extended to bodies in R

d of constant
description complexity, and that the residual cost of the algorithm, in this case, is
O(ξd logd ξ + κ

t ), w.o.p.
The actual implementation of the various stages of the algorithm can also be

easily extended to bodies in R
d of constant description complexity. We begin with

the planar case, and then discuss in section 4.1 the extension to higher dimensions.
In the case of simply shaped planar regions, we apply similar subroutines, which

run within the same time bounds as stated in section 3. In the sampling procedure,
each pair of region boundaries intersect in a constant number of points, and we collect
all these intersections to form R. Since our system has finite VC-dimension, we can
construct a (1/2ξ)-net for this system in much the same way as in section 3. In
addition, the verifier V can still detect whether a given vertex v is contained in the
interior of another given region in O(1) time, and thus these two subroutines will run
within the same asymptotic time bounds as in the case of triangles. (In fact, these
properties hold for bodies of constant description complexity in higher dimensions as
well, and thus the net finder F and the verifier V will run within the same asymptotic
time bounds in these cases too.) In the actual construction of the union, we use the
algorithm of Bentley and Ottmann [9], which can be applied for any set of Jordan arcs
of constant description complexity, with the same asymptotic time bound, as stated
in section 3.

We can thus easily derive the following theorem.
Theorem 4.1. Let S be a set of n planar regions of constant description complex-

ity, whose union is equal to the union of an unknown subset of ξ � n regions. Then
the union can be constructed in randomized expected time O(n4/3 log n + nξ log2 n),
which is subquadratic for any ξ = o( n

log2 n
).

4.1. The union of simply shaped bodies in R
d. We begin with the extension

of our algorithm to the case of bodies of constant description complexity in three
dimensions and then describe the generalization to higher dimensions.

In 3-space, we may assume in the sampling procedure that κ > β max{ξ3, n2}
for some absolute constant β > 1. Otherwise, we construct the union in time
O((n2 + ξ3) log n), as follows. We fix a body B ∈ S and intersect its boundary F with
each object B′ ∈ S\{B}. We obtain a collection of n−1 Jordan regions of constant de-
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scription complexity on F . The complement of their union is the portion of F that ap-
pears on ∂

⋃
S. Computing this complement can be done in time O(n log n+κB log n),

where κB is the number of vertices of A(S) that lie on F , using an appropriate variant
of the line-sweeping algorithm of Bentley and Ottmann [9]. Repeating this procedure
for each boundary F , the total cost is O((n2 + κ) log n) = O((n2 + ξ3) log n), as
claimed.

The main part of the algorithm then proceeds in much the same way as before.
For example, when we construct a sample R of vertices, we perform, in analogy with

the two-dimensional procedure,
c′r(n3)

κ sampling steps, for an appropriate constant
c′ > 1, where in each step we choose, uniformly and independently, a triple of distinct
input bodies in S and collect all resulting boundary intersections to form R. An
analysis similar to that described in section 3 shows that with an appropriate choice
of the constant c′, at least r of the chosen triples generate real vertices that have
positive depth, w.o.p.

As noted above, the net finder F and the verifier V can be implemented in a
manner similar to that described in section 3 and run within the same asymptotic
time bounds (and this holds in higher dimensions as well). It follows that, choosing

t = max{
√
κ

ξ logn , 1}, the first part of the algorithm computes a subset H of S of size

h = O(ξ log ξ), in time O(rξ2 log ξ log (n/ξ) + nξ log (n/ξ) log n), such that at most κ
t

positive-depth vertices of A(S) lie outside the (interior of the) union
⋃
H.

After constructing
⋃
H, we need to compute all the intersections between the

remaining bodies and the boundary of
⋃
H. This is done as follows. For each body

B ∈ S (particularly, B may belong to H), we take its boundary F and compute the
set of its exposed portions that lie outside

⋃
H \ {B}. This is done by constructing

the intersections B′
F = B′ ⋂F for each B′ ∈ H \ {B}, and then we compute the

complement of their union within F . Since the regions B′
F are bounded by curves of

constant description complexity, their arrangement has O(h2) complexity and can be
constructed in O(h2 log n) time. We denote by EF the set of edges of the arrangement
that appear on the boundary of the union of the regions B′

F . Clearly |EF | = O(h2).
We then intersect F with all the remaining n − h input bodies, obtaining a set of
curves SF bounding the intersection regions. Our goal is to find the portions of
the curves in SF that are not contained in the interior of

⋃
H; see Figure 3 for an

illustration. We first report the intersections between the curves in SF and EF in
O(nh log n+IF log n) time, where IF is the number of such intersections, in a manner
similar to that described in the two-dimensional case. Since the overall number of
these intersections, over all boundaries F , is less than κ

t , the overall time needed to
report all these intersections, over all these boundaries, is

O
(
n2h log n +

κ

t
log n

)
.

We now trim, on each boundary F , the edges of the cross sections of the remaining
input bodies, to their portions outside

⋃
H, and continue in a similar manner to that

described in the two-dimensional case; that is, we run a line-sweeping procedure on
these portions and the curves in EF . This constructs the entire two-dimensional
arrangements that these portions induce, from which the complete union boundary
is easy to extract. The running time of this procedure over all boundaries F is
O((n2 + nh2 + κ

t ) log n).

The overall running time of the algorithm in this case is thus
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F

Fig. 3. The case where the input bodies are simplices in three dimensions. The facet F belongs
to one of the h simplices in H. The thick lines are the boundaries of

⋃
H on F . The thin lines are

the intersections of the n − h remaining simplex boundaries with F . The intersections appearing
in the shaded regions lie in the interior of the union of the n simplices and need not be computed
explicitly.

min

{
O((n2 + κ) log n),

O
(

n3

κ rξ log (n/ξ) + nξ log (n/ξ) log n + hrξ log (n/ξ) + n2h log n + κ
t log n

)}

= min

{
O((n2 + κ) log n),

O
(

n3

κ tξ log n log (n/ξ) + ξ2t log ξ log n log (n/ξ) + n2ξ log ξ log n + κ
t log n

)}.

Choosing, as above,

t = max

{ √
κ

ξ log n
, 1

}
,

the running time bound becomes

min

{
O((n2 + κ) log n), O

(
n3

√
κ

log (n/ξ) + ξ
√
κ log2 n + n2ξ log ξ log n

)}
.

Since κ = O(n3) and ξ ≤ n, this is upper bounded by

min

{
O((n2 + κ) log n), O

(
n3

√
κ

log n + n2ξ log2 n

)}
.

The two terms involving κ are equal when κ = n2. Hence the running time is always
bounded by

O(n2 log n + n2ξ log2 n) = O(n2ξ log2 n),

which is subcubic for ξ = o( n
log2 n

).
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Consider next the union problem in d ≥ 4 dimensions. Let B be a set of n bodies
of constant description complexity in R

d, and let S ⊂ B be the (unknown) subset of
ξ bodies whose union is equal to

⋃
B. We compute the union by recursing on the

dimension. That is, we fix a body B ∈ B, take its boundary F , and intersect it with
each body B′ ∈ B \ {B}. We then compute the union of these intersection bodies
and construct its component within F . The union of all these components over all
boundaries F yields the boundary of ∂B. Note that if B ∈ B \ S, then the union of
the intersection bodies along ∂B covers the entire boundary of B. In fact, the union
of the intersections with the bodies of S already covers the boundary. Similarly, if
B ∈ S, then the union of the intersection bodies along ∂B is equal to the union of the
intersections with the bodies of S. In either case, with an appropriate parametrization
of the boundaries, we obtain n (d−1)-dimensional instances of the union construction
problem, each with output size ≤ ξ, according to our measure. We thus compute these
(d− 1)-dimensional unions recursively and stop the recursion when d = 3. This leads
to an overall algorithm that runs in randomized expected time O(nd−1ξ log2 n). That
is, we have the following theorem.

Theorem 4.2. Let S be a set of n bodies of constant description complexity in
R

d, whose union is equal to the union of an unknown subset of ξ � n bodies. Then
the union can be constructed in randomized expected time O(nd−1ξ log2 n), which is
asymptotically smaller than nd for any ξ = o( n

log2 n
).

5. Concluding remarks. We have presented an output-sensitive algorithm for
the problem of constructing efficiently the union of n triangles in the plane, whose
running time is expressed in terms of the smallest size ξ of an unknown subset of the
triangles whose union is equal to the union of the entire set. We have used a variant
of the technique of Brönnimann and Goodrich [10] for finding an approximate set
cover in a set system of finite VC-dimension. We have also presented a detailed and
fairly generic implementation of this method, showing that the above problem can be
solved in randomized expected time O(n4/3 log n + nξ log2 n), which is subquadratic
for ξ = o( n

log2 n
). Derandomization of our implementation seems nontrivial, and an

open problem that thus arises is to make the worst-case running time of the algorithm
subquadratic and deterministic. The algorithm does not have to know the value of
ξ in advance. Instead, it runs an exponential search on ξ, which approximates well
the correct value of ξ, up to a constant factor. However, this approximation concerns
only the size h of the subset H computed in the first stage of the algorithm, whereas
the number of the remaining triangles whose union covers

⋃
T \

⋃
H may be much

larger than h. An open problem that this paper raises is to compute (in subquadratic
time) a subset H ′ ⊂ T such that

⋃
H ′ =

⋃
T and |H ′| is within a constant (or even

O(log n)) factor off the optimum size ξ, or, alternatively, to show that this problem
is 3SUM-hard.

In addition, the subset H of triangles that the algorithm computes is not a hitting
set for the weighted system (T, V ∗) but is rather a (1/2ξ)-net for that system. Thus
another question that arises is whether the Brönnimann–Goodrich algorithm can be
transformed to an algorithm that finds a small ε-net in a general setting (with finite
VC-dimension), as it is believed that finding the smallest ε-net is NP-complete. This
might lead to an approximation algorithm for finding minimum-size ε-nets.

We showed that our approach can be easily extended to simply shaped bodies of
constant description complexity in R

d for d ≥ 2, where the union is determined by
ξ bodies. In the planar case, the running time remains O(n4/3 log n + nξ log2 n). In
d ≥ 3, the union can be constructed in randomized expected time O(nd−1ξ log2 n),
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which is asymptotically smaller than nd for ξ = o( n

log2 n
). For d > 3, we computed

the union recursively on d by constructing the union along each object boundary sep-
arately. However, this recursion had to stop at d = 3. Indeed, for d = 3, applying
the two-dimensional algorithm on the boundary of each input body yields an overall
O(n7/3 log n+n2ξ log2 n) expected running time, which is worse than the bound that

we have obtained when ξ = o( n1/3

logn ). (Note, however, that the two-dimensional ap-
proach is used in the actual construction of the union, because a global approach, in
this case, would yield an inefficient solution, since it involves the vertical decompo-
sition of simply shaped bodies in three dimensions, which may become quadratic in
the number of bodies in the worst case [14, 25, 34].)

A direction for further research is to determine whether there exist simpler efficient
approaches to the union construction problem studied in this paper. We note that
the standard RIC of [32] may fail in the case that we have considered. In fact, the
standard bad example for the RIC, consisting of n triangles that form Θ(n2) shallow
vertices that are all covered by one large triangle (or, more generally, sparsely covered
by ξ = o(n) triangles), shows that the RIC may fail to construct the union in an
output-sensitive manner.

Another direction for further research is to extend our approach to instances
involving unions in three dimensions where the worst-case complexity of the union
is only quadratic or near-quadratic (see [4, 7, 33] for known instances of this kind).
Our approach runs in subcubic time, when ξ is small, but does not improve upon
standard, output-insensitive techniques when the union complexity is always near-
quadratic. The simplest instance of such a problem would be the following: Given a
collection of n balls in R

3 whose union is equal to the union of some ξ = o(n) of the
balls, can the union be constructed in subquadratic time?

Finally, we note that in an earlier version of the algorithm [20], we used a different
approach, based on a careful implementation of the DC algorithm of [18]. The previous
approach is more complicated, yields a somewhat less efficient solution (which is
subquadratic for only a smaller range of the values of the parameter ξ), and is more
difficult to extend to other geometric shapes and to higher dimensions (in this previous
approach, the implementation was based on the techniques of [2, 3, 5, 11, 19]. Our
new approach, based on the technique of Brönnimann and Goodrich, is simpler and
more generic, improves our previous result, and extends to other shapes and to higher
dimensions.

Appendix A. The actual model for sampling R.

In this appendix we show that Lemma 2.1 continues to hold under the actual
model of sampling R.

As described in section 3, we draw the elements of R by randomly making
9c′r(n2)

κ
independent selections of a vertex out of V + for some constant c′ ≥ 1, where in
each trial, each vertex (or more precisely, each pair of triangle edges from distinct
triangles) is chosen with probability 1

9(n2)
(thus the same vertex may be sampled more

than once). The probability p that a vertex v ∈ V + is chosen (at least once) is equal
to

p = 1 −
(

1 − 1

9
(
n
2

)
)9c′r

(n2)
κ

.(A.1)
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It is easily checked that p is smaller than c′ rκ . Moreover, one can also easily show that

p > c′
r

κ
− (c′r)2

κ2
.(A.2)

In this model, the variables X1, . . . , Xκ
S

(as defined in Lemma 2.1) are no longer
independent. Nevertheless, examining the proof of the deviation bound given in [6,
Theorem A.13], we note that the only place where it uses the assumption that these
variables are independent is in the derivation of the equality

E
[
e
∑κ

S
i=1 λXi

]
=

κ
S∏

i=1

E
[
eλXi

]

for any λ. Moreover, the analysis in [6] uses only the value λ = r0
pκ

S
, where r0 is

defined as in Lemma 2.1. An inspection of the derivation of these bounds in [6] shows
that they continue to hold when

E
[
e
∑κ

S
i=1 λXi

]
≤

κ
S∏

i=1

E
[
eλXi

]
.

Furthermore, Lemma 2.1 continues to hold when the weaker inequality

E
[
e
∑κ

S
i=1 λXi

]
≤ γ

κ
S∏

i=1

E
[
eλXi

]
(A.3)

holds for some positive constant γ. This has the effect of multiplying the probability
that (2.1) fails by γ, which implies that (2.1) still holds, w.o.p. Hence, it suffices to
show that (A.3) holds for the above value of λ. More precisely, as in the original proof
of Lemma 2.1, it suffices to establish this under the assumption that κ

S
> κ

t .

In our model,

κ
S∏

i=1

E
[
eλXi

]
=

(
eλp + (1 − p)

)κ
S =

(
1 + p(eλ − 1)

)κ
S ,(A.4)

and

E
[
e
∑κ

S
i=1 λXi

]
=

r∗∑
m=0

Pr [r
S

= m] eλm,(A.5)

where r∗ = min{ 9c′r(n2)
κ , κ

S
}. (Note that Pr[r

S
= m] = 0 for any m > r∗.)

In each of the
9c′r(n2)

κ drawing trials, the probability that we have selected a

vertex v, and that it is not covered by S, is q = κ

9(n2)
· κ

S

κ =
κ
S

9(n2)
. Since these trials

are independent, we have

Pr [r
S

= m] =

(
r∗

m

)
qm(1 − q)

r∗−m
.
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Hence the expression in (A.5) becomes

r∗∑
m=0

(
r∗

m

)
qm(1 − q)

r∗−m
eλm =

(
eλq + 1 − q

)r∗
=

(
1 + q

(
eλ − 1

))r∗
.

In other words, putting eλ − 1 = λ0, we need to show that

(1 + λ0q)
r∗ ≤ γ (1 + λ0p)

κ
S

for some constant γ > 0. We will show that

(1 + λ0q)
r∗ ≤ (1 + λ0p)

2c′r
(1 + λ0p)

κ
S ,

which implies the preceding inequality because (1 + λ0p)
2c′r = O(1). Indeed, (1 +

λ0p)
2c′r < e2c′λ0pr. Using the fact that eλ ≤ 1 + 2λ for 0 ≤ λ ≤ 1 and substituting

λ = r0
pκ

S
(which is indeed ≤ 1 when r0 is chosen as in Lemma 2.1 and c′ is sufficiently

large, as is easily verified) and λ0 = eλ − 1, we have λ0 ≤ 2λ, and thus

e2c′λ0pr ≤ e
4c′

rr0
κ
S .

Since we choose r0 =
√

2c0
r
κκS

log n in Lemma 2.1, for some constant c0 ≥ 1, the
latter expression is smaller than

e
4c′ r

κ
S

√
2c0

r
κκ

S
logn

= e
O
(
r
√

r log n
κκ

S

)
,

which, since we assume that κ
S
> κ

t , is upper bounded by

eO( r
κ

√
tr logn).

Substituting r = ct log n, for some constant c, and t = max{
√
κ

ξ logn , 1}, as above,

and using the assumption that κ > β max{ξ2, n4/3}, for an absolute constant β > 1
(see section 3), we have

e2c′λ0pr < max

{
e
O
(

1
ξ2

)
, e

O
(

log2 n
κ

)}
= O(1).

It thus remains to show that

(1 + λ0q)
r∗ ≤ (1 + λ0p)

2c′r+κ
S .(A.6)

Let us first assume that
9c′r(n2)

κ ≤ κ
S
. We thus need to show that

(
1 + λ0

κ
S

9
(
n
2

)
) 9c′r(n2)

κ

≤ (1 + λ0p)
2c′r+κ

S

or that

(
1 + λ0

κ
S

9
(
n
2

)
) 9(n2)

κ
S

≤ (1 + λ0p)
κ(2c′r+κ

S
)

c′rκ
S .
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Note that the function (1+λ0x)
1
x is monotone decreasing, and since we have assumed

that
9c′r(n2)

κ ≤ κ
S
, it follows that

κ
S

9(n2)
≥ c′r

κ > p. We thus have

(
1 + λ0

κ
S

9
(
n
2

)
) 9(n2)

κ
S

≤ (1 + λ0p)
1
p .

It therefore suffices to show that 1
p ≤ κ(2c′r+κ

S
)

c′rκ
S

. Using (A.2), p > c′ rκ − (c′r)2

κ2 , and

thus it suffices to show that c′r
κ (1 − c′r

κ ) ≥ c′rκ
S

κ(2c′r+κ
S

) , or that

1 − c′r

κ
≥ 1 − 2c′r

2c′r + κ
S

,(A.7)

or that

κ ≥ c′r +
κ

S

2
,

which clearly holds, since κ
S
≤ κ and r = o(κ).

We next assume that
9c′r(n2)

κ > κ
S
. We thus need to show that(

1 + λ0
κ

S

9
(
n
2

)
)

≤ (1 + λ0p)
2c′r+κ

S
κ
S .

Using the facts that (1 + λ0p)
2c′r+κ

S
κ
S ≥ 1 + λ0p (

2c′r+κ
S

κ
S

) and
κ
S

9(n2)
< c′r

κ , as well as

(A.2), it is sufficient to show that

c′r

κ
≤ c′

r

κ

(
1 − c′r

κ

)(
1 +

2c′r

κ
S

)

or that (1 − c′r
κ )(1 + 2c′r

κS
) ≥ 1, which is identical to (A.7), as is easily checked, and

thus follows by the preceding argument.
We note that (A.6) holds for any value of λ0 > 0, and the assumption on λ is

used only when showing that (1 +λ0p)
2c′r = O(1). This completes the proof of (A.3)

for the value of λ that we use and therefore shows that Lemma 2.1 also holds for the
sampling model used by our algorithm.
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[10] H. Brönnimann and M. Goodrich, Almost optimal set covers in finite VC-dimension, Dis-

crete Comput. Geom., 14 (1995), pp. 463–479.
[11] B. Chazelle and J. Friedman, A deterministic view of random sampling and its use in

geometry, Combinatorica, 10 (1990), pp. 229–249.
[12] K. L. Clarkson, Algorithms for polytope covering and approximation, in Proceedings of the

3rd Workshop on Algorithms and Data Structures, Lecture Notes in Comput. Sci. 709,
Springer-Verlag, Berlin, 1993, pp. 246–252.

[13] K. L. Clarkson, Las Vegas algorithms for linear and integer programming when the dimension
is small, J. ACM, 42 (1995), pp. 488–499.

[14] M. de Berg, L. J. Guibas, and D. Halperin, Vertical decompositions for triangles in 3-space,
Discrete Comput. Geom., 15 (1996), pp. 35–61.

[15] M. de Berg, M. Katz, A. F. van der Stappen, and J. Vleugels, Realistic input models for
geometric algorithms, Algorithmica, 34 (2002), pp. 81–97.

[16] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational Geom-
etry: Algorithms and Applications, 2nd ed., Springer-Verlag, Berlin, 2000.

[17] G. Even, D. Rawitz, and M. Shahar, Hitting sets when the VC-dimension is small, Inform.
Process. Lett., to appear.

[18] E. Ezra, D. Halperin, and M. Sharir, Speeding up the incremental construction of the union
of geometric objects in practice, Comput. Geom., 27 (2004), pp. 63–85.

[19] E. Ezra and M. Sharir, Counting and representing intersections among triangles in three
dimensions, Comput. Geom., to appear.

[20] E. Ezra and M. Sharir, Output-sensitive construction of the union of triangles, in Proceedings
of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’04), ACM,
New York, SIAM, Philadelphia, 2004, pp. 413–422.

[21] A. Gajentaan and M. H. Overmars, On a class of O(n2) problems in computational geom-
etry, Comput. Geom., 5 (1995), pp. 165–185.

[22] D. Haussler and E. Welzl, ε-nets and simplex range queries, Discrete Comput. Geom., 2
(1987), pp. 127–151.

[23] D. P. Huttenlocher, K. Kedem, and M. Sharir, The upper envelope of Voronoi surfaces
and its applications, Discrete Comput. Geom., 9 (1993), pp. 267–291.

[24] K. Kedem, R. Livne, J. Pach, and M. Sharir, On the union of Jordan regions and collision-
free translational motion amidst polygonal obstacles, Discrete Comput. Geom., 1 (1986),
pp. 59–71.

[25] V. Koltun, Almost tight upper bounds for vertical decompositions in four dimensions, J. ACM,
51 (2004), pp. 699–730.

[26] J.-C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, Boston, 1991.
[27] N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear-threshold

algorithm, Mach. Learn., 2 (1988), pp. 285–318.
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EXTENDING DOWNWARD COLLAPSE FROM 1-VERSUS-2
QUERIES TO m-VERSUS-m+1 QUERIES∗

EDITH HEMASPAANDRA† , LANE A. HEMASPAANDRA‡ , AND HARALD HEMPEL§

Abstract. The top part of Figure 1.1 shows some classes from the (truth-table) bounded-query
and boolean hierarchies. It is well known that if either of these hierarchies collapses at a given
level, then all higher levels of that hierarchy collapse to that same level. This is a standard “upward
translation of equality” that has been known for over a decade. The issue of whether these hierarchies
can translate equality downwards has proven vastly more challenging. In particular, with regard to
Figure 1.1, consider the following claim:

P
Σ

p
k

m-tt = P
Σ

p
k

m+1-tt ⇒ DIFFm(Σp
k
) = coDIFFm(Σp

k
) = BH(Σp

k
). (∗)

This claim, if true, says that equality translates downwards between levels of the bounded-query
hierarchy and the boolean hierarchy levels that (before the fact) are immediately below them.

Until recently, it was not known whether (*) ever held, except for the degenerate cases m = 0
and k = 0. Then Hemaspaandra, Hemaspaandra, and Hempel [SIAM J. Comput., 28 (1999), pp.
383–393] proved that (*) holds for all m, for k > 2. Buhrman and Fortnow [J. Comput. System
Sci., 59 (1999), pp. 182–199] then showed that, when k = 2, (∗) holds for the case m = 1. In this
paper, we prove that for the case k = 2, (∗) holds for all values of m. Since there is an oracle relative
to which “for k = 1, (∗) holds for all m”fails (see Buhrman and Fortnow), our achievement of the
k = 2 case cannot be strengthened to k = 1 by any relativizable proof technique. The new downward
translation we obtain also tightens the collapse in the polynomial hierarchy implied by a collapse in
the bounded-query hierarchy of the second level of the polynomial hierarchy.

Key words. computational complexity theory, no-search easy-hard technique, downward col-
lapse, upward separation, downward translation of equality, boolean hierarchy, polynomial hierarchy
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1. Introduction. Does the equality of low-complexity classes imply the equal-
ity of higher-complexity classes? Does the equality of high-complexity classes imply
the equality of lower-complexity classes? These questions—known, respectively, as
upward and downward translation of equality—have long been central topics in com-
putational complexity theory. For example, in the seminal paper on the polynomial
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k
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Fig. 1.1. The figure referred to in the abstract.

hierarchy, Meyer and Stockmeyer [20] proved that the polynomial hierarchy displays
upward translation of equality (e.g., P = NP ⇒ P = PH).

The issue of whether the polynomial hierarchy—its levels and/or bounded access
to its levels—ever displays downward translation of equality has proven more difficult.
The first such result regarding bounded access to polynomial hierarchy levels was
recently obtained by Hemaspaandra, Hemaspaandra, and Hempel [14], who proved
that if for some high level of the polynomial hierarchy one query equals two queries,
then the hierarchy collapses down not just to one query to that level, but rather to
that level itself. That is, they proved the following result (note: the levels of the
polynomial hierarchy [20, 27] are denoted in the standard way, namely, Σp

0 = P,

Σp
1 = NP, Σp

k = NPΣp
k−1 for each k > 1, and Πp

k = {L | L ∈ Σp
k} for each k ≥ 0).

Theorem 1.1 (see [14]). For each k > 2: If PΣp
k
[1] = PΣp

k
[2], then Σp

k = Πp
k =

PH.
There are two clear directions in which one might hope to strengthen Theorem 1.1.

First, one might ask not just about 1-versus-2 queries but rather about m-versus-m+1
queries. Second, one might ask if the k > 2 can be improved to k > 1. Both of these
have been achieved. The first strengthening was achieved in a more technical section
of the same paper by Hemaspaandra, Hemaspaandra, and Hempel [14]. They showed
that Theorem 1.1 was just a special case of a more general downward translation
result they established, for k > 2, between bounded access to Σp

k and the boolean
hierarchy over Σp

k. The second type of strengthening was achieved by Buhrman and
Fortnow [4], who showed that Theorem 1.1 holds even for k = 2, but who also showed
that no relativizable technique can establish Theorem 1.1 for k = 1.

Neither of the results or proofs just mentioned is broad enough to achieve both
strengthenings simultaneously. In this paper we derive new theorems strong enough
to achieve this. In particular, we unify and extend all the above claims, and from our
more general results it easily follows that (see Corollary 5.1)

For each m > 0 and each k > 1;

P
Σp

k
m-tt = P

Σp
k

m+1-tt ⇒ DIFFm(Σp
k) = coDIFFm(Σp

k).

Prior to the work of this paper, the cases (k = 2 ∧ m = 2), (k = 2 ∧ m = 3), (k = 2 ∧
m = 4), and so on were open. As shown near the end of section 5, the stronger
downward translation we obtain yields a strengthened collapse of the polynomial
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hierarchy under the assumption of a collapse in the bounded-query hierarchy over
NPNP. (Throughout this paper, we mean the truth-table bounded-query hierarchy
when we say bounded-query hierarchy. However, as mentioned in section 5, our
results equally well strengthen the collapse of the polynomial hierarchy under the
assumption of a collapse in the Turing bounded-query hierarchy over NPNP.)

The results that lead to the result mentioned above (i.e., Corollary 5.1) are them-
selves examples of downward translation of equality. Those intermediate results that
are of interest in their own right are proven in sections 3 and 4.

We conclude this section with some comments and pointers to the literature. As
to techniques, to study upward translations of equality resulting from collapses of the
boolean hierarchy, Kadin [17] introduced what is known as the “easy-hard technique,”
and that technique was employed and strengthened in a long series of papers by many
authors (see the survey [13]). In particular, Hemaspaandra, Hemaspaandra, and
Hempel [14] achieved Theorem 1.1 by introducing what can be called the no-search
easy-hard technique—basically, they show that a complexity-raising search seemingly
central in the easy-hard technique can in fact be eliminated, and this stronger tech-
nique opens the door to stronger results, namely, downward translation of equality
results for bounded-query classes. The present paper builds on the no-search easy-
hard technique and on a variation on that used by Buhrman and Fortnow to prove
the 1-versus-2-queries case at the second level of the polynomial hierarchy. However,
these approaches seem not to be strong enough to yield our result, and so we also must
combine with these techniques a new approach extending beyond 1-versus-2 queries.1

We mention that Chang has obtained exciting applications of easy-hard-type argu-
ments in the context of the study of approximation [7]. We also mention that there
is a body of literature showing that equality of exponential-time classes translates
downwards in a limited sense: Relationships are obtained connecting such equalities
to whether sparse sets within lower time classes are unexpectedly simple (see [9, 10],
see also [6, 21, 22]; limitations of this line are presented in [1, 2, 16]). Other than
being an interesting restricted type of downward translation of equality, that work has
no close connection with the present paper due to that body of literature being ap-
plicable only to sparse sets. Finally, we mention that the study of downward collapse
results is closely related to the formal study of the power of query order—whether
the order in which databases are accessed matters—an area recently introduced by
Hemaspaandra, Hempel, and Wechsung [15]. In particular, downward collapse tech-
niques have been used to understand the power of query order within the polynomial
hierarchy (see [12], the survey [11], and the references therein, especially [31]).

2. Preliminaries. To explain exactly what we do and how it extends previous
results, we now state the previous results in the more general forms in which they were

1Regarding this new approach (and this footnote is aimed primarily at those already familiar
with the techniques of the previous papers on the no-search easy-hard technique): In the previous
work extending Theorem 1.1 to the boolean hierarchy (part 1 of Theorem 2.4), the “coordination”
difficulties presented by the fact that boolean hierarchy sets are in effect handled via collections of
machines were resolved via using certain lexicographically extreme objects as clear signposts to signal
machines with (see [14, section 3]). In the current stronger context that approach fails. Instead, we
integrate into the structure of no-search easy-hard-technique proofs (especially those of [14, 4]) the
so-called “telescoping” normal form possessed by the boolean hierarchy over Σp

k
(for each k, see

[18, 5]). (The telescoping normal form guarantees that if L ∈ DIFFm(Σp
k
), then there are sets

L1, L2, . . . , Lm ∈ Σp
k

such that L = L1 − (L2 − (L3 − · · · (Lm−1 − Lm) · · ·)) and L1 ⊇ L2 ⊇ · · · ⊇
Lm−1 ⊇ Lm.) This normal form has in different contexts proven useful in the study of boolean
hierarchies (see, e.g., [5, 6, 18]) and has been used by Rohatgi in the context of a paper using the
original (i.e., the with-search version of the) easy-hard technique [24].
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actually established, though in some cases with different notation or statements (see,
e.g., the interesting paper by Wagner [31] regarding the relationship between truth-
table classes and what in the present paper is

⊕
notation). Before stating the results,

we very briefly remind the reader of some definitions and notations, namely the Δ
levels of the polynomial hierarchy, truth-table access, symmetric difference classes,
and boolean hierarchies. A detailed introduction to the boolean hierarchy, including
its motivation and applications, can be found in [5, 6].

Definition 2.1.

1. For each k ≥ 1, Δp
k denotes PΣp

k−1 [20]. For each m ≥ 0 and each set A, PA
m-tt

denotes the class of languages accepted by deterministic polynomial-time ma-
chines allowed m truth-table (i.e., nonadaptive) queries to A (see [19]). For
each m ≥ 0 and each complexity class C, PC

m-tt is defined as
⋃

A∈C PA
m-tt. For

each m ≥ 0 and each set A, PA[m] denotes the class of languages accepted
by deterministic polynomial-time machines allowed m Turing (i.e., adaptive)
queries to A (see [19]). For each m ≥ 0 and each complexity class C, PC[m]

is defined as
⋃

A∈C PA[m].
2. For any sets C and D, C ⊕D = (C −D) ∪ (D − C). For any classes C and

D, C
⊕

D = {L | (∃C ∈ C)(∃D ∈ D)[L = C ⊕ D]}. We will refer to classes
defined via

⊕
as symmetric difference classes.

3. [5, 6] Let C be any complexity class. The levels of the boolean hierarchy are
defined as follows.
(a) DIFF1(C) = C.
(b) For all m ≥ 1, DIFFm+1(C) = {L | (∃L1 ∈ C)(∃L2 ∈ DIFFm(C))[L =

L1 − L2]}.
(c) For all m ≥ 1, coDIFFm(C) = {L | L ∈ DIFFm(C)}.
(d) BH(C), the boolean hierarchy over C, is

⋃
m≥1 DIFFm(C).

As is standard, for any set A and any natural number n, A≤n denotes the set of
all strings in A of length less than or equal to n. As is standard, for any set A and
any natural number n, A=n denotes the set of all strings in A of length exactly n.
For example, note that “|x| = n,” “x ∈ (Σ∗)=n,” and “x ∈ Σn” are all ways of saying
that the length of string x equals n. This notation should not be confused with the
notation Σp

n, which denotes the nth level of the polynomial hierarchy [20].
The relationship between the levels of the boolean hierarchy over Σp

k, bounded
access to Σp

k, and various symmetric difference classes is as follows.
Proposition 2.2.

1. [30] For each k ≥ 1 and each m ≥ 1, P
Σp

k
m-tt ⊆ DIFFm+1(Σ

p
k) ⊆ P

Σp
k

m+1-tt and

P
Σp

k
m-tt ⊆ coDIFFm+1(Σ

p
k) ⊆ P

Σp
k

m+1-tt.
2. [18] For all k ≥ 1 and all m ≥ 1,

DIFFm(Σp
k) = Σp

k

⊕
Σp

k

⊕
· · ·

⊕
Σp

k︸ ︷︷ ︸
m times

.

3. [31] For all k ≥ 1 and all m ≥ 1,

P
Σp

k
m-tt = P

⊕
DIFFm(Σp

k) = P
⊕

Σp
k

⊕
Σp

k

⊕
· · ·

⊕
Σp

k︸ ︷︷ ︸
m times

.

We will use the following easy fact about symmetric difference classes.
Observation 2.3. Let C1, C2, and D be complexity classes. If C1 ⊆ C2, then

C1

⊕
D ⊆ C2

⊕
D.
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Now we can state what the earlier papers achieved. (In achieving these results,
those papers obtained as corollaries the results attributed to them in the Introduc-
tion.)

Theorem 2.4.

1. [14] Let m > 0, 0 ≤ i < j < k, and i < k − 2. If P
Σp

i
1-tt

⊕
DIFFm(Σp

k) =

P
Σp

j

1-tt
⊕

DIFFm(Σp
k), then DIFFm(Σp

k) = coDIFFm(Σp
k).

2. [4] If P
⊕

Σp
2 = NP

⊕
Σp

2, then Σp
2 = Πp

2 = PH.
In this paper, we unify both of the above results—and achieve the strength-

ened corollary alluded to in the Introduction regarding the relative power of m and
m + 1 queries to Σp

k (namely Corollary 5.1: For each m > 0 and each k > 1,

P
Σp

k
m-tt = P

Σp
k

m+1-tt ⇒ DIFFm(Σp
k) = coDIFFm(Σp

k))—by proving the following down-
ward translation of equality result, which will be our Theorem 3.3:

Let m > 0 and 0 < i < k. If Δp
i

⊕
DIFFm(Σp

k) = Σp
i

⊕
DIFFm(Σp

k),
then DIFFm(Σp

k) = coDIFFm(Σp
k).

3. A new downward translation of equality. We first need a definition and
a useful lemma.

Definition 3.1. For any sets C and D, C⊕̃D = {〈x, y〉 | x ∈ C ⇔ y �∈ D}.
Lemma 3.2. If C is ≤p

m -complete for C and D is ≤p
m -complete for D, then

C⊕̃D is ≤p
m -hard for C

⊕
D.

Proof. Let L ∈ C
⊕

D. We need to show that L≤p
m C⊕̃D. Let Ĉ ∈ C and D̂ ∈ D

be such that L = Ĉ ⊕ D̂. Let Ĉ ≤p
m C by fC , and D̂≤p

m D by fD. Then x ∈ L if and

only if x ∈ Ĉ⊕D̂, and x ∈ Ĉ⊕D̂ if and only if (x ∈ Ĉ ⇔ x �∈ D̂), and (x ∈ Ĉ ⇔ x �∈ D̂)
if and only if (fC(x) ∈ C ⇔ fD(x) �∈ D), and (fC(x) ∈ C ⇔ fD(x) �∈ D) if and only
if 〈fC(x), fD(x)〉 ∈ C⊕̃D. It follows that x ∈ L if and only if 〈fC(x), fD(x)〉 ∈
C⊕̃D.

We now state our main result. (Note that as both Δp
i and Σp

i contain both ∅ and
Σ∗, it is clear that the classes involved in the first equality below are at least as large
as the classes involved in the second equality below.)

Theorem 3.3. Let m > 0 and 0 < i < k. If Δp
i

⊕
DIFFm(Σp

k) = Σp
i

⊕
DIFFm(Σp

k), then DIFFm(Σp
k) = coDIFFm(Σp

k).
This result almost follows from the forthcoming Theorem 4.1 (which states that

if s,m > 0, 0 < i < k − 1, and DIFFs(Σ
p
i )

⊕
DIFFm(Σp

k) is closed under comple-
mentation, then DIFFm(Σp

k) = coDIFFm(Σp
k))—or, to be more accurate, most of its

cases are easy corollaries of Theorem 4.1. The s = 1 case of Theorem 4.1 states that
for all m > 0 and all i and k such that 0 < i < k − 1, if Σp

i

⊕
DIFFm(Σp

k) is closed
under complementation, then DIFFm(Σp

k) = coDIFFm(Σp
k). Since Δp

i

⊕
C is closed

under complementation for all C and all i ≥ 0, we have that if Δp
i

⊕
DIFFm(Σp

k) =
Σp

i

⊕
DIFFm(Σp

k), then Σp
i

⊕
DIFFm(Σp

k) is closed under complementation. Thus,
Theorem 4.1 certainly implies Theorem 3.3 for all m > 0 and all i and k such that
0 < i < k−1. It remains for us to establish the missing cases, and Theorem 3.4 below
does exactly that.

Theorem 3.4. Let m > 0 and k > 1. If Δp
k−1

⊕
DIFFm(Σp

k) = Σp
k−1

⊕
DIFFm(Σp

k), then DIFFm(Σp
k) = coDIFFm(Σp

k).
Before proving Theorem 3.4, we fix some complete languages that will be useful,

and establish names that we will use globally for these fixed, complete languages.
(In light of the standard quantifier characterization of the polynomial hierarchy’s
levels [32] and the legality of padding sets to get new sets for which linear-bounded
quantification suffices, it is not hard to see that there exist complete languages having
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the properties stated in Fact 3.5.) Throughout the paper we will use the names
introduced in this fact for these sets (or more specifically, let us consider sets of the
form guaranteed by the fact to be fixed, and let us attach to them the names used in
the fact).

Fact 3.5. For each k > 1, there exist a set L′
Σp

k
that is ≤p

m -complete for Σp
k, a

set L̂Σp
k−1

that is ≤p
m -complete for Σp

k−1, and a set L′′
Σp

k−2
that is ≤p

m -complete for

Σp
k−2, such that these sets satisfy

L′
Σp

k
= {x | (∃y ∈ Σ|x|)(∀z ∈ Σ|x|)[〈x, y, z〉 ∈ L′′

Σp
k−2

]}

and

L̂Σp
k−1

= {〈x, y, z〉 | |x| = |y| ∧ (∃z′)[(|x| = |zz′|) ∧ 〈x, y, zz′〉 �∈ L′′
Σp

k−2
]}.

Proof of Theorem 3.4. Let m > 0 and k > 1. Let L̂Σp
k−1

∈ Σp
k−1 be as

fixed in Fact 3.5, and let LΔp
k−1

and LDIFFm(Σp
k
) be any fixed ≤p

m -complete sets

for Δp
k−1 and DIFFm(Σp

k), respectively; such languages exist, e.g., via the standard
type of canonical-complete-set constructions involving padding and enumerations of
clocked machines. From Lemma 3.2 it follows that LΔp

k−1
⊕̃LDIFFm(Σp

k
) is ≤p

m -hard

for Δp
k−1

⊕
DIFFm(Σp

k). Since L̂Σp
k−1

⊕̃LDIFFm(Σp
k
) ∈ Σp

k−1

⊕
DIFFm(Σp

k) and by

assumption Δp
k−1

⊕
DIFFm(Σp

k) = Σp
k−1

⊕
DIFFm(Σp

k), there exists a (polynomial-

time) many-one reduction h from L̂Σp
k−1

⊕̃LDIFFm(Σp
k
) to LΔp

k−1
⊕̃LDIFFm(Σp

k
) (in light

of the latter’s ≤p
m -hardness). So, for all x1, x2, y1, y2 ∈ Σ∗: If h(〈x1, x2〉) = 〈y1, y2〉,

then ((x1 ∈ L̂Σp
k−1

⇔ x2 �∈ LDIFFm(Σp
k
)) iff (y1 ∈ LΔp

k−1
⇔ y2 �∈ LDIFFm(Σp

k
))).

Equivalently, for all x1, x2, y1, y2 ∈ Σ∗: If h(〈x1, x2〉) = 〈y1, y2〉, then

(x1 ∈ L̂Σp
k−1

⇔ x2 ∈ LDIFFm(Σp
k
)) iff (y1 ∈ LΔp

k−1
⇔ y2 ∈ LDIFFm(Σp

k
)).(3.1)

We can use h to recognize some of LDIFFm(Σp
k
) by a DIFFm(Σp

k) algorithm. In
particular, we say that a string x is easy for length n if there exists a string x1 such
that |x1| ≤ n and (x1 ∈ L̂Σp

k−1
⇔ y1 �∈ LΔp

k−1
), where h(〈x1, x〉) = 〈y1, y2〉.

Let p be a fixed polynomial, which will be exactly specified later in the proof. We
have the following algorithm to test whether x ∈ LDIFFm(Σp

k
) in the case that (our

input) x is an easy string for length p(|x|). Guess x1 with |x1| ≤ p(|x|), let h(〈x1, x〉) =

〈y1, y2〉, and accept if and only if ((x1 ∈ L̂Σp
k−1

⇔ y1 �∈ LΔp
k−1

) ∧ y2 ∈ LDIFFm(Σp
k
)).

(To understand what is going on here, simply note that if (x1 ∈ L̂Σp
k−1

⇔ y1 �∈ LΔp
k−1

)

holds, then by (3.1) we have x ∈ LDIFFm(Σp
k
) ⇔ y2 ∈ LDIFFm(Σp

k
). Note also that both

x1 ∈ L̂Σp
k−1

and y1 �∈ LΔp
k−1

can be very easily tested by a machine that has a Σp
k−1

oracle.) This algorithm is not necessarily a DIFFm(Σp
k) algorithm, but it does inspire

the following DIFFm(Σp
k) algorithm to test whether x ∈ LDIFFm(Σp

k
) in the case that

x is an easy string for length p(|x|). For clarity, we will attempt to telegraph the
complexity issues as we work to develop the algorithm.

Let L1, L2, . . . , Lm be languages in Σp
k such that LDIFFm(Σp

k
) = L1 − (L2 − (L3 −

· · · (Lm−1 − Lm) · · ·)) and L1 ⊇ L2 ⊇ · · · ⊇ Lm−1 ⊇ Lm (this can be done as this
is simply the “telescoping” normal form of the levels of the boolean hierarchy over
Σp

k; see [5]). For 1 ≤ � ≤ m, define L′
� as the language accepted by the following Σp

k



1358 E. HEMASPAANDRA, L. A. HEMASPAANDRA, AND H. HEMPEL

machine: On input x, guess x1 with |x1| ≤ p(|x|), let h(〈x1, x〉) = 〈y1, y2〉, and accept

if and only if ((x1 ∈ L̂Σp
k−1

⇔ y1 �∈ LΔp
k−1

) ∧ y2 ∈ L�).

Note that L′
� ∈ Σp

k for each �, and that L′
1 ⊇ L′

2 ⊇ · · · ⊇ L′
m−1 ⊇ L′

m. We will

show that if x is an easy string for length p(|x|), then x ∈ LDIFFm(Σp
k
) if and only if

x ∈ L′
1 − (L′

2 − · · · (L′
m−1 − L′

m) · · ·).
So suppose that x is an easy string for length p(|x|). Define �′ to be the unique

integer such that (a) 0 ≤ �′ ≤ m, (b) x ∈ L′
s for 1 ≤ s ≤ �′, and (c) x �∈ L′

s for s > �′.
It is immediate that x ∈ L′

1 − (L′
2 − · · · (L′

m−1 − L′
m) · · ·) if and only if �′ is odd.

Let w be some string such that

(∃x1 ∈ (Σ∗)≤p(|x|))(∃y1)[h(〈x1, x〉) = 〈y1, w〉 ∧ (x1 ∈ L̂Σp
k−1

⇔ y1 �∈ LΔp
k−1

)],

and w ∈ L�′ if �′ > 0 (�′ here is the �′ already set in the previous paragraph).
Note that such a w exists, since x is easy for length p(|x|) and, by our definition
of �′, x ∈ L′

�′ . By the definition of �′ (namely, since x �∈ L′
s for s > �′), w �∈ Ls

for all s > �′. It follows that w ∈ LDIFFm(Σp
k
) if and only if �′ is odd. It is clear,

keeping in mind the definition of h, that (x ∈ LDIFFm(Σp
k
) ⇔ w ∈ LDIFFm(Σp

k
)),

(w ∈ LDIFFm(Σp
k
) ⇔ �′ is odd), and (�′ is odd ⇔ x ∈ L′

1− (L′
2−· · · (L′

m−1−L′
m) · · ·)).

So x ∈ LDIFFm(Σp
k
) ⇔ x ∈ L′

1 − (L′
2 − · · · (L′

m−1 − L′
m) · · ·)).

This completes the case where x is easy, as L′
1 − (L′

2 − · · · (L′
m−1 − L′

m) · · ·) in
effect specifies a DIFFm(Σp

k) algorithm.
We say that x is hard for length n if |x| ≤ n and x is not easy for length n,

i.e., if |x| ≤ n and for all x1 with |x1| ≤ n, (x1 ∈ L̂Σp
k−1

⇔ y1 ∈ LΔp
k−1

), where

h(〈x1, x〉) = 〈y1, y2〉. Note that if x is hard for p(|x|), then x �∈ L′
1.

If x is a hard string for length p(|x|), then x induces a many-one reduction from

(L̂Σp
k−1

)
≤p(|x|)

to LΔp
k−1

, namely, λx1.f(x, x1), where f(x, x1) = y1, where y1 is the

unique string such that (∃y2)[h(〈x1, x〉) = 〈y1, y2〉]. We will write fx for λx1.f(x, x1).
Note that f is computable in polynomial time. (This in turn certainly implies the
true but not too relevant fact that, for each fixed x, fx is computable in polynomial
time.)

So it is not hard to see that if we choose p appropriately large, then a hard string
x for length p(|x|) induces Σp

k−1 algorithms for (L1)
=|x|, (L2)

=|x|, . . . , (Lm)=|x| (essen-

tially since each is in Σp
k = NPΣp

k−1 , L̂Σp
k−1

is ≤p
m -complete for Σp

k−1, and NPΔp
k−1 =

Σp
k−1), which we can use to obtain a DIFFm(Σp

k−1) algorithm for (LDIFFm(Σp
k
))

=|x|

and thus certainly a DIFFm(Σp
k) algorithm for

(
LDIFFm(Σp

k
)

)=|x|
.

However, there is a problem. The problem is that we cannot combine the
DIFFm(Σp

k) algorithms for easy and hard strings into one DIFFm(Σp
k) algorithm for

LDIFFm(Σp
k
) that works for all strings. The reason why is that it is too difficult to de-

cide whether a string is easy or hard: To decide this deterministically takes one query
to Σp

k, and we cannot do that in a DIFFm(Σp
k) algorithm. This is also the reason

why the methods from [14] failed to prove that if P
⊕

Σp
2 = NP

⊕
Σp

2, then Σp
2 = Πp

2.
Recall from the introduction that the latter theorem was proven by Buhrman and
Fortnow [4, p. 184]. We will generalize their technique at this point. In particular,
the following lemma, which we will prove after we have finished the proof of this
theorem, establishes a generalized version of the technique from [4]. It has been ex-
tended to deal with arbitrary levels of the polynomial hierarchy and to be useful in
settings involving boolean hierarchies.
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Lemma 3.6. Let k > 1. For all L ∈ Σp
k, there exist a polynomial q and a set

L̂ ∈ Πp
k−1 such that
1. for each natural number n′, q(n′) ≥ n′,

2. L̂ ⊆ L, and
3. if x is hard for length q(|x|), then (x ∈ L ⇔ x ∈ L̂).

We defer the proof of Lemma 3.6 and first finish the current proof. From Lemma
3.6, it follows that there exist sets L̂1, L̂2, . . . , L̂m ∈Πp

k−1 and polynomials q1, q2, . . . , qm
with the following properties for all 1 ≤ � ≤ m:

1. L̂� ⊆ L�, and
2. if x is hard for length q�(|x|), then (x ∈ L� ⇔ x ∈ L̂�).

Take p to be an (easy-to-compute—we may without loss of generality require that
there is a t such that it is of the form nt + t) polynomial such that p is at least
as large as all the q�s, i.e., such that, for each natural number n′, we have p(n′) ≥
max{q1(n′), . . . , qm(n′)}. By the definition of hardness and condition 1 of Lemma 3.6,
if x is hard for length p(|x|), then x is hard for length q�(|x|) for all 1 ≤ � ≤ m. As

promised earlier, we have now specified p. Define L̂DIFFm(Σp
k
) as follows: On input x,

guess �, � even, 0 ≤ � ≤ m, and accept if and only if both (a) x ∈ L� or � = 0, and

(b) if � < m, then x ∈ L̂�+1. Clearly, L̂DIFFm(Σp
k
) ∈ Σp

k. In addition, this set inherits

certain properties from the L̂�s. In particular, in light of the definition of L̂DIFFm(Σp
k
),

the definitions of the L̂�s, and the fact that

x ∈ LDIFFm(Σp
k
) ⇔ (∃�, 0 ≤ � ≤ m, � even)[(� �= 0 ⇒ x ∈ L�) ∧ (� �= m ⇒ x ∈ L�+1)],

we have that the following properties hold:
1. L̂DIFFm(Σp

k
) ⊆ LDIFFm(Σp

k
), and

2. if x is hard for length p(|x|), then (x ∈ LDIFFm(Σp
k
) ⇔ x ∈ L̂DIFFm(Σp

k
)).

Finally, we are ready to give the algorithm. Recall that L′
1, L

′
2, . . . , L

′
m are sets

in Σp
k such that (1) L′

1 ⊇ L′
2 ⊇ · · · ⊇ L′

m−1 ⊇ L′
m, and (2) if x is easy for length

p(|x|), then x ∈ LDIFFm(Σp
k
) if and only if x ∈ L′

1 − (L′
2 − (L′

3 − · · · (L′
m−1 −L′

m) · · ·)),
and (3) if x is hard for length p(|x|), then x �∈ L′

1. We claim that for all x, (x ∈
LDIFFm(Σp

k
) ⇔ x ∈ (L′

1 ∪ L̂DIFFm(Σp
k
)) − (L′

2 − (L′
3 − · · · (L′

m−1 − L′
m) · · ·))), which

completes the proof of Theorem 3.4, as Σp
k is closed under union.

(⇒): Let x ∈ LDIFFm(Σp
k
). If x is easy for length p(|x|), then x ∈ L′

1 − (L′
2 −

(L′
3 − · · · (L′

m−1 − L′
m) · · ·)), and so certainly x ∈ (L′

1 ∪ L̂DIFFm(Σp
k
)) − (L′

2 − (L′
3 −

· · · (L′
m−1 − L′

m) · · ·)). If x is hard for length p(|x|), then x ∈ L̂DIFFm(Σp
k
) and x �∈ L′

�

for all � (since x �∈ L′
1 and L′

1 ⊇ L′
2 ⊇ · · · ⊇ L′

m). Thus, x ∈ (L′
1 ∪ L̂DIFFm(Σp

k
)) −

(L′
2 − (L′

3 − · · · (L′
m−1 − L′

m) · · ·)).
(⇐): Suppose x ∈ (L′

1 ∪ L̂DIFFm(Σp
k
)) − (L′

2 − (L′
3 − · · · (L′

m−1 − L′
m) · · ·)). If

x ∈ L̂DIFFm(Σp
k
), then x ∈ LDIFFm(Σp

k
). If x �∈ L̂DIFFm(Σp

k
), then x ∈ L′

1 − (L′
2 −

(L′
3 − · · · (L′

m−1 − L′
m) · · ·)) and so x must be easy for length p(|x|) (as x ∈ L′

1,
and this is possible only if x is easy for length p(|x|)). However, this says that
x ∈ LDIFFm(Σp

k
).

Having completed the proof of Theorem 3.4, we now return to the deferred proof
of the lemma used within that theorem’s proof.

Proof of Lemma 3.6. Let L ∈ Σp
k. We need to show that there exist a polynomial

q and a set L̂ ∈ Πp
k−1 such that
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1. for each natural number n′, q(n′) ≥ n′,

2. L̂ ⊆ L, and
3. if x is hard for length q(|x|), then (x ∈ L ⇔ x ∈ L̂).

From Fact 3.5, we know that L′
Σp

k
is ≤p

m -complete for Σp
k, L̂Σp

k−1
∈ Σp

k−1, L
′′
Σp

k−2
∈

Σp
k−2, and

1. L′
Σp

k
= {x | (∃y ∈ Σ|x|)(∀z ∈ Σ|x|)[〈x, y, z〉 ∈ L′′

Σp
k−2

]}, and

2. L̂Σp
k−1

= {〈x, y, z〉 | |x| = |y| ∧ (∃z′)[(|x| = |zz′|) ∧ 〈x, y, zz′〉 �∈ L′′
Σp

k−2
]}.

Note that L′
Σp

k

= {x | (∀y ∈ Σ|x|)(∃z ∈ Σ|x|)[〈x, y, z〉 �∈ L′′
Σp

k−2
]}.

Since L ∈ Σp
k, and L′

Σp
k

is ≤p
m -complete for Σp

k, there exists a polynomial-time

computable function g such that, for all x, (x ∈ L ⇔ g(x) ∈ L′
Σp

k
).

Let q be such that (a) (∀x ∈ Σn)(∀y ∈ Σ|g(x)|)(∀z ∈ (Σ∗)≤|g(x)|)[q(n) ≥ |〈g(x), y, z〉|]
and (b) (∀m̂ ≥ 0)[q(m̂ + 1) > q(m̂) > 0]. Note that we have ensured that for each
natural number n′, q(n′) ≥ n′.

If x is a hard string for length p(|x|), then x induces a many-one reduction from

(L̂Σp
k−1

)
≤p(|x|)

to LΔp
k−1

, namely, λx1.f(x, x1), where f(x, x1) = y1, where y1 is the

unique string such that (∃y2)[h(〈x1, x〉) = 〈y1, y2〉]. (This is the h from the proof of
Theorem 3.4. One should treat the current proof as if it occurs immediately after
the statement of Lemma 3.6.) We will write fx for λx1.f(x, x1). Note that f is
computable in polynomial time. (This in turn certainly implies the true but not too
relevant fact that, for each fixed x, fx is computable in polynomial time.)

Let L̂ be the language accepted by the following Πp
k−1 machine.2

On input x:
Compute g(x)
Guess y such that |y| = |g(x)|
Set w = ε (i.e., the empty string)
While |w| < |g(x)|

if the Δp
k−1 algorithm for L̂Σp

k−1
induced by x accepts 〈g(x), y, w0〉

(that is, if fx(〈g(x), y, w0〉) ∈ LΔp
k−1

),

then w = w0
else w = w1

Accept if and only if 〈g(x), y, w〉 �∈ L′′
Σp

k−2
.

It remains to show that L̂ thus defined fulfills the properties of Lemma 3.6. First,
note that the machine described above is clearly a Πp

k−1 machine. To show that

L̂ ⊆ L, suppose that x ∈ L̂. Then (keeping in mind the comments of footnote 2) for
every y ∈ Σ|g(x)|, there exists a string w ∈ Σ|g(x)| such that 〈g(x), y, w〉 �∈ L′′

Σp
k−2

. This

implies that g(x) ∈ L′
Σp

k

and thus that x ∈ L.

Finally, suppose that x is hard for length q(|x|) and that x ∈ L. We have to show

that x ∈ L̂. Since x ∈ L, g(x) ∈ L′
Σp

k

. So, (∀y ∈ Σ|g(x)|)(∃z ∈ Σ|g(x)|)[〈g(x), y, z〉 �∈
L′′

Σp
k−2

]. Since x is hard for length q(|x|), (∀y ∈ Σ|g(x)|)(∀w ∈ (Σ∗)≤|g(x)|)[〈g(x), y, w〉 ∈
L̂Σp

k−1
⇔ fx(〈g(x), y, w〉) ∈ LΔp

k−1
]. It follows that the algorithm above will find, for

2For k > 1, Πp
k−1

= coNP
Σ

p
k−2 , and by a Πp

k−1
machine we mean, for the duration of this proof,

a co-nondeterministic machine with a Σp
k−2

oracle. A co-nondeterministic machine by definition
accepts if and only if all of its computation paths are accepting paths.
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every y ∈ Σ|g(x)|, a witness w such that 〈g(x), y, w〉 �∈ L′′
Σp

k−2
, and thus the algorithm

will accept x.

4. Downward collapse from closure under complementation. This sec-
tion’s main result is the following theorem.

Theorem 4.1. Let s,m > 0 and 0 < i < k − 1. If DIFFs(Σ
p
i )

⊕
DIFFm(Σp

k) is
closed under complementation, then DIFFm(Σp

k) = coDIFFm(Σp
k).

The s = 1 case of Theorem 4.1 is as follows: If m > 0, 0 < i < k − 1, and
Σp

i

⊕
DIFFm(Σp

k) is closed under complementation, then DIFFm(Σp
k) = coDIFFm(Σp

k).
In the present paper, this s = 1 case is used, along with Theorem 3.4, to establish
Theorem 3.3.

Theorem 4.1 is also of interest in its own right as a reflection of how closure
under complementation of even quite general symmetric difference classes implies
a downward collapse. Selivanov [25, 26] shows that if certain symmetric difference
classes are closed under complementation, then the polynomial hierarchy collapses.
His result is, however, very different than this section’s main result, Theorem 4.1, as
Selivanov collapses the polynomial hierarchy to a higher level, and thus shows merely
an upward translation of equality. In contrast, our Theorem 4.1 collapses the difference
hierarchy over Σp

k to a level that is contained in the classes of its complementation
hypothesis—thus obtaining a downward translation of equality. Also, we note that
Theorem 4.1 implies a collapse of the polynomial hierarchy to a class a full level lower
in the difference hierarchy over Σp

k+1 than could be concluded without our downward
collapse result (namely a collapse to DIFFm(Σp

k)
⊕

DIFFm−1(Σ
p
k+1), in light of the

strongest known “Boolean Hierarchy/Polynomial Hierarchy-collapse connection,” see
[13, Theorem 5.1], [23, Corollary 27], and the related discussion in section 5).

Before proving Theorem 4.1, we fix some useful complete languages. Throughout
the paper we will use the names introduced in this fact for these sets (or more specif-
ically, let us consider, for each i, the three “Sigma”-type sets of the form guaranteed
by the fact to be fixed, and let us attach to them the names used in the fact for those
sets, and then based on those apply the second half of the fact to assign fixed sets to
be the LΠp

i
’s and other “Pi”-type sets).

Fact 4.2. For each i ≥ 1, there exist a set LΣp
i

that is ≤p
m -complete for Σp

i , a

set L̃Σp
i+1

that is ≤p
m -complete for Σp

i+1, and a set L†
Σp

i+2
that is ≤p

m -complete for

Σp
i+2, such that these sets satisfy

L̃Σp
i+1

= {x | (∃y ∈ Σ|x|)[〈x, y〉 /∈ LΣp
i
]}

and

L†
Σp

i+2
= {x | (∃y ∈ Σ|x|)[〈x, y〉 /∈ L̃Σp

i+1
]}.

For each i ≥ 1, let LΠp
i

= LΣp
i

and define LDIFF1(Π
p
i
) = LΠp

i
and for all j ≥ 2,

LDIFFj(Π
p
i
) = {〈x, y〉 | x ∈ LΠp

i
∧ y /∈ LDIFFj−1(Π

p
i
)}. It is not hard to see that

LDIFFj(Π
p
i
) is many-one complete for DIFFj(Π

p
i ) for all j ≥ 1. Note also that

DIFFj(Π
p
i ) = DIFFj(Σ

p
i ) if j is even and DIFFj(Π

p
i ) = coDIFFj(Σ

p
i ) if j is odd.

Let LDIFFs(Σ
p
i
) = LDIFFs(Π

p
i
) if s is even and LDIFFs(Σ

p
i
) = LDIFFs(Π

p
i
) if s is odd.

Then LDIFFs(Σ
p
i
) is ≤p

m -complete for DIFFs(Σ
p
i ).

The reason these sets exist is similar to the reason that the sets of Fact 3.5 exist,
but may at first seem a bit confusing, due to the fact that in Fact 4.2 L̃Σp

i+1
is being
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treated as a set of strings in its own definition but as a set of pairs of strings in the
definition of L†

Σp
i+2

. However, since the pairing function maps strings to strings, this

isn’t a problem; it merely requires some pairing in forming the sets. For example, to
give the intuition of what is going on, consider the following sets:

• AΣp
0

= {〈〈F, v〉, w〉 | v specifies assignments to the first half of F ’s variables
and w specifies assignments to the second half of F ’s variables and F under
the (complete) assignment specified by v and w evaluates to false}.

• AΣp
1

= {〈F, v〉 | v specifies assignments to the first half of F ’s variables and
there exists a w specifying assignments to the second half of F ’s variables
such that 〈〈F, v〉, w〉 �∈ AΣp

0
}.

• AΣp
2

= {F | there exists a v specifying assignments to the first half of F ’s

variables such that 〈F, v〉 �∈ AΣp
1
}.

These sets are easily seen to be, respectively, ≤p
m -complete for Σp

0 (trivial, in this
case), Σp

1, and Σp
2. Caveat: These are not exactly the sets of Fact 4.2, as here we

have not been careful to make sure the quantified lengths are exactly the same length
as the input, and we have been sloppy about what “half” means when the number
of variables is odd; however, this example should make it clearer that sets satisfying
Fact 4.2 exist.

Proof of Theorem 4.1. Let s,m > 0 and 0 < i < k−1. LDIFFs(Σ
p
i
)⊕̃LDIFFm(Σp

k
) is

≤p
m -hard for DIFFs(Σ

p
i )

⊕
DIFFm(Σp

k) by Lemma 3.2 and LDIFFs(Σ
p
i
)⊕̃LDIFFm(Σp

k
) is

clearly in DIFFs(Σ
p
i )

⊕
DIFFm(Σp

k). Since by assumption DIFFs(Σ
p
i )

⊕
DIFFm(Σp

k)
is closed under complementation, there exists a (polynomial-time) many-one reduction
h from LDIFFs(Σ

p
i
)⊕̃LDIFFm(Σp

k
) to its complement. That is, for all x1, x2, y1, y2 ∈

Σ∗: If h(〈x1, x2〉) = 〈y1, y2〉, then (〈x1, x2〉 ∈ LDIFFs(Σ
p
i
)⊕̃LDIFFm(Σp

k
) ⇔ 〈y1, y2〉 �∈

LDIFFs(Σ
p
i
)⊕̃LDIFFm(Σp

k
)). Equivalently, for all x1, x2, y1, y2 ∈ Σ∗:

Fact 1: If h(〈x1, x2〉) = 〈y1, y2〉, then: (x1 ∈ LDIFFs(Σ
p
i
) ⇔ x2 /∈ LDIFFm(Σp

k
))

if and only if (y1 ∈ LDIFFs(Σ
p
i
) ⇔ y2 ∈ LDIFFm(Σp

k
)).

We can use h to recognize some of LDIFFm(Σp
k
) by a DIFFm(Σp

k) algorithm. In par-
ticular, we say that a string x is easy for length n if there exists a string x1 such that
|x1| ≤ n and (x1 ∈ LDIFFs(Σ

p
i
) ⇔ y1 ∈ LDIFFs(Σ

p
i
)), where h(〈x1, x〉) = 〈y1, y2〉.

Let p be a fixed polynomial, which will be exactly specified later in the proof.
We have the following algorithm to test whether x ∈ LDIFFm(Σp

k
) in the case that

(our input) x is an easy string for length p(|x|). On input x, guess x1 with |x1| ≤
p(|x|), let h(〈x1, x〉) = 〈y1, y2〉, and accept if and only if ((x1 ∈ LDIFFs(Σ

p
i
) ⇔ y1 ∈

LDIFFs(Σ
p
i
)) ∧ y2 ∈ LDIFFm(Σp

k
)). This algorithm is not necessarily a DIFFm(Σp

k)
algorithm, but in the same way as in the proof of Theorem 3.4, we can construct
sets L′

1, L
′
2, . . . , L

′
m ∈ Σp

k such that if x is an easy string for length p(|x|), then
x ∈ LDIFFm(Σp

k
) if and only if x ∈ L′

1 − (L′
2 − (L′

3 − · · · (L′
m−1 − L′

m) · · ·)).
We say that x is hard for length n if |x| ≤ n and x is not easy for length n, i.e.,

if |x| ≤ n and, for all x1 with |x1| ≤ n, (x1 ∈ LDIFFs(Σ
p
i
) ⇔ y1 /∈ LDIFFs(Σ

p
i
)), where

h(〈x1, x〉) = 〈y1, y2〉.
If x is a hard string for length n, then x induces a many-one reduction from

(LDIFFs(Σ
p
i
))

≤n
to LDIFFs(Σ

p
i
), namely, λx1.f(x, x1), where f(x, x1) = y1, where

y1 is the unique string such that (∃y2)[h(〈x1, x〉) = 〈y1, y2〉]. We will write fx for
λx1.f(x, x1). Note that f is computable in polynomial time. (This in turn certainly
implies the true but not too relevant fact that, for each fixed x, fx is computable in
polynomial time.)



EXTENDING DOWNWARD COLLAPSE 1363

It is known that a collapse of the boolean hierarchy over Σp
i implies a collapse

of the polynomial hierarchy. A long series of papers studied the question to what
level the polynomial hierarchy collapses in that case. The best known results (e.g.,
[8, 3, 14, 23, 13], see, especially, the strongest such connection, which is that obtained
independently in [23] and [13]) conclude a collapse of the polynomial hierarchy to a
level within the boolean hierarchy over Σp

i+1. Though a hard string for length n only

induces a many-one reduction between initial segments of LDIFFs(Σ
p
i
) and LDIFFs(Σ

p
i
),

we would nevertheless like to derive at least a PΣp
k−1 algorithm for some of L†

Σp
i+2

.

The following lemma does exactly that.

Lemma 4.3. Let s,m > 0 and 0 < i < k − 1, and suppose that DIFFs(Σ
p
i )

⊕
DIFFm(Σp

k) = co(DIFFs(Σ
p
i )

⊕
DIFFm(Σp

k)). There exist a set D ∈ PΣp
i+1 and a

polynomial r such that for all n, (a) r(n + 1) > r(n) > 0 and (b) for all x ∈ Σ∗, if x
is a hard string for length r(n) then for all y ∈ (Σ∗)≤n,

y ∈ L†
Σp

i+2
⇔ 〈x, 1n, y〉 ∈ D.

We defer the proof of Lemma 4.3 and first finish the proof of the current theorem.

We will use the result of Lemma 4.3 to obtain a PΣp
k−1 algorithm that for any

string x that is hard for length p(|x|) will determine whether x ∈ LDIFFm(Σp
k
).

Let L1, L2, . . . , Lm be languages in Σp
k such that LDIFFm(Σp

k
) = L1 − (L2 − (L3 −

· · · (Lm−1 − Lm) · · ·)). Since LΣp
k

is complete for Σp
k, there exist functions g1, . . . , gm

that many-one reduce L1, . . . , Lm to LΣp
k
, respectively. Let the output sizes of all

the gj ’s be bounded by the polynomial p′, which without loss of generality satisfies
(∀m̂ ≥ 0)[p′(m̂ + 1) > p′(m̂) > 0]. So there exists a polynomial-time machine that
queries strings of length at most p′(n) on inputs of length n to LΣp

k
and that accepts

LDIFFm(Σp
k
).

A Σp
0 machine is an oracle P machine; for z ≥ 1, a Σp

z machine is a polynomial-
time-bounded z-alternation-block-bounded oracle machine with the first alternation
block existential. For example, the class of languages accepted by Σp

2 machines allowed
Σp

3 oracles is Σp
5. Let M be a Σp

k−(i+2) machine recognizing LΣp
k

with oracle queries to

L†
Σp

i+2
and running in time q′ for some polynomial q′ satisfying (∀m̂ ≥ 0)[q′(m̂+ 1) >

q′(m̂) > 0]. Let p be an easily computable polynomial satisfying (∀m̂ ≥ 0)[p(m̂+1) >
p(m̂) > 0] and for all n, p(n) ≥ r(q′(p′(n))), where r is the polynomial of Lemma 4.3.
As promised, we now have specified p.

If x is a hard string for length p(|x|), then x is also a hard string for length

r(q′(p′(|x|))). So, by Lemma 4.3, for all y ∈ (Σ∗)≤q′(p′(|x|)), y ∈ L†
Σp

i+2
⇔ 〈x, 1n, y〉 ∈

D. Define the following PΣp
k−1 set E: On input 〈x, z〉, simulate M on input z and

replace every query y to L†
Σp

i+2
by query 〈x, 1n, y〉 to D. (Note that if i < k − 2, E is

even in Σp
k−1.) Clearly, for all x ∈ Σ∗, if x is a hard string for length p(|x|), then for

all z ∈ (Σ∗)≤p′(|x|), 〈x, z〉 ∈ E if and only if z ∈ LΣp
k
.

Recall that there exists a polynomial-time machine that determines whether x ∈
LDIFFm(Σp

k
) with oracle queries of length at most p′(|x|) to LΣp

k
. If x is a hard string

for length p(|x|), we can replace every query z to LΣp
k

by query 〈x, z〉 to E. We have

now defined a PP
Σ
p
k−1

= PΣp
k−1 algorithm that for any string x that is hard for length

p(|x|) will determine whether x ∈ LDIFFm(Σp
k
).
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However, now we have an outright DIFFm(Σp
k) algorithm for LDIFFm(Σp

k
): For

1 ≤ � ≤ m define an NPΣp
k−1 machine N� as follows: On input x, the NP base

machine of N� executes the following algorithm:
1. Using its Σp

k−1 oracle, it deterministically determines whether the input x is
an easy string for length p(|x|). This can be done, as checking whether the
input is an easy string for length p(|x|) can be done by one query to Σp

i+1,
and i + 1 ≤ k − 1 by our i < k − 1 hypothesis.

2. If the previous step determined that the input is not an easy string, then the
input must be a hard string for length p(|x|). If � = 1, then simulate the

PΣp
k−1 algorithm for hard strings to determine whether x ∈ LDIFFm(Σp

k
) and

accept if and only if x �∈ LDIFFm(Σp
k
). If � > 1, then reject.

3. If the first step determined that the input x is easy for length p(|x|), then
our NP machine simulates (using itself and its oracle) the Σp

k algorithm for
L′
� on input x.

Note that the Σp
k−1 oracle in the above algorithm is being used for a number of different

sets. However, as Σp
k−1 is closed under disjoint union, this presents no problem as we

can use the disjoint union of the sets, while modifying the queries so they address the
appropriate part of the disjoint union.

It follows that, for all x, x ∈ LDIFFm(Σp
k
) if and only if x ∈ L(N1) − (L(N2) −

(L(N3)−· · · (L(Nm−1)−L(Nm)) · · ·)). Since LDIFFm(Σp
k
) is complete for coDIFFm(Σp

k),

it follows that DIFFm(Σp
k) = coDIFFm(Σp

k).
We now give the proof of Lemma 4.3. This proof should be seen in the context

of the proof of Theorem 4.1 and Fact 4.2 as some notations we are going to use are
defined there.

Proof of Lemma 4.3. Our proof generalizes a proof from [3]. Let 〈· · ·〉 be a
pairing function that maps sequences of up to 2s + 2 of strings over Σ∗ to Σ∗ having
the standard properties such as polynomial-time computability and invertibility, etc.
Let t be a polynomial such that |〈x1, x2, . . . , xj〉| ≤ t(max{|x1|, |x2|, . . . , |xj |}) for all
1 ≤ j ≤ 2s + 2 and all x1, x2, . . . , xj ∈ Σ∗. Without loss of generality let t be such
that t(n + 1) > t(n) > 0 for all n. Define

t(0)(n) = n and t(j)(n) = t(t(· · · t︸ ︷︷ ︸
j times

(n) · · ·))

for all n and all j ≥ 1.
Define r′ to be a polynomial such that r′(n+1) > r′(n) > 0 and r′(n) ≥ t(s−1)(n)

for all n. Let n be an integer. Suppose that x is a hard string for length r′(n), where
hardness is defined as in the proof of Theorem 4.1. Then (recall the sets fixed/named
in Fact 4.2), for all y such that |y| ≤ r′(n),

y ∈ LDIFFs(Σ
p
i
) ⇔ fx(y) �∈ LDIFFs(Σ

p
i
),

or equivalently

y ∈ LDIFFs(Π
p
i
) ⇔ fx(y) �∈ LDIFFs(Π

p
i
).

Recall that fx = λy.f(x, y) and that f can be computed in polynomial time. If
s > 1, let y = 〈y1, y2〉 and let fx(y) = 〈z1, z2〉. Then, for all y1, y2 ∈ Σ∗ such that
|y1| ≤ n and |y2| ≤ t(s−2)(n),

y1 ∈ LΠp
i
∧ y2 �∈ LDIFFs−1(Π

p
i
) ⇔ z1 �∈ LΠp

i
∨ z2 ∈ LDIFFs−1(Π

p
i
).(4.1)
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If s > 1, we say that y1 is s-easy for length n if and only if |y1| ≤ n and
(∃y2 |y2| ≤ t(s−2)(n))[z1 �∈ LΠp

i
]. y1 is said to be s-hard for length n if and only if

|y1| ≤ n, y1 ∈ LΠp
i
, and (∀y2 |y2| ≤ t(s−2)(n))[z1 ∈ LΠp

i
]. Observe that the above

notions are defined with respect to our hard string x, since z1 depends on x, y1, and
y2. Furthermore, according to (4.1), if y1 is s-easy for length n then y1 ∈ LΠp

i
.

Suppose there exists an s-hard string ωs for length n. Let f(x,ωs) be the function
defined by fx(〈ωs, y〉) = 〈z1, f(x,ωs)(y)〉. Note that there exists a polynomial-time
computable function f2 such that f(x,ωs) = λy.f2(x, ωs, y). If s − 1 > 1, we define
(s−1)-easy and (s−1)-hard strings in analogy to the above. If an (s−1)-hard string
exists we can repeat the process and define (s− 2)-easy and (s− 2)-hard strings and
so on. Note that the definition of j-easy and j-hard strings can only be made with
respect to our hard string x, some fixed s-hard string ωs, some fixed (s−1)-hard string
ωs−1, . . . , some fixed (j + 1)-hard string ωj+1. If we have found a sequence of strings
(ωs, ωs−1, . . . , ω2) (note that if s = 1, (ωs, ωs−1, . . . , ω2) is the empty sequence) such
that every ωj is j-hard with respect to (x, ωs, ωs−1, . . . , ωj+1), then we have for all y,
|y| ≤ n,

y ∈ LΠp
i
⇔ f(x,ωs,ωs−1,...,ω2)(y) /∈ LΠp

i
.

We say that a string y is 1-easy for length n if and only if it holds that |y| ≤ n and
f(x,ωs,ωs−1,...,ω2)(y) /∈ LΠp

i
. We define that no string is 1-hard for length n.

(x) is called a hard sequence for length n if and only if x is hard for length
r′(n). A sequence (x, ωs, ωs−1, . . . , ωj) of strings is called a hard sequence for length
n if and only if x is hard for length r′(n) and for all �, j ≤ � ≤ s, ω� is �-hard for
length n with respect to (x, ωs, ωs−1, . . . , ω�+1). Note that given a hard sequence
(x, ωs, ωs−1, . . . , ωj) for length n, the strings in (LΠp

i
)≤n divide into (j − 1)-easy and

(j − 1)-hard strings (with respect to (x, ωs, ωs−1, . . . , ωj)) for length n.
(x) is called a maximal hard sequence for length n if and only if (x) is a hard

sequence for length n and there exists no s-hard string for length n. A hard se-
quence (x, ωs, ωs−1, . . . , ωj) for length n is called a maximal hard sequence for length
n if and only if there exists no (j − 1)-hard string for length n with respect to
(x, ωs, ωs−1, . . . , ωj). When in what follows we denote a maximal hard sequence by
(x, ωs, ωs−1, . . . , ωj), we implicitly include the case that the maximal hard sequence
might be (x) or (x, ωs) or . . ..

Claim 1. There exists a set A ∈ Σp
i such that if (x, ωs, ωs−1, . . . , ωj) is a maximal

hard sequence for length n, then for all y and n satisfying |y| ≤ n,

y ∈ LΠp
i
⇔ 〈x, 1n, ωs, ωs−1, . . . , ωj , y〉 ∈ A.

Proof of Claim 1. Let (x, ωs, ωs−1, . . . , ωj) be a maximal hard sequence for length
n. If (x, ωs, ωs−1, . . . , ωj) = (x), we let j = s + 1. Note that j ≥ 2 and that the
strings in (LΠp

i
)≤n are exactly the strings of length at most n that are (j − 1)-easy

with respect to (x, ωs, ωs−1, . . . , ωj). It is immediate from the definition that testing
whether a string y is (j − 1)-easy for length n with respect to (x, ωs, ωs−1, . . . , ωj)
can be done by a Σp

i algorithm running in time polynomial in n: If j ≥ 3, check that
|y| ≤ n, guess y2, |y2| ≤ t(j−3)(n), compute f(x,ωs,ωs−1,...,ωj)(〈y, y2〉) = 〈z1, z2〉, and
accept if and only if z1 �∈ LΠp

i
. If j = 2, check |y| ≤ n, and accept if and only if

f(x,ωs,ωs−1,...,ω2)(y) /∈ LΠp
i
.

Claim 2. There exist a set B ∈ Σp
i and a polynomial p̂ such that (∀n ≥ 0)[p̂(n +

1) > p̂(n) > 0] and if (x, ωs, ωs−1, . . . , ωj) is a maximal hard sequence for length p̂(n),
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then for all y and n satisfying |y| ≤ n,

y ∈ L̃Σp
i+1

⇔ 〈x, 1p̂(n), ωs, ωs−1, . . . , ωj , y〉 ∈ B.

Proof of Claim 2. Let A ∈ Σp
i as in Claim 1. Let y be a string such that |y| ≤ n.

According to the definition of L̃Σp
i+1

,

y ∈ L̃Σp
i+1

⇔ (∃z ∈ Σ|y|)[〈y, z〉 /∈ LΣp
i
].

Recall that LΠp
i

= LΣp
i

from Fact 4.2. Define p̂ to be a polynomial such that p̂(n +

1) > p̂(n) > 0 and p̂(n) ≥ t(n) for all n. Applying Claim 1 we obtain that if
(x, ωs, ωs−1, . . . , ωj) is a maximal hard sequence for length p̂(n), then

y ∈ L̃Σp
i+1

⇔ (∃z ∈ Σ|y|)[〈x, 1p̂(n), ωs, ωs−1, . . . , ωj , 〈y, z〉〉 ∈ A].

We define B to be the set B = {〈x, 1p̂(n), ωs, ωs−1, . . . , ωj , y〉 | (∃z ∈ Σ|y|)[〈x, 1p̂(n),
ωs, ωs−1, . . . , ωj , 〈y, z〉〉 ∈ A]}. Clearly B ∈ Σp

i . This proves Claim 2.
Claim 3. There exist a set C ∈ Σp

i+1 and a polynomial p̂1 such that (∀n ≥
0)[p̂1(n + 1) > p̂1(n) > 0] and if (x, ωs, ωs−1, . . . , ω�) is a maximal hard sequence for
length p̂1(n), then for all y and n satisfying |y| ≤ n,

y ∈ L†
Σp

i+2
⇔ 〈x, 1n, ωs, ωs−1, . . . , ω�, y〉 ∈ C.

Proof of Claim 3. Let B ∈ Σp
i and p̂ be a polynomial, both as defined in Claim 2.

Let y be a string such that |y| ≤ n. According to the definition of L†
Σp

i+2
,

y ∈ L†
Σp

i+2
⇔ (∃z ∈ Σ|y|)[〈y, z〉 /∈ L̃Σp

i+1
].

Define p̂1 to be a polynomial such that p̂1(n + 1) > p̂1(n) > 0 and p̂1(n) ≥ p̂(t(n))
for all n. Applying Claim 2, we obtain that if (x, ωs, ωs−1, . . . , ω�) is a maximal hard
sequence for length p̂1(n), then

y ∈ L†
Σp

i+2
⇔ (∃z ∈ Σ|y|)[〈x, 1p̂1(n), ωs, ωs−1, . . . , ω�, 〈y, z〉〉 �∈ B].

Let C = {〈x, 1n, ωs, ωs−1, . . . , ωj , y〉 | (∃z ∈ Σ|y|)[〈x, 1p̂1(n), ωs, ωs−1, . . . , ωj , 〈y, z〉〉 �∈
B]}. Clearly C ∈ Σp

i+1. This concludes the proof of Claim 3.
We are now ready to prove the claim of Lemma 4.3. Note that the set

E = {〈x, 1n, ωs, ωs−1, . . . , ωj〉 | for all �, j ≤ � ≤ s,
ω� is �-hard for length n with respect to (x, ωs, ωs−1, . . . , ω�+1)}

is in Πp
i . Consequently, the set

F = {〈x, 1n, k〉 | (∃ ωs, ωs−1, . . . , ωs−k+2)[〈x, 1n, ωs, ωs−1, . . . , ωs−k+2〉 ∈ E]}

is in Σp
i+1. Observe that if x is a hard string for length r′(p̂1(n)), then it is the case

that 〈x, 1n, ωs, ωs−1, . . . , ωj〉 ∈ E if and only if (x, ωs, ωs−1, . . . , ωj) is a hard sequence
for length p̂1(n). Similarly, if x is a hard string for length r′(p̂1(n)), then 〈x, 1n, k〉 ∈ F
if and only if there exists a hard sequence (starting with (x, . . .)) of length k for length
p̂1(n).
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It follows from those observations and the above proven claims that if x is a hard
string for length r′(p̂1(n)), then the following algorithm will accept 〈x, 1n, y〉 if and

only if y ∈ L†
Σp

i+2
. On input 〈x, 1n, y〉 the algorithm proceeds as follows:

1. Using F as an oracle, compute the largest k, call it k̂, such that 〈x, 1n, k〉 ∈ F .
2. Then, by making one oracle query, check the following: Do there exist strings

ωs, ωs−1, . . . , ωs−k̂+2
such that 〈x, 1n, ωs, ωs−1, . . . , ωs−k̂+2

〉 ∈ E and 〈x, 1n,
ωs, ωs−1, . . . , ωs−k̂+2

, y〉 ∈ C? Though we actually are allowed as many

queries as we like (within our time bound), we note that it is not hard to
see that this checking can be done by making one query to an appropriately
chosen Σp

i+1 oracle.
3. Accept if and only if the final query returned the answer “yes.”

Though the above algorithm queries two different Σp
i+1 oracles it is clearly a PΣp

i+1

algorithm, since Σp
i+1 is closed under disjoint union. Let D be the set accepted by

this algorithm. Define r to be the polynomial such that r(n) = r′(p̂1(n)) for all n.
Note that due to the definitions of r′ and p̂1, r satisfies r(n+ 1) > r(n) > 0 for all n.
This completes the proof of Lemma 4.3.

5. Conclusions. We have proven a general downward translation of equality,
Theorem 3.3, sufficient to yield, as a corollary, the following.

Corollary 5.1. For each m > 0 and each k > 1,

P
Σp

k
m-tt = P

Σp
k

m+1-tt ⇒ DIFFm(Σp
k) = coDIFFm(Σp

k).

The corollary follows immediately from Theorem 3.3, Proposition 2.2, and Ob-
servation 2.3. Corollary 5.1 itself has an interesting further consequence. From this
corollary, it follows that for a number of previously missing cases (namely, when m > 1

and k = 2), the hypothesis P
Σp

k
m-tt = P

Σp
k

m+1-tt implies that the polynomial hierarchy
collapses to about one level lower in the boolean hierarchy over Σp

k+1 than could be
concluded from previous papers. This is because we can, thanks to Corollary 5.1,

when given P
Σp

k
m-tt = P

Σp
k

m+1-tt, invoke the powerful collapses of the polynomial hier-
archy that are known to follow from DIFFm(Σp

k) = coDIFFm(Σp
k). In particular, a

long line of research started by Kadin [17] and Wagner [28, 29] over a decade ago
has studied what collapses follow from DIFFm(Σp

k) = coDIFFm(Σp
k). The strongest

currently known connection was recently obtained, independently, by Hemaspaan-
dra, Hemaspaandra, and Hempel [13, Theorem 5.1] and by Reith and Wagner [23,
Corollary 27], namely: For all m > 0 and all k > 0, if DIFFm(Σp

k) = coDIFFm(Σp
k),

then PH = DIFFm(Σp
k)

⊕
DIFFm−1(Σ

p
k+1). Putting all the above together, one sees

that, for all cases where m > 1 and k > 1, P
Σp

k
m-tt = P

Σp
k

m+1-tt implies that the poly-
nomial hierarchy collapses to DIFFm(Σp

k)
⊕

DIFFm−1(Σ
p
k+1). This also yields that,

for all cases where m > 1 and k > 1, PΣp
k
[m] = PΣp

k
[m+1] implies that the polynomial

hierarchy collapses to DIFF2m−1(Σ
p
k)

⊕
DIFF2m−2(Σ

p
k+1). Of course, for the case

m = 1, we already know [14, 4] that, for k > 1, if PΣp
k
[1] = PΣp

k
[2] (equivalently, if

P
Σp

k
1-tt = P

Σp
k

2-tt), then Σp
k = Πp

k = PH.
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[18] J. Köbler, U. Schöning, and K. Wagner, The difference and truth-table hierarchies for NP,
RAIRO Theoret. Inform. and Appl., 21 (1987), pp. 419–435.

[19] R. Ladner, N. Lynch, and A. Selman, A comparison of polynomial time reducibilities, The-
oret. Comput. Sci., 1 (1975), pp. 103–123.

[20] A. Meyer and L. Stockmeyer, The equivalence problem for regular expressions with squaring
requires exponential space, in Proceedings of the 13th IEEE Symposium on Switching and
Automata Theory, 1972, pp. 125–129.

[21] R. Rao, J. Rothe, and O. Watanabe, Upward separation for FewP and related classes, Inform.
Process. Lett., 52 (1994), pp. 175–180.

[22] R. Rao, J. Rothe, and O. Watanabe, Corrigendum to Upward separation for FewP and
related classes, Inform. Process. Lett., 74 (2000), pp. 89.

[23] S. Reith and K. Wagner, On Boolean lowness and Boolean highness, Theoret. Comput. Sci.,
261 (2001), pp. 305–321.

[24] P. Rohatgi, Saving queries with randomness, J. Comput. System Sci., 50 (1995), pp. 476–492.
[25] V. Selivanov, Two refinements of the polynomial hierarchy, in Proceedings of the 11th An-

nual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Comput.
Sci. 775, Springer-Verlag, Berlin, 1994, pp. 439–448.

[26] V. Selivanov, Fine hierarchies and Boolean terms, J. Symbolic Logic, 60 (1995), pp. 289–317.
[27] L. Stockmeyer, The polynomial-time hierarchy, Theoret. Comput. Sci., 3 (1976), pp. 1–22.
[28] K. Wagner, Number-of-Query Hierarchies, Tech. Report 158, Institut für Mathematik, Uni-

versität Augsburg, Augsburg, Germany, 1987.
[29] K. Wagner, Number-of-Query Hierarchies, Tech. Report 4, Institut für Informatik, Universität

Würzburg, Würzburg, Germany, 1989.
[30] K. Wagner, Bounded query classes, SIAM J. Comput., 19 (1990), pp. 833–846.



EXTENDING DOWNWARD COLLAPSE 1369

[31] K. Wagner, A note on parallel queries and the symmetric-difference hierarchy, Inform. Pro-
cess. Lett., 66 (1998), pp. 13–20.

[32] C. Wrathall, Complete sets and the polynomial-time hierarchy, Theoret. Comput. Sci., 3
(1976), pp. 23–33.



SIAM J. COMPUT. c© 2005 Society for Industrial and Applied Mathematics
Vol. 34, No. 6, pp. 1370–1379

APPROXIMATING THE MINIMUM SPANNING TREE WEIGHT IN
SUBLINEAR TIME∗
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Abstract. We present a probabilistic algorithm that, given a connected graph G (represented by
adjacency lists) of average degree d, with edge weights in the set {1, . . . , w}, and given a parameter
0 < ε < 1/2, estimates in time O(dwε−2 log dw

ε
) the weight of the minimum spanning tree (MST)

of G with a relative error of at most ε. Note that the running time does not depend on the number
of vertices in G. We also prove a nearly matching lower bound of Ω(dwε−2) on the probe and time
complexity of any approximation algorithm for MST weight.

The essential component of our algorithm is a procedure for estimating in time O(dε−2 log d
ε
) the

number of connected components of an unweighted graph to within an additive error of εn. (This
becomes O(ε−2 log 1

ε
) for d = O(1).) The time bound is shown to be tight up to within the log d

ε

factor. Our connected-components algorithm picks O(1/ε2) vertices in the graph and then grows
“local spanning trees” whose sizes are specified by a stochastic process. From the local information
collected in this way, the algorithm is able to infer, with high confidence, an estimate of the number
of connected components. We then show how estimates on the number of components in various
subgraphs of G can be used to estimate the weight of its MST.

Key words. minimum spanning tree, sublinear time algorithms, randomized algorithms, ap-
proximation algorithms
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1. Introduction. Traditionally, a linear time algorithm has been held as the
gold standard of efficiency. In a wide variety of settings, however, large data sets have
become increasingly common, and it is often desirable and sometimes necessary to
find very fast algorithms which can assert nontrivial properties of the data in sublinear
time.

One direction of research that has been suggested is that of property testing [16, 8],
which relaxes the standard notion of a decision problem. Property testing algorithms
distinguish between inputs that have a certain property and those that are far (in
terms of Hamming distance or some other natural distance) from having the property.
Sublinear and even constant time algorithms have been designed for testing various
algebraic and combinatorial properties (see [15] for a survey). Property testing can
be viewed as a natural type of approximation problem, and, in fact, many of the
property testers have led to very fast, even constant time, approximation schemes
for the associated problem (cf. [8, 5, 6, 1]). For example, one can approximate the
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value of a maximum cut in a dense graph in time 2O(ε−3 log 1/ε), with relative error
at most ε, by looking at only O(ε−7 log 1/ε) locations in the adjacency matrix [8].
Other sublinear time approximation schemes have been applied to dense instances
of graph bisection, general partitioning problems, quadratic assignment, minimum
linear arrangement, and maximum acyclic subgraph and constraint satisfaction [8, 5],
as well as clustering [1, 14]. Note that typically such schemes approximate the value
of the optimal solution, for example, the size of a maxcut, without computing the
structure that achieves it, i.e., the actual cut. Sometimes, however, a solution can
also be constructed in linear or near-linear time.

In this paper, we consider the problem of finding the weight of the minimum span-
ning tree (MST) of a graph. Finding the MST of a graph has a long, distinguished
history [3, 10, 12]. Currently the best known deterministic algorithm of Chazelle [2]
runs in O(mα(m,n)) time, where n (resp., m) is the number of vertices (resp., edges)
and α is inverse-Ackermann. The randomized algorithm of Karger, Klein, and Tar-
jan [11] runs in linear expected time (see also [4, 13] for alternative models).

In this paper, we show that there are conditions under which it is possible to
approximate the weight of the MST of a connected graph in time sublinear in the
number of edges. We give an algorithm which approximates the MST of a graph G to
within a multiplicative factor of 1+ε and runs in time O(dwε−2 log dw

ε ) for any G with
average degree d and edge weights in the set {1, . . . , w}. The algorithm requires no
prior information about the graph besides w and n; in particular, the average degree
is assumed to be unknown. The relative error ε (0 < ε < 1/2) is specified as an input
parameter. Note that if d and ε are constant and the ratios of the edge weights are
bounded, then the algorithm runs in constant time. We also extend our algorithm to
the case where G has nonintegral weights in the range [1, w], achieving a comparable
running time with a somewhat worse dependence on ε.

Our algorithm considers several auxiliary graphs: If G is the weighted graph,
let us denote by G(i) the subgraph of G that contains only edges of weight at most
i. We estimate the number of connected components in each G(i). To do so, we
sample uniformly at random O(1/ε2) vertices in G(i) and then estimate the size of
the component that contains each sampled vertex by constructing “local trees” of
some appropriate size defined by a random process. Based on information about
these local trees, we can in turn produce a good approximation for the weight of the
MST of G. Our algorithm for estimating the number of connected components in a
graph runs in time O(dε−2 log d

ε )—or O(ε−2 log 1
ε ) for d = O(1)—and produces an

estimate that is within an additive error of εn of the true count. The method is based
on a similar principle as the property tester for graph connectivity given by Goldreich
and Ron [9].

We give a lower bound of Ω(dw/ε2) on the time complexity of any algorithm
which approximates the MST weight. In order to prove the lower bound, we give two
distributions on weighted graphs, where the support set of one distribution contains
graphs with MST weight at least 1 + ε times the MST weight of the graphs in the
support of the other distribution. We show that any algorithm that reads o(dw/ε2)
weights from the input graph is unlikely to distinguish between graphs from the
two distributions. We also prove a lower bound of Ω(d/ε2) on the running time of
any approximation algorithm for counting connected components. The above lower
bounds apply to the class of graphs which may contain self-loops and multiple edges.

2. Estimating the number of connected components. We begin with the
problem of estimating the number of components in an arbitrary graph G. For no-
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approx-number-connected-components(G, ε,W, d∗)
uniformly choose r = O(1/ε2) vertices u1, . . . , ur

for each vertex ui,

set βi = 0
take the first step of a BFS from ui

(*) flip a coin

if (heads) & (# vertices visited in BFS < W)

& (no visited vertex has degree > d∗)
then {resume BFS to double number of visited edges

if this allows BFS to complete

then {if mui = 0 set βi = 2
else set βi = dui2

#coin flips/#edges visited in BFS }
else go to (*) }

output ĉ = n
2r

∑r
i=1 βi

Fig. 1. Estimating the number of connected components; see main text for precise definition of
BFS.

tational convenience, we may assume that d ≥ 1: This can always be achieved by
implicitly adding a fictitious self-loop to each vertex, which does not change the
number of connected components. We present an algorithm that gives an additive
estimate of the number of components in G to within εn in O(dε−2 log d

ε ) time for any
0 < ε < 1/2. We later show how to use the ideas from our algorithm to aid in estimat-
ing the weight of the MST of a graph. We use the following notation: Given a vertex
u, du is the number of edges incident upon it (including self-loops), and mu is the
number of edges in u’s component in G. Finally, c denotes the number of connected
components. Our algorithm is built around the following simple observation.

Fact 1. Given a graph with vertex set V , for every connected component I ⊆ V ,∑
u∈I

1
2du/mu = 1 and

∑
u∈V

1
2du/mu = c .

To handle isolated vertices, we must make the convention that du/mu = 2 if
mu = 0. Our strategy is to estimate c by approximating each du/mu. Computing
them directly could take linear time, so we construct an estimator of the quantity
du/mu that has the same expected value. We approximate the number of connected
components via the algorithm given in Figure 1. The parameter W is a threshold
value which is set to 4/ε for counting connected components and somewhat higher for
MST weight estimation. We also use an estimate d∗ of the average degree d, which
we compute separately in O(d/ε) expected time (see Lemma 4). This approximation
ensures that d∗ = O(d/ε) and that at most εn/4 vertices have degree higher than d∗.

In the algorithm, doubling the number of edges does not include duplicate visits
to the same edges; in other words, at each phase the number of new edges visited is
supposed to match the number of distinct edges already visited. In our terminology,
the first step of the BFS (shorthand for breadth first search) involves the visit of the
single vertex ui and all its dui

incident edges. That is, unless dui
> d∗, in which case

we abort the BFS.
We now bound the expectation and variance of the estimator βi for a fixed i. If the

BFS from ui completes, the number of coin flips associated with it is �log(mui
/dui

)�,
and the number of distinct edges visited is mui . Let S denote the set of vertices
that lie in components with fewer than W vertices all of which are of degree at most
d∗. If ui �∈ S, then βi = 0; otherwise, it is 2�log(mui

/dui
)�dui/mui with probability
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2−�log(mui
/dui

)� (and 2 if mui
= 0) and 0 otherwise. Since βi ≤ 2, the variance of βi

is

varβi ≤ Eβ2
i ≤ 2Eβi =

2

n

∑
u∈S

du
mu

≤ 4c

n
.

Then the variance of ĉ is bounded by

var ĉ = var
( n

2r

∑
i

βi

)
=

n2

4r2
· r · varβi ≤

nc

r
.(1)

By our choice of W = 4/ε and d∗, there are at most εn/2 components with vertices
not in S, and so

c− εn

2
≤ E ĉ ≤ c .(2)

Furthermore, by Chebyshev,

Prob[ |ĉ− E ĉ| > εn/2 ] <
var ĉ

(εn/2)2
≤ 4c

ε2rn
.(3)

Choosing r = O(1/ε2) ensures that, with constant probability arbitrarily close to 1,
our estimate ĉ of the number of connected components deviates from the actual value
by at most εn.

The expected number of edges visited in a given iteration of the “for loop” is
O(dui logM), where M is the maximum number of edges visited, which is at most
Wd∗ = O(d/ε2). Therefore, the expected running time of the entire algorithm is

O(r)

n

∑
u∈V

du log(Wd∗) = O(dr log(Wd∗)) = O

(
dε−2 log

d

ε

)
,(4)

not counting the O(d/ε) time needed for computing d∗.
As stated, the algorithm’s running time is randomized. If d is known, how-

ever, we can get a deterministic running time bound by stopping the algorithm after
Cdε−2 log d

ε steps and outputting 0 if the algorithm has not yet terminated. This
event occurs with probability at most O(1/C), which is a negligible addition to the
error probability. Thus we have the following theorem.

Theorem 2. Let c be the number of components in a graph with n vertices. Then
Algorithm approx-number-connected-components runs in time O(dε−2 log d

ε ) and with
probability at least 3/4 outputs ĉ such that |c− ĉ| ≤ εn.

Finetuning the algorithm. If we proceed in two stages, first estimating c within
a constant factor, and then in a second pass using this value to optimize the size
of the sample, we can lower the running time to O((ε + c/n)dε−2 log d

ε ). This is a
substantial improvement for small values of c. First, run the algorithm for r = O(1/ε).
By Chebyshev and (1, 2),

Prob

[
|ĉ− E ĉ| > E ĉ + εn

2

]
<

4nc

r(c + εn/2)2
≤ 4n

r(c + εn/2)
,

which is arbitrarily small for rε large enough. Next, we use this approximation ĉ to
“improve” the value of r. We set r = A/ε+Aĉ/(ε2n) for some large enough constant



1374 B. CHAZELLE, R. RUBINFELD, AND L. TREVISAN

A and we run the algorithm again, with the effect of producing a second estimate c∗.
By (2, 3),

Prob[ |c∗ − E c∗| > εn/2 ] <
4c

ε2rn
≤ 8c

Aεn + AE ĉ
≤ 8

A
,

and so, with overwhelming probability, our second estimate c∗ of the number of con-
nected components deviates from c by at most εn. So we have the following theorem.

Theorem 3. Let c be the number of components in a graph with n vertices. Then
there is an algorithm that runs in time O(dε−2 log d

ε ) and with probability at least 3/4
outputs ĉ such that |c− ĉ| ≤ εn.

Approximating the degree. We show how to compute the desired estimate d∗ of
the average degree d. Pick C/ε vertices of G at random, for some large constant C,
and set d∗ to be the maximum degree among them. To find the degree of any one
of them takes O(d) time on average, and so the expected running time is O(d/ε).
Imagine the vertex degrees sorted in nonincreasing order, and let ρ be the rank of d∗.
With high probability, ρ = Θ(εn). To see why, we easily bound the probability that
ρ exceeds εn by (1 − ε)C/ε ≤ e−C . On the other hand, observe that the probability
that ρ > εn/C2 is at least (1 − ε/C2)C/ε ≥ e−2/C > 1 − 2/C.

Lemma 4. In O(d/ε) expected time, we can compute a vertex degree d∗ that, with
high probability, is the kth largest vertex degree for some k = Θ(εn).

Note that k = Ω(εn) alone implies that d∗ = O(d/ε), and so, if we scale ε by the
proper constant, we can ensure that at most εn/4 vertices have degree higher than
d∗, and thus conform to the requirements of approx-number-connected-components.

3. Approximating the weight of an MST. In this section we present an
algorithm for approximating the value of the MST in bounded weight graphs. We
are given a connected graph G with average degree d and with each edge assigned an
integer weight between 1 and w. We assume that G is represented by adjacency lists
or, for that matter, any representation that allows one to access all edges incident to
a given vertex in O(d) time. We show how to approximate the weight of the MST of
G with a relative error of at most ε.

In section 3.1 we give a new way to characterize the weight of the MST in terms
of the number of connected components in subgraphs of G. In section 3.2 we give
the main algorithm and its analysis. Finally, section 3.3 addresses how to extend the
algorithm to the case where G has nonintegral weights.

3.1. MST weight and connected components. We reduce the computation
of the MST weight to counting connected components in various subgraphs of G. To
motivate the new characterization, consider the special case when G has only edges
of weight 1 or 2 (i.e., w = 2). Let G(1) be the subgraph of G consisting precisely of
the edges of weight 1, and let n1 be its number of connected components. Then, any
MST in G must contain exactly n1 − 1 edges of weight 2, with all the others being of
weight 1. Thus, the weight of the MST is exactly n − 2 + n1. We easily generalize
this derivation to any w.

For each 0 ≤ � ≤ w, let G(�) denote the subgraph of G consisting of all the edges
of weight at most �. Define c(�) to be the number of connected components in G(�)

(with c(0) defined to be n). By our assumption on the weights, c(w) = 1. Let M(G)
be the weight of the MST of G. Using the above quantities, we give an alternate way
of computing the value of M(G) in the following claim.
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approx-MST-weight(G, ε)
For i = 1, . . . , w − 1

ĉ(i) = approx-number-connected-components(G(i), ε, 4w/ε, d∗)

output v̂ = n− w +
∑w−1

i=1 ĉ(i)

Fig. 2. Approximating the weight of the MST.

Claim 5. For integer w ≥ 2,

M(G) = n− w +
w−1∑
i=1

c(i) .

Proof. Let αi be the number of edges of weight i in an MST of G. (Note that
αi is independent of which MST we choose [7].) Observe that for all 0 ≤ � ≤ w − 1,∑

i>� αi = c(�) − 1; therefore

M(G) =

w∑
i=1

iαi =

w−1∑
�=0

w∑
i=�+1

αi = −w +

w−1∑
�=0

c(�) = n− w +

w−1∑
i=1

c(i).

Thus, computing the number of connected components allows us to compute the
weight of the MST of G.

3.2. The main algorithm. Our algorithm approximates the value of the MST
by estimating each of the c(�)’s. The algorithm is given in Figure 2. Note that we do
not set W = 4/ε in the call to the connected-components algorithm. For the same
reason (to be explained below) we need a different estimate of the degree d∗. We use
Lemma 4 just once to compute, in O(dw/ε) time, an estimate d∗ = O(dw/ε) such
that at most εn/4w vertices have degree higher than d∗.

In the following, we assume that w/n < 1/2, since otherwise we might as well
compute the MST explicitly, which can be done in O(dn) time with high probabil-
ity [11].

Theorem 6. Let w/n < 1/2. Let v be the weight of the MST of G. Algorithm
approx-MST-weight runs in time O(dwε−2 log dw

ε ) and outputs a value v̂ that, with
probability at least 3/4, differs from v by at most εv.

Proof. Let c =
∑w−1

i=1 c(i). Repeating the previous analysis, we find that (1), (2)
become

c(i) − εn

2w
≤ E ĉ(i) ≤ c(i) and var ĉ(i) ≤ nc(i)

r
.

By summing over i, it follows that c − εn/2 ≤ E ĉ ≤ c and var ĉ ≤ nc/r, where

ĉ =
∑w−1

i=1 ĉ(i). Choosing rε2 large enough, by Chebyshev we have

Prob[ |ĉ− E ĉ| > (n− w + c)ε/3 ] <
9nc

rε2(n− w + c)2
,

which is arbitrarily small. It follows that, with high probability, the error on the
estimate satisfies

|v − v̂| = |c− ĉ| ≤ εn

2
+

ε(n− w + c)

3
≤ εv.
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Since, by (4), the expected running time of each call to approx-number-connected-
components is O(dr log(Wd∗)), the total expected running time is O(dwε−2 log dw

ε ).
As before, if we know d, then the running time can be made deterministic by stopping
execution of the algorithm after Cdwε−2 log dw

ε steps for some appropriately chosen
constant C.

3.3. Nonintegral weights. Suppose the weights of G are all in the range [1, w],
but are not necessarily integral. To extend the algorithm to this case, one can multiply
all the weights by 1/ε and round each weight to the nearest integer. Then one can
run the above algorithm with error parameter ε/2 and with a new range of weights
[1, �w/ε�] to get a value v. Finally, output εv. The relative error introduced by the
rounding is at most ε/2 per edge in the MST and hence ε/2 for the whole MST, which
gives a total relative error of at most ε. The running time of the above algorithm is
O(dwε−3 log w

ε ).

4. Lower bounds. We prove that our algorithms for estimating the MST weight
and counting connected components are essentially optimal. Our lower bounds apply
to graphs that may contain self-loops and multiple edges.

Theorem 7. Any probabilistic algorithm for approximating, with relative error ε,
the MST weight of a connected graph with average degree d and weights in {1, . . . , w}
requires Ω(dwε−2) edge weight lookups on average. It is assumed that w > 1 and
C
√
w/n < ε < 1/2, for some large enough constant C.

We can obviously assume that w > 1; otherwise the MST weight is always n− 1
and no work is required. The lower bound on ε might seem restrictive, but it is
not at all. Indeed, by monotonicity on ε, the theorem implies a lower bound of
Ω(dw(C

√
w/n)−2) for any ε ≤ C

√
w/n. But this is Ω(dn), which we know is tight.

Therefore, the case C
√
w/n < ε is the only one that deserves attention.

Theorem 8. Given a graph with n vertices and average degree d, any probabilistic
algorithm for approximating the number of connected components with an additive
error of εn requires Ω(dε−2) edge lookups on average. It is assumed that C/

√
n < ε <

1/2, for some large enough constant C.

Again, note that the lower bound on ε is nonrestrictive since we can always solve
the problem exactly in O(dn) time. (For technical reasons, we allow graphs to have
self-loops.)

Both proofs revolve around the difficulty of distinguishing between two nearby
distributions. For any 0 < q ≤ 1/2 and s = 0, 1, let Ds

q denote the distribution
induced by setting a 0/1 random variable to 1 with probability qs = q(1 + (−1)sε).
We define a distribution D on n-bit strings as follows: (1) pick s = 1 with probability
1/2 (and 0 else); (2) then draw a random string from {0, 1}n (by choosing each bi
from Ds

q independently). Consider a probabilistic algorithm that, given access to such
a random bit string, outputs an estimate on the value of s. How well can it do?

Lemma 9. Any probabilistic algorithm that can guess the value of s with a prob-
ability of error below 1/4 requires Ω(ε−2/q) bit lookups on average.

Proof. By Yao’s minimax principle, we may assume that the algorithm is deter-
ministic and that the input is distributed according to D. It is intuitively obvious
that any algorithm might as well scan b1b2 · · · until it decides it has seen enough to
produce an estimate of s. In other words, there is no need to be adaptive in the choice
of bit indices to probe (but the running time itself can be adaptive). To see why is
easy. An algorithm can be modeled as a binary tree with a bit index at each node
and a 0/1 label at each edge. An adaptive algorithm may have an arbitrary set of bit
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indices at the nodes, although we can assume that the same index does not appear
twice along any path. Each leaf is naturally associated with a probability, which is
that of a random input from D following the path to that leaf. The performance
of the algorithm is entirely determined by these probabilities and the corresponding
estimates of s. Because of the independence of the random bi’s, we can relabel the
tree so that each path is a prefix of the same sequence of bit probes b1b2 · · ·. This
oblivious algorithm has the same performance as the adaptive one.

We can go one step further and assume that the running time is the same for
all inputs. Let t∗ be the expected number of probes, and let 0 < α < 1 be a small

constant. With probability at most α, a random input takes time ≥ t
def
= t∗/α. Suppose

that the prefix of bits examined by the algorithm is b1 · · · bu. If u < t, simply go on
probing bu+1 · · · bt without changing the outcome. If u > t, then stop at bt and output
s = 1. Thus, by adding α to the probability of error, we can assume that the algorithm
consists of looking up b1 · · · bt regardless of the input string.

Let ps(b1 · · · bt) be the probability that a random t-bit string chosen from Ds
q is

equal to b1 · · · bt. The probability of error satisfies

perr ≥
1

2

∑
b1···bt

min
s

ps(b1 · · · bt).

Obviously, ps(b1 · · · bt) depends only on the number of ones in the string, so if ps(k)
denotes the probability that b1 + · · · + bt = k, then

perr ≥
1

2

t∑
k=0

min
s

ps(k).(5)

By the normal approximation of the binomial distribution,

ps(k) → 1√
2πtqs(1 − qs)

e−
(k−tqs)2

2tqs(1−qs)

as t → ∞. This shows that ps(k) = Ω(1/
√
qt ) over an interval Is of length Ω(

√
qt )

centered at tqs. If qtε2 is smaller than a suitable constant γ0, then |tq0 − tq1| is small
enough that I0 ∩ I1 is itself an interval of length Ω(

√
qt ); therefore perr = Ω(1). This

shows that if the algorithm runs in expected time γ0ε
−2/q, for some constant γ0 > 0

small enough, then it will fail with probability at least some absolute constant. By
setting α small enough, we can make that constant larger than 2α. This means that,
prior to uniformizing the running time, the algorithm must still fail with probability
α.

Note that by choosing γ0 small enough, we can always assume that α > 1/4.
Indeed, suppose by contradiction that even for an extremely small γ1, there is an
algorithm that runs in time at most γ1ε

−2/q and fails with probability ≤ 1/4. Then
run the algorithm many times and take a majority vote. In this way we can bring the
failure probability below α for a suitable γ1 = γ1(α, γ0) < γ0 and therefore reach a
contradiction. This means that an expected time lower than ε−2/q by a large enough
constant factor causes a probability of error at least 1/4.

Proof of Theorem 8. Consider the graph G consisting of a simple cycle of n vertices
v1, . . . , vn. Pick s ∈ {0, 1} at random and take a random n-bit string b1 · · · bn with
bits drawn independently from Ds

1/2. Next, remove from G any edge (vi, vi+1 mod n)

if bi = 0. Because ε > C/
√
n, the standard deviation of the number of components,
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which is Θ(
√
n ), is sufficiently smaller than εn so that with overwhelming probability

any two graphs derived from D0
1/2 and D1

1/2 differ by more than εn/2 in their numbers
of connected components. That means that any probabilistic algorithm that estimates
the number of connected components with an additive error of εn/2 can be used to
identify the correct s. By Lemma 9, this requires Ω(ε−2) edge probes into G on
average. Replacing ε by 2ε proves Theorem 8 for graphs of average degree about 1.

For values of d smaller than one, we may simply build a graph of the previous type
on a fraction d of the n vertices and leave the others isolated. The same lower bound
still holds as long as dε2n is bigger than a suitable constant. If d > 1, then we may
simply add d±O(1) self-loops to each vertex in order to bring the average degree up to
d. Each linked list thus consists of two “cycle” pointers and about d “loop” pointers.
If we place the cycle pointers at random among the loop pointers, then it takes Ω(d)
probes on average to hit a cycle pointer. If we single out the probes involving cycle
pointers, it is not hard to argue that the probes involving cycle pointers are alone
sufficient to solve the connected-components problem on the graph deprived of its
loops: One expects at most O(T/d) such probes, and therefore T = Ω(dε−2).

Proof of Theorem 7. The input graph G is a simple path of n vertices. Pick
s ∈ {0, 1} at random and take a random (n− 1)-bit string b1 · · · bn−1 with bits drawn
independently from Ds

q , where q = 1/w. Assign weight w (resp., 1) to the ith edge
along the path if bi = 1 (resp., 0). The MST of G has weight n−1+(w−1)

∑
bi, and

so its expectation is Θ(n). Also, note that the difference Δ in expectations between
drawing from D0

q or D1
q is Θ(εn).

Because ε > C
√
w/n, the standard deviation of the MST weight, which is

Θ(
√
nw ), is sufficiently smaller than Δ that with overwhelming probability any two

graphs derived from D0
q and D1

q differ by more than Δ/2 in MST weight. Therefore,
any probabilistic algorithm that estimates the weight with a relative error of ε/D, for
some large enough constant D, can be used to identify the correct s. By Lemma 9,
this means that Ω(wε−2) probes into G are required on average.

In this construction, d = 2 − 2/n (the smallest possible value for a connected
graph). For higher values of d, we join each vertex in the cycle to about d− 2 others
(say, at distance > 2 to avoid introducing multiple edges) to drive the degree up to
d. Also, as usual, we randomize the ordering in each linked list. Assign weight w + 1
to the new edges. (Allowing the maximum weight to be w + 1 instead of w has no
influence on the lower bound for which we are aiming.) Clearly none of the new edges
are used in the MST, so the problem is the same as before, except that we now
have to find our way amidst d − 2 spurious edges, which takes the complexity to
Ω(dwε−2).

5. Open questions. Our algorithm for the case of nonintegral weights requires
extra time. Is this necessary? Can the ideas in this paper be extended to finding
maximum weighted independent sets in general matroids? There are now a small
number of examples of approximation problems that can be solved in sublinear time;
what other problems lend themselves to sublinear approximation schemes? More
generally, it would be interesting to gain a more global understanding of what can
and cannot be approximated in sublinear time.
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BINARY SPACE PARTITIONS OF ORTHOGONAL SUBDIVISIONS∗

JOHN HERSHBERGER† , SUBHASH SURI‡ , AND CSABA D. TÓTH§

Abstract. We consider the problem of constructing binary space partitions (BSPs) for orthog-
onal subdivisions (space-filling packings of boxes) in d-space. We show that a subdivision with n
boxes can be refined into a BSP of size O(n(d+1)/3) for all d ≥ 3 and that such a partition can be
computed in time O(K logn), where K is the size of the BSP produced. Our upper bound on the
BSP size is tight for 3-dimensional subdivisions; in higher dimensions, this is the first nontrivial re-
sult for general full-dimensional boxes. We also present a lower bound construction for a subdivision
of n boxes in d-space for which every axis-aligned BSP has Ω(nβ(d)) size, where β(d) converges to
(1 +

√
5)/2 as d → ∞.

Key words. binary space partitions, tilings
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1. Introduction. Many algorithms in computational geometry, robotics, and
computer graphics decompose a set of objects and the ambient space for efficient
processing of certain queries. A binary space partition (BSP) is a popular scheme for
constructing such decompositions. Given an open convex region of space containing
a set of pairwise disjoint objects S, a BSP partitions the region and objects with a
cutting hyperplane, then recursively partitions the two resulting subproblems. The
process stops when each open partition region intersects at most one object of S. See
Figure 1 in section 2 for an example in two dimensions. In the ideal case, the number
of regions in the final BSP would be at most n, the number of input objects. In
general, however, the recursive partitioning may fracture input objects many times,
and the size of the partition can be much larger than n.

BSPs were introduced in the computer graphics community [10, 16] to solve hid-
den surface removal problems. But they are now used for a wide variety of applica-
tions, including set operations in solid modeling, visibility preprocessing for interac-
tive walkthroughs, shadow generation, and cell decomposition methods in robotics,
to name only a representative sample [2, 6, 7, 12, 13, 17]. The size of a BSP is the
total number of pieces the input objects are partitioned into by the BSP, and it is a
measure of the fragmentation caused by the partition. Because BSPs are often used
to decompose large data sets, their size can be crucial to the performance of the ap-
plications that rely on them. Theoretical analyses have therefore focused primarily
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on BSP algorithms that produce small size partitions.

A theoretical study of BSPs began in earnest with two influential papers by Pa-
terson and Yao [14, 15]. In two dimensions, Paterson and Yao gave an O(n) size BSP
construction for orthogonal (axis-parallel rectangular) objects, and an O(n log n) size
construction for general polygons with a total of n edges. Recently, Tóth [18] showed
an almost-matching lower bound of Ω(n log n/ log log n) for arbitrary polygons in the
plane. In three dimensions, Paterson and Yao gave an O(n3/2) size BSP construction
for orthogonal boxes, and an O(n2) size construction for arbitrarily oriented polyhe-
dra with a total of n edges. They also gave lower bound constructions matching these
upper bounds.

The results of Paterson and Yao have been extended and improved in several
important directions, yet the complexity of BSPs in three and higher dimensions is
still not fully understood. We briefly review the previous research most relevant to our
work. De Berg shows that any uncluttered scene of n objects in d-space admits a linear
size BSP [4]; informally, “uncluttered” means that any cubical region intersecting more
than a constant number of objects must include a vertex of the bounding box of one
of the objects. For instance, a collection of hypercubes (or, more generally, of fat
objects) is uncluttered. Such an assumption may be practical in some situations, but
it seems quite restrictive in general.

Paterson and Yao [14] consider the complexity of BSPs for 1-dimensional ob-
jects (line segments) in d-space, and show that a worst-case set of n axis-aligned line
segments requires a BSP of size Θ(nd/(d−1)) for d > 2. Dumitrescu, Mitchell, and
Sharir [8] give an upper bound of O(nd/(d−k)) for the BSP size of disjoint k-dimensional
orthogonal objects in d-space for 1 ≤ k < d. This bound is asymptotically tight for
k < d/2. The only known tight bound for orthogonal k-flats in d-space with k ≥ d/2
is the case d = 4 and k = 2, where a Θ(n5/3) bound has been shown [8].

The general O(nd/(d−k)) upper bound does not say anything about full-dimensional
boxes. Berman, DasGupta, and Muthukrishnan [5] show that every set of n axis-
aligned rectangles in the plane has a BSP of size at most 3n. The best known lower
bound, 7

3n − o(n), is due to Dumitrescu, Mitchell, and Sharir [8]. If the rectangles
tile the plane, however, Berman, DasGupta, and Muthukrishnan [5] prove an upper
bound of 2n− 1, matching a lower bound of 2n− o(n) by Dumitrescu, Mitchell, and
Sharir [8] (originally designed for axis-parallel line segments). For full-dimensional
axis-aligned boxes in d-space, d ≥ 2, one can obtain an upper bound of O(nd/2) by
using the result of [8] in conjunction with an observation of Paterson and Yao [15]
that a set of n full-dimensional boxes in d-space has the same BSP complexity in
certain cases as the set of their (d− 2)-dimensional faces.

Agarwal et al. [1] consider BSPs of 2-dimensional fat rectangles in 3-space—each
rectangle has sides parallel to the axes and a constant aspect ratio. Agarwal et al.
[1] show that a collection of n such rectangles admits a BSP of size n2O(

√
log n). This

bound was recently improved to O(n log8 n) by Tóth [19].

Our results. In an attempt to understand the true complexity of d-dimensional
BSPs, we consider a natural but restricted setting: orthogonal subdivisions. An or-
thogonal subdivision is a collection of interior-disjoint rectilinear boxes that fill their
containing space. (That is, a subdivision is a space-filling packing of boxes.) Our
interest in subdivisions is motivated by the observation that all the known lower
bound constructions involve intertwined rod-like objects that create many “holes.”
This raises the following natural question: What is the complexity of the BSP for
polygonal scenes in which the complement space can be “tiled” with few boxes, say,
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a linear number? Our main result is the following theorem.

Theorem 1.1. Given an orthogonal subdivision with n boxes in d-space, we can
construct a BSP for it of size O(n(d+1)/3) for any d ≥ 2.

Thus, for collections of orthogonal objects that fill their containing space, we are
able to improve the worst-case bound on the BSP size from O(nd/2) to O(n(d+1)/3).
As a corollary, for any collection of n orthogonal boxes whose complement space can
be tiled with m boxes, there exists a BSP of size O((n+m)(d+1)/3). Our subdivision
BSP can be constructed in time O(K log n), where K is the output size. We also
exhibit a lower bound construction for an important class of BSPs: An axis-aligned
BSP is a BSP in which every cutting hyperplane is orthogonal to one of the axes. We
describe a subdivision that requires an axis-aligned BSP of size Ω(nβ(d)) in R

d, where
β(d) converges to (1 +

√
5)/2 as d goes to infinity. The value of β(d) is 4/3 for d = 3,

and thus our upper bound is tight in 3-space.

Our BSP algorithms are quite simple and therefore easy to implement. Their
key component is a round robin partitioning scheme (in which cutting hyperplanes
orthogonal to the coordinate axes are selected in a round robin order). They follow
a conventional scheme—a round robin partitioning phase followed by efficient BSP
construction in the terminal regions. Such a two-phase partitioning framework has
been used earlier in several papers [1, 8], but in each case it requires problem-specific
insights to find the right stopping rule for the round robin phase as well as an analysis
for the terminal case. In our case, we show that “round robin cutting until no interior
(d−3)-dimensional face remains” is a good stopping rule. One tricky part of analyzing
this round robin scheme is that each cut may also increase the number of (d−3)-faces.
The second phase requires efficient BSPs for regions that do not contain a (d−3)-face.
To this end, we prove the following theorem, which may have independent appeal.

Theorem 1.2. Consider a box R in d-space and a subdivision of R into n boxes
such that no (d − 3)-dimensional face of any box intersects the interior of R. Then
there is a BSP of size O(n) for this subdivision.

2. Geometric preliminaries. A d-dimensional box B is the cross product of d
real-valued intervals. Given a box R and a set of boxes S = {B1, . . . , Bn}, we say that
S is a subdivision of R if each Bi lies in R, the union of the Bi’s covers R, and the Bi’s
have pairwise disjoint interiors. Thus, an orthogonal subdivision of R is a packing by
boxes that completely fills R. In this paper, we consider BSPs for d-dimensional box
subdivisions only.

A BSP for a problem instance (R,S) partitions R with a hyperplane into sub-
boxes R1 and R2 and recursively solves the problems (R1, S1) and (R2, S2), where
Si = S ∩ Ri is the set of fragments of the input objects contained in Ri for i = 1, 2.
The partitioning stops when every subproblem contains at most one object (fragment).
A BSP is naturally modeled as a binary tree: the root corresponds to the problem
(R,S), and its two children correspond to the subproblems (R1, S1) and (R2, S2).
Every internal node stores the splitting hyperplane for the corresponding problem;
the leaf nodes correspond to the regions in the final partition. See Figure 1 for a
simple example in two dimensions. For ease of reference, we will often call R the
container box for the problem instance. Thus, Ri is the container box for the ith
subproblem, for i = 1, 2, produced at the root.

Free cuts are important for the construction of small BSPs. A free cut is a hyper-
plane that separates the object set without splitting any object. When a subproblem
(R,S) has a free cut, it is always worth splitting the subproblem with the free cut,
since the split does necessary work—separating objects that must be separated by



BSPS OF ORTHOGONAL SUBDIVISIONS 1383

B 3

B 4

B 5

B 1

B 2

h1

h5

h4

h3

h2

h1

h2 h3

h4

h5

Fig. 1. An orthogonal subdivision S (left), a BSP for S (middle), and the corresponding binary
tree (right).

the BSP—without increasing the complexity of the subproblems (and hence the final
BSP size). In Figure 1, the cuts along h2, h3, h4, and h5 are free cuts.

A d-dimensional box B has 2d vertices, d2d−1 edges, and 2d facets. B also has
many faces of intermediate dimensions j for 2 ≤ j ≤ d − 2. A k-face of B is a
k-dimensional box, and it can be characterized as follows: a k-face of B is obtained
from the cross product B by fixing (d− k) coordinates at one of the two extremes of
the corresponding intervals; the remaining k coordinates maintain the same extent as
B. Thus, vertices are the 0-faces, edges are the 1-faces, and facets are the (d − 1)-
faces of B. It is easy to see that every k-face of the box B, for 0 ≤ k < d, lies on the
boundary of B. Our algorithm exploits the structure of boxes whose extents in certain
dimensions match those of the container box. We therefore introduce the notions of
pass-through and k-rod.1

Consider a container box R and a box B in a subdivision of R. We say that B
is pass-through for R in dimension j if the extent of B in dimension j equals that of
R. We say that box B is a k-rod in R if B is pass-through in exactly k dimensions.
If B is a k-rod in R, then its orientation σ(B) is the set of the k dimensions in which
B is pass-through for R. Whenever the container box R is clear from the context, we
will simply say that B is a k-rod, without mentioning R. Figure 2 illustrates k-rods
in three dimensions, for k = 1, 2.

x 1

x 2

x 3

Fig. 2. A 1-rod of orientation {x2} on the left and a 2-rod of orientation {x1, x3} on the right.

Suppose B is a rod in a box subdivision of some container R. If B is a d-rod,
then, of course, B fills up R, and it is the only box in R. If B is a (d − 1)-rod,
with orientation σ(B) = {x1, x2, . . . , xd−1}, then at least one of the two facets of B
orthogonal to the xd-axis intersects the interior of R, separating it into two parts. A

1The notion of pass-through also appears in [8]. Our analysis, however, requires a more detailed
investigation into the properties of rods.
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cut along this facet is a free cut for the subdivision of R. For instance, in the right
half of Figure 2, the box B is a 2-rod in 3-space, and there are free cuts along its top
and bottom faces. We summarize this fact for future reference.

Lemma 2.1. If a box subdivision contains a (d − 1)-rod, then there is a free cut
along one of the facets of that rod.

We next establish an elementary but useful characterization of k-rods: a box B is
a k-rod in a container R if and only if every j-face of B is disjoint from the interior of
R, for all j < k. For instance, in Figure 2 (right), B is a 2-rod, and all of its vertices
and edges (0- and 1-faces) lie on the boundary of the container box. We call a face
an interior face if it intersects the interior of the container box.

Lemma 2.2. Suppose B is a box in the subdivision of R. Then B is a k-rod if
and only if B has no interior j-faces for j < k and at least one interior j-face for
every j such that k ≤ j ≤ d.

Proof. Consider a k-rod B. Let F be one of its j-faces, where j < k. By
definition, F has a fixed coordinate in (d − j) dimensions and the same extent as B
in the remaining j dimensions. Because B is a k-rod, it is pass-through for R in k
dimensions, and k ≥ j + 1. Thus, at least one of the fixed coordinates of F is at one
of the extremes of a pass-through dimension of B, and so F lies on the boundary of
R. Now consider j such that k ≤ j ≤ d. Choose F to be a j-face whose varying
coordinates include all the pass-through directions of the k-rod B, and whose fixed
coordinates are chosen inside the corresponding intervals of the cross product of the
container box R (possible because B is pass-through in none of those d − j ≤ d − k
dimensions). By construction, this j-face F intersects the interior of R.

3. An upper bound in R
3. Our first result is an optimal BSP for 3-dimensional

subdivisions. Our BSP has worst-case size O(n4/3), which is optimal because a mod-
ified Paterson–Yao construction gives a matching lower bound for orthogonal sub-
divisions (see section 6). The 3-dimensional bound is central to our main result
because our algorithm for constructing the d-dimensional BSP uses projection of the
d-dimensional subdivision onto an appropriate 3-space (after a suitable number of
round robin cuts).

Our algorithm (Algorithm 3-BSP) is a round robin partitioning scheme that itera-
tively slices the subdivision by planes passing through interior box vertices, producing
a collection of smaller subdivisions, each of which ultimately contains only j-rods, for
j ≥ 1. A similar round robin scheme is also used by Murali [11] in his construction of
BSPs for fat axis-aligned rectangles in R

3. Interestingly, while Murali also achieves
an O(n4/3) size BSP, that complexity is suboptimal for his problem. In our case, the
round robin algorithm produces an optimal BSP.

The partition tree T created by Algorithm 3-BSP is not a BSP—the cells output
by the algorithm may contain multiple boxes. These terminal regions, however, do not
contain any vertices of the subdivision. We can refine each such box into a proper BSP,
with only a constant factor increase in complexity, and append the tree associated
with this refinement to each leaf of T . Therefore, the key to efficiency is bounding
the total complexity of all the regions produced by the slicing procedure.

Suppose we have a container box R and its subdivision S = {B1, B2, . . . , Bn}
into n boxes, so that there are m vertices in the interior of R; clearly, m ≤ 8n. Our
partitioning scheme cuts the subdivision using planes normal to each of the three axes
in turn, cycling through the three possible orientations in a round robin fashion. In
the following pseudocode description of our algorithm, we use the term median xj

plane of a point set to denote the plane normal to the xj-axis and passing through
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the median xj coordinate of the point set.

Algorithm 3-BSP.

• Input is the box subdivision S = {B1, B2, . . . , Bn} of a container box R.
• Initialize i = 0, and C0 = {R}.
• While there is a container box C ∈ Ci with a subdivision vertex in its interior,

do
1. For each container box C ∈ Ci with at least one vertex of the subdivision

in its interior, split C by the median xp plane of the vertices in the
interior of C, where p = 1 + (i mod 3).

2. Apply all possible free cuts.
3. Let Ci+1 be the set of all container boxes resulting from these cuts, and

set i := i + 1.
• Return Ci.

Using an argument similar to one of Paterson and Yao [15] and Murali [11],
we derive an upper bound on the total number of box fragments generated by our
algorithm by considering how many times the edges of the original subdivision S are
cut.

Lemma 3.1. Consider the partition tree T generated by Algorithm 3-BSP. At
depth i in T , there are O(n2i/3) fragments of the original edges of S.

Proof. Each edge is parallel to one of the three directions x1, x2, and x3. It can be
cut only by planes orthogonal to its direction. Since our splitting planes cycle through
the three directions, an edge can be cut at every third level of T . Thus, the number
of fragments of a given original edge at most doubles at every third level. Since the
number of edges in the subdivision at the root of T is O(n), the total number of edge
fragments at depth i is O(n2i/3).

Lemma 3.2. Suppose S is a 3-dimensional box subdivision with n boxes, and
m = O(n) vertices lie in the interior of the container box. Then the partition created
by Algorithm 3-BSP produces O(nm1/3) = O(n4/3) fragments of the input boxes.

Proof. We analyze the algorithm in rounds of three consecutive steps: round j
corresponds to the steps i = 3j, 3j+1, 3j+2. In one round, cuts are made in all three
directions, and a box of a subproblem can be split into at most eight pieces.

We observe that if a box is split into a subproblem, then at least one edge of
the box must be interior to the container box for this subproblem. This is because
only a 3-rod or a 2-rod can have all its edges on the boundary of the container box
(Lemma 2.2), but no 3-rods are ever split and all 2-rods are eliminated in step 2 by
free cuts. Lemma 3.1 implies that O(n2j) box fragments can be further partitioned
at round j. Since there is no vertex in the interior of any container cell after �logm�
steps, the algorithm terminates in

⌈
1
3 logm

⌉
rounds. The number of box fragments

produced is

O

⎛
⎜⎝n ·

∑
j≤� 1

3 logm�
2j

⎞
⎟⎠ = O

(
n · 2(logm)/3

)
= O

(
nm1/3

)
= O

(
n4/3

)
.

All that remains now is to show that the terminal cells output by Algorithm 3-
BSP can be refined into linear size BSPs. The interior of each of these terminal cells
is empty of subdivision vertices and, by Lemma 2.2, every box restricted to these
containers is a k-rod, k ≥ 1. We first establish a useful technical lemma for the case
where all subdivision boxes are 1-rods.
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Lemma 3.3. If all boxes in a 3-dimensional subdivision are 1-rods, then taken
together the 1-rods have at most two distinct orientations.

Proof. Suppose to the contrary that A, B, and C are three 1-rods with three
distinct orientations. Let �A, �B , and �C be lines running down the centers of A, B,
and C, respectively, parallel to their rods’ orientations. These are three axis-parallel
skew lines. Let PAB be the axis-aligned plane containing �A and intersecting �B (see
Figure 3). Define PBC and PCA similarly. Note that PAB does not intersect �C
because it is parallel to it. The point PAB ∩ �B lies in the interior of B—PAB lies
between the planes supporting the two opposite faces of the container box that �B
pierces. Now PAB ∩ PBC is a line parallel to �A that intersects �B . It follows that
PAB ∩ PBC is disjoint from A and intersects B. Similar claims hold for PBC ∩ PCA

and PCA ∩ PAB .

PAB ∩ PBC ∩ PCA

�A

�C

�B

PAB

Fig. 3. 1-rods with three different orientations imply the existence of an interior vertex.

Let p be the point PAB ∩ PBC ∩ PCA. Point p is disjoint from A ∪B ∪ C, and p
also lies in the interior of the container box, since it is connected by three axis-parallel
lines to the points PAB ∩�B , PBC ∩�C , and PCA∩�A, all of which lie in the interior of
the container box. Now we claim that the box containing p cannot be a 1-rod in this
subdivision: for each of the axis-parallel directions there is a line (e.g., PAB ∩ PBC)
that intersects one of A, B, and C, and hence the box containing p cannot touch any
pair of opposite faces of the container box. This completes the proof.

Lemma 3.4. Consider a set of boxes S = {B1, B2, . . . , Bn} that forms a subdi-
vision of a 3-dimensional container box R. If none of the vertices of any box Bi is in
the interior of R, then there is a BSP of size at most 2n− 1 for S.

Proof. We proceed by induction on n. The base case, n = 1, is trivial. Now
suppose that Lemma 3.4 holds for every n′, 1 ≤ n′ < n. If no 0-face of any box B
lies in the interior of R, then every box is a rod by Lemma 2.2. A 3-rod completely
fills the container, and thus n = 1 and no BSP cuts are needed. If there is a 2-rod,
then there is a free cut by Lemma 2.1: We split R into two subdivisions along the
free cut such that each has fewer than n boxes, and induction completes the proof.
We may assume, therefore, that all boxes are 1-rods. By Lemma 3.3, all rods in the
subdivision have at most two different orientations. We handle the two cases below
separately.
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If the rods in the subdivision have two different orientations, we show that there
is a free cut, and the proof then follows by induction, since each subproblem produced
by the free cut is strictly smaller than n. Suppose, without loss of generality, that the
orientation of every rod is either {x1} or {x2}. Observe that all the 1-rods properly
intersecting a hyperplane H orthogonal to x3 must have the same orientation, or
else two rods with different orientations would intersect on H. (This observation
is equivalent to applying Lemma 4.1 to the 2-dimensional subdivision on H.) Now
consider a point p on the common boundary of two 1-rods of different orientations,
and let H be a hyperplane passing through p and orthogonal to x3. Any (closed)
box of S intersecting H lies on one side of H because there are 1-rods of different
orientations on the two sides of H. Every box intersecting H has a face along H, and
therefore H is a free cut (see Figure 4).

Fig. 4. 1-rods with two different orientations imply the existence of a free cut.

If all the 1-rods in the container have the same orientation, then we project them
onto the plane orthogonal to their orientation. This gives a 2-dimensional subdivision,
which has a 2-dimensional BSP of size at most 2n−1 by a result of Berman, DasGupta,
and Muthukrishnan [5]. Extending each linear cut of the 2-dimensional BSP into a
planar cut parallel to the rod orientation, we obtain a BSP for SA of size at most
2n− 1.

Thus, combining Lemmas 3.2 and 3.4, we get the main result of this section.

Theorem 3.5. A 3-dimensional box subdivision with n boxes and m interior
vertices has a BSP of size O(nm1/3) = O(n4/3). We can construct such a BSP in
time O(min(nm1/3,K log n)), where K is the size of the final BSP.

The implementation that achieves the O(min(nm1/3,K log n)) construction time
is quite simple. We maintain all the extents of all the boxes in all containers. It is easy
to determine from the extents which boxes are split into two, where the median planes
lie, and which faces are free cuts. If we sort the extents initially in all dimensions,
we can find medians trivially in linear time and can create sorted extent lists for the
child containers in the same time. We spend O(n log n) time for the initial sorting
and O(K) time for each of the O(log n) steps. Because K ≥ n, this gives a running
time of O(K log n).

The same implementation also has a running time of O(nm1/3)—without a log-
arithmic factor. By Lemma 3.1, the number of box fragments at step i is O(n2i/3).
The time for step i is therefore O(n2i/3) as well. Because the time per step increases
geometrically, the last step dominates the running time, giving a bound of O(nm1/3).

The size upper bound of O(n4/3) in Theorem 3.5 is tight in the worst case: In
section 6, we exhibit a 3-dimensional subdivision requiring a BSP of size Ω(n4/3).
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4. The structure of rods in R
d. In order to extend our 3-dimensional BSP

algorithm to higher dimensions, we need two key ingredients: (1) a suitable stopping
rule for our round robin algorithm, that is, one that does not result in too much
fragmentation, and (2) a linear size BSP construction for the cells obtained when
the round robin phase ends. In three dimensions, the correct stopping rule was the
elimination of interior vertices. In d dimensions, we show that the elimination of
interior (d − 3)-dimensional faces is a good stopping rule. The analysis of the total
fragmentation caused by this stopping rule as well as the construction of BSPs in
terminal cells requires a better understanding of higher-dimensional geometry. In
this section, we establish two key facts about the d-dimensional subdivisions that are
central to our analysis.

Lemma 4.1. Consider two boxes B1, B2 that are rods for their container box R
in d-space. Let D1, D2 ⊂ {1, 2, . . . , d} be the sets of dimensions in which B1 and B2,
respectively, are pass-through. If D1 ∪ D2 = {1, 2, . . . , d}, then B1 and B2 have
intersecting interiors.

Proof. Let �i be the extent of dimension xi common to B1 and B2. Since in each
dimension at least one of the rods is pass-through, �i is nonempty for every i. Thus
a full-dimensional box defined by the cross product �1 × · · · × �d lies in the common
interior of B1 and B2.

This lemma implies that, for any two boxes Bi, Bj in a subdivision, there is at
least one direction in which neither is a rod. With this basic property, we next classify
the set system of all possible orientations of (d − 2)-rods in a box subdivision. The
(d − 2)-rods are especially important to us because our ultimate goal is to consider
subdivisions without any interior (d − 3)-faces. Recall that a set system is a pair
(X,F), where X is a ground set, and F is a family of subsets of X. We consider the
set system (D,F), where D = {1, 2, . . . , d}, and |F | = d − 2 for all F ∈ F . We are
interested in the following two configurations:

• Cycle configuration: F is a cycle configuration if F has at least three sets
and there is some x ∈ D that is not an element of any set of F .

• Star configuration: F is a star configuration if F has at most three sets
and they all share a common (d− 3) element subset of D.

Lemma 4.2. Consider a set system (D,F) with D = {1, 2, . . . , d} and |F | = d−2
for every F ∈ F . If every two sets F1, F2 ∈ F have F1 ∪ F2 �= D, then F is either a
star or a cycle configuration.

Proof. Consider the set system G = (D,E), E = {D \ F : F ∈ F}. Every
e ∈ E has two elements, and so G is a graph with vertex set D and edge set E. The
condition that F1 ∪ F2 �= D for any F1, F2 ∈ F is equivalent to saying that any two
distinct edges of E are adjacent. F is a cycle configuration if and only if G is a star
graph (all edges are incident to a common vertex) with at least three edges. F is a
star configuration if and only if G is a subgraph of a triangle.

To prove that F is either a cycle or a star configuration, it suffices to show
that every graph with pairwise adjacent edges is either a triangle or a star graph.
Elementary graph theory completes the proof: If |E| < 3, then G is trivially a star
graph, so let us assume that |E| ≥ 3. If there is a triangle in G, then |E| = 3, and E
forms a triangle because any fourth edge would be nonadjacent to at least one edge
of the triangle. Now assume that G is triangle-free and consider two adjacent edges,
e1 = {a, b} and e2 = {a, c}, b �= c. Since any e3 ∈ E \ {e1, e2} is adjacent to both e1

and e2, but e3 �= {b, c}, e3 must be incident to a. So every edge is incident to a, and
G is a star graph.
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This lemma turns out to be a critical technical piece in constructing linear size
BSPs in higher dimensions whenever the subdivision is free of (d − 3)-dimensional
faces. A 4-dimensional version of our star-cycle property was observed by Dumitrescu,
Mitchell, and Sharir [8].

5. An upper bound in R
d. We begin by showing that if a d-dimensional sub-

division is free of all interior (d− 3)-faces, then it admits a linear size BSP. This fact
ensures that if we use the stopping rule “recurse until no interior (d− 3)-dimensional
faces remain,” the second phase of the algorithm incurs only a linear additional frag-
mentation.

Lemma 5.1. Consider a set of boxes S = {B1, B2, . . . , Bn} that forms a subdi-
vision of a d-dimensional container box R. If none of the (d− 3)-faces of any box Bi

is in the interior of R, then there is a BSP of size at most 2n− 1 for S.

Proof. Our proof is by induction on n. The base case is n = 1, for which there is
nothing to prove. If any of the boxes of S is a (d − 1)-rod, then we can make a free
cut along a facet of this box by Lemma 2.1; each of the subproblems on either side
of the cut contains strictly fewer than n boxes, so our lemma follows by induction.
Lemma 2.2 tells us that all boxes of S are (d − 2)-rods. By Lemmas 4.1 and 4.2,
the orientations of these (d− 2)-rods form either a star or a cycle configuration. We
handle these two cases separately.

First, suppose that the orientations of the rods form a cycle configuration. With-
out loss of generality, let us assume that none of the (d − 2)-rods is pass-through in
direction xd. We will show that there is a free cut orthogonal to the xd-axis, and
the rest of the proof then follows by induction. We observe that all the (d − 2)-rods
properly intersecting a hyperplane H orthogonal to xd must have the same orienta-
tion; otherwise Lemma 4.1 is violated for the (d − 1)-dimensional subdivision on H.
Now consider a point p on the common boundary of two (d − 2)-rods of different
orientations, and let H be a hyperplane passing through p and orthogonal to xd. Any
(closed) box of S intersecting H lies on one side of H because there are (d− 2)-rods
of different orientations on the two sides of H. Every box intersecting H has a facet
along H, and therefore H is a free cut.

Next, suppose that the orientations of the rods form a star configuration. With-
out loss of generality, assume that all boxes are pass-through in (d − 3) dimensions
x4, x5, . . . , xd. We project the boxes of S onto the subspace spanned by the remain-
ing three axes, using the map π : (x1, x2, . . . , xd) → (x1, x2, x3). Any BSP for the
projection corresponds to a BSP of equal size for S, since the preimage of a plane h
in the projection is a hyperplane H in R

d, and H cuts only those (d − 2)-rods that
are the preimages of the 3-dimensional boxes cut by h. Observe that the subdivision
π(S) does not have any interior vertices (interior in R

3), because an interior vertex v
corresponds to an interior (d− 3)-face in S, namely, π−1(v). By Lemma 3.4, there is
a BSP of size at most 2n− 1 for the projected subdivision which, when lifted to R

d,
gives a BSP of the same size for S.

We are now ready to describe our BSP algorithm for d-dimensional subdivisions.
In three dimensions, our round robin cuts were made along planes that evenly partition
the set of interior vertices. In d dimensions, we choose hyperplanes that “evenly
split” the interior (d−3)-dimensional faces. Unfortunately, these median hyperplanes
can also introduce new (d − 3)-dimensional faces by splitting some old ones. For
instance, in 4-space, a cutting hyperplane can split many 1-faces (line segments).
Our fragmentation lemma (Lemma 5.2) below will bound the total number of box
fragments created in the round robin phase. We need to introduce a bit of notation



1390 J. HERSHBERGER, S. SURI, AND C. D. TÓTH

first to discuss the objects used in the algorithm.

Given a d-dimensional box B, let fk(B) denote the set of k-faces of B, where
0 ≤ k ≤ d. We use the notation fk(S) to refer to the (multi) set of k-faces in all
the boxes of S = {B1, B2, . . . , Bn}; that is, fk(S) contains multiple copies of a face if
that face is incident to multiple boxes. Finally, given a container box R, we use the
notation fk(R,S) to denote the (fragments of) interior k-faces of fk(S) (faces that
intersect the interior of R). In our d-dimensional BSP scheme, the elements of the set
fd−3(R,S) will play the role that vertices played in Algorithm 3-BSP.

Algorithm d-BSP.

• Input is a d-dimensional box subdivision S = {B1, B2, . . . , Bn} of a container
box R.

• Initialize j = 0, and C0 = {R}.
• While there is a container box C ∈ Cj with nonempty fd−3(C, S), do

1. For each container box C ∈ Cj with nonempty fd−3(C, S), do
(a) Set D1 = {C} and let V be the multiset of vertices of all faces in

fd−3(C, S).
(b) For i = 1 to d, do

i. Split every D ∈ Di by the median xi hyperplane of the multiset
V ∩D.

ii. Apply all possible free cuts.
iii. Let Di+1 be the set of all container boxes resulting from these

cuts.
iv. Remove from V all vertices on the splitting planes used in the

first two steps.
2. Let Cj+1 be the set of all container boxes resulting from these cuts, and

set j := j + 1.
• Return Cj .

Algorithm d-BSP constructs a partition tree T whose leaves correspond to regions
that do not contain any fragment of a (d−3)-face of the subdivision S. By Lemma 5.1,
each of these regions can be refined into a BSP of size linear in the number of box
fragments contained in it. Thus, it suffices to bound the total complexity of all the
box fragments produced by Algorithm d-BSP.

Lemma 5.2. Given a d-dimensional box subdivision with n boxes, Algorithm d-
BSP produces O(n(d+1)/3) box fragments.

Proof. Let us define m = |fd−3(R,S)|. We call a round of the algorithm the
work done between increments of j. First we show that Algorithm d-BSP terminates
in �(logm)/3� rounds, and then we bound the number of box fragments produced in
�(logm)/3� rounds.

During a round, every (d−3)-face F of a subproblem (C, S) can be cut into at most
2d−3 fragments—it is cut at most once for each of the (d−3) directions orthogonal to
F . We focus on the fragments of F that are not contained in any splitting hyperplane
of the round. We argue that at least one vertex of every fragment of F is a vertex of
F that does not lie on any of the splitting hyperplanes of the round. A fragment is
itself a (d−3)-face, and so it is the cross product of three fixed coordinates and (d−3)
nontrivial intervals. Each nontrivial interval contains at least one of the two endpoints
of the corresponding original interval of F (because there is at most one cut orthogonal
to the interval’s direction). The cross product of the three fixed coordinates and the
(d − 3) original interval endpoints is a vertex of F but does not lie on any splitting
hyperplane of the round.
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The container box C is divided into subboxes during the round, each containing
at most 2d−3 ·|fd−3(C, S)|/2d = |fd−3(C, S)|/8 vertices of V . As noted, each face frag-
ment produced by the round is incident to a vertex from V , and so |fd−3(C

′, S)| ≤
|fd−3(C, S)|/8 for each subcontainer C ′ produced. By induction, the number of in-
terior (d − 3)-faces at the beginning of round j is at most m/8j . Therefore, after
�log8 m� = �(logm)/3� rounds, no (d− 3)-face intersects the interior of any subprob-
lem’s container box, and the algorithm terminates.

Now consider a (d − 2)-dimensional face of a box B. During a round of the
algorithm, it can be cut recursively in (d − 2) steps. Thus, the total number of
fragments of (d− 2)-faces of fd−2(R,S) at round j is O(n2(d−2)j).

Finally, in each round j when a box fragment B in some subproblem is split, the
container box for the subproblem must have a fragment of a (d − 2)-face of B in its
interior. This is because only a d-rod or a (d − 1)-rod can have all its (d − 2)-faces
on the boundary of the container by Lemma 2.2. But a d-rod is never split and step
1(b)ii eliminates all (d− 1)-rods. This implies that O(n2(d−2)j) box fragments can be
further split in round j. The algorithm terminates in �(logm)/3� rounds, and so the
number of box fragments produced by the algorithm is

O

(
n ·

∑
j≤�logm/3�

2(d−2)j

)
= O

(
n · 2(d−2)(logm)/3

)

= O
(
nm(d−2)/3

)
= O

(
n(d+1)/3

)
.

Since m is at most 23
(
d
3

)
·n, our bound in terms of both n and d is O(dd−2·n(d+1)/3).

Finally, this result, combined with Lemma 5.1 and standard implementation tech-
niques similar to those used for Algorithm 3-BSP, yields our main theorem.

Theorem 5.3. A box subdivision of n boxes in d-space, d ≥ 2, has a BSP of size
O(n(d+1)/3). The BSP can be constructed in time O(min(n(d+1)/3,K log n)), where
K is the size of the BSP.

A simple but practical corollary of this theorem is the following: Any collection
of n disjoint boxes in d-space whose complement space can be tiled with m additional
boxes admits a BSP of size O((n + m)(d+1)/3).

If we perform Algorithm d-BSP with (d − 2)-faces instead of (d − 3)-faces (i.e.,
replacing fd−3(C, S) by fd−2(C, S) everywhere in the algorithm description), then we
obtain a BSP for general nonoverlapping boxes in d-space: in the resulting partition,
no (d− 2)-face of any input box intersects the interior of any container box, so every
such container can be refined to a proper BSP by free cuts. Repeating Lemma 5.2 us-
ing (d−2)-faces instead of (d−3)-faces implies that the modified algorithm terminates
in �(logm)/2� rounds, where m = |fd−2(R,S)| ≤ 22

(
d
2

)
· n. By analogous computa-

tion, the total number of box fragments is O
(
n · 2(d−2)(logm)/2

)
= O

(
nm(d−2)/2

)
=

O
(
nd/2

)
. This is the best currently known upper bound on the size of a BSP for n

nonoverlapping general boxes in R
d. We can summarize this argument in the following

theorem.

Theorem 5.4. Every set of n nonoverlapping boxes in d-space, d ≥ 2, has a BSP
of size O(nd/2).

One interpretation of our results suggests that for a set S of general axis-aligned
boxes in R

d, a round robin BSP for their (d − 2)-dimensional faces is also a BSP
for S; while for a d-dimensional box subdivision S, a round robin BSP for only the
(d− 3)-dimensional faces gives a BSP for the input S.
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6. Lower bounds. Paterson and Yao gave a configuration of 3n (non–space-
filling) axis-aligned rods such that any BSP for the configuration cuts the rods into
Ω(n3/2) subcells [15]. (According to Eppstein [9], “Paterson and Yao credit this
application of the shape to a personal communication by W. P. Thurston, but the
shape itself has been seen before, e.g., in Alan Holden’s book Shapes, Space, and
Symmetry (Columbia Univ. Press 1971), p. 161.”) We describe a variant of the
Paterson–Yao construction in some detail, because it is the basis of our lower bound
for box subdivisions.

The rods of the Paterson–Yao construction belong to three families, each parallel
to one of the coordinate axes, and form an interlocking grid. See Figure 5. Without
loss of generality, assume that n = �2 for some integer �. The x-, y-, and z-parallel
families consist of boxes indexed by 1 ≤ i, j, k ≤ �:

R1 = {r1(j, k) = [0, 2�] × [2j, 2j + 1] × [2k, 2k + 1] : j, k = 0, 1, . . . , �− 1},
R2 = {r2(i, k) = [2i, 2i + 1] × [0, 2�] × [2k + 1, 2k + 2] : i, k = 0, 1, . . . , �− 1},
R3 = {r3(i, j) = [2i + 1, 2i + 2] × [2j + 1, 2j + 2] × [0, 2�] : i, j = 0, 1, . . . , �− 1}.

Fig. 5. The Paterson–Yao lower bound construction, with the rods slightly separated and length-
ened to make them easier to see.

It is straightforward to observe that the rods in each family are disjoint. Further-
more, rods in different families are disjoint, because for each pair of families there is
one of the three dimensions (x, y, or z) in which the two families lie in disjoint ranges:
for one family, any rod’s coordinates lie in the range [2A, 2A+ 1], for some integer A;
for the other family, any rod’s coordinates lie in [2B+1, 2B+2], for integral B. Note
also that each grid point (2i + 1, 2j + 1, 2k + 1), for 1 ≤ i, j, k ≤ �, is incident to one
rod from each of the three families.

For every i, j, k = 0, 1, . . . , �− 1, consider the box

[2i, 2i + 2] × [2j, 2j + 2] × [2k, 2k + 2].

We call these boxes junctions. The junctions are interior-disjoint boxes, and each
must be cut by a BSP plane passing through its center, since the BSP must separate
the three rods in the neighborhood of the center (2i+1, 2j+1, 2k+1). The first plane
that passes through the junction must cut at least one of the three rods incident to
the center. Since all the junctions are disjoint, the total number of rod cuts is at least
�3 = n3/2.
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The Paterson–Yao construction is opaque, in the sense that every axis-parallel
line passing through the container cube

[0, 2�] × [0, 2�] × [0, 2�]

intersects the closure of at least one rod. However, the configuration of rods is not a
subdivision: the rods do not fill space. This is easy to prove by observing that the
total volume of the container cube is 8�3, and the total volume of each rod inside is
2�. There are 3�2 rods, for a total rod volume inside the container cube of 6�3, which
is less than 8�3. The empty space is distributed in 2�3 unit cubes. In particular, for
each junction for i, j, k, the unit cubes

[2i, 2i + 1] × [2j + 1, 2j + 2] × [2k, 2k + 1]

and

[2i + 1, 2i + 2] × [2j, 2j + 1] × [2k + 1, 2k + 2]

are empty. See Figure 6.

empty

(behind)

Fig. 6. A unit cube centered on a grid point in the Paterson–Yao construction.

6.1. Lower bound construction for 3-dimensional subdivisions. Convert-
ing the Paterson–Yao configuration into a subdivision requires adding Θ(�3) new
cells—two unit cubes for each junction. Thus the Ω(�3) lower bound on the BSP
complexity becomes trivial—it is linear in the input size. However, with a little more
work, we can extend the construction to give a nontrivial lower bound.

Theorem 6.1. There is a 3-dimensional subdivision of space into n axis-aligned
boxes such that any axis-aligned BSP for the subdivision cuts the boxes into Ω(n4/3)
subcells.

Proof. We begin with a Paterson–Yao construction consisting of 3�2 rods, and
then extend it to a subdivision of the container cube [0, 2�]3 by adding the 2�3 unit
cubes needed to fill in the empty space between the rods. We then subdivide each
rod longitudinally into � parallel subrods.

As in the original Paterson–Yao argument, each of the �3 junctions must be
cut by at least one BSP plane, since the BSP must separate the cells incident to
(2i + 1, 2j + 1, 2k + 1). The first plane that cuts a junction must completely cross
one of the original rods, and hence it cuts at least � subrods. The total number
of rod cuts is at least �3 × � = �4. The total number of cells in our subdivision is
n = 3�2 × � + 2�3 = 5�3, and hence the number of subcells produced by the BSP is
Ω(n4/3).
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6.2. Constructions for multidimensional subdivisions. Our multidimen-
sional construction is similar in spirit to the previous construction. This construction
is recursive—we use the lower bound construction in (d− 1)-space to build the subdi-
vision in d dimensions. We begin with an informal description, then formally describe
the construction in four dimensions. The construction in d dimensions is a straight-
forward extension of this construction.

We partition the container box in a grid-like fashion into disjoint regions that we
call junctions and give a lower bound for the BSP complexity for the fragments of
objects within each region. Then we bound the complexity of a BSP for all objects
by the sum of complexities over all the regions.

We have (d − 1) families of congruent (d − 2)-rods, whose orientations form a
cycle configuration, and a family of 1-rods whose orientation is the complement of
the orientations of the (d − 2)-rods. The rods ensure our complexity bound in each
region. (Intuitively, it is efficient to use rods of larger orientations, because a k-rod
of the container box is a k-rod in each junction it intersects.) On the other hand,
rods of such orientations cannot fill the container box, and therefore we need to add
a number of filler boxes to obtain a box subdivision.

In order to balance the number of rods and the number of filler boxes, we allocate
the rods in bundles so that the union of a bundle of rods is again a rod with the same
orientation. The (d− 2)-rods in a bundle are all congruent; the R

d−1-projection of a
bundle of 1-rods, however, is the worst-case box subdivision we obtain in R

d−1.
Theorem 6.2. There is a 4-dimensional box subdivision with n boxes such that

the size of any axis-aligned BSP is Ω(n13/9).
Proof. First, we describe an auxiliary construction of Θ(�9/2) boxes such that

all vertices of the boxes lie on a 2� × 2� × 2� × 3�3/2 grid. The rods of the auxiliary
subdivision correspond to the bundles of rods in the final subdivision.

We have �3 long 1-rods that are pass-through in x4:

R1 = {r1(i, j, k) = [2i, 2i + 1] × [2j, 2j + 1] × [2k, 2k + 1] × [0, 3�3/2] :

i, j, k = 0, . . . , �− 1}.

We also have three families of boxes, each containing �5/2 2-rods with orientations
{x1, x2}, {x1, x3}, and {x2, x3}, respectively:

R1,2 = {r1,2(k, t) = [0, 2�] × [0, 2�] × [2k + 1, 2k + 2] × [3t, 3t + 1] :

k= 0, 1, . . . , �− 1; t = 0, . . . , �3/2 − 1},

R1,3 = {r1,3(j, t) = [0, 2�] × [2j + 1, 2j + 2] × [0, 2�] × [3t + 1, 3t + 2] :

j= 0, . . . , �− 1; t = 0, . . . , �3/2 − 1},

R2,3 = {r2,3(i, t) = [2i + 1, 2i + 2] × [0, 2�] × [0, 2�] × [3t + 2, 3t + 3] :

i= 0, . . . , �− 1; t = 0, . . . , �3/2 − 1}.

Figure 7 illustrates the intersection of our auxiliary construction with three (3-
dimensional) hyperplanes orthogonal to x4. The intersection of the 1-rods in R1 with
every hyperplane consists of �3 unit cubes in a grid. The 2-rods of three distinct
orientations appear in three different slices. In each slice, congruent 2-rods fill � slots
between the grid of unit cubes.
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Fig. 7. Three different 3-dimensional slices of the subdivision along three hyperplanes orthog-
onal to x4.

Since all the rods have pairwise disjoint interiors, we can obtain an orthogonal
subdivision of the container box R = [0, 2�] × [0, 2�] × [0, 2�] × [0, 3�3/2] by filling up
the space between the rods with 9�9/2 unit cubes. This completes the description of
our auxiliary construction of Θ(�9/2) boxes. We obtain a subdivision S of n = Θ(�9/2)
boxes in the following way: Partition each 2-rod into �2 congruent 2-rods with the same
orientation, and replace each 1-rod by �3/2 pairwise disjoint 1-rods whose projection
to the (x2, x3, x4) hyperplane is the worst-case construction for a subdivision in R

3.
Consider the �9/2 boxes Π(i, j, k, t) = [2i, 2i+2]×[2j, 2j+2]×[2k, 2k+2]×[3t, 3t+3],

where i, j, k = 0, 1, . . . , �−1 and t = 0, 1, . . . , �3/2 −1. These are the junction regions.
Note that the junctions have pairwise disjoint interiors. We show that any axis-
aligned BSP for S dissects the rods of S such that pieces of rods have at least �2

vertices in the interior of every junction. This implies that the total number of pieces
is Ω(�9/2 · �2) = Ω(�13/2) = Ω(n13/9).

First, suppose that each of the �3/2 1-rods in r1(i, j, k) ∈ R1 is cut by some hyper-
plane x4 = c for c ∈ (3t, 3t + 3). (Not all 1-rods may be cut by the same hyperplane,
though.) Consider an intersection of the bundle of 1-rods with a hyperplane x4 = c0
such that each 1-rod has a vertex in the interior of Π(i, j, k, t) below x4 = c0. A BSP
for S, restricted to the intersection of the bundle with x4 = c0, must be a BSP for the
3-dimensional subdivision to which the bundle projects. Hence the intersection BSP
must have Ω((�3/2)4/3) = Ω(�2) vertices, by the previous lower bound. Each vertex
corresponds to a vertex in the interior of Π(i, j, k, t)—in fact, it is connected to its
corresponding vertex by an edge of the BSP parallel to the x4-axis.

Otherwise, let r be a rod in R1(i, j, k) that is not cut by any hyperplane x4 = c,
for c ∈ (3t, 3t+ 3). Let e be a segment in the interior of r such that e is pass-through
in x4 within Π(i, j, k, t) and does not lie on any hyperplane of the BSP. Since e is not
cut by the BSP, one subproblem contains e all through the partitioning procedure.
Notice that the container box for e cannot be separated from all the other original
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boxes by hyperplanes orthogonal to only one axis. Let H1 and H2 be hyperplanes
orthogonal to, say, x1 and x2, on the boundary of the final container box of e. The
2-face F = H1∩H2 is pass-through in x3 and x4 and lies in the interior of Π(i, j, k, t).
Therefore F has a common vertex with all �2 2-rods in r1,2(k, t) in the interior of
Π(i, j, k, t).

Generalizing this recursive construction, we obtain a recursive formula for the
exponent of the lower bound β(d) we can reach for a box subdivision in R

d.
Theorem 6.3. There is a d-dimensional box subdivision S with n boxes such that

the size of any axis-aligned BSP for S is Ω(nβ(d)), where β(3) = 4/3, β(4) = 13/9,
and β(d) converges to (1 +

√
5)/2 as d → ∞.

Proof. In R
d, our auxiliary construction consists of �d−1 1-rods that are pass-

through in xd, and (d− 1) families of �1+α(d) (d− 2)-rods such that each slice xd = c
intersects � (d−2)-rods and there are �α(d) levels in the xd extent (α(d) is a parameter
to be specified later). We need Θ(�(d−1)+α(d)) unit cubes to convert this configuration
into a subdivision.

We balance the number of filler unit cubes and rods by replacing each auxiliary
(d − 2)-rod with a bundle of �d−2 congruent (d − 2)-rods and each auxiliary 1-rod
by a bundle of �α(d) 1-rods. We arrange the 1-rods in each bundle such that their
(d− 1)-dimensional projection gives the R

d−1 subdivision for which any BSP has size
Ω((�α(d))β(d−1)).

We define �(d−1)+α(d) junctions, arranged in a grid. Each junction contains either
Ω(�d−2) vertices on fragments of (d−2)-rods or Ω((�α(d))β(d−1)) vertices on fragments
of 1-rods. To achieve our bound, we set α(d) = (d − 2)/β(d − 1), implying that any
BSP for our subdivision has at least �(d−1)+α(d) · �d−2 = �2d−3+α(d) vertices. That
gives a lower bound of

Ω
(
n

2d−3+α(d)
d−1+α(d)

)
= Ω

(
n

2d−3+(d−2)/β(d−1)
d−1+(d−2)/β(d−1)

)
.

The exponent in this bound is

β(d) =
2d− 3 + (d− 2)/β(d− 1)

d− 1 + (d− 2)/β(d− 1)
= 1 +

d− 2

d− 1 + (d− 2)/β(d− 1)
.

The first values of this sequence are β(4) = 13/9 = 1.444, β(5) = 118/79 = 1.494,
β(6) = 689/453 = 1.521, and β(7) = 9844/6399 = 1.538. The sequence converges to
limd→∞ β(d) = (1 +

√
5)/2 = 1.618.

Note that the d-dimensional lower bound subsumes the lower bound for three
dimensions. If d = 3, then β(d − 1) = β(2) = 1, and α(3) = (3 − 2)/β(2) = 1. The
lower bound we obtain is

Ω
(
n

2·3−3+α(3)
3−1+α(3)

)
= Ω(n4/3),

matching Theorem 6.1.

7. Concluding remarks. The BSP is a popular space decomposition method in
computational geometry, computer graphics, and other fields dealing with geometric
shapes. However, its worst-case complexity remains poorly understood in dimensions
three and higher. Even for the BSP of n orthogonal boxes in d dimensions, the best
upper bound known is O(nd/2), while no lower bound better than Ω(n2) is known.

In an attempt to understand the complexity of higher-dimensional BSPs, we
considered a natural special case: orthogonal subdivisions. We showed that every
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d-dimensional subdivision with n boxes admits a BSP of size O(n(d+1)/3). We also
exhibited subdivisions in d dimensions for which every axis-aligned BSP must have
size Ω(nβ(d)), where β(d) converges to (1+

√
5)/2 as d → ∞. Our result shows that if

the objects do not fracture the complement space too badly, then their BSP size can
be significantly smaller than the current worst-case bounds indicate.

Clearly, the most interesting open problem suggested by this paper is to close
the gap between the upper and lower bounds. The absence of superquadratic lower
bounds is intriguing. Can it really be the case that, in any dimension d, a set of n
boxes (forming a subdivision, or not) admits a quadratic size BSP? If not, then what
is the true complexity of the BSP of n d-dimensional boxes? Is this bound necessarily
worse than that for n boxes forming a subdivision in higher dimensions?
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1. Introduction. The problem of computing shortest paths is indisputably one
of the most well-studied problems in computer science. It is thoroughly surprising
that in the setting of real-weighted graphs, many basic shortest path problems have
seen little or no progress since the early work by Dijkstra, Bellman and Ford, Floyd
and Warshall, and others [CLRS01]. For instance, no algorithm for computing single-
source shortest paths (SSSPs) in arbitrarily weighted graphs has yet to improve the
Bellman–Ford O(mn) time bound, where m and n are the number of edges and ver-
tices, respectively. The fastest uniform all-pairs shortest path (APSP) algorithm for
dense graphs [Z04, F76] requires time O(n3

√
log log n/ log n), which is just a slight

improvement over the O(n3) bound of the Floyd–Warshall algorithm. Similarly, Di-
jkstra’s O(m+ n log n) time algorithm [Dij59, FT87] remains the best for computing
SSSPs on nonnegatively weighted graphs, and until the recent algorithms of Pettie
[Pet04, Pet02b, Pet03], Dijkstra’s algorithm was also the best for computing APSPs
on sparse graphs [Dij59, J77, FT87].

In order to improve these bounds most shortest path algorithms depend on a re-
stricted type of input. There are algorithms for geometric inputs (see Mitchell’s survey
[Mit00]), planar graphs [F91, HKRS97, FR01], and graphs with randomly chosen edge
weights [Spi73, FG85, MT87, KKP93, KS98, M01, G01, Hag04]. In recent years there
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has also been a focus on computing approximate shortest paths—see Zwick’s recent
survey [Z01]. One common assumption is that the graph is integer-weighted, though
structurally unrestricted, and that the machine model is able to manipulate the in-
teger representation of weights. Shortest path algorithms based on scaling [G85b,
GT89, G95] and fast matrix multiplication [Sei95, GM97, AGM97, Tak98, SZ99, Z02]
have running times that depend on the magnitude of the integer edge weights, and
therefore yield improved algorithms only for sufficiently small edge weights. In the
case of the matrix multiplication–based algorithms the critical threshold is rather
low: even edge weights sublinear in n can be too large. Dijkstra’s algorithm can be
sped up in the integer-weight model by using an integer priority queue.1 The best
bounds on Dijkstra’s algorithm to date are O(m

√
log log n) (expected) [HT02] and

O(m + n log log n) [Tho03]. Both of these algorithms use multiplication, a non-AC0

operation; see [Tho03] for bounds in the AC0 model. Thorup [Tho99] considered
the restricted case of integer-weighted undirected graphs and showed that on an AC0

random access machine (RAM), shortest paths could be computed in linear time.
Thorup invented what we call in this paper the hierarchy-based approach to shortest
paths.

The techniques developed for integer-weighted graphs (scaling, matrix multipli-
cation, integer sorting, and Thorup’s hierarchy-based approach) seem to depend cru-
cially on the graph being integer-weighted. This state of affairs is not unique to the
shortest path problem. In the weighted matching [G85b, GT89, GT91] and maxi-
mum flow problems [GR98], for instance, the best algorithms for real- and integer-
weighted graphs have running times differing by a polynomial factor. For the shortest
path problem on positively weighted graphs the integer/real gap is only logarith-
mic. It is of great interest whether an integer-based approach is inherently so, or
whether it can yield a faster algorithm for general, real-weighted inputs. In this
paper we generalize Thorup’s hierarchy-based approach to the comparison-addition
model (see section 2.1) and, as a corollary, to real-weighted input graphs. For the
undirected APSP problem we nearly eliminate the existing integer/real gap, reducing
it from logn to logα(m,n), where α is the incomprehensibly slowly growing inverse-
Ackermann function. Before stating our results in detail, we first give an overview
of the hierarchy-based approach and discuss the recent hierarchy-based shortest path
algorithms [Tho99, Hag00, Pet04, Pet02b].

Hierarchy-based algorithms should be thought of as preprocessing schemes for
answering SSSP queries in nonnegatively weighted graphs. The idea is to compute
a small non–source-specific structure that encodes useful information about all the
shortest paths in the graph. We measure the running time of a hierarchy-based algo-
rithm with two quantities: P, the worst case preprocessing cost on the given graph,
and M, the marginal cost of one SSSP computation after preprocessing. Therefore,
solving the s-sources shortest path problem requires s ·M+P time. If s = n, that is,
if we are solving APSP, then for all known hierarchy algorithms the P term becomes
negligible. However, P may be dominant (in either the asymptotic or real-world sense)
for smaller values of s. In Thorup’s original algorithm [Tho99], P and M are both
O(m); recall that his algorithm works on integer-weighted undirected graphs. Hagerup
[Hag00] adapted Thorup’s algorithm to integer-weighted directed graphs, incurring a
slight loss of efficiency in the process. In [Hag00], P = O(min{m log logC,m log n}),2

1It can also be sped up using an integer sorting algorithm in conjunction with Thorup’s reduction
[Tho00] from priority queues to sorting.

2Hagerup actually proved P = O(min{m log logC,mn}); see [Pet04] for the O(m logn) bound.
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where C is the maximum edge weight and M = O(m + n log log n). After the ini-
tial publication of our results [PR02a], Pettie [Pet04, Pet02b] gave an adaptation of
the hierarchy-based approach to real-weighted directed graphs. The main result of
[Pet04] is an APSP algorithm running in time O(mn + n2 log log n), which improved
upon the O(mn+ n2 log n) bound derived from multiple runs of Dijkstra’s algorithm
[Dij59, J77, FT87]. The result of [Pet04] is stated in terms of the APSP problem
because its preprocessing cost P is O(mn), making it efficient only if s is very close to
n. In [Pet02b] (see also [Pet03]) the nonuniform complexity of APSP is considered;
the main result of [Pet02b] is an algorithm performing O(mn logα(m,n)) comparison
and addition operations. This bound is essentially optimal when m = O(n) due to
the trivial Ω(n2) lower bound on APSP.

In this paper we give new bounds on computing undirected shortest paths in
real-weighted graphs. For our algorithm, the preprocessing cost P is O(mst(m,n) +
min{n log n, n log log r}), where mst(m,n) is the complexity of the minimum span-
ning tree problem and r is the ratio of the maximum-to-minimum edge weight. This
bound on P is never worse than O(m + n log n), though if r is not excessively large,

say less than n(log n)O(1)

, P is O(m+ n log log n). We show that the marginal cost M
of our algorithm is asymptotically equivalent to split-findmin(m,n), which is the
decision-tree complexity of a certain data structuring problem of the same name. It
was known that split-findmin(m,n) = O(mα(m,n)) [G85a]; we improve this bound
to O(m logα(m,n)). Therefore, the marginal cost of our algorithm is essentially (but
perhaps not precisely) linear. Theorem 1.1 gives our general result, and Corollaries
1.2 and 1.3 relate it to the canonical APSP and SSSP problems, respectively.

Theorem 1.1. Let P = mst(m,n)+min{n log n, n log log r}, where m and n are
the number of edges and vertices in a given undirected graph, r bounds the ratio of
any two edge lengths, and mst(m,n) is the cost of computing the graph’s minimum
spanning tree. In O(P) time an O(n)-space structure can be built that allows the com-
putation of SSSPs in O(split-findmin(m,n)) time, where split-findmin(m,n) =
O(m logα(m,n)) represents the decision-tree complexity of the split-findmin problem
and α is the inverse-Ackermann function.

Corollary 1.2. The undirected APSP problem can be solved on a real-weighted
graph in O(n · split-findmin(m,n)) = O(mn logα(m,n)) time.

Corollary 1.3. The undirected SSSP problem can be solved on a real-weighted
graph in O(split-findmin(m,n)+mst(m,n)+min{n log n, n log log r}) = O(mα(m,n)+
min{n log n, n log log r}) time.

The running time of our SSSP algorithm (Corollary 1.3) is rather unusual. It con-
sists of three terms, where the first two are unknown (but bounded by O(mα(m,n)))
and the third depends on a nonstandard parameter: the maximum ratio of any two
edge lengths.3 A natural question is whether our SSSP algorithm can be substantially
improved. In section 6 we formally define the class of “hierarchy-based” SSSP algo-
rithms and show that any comparison-based undirected SSSP algorithm in this class
must take time Ω(m+min{n log n, n log log r}). This implies that our SSSP algorithm
is optimal for this class, up to an inverse-Ackermann factor, and that no hierarchy-
based SSSP algorithm can improve on Dijkstra’s algorithm, for r unbounded.

Pettie, Ramachandran, and Sridhar [PRS02] implemented a simplified version of
our algorithm. The observed marginal cost of the [PRS02] implementation is nearly
linear, which is in line with our asymptotic analysis. Although it is a little slower

3Dinic’s implementation [Din78, Din03] of Dijkstra’s algorithm also depends on r, in both time
and space consumption.
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than Dijkstra’s algorithm in solving SSSP, it is faster in solving the s-sources shortest
path problem, in some cases for s as small as 3. In many practical situations it is
the s-sources problem, not SSSP, that needs to be solved. For instance, if the graph
represents a physical network, such as a network of roads or computers, it is unlikely
to change very often. Therefore, in these situations a nearly linear preprocessing cost
is a small price to pay for more efficient shortest path computations.

1.1. An overview. In section 2 we define the SSSP and APSP problems and
review the comparison-addition model and Dijkstra’s algorithm [Dij59]. In section
3 we generalize the hierarchy approach to real-weighted graphs and give a simple
proof of its correctness. In section 4 we propose two implementations of the general
hierarchy-based algorithm, one for proving the asymptotic bounds of Theorem 1.1
and one that is simpler and uses more standard data structures. The running times
of our implementations depend heavily on having a well-balanced hierarchy. In section
5 we give an efficient method for constructing balanced hierarchies; it is based on a
hierarchical clustering of the graph’s minimum spanning tree. In section 6 we prove a
lower bound on the class of hierarchy-based undirected SSSP algorithms. In section
7 we discuss avenues for further research.

2. Preliminaries. The input is a weighted, undirected graph G = (V,E, �),
where V = V (G) and E = E(G) are the sets of n vertices and m edges, respectively,
and � : E → R assigns a real length to each edge. The distance from vertex u to
vertex v, denoted d(u, v), is the length of the minimum length path from u to v, or
∞ if there is no such path from u to v, or −∞ if there is no such path of minimum
length. The APSP problem is to compute d(u, v), for (u, v) ∈ V × V , and the SSSP
problem is to compute d(u, v) for some specified source u and all v ∈ V .

If, in an undirected graph, some connected component contains an edge of negative
length, say e, then the distance between two vertices u and v in that component is −∞:
one can always construct a path of arbitrarily small length by concatenating a path
from u to e, followed by the repetition of e a sufficient number of times, followed by a
path from e to v. Without loss of generality we will assume that � : E → R

+ assigns
only positive edge lengths. A slightly restricted problem (which forbids the types of
paths described above) is the shortest simple path problem. This problem is NP-hard
as it generalizes the Hamiltonian path problem. However, Edmonds showed that when
there is no negative weight simple cycle, the problem is solvable in polynomial time
by a reduction to weighted matching—see [AMO93, p. 496] and [G85a].

2.1. The comparison-addition model. We use the term comparison-addition
model to mean any uniform model in which real numbers are subject to only compar-
ison and addition operations. The term comparison-addition complexity refers to the
number of comparison and addition operations, ignoring other computational costs.
In the comparison-addition model we leave unspecified the machine model used for
all data structuring tasks. Our results as stated hold when that machine model is a
RAM. If instead we assume a pointer machine [Tar79], our algorithms slow down by
at most an inverse-Ackermann factor.4

The comparison-addition model has some aesthetic appeal because it is the sim-
plest model appropriate to computing shortest paths and many other network opti-

4The only structure we use whose complexity changes between the RAM and pointer machine
models is the split-findmin structure. On a pointer machine there are matching upper and lower
bounds of Θ(mα) [G85a, LaP96], whereas on the RAM the complexity is somewhere between Ω(m)
and O(m logα)—see Appendix B.
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mization problems. A common belief is that simplicity is necessarily gained at the
price of practicality; however, this is not true. In the setting of an algorithms li-
brary, such as LEDA [MN00], it is important—and practical—that data types be fully
separated from algorithms and that the interface between the two be as generic as
possible. There is always room for fast algorithms specialized to integers or floats.
However, even under these assumptions, the gains in speed can be surprisingly minor;
see [PRS02] for one example.

2.1.1. Techniques. In our algorithm we sometimes use subtraction on real num-
bers, an operation that is not directly available in the comparison-addition model.
Lemma 2.1, given below, shows that simulating subtraction incurs at most a constant
factor loss in efficiency.

Lemma 2.1. C comparisons and A additions and subtractions can be simulated
in the comparison-addition model with C comparisons and 2(A + C) additions.

Proof. We represent each real xi = ai−bi as two reals ai, bi. An addition xi+xj =
(ai + aj) − (bi + bj) or a subtraction xi − xj = (ai + bj) − (bi + aj) can be simulated
with two actual additions. A comparison xi : xj is equivalent to the comparison
ai + bj : aj + bi, which involves two actual additions and a comparison.

At a key point in our algorithm we need to approximate the ratio of two numbers.
Division is clearly not available for real numbers in the comparison-addition model,
and with a little thought one can see that it cannot be simulated exactly. Lemma 2.2,
given below, bounds the time to find certain approximate ratios in the comparison-
addition model, which will be sufficient for our purposes.

Lemma 2.2. Let p1, . . . , pk be real numbers, where p1 and pk are the smallest and
largest, respectively. We can find the set of integers {qi} such that 2qi ≤ pi

p1
< 2qi+1

in Θ(log pk

p1
+ k log log pk

p1
) time.

Proof. We generate the set L = {p1, 2 · p1, 4 · p1, . . . , 2
�log pk

p1
� · p1} with log pk

p1

additions; then for each pi we find qi in log |L| = O(log log pk

p1
) time with a binary

search over L.
In our algorithm the {pi} correspond to certain edge lengths, and k = Θ(n). Our

need to approximate ratios, as in Lemma 2.2, is the source of the peculiar n log log r
term in the running time of Theorem 1.1. We note here that the bound stated in
Lemma 2.2 is pessimistic in the following sense. If we randomly select the {pi} from a
uniform distribution (or other natural distribution), then the time to find approximate
ratios can be reduced to O(k) (with high probability) using a linear search rather than
a binary search.

2.1.2. Lower bounds. There are many lower bounds for shortest path problems
in the comparison-addition model, though none are truly startling. Spira and Pan
[SP75] showed that even if additions are free, Ω(n2) comparisons are necessary to
solve SSSP on the complete graph. Karger, Koller, and Phillips [KKP93] proved that
directed APSP requires Ω(mn) comparisons if each summation corresponds to a path
in the graph.5 Kerr [K70] showed that any oblivious APSP algorithm performs Ω(n3)
comparisons, and Kolliopoulos and Stein [KS98] proved that any fixed sequence of
edge relaxations solving SSSP must have length Ω(mn). By “fixed sequence” they
mean one that depends only on m and n but not on the graph structure. Ahuja
et al. [AMOT90] observed that any implementation of Dijkstra’s algorithm requires
Ω(m + n log n) comparison and addition operations. Pettie [Pet04] gave an Ω(m +

5However, it is not true that all shortest path algorithms satisfy this condition. For example,
our algorithm does not, and neither do [F76, Tak92, Han04, Z04, Pet04, Pet02b].
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min{n log r, n log n}) lower bound on computing directed SSSP with a “hierarchy-
type” algorithm, where r bounds the ratio of any two edge lengths. In section 6 we
prove a lower bound of Ω(m + min{n log log r, n log n}) on hierarchy-type algorithms
for undirected SSSP. These last two lower bounds are essentially tight for hierarchy-
type algorithms, on directed and undirected graphs, respectively.

Graham, Yao, and Yao [GYY80] proved that the information-theoretic argument
cannot prove a nontrivial ω(n2) lower bound on the comparison-complexity of APSP,
where additions are granted for free. It is also simple to see that there can be no
nontrivial information-theoretic lower bound on SSSP.

2.2. Dijkstra’s algorithm. Our algorithm, like [Tho99, Hag00], is best un-
derstood as circumventing the limitations of Dijkstra’s algorithm. We give a brief
description of Dijkstra’s algorithm in order to illustrate its complexity and introduce
some vocabulary.

For a vertex set S ⊆ V (G), let dS(u, v) denote the distance from u to v in the
subgraph induced by S ∪ {v}. Dijkstra’s algorithm maintains a tentative distance
function D(v) and a set of visited vertices S satisfying Invariant 2.1. Henceforth, s
denotes the source vertex.

Invariant 2.1. Let s be the source vertex and v be an arbitrary vertex:

D(v) =

{
d(s, v) if v ∈ S,
dS(s, v) if v 	∈ S.

Choosing an initial assignment of S = ∅, D(s) = 0, and D(v) = ∞ for v 	= s
clearly satisfies the invariant. Dijkstra’s algorithm consists of repeating the following
step n times: choose a vertex v ∈ V (G)\S such that D(v) is minimized, set S :=
S ∪ {v}, and finally, update tentative distances to restore Invariant 2.1. This last
part involves relaxing each edge (v, w) by setting D(w) = min{D(w), D(v)+ �(v, w)}.
Invariant 2.1 and the positive-weight assumption imply D(v) = d(s, v) when v is
selected. It is also simple to prove that relaxing outgoing edges of v restores Invariant
2.1.

The problem with Dijkstra’s algorithm is that vertices are selected in increasing
distance from the source, a task that is at least as hard as sorting n numbers. Main-
taining Invariant 2.1, however, does not demand such a particular ordering. In fact,
it can be seen that selecting any vertex v 	∈ S for which D(v) = d(s, v) will maintain
Invariant 2.1. All hierarchy-type algorithms [Tho99, Hag00, Pet04, Pet02b] maintain
Invariant 2.1 by generating a weaker certificate for D(v) = d(s, v) than “D(v) is min-
imal.” Any such certificate must show that for all u 	∈ S, D(u) + d(u, v) ≥ D(v). For
example, Dijkstra’s algorithm presumes there are no negative length edges, hence
d(u, v) ≥ 0, and by choice of v ensures D(u) ≥ D(v). This is clearly a suffi-
cient certificate. In Dinic’s version [Din78] of Dijkstra’s algorithm the lower bound
d(u, v) ≥ �min is used, where �min is the minimum edge length. Thus Dinic is free
to visit any v 	∈ S for which �D(v)/�min is minimal. All hierarchy-type algorithms
[Tho99, Hag00, Pet04, Pet02b], ours included, precompute a much stronger lower
bound on d(u, v) than d(u, v) ≥ �min.

3. The hierarchy approach and its correctness. In this section we gener-
alize the hierarchy-based approach of [Tho99] to real-weighted graphs. Because the
algorithm follows directly from its proof of correctness, we will actually give a kind of
correctness proof first.

Below, X ⊆ V (G) denotes any set of vertices, and s always denotes the source
vertex. Let I be a real interval. The notation XI refers to the subset of X whose
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distance from the source lies in the interval I, i.e.,

XI = { v ∈ X : d(s, v) ∈ I }.
Definition 3.1. A vertex set X is (S, [a, b))-safe if (i) X [0,a) ⊆ S,
(ii) for v ∈ X [a,b), dS∪X(s, v) = d(s, v).
In other words, if a subgraph is (S, I)-safe, we can determine the distances that

lie in interval I without looking at parts of the graph outside the subgraph and S.
Clearly, finding safe subgraphs has the potential to let us compute distances cheaply.

Definition 3.2. A set {Xi}i is a t-partition of X if the {Xi}i partition X and
for every edge (u, v) with u ∈ Xi, v ∈ Xj, and i 	= j, we have �(u, v) ≥ t.

Note that a t-partition need not be maximal; that is, if {X1, X2, . . . , Xk} is a
t-partition, then {X1 ∪X2, X3, . . . , Xk} is as well.

Lemma 3.3. Suppose that X is (S, [a, b))-safe. Let {Xi}i be a t-partition of X
and let S′ be such that S ∪X [a,min{a+t,b}) ⊆ S′. Then

(i) for Xi in the t-partition, Xi is (S, [a,min{a + t, b}))-safe;
(ii) X is (S′, [min{a + t, b}, b))-safe.

Proof. We prove part (i) first. Let v ∈ X
[a,min{a+t,b})
i and suppose that the

lemma is false, that d(s, v) 	= dS∪Xi(s, v). From the assumed safeness of X we know
that d(s, v) = dS∪X(s, v). This means that the shortest path to v must pass through
X\(Xi ∪ S). Let w be the last vertex in X\(Xi ∪ S) on the shortest s–v path. By
Definition 3.2, the edge from w to Xi has length ≥ t. Since d(s, v) < min{a + t, b},
d(s, w) < min{a+ t, b}− t ≤ a. Since, by Definition 3.1(i), X [0,a) ∈ S, it must be that
w ∈ S, contradicting our selection of w from X\(Xi ∪ S). Part (ii) claims that X
is (S′, [min{a + t, b}, b))-safe. Consider first Definition 3.1(i) regarding safeness. By
the assumption that X is (S, [a, b))-safe we have X [0,a) ⊆ S, and by definition of S′

we have S ∪X [a,min{a+t,b}) ⊆ S′; therefore X [0,min{a+t,b}) ⊆ S′, satisfying Definition
3.1(i). By the assumption that X is (S, [a, b))-safe we have that for v ∈ X [a,b),
dS∪X(s, v) = d(s, v); this implies the weaker statement that for v ∈ X [min{a+t,b},b),
dS′∪X(s, v) = dS∪X(s, v) = d(s, v).

As Thorup noted [Tho99], Lemma 3.3 alone leads to a simple recursive procedure
for computing SSSP; however, it makes no guarantee as to efficiency. The input to
the procedure is an (S, I)-safe subgraph X; its only task is to compute the set XI ,
which it performs with recursive calls (corresponding to Lemma 3.3(i) and (ii)) or
directly if X consists of a single vertex. There are essentially three major obstacles
to making this general algorithm efficient: bounding the number of recursive calls,
bounding the time to decide what those recursive calls are, and computing good t-
partitions. Thorup gave a simple way to choose the t-partitions in integer-weighted
graphs so that the number of recursive calls is O(n). However, if adapted directly
to the comparison-addition model, the time to decide which calls to make becomes
Ω(n log n); it amounts to the problem of implementing a general priority queue. We
reduce the overhead for deciding which recursive calls to make to linear by using a
“well balanced” hierarchy and a specialized priority queue for exploiting this kind of
balance. Our techniques rely heavily on the graph being undirected and do not seem
to generalize to directed graphs in any way.

As in other hierarchy-type algorithms, we generalize the distance and tentative
distance notation from Dijkstra’s algorithm to include not just single vertices but sets
of vertices. If X is a set of vertices (or associated with a set of vertices), then

D(X)
def
= min

v∈X
D(v) and d(u,X)

def
= min

v∈X
d(u, v).(1)



A SHORTEST PATH ALGORITHM FOR UNDIRECTED GRAPHS 1405

The procedure Generalized-Visit, given below, takes a vertex set X that is
(S, I)-safe and computes the distances to all vertices in XI , placing these vertices in
the set S as their distances become known. We maintain Invariant 2.1 at all times.
By Definition 3.1 we can compute the set XI without looking at parts of the graph
outside of S ∪X. If X = {v} happens to contain a single vertex, we can compute XI

directly: if D(v) ∈ I, then XI = {v}; otherwise it is ∅. For the general case, Lemma
3.3 says that we can compute XI by first finding a t-partition χ of X, then computing
XI in phases. Let I = I1 ∪ I2 ∪ · · · ∪ Ik, where each subinterval is disjoint from the
others and has width t, except perhaps Ik, which may be a leftover interval of width
less than t. Let Si = S ∪ XI1 ∪ · · · ∪ XIi and let S0 = S. By the assumption that
X is (S, I)-safe and Lemma 3.3, each set in χ is (Si, Ii+1)-safe. Therefore, we can
compute S1, S2, . . . , Sk = S ∪ XI with a series of recursive calls as follows. Assume
that the current set of visited vertices is Si. We determine XIi+1 =

⋃
Y ∈χ Y Ii+1 with

recursive calls of the form Generalized-Visit(Y, Ii+1), for every Y ∈ χ such that
Y Ii+1 	= ∅.

To start things off, we initialize the set S to be empty, set the D-values (tentative
distances) according to Invariant 2.1, and call Generalized-Visit(V (G), [0,∞)).
By the definition of safeness, V (G) is clearly (∅, [0,∞))-safe. If Generalized-Visit

works according to specification, when it completes S = V (G) and Invariant 2.1 is
satisfied, implying that D(v) = d(s, v) for all vertices v ∈ V (G).

Generalized-Visit(X, [a, b)): A generalized hierarchy-type algorithm for real-
weighted graphs.

Input guarantee: X is (S, [a, b))-safe and Invariant 2.1 is satisfied.

Output guarantee: Invariant 2.1 is satisfied and Spost = Spre ∪ X [a,b),
where Spre and Spost are the set S before and after the call.

1. If X contains one vertex, X = {v}, and D(v) ∈ [a, b), then D(v) =
dS(s, v) = d(s, v), where the first equality is by Invariant 2.1 and the
second by the assumption that X is (S, [a, b))-safe. Let S := S ∪ {v}.
Relax all edges incident on v, restoring Invariant 2.1, and return.

2. Let a′ := a
While a′ < b and X 	⊆ S

Let t > 0 be any positive real
Let χ = {X1, X2, . . . , Xk} be an arbitrary t-partition of X
Let χ′ = {Xi ∈ χ : D(Xi) < min{a′ + t, b} and Xi 	⊆ S}
For each Xi ∈ χ′, Generalized-Visit(Xi, [a′,min{a′ + t, b}))
a′ := min{a′ + t, b}

Lemma 3.4. If the input guarantees of Generalized-Visit are met, then after a
call to Generalized-Visit(X, I), Invariant 2.1 remains satisfied and XI is a subset
of the visited vertices S.

Proof (sketch). The base case, when X is a single vertex, is simple to handle.
Turning to the general case, we prove that each time the while statement is examined
in step 2, X is (S, [a′, b))-safe for the current value of S and a′; in what follows we
will treat S as a variable, not a specific vertex set. The first time through the while-
loop in step 2, it follows from the input guarantee to Generalized-Visit that X is
(S, [a′, b))-safe. Similarly, the input guarantee for all recursive calls holds by Lemma
3.3. However, to show that X is (S, [a′, b))-safe at the assignment a′ := min{a′+t, b},
by Definition 3.1 we must show X [0,min{a′+t,b}) ⊆ S. We assume inductively that the
output guarantee of any recursive call to Generalized-Visit is fulfilled; that is,
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upon the completion of Generalized-Visit(Xi, [a
′,min{a′ + t, b})), S includes the

set X
[a′,min{a′+t,b})
i . Each time through the while-loop in step 2 Generalized-Visit

makes recursive calls to all Y ∈ χ′. To complete the proof we must show that for
Y ∈ χ\χ′, Y [a′,min{a′+t,b})\S = ∅. If Y ∈ χ\χ′, it was because D(Y ) ≥ min{a′ + t, b}
or because Y ⊆ S, both of which clearly imply Y [a′,min{a′+t,b})\S = ∅. The output
guarantee for Generalized-Visit is clearly satisfied if step 1 is executed; if step 2
is executed, then when the while-loop finishes, X is either (S, [b, b))-safe or X ⊆ S,
both implying X [0,b) ∈ S.

Generalized-Visit can be simplified in a few minor ways. It can be seen that
in step 1 we do not need to check whether D(v) ∈ [a, b); the recursive call would not
have taken place were this not the case. In step 2 the final line can be shortened to
a′ := a′ + t. However, we cannot change all occurrences of min{a′ + t, b} to a′ + t
because this is crucial to the procedure’s correctness. It is not assumed (nor can it
be guaranteed) that t divides (b − a), so the procedure must be prepared to deal
with fractional intervals of width less than t. In section 4 we show that for a proper
hierarchy this fractional interval problem does not arise.

4. Efficient implementations of Generalized-Visit. We propose two im-
plementations of the Generalized-Visit algorithm, called Visit and Visit-B. The
time bound claimed in Theorem 1.1 is proved by analyzing Visit, given later in
this section. Although Visit is asymptotically fast, it seems too impractical for a
real-world implementation. In section 4.5 we give the Visit-B implementation of
Generalized-Visit, which uses fewer specialized data structures. The asymptotic
running time of Visit-B is just a little slower than that of Visit.

Visit and Visit-B differ from Generalized-Visit in their input/output speci-
fication only slightly. Rather than accepting a set of vertices, as Generalized-Visit

does, our implementations (like [Tho99, Hag00, Pet04, Pet02b]) accept a hierarchy
node x, which represents a set of vertices. Both of our implementations work cor-
rectly for any proper hierarchy H, defined below. We prove bounds on their running
times as a function of m,n, and a certain function of H (which is different for Visit

and Visit-B). In order to compute SSSP in near-linear time the proper hierarchy H
must satisfy certain balance conditions, which are the same for Visit and Visit-B.
In section 5 we give the requisite properties of a balanced hierarchy and show how
to construct a balanced proper hierarchy in O(mst(m,n) + min{n log n, n log log r})
time. Definition 4.1, given next, describes exactly what is meant by hierarchy and
proper hierarchy.

Definition 4.1. A hierarchy is a rooted tree whose leaf nodes correspond to
graph vertices. If x is a hierarchy node, then p(x) is its parent, deg(x) is the number
of children of x, V (x) is the set of descendant leaves (or the equivalent graph vertices),
and diam(x) is an upper bound on the diameter of V (x) (where the diameter of V (x)
is defined to be maxu,v∈V (x) d(u, v)). Each node x is given a value norm(x). A
hierarchy is proper if the following hold:

(i) norm(x) ≤ norm(p(x)),
(ii) either norm(p(x))/norm(x) is an integer or diam(x) < norm(p(x)),
(iii) deg(x) 	= 1,
(iv) if x1, . . . , xdeg(x) are the children of x, then {V (xi)}i is a norm(x)-partition

of V (x). (Refer to Definition 3.2 for the meaning of “norm(x)-partition.”)

Part (iv) of Definition 4.1 is the crucial one for computing shortest paths. Part
(iii) guarantees that a proper hierarchy has O(n) nodes. The second part of (ii) is
admittedly a little strange. It allows us to replace all occurrences of min{a + t, b}
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in Generalized-Visit with just a + t, which greatly simplifies the analysis of our
algorithms. Part (i) will be useful when bounding the total number of recursive calls
to our algorithms.

4.1. Visit. Consider the Visit procedure given below. We prove that Visit cor-
rectly computes SSSPs by demonstrating that it is an implementation of Generalized-

Visit, which was already proved correct.

Visit(x, [a, b)).

Input: x is a node in a proper hierarchy H; V (x) is (S, [a, b))-safe and
Invariant 2.1 is satisfied.

Output guarantee: Invariant 2.1 is satisfied and Spost = Spre∪V (x)[a,b),
where Spre and Spost are the set S before and after the call.

1. If x is a leaf and D(x) ∈ [a, b), then let S := S ∪ {x}, relax all edges
incident on x, restoring Invariant 2.1, and return.

2. If Visit(x, ·) is being called for the first time, create a bucket array of
�diam(x)/norm(x)� + 1 buckets. Bucket i represents the interval

[ax + i · norm(x), ax + (i + 1) · norm(x)),

where ax =

{
D(x) if D(x) + diam(x) < b,

b− � b−D(x)
norm(x)�norm(x) otherwise.

We initialize a′ := ax and insert all the children of x in H into the bucket
array.

The bucket invariant: A node y ∈ H in x’s bucket array appears (log-
ically) in the bucket whose interval spans D(y). If {xi} are the set of
bucketed nodes, then {V (xi)} is a norm(x)-partition of V (x).

3. While a′ < b and V (x) 	⊆ S
While ∃y in bucket [a′, a′ + norm(x)) s.t. norm(y) = norm(x)

Remove y from the bucket array
Insert y’s children in H in the bucket array

For each y in bucket [a′, a′ + norm(x))
and each y such that D(y) < a′ and V (y) 	⊆ S

Visit(y, [a′, a′ + norm(x)))
a′ := a′ + norm(x)

In step 2 of Generalized-Visit we let χ be any arbitrary t-partition of the subset
of vertices given as input. In Visit the input is a hierarchy node x, and the associated
vertex set is V (x). We represent the t-partition of V (x) (where t = norm(x)) by the
set of bucketed H-nodes {xi}i (see step 2), where the sets {V (xi)}i partition V (x).
Clearly the {xi}i are descendants of x. The set {xi}i will begin as x’s children, though
later on {xi}i may contain a mixture of children of x, grandchildren of x, and so on.

Consider the inner while-loop in step 3. Assuming inductively that the buck-
eted H-nodes represent a norm(x)-partition of V (x), if y is a bucketed node and
norm(y) = norm(x), then replacing y by its children in the bucket array produces a
new norm(x)-partition. This follows from the definitions of t-partitions and proper
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Case 1: Fully Aligned

Case 2: Aligned With b

Case 3: Not Aligned At All

a = b− norm(p(x))

a = b− norm(p(x))

a = b− norm(p(x)) ax

ax

ax =
D(x)

D(x)

D(x)

b

b

b

b + norm(p(x))

b + norm(p(x))

b + norm(p(x))

D(x) + diam(x) < b

norm(x) divides (b− ax)

norm(x) divides (b− ax) norm(x) divides norm(p(x))

diam(x) < norm(p(x))

D(x)+
diam(x)

D(x) + diam(x)

Fig. 1. First observe that when ax is initialized we have D(x) ≥ ax ≥ a, as in the figure. If
ax is chosen such that norm(x) divides (b − ax), then by Definition 4.1(ii) either norm(x) divides
norm(p(x)) (which puts us in Case 1) or diam(x) < norm(p(x)) (putting us in Case 2); that is,
norm(x) does not divide (b + norm(p(x)) − ax), but it does not matter since we’ll never reach
b + norm(p(x)) anyway. If ax is chosen so that norm(x) does not divide (b− ax), then ax = D(x)
and D(x) + diam(x) < b (putting us in Case 3), meaning we will never reach b. Note that by
the definition of diam(x) (Definition 4.1) and Invariant 2.1, for any vertex in u ∈ V (x) we have
d(s, u) ≤ d(s, x) + diam(x) ≤ D(x) + diam(x).

hierarchies (Definitions 3.2 and 4.1). Since the bucketed nodes form a norm(x)-
partition, one can easily see that the recursive calls in step 3 of Visit correspond
to the recursive calls in Generalized-Visit. However, their interval arguments are
different. We sketch below why this change does not affect correctness.

In Generalized-Visit the intervals passed to recursive calls are of the form
[a′,min{a′ + t, b}), whereas in Visit they are [a′, a′ + t) = [a′, a′ +norm(x)). We will
argue why a′ + t = a′ +norm(x) is never more than b. The main idea is to show that
we are always in one of the three cases portrayed in Figure 1.

If norm(x) divides norm(p(x)) and ax is chosen in step 2 so that t = norm(x)
divides (b− ax), then we can freely substitute the interval [a′, a′ + t) for [a′,min{a′ +
t, b}) since they will be identical. Note that in our algorithm (b− a) = norm(p(x)).6

The problems arise when norm(x) does not divide either norm(p(x)) or (b − ax).
In order to prove the correctness of Visit we must show that the input guarantee
(regarding safe-ness) is satisfied for each recursive call. We consider two cases: when
we are in the first recursive call to Visit(x, ·) and any subsequent call. Suppose we
are in the first recursive call to Visit(x, ·). By our choice of ax in step 2, either
b = ax + q · norm(x) for some integer q, or b > D(x) + diam(x) = ax + diam(x). If
it is the first case, each time the outer while-loop is entered we have a′ < b, which,

6Strictly speaking, this does not hold for the initial call because in this case, x = root(H) is the
root of the hierarchy H and there is no such node p(x). The argument goes through just fine if we
let p(root(H)) denote a dummy node such that norm(p(root(H))) = ∞.
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since q is integral, implies min{a′ + norm(x), b} = a′ + norm(x). Now consider the
second case, where b > D(x)+diam(x) = ax+diam(x), and one of the recursive calls
Visit(y, [a′, a′ + norm(x))) made in step 3. By Lemma 3.3, V (y) is (S, [a′,min{a′ +
norm(x), b}))-safe, and it is actually (S, [a′, a′ + norm(x)))-safe as well because
b > D(x) + diam(x), implying V (y)[b,∞) ⊆ V (x)[b,∞) = ∅. (Recall from Definition
4.1 that for any u ∈ V (x), diam(x) satisfies d(s, x) ≤ d(s, u) ≤ d(s, x) + diam(x) ≤
D(x)+diam(x).) Now consider a recursive call Visit(x, [a, b)) that is not the first call
to Visit(x, ·). Then by Definition 4.1(ii), either (b − a) = norm(p(x)) is a multiple
of norm(x) or a + diam(x) < b; these are identical to the two cases treated above.

There are two data structural problems that need to be solved in order to effi-
ciently implement Visit. First, we need a way to compute the tentative distances of
hierarchy nodes, i.e., the D-values as defined in (1) in section 3. For this problem
we use an improved version of Gabow’s split-findmin structure [G85a]. The other
problem is efficiently implementing the various bucket arrays, which we solve with a
new structure called the bucket-heap. The specifications for these two structures are
discussed below, in sections 4.2 and 4.3, respectively. The interested reader can refer
to Appendices A and B for details about our implementations of split-findmin and
the bucket-heap, and for proofs of their respective complexities.

4.2. The split-findmin structure. The split-findmin structure operates on
a collection of disjoint sequences, consisting in total of n elements, each with an
associated key. The idea is to maintain the smallest key in each sequence under the
following operations.

split(x): Split the sequence containing x into two sequences: the
elements up to and including x, and the rest.

decrease-key(x, κ): Set key(x) = min{key(x), κ}.
findmin(x): Return the element with minimum key in x’s sequence.

Theorem 4.2, given below, establishes some new bounds on the problem that are
just slightly better than Gabow’s original data structure [G85a]. Refer to Appendix
B for a proof. Thorup [Tho99] gave a similar data structure for integer keys in the
RAM model that runs in linear time. It relies on the RAM’s ability to sort small sets
of integers in linear time [FW93].

Theorem 4.2. The split-findmin problem can be solved on a pointer machine in
O(n+mα) time while making only O(n+m logα) comparisons, where α = α(m,n) is
the inverse-Ackermann function. Alternatively, split-findmin can be solved on a RAM
in time Θ(split-findmin(m,n)), where split-findmin(m,n) = O(n+m logα) is the
decision-tree complexity of the problem.

We use the split-findmin structure to maintain D-values as follows. In the be-
ginning there is one sequence consisting of the n leaves of H in an order consistent
with some depth-first search traversal of H. For any leaf v in H we maintain, by
appropriate decrease-key operations, that key(v) = D(v). During execution of Visit

we will say an H-node is unresolved if it lies in another node’s bucket array but its
tentative distance (D-value) is not yet finalized. The D-value of an H-node becomes
finalized, in the sense that it never decreases again, during step 3 of Visit, either by
being removed from some bucket array or passed, for the first time, to a recursive call
of Visit. (It follows from Definition 3.1 and Invariant 2.1 that D(y) = d(s, y) at the
first recursive call to y.) One can verify a couple properties of the unresolved nodes.
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First, each unvisited leaf has exactly one unresolved ancestor. Second, to implement
Visit we need only query the D-values of unresolved nodes. Therefore, we maintain
that for each unresolved node y, there is some sequence in the split-findmin structure
corresponding to V (y), the descendants of y. Now suppose that a previously unre-
solved node y is resolved in step 3 of Visit. The deg(y) children of y will immediately
become unresolved, so to maintain our correspondence between sequences and unre-
solved nodes, we perform deg(y) − 1 split operations on y’s sequence, so that the
resulting subsequences correspond to y’s children.

We remark that the split-findmin structure we use can be simplified slightly be-
cause we know in advance where the splits will occur. However, this knowledge does
not seem to affect the asymptotic complexity of the problem.

4.3. The bucket-heap. We now turn to the problem of efficiently implementing
the bucket array used in Visit. Because of the information-theoretic bottleneck built
into the comparison-addition model, we cannot always bucket nodes in constant time:
each comparison extracts at most one bit of information, whereas properly bucketing
a node in x’s bucket array requires us to extract up to log(diam(x)/norm(x)) bits
of information. Thorup [Tho99] and Hagerup [Hag00] assume integer edge lengths
and the RAM model and therefore do not face this limitation. We now give the
specification for the bucket-heap, a structure that supports the bucketing operations
of Visit. This structure logically operates on a sequence of buckets; however, our
implementation is really a simulation of the logical structure. Lemma 4.3, proved in
Appendix A, bounds the complexity of our implementation of the bucket-heap.

create(μ, δ): Create a new bucket-heap whose buckets are associated
with intervals [δ, δ + μ), [δ + μ, δ + 2μ), [δ + 2μ, δ + 3μ), . . ..
An item x lies in the bucket whose interval spans key(x).
All buckets are initially open.

insert(x, κ): Insert a new item x with key(x) = κ.
decrease-key(x, κ): Set key(x) = min{key(x), κ}. It is guaranteed that x is

not moved to a closed bucket.
enumerate: Close the first open bucket and enumerate its contents.

Lemma 4.3. Let Δx ≥ 1 denote the number of buckets between the first open
bucket at the time of x’s insertion and the bucket from which x was enumerated. The
bucket-heap can be implemented on a pointer machine to run in O(N +

∑
x log Δx)

time, where N is the number of operations.
When Visit(x, ·) is called for the first time, we initialize the bucket-heap at x

with a call to create(norm(x), ax), followed by a number of insert operations for each
of x’s children, where the key of a child is its D-value. Here ax is the beginning of the
real interval represented by the bucket array, and norm(x) the width of each bucket.
Every time the D-value of a bucketed node decreases, which can easily be detected
with the split-findmin structure, we perform a decrease-key on the corresponding item
in the bucket-heap. We usually refer to buckets not by their cardinal number but by
their associated real interval, e.g., bucket [ax, ax + norm(x)).

4.4. Analysis of Visit. In this section we bound the time required to compute
SSSP with Visit as a function of m, n, and the given hierarchy H. We will see
later that the dominant term in this running time corresponds to the split-findmin
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structure, whose complexity is no more than O(m logα) but could turn out to be
linear.

Lemma 4.4. Let H be a proper hierarchy. Computing SSSPs with Visit on
H takes time O(split-findmin(m,n) + φ(H)), where split-findmin(m,n) is the
complexity of the split-findmin problem and

φ(H) =
∑

x∈H such that

norm(x) 
=norm(p(x))

diam(x)

norm(x)
+

∑
x∈H

log
(

diam(p(x))

norm(p(x))
+ 1

)
.

Proof. The split-findmin(m,n) term represents the time to relax edges (in step
1) and update the relevant D-values of H-nodes, as described in section 4.2. Except
for the costs associated with updating D-values, the overall time of Visit is linear
in the number of recursive calls and the bucketing costs. The two terms of φ(H)
represent these costs. Consider the number of calls to Visit(x, I) for a particular H-
node x. According to step 3 of Visit, there will be zero calls to x unless norm(x) 	=
norm(p(x)). If it is the case that norm(x) 	= norm(p(x)), then for all recursive calls
on x, the given interval I will have the same width: norm(z) for some ancestor z of x.
By Definition 4.1(i), norm(z) ≥ norm(x), and therefore the number of such recursive
calls on x is ≤ diam(x)/norm(x) + 2; the extra 2 counts the first and last recursive
calls, which may cover negligible parts of the interval [d(s, x), d(s, x) + diam(x)]. By
Definition 4.1(iii), |H| < 2n, and therefore the total number of recursive calls is
bounded by 4n+

∑
x diam(x)/norm(x), where the summation is over H nodes whose

norm-values differ from their parents’ norm-values.
Now consider the bucketing costs of Visit if implemented with the bucket-heap.

According to steps 2 and 3, a node y is bucketed either because Visit(p(y), ·) was
called for the first time, or its parent p(y) was removed from the first open bucket (of
some bucket array), say bucket [a, a + norm(p(y))). In either case, this means that
d(s, p(y)) ∈ [a, a+ norm(p(y))) and that d(s, y) ∈ [a, a+ norm(p(y)) + diam(p(y))).
To use the terminology of Lemma 4.3, Δy ≤ �diam(p(y))/norm(p(y))�, and the
total bucketing costs would be #(buckets scanned) + #(insertions) + #(dec-keys) +∑

x log(diam(p(x))/norm(p(x)) + 1), which is O(φ(H) + m + n).
In section 5 we give a method for constructing a proper hierarchy H such that

φ(H) = O(n). This bound together with Lemma 4.4 shows that we can compute
SSSP in O(split-findmin(m,n)) time, given a suitable hierarchy. Asymptotically
speaking, this bound is the best we are able to achieve. However, the promising
experimental results of a simplified version of our algorithm [PRS02] have led us to
design an alternate implementation of Generalized-Visit that is both theoretically
fast and easier to code.

4.5. A practical implementation of Generalized-Visit. In this section we
present another implementation of Generalized-Visit, called Visit-B. Although
Visit-B is a bit slower than Visit in the asymptotic sense, it has other advantages.
Unlike Visit, Visit-B treats all internal hierarchy nodes in the same way and is
generally more streamlined. Visit-B also works with any optimal off-the-shelf priority
queue, such as a Fibonacci heap [FT87]. We will prove later that the asymptotic
running time of Visit-B is O(m + nlog∗n). Therefore, if m/n = Ω(log∗n), both
Visit and Visit-B run in optimal O(m) time.

The pseudocode for Visit-B is given as follows.
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Visit-B(x, [a, b)).

Input: x is a node in a proper hierarchy H; V (x) is (S, [a, b))-safe and
Invariant 2.1 is satisfied.

Output guarantee: Invariant 2.1 is satisfied and Spost = Spre∪V (x)[a,b),
where Spre and Spost are the set S before and after the call.

1. If x is a leaf and D(x) ∈ [a, b), then let S := S ∪ {x}, relax all edges
incident on x, restoring Invariant 2.1, and return.

2. If Visit-B(x, ·) is being called for the first time, put x’s children in H
in a heap associated with x, where the key of a node is its D-value.
Choose ax as in Visit and initialize a′ := ax and χ := ∅.

3. While a′ < b and either χ or x’s heap is nonempty,
While there exists a y in x’s heap with D(y) ∈ [a′, a′ + norm(x))

Remove y from the heap
χ := χ ∪ {y}

For each y ∈ χ
Visit-B(y, [a′, a′ + norm(x)))
If V (y) ⊆ S, then set χ := χ\{y}

a′ := a′ + norm(x)

The proof of correctness for Visit-B follows the same lines as that for Visit. It
is easy to establish that before the for-loop in step 3 is executed, χ = {y : p(y) =
x,D(y) < a′ + norm(x), and V (y) 	⊆ S}, so Visit-B is actually a more straightfor-
ward implementation of Generalized-Visit than Visit. In Visit-B the norm(x)-
partition for x corresponds to x’s children, whereas in Visit the partition begins with
x’s children but is decomposed progressively.

Lemma 4.5. Let H be a proper hierarchy. Computing SSSPs with Visit-B on
H takes time O(split-findmin(m,n) + ψ(H)), where split-findmin(m,n) is the
complexity of the split-findmin problem and

ψ(H) =
∑
x∈H

(
diam(x)

norm(x)
+ deg(x) log deg(x)

)
.

Proof. The split-findmin term plays the same role in Visit-B as in Visit.
Visit-B is different than Visit in that it makes recursive calls on all hierarchy nodes,
not just those with different norm-values than their parents. Using the same argu-
ment as in Lemma 4.5, we can bound the number of recursive calls of the form Visit-

B(x, ·) as diam(x)/norm(x) + 2; this gives the first summation in ψ(H). Assuming
an optimal heap is used (for example, a Fibonacci heap [FT87]), all decrease-keys
take O(m) time, and all deletions take

∑
x deg(x) log deg(x) time. The bound on

deletions follows since each of the deg(x) children of x is inserted into and deleted
from x’s heap at most once.

In section 5 we construct a hierarchy H such that ψ(H) = Θ(nlog∗n), imply-
ing an overall bound on Visit-B of O(m + nlog∗n), since split-findmin(m,n) =
O(mα(m,n)) = O(m + nlog∗n). Even though ψ(H) = Ω(nlog∗n) in the worst case,
we are only able to construct very contrived graphs for which this lower bound is
tight.

5. Efficient construction of balanced hierarchies. In this section we con-
struct a hierarchy that works well for both Visit and Visit-B. The construction
procedure has three distinct phases. In phase 1 we find the graph’s minimum span-
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ning tree, denoted M , and classify its edges by length. This classification immediately
induces a coarse hierarchy, denoted H0, which is analogous to the component hierarchy
defined by Thorup [Tho99] for integer-weighted graphs. Although H0 is proper, using
it to run Visit or Visit-B may result in a slow SSSP algorithm. In particular, φ(H0)
and ψ(H0) can easily be Θ(n log n), giving no improvement over Dijkstra’s algorithm.
Phase 2 facilitates phase 3, in which we produce a refinement of H0, called H; this is
the “well balanced” hierarchy we referred to earlier. The refined hierarchy H is con-
structed so as to minimize the φ(H) and ψ(H) terms in the running times of Visit and
Visit-B. In particular, φ(H) will be O(n), and ψ(H) will be O(nlog∗n). Although
H could be constructed directly from M (the graph’s minimum spanning tree), we
would not be able to prove the time bound of Theorem 1.1 using this method. The
purpose of phase 2 is to generate a collection of small auxiliary graphs that—loosely
speaking—capture the structure and edge lengths of certain subtrees of the minimum
spanning tree. Using the auxiliary graphs in lieu of M , we are able to construct H in
phase 3 in O(n) time.

In section 5.1 we define all the notation and properties used in phases 1, 2, and
3 (sections 5.2, 5.3, and 5.4, respectively). In section 5.5 we prove that φ(H) = O(n)
and ψ(H) = O(nlog∗n).

5.1. Some definitions and properties.

5.1.1. The coarse hierarchy. Our refined hierarchy H is derived from a coarse
hierarchy H0, which is defined here and in section 5.2. Although H0 is typically very
simple to describe, the general definition of H0 is rather complicated since it must
take into account certain extreme circumstances. H0 is defined w.r.t. an increasing
sequence of norm-values: norm1,norm2, . . ., where all edge lengths are at least
as large as norm1. (Typically normi+1 = 2 · normi; however, this is not true in
general.) We will say that an edge e is at level i if �(e) ∈ [normi,normi+1), or
alternatively, we may write norm(e) = normi to express that e is at level i. A level
i subgraph is a maximal connected subgraph restricted to edges with level i or less,
that is, with length strictly less than normi+1. Therefore, the level zero subgraphs
consist of single vertices. A level i node in H0 corresponds to a nonredundant level
i subgraph, where a level i subgraph is redundant if it is also a level i− 1 subgraph.
This nonredundancy property guarantees that all nonleaf H0-nodes have at least
two children. The ancestor relationship in H0 should be clear: x is an ancestor of
y if and only if the subgraph of y is contained in the subgraph of x, i.e., V (y) ⊆
V (x). The leaves of H0 naturally correspond to graph vertices, and the internal
nodes to subgraphs. The coarse hierarchy H0 clearly satisfies Definition 4.1(i), (iii),
(iv); however, we have to be careful in choosing the norm-values if we want it to be
a proper hierarchy, that is, for it to satisfy Definition 4.1(ii) as well. Our method for
choosing the norm-values is deferred to section 5.2.

5.1.2. The minimum spanning tree. By the cut property of minimum span-
ning trees (see [CLRS01, PR02c]) the H0 w.r.t. G is identical to the H0 w.r.t. M ,
the minimum spanning tree (MST) of G. Therefore, the remainder of this section is
mainly concerned with M , not the graph itself. If X ⊆ V (G) is a set of vertices, we let
M(X) be the minimal connected subtree of M containing X. Notice that M(X) can
include vertices outside of X. Later on we will need M to be a rooted tree in order to
talk coherently about a vertex’s parent, ancestors, children, and so on. Assume that
M is rooted at an arbitrary vertex. The notation root(M(X)) refers to the root of
the subtree M(X).
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5.1.3. Mass and diameter. The mass of a vertex set X ⊆ V (G) is defined as

mass(X)
def
=

∑
e∈E(M(X))

�(e).

Extending this notation, we let M(x) = M(V (x)) and mass(x) = mass(V (x)),
where x is a node in any hierarchy. Since the MST path between two vertices in
M(x) is an upper bound on the shortest path between them, mass(x) is an upper
bound on the diameter of V (x). Recall from Definition 4.1 that diam(x) denoted any
upper bound on the diameter of V (x); henceforth, we will freely substitute mass(x)
for diam(x).

5.1.4. Refinement of the coarse hierarchy. We will say that H is a refine-
ment of H0 if all nodes in H0 are also represented in H. An equivalent definition,
which provides us with better imagery, is that H is derived from H0 by replacing each
node x ∈ H0 with a rooted subhierarchy H(x), where the root of H(x) corresponds
to (and is also referred to as) x and the leaves of H(x) correspond to the children of
x in H0. Consider a refinement H of H0 where each internal node y in H(x) satisfies
deg(y) 	= 1 and norm(y) = norm(x). One can easily verify from Definitions 3.2 and
4.1 that if H0 is a proper hierarchy, so too is H. Of course, in order for φ(H) and
ψ(H) to be linear or near-linear, H(x) must satisfy certain properties. In particular,
it must be sufficiently short and balanced. By balanced we mean that a node’s mass
should not be too much smaller than its parent’s mass.

5.1.5. Lambda values. We will use the following λ-values in order to quantify
precisely our notion of balance:

λ0 = 0, λ1 = 12 and λq+1 = 2λq·2−q

.

Lemma 5.1 gives a lower bound on the growth of the λ-values; we give a short
proof before moving on.

Lemma 5.1. min{q : λq ≥ n} ≤ 2log∗n.

Proof. Let Sq be a stack of q twos; for example, S3 = 222

= 16. We will prove
that λq ≥ S�q/2�, giving the lemma. One can verify that this statement holds for
q ≤ 9. Assume that it holds for all q′ ≤ q.

λq+1 = 22λq−1·2−(q−1)
2−q {definition of λq+1}

≥ 22
S�(q−1)/2�·2−(q−1)−q

{inductive assumption}

≥ 22
S�(q−1)/2�−1

= S�(q+1)/2� {holds for q ≥ 9}.

The third line follows from the inequality S�(q−1)/2� · 2−(q−1) − q ≥ S�(q−1)/2�−1,
which holds for q ≥ 9.

5.1.6. Ranks. Recall from section 5.1.4 that our refined hierarchy H is derived
from H0 by replacing each node x ∈ H0 with a subhierarchy H(x). We assign to all
nodes in H(x) a nonnegative integer rank. The analysis of our construction would
become very simple if for every rank j node y in H(x), mass(y) = λj · norm(x).
Although this is our ideal situation, the nature of our construction does not allow
us to place any nontrivial lower or upper bounds on the mass of y. We will assign
ranks in order to satisfy Property 5.1, given below, which ensures us a sufficiently
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good approximation to the ideal. It is mainly the internal nodes of H(x) that can
have subideal ranks; we assign ranks to the leaves of H(x) (representing children of x
in H0) to be as close to the ideal as possible.

We should point out that the assignment of ranks is mostly for the purpose of
analysis. Rank information is never stored explicitly in the hierarchy nodes, nor is
rank information used, implicitly or explicitly, in the computation of shortest paths.
We only refer to ranks in the construction of H and when analyzing their effect on
the φ and ψ functions.

Property 5.1. Let x ∈ H0 and y, z ∈ H(x) ⊆ H.
(a) If y is an internal node of H(x), then norm(y) = norm(x) and deg(y) > 1.
(b) If y is a leaf of H(x) (i.e., a child of x in H0), then y has rank j, where j is

maximal s.t. mass(y)/norm(x) ≥ λj.
(c) Let y be a child of a rank j node. We call y stunted if mass(y)/norm(x) <

λj−1/2. Each node has at most one stunted child.
(d) Let y be of rank j. The children of y can be divided into three sets: Y1, Y2, and

a singleton {z} such that (mass(Y1) + mass(Y2))/norm(x) < (2 + o(1)) · λj.
(e) Let X be the nodes of H(x) of some specific rank. Then

∑
y∈X mass(y) ≤

2 · mass(x).
Before moving on, let us examine some features of Property 5.1. Part (a) is

asserted to guarantee that H is proper. Part (b) shows how we set the rank of leaves
of H(x). Part (c) says that at most one child of any node is less than half its ideal
mass. Part (d) is a little technical but basically says that for a rank j node y, although
mass(y) may be huge, the children of y can be divided into sets Y1, Y2, {z} such that
Y1 and Y2 are of reasonable mass—around λj ·norm(x). However, no bound is placed
on the mass contributed by z. Part (e) says that if we restrict our attention to the
nodes of a particular rank, their subgraphs do not overlap in too many places. To
see how two subgraphs might overlap, consider {xi}, the set of nodes of some rank
in H(x). By our construction it will always be the case that the vertex sets {V (xi)}
are disjoint; however, this does not imply that the subtrees {M(xi)} are edge-disjoint
because M(xi) can, in general, be much larger than V (xi).

We show in section 5.5 that if H is a refinement of H0 and H satisfies Property
5.1, then φ(H) = O(n) and ψ(H) = O(nlog∗n). Recall from Lemmas 4.4 and 4.5 that
φ(H) and ψ(H) are terms in the running times of Visit and Visit-B, respectively.

5.2. Phase 1: The MST and the coarse hierarchy. Pettie and Ramachan-
dran [PR02c] recently gave an MST algorithm that runs in time proportional to the
decision-tree complexity of the MST problem. As the complexity of MST is triv-
ially Ω(m) and only known to be O(mα(m,n)) [Chaz00], it is unknown whether this
cost will dominate or be dominated by the split-findmin(m,n) term. (This issue is
mainly of theoretical interest.) In the analysis we use mst(m,n) to denote the cost
of computing the MST. This may be interpreted as the decision-tree complexity of
MST [PR02c] or the randomized complexity of MST, which is known to be linear
[KKT95, PR02b].

Recall from section 5.1.1 that H0 was defined w.r.t. an arbitrary increasing se-
quence of norm-values. We describe below exactly how the norm-values are chosen,
then prove that H0 is a proper hierarchy. Our method depends on how large r is,
which is the ratio of the maximum-to-minimum edge length in the minimum spanning
tree. If r < 2n, which can easily be determined in O(n) time, then the possible norm-
values are {�min · 2i : 0 ≤ i ≤ log r + 1}, where �min is the minimum edge length
in the graph. If r ≥ 2n, then let e1, . . . , en−1 be the edges in M in nondecreasing
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order by length and let J = {1} ∪ {j : �(ej) > n · �(ej−1)} be the indices that mark
large separations in the (�(ei))1≤i<n sequence. The possible norm-values are then
{�(ej) · 2i : i ≥ 0, j ∈ J and �(ej) · 2i < �(ej+1)}.

Under either definition, normi is the ith largest norm-value, and for an edge
e ∈ E(M), norm(e) = normi if �(e) ∈ [normi,normi+1). Notice that if no edge
length falls within the interval [normi,normi+1), then normi is an unused norm-
value. We only need to keep track of the norm-values in use, of which there are no
more than n− 1.

Lemma 5.2. The coarse hierarchy H0 is a proper hierarchy.
Proof. As we observed before, parts (i), (iii), and (iv) of Definition 4.1 are sat-

isfied for any monotonically increasing sequence of norm-values. Definition 4.1(ii)
states that if x is a hierarchy node, either norm(p(x))/norm(x) is an integer or
diam(x)/norm(p(x)) < 1. Suppose that x is a hierarchy node and norm(p(x))/norm(x)
is not integral; then norm(x) = �(ej1) · 2i1 and norm(p(x)) = �(ej2) · 2i2 , where
j2 > j1. By our method for choosing the norm-values, the lengths of all MST edges
are either at least �(ej2) or less than �(ej2)/n. Since edges in M(x) have length less
than �(ej2), and hence less than �(ej2)/n, diam(x) < (|V (x)|−1) · �(ej2)/n < �(ej2) ≤
norm(p(x)).

Lemma 5.3. We can compute the minimum spanning tree M , and norm(e) for
all e ∈ E(M), in O(mst(m,n) + min{n log log r, n log n}) time.

Proof. mst(m,n) represents the time to find M . If r < 2n, then by Lemma 2.2
we can find norm(e) for all e ∈ M in O(log r + n log log r) = O(n log log r) time. If
r ≥ 2n, then n log log r = Ω(n log n), so we simply sort the edges of M and determine
the indices J in O(n log n) time. Suppose there are nj edges e s.t. norm(e) is of the
form �(ej) · 2i. Since �(e)/�(ej) ≤ nnj , we need only generate nj log n values of the
form �(ej) · 2i. A list of the

∑
j nj log n = n log n possible norm-values can easily be

generated in sorted order. By merging this list with the list of MST edge lengths, we
can determine norm(e) for all e ∈ M in O(n log n) time.

Lemma 5.4, given below, will come in handy in bounding the running time of
our preprocessing and SSSP algorithms. It says that the total normalized mass in
H0 is linear in n. Variations of Lemma 5.4 are at the core of the hierarchy approach
[Tho99, Hag00, Pet04, Pet02b].

Lemma 5.4.

∑
x∈H0

mass(x)

norm(x)
< 4(n− 1).

Proof. Recall that the notation norm(e) = normi stands for �(e) ∈
[normi,normi+1), where normi, is the ith largest norm-value. Observe that if
e ∈ M is an MST edge with norm(e) = normi, e can be included in mass(x) for no
more than one x at levels i, i+1, . . . in H0. Also, it follows from our definitions that for
every normi in use, normi+1/normi ≥ 2, and for any MST edge, �(e)/norm(e) < 2.
Therefore, we can bound the normalized mass in H0 as

∑
x∈H0

mass(x)

norm(x)
≤

∑
e∈M

norm(e)=normi

∞∑
j=i

�(e)

normj

≤
∑
e∈M

norm(e)=normi

∞∑
j=i

�(e)

2j−i · normi
< 4(n− 1).
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2
3

2

M(X) T (X)Black vertices are in X

Fig. 2. On the left is a subtree of M , the MST, where X is the set of blackened vertices. In the
center is M(X), the minimal subtree of M connecting X, and on the right is T (X), derived from
M(X) by splicing out unblackened degree 2 nodes in M(X) and adjusting edge lengths appropriately.
Unless otherwise marked, all edges in this example are of length 1.

Implicit in Lemma 5.4 is a simple accounting scheme where we treat mass, or
more accurately normalized mass, as a currency equivalent to computational work. A
hierarchy node x “owns” mass(x)/norm(x) units of currency. If we can then show
that the share of some computation relating to x is bounded by k times its currency,
the total time for this computation is O(kn), that is, of course, if all computation is
attributable to some hierarchy node. Although simple, this accounting scheme is very
powerful and can become quite involved [Pet04, Pet02b, Pet03].

5.3. Phase 2: Constructing T (x) trees. Although it is possible to construct
an H(x) that satisfies Property 5.1 by working directly with the subtree M(x), we
are unable to efficiently compute H(x) in this way. The problem is that we have time
roughly proportional to the size of H(x) to construct H(x), whereas M(x) could be
significantly larger than H(x). Our solution is to construct a succinct tree T (x) that
preserves the essential structure of M(x) while having size roughly the same as H(x).

For X ⊆ V (G), let T (X) be the subtree derived from M(X) by splicing out all
single-child vertices in V (M(X)) − X. That is, we replace each chain of vertices in
M(X), where only the end vertices are potentially in X, with a single edge; the length
of this edge is the sum of its corresponding edge lengths in M(X). Since there is a
correspondence between vertices in T (X) and M , we will refer to T (X) vertices by
their names in M . Figure 2 gives examples of M(X) and T (X) trees, where X is the
set of blackened vertices.

If x ∈ H0 and {xj}j is the set of children of x, then let T (x) be the tree
T ({root(M(xj))}j); note that root(M(x)) is included in {root(M(xj))}j . Since
only some of the edges of M(x) are represented in T (x), it is possible that the to-
tal length of T (x) is significantly less than the total length of M(x) (the mass of
M(x)); however, we will require that any subgraph of T (x) have roughly the same
mass as an equivalent subgraph in M(x). In order to accomplish this we attribute
certain amounts of mass to the vertices of T (x) as follows. Suppose that y is a
child of x in H0 and v = root(y) is the corresponding root vertex in T (x). We let
mass(v) = mass(y). All other vertices in T (x) have zero mass. The mass of a subtree
of T (x) is then the sum of its edge lengths plus the collective mass of its vertices.

We will think of a subtree of T (x) as corresponding to a subtree of M(x). Each
edge in T (x) corresponds naturally to a path in M(x), and each vertex in T (x) with
nonzero mass corresponds to a subtree of M(x).

Lemma 5.5. For x ∈ H0,
(i) deg(x) ≤ |V (T (x))| < 2 · deg(x);
(ii) let T1 be a subtree of T (x) and T2 be the corresponding tree in M(x). Then
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u1 = root(Tx)u1 = root(Tx)

u2 u2

u3 u3

w = LCA(v, u4) w = the new u4

u4 v v = the new u5

A
lread

y
trav

ersed

Fig. 3. The blackened vertices represent those known to be in T (x). The active path of the
traversal is shown in bold edges. Before v is processed (left) the stack consists of 〈u1, u2, u3, u4〉,
where u4 is the last vertex in the traversal known to be in T (x) and w = LCA(v, u4), which implies
w ∈ T (x). After v is processed (right) the stack is set to 〈u1, u2, u3, w, v〉 and w is blackened.

mass(T2) ≤ mass(T1) ≤ 2 · mass(T2).
Proof. Part (i) follows from two observations. First, T (x) has no degree two

vertices. Second, there are at most deg(x) leaves of T (x) since each such leaf corre-
sponds to a vertex root(M(y)) for some child y of x in H0. Part (ii) follows since
all mass in T2 is represented in T1, and each edge in T2 contributes to the mass of at
most one edge and one vertex in T1.

We construct T (x) with a kind of depth first traversal of the minimum spanning
tree, using the procedure Succinct-Tree, given below. Succinct-Tree focuses
on some fixed H0-node x. We will explain how Succinct-Tree works with the aid
of the diagram in Figure 3. At every point in the traversal we maintain a stack of
vertices 〈u1, . . . , uq〉 consisting of all vertices known to be in T (x), whose parents in
T (x) are not yet fixed. The stack has the following properties: ui is ancestral to ui+1,
〈u1, . . . , uq−1〉 are on the active path of the traversal, and uq is the last vertex known
to be in T (x) encountered in the traversal.

In Figure 3 the stack consists of 〈u1, . . . , u4〉, where 〈u1, u2, u3〉 are on the active
path of the traversal, marked in bold edges. The preprocessing of v (before making
recursive calls) is to do nothing if v 	∈ {root(M(xj))}j . Otherwise, we update the
stack to reflect our new knowledge about the edges and vertices of T (x). The vertex
w = LCA(uq, v) = LCA(u4, v) must be in T (x). There are three cases: either w
is the ultimate or penultimate vertex in the stack (uq or uq−1), that is, we already
know w ∈ T (x), or w lies somewhere on the path between uq and uq−1. Figure
3 diagrams the third situation. Because no T (x) vertices were encountered in the
traversal between uq = u4 and v, there can be no new T (x) vertices discovered on
the path between uq and w. Therefore, we can pop uq off the stack, designating its
parent in T (x) to be w, and push w and v onto the stack. The other two situations,
when w = uq or w = uq−1, are simpler. If w = uq, then we simply push v onto the
stack, and if w = uq−1, we pop uq off the stack and push v on. Now consider the
postprocessing of v (performed after all recursive calls), and let uq−1, uq be the last
two vertices in the stack. Suppose that v = uq−1. We cannot simply do nothing,
because when the active path retracts there will be two stack vertices (v = uq−1 and
uq) outside of the active path, contrary to the stack properties. However, because no
T (x) vertices were discovered between uq and uq−1, we can safely say that uq−1 is the
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parent of uq in T (x). So, to maintain the stack properties, we pop off uq and add the
edge (uq, uq−1) to T (x).

Succinct-Tree(v): A procedure for constructing T (x), for a given x ∈ H0.
The argument v is a vertex in the MST M .
The stack for T (x) consists of vertices 〈u1, . . . , uq〉, which
are known to be in T (x) but whose parents in T (x) are
not yet known. All but uq are on the active path of the
DFS traversal. Initially the stack for T (x) is empty.

1. If v = root(y), where y is a child of x in H0, then

2. Let w = LCA(v, uq)

3. If w 	= uq

4. POP uq off the stack

5. Designate (uq, w) an edge in T (x)

6. If w 	= uq−1

7. PUSH w on the stack

8. PUSH v on the stack

9. Call Succinct-Tree on all the children of v in M

10. Let uq−1, uq refer to the last two elements in the current stack

11. If v = uq−1

12. POP uq off the stack

13. Designate (uq, uq−1) = (uq, v) an edge in T (x)

Lemma 5.6. Given the MST and a list of its edges ordered by level, H0 and
{T (x)}x can be constructed in O(n) time.

Proof. We construct H0 with a union-find structure and mark all vertices in M
as roots of M(x) for (one or more) x ∈ H0. It is easy to see that we can construct
all T (x) for x ∈ H0, with one tree traversal given in procedure Succinct-Tree.
We simply maintain a different stack for each Tx under construction. Thus if v is
the root of several M(y1),M(y2), . . . , where yi ∈ H0, we simply reexecute lines 1–8
and 10–13 of Succinct-Tree for each of v’s roles. Using a well-known union-find–
based least common ancestors (LCA) algorithm [AHU76, Tar79b], we can compute
the LCAs in line 2 in O(nα(n)) time, since the number of finds is linear in the number
of nodes in H0. If we use the scheme of Buchsbaum et al. [BKRW98] instead, the cost
of finding LCAs is linear; however, since this algorithm is offline (it does not handle
LCA queries in the middle of a tree traversal, unlike [AHU76, Tar79b]), we would need
to determine what the LCA queries are with an initial pass over the tree. Finally, we
compute the length function in T (x) as follows. If (u, v) ∈ E(T (x)) and v is ancestral
to u in M , then �(u, v) = dM (u,root(M)) − dM (v,root(M)), where dM is the
distance function for M . Clearly the dM (·,root(M)) function can be computed in
O(n) time. See Lemma 2.1 for a simulation of subtraction in the comparison-addition
model.

5.4. Phase 3: Constructing the refined hierarchy. We show in this section
how to construct an H(x) from T (x) that is consistent with Property 5.1.

The Refine-Hierarchy procedure, given as pseudocode below, constructs H(x)
in a bottom-up fashion by traversing the tree T (x). A call to Refine-Hierarchy(v),
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where v ∈ T (x), will produce an array of sets v[·] whose elements are nodes in H(x)
that represent (collectively) the subtree of T (x) rooted at v. The set v[j] holds rank
j nodes, which, taken together, are not yet massive enough to become a rank j + 1
node. We extend the mass notation to sets v[·] as follows. Bear in mind that this
mass is w.r.t. the tree T (x), not M(x). By Lemma 5.5(ii), mass w.r.t. T (x) is a good
approximation to the mass of the equivalent subtree in M(x):

mass(v[j]) = mass

⎛
⎝ ⋃

j′≤j

⋃
y∈v[j′]

V (y)

⎞
⎠ .

Refine-Hierarchy(v): Constructing H(x), for a given x ∈ H0,
where v is a vertex in T (x).

1. Initialize v[j] := ∅ for all j.

2. If v = root(M(y)) for some child y of x in H0

3. Let j be maximal s.t. mass(y)/norm(x) ≥ λj

4. v[j] := {y} (i.e., y is implicitly designated a rank j node)

5. For each child w of v in T (x):

6. Refine-Hierarchy(w)

7. For all i, v[i] := v[i] ∪ w[i]

8. Let j be maximal such that mass(v[j])/norm(x) ≥ λj+1

9. Promote v[0], . . . , v[j] (see Definition 5.7)

10. If v is the root of T (x), promote v[0], v[1], . . . until one node remains.

(This final node is the root of H(x).)

The structure of Refine-Hierarchy is fairly simple. To begin with, we initialize
v[·] to be an array of empty sets. Then, if v is a root vertex of a child y of x in H0,
we create a node representing y and put it in the proper set in v[·]; which set receives
y depends only on mass(y). Next we process the children of v. On each pass through
the loop, we pick an as yet unprocessed child w of v; recurse on w, producing sets
w[·] representing the subtree rooted at w; and then merge the sets w[·] into their
counterparts in v[·]. At this point, the mass of some sets may be beyond a critical
threshold: the threshold for v[j] is λj+1 · norm(x). In order to restore a quiescent
state in the sets v[·] we perform promotions until no set’s mass is above threshold.

Definition 5.7. Promoting the set v[j] involves removing the nodes from v[j],
making them the children of a new rank j + 1 node, and then placing this node in
v[j + 1]. There is one exception: if |v[j]| = 1, then to comply with Definition 4.1(iii),
we simply move the node from v[j] to v[j + 1]. Promoting the sets v[0], v[1], . . . , v[j]
means promoting v[0], then v[1], up to v[j], in that order.

Suppose that after merging w[·] into v[·], j is maximal such that mass(v[j]) is
beyond its threshold of λj+1 · norm(x) (there need not be such a j). We promote
the sets v[0], . . . , v[j], which has the effect of emptying v[0], . . . , v[j] and adding a new
node to v[j + 1] representing the nodes formerly in v[0], . . . , v[j]. Lemma 5.8, given
below, shows that we can compute the H(x) trees in linear time.

Lemma 5.8. Given {T (x)}x, {H(x)}x can be constructed to satisfy Property 5.1
in O(n) time.

Proof. We first argue that Refine-Hierarchy produces a refinement H of H0

that satisfies Property 5.1. We then look at how to implement it in linear time.



A SHORTEST PATH ALGORITHM FOR UNDIRECTED GRAPHS 1421

Property 5.1(a) states that internal nodes in H(x) must have norm-values equal
to that of x, which we satisfy by simply assigning them the proper norm-values, and
that no node of H(x) has one child. By our treatment of one-element sets in the
promotion procedure of Definition 5.7, it is simply impossible to create a one-child
node in H(x). Property 5.1(e) follows from Lemma 5.5(ii) and the observation that
the mass (in T (x)) represented by nodes of the same rank is disjoint. Now consider
Property 5.1(c), regarding stunted nodes. We show that whenever a set v[j] accepts a
new node z, either v[j] is immediately promoted, or z is not stunted, or the promotion
of z into v[j] represents the last promotion in the construction of H(x). Consider the
pattern of promotions in line 9. We promote the sets v[0], . . . , v[j] in a cascading
fashion: v[0] to v[1], v[1] to v[2], and so on. The only set accepting a new node that
is not immediately promoted is v[j + 1], so in order to prove Property 5.1(c) we must
show that the node derived from promoting v[0], . . . , v[j] is not stunted. By choice
of j, mass(v[j]) ≥ λj+1 · norm(x), where mass is w.r.t. the tree T (x). By Lemma
5.5(ii) the mass of the equivalent tree in M(x) is at least λj+1 · norm(x)/2, which is
exactly the threshold for this node being stunted. Finally, consider Property 5.1(d).
Before the merging step in line 7, none of the sets in v[·] or w[·] is massive enough
to be promoted. Let v[·] and w[·] denote the sets associated with v and w before the
merging in step 7, and let v′[·] denote the set associated with v after step 7. By the
definition of mass we have

mass(v′[j]) = mass(v[j]) + mass(w[j]) + �(v, w) < 2 · λj+1 · norm(x) + �(v, w).

Since (v, w) is an edge in T (x), it can be arbitrarily large compared to norm(x),
meaning we cannot place any reasonable bound on mass(v′[j]) after the merging step.
Let us consider how Property 5.1(d) is maintained. Suppose that v′[j] is promoted in
lines 9 or 10, and let y be the resulting rank j + 1 node. Using the terminology from
Property 5.1(d), let Y1 = v[j], Y2 = w[j] and let z be the node derived by promoting
v′[0], . . . , v′[j− 1]. Since neither v[j] nor w[j] was sufficiently massive to be promoted
before they were merged, we have (mass(Y1) + mass(Y2))/norm(x) < 2λj+1. This
is slightly stronger than what Property 5.1(d) calls for, which is the inequality <
(2 + o(1))λj+1. We’ll see why the (2 + o(1)) is needed below.

Suppose that we implemented Refine-Hierarchy in a straightforward manner.
Let L be the (known) maximum possible index of any nonempty set v[·] during the
course of Refine-Hierarchy. One can easily see that the initialization in lines 1–4
takes O(L + 1) time and that, exclusive of recursive calls, each time through the for-
loop in line 5 takes O(L+1) amortized time. (The bound on line 5 is amortized since
promoting a set v[j] takes worst case O(|v[j]| + 1) time but only constant amortized
time.) The only hidden costs in this procedure are updating the mass of sets, which
is done as follows. After the merging step in line 7, we simply set mass(v[j]) :=
mass(v[j])+�(v, w)+mass(w[j]) for each j ≤ L. Therefore the total cost of computing
H(x) from T (x) is O((L + 1) · |T (x)|). We can bound L as L ≤ 2log∗(4n) as follows.
The first node placed in any previously empty set is unstunted; therefore, by Lemma
5.1, the maximum nonempty set has rank at most 2log∗(mass(T (x))/norm(x)). By
Lemma 5.5(ii) and the construction of H0, mass(T (x)) ≤ 2 ·mass(M(x)) < 4(n− 1) ·
norm(x).

In order to reduce the cost to linear we make a couple adjustments to the Refine-

Hierarchy procedure. First, v[·] is represented as a linked list of nonempty sets.
Second, we update the mass variables in a lazy fashion. The time for steps 1–4 is
dominated by the time to find the appropriate j in step 3, which takes time t1—see
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below. The time for merging the v[·] and w[·] sets in line 7 is only proportional to the
shorter list; this time bound is given by expression t2 below.

t1 = O

(
1 + log∗

mass(v)

norm(x)

)
,

t2 = O

(
1 + log∗

min{mass(v[·]),mass(w[·])}
norm(x)

)
,

where mass(v[·]) is just the total mass represented by the v[·] sets. We update the
mass of only the first t1 + t2 sets in v[·], and, as a rule, we update v[j + 1] half as
often as v[j]. It is routine to show that Refine-Hierarchy will have a lower bound
on the mass of v[j] that is off by a 1+o(1) factor, where the o(1) is a function of
j.7 This leads to the conspicuous 2 + o(1) in Property 5.1(d). To bound the cost of
Refine-Hierarchy we model its computation as a binary tree: leaves represent the
creation of nodes in lines 1–4, and internal nodes represent the merging events in line
7. The cost of a leaf f is log∗(mass(f)/norm(x)), and the cost of an internal node
f with children f1 and f2 is 1 + log∗(min{mass(f1)/norm(x),mass(f2)/norm(x)}).
We can think of charging the cost of f collectively to the mass in the subtree of f1 or
f2, whichever is smaller. Therefore, no unit of mass can be charged for two nodes f
and g if the total mass under f is within twice the total mass under g. The total cost
is then

∑
f

cost(f) = O

(
|T (x)| + mass(T (x))

norm(x)
·

∞∑
i=0

log∗(2i)

2i

)
= O

(
mass(x)

norm(x)

)
.

The last equality follows because |T (x)| = O(mass(T (x))/norm(x)) =
O(mass(M(x))/norm(x)). Summing over all x ∈ H0, the total cost of construct-
ing {H(x)}x∈H0 is, by Lemma 5.4, O(n).

Lemma 5.9. In O(mst(m,n) + min{n log log r, n log n}) time we can construct
both the coarse hierarchy H0 and a refinement H of H0 satisfying Property 5.1.

Proof. The proof follows from Lemmas 5.3, 5.6, and 5.8.

5.5. Analysis. In this section we prove bounds on the running times of Visit

and Visit-B, given an appropriate refined hierarchy such as the one constructed in
section 5.4. Theorem 1.1 follows directly from Lemma 5.10, given below, and Lemma
5.9.

Lemma 5.10. Let H be any refinement of H0 satisfying Property 5.1. Using H,
Visit computes SSSP in O(split-findmin(m,n)) time, and Visit-B computes SSSP
in O(m + nlog∗n) time.

Proof. We prove that φ(H) = O(n) and ψ(H) = O(nlog∗n). Together with
Lemmas 4.4 and 4.5, this will complete the proof.

With the observation that mass(x) is an upper bound on the diameter of V (x),
we will substitute mass(x) for diam(x) in the functions φ and ψ. By Lemma 5.4,
the first sum in φ is O(n). The first sum of ψ(H) is much like that in φ, except we
sum over all nodes in H, not just those nodes that also appear in H0. By Property
5.1(a), (c), and (d) and Lemma 5.1, the maximum rank of any node in H(x) is

7The proof of this is somewhat tedious. Basically one shows that for i < j the mass of v[i] can
be updated at most 2j−i − 1 times before the mass of v[j] is updated. Since 2j−1 − 1 · λi � λj , our
neglecting to update the mass of v[j] causes a negligible error.
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2log∗(mass(x)/norm(x)) ≤ 2log∗n. By Property 5.1(e) the total mass of nodes of
one rank in H(x) is bounded by 2 · mass(x). Therefore, we can bound the first
sum in ψ(H) as

∑
x mass(x)/norm(x) ≤ 4log∗n ·

∑
x∈H0

mass(x)/norm(x), which is
O(nlog∗n) by Lemma 5.4.

We now turn to the second summations in φ(H) and ψ(H), which can be written
as

∑
x deg(x) log(mass(x)/norm(x)) and

∑
x deg(x) log deg(x), respectively. Since

deg(x) ≤ 1 + mass(x)/norm(x), any bound established on the first summation will
extend to the second.

Let y be a rank j node. Using the terms from Property 5.1(d), let α = (mass(Y1)+
mass(Y2))/norm(y) and β = mass(y)/norm(y)−α. Property 5.1(c), (d) imply that
α < (2 + o(1)) · λj and that deg(y) ≤ 2α/λj−1 + 2, where the +2 represents the
stunted child and the child z exempted from Property 5.1(d):

deg(y) log
mass(y)

norm(y)
≤

(
2α

λj−1
+ 2

)
log(α + β) {see explanations below}

= O

(
max{α log(2λj), β}

λj−1

)

= O

(
α + β

2j−1

)
= O

(
mass(y)

norm(y) · 2j−1

)
.

The first line follows from our bound on deg(y) and the definitions of α and β.
The second line follows since α < (2+o(1))λj and α log(α+β) = O(max{α logα, β}).
The last line follows since log λj = λj−1/2

j−1 > 1. By the above bound and Property
5.1(e),

∑
y∈H(x) deg(y) log(mass(y)/norm(y)) = O(mass(x)/norm(x)). Therefore,

by Lemma 5.4, the second summations in both φ(H) and ψ(H) are bounded by
O(n).

6. Limits of hierarchy-type algorithms. In this section we state a simple
property (Property 6.1) of all hierarchy-type algorithms and give a lower bound on
any undirected SSSP algorithm satisfying that property. The upshot is that our
SSSP algorithm is optimal (up to an inverse-Ackermann factor) for a fairly large
class of SSSP algorithms, which includes all hierarchy-type algorithms, variations on
Dijkstra’s algorithm, and even a heuristic SSSP algorithm [G01].

We will state Property 6.1 in terms of directed graphs. Let cycles(u, v) denote
the set of all cycles, including nonsimple cycles, that pass through both u and v,
and let sep(u, v) = minC∈cycles(u,v) maxe∈C �(e). Note that in undirected graphs
sep(u, v) corresponds exactly to the longest edge on the MST path between u and v.

Property 6.1. An SSSP algorithm with the hierarchy property computes, aside
from shortest paths, a permutation πs : V (G) → V (G) such that for any vertices u, v,
we find d(s, u) ≥ d(s, v) + sep(u, v) =⇒ πs(u) > πs(v), where s is the source and d
the distance function.

The permutation πs corresponds to the order in which vertices are visited when
the source is s. Property 6.1 says that πs is loosely sorted by distance, but may invert
pairs of vertices if their relative distance is less than their sep-value. To see that
our hierarchy-based algorithm satisfies Property 6.1, consider two vertices u and v.
Let x be the LCA of u and v in H, and let u′ and v′ be the ancestors of u and v,
respectively, which are children of x. By our construction of H, norm(x) ≤ sep(u, v).
If d(s, u) ≥ d(s, v) + sep(u, v), then d(s, u) ≥ d(s, v) + norm(x), and therefore the
recursive calls on u′ and v′ that cause u and v to be visited are not passed the same
interval argument, since both intervals have width norm(x). The recursive call on u′
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Fig. 4. The minimum spanning tree of the graph.

must, therefore, precede the recursive call on v′, and u must be visited before v.
Theorem 6.1. Suppose that our computational model allows any set of func-

tions from R
O(1) → R and comparison between two reals. Any SSSP algorithm for

real-weighted graphs satisfying Property 6.1 makes Ω(m + min{n log log r, n log n})
operations in the worst case, where r is the ratio of the maximum to minimum edge
length.

Proof. Let q be an integer. Assume without loss of generality that 2q divides
n−1. The MST of the input graph is as depicted in Figure 4. It consists of the source
vertex s, which is connected to p = (n − 1)/2 vertices in the top row, each of which
is paired with one vertex in the bottom row. All the vertices (except s) are divided
into disjoint groups, where group i consists of exactly p/q randomly chosen pairs of
vertices. There are exactly p!/(p/q)!q = qΩ(p) possible group arrangements. We will
show that any algorithm satisfying Property 6.1 must be able to distinguish them.

We choose edge lengths as follows. All edges in group i have length 2i. This
includes edges from s to the group’s top row and between the two rows. Other
non-MST edges are chosen so that shortest paths from s correspond to paths in
the MST. Let vi denote any vertex in the bottom row of group i. Then d(s, vi) =
2 · 2i and sep(vi, vj) = 2max{i,j}. By Property 6.1, vi must be visited before vj if
d(s, vi) + sep(vi, vj) ≤ d(s, vj), which is true for i < j since 2 · 2i + 2j ≤ 2 · 2j .
Therefore, any algorithm satisfying Property 6.1 must be prepared to visit vertices in
qΩ(p) distinct permutations and make at least Ω(p log q) = Ω(n log log r) comparisons
in the worst case. It also must include every non-MST edge in at least one operation,
which gives the lower bound.

Theorem 6.1 shows that our SSSP algorithm is optimal among hierarchy-type
algorithms, to within a tiny inverse-Ackermann factor. A lower bound on directed
SSSP algorithms satisfying Property 6.1 is given in [Pet04]. Theorem 6.1 differs from
that lower bound in two respects. First, the [Pet04] bound is Ω(m+min{n log r, n log n}),
which is Ω(m + n log n) for even reasonably small values of r. Second, the [Pet04]
bound holds even if the algorithm is allowed to compute the sep function (and sort
the values) for free. Contrast this with our SSSP algorithm, where the main obstacle
to achieving linear time is the need to sort the sep-values.

7. Discussion. We have shown that with a near-linear time investment in pre-
processing, SSSP queries can be answered in very close to linear time. Furthermore,
among a natural class of SSSP algorithms captured by Property 5.1, our SSSP algo-
rithm is optimal, aside from a tiny inverse-Ackermann factor. We can imagine several
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avenues for further research, the most interesting of which is developing a feasible
alternative to Property 5.1 that does not have an intrinsic sorting bottleneck. This
would be a backward approach to algorithm design: first we define a desirable prop-
erty, then we hunt about for algorithms with that property. Another avenue, which
might have some real-world impact, is to reduce the preprocessing cost of the directed
shortest path algorithm in [Pet04] from O(mn) to near-linear, as it is in our algorithm.

The marginal cost of computing SSSP with our algorithm may or may not be
linear; it all depends on the complexity of the split-findmin structure. This data
structure, invented first by Gabow [G85a] for use in a weighted matching algorithm,
actually has connections with other fundamental problems. For instance, it can be
used to solve both the minimum spanning tree and shortest path tree sensitivity
analysis problems [Pet03]. (The sensitivity analysis problem is to decide how much
each edge’s length can be perturbed without changing the solution tree.) Therefore,
by Theorem 4.2 both these problems have complexity O(m logα(m,n)), an α/ logα
improvement over Tarjan’s path-compression–based algorithm [Tar82]. If we consider
the offline version of the split-findmin problem, where all splits and decrease-keys
are given in advance, one can show that it is reducible to both the MST problem
and the MST sensitivity analysis problem. None of these reductions proves whether
mst(m,n) dominates split-findmin(m,n) or vice versa; however, they do suggest
that we have no hope of solving the MST problem [PR02b, PR02c] without first
solving the manifestly simpler split-findmin and MST sensitivity analysis problems.

The experimental study of Pettie, Ramachandran, and Sridhar [PRS02] shows
that our algorithm is very efficient in practice. However, the [PRS02] study did not
explore all possible implementation choices, such as the proper heap to use, the best
preprocessing algorithm, or different implementations of the split-findmin structure.
To our knowledge no one has investigated whether the other hierarchy-type algorithms
[Tho99, Hag00, Pet04] are competitive in real-world scenarios.

An outstanding research problem in parallel computing is to bound the time-work
complexity of SSSP. There are several published algorithms on the subject [BTZ98,
CMMS98, KS97, M02, TZ96], though none runs in worst-case polylogarithmic time
using work comparable to Dijkstra’s algorithm. There is clearly a lot of parallelism in
the hierarchy-based algorithms. Whether this approach can be effectively parallelized
is an intriguing question.

Appendix A. The bucket-heap. The bucket-heap structure consists of an
array of buckets, where the ith bucket spans the interval [δ+ iμ, δ+(i+1)μ), for fixed
reals δ and μ. Logically speaking, a heap item with key κ appears in the bucket whose
interval spans κ. We are never concerned about the relative order of items within the
same bucket.

Proof of Lemma 4.3. Our structure simulates the logical specification given earler;
it actually consists of levels of bucket arrays. The level zero buckets are the ones
referred to in the bucket-heap’s specification, and the level i buckets preside over
disjoint intervals of 2i level zero buckets. The interval represented by a higher-level
bucket is the union of its component level zero buckets. Only one bucket at each level
is active: it is the first one that presides over no closed level zero buckets; see Figure
5. Suppose that an item x should logically be in the level zero bucket B. We maintain
the invariant that x is either descending and in the lowest active bucket presiding over
B, or ascending and in some active bucket presiding over level zero buckets before B.

To insert a node we put it in the first open level zero bucket and label it as
ascending. This clearly satisfies the invariant. The result of a decrease-key depends
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on whether the node x is ascending or descending. Suppose x is ascending and in
a bucket (at some level) spanning the interval [a, b). If key(x) < b, we relabel it
as descending; otherwise we do nothing. If x is descending (or was just relabeled as
descending), we move it to the lowest level active bucket consistent with the invariant.
If x drops i ≥ 0 levels, we assume that this is accomplished in O(i + 1) time; i.e., we
search from its current level down, not from the bottom up.

Suppose that we close the first open level zero bucket B. According to the invari-
ant all items that are logically in B are descending and actually in B, so enumerating
them is no problem; there will, in general, be ascending items in B that do not log-
ically belong there. In order to maintain the invariant we must deactivate all active
buckets that preside over B (including B). Consider one such bucket at level i. If
i > 0, we move each descending node in it to the level i − 1 active bucket. For each
ascending node (at level i ≥ 0), depending on its key, we either move it to the level
i+ 1 active bucket and keep it ascending, or relabel it descending and move it to the
proper active bucket at level ≤ i + 1.

From the invariant it follows that no node x appears in more than 2 log Δx + 1
distinct buckets: log Δx + 1 buckets as an ascending node and another log Δx as a
descending node. Aside from this cost of moving nodes around, the other costs are
clearly O(N).

We remark that the bucket-heap need not actually label the items. Whether an
item is ascending or descending can be inferred from context.

Appendix B. The split-findmin problem. The split-findmin problem is to
maintain a collection of sequences of weighted elements under the following operations:

split(x): Split the sequence containing x into two sequences: the
elements up to and including x and the rest.

decrease-key(x, κ): Set key(x) = min{key(x), κ}.
findmin(x): Return the element in x’s sequence with minimum key.

Gabow [G85a] gave an elegant algorithm for this problem that is nearly optimal.
On an initial sequence of n elements, it handles up to n−1 splits and m decrease-keys
in O((m + n)α(m,n)) time. Gabow’s algorithm runs on a pointer machine [Tar79].
We now prove Theorem 4.2 from section 4.2.

Proof of Theorem 4.2. In Gabow’s decrease-key routine a sequence of roughly
α variables needs to be updated, although it is already known that their values are
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monotonically decreasing. We observe that, on a pointer machine, the same task
can be accomplished in O(α) time using O(logα) comparisons for a binary search.
Using a simple two-level scheme, one can easily reduce the nα term in the running
time to n. This gives the split-findmin algorithm that performs O(m logα(m,n) + n)
comparisons.

To get a potentially faster algorithm on the RAM model we construct all possible
split-findmin solvers on inputs with at most q = log log n elements and choose one
that is close to optimal for all problem sizes. We then show how to compose this
optimal split-findmin solver on q elements with Gabow’s structure to get an optimal
solver on n elements.

We consider only instances with m′ < q2 decrease-keys. If more decrease-keys are
actually encountered, we can revert to Gabow’s algorithm [G85a] or a trivial one that
runs in O(m′) time.

We represent the state of the solver with three components: a bit-vector with
length q − 1, representing where the splits are; a directed graph H on no more than
q + m′ < q(q + 1) vertices, representing known inequalities between current keys and
older keys retired by decrease-key operations; and finally, a mapping from elements
to vertices in H. One may easily confirm that the state can be represented in no
more than 3q4 = o(log n) bits. One may also confirm that a split or decrease-key can
update the state in O(1) time. We now turn to the findmin operation. Consider the
findmin-action function, which determines the next step in the findmin procedure. It
can be represented as

findmin-action : state × {1, . . . , q} →
(
V (H) × V (H)

)
∪ {1, . . . , q},

where the first {1, . . . , q} represents the argument to the findmin query. The findmin-
action function can either perform a comparison (represented by V (H)×V (H)) which,
if performed, will alter the state, or return an answer to the findmin query, represented
by the second {1, . . . , q}. One simply applies the findmin-action function until it
produces an answer. We will represent the findmin-action function as a table. Since
the state is represented in o(log n) bits, we can keep it in one machine word; therefore,
computing the findmin-action function (and updating the state) takes constant time
on a RAM.

One can see that any split-findmin solver can be converted, without loss of effi-
ciency, into one that performs comparisons only during calls to findmin. Therefore,
finding the optimal findmin-action function is tantamount to finding the optimal split-
findmin solver.

We have now reduced the split-findmin problem to a brute force search over the
findmin-action function. There are less than F = 23q4 · q · (q4 + q) < 24q4

distinct
findmin-action functions, most of which do not produce correct answers. There are
less than I = (2q + q2(q + 1))q

2+3q distinct instances of the problem, because the
number of decrease-keys is < q2, findmins < 2q, and splits < q. Furthermore, each
operation can be a split or findmin, giving the 2q term, or a decrease-key, which
requires us to choose an element and where to fit its new key into the permutation,
giving the q2(q + 1) term. Each findmin-action/problem instance pair can be tested
for correctness in V = O(q2) time, and therefore all correct findmin-action functions

can be chosen in time F · I · V = 2Ω(q4). For q = log log n this is o(n), meaning the
time for this brute force search does not affect the other constant factors involved.

How do we choose the optimal split-findmin solver? This is actually not a trivial
question because of the possibility of there not being one solver that dominates all
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others on all input sizes. Consider charting the worst-case complexity of a solver S
as a function gS of the number of operations p in the input sequence. It is plausible
that certain solvers are optimal for only certain densities p/q. We need to show
that for some solver S∗, gS∗ is within a constant factor of the lower envelope of
{gS}S , where S ranges over all correct solvers. Let Sk be the optimal solver for 2k

operations. We let S∗ be the solver that mimics Sk from operations 2k−1 + 1 to
2k. At operation 2k it resets its state, reexecutes all 2k operations under Sk+1, and
continues using Sk+1 until operation 2k+1. Since gSk+1

(2k+1) ≤ 2 · gSk
(2k), it follows

that gS∗(p) ≤ 4 · minS{gS(p)}.
Our overall algorithm is very simple. We divide the n elements into n′ = n/q

superelements, each representing a contiguous block of q elements. Each unsplit se-
quence then consists of three parts: two subsequences in the leftmost and rightmost
superelements and a third subsequence consisting of unsplit superelements. We use
Gabow’s algorithm on the unsplit superelements, where the key of a superelement
is the minimum over constituent elements. For the superelements already split, we
use the S∗ split-findmin solver constructed as above. The cost of Gabow’s algo-
rithm is O((m + n/q)α(m,n/q)) = O(m + n), and the cost of using S∗ on each
superelement is Θ(split-findmin(m,n)) by construction; therefore the overall cost is
Θ(split-findmin(m,n)).

One can easily extend the proof to randomized split-findmin solvers by defining
the findmin-action as selecting a distribution over actions.

We note that the time bound of Theorem 4.2 on pointer machines is provably
optimal. La Poutré [LaP96] gave a lower bound on the pointer machine complexity of
the split-find problem, which is subsumed by the split-findmin problem. The results
in this section address the RAM complexity and decision-tree complexity of split-
findmin, which are unrelated to La Poutré’s result.

REFERENCES

[AGM97] N. Alon, Z. Galil, and O. Margalit, On the exponent of the all pairs shortest path
problem, J. Comput. System Sci., 54 (1997), pp. 255–262.

[AHU76] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, On finding lowest common ancestors
in trees, SIAM J. Comput., 5 (1976), pp. 115–132.

[AMO93] R. K. Ahuja, T. L. Magnati, and J. B. Orlin, Network Flows: Theory, Algorithms,
and Applications, Prentice–Hall, Englewood Cliffs, NJ, 1993.

[AMOT90] R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan, Faster algorithms for
the shortest path problem, J. ACM, 37 (1990), pp. 213–223.

[BKRW98] A. L. Buchsbaum, H. Kaplan, A. Rogers, and J. R. Westbrook, Linear-time
pointer-machine algorithms for LCAs, MST verification, and dominators, in Pro-
ceedings of the 30th ACM Symposium on Theory of Computing (STOC), Dallas,
TX, 1998, ACM, New York, 1998, pp. 279–288.

[BTZ98] G. S. Brodal, J. L. Tra̋ff, and C. D. Zaroliagis, A parallel priority queue with
constant time operations, J. Parallel and Distrib. Comput., 49 (1998), pp. 4–21.

[Chaz00] B. Chazelle, A minimum spanning tree algorithm with inverse-Ackermann type com-
plexity, J. ACM, 47 (2000), pp. 1028–1047.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-
rithms, MIT Press, Cambridge, MA, 2001.

[CMMS98] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders, A parallelization of Di-
jkstra’s shortest path algorithm, in Proceedings of the 23rd International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS), Lecture Notes
in Comput. Sci. 1450, Springer, New York, 1998, pp. 722–731.

[Dij59] E. W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math., 1
(1959), pp. 269–271.

[Din78] E. A. Dinic, Economical algorithms for finding shortest paths in a network, Trans-
portation Modeling Systems, (1978), pp. 36–44 (in Russian).



A SHORTEST PATH ALGORITHM FOR UNDIRECTED GRAPHS 1429

[Din03] Y. Dinitz, Personal communication, Ben-Gurion University, Be’er Sheva, Israel, 2003.
[FG85] A. M. Frieze and G. R. Grimmett, The shortest-path problem for graphs with random

arc-lengths, Discrete Appl. Math., 10 (1985), pp. 57–77.
[FR01] J. Fakcharoenphol and S. Rao, Planar graphs, negative weight edges, shortest paths,

and near linear time, in Proceedings of the 42nd IEEE Symposium on Foundations
of Computer Science (FOCS), Las Vegas, NV, 2001, IEEE Press, Piscataway, NJ,
pp. 232–241.

[F91] G. N. Frederickson, Planar graph decomposition and all pairs shortest paths, J. ACM,
38 (1991), pp. 162–204.

[F76] M. L. Fredman, New bounds on the complexity of the shortest path problem, SIAM
J. Comput., 5 (1976), pp. 83–89.

[FT87] M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network
optimization algorithms, J. ACM, 34 (1987), pp. 596–615.

[FW93] M. L. Fredman and D. E. Willard, Surpassing the information-theoretic bound with
fusion trees, J. Comput. System Sci., 47 (1993), pp. 424–436.

[G01] A. V. Goldberg, A simple shortest path algorithm with linear average time, in Pro-
ceedings of the 9th European Symposium on Algorithms (ESA), Lecture Notes in
Comput. Sci. 2161, Springer, New York, 2001, pp. 230–241.

[G85a] H. N. Gabow, A scaling algorithm for weighted matching on general graphs, in Proceed-
ings of the 26th IEEE Symposium on Foundations of Computer Science (FOCS),
Portland, OR, 1985, IEEE Press, Piscataway, NJ, pp. 90–100.

[G85b] H. N. Gabow, Scaling algorithms for network problems, J. Comput. System Sci., 31
(1985), pp. 148–168.

[G95] A. V. Goldberg, Scaling algorithms for the shortest paths problem, SIAM J. Comput.,
24 (1995), pp. 494–504.

[GM97] Z. Galil and O. Margalit, All pairs shortest distances for graphs with small integer
length edges, Inform. and Comput., 134 (1997), pp. 103–139.

[GR98] A. V. Goldberg and S. Rao, Beyond the flow decomposition barrier, J. ACM, 45
(1998), pp. 783–797.

[GT89] H. N. Gabow and R. E. Tarjan, Faster scaling algorithms for network problems,
SIAM J. Comput., 18 (1989), pp. 1013–1036.

[GT91] H. N. Gabow and R. E. Tarjan, Faster scaling algorithms for general graph-matching
problems, J. ACM, 38 (1991), pp. 815–853.

[GYY80] R. L. Graham, A. C. Yao, and F. F. Yao, Information bounds are weak in the shortest
distance problem, J. ACM, 27 (1980), pp. 428–444.

[Hag00] T. Hagerup, Improved shortest paths on the word RAM, in Proceedings of the 27th
International Colloquium on Automata, Languages, and Programming (ICALP),
Lecture Notes in Comput. Sci. 1853, Springer, New York, 2000, pp. 61–72.

[Hag04] T. Hagerup, Simpler computation of single-source shortest paths in linear average
time, in Proceedings in the 21st Annual Symposium on Theoretical Aspects of Com-
puter Science (STACS), Montpellier, France, 2004, Springer, New York, pp. 362–
369.

[Han04] Y. Han, Improved algorithm for all pairs shortest paths, Inform. Process. Lett., 91
(2004), pp. 245–250.

[HKRS97] M. R. Henzinger, P. N. Klein, S. Rao, and S. Subramanian, Faster shortest path
algorithms for planar graphs, J. Comput. System Sci., 55 (1997), pp. 3–23.

[HT02] Y. Han and M. Thorup, Integer sorting in O(n
√

log logn) expected time and linear
space, in Proceedings of the 43rd Annual Symposium on Foundations of Computer
Science (FOCS), Vancouver, 2002, IEEE Press, Piscataway, NJ, pp. 135–144.

[J77] D. B. Johnson, Efficient algorithms for shortest paths in sparse networks, J. ACM, 24
(1977), pp. 1–13.

[K70] L. R. Kerr, The Effect of Algebraic Structure on the Computational Complexity of
Matrix Multiplication, Technical report TR70-75, Computer Science Department,
Cornell University, Ithaca, NY, 1970.

[KKP93] D. R. Karger, D. Koller, and S. J. Phillips, Finding the hidden path: Time bounds
for all-pairs shortest paths, SIAM J. Comput., 22 (1993), pp. 1199–1217.

[KKT95] D. R. Karger, P. N. Klein, and R. E. Tarjan, A randomized linear-time algorithm
for finding minimum spanning trees, J. ACM, 42 (1995), pp. 321–329.

[KS97] P. N. Klein and S. Subramanian, A randomized parallel algorithm for single-source
shortest paths, J. Algorithms, 25 (1997), pp. 205–220.

[KS98] S. G. Kolliopoulos and C. Stein, Finding real-valued single-source shortest paths in
o(n3) expected time, J. Algorithms, 28 (1998), pp. 125–141.



1430 SETH PETTIE AND VIJAYA RAMACHANDRAN
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[MN00] K. Mehlhorn and S. Näher, LEDA: A Platform for Combinatorial and Geometric
Computing, Cambridge University Press, Cambridge, UK, 2000.

[MT87] A. Moffat and T. Takaoka, An all pairs shortest path algorithm with expected time
O(n2 logn), SIAM J. Comput., 16 (1987), pp. 1023–1031.

[Pet02b] S. Pettie, On the comparison-addition complexity of all-pairs shortest paths, in Pro-
ceedings of the 13th International Symposium on Algorithms and Computation
(ISAAC’02), Vancouver, 2002, Springer, New York, pp. 32–43.

[Pet03] S. Pettie, On the Shortest Path and Minimum Spanning Tree Problems, Ph.D.
thesis, Department of Computer Sciences, The University of Texas at Austin,
Austin, TX, 2003; also available online as Technical report TR-03-35 at
http://www.cs.utexas.edu/ftp/pub/techreports/tr03-35.ps.gz.

[Pet04] S. Pettie, A new approach to all-pairs shortest paths on real-weighted graphs, Spe-
cial Issue of Selected Papers from the 29th International Colloqium on Automata
Languages and Programming (ICALP 2002), Theoret. Comput. Sci., 312 (2004),
pp. 47–74.

[PR02a] S. Pettie and V. Ramachandran, Computing shortest paths with comparisons and
additions, in Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), San Francisco, CA, 2002, SIAM, Philadelphia, pp. 267–276.

[PR02b] S. Pettie and V. Ramachandran, Minimizing randomness in minimum spanning
tree, parallel connectivity, and set maxima algorithms, in Proceedings of the 13th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), San Francisco,
CA, 2002, SIAM, Philadelphia, pp. 713–722.

[PR02c] S. Pettie and V. Ramachandran, An optimal minimum spanning tree algorithm,
J. ACM, 49 (2002), pp. 16–34.

[PRS02] S. Pettie, V. Ramachandran, and S. Sridhar, Experimental evaluation of a new
shortest path algorithm, in Proceedings of the 4th Workshop on Algorithm En-
gineering and Experiments (ALENEX), San Francisco, CA, 2002, Springer, New
York, pp. 126–142.

[Sei95] R. Seidel, On the all-pairs-shortest-path problem in unweighted undirected graphs,
J. Comput. System Sci., 51 (1995), pp. 400–403.

[SP75] P. M. Spira and A. Pan, On finding and updating spanning trees and shortest paths,
SIAM J. Comput., 4 (1975), pp. 375–380.

[Spi73] P. M. Spira, A new algorithm for finding all shortest paths in a graph of positive arcs
in average time O(n2 log2 n), SIAM J. Comput., 2 (1973), pp. 28–32.

[SZ99] A. Shoshan and U. Zwick, All pairs shortest paths in undirected graphs with integer
weights, in Proceedings of the 40th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), New York, 1999, IEEE Press, Piscataway, NJ, pp. 605–
614.

[Tak92] T. Takaoka, A new upper bound on the complexity of the all pairs shortest path prob-
lem, Inform. Process. Lett., 43 (1992), pp. 195–199.

[Tak98] T. Takaoka, Subcubic cost algorithms for the all pairs shortest path problem, Algo-
rithmica, 20 (1998), pp. 309–318.

[Tar79] R. E. Tarjan, A class of algorithms which require nonlinear time to maintain disjoint
sets, J. Comput. System Sci., 18 (1979), pp. 110–127.

[Tar79b] R. E. Tarjan, Applications of path compression on balanced trees, J. ACM, 26 (1979),
pp. 690–715.

[Tar82] R. E. Tarjan, Sensitivity analysis of minimum spanning trees and shortest path trees,
Inform. Process. Lett., 14 (1982), pp. 30–33; Corrigendum, Inform. Process. Lett.,
23 (1986), p. 219.

[Tho00] M. Thorup, Floats, integers, and single source shortest paths, J. Algorithms, 35 (2000),
pp. 189–201.



A SHORTEST PATH ALGORITHM FOR UNDIRECTED GRAPHS 1431

[Tho03] M. Thorup, Integer priority queues with decrease key in constant time and the single
source shortest paths problem, in Proceedings of the 35th Annual ACM Symposium
on Theory of Computing (STOC), San Diego, CA, 2003, ACM, New York, pp. 149–
158.

[Tho99] M. Thorup, Undirected single-source shortest paths with positive integer weights in
linear time, J. ACM, 46 (1999), pp. 362–394.
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Abstract. In this paper, we study the bounded sum-of-digits discrete logarithm problem in
finite fields. Our results are concerned primarily with fields Fqn , where n|q − 1. The fields are
called Kummer extensions of Fq . It is known that we can efficiently construct an element g with
order exponential in n. Let Sq(•) be the function from integers to the sum of digits in their q-ary
expansions. We first present an algorithm that, given ge (0 ≤ e < qn ), finds e in random polynomial
time, provided that Sq(e) < n. We then show that the problem is solvable in random polynomial
time for most of the exponent e with Sq(e) < 1.32n by exploring an interesting connection between
the discrete logarithm problem and the problem of list decoding of Reed–Solomon codes and applying
the Guruswami–Sudan algorithm. As far as we are aware, our algorithm is the first one which can

solve discrete logarithms of 2log1−ε qn many instances in polynomial time for infinite many constant
characteristic fields Fqn . Furthermore, since every finite field has an extension of reasonable degree,
which is a Kummer extension, our result reveals an unexpected property of the discrete logarithm
problem, namely, the bounded sum-of-digits discrete logarithm problem in any given finite field
becomes polynomial-time solvable in certain low degree extensions.

As a side result, we obtain a sharper lower bound on the number of congruent polynomials
generated by linear factors than the one based on the Stothers–Mason ABC-theorem. We also prove
that, in the field Fqq−1 , the bounded sum-of-digits discrete logarithm with respect to g can be

computed in random time O(f(w) log4(qq−1)), where f is a subexponential function and w is the
bound on the q-ary sum-of-digits of the exponent; hence the problem is fixed parameter tractable.
These results are shown to be generalized to Artin–Schreier extension Fpp , where p is a prime.
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1. Introduction and motivation. Most practical public key cryptosystems
base their security on the hardness of solving the integer factorization problem or the
discrete logarithm problem in finite fields. Both problems admit subexponential algo-
rithms; thus we have to use long parameters, which make the encryption/decryption
costly if the parameters are randomly chosen. Parameters of low Hamming weight, or
more generally, of small sum-of-digits, offer some remedy. Another popular approach
is to use a small multiplicative subgroup of a large field [16]. Both methods speed up
the system while seeming to keep the security intact. In particular, in the cryptosys-
tem based on the discrete logarithm problem in finite fields of small characteristic,
using small sum-of-digits exponents is very attractive, due to the existence of normal
bases [2]. It is proposed and implemented for smart cards and mobile devices, where
the computing power is severely limited. Although attacks exploring the specialty
were proposed [17], none of them have polynomial-time complexity.

Let Fqn be a finite field. For β ∈ Fqn , if β, βq, βq2

, . . . , βqn−1

form a linear basis
of Fqn over Fq, we call them, collectively, a normal basis. It is known that a normal
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basis exists for every pair of prime power q and a positive integer n [12, p. 29]. Every
element α in Fqn can be represented as

α = a0β + a1β
q + · · · + an−1β

qn−1

,

where ai ∈ Fq for 0 ≤ i ≤ n− 1. The power of q is a linear operation; thus

αq = a0β
q + · · · + an−2β

qn−1

+ an−1β.

Hence to compute the qth power, we need only rotate the digits, which can be done
very quicky, possibly on the hardware level. Let e be an integer with q-ary expansion

e = e0 + e1q + e2q
2 + · · · + en−1q

n−1 (0 ≤ ei < q for 0 ≤ i ≤ n− 1).(1.1)

The sum-of-digits of e in the q-ary expansion is defined as Sq(e) =
∑n−1

i=0 ei. When
q = 2, the sum-of-digits becomes the famous Hamming weight. To compute αe,
we need only do at most Sq(e) many multiplications in addition to cyclic shiftings.
Furthermore, the exponentiation algorithm can be parallelized, which is a property
not enjoyed by the large characteristic fields. It was proved in [19] that the size of the
arithmetic circuit computing the eth exponentiation is about Sq(e), and the depth is
about log2 Sq(e).

The discrete logarithm problem in finite field Fqn is to compute an integer e such
that t = ge, given a generator g of a subgroup of F∗

qn and t in the subgroup. The
general purpose algorithms for solving the discrete logarithm problem are the number
field sieve and the function field sieve (for a survey, see [14]). They have conjectured
time complexity

exp(c(log qn)1/3(log log qn)2/3)

for some constant c, when q is small or n is small.

1.1. Related work. Suppose we want to compute the discrete logarithm of
t = ge with respect to base g in the finite field Fqn . An algorithm proposed by Cop-
persmith (described in [17]) works well when the Hamming weight of e, denoted by
w, is very small. It is a clever adaptation of the baby-step giant-step idea and runs in
random time O(

√
w
(�log qn/2�

�w/2�
)
). It is proved in [17] that the average-case complexity

achieves only a constant factor speed-up over the worst case. As an interesting com-
parison, the fastest method for solving the subgroup discrete logarithm problem is
either to solve it in the large field or to use the Pollard rho algorithm in the subgroup,
which obtains a square root speed-up over the trivial exhaustive search algorithm.

It is not clear how Coppersmith’s idea can be generalized when the exponent has
small sum-of-digits in the base q > 2. However, we can consider the very special case
when ei ∈ {0, 1} for 0 ≤ i ≤ n − 1 and

∑
0≤i≤n−1 ei = �n

2 �. Recall that ei’s are the
digits of e in the q-ary expansion. It can be verified that Coppersmith’s algorithm can
be applied in this case. The time complexity becomes O(

√
n
(�n/2�
�n/4�

)
). If q < nO(1),

it is much worse than the time complexity of the function field sieve on a general
exponent.

If the q-ary sum-of-digits of the exponent is bounded by w, is there an algorithm
which runs in time f(w) logc(qn) and solves the discrete logarithm problem in Fqn

for some function f and a constant c? A similar problem has been proposed from the
parametric point of view by Fellows and Koblitz in [11], where they consider the prime
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finite fields and the bounded Hamming weight exponents. Their problem is listed
among the most important open problems in the theory of parameterized complexity
[10]. From the above discussions, it is certainly more relevant to cryptography to treat
the finite fields with small characteristic and exponents with bounded sum-of-digits.

Unlike the case of the integer factorization, where many special purpose algo-
rithms exist, the discrete logarithm problem is considered more intractable in gen-
eral. As an example, one should not use the RSA (Rivest–Shamir–Adleman) algorithm
modulus of approximately 1000 bits with one prime factor of 160 bits. It would be
vulnerable to the elliptic curve factorization attack. However, in the Digital Signa-
ture Standard, adopted by the U.S. Government, the finite field has cardinality of
approximately 21024 or larger, while the encryption/decryption is done in a subgroup
of cardinality of approximately 2160. As another example, one should search for a
secret prime as random as possible in the RSA algorithm, while in the case of the
discrete logarithm problem, one may use a finite field of small characteristic; hence the
group of very special order. It is believed that no trapdoor can be placed in the group
order, as long as it has a large prime factor (see the panel report on this issue in the
Proceeding of Eurocrypt 1992 [15]). In order to have an efficient algorithm for solving
the discrete logarithm, we need every prime factor of the group order to be bounding
by a polynomial function on the logarithm of the cardinality of the field. Given the
current state of analytic number theory, it is very hard, if not impossible, to decide
whether there exists infinitely many finite fields of even (or constant) characteristic,
where the discrete logarithm can be solved in polynomial time.

In summary, there are several common assumptions about the discrete logarithm
problem in finite fields as follows:

1. As long as the group order has a large prime factor, the discrete logarithm
problem is hard. We may use exponents with small sum-of-digits, since
the discrete logarithm problem in that case seems to be fixed-parameter in-
tractable. We gain advantage in speed by using bounded sum-of-digits ex-
ponents, while at the same time we keep the problem as infeasible as when
using the general exponents.

2. If computing discrete logarithm is difficult, it should be difficult for any gen-
erator of the group. The discrete logarithm problem with respect to one
generator can be reduced to the discrete logarithm problem with respect to
any generator. Even though a reduction is not available in the small sum-of-
digits case, it is not known that changing the generator of the group affects
the hardness of the discrete logarithm problem.

1.2. Our results. In this paper, we show that the above assumptions taken in
combination are incorrect. We study the discrete logarithm problem in large multi-
plicative subgroups of the Kummer and Artin–Schreier extensions with a prescribed
base and prove that the bounded sum-of-digits discrete logarithm is easy in those
groups. More precisely, we prove constructively the following theorem.

Theorem 1.1 (main). There exists a random algorithm for finding the integer e
given g and ge in Fqn in polynomial time in log(qn) under the following conditions:

1. n|q − 1;
2. 0 ≤ e < qn and Sq(e) ≤ n;
3. g = α + b, where Fq(α) = Fqn , b ∈ F∗

q , and αn ∈ Fq.
Moreover, there does not exist an integer e′ �= e satisfying that 0 ≤ e′ < qn, Sq(e

′) ≤ n

and ge
′
= ge.

The theorem leads directly to a parameterized complexity result concerning the
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bounded sum-of-digits discrete logarithm, which answers an important open question
for many special yet nonnegligible cases.

Corollary 1.2. There exists an element g of order greater than 2q in F∗
qq−1

such that the discrete logarithm problem with respect to the generator g can be solved
in time f(w) log4(qq−1), where f is a subexponential function and w is the bound of
the sum-of-digits of the exponent in q-ary expansion.

The following few comments are in order:
• For a finite field Fqn , if n|q − 1, then there exists g ∈ Fqn satisfying the

condition in the theorem; in other words, there exists an irreducible polyno-
mial of form xn − a (a ∈ Fq) over Fq; vice versa, if there exists α such that
Fq(α) = Fqn and αn ∈ Fq, then n|q − 1.

• As a comparison, Coppersmith’s algorithm runs in exponential time in the
case when ei ∈ {0, 1} for 0 ≤ i ≤ n− 1, Sq(e) = n

2 , and q < nO(1), while our
algorithm runs in polynomial time in that case. On the other hand, Copper-
smith’s algorithm works for every finite field, while our algorithm works only
in Kummer and Artin–Schreier extensions.

• Usually, we can increase the strength of the cryptosystem based on a finite
field discrete logarithm problem by moving the problem to extension fields.
Our result shows that we need to be careful here. As an example, suppose that
to replace Fqn , where gcd(n, q) = 1 and n does not divide q− 1, we decide to
use the field Fqnl , where l is the order of q in (Z/nZ)∗. The field Fqnl = F(ql)n

is a Kummer extension of Fql since n|ql−1. According to Theorem 1.1, there
is a polynomial-time algorithm that computes the discrete logarithm to some
element g in Fqln , provided that the sum-of-digits of the exponent in the ql-ary
expansion is less than n. Hence, the bounded sum-of-digits discrete logarithm
problem over F(ql)n is much easier than the problem over Fqn . Our result
reveals the following unexpected property of the discrete logarithm problem
in finite fields: the difficulty of the bounded sum-of-digits discrete logarithm
problem may decrease dramatically if we move up to extensions.

• Even though we cannot bound from below the largest prime factor of the
order of g, it seems, as supported by numerical evidence, that the order of g,
which is a factor of qn − 1 larger than 2n, is rarely smooth. For instance, in
F2889 = F128127 , any g generates the whole group F∗

2889 . The order 2889 − 1
contains a prime factor of 749 bits. One should not attempt to apply the
Silver–Pohlig–Hellman algorithm here.

The following natural question arises: Can the restriction on the sum-of-digits
in Theorem 1.1 be relaxed? Clearly, if we can solve the problem under condition
Sq(e) ≤ (q − 1)n in polynomial time, then the discrete logarithm problem in the
subgroup generated by g is broken. If g is a generator of F∗

qn , which is true in many
cases, then the discrete logarithm problem in Fqn and any of its subfields to any base
are broken. We find a surprising relationship between the relaxed problem and the
list decoding problem for Reed–Solomon codes. We are able to prove the following
theorem.

Theorem 1.3. Suppose e is chosen randomly from the set

{0 ≤ e < qn − 1|Sq(e) < 1.32n}.

There exists an algorithm, given g and ge in Fqn , for finding e in polynomial time
in log(qn), with probability greater than 1 − c−n for some constant c greater than 1,
under the following conditions:



1436 QI CHENG

1. n|q − 1;
2. g = α + b, where Fq(α) = Fqn , b ∈ F∗

q , and αn ∈ Fq.
Given a polynomial ring Fq[x]/(h(x)), it is an important problem to determine

the size of the multiplicative subgroup generated by x− s1, x− s2, . . . , x− sn, where
(s1, s2, . . . , sn) = S is a list of distinct elements in Fq and for all i, h(si) �= 0. The
lower bound of the order directly affects the time complexity of an AKS (Agrawal–
Kayal–Saxena)-style primality-proving algorithm. In that context, the degree of h(x)
divides n. Assume that deg h(x) = n. For a list of integers E = (e1, e2, . . . , en), we
denote

(x− s1)
e1(x− s2)

e2 · · · (x− sn)en

by (x − S)E . One can estimate the number of distinct congruent polynomials of
the form (x − S)E modulo h(x) for E in a certain set. It is obvious that if E ∈
{(e1, e2, . . . , en)|

∑
ei < n − 1, ei ≥ 0}, then all the polynomials are in different

congruent classes. This gives a lower bound of approximately 4n. Through a clever
use of the Stothers–Mason ABC-theorem, Voloch [18] and Bernstein [5] proved that
if
∑

ei < 1.1n, then at most four such polynomials can fall into the same congruent
class; hence a lower bound of 4.27689n is obtained. We improve their result and
obtain a lower bound of 5.17736n.

Theorem 1.4. Use the above notation. Let C be{
(e1, e2, . . . , en)|ei ≥ 0 for 1 ≤ i ≤ n,

n∑
i=1

ei < 1.5501n, |{i|ei �= 0}| = �0.7416n�
}
.

If there exist pairwise different elements E1, E2, . . . , Em ∈ C such that

(x− S)E1 ≡ (x− S)E2 ≡ · · · ≡ (x− S)Em (mod h(x)),

then m = O(n2). Note that |C| = 5.17736nnΘ(1).
By allowing negative exponents, Voloch [18] obtained a bound of 5.828n. Our

bound is smaller than his. However, starting from |S| = 2deg h(x), our method gives
slightly better bounds [9]. A distinct feature of our bound is that it relates to the
list decoding problem for Reed–Solomon codes. If a better list decoding algorithm is
found, then our bound can be improved accordingly.

1.3. Organization of the paper. The paper is organized as follows. In sec-
tion 2, we list some results of counting numbers with small sum-of-digits. In section 3,
we present the basic idea and the algorithm, and we prove Theorem 1.1 and Corol-
lary 1.2. In section 4, we prove Theorems 1.3 and 1.4. In section 5, we extend our
results to Artin–Schreier extensions. We conclude our paper with discussions of open
problems.

2. Numbers with small sum-of-digits. Suppose that the q-ary expansion of
a positive integer e is

e = e0 + e1q + e2q
2 + · · · + en−1q

n−1,

where 0 ≤ ei ≤ q−1 for all 0 ≤ i ≤ n−1. How many nonnegative integers e less than
qn satisfy Sq(e) = w? Denote the number by N(w, n, q). Then N(w, n, q) equals the
number of nonnegative integral solutions of

n−1∑
i=0

ei = w
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under the conditions that 0 ≤ ei ≤ q−1 for all 0 ≤ i ≤ n−1. The generating function
for N(w, n, q) is

(1 + x + · · · + xq−1)n =
∑
i

N(i, n, q)xi.

If w ≤ q − 1, then the conditions ei ≤ q − 1 can be removed, and we have that
N(w, n, q) =

(
w+n−1
n−1

)
. It is easy to see that if q = 2, we have that N(w, n, 2) =

(
n
w

)
.

Later, we will need to estimate N(w, n, q), where w is n times a small constant less
than 2. Since

(1+ x + · · · + xq−1)n

=

(
1 − xq

1 − x

)n

= (1 − xq)n
∞∑
i=0

(
i + n− 1

n− 1

)
xi

≡ (1 − nxq)

2q−1∑
i=0

(
i + n− 1

n− 1

)
xi (mod x2q)

≡
q−1∑
i=0

(
i + n− 1

n− 1

)
xi +

2q−1∑
i=q

((
i + n− 1

n− 1

)
− n

(
i− q + n− 1

n− 1

))
xi (mod x2q),

we have N(w, n, q) =
(
w+n−1
n−1

)
− n

(
w−q+n−1

n−1

)
if q ≤ w < 2q.

3. The algorithm and the proof of the main theorem. The basic idea of
our algorithm is adopted from the index calculus algorithm. The idea of index calculus
computing a discrete logarithm over finite fields was developed by Western and Miller
[20] and Adleman [1]. To start the algorithm, we select a small set of elements called
the factor base. It usually consists of prime numbers less than a chosen bound or of
polynomials of low degrees. In the preprocessing part, we try to compute the discrete
logarithm of elements in the factor base with respect to the base (denoted by g). We
do this by randomly selecting an exponent e and computing ge, taking the result as
an integer or a polynomial, and factoring it over Z or F[x]. If it can be factored into
elements in the factor base, i.e., if it is smooth, we obtain a linear relation between the
discrete logarithms of the elements in the factor base. We repeat the step a number
of times and complete the preprocessing part by solving the linear system after we
accumulate enough relations. The next step is selecting random exponents e and
evaluating tge, where t is the element whose discrete logarithm is sought. Hopefully
it becomes smooth after a number of trials, in which case we obtain the discrete
logarithm of t. For the algorithm to be efficient, we would like to have a small factor
base and a high probability of a random element being smooth. These two goals
contradict each other and we need to make a compromise; the resultant algorithm
usually has subexponential time complexity.

Let Fqn be a Kummer extension of Fq, namely, n|q−1. Assume that q = pd, where
p is the characteristic of the field. The field Fqn is usually given as Fp[x]/(u(x)), where
u(x) is an irreducible polynomial of degree dn over Fp. If g satisfies the condition in
Theorem 1.1, then xn − αn must be an irreducible polynomial over Fq. Denote αn

by a. To implement our algorithm, it is necessary that we work in another model of
Fqn , namely, Fq[x]/(xn − a). Fortunately the isomorphism

ψ : Fp[y]/(u(y)) → Fqn = Fq[x]/(xn − a)
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can be efficiently computed. To compute ψ(v(y)), where v(y) is a polynomial of
degree at most dn − 1 over Fp, all we have to do is factor u(y) over Fq[x]/(xn − a)
and evaluate v(y) at one of the roots. Factoring polynomials over finite fields is a
well-studied problem in computational number theory; see [3] for a complete survey.
The random algorithm runs in expected time O(dn(dn+ log qn)(dn log qn)2), and the
deterministic algorithm runs in time O(dn(dn + q)(dn log qn)2). From now on we
assume the model Fq[x]/(xn − a).

Consider the subgroup generated by g = α + b in (Fq[x]/(xn − a))∗ and recall
that b ∈ F∗

q and α = x (mod xn − a). The generator g has an order greater than 4n

[8] and has a very nice property as follows. Denoting a
q−1
n by h, we have

gq = (α + b)q = αq + b = a
q−1
n α + b = hα + b;

more generally,

(α + b)q
i

= αqi + b = hiα + b.

In other words, we obtain a set of relations logα+b(h
iα + b) = qi for 0 ≤ i ≤ n − 1.

This corresponds to the precomputation stage of the index calculus. The difference
is that, in our case, this stage finishes in polynomial time, while generally it requires
subexponential time. For a general exponent e,

(α + b)e = (α + b)e0+e1q+···+en−1q
n−1

= (α + b)e0(hα + b)e1 · · · (hiα + b)ei · · · (hn−1α + b)en−1 .

If f(α) is an element in Fqn , where f ∈ Fq[x] is a polynomial of degree less than
n, and f(α) = (α + b)e and Sq(e) < n, then, due to unique factorization in Fq[x],
f(x) can be completely split into linear factors over Fq. We can read the discrete
logarithm from the factorizations after the coefficients are normalized. The algorithm
is described as follows.

Algorithm 1.

Input: g, ge in Fqn = Fq[x]/(xn − a) satisfying the conditions in Theorem 1.1.
Output: e.
1. Define an order in Fq (for example, use the lexicographic order). Compute

and sort the list (1, h, h2, h3, . . . , hn−1).
2. Suppose that ge is represented by f(α), where f ∈ Fq[x] has degree less than n.

Factoring f(x) over Fq, let f(x) = c(x+d1)
e1 · · · (x+dk)

ek , where c, d1, . . . , dk
are in Fq.

3. (Normalization.) Normalize the coefficients and reorder the factors of f(x)
such that their constant coefficients are b and f(x) = (x + b)e1 · · · (hn−1x +
b)en−1 , where hi = hi.

4. Output e0 + e1q + · · · + en−1q
n−1.

Step 1 takes time O(n log2 q log n + n log n log q) = O(n log n log2 q). The most
time-consuming part is factoring a polynomial over Fq with degree at most n. The
random algorithm runs in expected time O(n(n + log q)(n log q)2) and the deter-
ministic algorithm runs in time O(n(n + q)(n log q)2) = O(n3q log2 q). Normaliza-
tion and reordering can be done in time O(n log n log q), since we have a sorted
list of (1, h, h2, h3, . . . , hn−1). Thus, the algorithm can be finished in random time
O(n(n + log q)(n log q)2) and in deterministic time O(n3q log2 q). This concludes the
proof of the main theorem.
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Now we are ready to prove Corollary 1.2. Any f(x), where f(α) = (α + b)e ∈
< α + b >⊆ Fqq−1 , is congruent to a product of at most w = Sq(e) linear factors

modulo xq−1−a. If w < q−1, we have an algorithm running in time O(q4 log2 q) and
solving the discrete logarithm, according to Theorem 1.1. So we need only consider
the case when w ≥ q − 1. The general purpose algorithm will run in random time
f(log qq−1), where f is a subexponential function. Theorem 1.2 follows from the fact
that log qq−1 ≤ w logw when w ≥ q − 1.

There are approximately 2log1−ε qq−1

many nonnegative solutions of e0 +e1 + · · ·+
eq−2 < q−1; hence our algorithm can efficiently solve discrete logarithms of 2log1−ε qq−1

many instances for fields Fqq−1 .

4. The application of the list decoding algorithm of Reed–Solomon
codes. The following natural question arises: Can we relax the bound on the sum-of-
digits and still obtain a polynomial-time algorithm? Solving the problem under the
condition Sq(e) ≤ (q − 1)n basically renders the discrete logarithm problems in Fqn

and any of its subfields easy. Suppose that ge = f(α), where f(x) ∈ Fq[x] has degree
less than n. Using the same notation as in the previous section, we have

f(α) = (α + b)e0(hα + b)e2 · · · (hn−1α + b)en−1 .

Note that f(x) may be irreducible. For example, let α = x (mod x5 − 2) in F11,

(α + 1)2+11+2∗112+114

= 7α4 + 9α3 + 10α2 + 3α + 9,

and 7x4 + 9x3 + 10x2 + 3x + 9 is irreducible over F11. In any case, there exists a
polynomial t(x) with degree

∑n−1
i=0 ei − n such that

f(x) + (xn − a)t(x) = (x + b)e0(hx + b)e1 · · · (hn−1x + b)en−1 .

We call the polynomial t(x) a smoothing polynomial for f(x). If the cardinality of
{i|ei �= 0} is greater than k, then the curve y = t(x) will pass at least k points in the
set {(

i,− f(i)

iq−1 − a

) ∣∣∣∣∣i ∈
{
−b,− b

h
, . . . ,− b

hn−1

}}
.

To find all the polynomials of degree d =
∑n−1

i=0 ei − n that pass at least k points in
a given set of n points, we use the list decoding problem for Reed–Solomon codes. It
turns out that there are only a few such polynomials, and they can be found efficiently
as long as k ≥

√
nd.

Proposition 4.1 (Guruswami–Sudan [13]). Given n distinct elements x0, x1, . . . ,
xn−1 ∈ Fq, n values y0, y1, . . . , yn−1 ∈ Fq and a natural number d, there are at most

O(
√
n3d) many univariate polynomials t(x) ∈ Fq[x] of degree at most d such that

yi = t(xi) for at least
√
nd many points. Moreover, these polynomials can be found in

random polynomial time.

For each t(x), we use the Cantor–Zassenhaus algorithm [3] to factor f(x)+ (xn−
a)t(x). There must exist a t(x) such that the polynomial f(x) + (xn − a) ∗ t(x) can
be completely factored into a product of linear factors in {hix+ b|0 ≤ i ≤ n− 1}, and
e is computed as a consequence.
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4.1. The proof of Theorem 1.3. In this section, we consider the case when
Sq(e) ≤ 1.32n. If there are at least 0.5657n ≥

√
0.32n · n number of nonzero ei’s, then

we can apply the Guruswami–Sudan algorithm to find all the smoothing polynomials.
In order to prove Theorem 1.3, it remains to show the following lemma.

Lemma 4.2. Define An,q as

{(e1, e2, . . . , en) | e1+e2+· · ·+en ≤ 1.32n, ei ∈ Z, and 0 ≤ ei ≤ q−1 for 1 ≤ i ≤ n}

and Bn as

{(e1, e2, . . . , en) | |{i|ei �= 0}| < 0.5657n}.

We have

|An,q ∩Bn|
|An,q|

< c−n

for some constant c > 1 when n is sufficiently large.

Proof. The cardinality of An,q is
∑�1.32n�

i=0 N(i, n, q) >
(
2.32n

n

)
> 4.883987, . . .n.

The cardinality of An,q ∩ Bn is less than
∑n

v=	0.5657n

(
n
v

)(
1.32n
n−v−1

)
. The summands

maximize at v = 0.5657n if v ≥ 0.5657n. Hence we have

n∑
v=	0.5657n


(
n

v

)(
�1.32n�
n− v − 1

)

< 0.4343n

(
n

�0.5657n�

)(
�1.32n�

�0.4343n�

)
< 4.883799, . . .n .

This proves the lemma with c = 4.883987, . . . /4.883799, . . . > 1.

4.2. The proof of Theorem 1.4.
Proof. Let τ be a positive real number less than 1. Define

Cn,q,τ =

⎧⎨
⎩(e1, e2, . . . , en)

∣∣∣∣∣
e1 + e2 + · · · + en = �(1 + τ)n�, ei ∈ Z
and 0 ≤ ei ≤ q − 1 for 1 ≤ i ≤ n
and |{i|ei �= 0}| = �

√
τn�

⎫⎬
⎭ .

Given f(x) ∈ Fq[x], if there exists E ∈ Cn,q,τ , such that (x−S)E ≡ f(x) (mod h(x)),
there must exist a polynomial t(x) such that (x − S)E = t(x)h(x) + f(x), and t(x)

is a solution for the list decoding problem with input {(s,− f(s)
h(s) )|s ∈ S}. According

to Proposition 4.1, there are at most O(n2) solutions. Thus the number of congruent
classes modulo h(x) that {(x− S)E |E ∈ Cn,q,τ} has is Ω(|Cn,q,τ |/n2). We have

|Cn,q,τ | =

(
n√
τn

)(
(1 + τ)n√

τn

)
= nΘ(1)

(
(1 + τ)1+τ

τ
√
τ (1 −

√
τ)1−

√
τ (1 + τ −

√
τ)1+τ−√

τ

)n

.

It takes the maximum value nΘ(1)5.17736, . . .n at τ = 0.5501.

5. Artin–Schreier extensions. Let p be a prime. The Artin–Schreier exten-
sion of a finite field Fp is Fpp . The polynomial xp − x − a = 0 is irreducible in Fp
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for any a ∈ F∗
p, since α, αp, . . . , αpp−1

are all different and αpp

= α, where α = x
(mod xp−x−a). So we may take Fpp = Fp[x]/(xp−x−a). For any b ∈ Fp, we have

(α + b)p = αp + b = α + b + a,

and similarly

(α + b)p
i

= αpi

+ b = α + b + ia.

Hence the results for Kummer extensions can be adopted to Artin–Schreier extensions.
For the subgroup generated by α+ b, we have a polynomial algorithm for solving the
discrete logarithm if the exponent has p-ary sum-of-digits less than p. Note that b
may be 0 in this case.

Theorem 5.1. There exists an algorithm for finding the integer e given g and ge

in Fpp in polynomial time in log pp under the following conditions:
1. 0 ≤ e < pp and Sq(e) ≤ p− 1;
2. g = α + b, where Fp(α) = Fpp , b ∈ Fp, and αp + α ∈ F∗

p.
Moreover, there does not exist an integer e′ �= e satisfying that 0 ≤ e′ < pp, Sq(e

′) ≤ n

and ge
′
= ge.

Theorem 5.2. There exists an element g of order greater than 2p in F∗
pp

such that the discrete logarithm problem with respect to g can be solved in time
O(f(w)(log pp)4), where f is a subexponential function and w is the bound of the
sum-of-digits of the exponent in the p-ary expansion.

Theorem 5.3. Suppose that g = α + b, where Fp(α) = Fpp , b ∈ Fp, and
αp + α ∈ F∗

p. Suppose e is chosen in random from the set

{0 ≤ e < qn − 1|Sq(e) < 1.32n}.

There exists an algorithm given g and ge in Fpp for finding e in polynomial time in
log(pp), with probability greater than 1 − c−n for some constant c greater than 1.

6. Concluding remarks. A novel idea in the celebrated AKS primality testing
algorithm is to construct a subgroup of large cardinality through linear elements in
finite fields. The subsequent improvements [6, 7, 4] rely on constructing a single
element of large order. It is speculated that these ideas will be useful in attacking the
integer factorization problem. In this paper, we show that they do affect the discrete
logarithm problem in finite fields. We give an efficient algorithm that computes the
bounded sum-of-digits discrete logarithm with respect to prescribed bases in Kummer
extensions. We also show that the problem is related to an important problem in
coding theory. The most interesting open problem is to further relax the restriction
on the sum-of-digits of the exponent.

Acknowledgment. We thank Professor Pedro Berrizbeitia for very helpful
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DUALITY BETWEEN PREFETCHING AND QUEUED WRITING
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Abstract. Parallel disks promise to be a cost effective means for achieving high bandwidth in
applications involving massive data sets, but algorithms for parallel disks can be difficult to devise.
To combat this problem, we define a useful and natural duality between writing to parallel disks and
the seemingly more difficult problem of prefetching. We first explore this duality for applications in-
volving read-once accesses using parallel disks. We get a simple linear time algorithm for computing
optimal prefetch schedules and analyze the efficiency of the resulting schedules for randomly placed
data and for arbitrary interleaved accesses to striped sequences. Duality also provides an optimal
schedule for prefetching plus caching, where blocks can be accessed multiple times. Another applica-
tion of this duality gives us the first parallel disk sorting algorithms that are provably optimal up to
lower-order terms. One of these algorithms is a simple and practical variant of multiway mergesort,
addressing a question that had been open for some time.
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1. Introduction. External memory (EM) algorithms are those for which the
problem data set is too large to fit into the high-speed random access memory (RAM)
of a computer and therefore must reside on external devices such as disk drives [23]. In
order to cope with the high latency of accessing data on disks, efficient EM algorithms
exploit locality in their design. In the I/O model, EM algorithms access a large block
of B contiguous data elements in one I/O step and perform the necessary algorithmic
operations on the elements in the block while in the high-speed memory. The speedup
can be significant. However, even with blocked access, a single disk provides much
less bandwidth than the internal memory. This problem can be mitigated by using
multiple disks in parallel. For each input/output operation, one block is transferred
between a fast memory of size M and each of the D disks. The algorithm therefore
transfers D blocks at the cost of a single-disk access delay.

A simple approach to algorithm design for parallel disks is to employ large logical
blocks, or superblocks, of size B · D in the algorithm. This reduces the problem to
designing an EM algorithm for one disk with logical block size BD. A superblock is
split into D physical blocks—one on each disk. All D physical blocks are accessed
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simultaneously whenever the superblock is accessed. We refer to this technique as
superblock striping. Unfortunately, this approach is suboptimal for em algorithms like
sorting that deal with many blocks at the same time. For sorting and many related EM
problems, an optimal algorithm requires independent access to the D disks, in which
each of the D blocks in a parallel I/O operation can reside at a different position
on its disk [25, 23]. Designing algorithms for independent parallel disks has been
surprisingly difficult [25, 21, 20, 10, 11, 5, 6, 23, 22, 24]. In this paper we consider
parallel disk output and parallel disk input separately, in particular as the parallel
output scheduling problem and the parallel prefetch scheduling problem, respectively.

The (online) output scheduling (or queued writing) problem takes as input a fixed
size pool of m (initially empty) memory buffers each capable of storing a block, and the
sequence 〈w0, w1, . . . , wL−1〉 of L block write requests as they are issued. Each write
request is prelabeled with the disk it will use. The solution of the output scheduling
problem is a schedule that specifies when the blocks are output (i.e., the contents of
each parallel output operation). The buffer pool can be used to reorder the outputs
with respect to the logical writing order given by 〈w0, w1, . . . , wL−1〉 so that the total
number of parallel output steps is minimized.

We use the term write for the logical process of moving a block from the re-
sponsibility of the application to the responsibility of the scheduling algorithm. The
scheduling algorithm orchestrates the physical output of these blocks to disks.

The (offline) prefetch scheduling problem takes as input a fixed size pool of m
(empty) memory buffers for storing blocks, and the sequence 〈r0, r1, . . . , rL−1〉 of L
distinct block read requests that will be issued. Each read request is prelabeled with
the disk it will use. The resulting prefetch schedule specifies when the blocks should
be fetched so that they can be consumed by the application in the right order.

By the term read, we mean the logical process of moving a block from the re-
sponsibility of the scheduling algorithm to the application. We use the term fetch (or
prefetch) to refer to the physical disk access.

The central theme in this paper is the duality between these two problems.
Roughly speaking, an output schedule corresponds to a prefetch schedule with re-
versed time axis, and vice versa. The power of this idea is that computations in one
domain can be analyzed via duality with respect to computations in the other domain.

In section 2, we formally introduce the duality principle for the case of distinct
blocks to be written or read (write-once and read-once scheduling). In section 3,
we derive an optimal write-once output scheduling algorithm and apply the duality
principle to obtain an optimal read-once prefetch scheduling algorithm. In section 4,
we modify the previous algorithm so that blocks are fetched as early as possible, so
as to be more robust against delays in practical implementations.

For difficult input sequences, an optimal schedule might use parallel disks very
inefficiently because most disks might still be idle most of the time. In section 5, we
therefore give performance guarantees for two particular classes of input sequences:
randomly placed data and arbitrarily interleaved data streams. A data stream is a
sequence of blocks that is read or written sequentially by the application. Many algo-
rithms access several such streams in an interleaved manner, and the order of accesses
to the streams is not predictable at the time the streams are allocated. Nevertheless,
we obtain performance guarantees for the following allocation strategies of the data
streams:

Fully randomized (FR): Each block is allocated to a random disk.
Striping (S): Consecutive blocks of a data stream are allocated to consecutive disks
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S

SR

RC

FR

Fig. 1.1. A sequence of 16 blocks allocated to 4 disks (1 = white, 2 = light grey, 3 = dark grey,
4 = black) using different allocation strategies.

in a simple, round-robin manner.
Simple randomized (SR): For each data stream, this strategy follows a striping

allocation, where the disk selected for the first block is chosen randomly and
independently of the other data streams.

Randomized cycling (RC): Each data stream i chooses a random (and indepen-
dent) permutation πi of disk numbers and allocates the jth block of stream
i on disk πi(j mod D).

Figure 1.1 gives an example.
In section 6, we relax the restriction that blocks are accessed only once and allow

caching of blocks and repeated block requests (write-many and read-many scheduling).
Again we derive a simple optimal algorithm for the writing case and obtain an optimal
algorithm for the reading case using the duality principle. A similar result has been
obtained by Kallahalla and Varman [16, 17] using more complicated arguments.

In section 7, we apply the results from sections 3 and 5 to parallel disk sorting.
Results on online writing translate into improved sorting algorithms using the distri-
bution paradigm. Results on offline reading translate into improved sorting algorithms
based on multiway merging. By appending a “D” for distribution sort or an “M” for
mergesort to an allocation strategy (FR, S, SR, RC) we obtain a descriptor for a
sorting algorithm (FRD, FRM, SD, SM, SRD, SRM, RCD, RCM). This notation is
an extension of the notation used in [24]. RCD and RCM turn out to be particularly
efficient. Let

Sort(N) =
N

DB

(
1 + logM/B

N

M

)
.

In section 8, we show that 2 · Sort(N) is the lower bound for sorting N elements
on D disks. Our versions of RCD and RCM are the first algorithms that provably
match this bound up to a lower-order term if M = ω(DB). The good performance
of RCM is particularly interesting. The question of whether there is a simple variant
of mergesort that is asymptotically optimal for multiple disks has been open since
the model was formalized in [25]. A summary of the notation used in this paper is
included in the appendix.

Related work. An announcement [14] and a preliminary version [13] of this pa-
per have appeared in conference volumes. The problems of prefetching and caching
have been intensively studied and can be quite difficult. We begin our overview with
offline algorithms for the I/O model. Belady [7] solved the caching problem for a single
disk. Kallahalla and Varman [15, 17] developed an optimal parallel disk prefetching
algorithm for read-once sequences. Besides a simpler algorithm and analysis, our con-
tribution is a linear time algorithm (which is, however, also implicit in [16], which was
published simultaneously with the first announcement of our result [14].) Moreover,
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the concept of duality allows us to translate performance guarantees for writing into
performance guarantees for reading. The main contribution in [16] is an optimal result
for prefetching plus caching. Again, the concept of duality yields a simpler algorithm
and proof.

Cao et al. [9] and Kimbrel and Karlin [18] have introduced a model that allows us
to study integrated prefetching and caching with overlapping of I/O and computation.
In this penalty model, internal computation is linked to I/Os by a penalty of F time
units for an I/O step. For F → ∞, the penalty model becomes equivalent to the
I/O model since the internal computations become insignificant. Kimbrel and Karlin
[18] already introduced the idea of time reversal and the reverse aggressive algorithm
that has our algorithm as a special case. They also defined a similar kind of duality,
namely between fetches and evictions of a caching algorithm. The analysis in the
penalty model predicts that the performance ratio between reverse aggressive and the
optimal algorithm goes to infinity as F → ∞. Hence it is a bit surprising that the
algorithm turns out to be optimal in the I/O model.

The prudent prefetching algorithm introduced in section 4 is similar to the con-
servative algorithm described in [9]. The main difference is that it applies to the
optimal parallel disk prefetching algorithm rather than to the optimal schedule in a
sequential system.

Albers, Garg, and Leonardi [4] gave an optimal polynomial time offline algorithm
for the single-disk case in the penalty model, but it does not generalize well to multiple
disks. Albers and Büttner [3] overcame this problem by requiring synchronized parallel
disk access (as in the I/O model) and by postulating O(D) additional buffer blocks
not available to the optimal algorithm. Both these algorithms are based on linear
programming and hence are quite complicated and time consuming.

There has also been intensive work on online integrated prefetching and caching.
Albers [2] showed for a single disk that a lookahead for the next Ω (M/B) different
blocks is needed to get good competitiveness. For parallel disks, Kallahalla and Var-
man [15, 17] showed that another factor of Ω (D) lookahead is needed even for the
read-once problem. Applying the optimal offline algorithm to the lookahead matches
this lower bound for read-once sequences.

There are deterministic algorithms for parallel disk external sorting [21, 20] that
are optimal up to a constant factor, but the constant factors are not ideal. The first
optimal (up to a constant factor independent of the parameters N , M , B, and D)
sorting algorithm was a randomized one by Vitter and Shriver [25]. Barve, Grove,
and Vitter [5] and Barve and Vitter [6] introduced a simple and efficient randomized
sorting algorithm called simple randomized mergesort (SRM). For each run, SRM
allocates blocks to disks using the SR allocation discipline. For γ < 1, SRM comes
within an additive term of about γSort(N) of the sorting lower bound if M/B =
Ω(D log(D)/γ2), but for M/B = o(D logD), the bound proven is not asymptotically
optimal. It is an open problem whether SRM or another variant of striped mergesort
could be asymptotically optimal for small internal memory. Knuth [19, Exercise 5.4.9–
31] gives the question of a tight analysis of SR a difficulty rating of 48 on a scale
between 1 and 50.

Sanders, Egner, and Korst [22] analyzed a (slightly) suboptimal output schedul-
ing algorithm for FR allocation that would yield a good parallel disk distribution
sorting algorithm (FRD) yet has the disadvantage that reading cannot be done in
a striped fashion. To overcome the apparent difficulty of analyzing SR, Vitter and
Hutchinson [24] analyzed RC allocation, which provides more randomness but retains
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the advantages of striping. RCD is an asymptotically optimal distribution sort algo-
rithm that allocates successive blocks of a bucket to the disks according to the RC
discipline. The present paper uses the concept of duality to apply these results to
external mergesort.

The lower bound in section 8 is a refinement of the analysis by Aggarwal and
Vitter [1]. In particular, our analysis gives the precise constant factor in the leading
term, and it applies to algorithms that do not necessarily use the same number of
inputs and outputs. The remaining gap between the upper and lower bound is only
a lower-order term if M = ω(DB).

Building on the results in the present paper, Dementiev and Sanders [12] develop a
parallel disk external sorting algorithm that perfectly overlaps I/O and computation.
This algorithms works independently of the failure penalty F and need not know how
much internal work is done between I/O requests. (These times are far from constant
and not easy to predict so that previous results on prefetching in the penalty model
are inapplicable for sorting.)

2. The duality principle. Duality is a quite simple yet powerful concept once
the model is properly defined. Therefore, we start with a more formal description of
the model.

Our machine model is the (independent parallel disk) I/O model of Vitter and
Shriver [25] with a single1 processor, D disks, and an internal memory of size M .
All blocks have the same size B. In one I/O step, one block on each disk can be
accessed in a synchronized fashion. We consider either a queued writing or a buffered
prefetching arrangement, where a pool of m block buffers is available to the algorithm
(see Figure 2.1).

Definition 2.1. A write-once output scheduling problem is defined by a se-
quence Σ = 〈b0, . . . , bL−1〉 of distinct blocks which are to be output using parallel
output operations. Let disk(bi) denote the disk on which block bi is to be located. An
application writes these blocks in the order specified by Σ. We use the term write
for the logical process of moving a block from the responsibility of the application to
the responsibility of the scheduling algorithm. The scheduling algorithm orchestrates
the physical output of these blocks to disks. Time is measured in I/O steps actually
performed. In particular, in each time step at least one block is output.

An output schedule is specified by giving a function oStep : {b0, . . . , bL−1} → N

that specifies for each disk block bi ∈ Σ the time step when it will be output. An output
schedule is correct if the following conditions hold:

(i) No disk is referenced more than once in a single time step. That is, if i �= j
and disk(bi) = disk(bj), then oStep(bi) �= oStep(bj).

(ii) The buffer pool is large enough that it does not overflow. That is, if we
define

oBacklog(bi) = |{j < i : oStep(bj) ≥ oStep(bi)}|

to be the number of blocks bj that are written before block bi but not output before bi,
then we require for all 0 ≤ i ≤ L that oBacklog(bi) < m.
The blocks are output in increasing order of oStep. The number of steps needed by
an output schedule is T = max0≤i<L oStep(bi). An output schedule is optimal if it
minimizes T among all correct schedules.

1Our results generalize to multiple processors as long as data exchange between processors is
much faster than disk access.
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Fig. 2.1. Duality between the prefetching priority and the output step. The hashed blocks
illustrate how the blocks of disk 2 might be distributed.

It will turn out that our write-once output scheduling algorithms work optimally
even if they are given the blocks online, that is, one at a time without specifying Σ
explicitly.

Definition 2.2. Analogously to a write-once output scheduling problem, a read-
once prefetch scheduling problem is defined by a sequence Σ of blocks to be read. By the
term reading, we mean the logical process of moving a block from the responsibility of
the scheduling algorithm to the application. We use the term fetching (or prefetching)
to refer to the physical disk access.

A prefetch schedule is defined using a function iStep : {b0, . . . , bL−1} → N. The
blocks are prefetched in increasing order of iStep. Let us define

iBacklog(bi) = |{j > i : iStep(bj) ≤ iStep(bi)}|

to be the number of blocks bj that are fetched no later than block bi but are read after
bi. All blocks in iBacklog(bi) must be buffered. The limited buffer pool size requires
the correctness condition iBacklog(bi) < m. The number of steps needed by a prefetch
schedule is T = max0≤i<L iStep(bi). A prefetch schedule is optimal if it minimizes T
among all correct schedules.

It will turn out that our prefetch scheduling algorithms work offline; that is, they
need to know Σ in advance. We explain in section 7 how this is sufficient for sorting
applications.

The following theorem shows that reading and writing not only have similar mod-
els but are equivalent to each other in a quite interesting sense.

Theorem 2.3 (duality principle). Consider any sequence Σ = 〈b0, . . . , bL−1〉 of
distinct write requests. Let oStep denote a correct output schedule for Σ that uses T
output steps. Then we get a correct prefetch schedule iStep for ΣR = 〈bL−1, . . . , b0〉
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that uses T fetch steps by setting iStep(bi) = T − oStep(bi) + 1.

Vice versa, every correct prefetch schedule iStep for ΣR that uses T fetch steps
yields a correct output schedule oStep(bi) = T − iStep(bi) + 1 for Σ, using T output
steps.

Proof. For the first part, consider the schedule iStep(bi) = T − oStep(bi) + 1.
The resulting fetch steps are between 1 and T and all blocks on the same disk get
different fetch steps. It remains to be shown that iBacklog(bi) < m for 0 ≤ i < L.
With respect to ΣR, we have

iBacklog(bi) = |{j > i : iStep(bj) ≤ iStep(bi)}|
= |{j > i : T − oStep(bj) + 1 ≤ T − oStep(bi) + 1}|
= |{j > i : oStep(bj) ≥ oStep(bi)}| .

The latter value is oBacklog(bi) with respect to Σ. It is smaller than m because oStep
is a correct schedule.

The proof for the converse case is completely analogous.

3. Optimal write-once and read-once scheduling. We now give an optimal
algorithm for writing a write-once sequence, prove its optimality, and then apply the
duality principle to transform it into a read-once prefetching algorithm.

Consider the algorithm greedyWriting for writing a sequence Σ = 〈b0, . . . , bL−1〉
of distinct blocks. Let Q denote the set of blocks in the buffer pool so, initially,
Q = ∅. Let Qd = {b ∈ Q : disk(b) = d} denote the blocks queued for disk d. Write
the blocks bi in sequence as follows:

1. If |Q| < m, then simply insert bi into Q.
2. Otherwise, each disk d with Qd �= ∅ outputs the block of Qd that appears

first in Σ. The blocks so output are then removed from Q and bi is inserted into Q.
3. Once all blocks are written, the queues are flushed; that is, additional output

steps are performed until Q is empty.

Figure 3.1 gives an example.

A schedule is called a FIFO schedule if blocks are output in arrival order on each
disk. For the write-once case, the following lemma tells us that when we look for
optimal schedules, it is sufficient to consider FIFO schedules. On real disks, FIFO
schedules are not necessarily optimal, since they do not optimize seek times and
rotational delays, but in our synchronous model, using FIFO suffices and simplifies
subsequent proofs.

Lemma 3.1. For any sequence of blocks Σ and every correct output schedule
oStep there is a FIFO output schedule oStep′ consisting of at most the same number
of output steps.

Proof. The proof of the lemma is based on transforming a non-FIFO schedule
into a FIFO schedule by exchanging blocks in the schedule of a disk that are output
out of order. Consider a non-FIFO schedule that services two block requests bi and
bj for the same disk “out of order”; that is, we have i < j but oStep(bi) > oStep(bj).
If we swap the output order of bi and bj , then the buffer pool consumption be-
tween output steps oStep(bj) and oStep(bi) can only decrease or remain the same.
Such swapping operations can be repeated as necessary until a FIFO schedule is
obtained.

Algorithm greedyWriting is one way to compute a FIFO schedule. The following
lemma shows that greedyWriting outputs every block as early as possible.
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Lemma 3.2. For any sequence of blocks Σ and any FIFO output schedule oStep′

for |Σ|, let oStep denote the schedule produced by algorithm greedyWriting. Then for
all bi ∈ Σ, we have oStep(bi) ≤ oStep′(bi).

Proof. The proof is by induction on |Σ|.
Base case for induction. |Σ| = 0. The claim is vacuously true for |Σ| = 0.

Induction hypothesis. Assume that the claim is true for |Σ| = L− 1.

Induction step |Σ| = L−1 � |Σ| = L. Consider the state of greedyWriting when
the last block bL is scheduled. Let d = disk(bL). Using the induction hypothesis, it
suffices to prove that oStep(bL) ≤ oStep′(bL).

Case 1. oStep(bL) = 1. This case is trivial since 1 is the smallest possible output
step.

Case 2. oStep(bL) = oStep(bl) + 1 for some other block bl with disk(bl) = d.
Applying the induction hypothesis to |Σ| = 〈b1, . . . , bL−1〉, we have oStep(bl) ≤
oStep′(bl). By the definition of FIFO output schedules, we have oStep′(bl) < oStep′(bL);
that is, oStep′(bl) + 1 ≤ oStep′(bL). All in all, we get

oStep(bL) = oStep(bl) + 1 ≤ oStep′(bl) + 1 ≤ oStep′(bL).

All remaining cases. Let t = oStep(bL) > 1. Disk d is idle during step t − 1, and
we have to explain why this is unavoidable. Let C = {bl : oStep(bl) ≥ t− 1} denote
the set of blocks that are queued during step t − 1. We must have |C| ≥ m, since
otherwise greedyWriting would have queued and output bL already during step t− 1
or earlier. Assume that oStep(bL) > oStep′(bL); that is, oStep(bL) − 1 ≥ oStep′(bL).
By the induction hypothesis, oStep′(bl) ≥ oStep(bl) for all bl ∈ C. In other words,

oStep′(bl) ≥ oStep(bl) ≥ oStep(bL) − 1 ≥ oStep′(bL).

Hence, if the schedule defined by oStep′ is used, all blocks in C are written no earlier
than bL, which requires that more than m blocks have to be buffered at the same
time, contradicting the assumption that oStep′ is correct.

Combining Lemmas 3.1 and 3.2 we see that greedyWriting gives us optimal sched-
ules for write-once sequences.

Theorem 3.3. Algorithm greedyWriting gives a correct, minimum length output
schedule for any write-once reference sequence Σ.

Combining the duality principle and the optimality of greedyWriting, we get an
optimal algorithm for read-once prefetching that we call lazy prefetching.

Corollary 3.4. An optimal prefetch schedule iStep for a sequence Σ can be
obtained by using greedyWriting to get an output schedule oStep for ΣR and setting
iStep(bi) = T − oStep(bi) + 1.

The schedule can be computed in time O(L + D) using very simple data struc-
tures. Figure 3.1 (top) gives an example. We refer to this approach as lazy prefetching.

4. Prudent prefetching. Although the lazy prefetching approach in the pre-
vious section allows us to obtain a prefetch schedule with a minimal number of steps
by means of reversing time, it has the practical disadvantage that blocks are accessed
as late as possible even if most blocks could be fetched earlier. For example, in Fig-
ure 3.1 (top) only the bottom-most disk fetches a block in Step 1. This policy may
result in unnecessary delays in real implementations where the access times to the
blocks fluctuate. Many of these delays might be avoidable if some blocks were fetched
earlier. One might instead use “eager prefetching” [6, 15], i.e., always accessing the
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Fig. 3.1. Duality between prefetching and output for a sequence Σ = 〈a, b, . . . , r〉 of L = 18
blocks to be read using D = 3 disks and m = 6 buffers. Top part: A lazy prefetch schedule for Σ as
the dual of an output schedule for ΣR. The shading of the blocks indicates the disks where the blocks
are located. Before output Step 2, the eight blocks hijklopq would have to be buffered in order to
output block h in Step 2. But since only six blocks can be buffered, the middle disk has to remain
idle in Step 2. Similarly, before output Step 4, the seven blocks defgilo would have to be buffered
to output block d. Bottom part: The resulting schedule for prudent prefetching. For example, before
Step 3, blocks a and b are fetched and buffers for blocks fcidel are reserved. Block g cannot be
fetched because no buffer is reserved for it. Prudent prefetching using the reading order as a priority
instead of the priorities based on the optimal lazy schedule would need one more I/O step.

highest priority block on each disk. But eager prefetching sometimes has to discard
and refetch blocks, causing complications and inefficiencies.

Here we propose prudent prefetching, a prefetching strategy that avoids both
problems. It maintains optimal schedule length, but attempts to fetch blocks as early
as possible. The idea is to use the oStep obtained by greedyWriting as a priority
rather than as a direct indication of the input step for fetching a block. Algorithm
prudent prefetching allows blocks to be fetched before blocks with higher priority are
fetched but only if buffers have been reserved for them. This way, otherwise idle
disks can prefetch low priority blocks without hindering any fetches of higher priority
blocks in later steps.

This strategy is easy to implement. Prudent prefetching works with a sequence
〈l0, . . . , lL−1〉 of block requests sorted by nonincreasing priority (and hence by non-
decreasing iStep of lazy prefetching). Blocks l0, . . . , lj−1 have either been fetched or
have a reserved buffer while blocks lj , . . . , lL−1 are neither fetched nor have a reserved
buffer.

Before each fetch step, all empty buffers are reserved for the next blocks in the
priority sequence, and j is advanced by the number of buffers so reserved. The highest
priority block from each disk is then fetched if a buffer has been reserved for it. Then
from each disk the highest priority block is fetched if a buffer has been reserved for it.



1452 D. A. HUTCHINSON, P. SANDERS, AND J. S. VITTER

As before, blocks are delivered to the application in the order prescribed by Σ. When
a block is delivered to the application, its buffer becomes empty and is available.

An example of the algorithm is shown in Figure 3.1. We cannot expect algorithm
prudent prefetching to be better than lazy prefetching as long as we only count I/O
steps, but we can show that it is not worse.

Theorem 4.1. For any correct output schedule oStep, prudent prefetching takes
no more I/O steps than lazy prefetching.

Proof. We have already observed that fetching a reserved block can never hinder
a higher priority block from being fetched. Hence, in the ith step, all unfetched blocks
with iStep i will be fetched. We omit a trivial, more detailed proof by induction over
the number of steps.

Another advantage of prudent prefetching is that it can be implemented in an
event driven manner, and the fetch steps for each disk need not be synchronized.
When the next block from Σ is delivered to the application, its buffer can immediately
be used for advancing j. When a disk finishes fetching a block, it waits (if necessary)
until the next highest priority block on this disk has a reserved buffer and then starts
to fetch this block. Thus there is never a need to synchronize the disks, the system
can adapt to variances in access times, and the load of the interconnections between
disks and processors is better balanced than for synchronous access.

5. How good is optimal?. When we have complex data access patterns, the
knowledge that we have an optimal prefetching algorithm is often of little help. We
also want to know “how good is optimal?”. In the worst case, all requests may go
to the same disk and no prefetching algorithm can cure the dreadful performance
caused by this bottleneck. However, the situation is different if an appropriate block
allocation strategy is used; for example, if blocks are allocated to disks using striping,
randomization,2 or both.

Theorem 5.1. Consider a sequence of L block requests, and a buffer pool of size
m ≥ D blocks. The number of I/O steps needed by greedyWriting or lazy prefetching is
given by the following bounds, depending on the block allocation strategy. For striping
and randomized cycling, an arbitrary interleaving of sequential accesses to S sequences
is allowed:

S:

⌊
L

D

⌋
+ S if m > S(D − 1);

FR:

(
1+O

(
D

m

))
L

D
+O

(m
D

logm
)

(expected);

RC:

(
1+O

(
D

m

))
L

D
+min

{
S+

L

D
,O

(m
D

logm
)}

(expected).

For the case of writing, the second term can be dropped if we are only interested in
the number of steps needed to write (but not necessarily output) all blocks.

Proof. Due to our result on duality, it suffices to prove the bounds for writing.

Striping (S). Since greedyWriting is optimal, it suffices to analyze the following
specialized algorithm: Each sequence gets an exclusive allotment of D − 1 buffer
blocks. When a block from sequence k is written there are two possible cases. If the
pool for k has a free buffer block, the block is buffered there. Otherwise, we have

2In practice, this will be done using simple hash functions. However, for the analysis we assume
that we have a perfect source of randomness.
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exactly D consecutive blocks from the striped sequence k so that we can output one
block from sequence k to each disk. There can be at most �L/D� of these output
steps. When all blocks are written, one additional output step for each sequence
suffices to empty all buffers.

Fully random allocation (FR). Since greedyWriting is optimal, it dominates the
algorithm analyzed in [22]. This algorithm admits (1−ε)D blocks into the buffer pool
before each output step. It is shown that with this regime the buffer pool size remains
in O(D/ε) most of the time. More precisely, the probability that the required pool
size exceeds qD is less than e(ln 2−εq)D [22, Lemma 3]. By setting ε = Θ(D/m) we
can make sure that the pool size is exceeded so rarely that we could afford to flush
the queues whenever this happens. We omit the straightforward calculations with
the tail bound showing that after an expected number of (1 + O(D/m))L/D output
steps all blocks have been written. The number of output steps needed to flush the
buffers at the end is the maximum number of blocks queued at a disk. In [22] it is
shown that the probability that the queue length at a particular disk exceeds q is
bounded by 2e−εq. Setting q = ln(2Dm)/ε and multiplying by D, we can see that the
probability pfail that some disk has a final load of more than ln(2Dm)/ε is bounded
by D · 2e−ε ln(2Dm)/ε = 1/m. Since the load cannot exceed L, the expected maximum
load is bounded by ln(2Dm)/ε + L/m = O

(
m
D logm + L/m

)
. The term L/m can be

absorbed into
(
1 + O

(
D
m

))
L
D .

Randomized cycling (RC). Vitter and Hutchinson [24] show that the algorithm
from [22] performs at least as well on RC-streams as it does for fully random allocation.
This extends to greedyWriting by Theorem 3.3. Furthermore, the reverse of a sequence
accessing RC-streams is indistinguishable from a sequence accessing RC-streams in
the forward direction. Theorem 2.3 therefore extends the result to prefetching. Hence,
the bound (

1 + O
(
D

m

))
L

D
+ O

(m
D

logm
)

transfers from the fully random allocation case.
For small L and m this bound can be improved using the observation that the

maximum number of blocks queued at a disk at the end cannot exceed the total
number of blocks allocated to it. The bound for striping shows that this load cannot
exceed L/D + S.

6. Prefetching with caching. We now relax the condition that the read re-
quests in Σ are for distinct blocks, permitting the possibility of saving disk accesses by
keeping previously accessed blocks in memory. For this read-many problem, we get a
tradeoff for the use of the buffer pool because it has to serve the double purposes of
keeping blocks that are accessed multiple times, and decoupling physical and logical
accesses to equalize transient load imbalance of the disks. We define the write-many
problem in such a way that the duality principle from Theorem 2.3 transfers: The
latest instance of each block must be kept either on its assigned disk, or in the buffer
pool. The final instance of each block must be output to its assigned disk.3

We prove that the following offline algorithm manyWriting minimizes the number
of output operations for the write-many problem: Let Q denote the set of blocks in

3The requirement that the latest versions have to be kept might seem odd in an offline setting.
However, this makes sense if there is a possibility that there are reads at unknown times that need
an up-to-date version of a block.
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the buffer pool, so initially Q = ∅. Let Qd = {b ∈ Q : disk(b) = d} denote the blocks
queued for disk d. To write block bi, if bi ∈ Q, the old version is overwritten in its
existing buffer. Otherwise, if |Q| < m, bi is inserted into Q. If this also fails, an output
step is performed before bi is inserted into Q. The output analogue of Belady’s min

rule [7] is used on each disk; that is, each disk with Qd �= ∅ outputs the block in Qd

that is written again farthest in the future.

Theorem 6.1. Algorithm manyWriting solves the write-many problem with the
fewest number of output steps.

Applying duality, we also get an optimal algorithm for prefetching plus caching
of a sequence Σ; using the same construction as in Corollary 3.4 we get an optimal
prefetching and caching schedule.

Corollary 6.2. The dual of manyWriting solves the read-many problem with
the fewest number of input steps.

It remains to prove Theorem 6.1.

Proof of Theorem 6.1. We generalize the proof of Belady’s algorithm by Borodin
and El-Yaniv [8] to the case of writing and multiple disks. Let Σ = 〈b0, . . . , bL−1〉 be
any sequence of blocks to be written. The proof is based on the following claim.

Claim. Let alg be any algorithm for the write-many problem. Let d denote a
fixed disk. For any 0 ≤ i < L it is possible to construct an offline algorithm algi that
satisfies the following properties:

(i) algi processes the first i− 1 writes exactly as alg does.
(ii) If block bi is the first block written after output step s, then immediately

before output step s there was no free buffer slot.
(iii) If bi is the first block written after output step s, then algi performs this

output according to the min rule on disk d.
(iv) algi takes no more steps than alg.

Once this claim is established, the theorem can be proven as follows: Starting
with an optimal offline algorithm opt, we apply the claim with i = 0 and d = 0 to
obtain another optimal algorithm opt0, then apply the claim with i = 1 and d = 0 to
obtain opt1 and so on. By induction over i, it can be seen that optL−1 never leaves
unused buffer slots before an output step and uses min for deciding which blocks to
output on disk 0. Subsequently, we apply this sequence of L transformations for each
disk. Since these transformations do not undo property (iii) for other disks, we arrive
at an optimal algorithm that works like manyWriting on all disks.

It remains to prove the claim. We initialize algi to alg and transform algi

until it fulfills all four properties. Note that this initialization automatically fulfills
properties (i) and (iv). If properties (ii) and (iii) also hold, we are done.

If property (ii) is violated by algi, then bi is the first block written by algi

after some output step s, and before output step s a free buffer slot was available.
In this case, algi is modified so that bi is now the last block written before output
step s. Note that this transformation preserves the order in which blocks are written
and properties (i) and (iv). This transformation is repeated until algi also satisfies
property (ii).

If properties (i), (ii), and (iv) hold but property (iii) is violated, there must be a
write step s so that bi−1 is the last block written before output step s, and bi is the
first block written after output step s in algi. Now we define a modified algorithm
alg

′
i that mimics algi (and hence alg) until bi−1 is written but uses the min rule in

step s so that properties (i)–(iii) hold for alg
′
i.

It remains to define the behavior of alg
′
i after step s so that property (iv) is also
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maintained. We use X + b as a shorthand for X + {b} for a set of blocks X and a
block b. Immediately after output step s, the buffer pool of algi can be written as
M = X + b whereas alg

′
i has buffer pool M′ = X + b′ where b is the block on disk d

whose next access is farthest in the future. alg
′
i mimics algi as far as possible; that

is, it performs output steps at the same time as algi and outputs the same blocks.
As long as neither b nor b′ is written or output by algi, these two blocks remain the
only difference between M and M′. There are only three types of events that require
special treatment.

Event 1. algi outputs b. In that case, alg
′
i outputs b′. Afterwards we have M =

M′, and from now on alg
′
i can completely mimic algi.

Event 2. Block b′ is rewritten. By definition of b, this situation happens before
block b is rewritten. After b′ is rewritten, we have M = Y + b + b′ and M′ = Y + b′

for some common set Y of blocks. In particular, M′ has one unused buffer slot. If
algi outputs b in this situation, alg

′
i can again unify the states M and M′ by not

outputting anything on disk d.

Event 3. Block b is rewritten. As discussed above, if M �= M′, we must have
M = Y + b + b′ and M′ = Y + b′ before b is rewritten. Now alg

′
i uses its free buffer

slot to accommodate b. We get M = M′ = Y + b + b′.

We end up with an algorithm alg
′
i that fulfills properties (i)–(iv) and hence set

algi=alg
′
i.

7. Application to sorting. In this section we extend the duality between
prefetching and queued writing to apply to problems of merging and distribution.
In the merging phase of mergesort, there are several sorted runs on the disk, and the
problem is to merge them together into a single sorted run. We assume that each run
is striped across the disks using any given striping discipline, such as RC or FR, as
described in the introduction. How to lay out the runs so as to permit fully parallel
I/O is a challenging problem; recent work is surveyed in [23].

A big problem is that the input order Σ for the blocks, namely the order in which
the blocks need to be accessed, is highly data-dependent. The key to duality is to
characterize Σ in a simple and easily implementable way. If we examine the process of
merging, as illustrated in Figure 7.1 from the bottom to top, we see that the merging
buffer contains a partially filled block from each run (not yet expired). When the
block empties all its items into the merged output stream, the next block from that
run is inserted into the merging buffer. The merging buffer is pictured in the upper
rectangle in Figure 7.1, which is distinct from the space reserved for the prefetch
buffers (lower rectangle in Figure 7.1).

The first moment, therefore, that a block absolutely must be in memory is when
the smallest key value of the block is merged into the output stream. We therefore
define the trigger of a block to be its smallest key value. We say that a block is read
when it is moved from the prefetch buffer to the merging buffer, where it stays until
its items are exhausted by the merging process. Thus, the read order Σ of the blocks
is given by the sorted order of the triggers.

We have now reduced the merging problem to that of prefetching for the input
sequence Σ. The dual problem to merging is distribution. To solve it via the duality
principle, we need to process Σ in reverse order. We equate the notion of bucket in
distribution with that of run-in merging, so each block therefore has a bucket assigned
to it. Since each bucket uses a fixed striping discipline, the blocks can then be assigned
to disks. The dual distribution problem is thus well defined, and we get an optimal
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algorithm for merging by applying the algorithm of section 3.

Streams

via distribution
assembled
Blocks

via merge
or disassembleda b c d

Stream of blocks are 

Correspondence between

produced in

consumed in

Stream of blocks are  

Σ R

Disks
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1 2 3 4 5 6
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Output of merge / Input to distribution
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Fig. 7.1. The relationship between merging and distribution. Buffer space is required both
“privately” within the application (for storing the lead block of each run in merging, and for storing
the next block being formed for each bucket in distribution), and for the Output queues / Prefetch
buffers required for the techniques proposed in this paper. During distribution, the priorities of blocks
correspond to their output step. For merging, blocks are read in the order given by the triggers. When
an appropriate allocation discipline is used to allocate blocks of a stream to the parallel disks, the
queued I/O techniques of this paper permit I/O complexity results for distribution sort to be applied
to mergesort (and vice versa if desired).

Mergesort with randomized cycling (RCM). How the blocks of each run are
striped depends on the particular allocation discipline used. We start by discussing
multiway mergesort using randomized cycling allocation (RCM) in some detail and
then survey a number of additional results. Originally, the N input elements are stored
as a single data stream using any kind of striping. During run formation the input
is read in chunks of size M that are sorted internally and then written out in runs
allocated using RC allocation. Neglecting trivial rounding issues, run formation is
easy to do using 2N/(DB) I/O steps. For example, we need O

(
N/(DB2)

)
additional

I/Os for writing the trigger values to separate files. Then we set aside a buffer pool of
size m = D/γ for some parameter γ and perform logM/B−O(D/γ)

N
M � merge phases.

In a merge phase, groups of k = M
B −O(D/γ) runs are merged into new sorted runs;

that is, after the last merge phase, only one sorted run is left. Merging k runs of total
size sB can be performed using s block reads by keeping one block of each run in the
internal memory of the sorting application. The I/O schedule for a merging phase is
found by sorting the triggers for groups of k runs each. These sorted trigger sequences
are then concatenated, yielding the order in which the blocks are to be read. At this
point we can apply duality.

The overhead for this precomputation of Σ (trigger values) is O
(
N/B2

)
I/Os

even for a single disk [6]. The triggers allow us to do optimal prefetching so that
Theorem 5.1 gives an upper bound of

(1 + O(γ))
N

BD
+ min

{
k +

N

BD
,O(log(D/γ)/γ)

}

for the expected number of fetch steps of a phase. The number of output steps for a
phase is N/(BD) if we have an additional output buffer of D blocks. The final result
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Table 7.1

Summary of the I/O complexity for parallel disk sorting algorithms. Each algorithm’s I/O

complexity is given by Sorta,fΔ (N) when the parameters are set according to the algorithm’s entry in
the table. Algorithms with boldface names are asymptotically optimal: M = Mergesort. SM/SD =
Merge / Distribution sort with any S allocation. SRM and SRD use SR. RCD, RCD+, and RCM
use RC allocation.

Sorta,fΔ (N) I/Os Algorithm Source
a f Δ

2 0 0 Lower bound
Deterministic algorithms

2 0 0 M, D = 1 [1]
O(1) 0 0 Greed sort [21]

2 + γ 0 Θ
(
(2D)

1+ 2
γ

)
M, superblock striping

2 + γ 0 Θ
(
(2D)

1+ 2
γ

)
SM here

2 + γ 0 Θ
(
(2D)

1+ 2
γ

)
SD here

Randomized algorithms

2 + γ 0 Θ
(
D log(D)/γ2

)
SRM [6]

2 + γ 0 Θ
(
D log(D)/γ2

)
SRD here

3 + γ 0 Θ(D/γ) RCD [24]

2 + γ min( N
BD

, log(D)/O(γ)) Θ(D/γ) RCM here
2 + γ 0 Θ(D/γ) RCD+ here

is written using any striped allocation strategy; the application calling the sorting
routine need not be able to handle RC allocation. For any constant γ > 0, we can

write the resulting total number of I/O steps as Sort
2+O(γ),min( N

BD , log D
O(γ) )

m+D (N), where

Sorta,fΔ (N) =
2N

DB
+ a · N

DB
·
⌈
logM

B −Δ

N

M

⌉
+ f + o

(
N

DB

)
.

Table 7.1 compares a selection of sorting algorithms using this generalized form
of the I/O bound for parallel disk sorting. The term 2N

DB represents the reading
and writing of the input and the final output, respectively. The factor a is decisive
for the I/O complexity for large inputs. Note that for a = 2 and f = Δ = 0 this
expression is the lower bound for sorting. The additive offset f may dominate for small
inputs. The reduction of the memory by Δ blocks in the base of the logarithm is due
to memory that is used for output or prefetching buffer pools outside the merging
or distribution routines, and hence reduces the number of data streams that can be
handled concurrently. One way to interpret Δ is to view it as the amount of additional
memory needed to match the performance of the algorithm on the multihead I/O
model [1] where load balancing disk accesses is not an issue.

Note that the RCM algorithm outlined above is the first asymptotically opti-
mal parallel disk sorting algorithm that approaches the optimal constant factor 2 for
M/B � D. The first two rows of Table 7.1 show that single disk sorting (e.g., mul-
tiway mergesort) is optimal. Greed sort [21] is an optimal (up to a constant factor)
deterministic sorting method based on mergesort; it does it an approximate merge
and then finalizes the merge using columnsort. Balance sort [20] is an equally opti-
mal but more practical deterministic sorting algorithm that uses distribution sorting
together with adaptive allocation of blocks. An algorithm frequently used in practice
is a single disk algorithm together with superblock striping (i.e., using logical blocks
of size BD). This algorithm is quite good if the input is sufficiently small that we can
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still sort in two passes despite the much larger block size. Using Theorem 5.1, we get
the same asymptotic bounds if we use the parallel disk mergesort outlined above to-
gether with any deterministic striping discipline (SM); that is, even as a deterministic
algorithm, our algorithm has performance comparable to algorithms used in practice.

Mergesort using SRM was analyzed in [6]. Although our optimal prefetching
result simplifies and improves the prefetching algorithms given there, we do not get
improved asymptotic bounds.

Distribution sort with randomized cycling (RCD+). Using random sampling
and the duality between reading and writing, as shown in Figure 7.1, we can transfer
the results for mergesort to results using distribution-based sorting algorithms. We
obtain a new distribution sort using deterministic striping (RD) or simple randomized
striping (SRD). We can also improve the analysis of the variant with RC [24] reducing
the constant factor from three to two. Furthermore, an additional optimization can be
used to remove the additive term min( N

BD , log(D)/O(γ)) in the complexity of RCM.
Below we describe the resulting algorithm RCD+ in more detail since it currently
represents the parallel disk sorting algorithm with the best known bounds. The same
algorithm underlies the results for the other allocation strategies SD and SRD.

The basic idea behind distribution sort is to use a generalization of quicksort where
elements are classified into k = O(M/B) classes based on k−1 splitter elements. The
splitters are chosen in such a way that each class has size O(N/k). These classes are
then sorted recursively and the results are appended to form the final output.

As in mergesort, we start with an input that is striped over the disks using some
arbitrary allocation strategy. We set k = min(N/(M − cBD),M/B − cBD) for an
appropriate parameter c. To find the splitter elements we take dk− 1 random sample
elements for an appropriate integer d. The sample is sorted and every dth element in
the sorted sample is used as a splitter. Standard calculations using Chernoff bounds
indicate that d = O(log k) is sufficient to ensure that with high probability at most
O(N/k) elements lie between two splitters. It can be seen that the number of I/Os
needed for obtaining the sample is only a lower-order term compared to the number
of I/Os needed to scan the input.

Now the input is classified into k classes by scanning the input and putting each
element in the appropriate class. For each class we use an output stream allocated
using RC. For each class, an output buffer block is maintained that is written to
an RC allocated output stream when the buffer is completely filled. Writing uses
greedyWriting. Here it is useful that the algorithm is an online algorithm since it is
not known in advance in what order blocks have to be written out.

The additive term in the I/O bound for RCM mergesort can be avoided in RCD+
using the simple observation that the write buffers need not be flushed—blocks that
are logically written but still in the output queue when the distribution finishes, are
not flushed to disk but kept in the queues; see also the last sentence in Theorem 5.1.
When we read a block in the subsequent recursive sorting phases, we therefore have to
check whether this block is still in the output queue and should be taken from there.

Recursive sorting of the classes proceeds depth first, from left to right. As soon
as a class fits into internal memory, it is loaded and sorted internally, then it is output
using any kind of striping. No randomization is needed for the final output because
there is only a single data stream. It suffices to keep D output buffer blocks for the
final output. Since the output is generated in sorted order, these output buffers need
not be flushed when we are finished with a class which would lead to load imbalance
for writing and partially filled blocks. Rather these buffer blocks are kept until they
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are filled by the sorting of subsequent classes. This way the output is produced in a
perfectly striped fashion without partially filled blocks.

8. A tight lower bound for external sorting. Our main result for parallel
disk sorting is that we close the gap between the upper and lower bounds up to lower-
order terms. However, the lower bound from [1] leaves open the constant factors.
In particular, it is not clear there what happens if the number of output steps and
input steps differ. Therefore we now strengthen the lower bound to obtain the right
constant factor.

Theorem 8.1. Assuming that M/B is an increasing function, the number of
I/Os required to sort or permute n items, up to lower-order terms, is at least

2N

D

log(N/B)

B log(M/B) + 2 logN
∼

⎧⎪⎪⎨
⎪⎪⎩

2N

DB

log(N/B)

log(M/B)
if B log

M

B
= ω(logN),

N

D
if B log

M

B
= o(logN).

The second case in the theorem is the pathological case in which the block size B
and internal memory size M are so small that the optimal way to permute the items
is to move them one at a time in the naive manner, not making use of blocking.

The rest of this section is devoted to a proof of Theorem 8.1.

For the lower bound calculation, we can assume without loss of generality that
there is only one disk, namely, D = 1. The I/O lower bound for general D follows by
dividing the lower bound for one disk by a factor of D.

Definition 8.2. We call an input operation simple if each item that is transferred
from the disk gets removed from the disk and deposited into an empty location in
internal memory; similarly, an output is simple if the transferred items are removed
from internal memory and deposited into empty locations on disk.

Lemma 8.3 (Aggarwal and Vitter [1]). For each computation that implements a
permutation of the N items, there is a corresponding computation strategy involving
only simple I/Os such that the total number of I/Os is no greater.

Proof. It is easy to construct the simple computation strategy by working back-
wards. We cancel the transfer of an item if its transfer is not needed for the final
result. The resulting I/O strategy is simple.

For the lower bound, we use the approach of Aggarwal and Vitter [1] and bound
the maximum number of permutations that can be produced by at most t I/Os. If
we take the value of t for which the bound first reaches N !, we get a lower bound on
the worst-case number of I/Os. We can get a lower bound on the average case in a
similar way.

Definition 8.4. We say that a permutation p1, p2, . . . , pN of the N items
can be produced after tI input operations and tO output operations if there is some
intermixed sequence of tI input operations and tO output operations so that the items
end up in the permuted order p1, p2, . . . , pN in extended memory. (By extended
memory we mean the memory locations of internal memory followed by the memory
locations on disk in sequential order.) The items do not have to be in contiguous
positions in internal memory or on disk; there can be arbitrarily many empty locations
between adjacent items.

As mentioned above, we assume that I/Os are simple. Each I/O transfers exactly
B items, although some of the items may be nil . In addition, the I/Os obey block
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boundaries, in that all the non-nil items in a given I/O come from or go to the same
block on disk.

Initially, the number of producible permutations is 1. Let us consider the effect of
an output. There can be at most N/B+o−1 nonempty blocks before the oth output
operation, and thus the items in the oth output can go into one of N/B + o places
relative to the other blocks. Hence, the oth output boosts the number of producible
permutations by a factor of at most N/B + o, which can be bounded trivially by

N(1 + logN).(8.1)

For the case of an input operation, we first consider a read I/O from a specific
block on disk. If the b items involved in the read I/O were together in internal memory
at some previous time (e.g., if the block was created by an earlier output operation),
then the items could have been arranged in an arbitrary order by the algorithm while
in internal memory. Thus, the b! possible ordering of the b inputted items relative
to themselves could already have been produced before the input operation. This
implies in a subtle way that rearranging the newly inputted items among the other
M − b items in internal memory can boost the number of producible permutations by
a factor of at most

(
M
b

)
, which is the number of ways to intersperse b indistinguishable

items within a group of size M .
The above analysis applies to input from a specific block. If the input was pre-

ceded by a total of o output operations, there are at most N/B + o ≤ N(1 + logN)
blocks to choose from for the I/O, so the number of producible permutations is boosted
further by at most N(1 + logN). Therefore, assuming that at some point the b in-
putted items were previously together in internal memory, an input operation can
boost the number of producible permutations by at most

N(1 + logN)

(
M

b

)
.(8.2)

Now let us consider an input operation in which some of the inputted items were
not together previously in internal memory (e.g., the first time a block is read). By
rearranging the relative order of the items in internal memory, we can increase the
number of producible permutations. Given that there are N/B full blocks initially,
we get the maximum increase when the N/B blocks are read in full, which boosts the
number of producible permutations by a factor of

(B!)N/B .(8.3)

Let I be the total number of input operations. In the ith input operation, let bi be
the number of items brought into internal memory. By the simplicity property, some
of the items in the block being accessed may not be brought into internal memory,
but rather may be left on disk. In this case, bi counts only the number of items that
are removed from disk and left in internal memory. In particular, we have 0 ≤ bi ≤ B.

By the simplicity property, we need to make room in internal memory for the new
items arriving, and in the end all items are stored back on disk. Therefore we get the
following lower bound on the number O of output operations:

O ≥ 1

B

( ∑
1≤i≤I

bi

)
.(8.4)
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Combining (8.1), (8.2), and (8.3), we find that

(
N(1 + logN)

)I+O ∏
1≤i≤I

(
M

bi

)
≥ N !

(B!)N/B
,(8.5)

where O satisfies (8.4).
Let B̄ be the average number of items read during the I input operations. By

a convexity argument, the left-hand side of (8.5) is maximized when each bi has the
same value, namely, B̄. From (8.5) and (8.4), we get

(
N(1 + logN)

)I+O
(
M

B̄

)I

≥ N !

(B!)N/B
,(8.6)

(
N(1 + logN)

)I+O
(
M

B̄

)(I+O)/(1+B̄/B)

≥ N !

(B!)N/B
.(8.7)

The left-hand side of (8.7) is maximized when B̄ = B, so we get

(
N(1 + logN)

)I+O
(
M

B

)(I+O)/2

≥ N !

(B!)N/B
.(8.8)

The theorem follows by taking logarithms of both sides of (8.8) and using Stirling’s
formula and the fact that M/B is an increasing function.

9. Conclusions. In this paper we have exploited a natural duality between
prefetching (read problem) and outputting (write problem). We have shown that
an optimal schedule for one problem is the reverse of an optimal schedule for the
other. We have generalized our approach to the read-many case in which frequently
accessed blocks can be cached in memory. We have further reduced the problem of
mergesorting and distribution sorting to the read and write problems, and by dual-
ity we have given practical yet asymptotically optimal (up to lower-order terms) em
algorithms for mergesort and distribution sort. The algorithms are practical [12] and
have very low overheads, thus making them desirable in practice.

Appendix. Summary of notation.
B: Block size.
bi: The ith block in a sequence of blocks.
D: Number of disks. In an acronym it stands for a sorting algorithm based on data

Distribution.
d: Index of some disk.
disk(bi): The disk where block bi is allocated.
FR: Fully random allocation.
iStep(bi): The input step when block bi is fetched.
iBacklog(bi): |{j > i : iStep(bj) ≤ iStep(bi)}|.
L: Number of blocks in the access sequence Σ.
M : Size of the fast internal memory. In an acronym it stands for a sorting algorithm

based on Merging.
m: Number of buffer blocks in the buffer pool. Note that m ≤ M/B. In the sorting

algorithms m = Θ(M/B).
N : The number of elements to be sorted.
oStep(bi): The output step when block bi is fetched.
oBacklog(bi): |{j < i : oStep(bj) ≥ oStep(bi)}|.
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RC: Randomized Cycling allocation.
πi: In RC allocation the random permutation used to allocate sequence i.
S: Stands for Striping in an allocation strategy or sorting algorithm.
SR: Simple randomized Striping using a random rotation.
Sort(N): N

DB (1 + logM/B
N
M ) the I/O complexity of sorting N elements “without the

constant factor.”
Σ: The sequence of blocks to be read or written.
ΣR: The reverse of sequence Σ.
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Abstract. We study the following decision problem: is the language recognized by a quantum
finite automaton empty or nonempty? We prove that this problem is decidable or undecidable
depending on whether recognition is defined by strict or nonstrict thresholds. This result is in
contrast with the corresponding situation for probabilistic finite automata, for which it is known
that strict and nonstrict thresholds both lead to undecidable problems.
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1. Introduction. In this paper, we provide decidability and undecidability
proofs for two problems associated with quantum finite automata. Quantum finite
automata (QFA) were introduced by Moore and Crutchfield [MC00]; they are to quan-
tum computers what finite automata are to Turing machines. Quantum automata are
also analogous to the probabilistic finite automata introduced in the 1960s by Rabin
that accept words with a certain probability (see [Rab63], [Rab67]; see also [Paz71] for
a book-length treatment). A quantum automaton A assigns real values ValA(w) to
input words w (see below for a precise description of how these values are computed).
ValA(w) can be interpreted as the probability that on any given run of A on the input
word w, w is accepted by A. Nonisolated cut-point recognition will be considered in
this article: we do not ask for a gap between the set of ValA(w) for accepted words
w and the set of ValA(w) for rejected words w. Associated to a real threshold λ, the
languages recognized by the automaton A with nonstrict and strict threshold λ are

L≥ = {w : ValA(w) ≥ λ} and L> = {w : ValA(w) > λ}.

Many properties of these languages are known in the case of probabilistic and quantum
automata. For instance, it is known that the class of languages recognized by quantum
automata is strictly contained in the class of languages recognized by probabilistic
finite automata [BP02]. For probabilistic automata it is also known that the problem
of determining if L≥ is empty and the problem of determining if L> is empty are
undecidable (see [Paz71, Thm. 6.17, p. 90]). This is true even for automata of fixed
dimensions [BC03]. Decidability problems on QFA were first studied in the paper
by Amano and Iwama [AI99]: is the language recognized by a 1.5-way quantum
automaton empty? The undecidability of this problem was proven, even in the case
of isolated cut-point.
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Table 1

Decidable and undecidable problems for probabilistic and quantum automata.

L≥ = ∅ L> = ∅ L≤ = ∅ L< = ∅
PFA undecidable undecidable undecidable undecidable
QFA undecidable decidable undecidable decidable

In this contribution, we consider the problem of determining for a quantum au-
tomaton A and threshold λ if there exists a word w for which ValA(w) ≥ λ and if there
exists a word w for which ValA(w) > λ. We prove in Theorem 2.1 and Corollary 2.2
that the first problem is undecidable, and in Theorem 3.1 that the second problem
is decidable. For quantum automata it thus makes a difference to consider strict or
nonstrict thresholds. This result is in contrast with probabilistic automata, for which
both problems are undecidable.

Similarly to the languages L≥ and L>, one can define the languages L≤ and L<

and ask whether or not they are empty (of course, emptiness of L≤ is equivalent to
L> being equal to Σ∗). These two problems are known [Paz71] to be undecidable
for probabilistic automata. For quantum automata our decidability results do again
differ depending on whether we consider strict or nonstrict inequalities. Our results
are summarized in Table 1.

Before we proceed with the proofs, we first define what we mean by a QFA. A
number of different quantum automata models have been proposed in the literature
and not all models are computationally equivalent. For the “measure-many” model of
quantum automata introduced by Kondacs and Watrous [KW97] the four problems
of Table 1 are proven undecidable in [Jea02]. The model we consider here is the so-
called measure once quantum finite automaton introduced by Moore and Crutchfield
[MC00]. These automata operate as follows. Let Σ be a finite set of input letters
and let Σ∗ denote the set of finite input words (including the empty word); typical
elements of Σ∗ will be denoted w = w1 · · ·w|w|, where wi ∈ Σ and |w| denotes the
length of w. The QFA A is given by a finite set of n states, n× n unitary transition
matrices Xα (one for each symbol α in Σ), a (row) vector of unit norm s (the initial
configuration), and an n× n orthogonal projection matrix P . Given a word w ∈ Σ∗,
the value of w, denoted ValA(w), is defined by

ValA(w) = ‖sXwP‖2.

In this expression, ‖ · ‖ is the euclidean vector norm, and we use the notation Xw

for the product Xw1 · · ·Xw|w| . For a vector v, the value ‖vP‖2 is the probability for
the quantum state v to be observed in acceptance space. The value ValA(w) can thus
be interpreted as the probability of observing the quantum state in acceptance space
after having applied the operator sequence Xw1 to Xw|w| to the initial quantum state
s.

The rest of the paper is organized as follows. In section 2, we reduce Post’s
correspondence problem to the problem of determining if a quantum automata has
a word of value larger than or equal to a given threshold. Post’s correspondence
problem is undecidable, and this therefore proves our first result. Our reduction uses
an encoding of words in three-dimensional space. In section 3, we prove decidability
of the same problem for strict inequality. For the proof we use the fact that any
compact matrix group is algebraic, and the group we consider can be given an effective
description.
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Complex versus real entries. Throughout the paper we will assume that the
initial state, the unitary matrices Xα, and the projection matrix P have real rather
than complex entries (i.e., these matrices are actually orthogonal). This is not a
significant restriction since any quantum automaton A (with possibly complex entries)
can be simulated by another quantum automaton A′ with real entries by doubling the
number of states. More precisely, let Q be the set of states of A. We replace each
element qj of Q by two states q1

j and q2
j . Let φ : C

n → R
2n be the R-linear map which

sends a configuration x =
∑n

j=1(αj + iβj)qj to φ(x) =
∑n

j=1 αjq
1
j +

∑n
j=1 βjq

2
j . We

replace the initial configuration s by s′ = φ(s). Let X be one of the matrices of A.
The rows and columns of A are indexed by elements of Q. Let xjk + iyjk be the entry
at row qj and column qk. Recall that a complex number x + iy can be identified to
the 2 × 2 matrix (

x −y
y x

)
.

It is therefore natural to replace this entry by the 2 × 2 matrix(
xjk −yjk
yjk xjk

)
.

The two rows and two columns of this matrix are indexed, respectively, by q1
j , q

2
j , q

1
k,

and q2
k. By abuse of notation we also denote by φ the map which sends X to X ′. It is

easy but instructive to check that for any v ∈ C
n and for any n×n complex matrices A

and B the following relations hold: φ(Av) = φ(A)φ(v), φ(AB) = φ(A)φ(B), φ(A∗) =
φ(A)T , and v∗v = φ(v)Tφ(v). Now recall that unitary matrices, orthogonal matrices,
complex matrices of orthogonal projection, and real matrices of orthogonal projection
are, respectively, characterized by the following relations: AA∗ = I, AAT = I, A =
A∗ = A2, and A = AT = A2. It follows that φ sends unitary matrices to orthogonal
matrices, and complex matrices of orthogonal projection to real matrices of orthogonal
projection. The quantum automaton A′ defined by the orthogonal matrices X ′

a =
φ(Xa), the projection matrix P ′ = φ(P ), and the initial configuration s′ satisfies
φ(sXwP ) = s′X ′

wP
′ for any word w. Hence ValA(w) = ValA′(w) for any word w.

2. Undecidability for nonstrict inequality. We prove in this section that
the problem of determining if a quantum automata has a word of value larger than
or equal to some threshold is undecidable. The proof is by reduction from Post’s
correspondence problem (PCP), a well-known undecidable problem. An instance of
PCP is given by a finite alphabet Σ and k pairs of words (ui, vi) ∈ Σ∗ × Σ∗ for
i = 1, . . . , k. A solution to the correspondence is any nonempty word w = w1 · · ·wn

over the alphabet {1, . . . , k} such that uw = vw, where uw = uw1 . . . uwn . This
correspondence problem is known to be undecidable: there is no algorithm that decides
if a given instance has a solution [Pos46]. It is easy to see that the problem remains
undecidable when the alphabet Σ contains only two letters. The problem is also
known to be undecidable for k = 7 pairs [MS05] but is decidable for k = 2 pairs; the
decidability of the cases 2 < k < 7 is not yet known. We are now ready to state our
first result.

Theorem 2.1. There is no algorithm that decides for a given automaton A if
there exists a nonempty word w for which ValA(w) ≤ 0, or if there exists one for
which ValA(w) ≥ 1. These two problems remain undecidable even if the automaton is
given by 7 orthogonal matrices in dimension 6.
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Proof. We proceed by reduction from PCP. For our reduction we need to encode
words by orthogonal matrices. We will take matrices that represent rotations of angle
arccos(3/5) on, respectively, the first and third axes:

Xa =
1

5

⎛
⎝3 −4 0

4 3 0
0 0 5

⎞
⎠ , Xb =

1

5

⎛
⎝5 0 0

0 3 −4
0 4 3

⎞
⎠ .

These matrices are orthogonal, XaX
T
a = I = XbX

T
b , and they generate a free

group since a result from Swierczkowski [Sw58, Sw94] ensures that if cosφ ∈ Q, two
rotations of angle φ on orthogonal axes in R

3 generate a free group if and only if
cosφ�∈{0,± 1

2 ,±1}.
In addition to that, we now prove that there exists a vector t such that tXu = tXw

implies u = w.
We will use here a method from [Su90]. One can show by induction that for any

reduced matrix product M of k matrices1 taken from the set {Xa, Xb, X
−1
a , X−1

b }, we
have

(3 0 4)M = (x1 x2 x3)/5
k

with x1, x2, x3 ∈ Z, and 5 divides x2 if and only if k = 0 (and then M = I).
The result is obviously true for k = 0, 1. Now, if M = M ′XaXb, then

(3 0 4)M = (x1 x2 x3)/5
kXaXb = (x4 x5 5x3)/5

k+1Xb for some x4, x5, and by
induction hypothesis, 5 does not divide x5. Now (3 0 4)M = (x6 3x5 +20x3 x7)/5

k+2

so that 5 does not divide the second term. The proofs for all the other cases are
similar.

We will now call t the row vector (3 0 4). If tXu = tXv, then tXuX
−1
v = t. As

the second component of t is equal to 0, the product must be trivial, and so u = v.
Given an instance (ui, vi)1≤i≤k of PCP over the alphabet {a, b} and a word w ∈

{1, . . . , k}∗, we construct the matrix

Yw =
1

2

(
Xuw + Xvw

Xuw −Xvw

Xuw
−Xvw

Xvw + Xuw

)
.

These matrices are orthogonal and verify Ywν = YwYν .
A solution of the original PCP problem is a nonempty word w ∈ {1, . . . , k}∗

such that the upper-right block of the matrix Yw is equal to zero. We may use the
previously introduced vector t = (3 0 4) to test this condition. We have

(
t 0

)
Yw =

1

2

(
tXuw + tXvw tXuw − tXvw

)
,

and thus a solution of the PCP problem is a word w such that the last three coordinates
of yYw are equal to zero, where y =

(
t 0

)
. This condition can be tested with a

projection matrix. Defining

P =

(
03 0
0 I3

)

1A product is said to be reduced if no two consecutive matrices in the product are inverse from
each other.
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we have that the solutions of the original PCP problem are the words w for which
y Yw P = 0, which is equivalent to

ValA(w) = ‖yYwP‖2 = 0.

The values taken by ValA(w) are nonnegative and so the problem of determining if
there exists a nonempty word w such that ValA(w) ≤ 0 is undecidable. Notice also
that ‖yYwI‖2 = 1 and so

‖yYw(I − P )‖2 ≤ 1

with equality only for yYwP = 0. Thus, the problem of determining if there exists a
nonempty word w such that ValA(w) ≥ 1 is undecidable too.

Theorem 2.1 deals only with nonempty words. We remove this restriction in the
next result, and we reduce the number of matrices from 7 to 2.

Corollary 2.2. There is no algorithm that decides for a given automaton A
if there exists a word w for which ValA(w) ≤ 0, or if there exists one for which
ValA(w) ≥ 1. These problems remain undecidable even if the automaton is given by
7 orthogonal matrices in dimension 6, or by 2 orthogonal matrices in dimension 42.

Proof. As in the proof of Theorem 2.1, the undecidability results for the condition
ValA(w) ≥ 1 follow from those for the condition ValA(w) ≤ 0. Hence we supply the
proofs for the latter condition only. We proceed by reduction from the problem
∃w ValA(w) ≤ 0 for 7 matrices in dimension 6, which is undecidable for nonempty
words w as shown in Theorem 2.1. Note that the language of the nonempty w’s
such that ValA(w) ≤ 0 is the union of the seven languages defined by the conditions
ValA(iw) ≤ 0 for possibly empty words w and i ∈ {1, . . . , 7}. Hence the emptiness of
one of these languages (say, the first one) must be undecidable. Thus, the problem
of determining if there exists a word w such that ValA(1w) ≤ 0 is undecidable.2

For each automaton A = ((Yi)i∈{1,...,7}, s, P ) we can now construct the quantum
automaton B = ((Yi)i∈{1,...,7}, y, P ), where y = sY1. Then ValA(1w) ≤ 0 if and only
if ValB(w) ≤ 0.

The following problem is therefore undecidable: given a quantum automaton A
defined by 7 orthogonal matrices in dimension 6, is there a (possibly empty) word w
such that ValA(w) ≤ 0?

Finally, we show how to reduce the number of matrices to 2. We use a construction
from Blondel and Tsitsiklis [BT97] and Blondel and Caterini [BC03]. Given the above
matrices Yi and the projection matrix P , we define

Z0 =

⎛
⎜⎜⎜⎜⎝
Y1 0 . . . 0

0 Y2
. . . 0

...
...

. . .
...

0 0 . . . Y7

⎞
⎟⎟⎟⎟⎠ and Z1 =

⎛
⎜⎜⎜⎜⎝

0 I 0 0

0
. . .

. . . 0
...

...
. . . I

I 0 . . . 0

⎞
⎟⎟⎟⎟⎠ .

When taking products of these two matrices the matrix Z1 acts as a “selecting
matrix” on the blocks of Z0. Let us define x =

(
y 0

)
and

Q =

⎛
⎜⎜⎜⎜⎝
P 0 . . . 0

0 P
. . . 0

...
...

. . .
...

0 0 . . . P

⎞
⎟⎟⎟⎟⎠ .

2It is not difficult to show that the 6 other problems must be undecidable as well.
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We claim that there exists a word w over the alphabet {1, . . . , 7} such that
‖yYwP‖ = 0 if and only if there exists a word ν over {0, 1} such that ‖xZνQ‖ = 0. In-
deed, for any word ν over {0, 1}, xZν is a row vector of block form (0 · · · 0 yYw 0 · · · 0)
for some word w over {1, . . . , 7} (the length of w is equal to the number of 0’s in
ν). Therefore ‖xZνQ‖ = ‖yYwP‖. Conversely, for any word w over {1, . . . , 7} there
exists a word ν over {0, 1} such that xZν is a row vector of block form (yYw 0 · · · 0),
and we therefore have again the equality ‖xZνQ‖ = ‖yYwP‖. To obtain Zν from
Yw, one can for instance replace as in [BT97] each matrix Yi in the product Yw by

Z
−(8−i)
1 Z0Z

(8−i)
1 = Zi−1

1 Z0Z
8−i
1 .

Theorem 2.1 and its corollary deal only with 0/1 thresholds. We prove below
that, whichever threshold 0 < λ ≤ 1 is used, the problem of determining if there
exists a word for which ValA(w) ≥ λ is undecidable. This result follows as a corollary
to the following lemma.

Lemma 2.3. Associated to every QFA A and threshold 0 < λ ≤ 1 we can effec-
tively construct a QFA B such that the language recognized with threshold λ by B is
the language recognized with threshold 1 by A. Moreover, if λ ∈ Q and A has only
rational entries, then B can be chosen with rational entries.

Proof. The idea is to construct B by adding a state to A. Let A be given by the
orthogonal matrices XA

i , the projection matrix PA, and the initial vector sA. Let

XB
i =

(
XA

i 0
0 1

)
,

and define sB =
(√

λ sA
√

1 − λ
)
. If we choose

PB =

(
PA 0
0 0

)
,

we immediately have ValB(w) = λ ValA(w) and the first part of lemma is proven.
The entries

√
λ and

√
1 − λ in general do not need to be rational. It remains to show

how the parameters of B can be chosen rational when those of A are. We therefore
use Lagrange’s theorem to write λ and 1−λ as the sum of the squares of four rational
numbers, say λ = a2

1 + a2
2 + a2

3 + a2
4 and 1 − λ = b21 + b22 + b23 + b24.

Now, if we define

sB =
(
a1s

A a2 · · · a4 b1 · · · b4
)
XB

i =

(
XA

i 0
0 I7

)
PB =

⎛
⎝PA 0 0

0 I3 0
0 0 04

⎞
⎠ ,

we immediately have ValB(w) = a2
1ValA(w)+ a2

2 + a2
3 + a2

4, ‖sB‖2 = 1 and the lemma
is proven.

Combining Lemma 2.3 with Corollary 2.2, we immediately obtain the following.
Corollary 2.4. For any rational λ, 0 < λ ≤ 1, there is no algorithm that

decides if a given quantum automata has a word w for which Val(w) ≥ λ.

3. Decidability for strict inequality. We now prove that the problem of deter-
mining if a quantum automata has a word of value strictly larger than some threshold
is decidable. This result points to a difference between quantum and probabilistic
automata since for probabilistic automata this problem is known to be undecidable.

Once an automaton is given, one can of course always enumerate all possible
words w and halt as soon as one is found for which ValA(w) > λ, and so the problem
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is clearly semidecidable. In order to show that it is decidable, it remains to exhibit a
procedure that halts when ValA(w) ≤ λ for all w.

Let a quantum automata A be given by a finite set of n×n orthogonal transition
matrices Xi, an initial configuration s of unit norm, and a projection matrix P . The
value of the word w is given by ValA(w) = ‖sXwP‖2. Let X be the semigroup
generated by the matrices Xi, X = {Xw : w ∈ Σ∗}, and let f : R

n×n 
→ R be the
function defined by f(X) = ‖sXP‖2. We have that

ValA(w) = f(Xw),

and the problem is now that of determining if f(X) ≤ λ for all X ∈ X . The function
f is a (continuous) polynomial map and so this condition is equivalent to f(X) ≤ λ
for all X ∈ X , where X is the closure of X in R

n×n. The set X has the interesting
property that it is algebraic (see below for a proof), and so there exist polynomial
mappings f1, . . . , fp : R

n×n 
→ R, such that X is exactly the set of common zeros
of f1, . . . , fp. If the polynomials f1, . . . , fp are known, the problem of determining
whether f(X) ≤ λ for all X ∈ X can be written as a quantifier elimination problem

∀X
[
(f1(X) = 0 ∧ · · · ∧ fp(X) = 0) =⇒ f(X) ≤ λ

]
.(3.1)

This is a first-order formula over the reals and can be decided effectively by Tarski–
Seidenberg elimination methods (see [Ren92a, Ren92b, Ren92c, BPR96] for a survey of
known algorithms). If we knew how to effectively compute the polynomials f1, . . . , fp
from the matrices Xi, a decision algorithm would therefore follow immediately. In the
following we solve a simpler problem: we effectively compute a sequence of polynomials
whose zeros describe the same set X after finitely many terms (but we may never know
how many). It turns out that this is sufficient for our purposes. We will use some basic
algebraic geometry. In particular, we will use the Noether (or “descending chain”)
property: in any field, the set of common zeros of a set of n-variate polynomials is
equal to the set of common zeros of a finite subset of these polynomials (see any
textbook on algebraic geometry, for instance, [CLO92, Prop. 1, sect. 4.6]).

Theorem 3.1. Let (Xi)i∈Σ be orthogonal matrices of dimension n and let X be
the closure of the semigroup {Xw : w ∈ Σ∗}. The set X is algebraic, and if the Xi have
rational entries, we can effectively compute a sequence of polynomials f1, . . . , fi, . . .
such that

1. if X ∈ X , fi(X) = 0 for all i;
2. there exists some k such that X = {X : fi(X) = 0, i = 1, . . . , k}.

Proof. We first prove that X is algebraic. It is known (see, e.g., [OV90]) that
every compact group of real matrices is algebraic. In fact, the proof of algebraicity
in [OV90] reveals that any compact group G of real matrices of size n is the zero set
of

R[X]G = {f ∈ R[X] : f(I) = 0 and f(gX) = f(X)∀ g in G};

i.e., G is the zero set of the polynomials in n×n variables which vanish at the identity
and are invariant under the action of G. We will use this property later in the proof.

To show that X is algebraic, it suffices to show that X is compact and is a group.
The set X is obviously compact (bounded and closed in a normed vector space of finite
dimension). Let us show that it is a group. It is in fact known that every compact
subsemigroup of a topological group is a subgroup. Here is a self-contained proof in
our setting: For every matrix X, the sequence Xk admits a subsequence that is a
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Cauchy sequence, by compactness. Hence for every ε there exists k > 0 and l > k + 1
such that ‖Xk − X l‖ ≤ ε, that is, ‖X−1 − X l−k−1‖ ≤ ε (recall that ‖AB‖ = ‖B‖
if A is orthogonal and if ‖.‖ is the operator norm associated to the euclidean norm).
Hence, X−1 is in the set and the first part of the theorem is proven. For notational
convenience, we will denote the group X by G in the remainder of the proof.

For the second part of the theorem, we will prove that we can take

{fi} = {f ∈ Q[X] : f(I) = 0 and f(XjX) = f(X)∀ j in Σ}.

In other words, this is the set Q[X]G of rational polynomials which vanish at the
identity and are invariant under the action of each matrix Xj . It is clear that this set
is recursively enumerable. We claim that G is the zero set of the fi’s. By Noetherianity
the zero set of the fi’s is equal to the zero set of a finite subset of the fi’s, so that
the theorem follows immediately from this claim. To prove the claim, we will use the
fact that G is the zero set of R[X]G. Note that

R[X]G = {f ∈ R[X] : f(I) = 0 and f(XjX) = f(X)∀ j in Σ}.

(A polynomial is invariant under the action of G if and only if it is invariant under
the action of all the Xj .) This observation implies immediately that each fi is in
R[X]G, so that the zero set of the fi’s contains the zero set of R[X]G. The converse
inclusion follows from the fact that any element P of R[X]G can be written as a linear
combination of some fi’s. Indeed, let d be the degree of P and let Ed be the set of
real polynomials in n×n variables of degree at most d. The set Vd = Ed ∩R[X]G is a
linear subspace of Ed defined by a system of linear equations with rational coefficients
(those equations are f(I) = 0 and f(XjX) = f(X) for all j ∈ Σ). Hence there exists
a basis of Vd made up of polynomials with rational coefficients, that is, of elements of
{fi}. This completes the proof of the claim, and of the theorem.

We may now apply this result to quantum automata.
Theorem 3.2. The two following problems are decidable:
(i) Given a quantum automaton A and a threshold λ, decide whether there exists

a word w such that ValA(w) > λ.
(ii) Given a quantum automaton A and a threshold λ, decide whether there exists

a word w such that ValA(w) < λ.
Proof. We show only that problem (i) is decidable. The argument for problem

(ii) is essentially the same.
As pointed out at the beginning of this section, it suffices to exhibit an algorithm

which halts if and only if ValA(w) ≤ λ for every word w. Consider the following
algorithm:

• enumerate the fi’s;
• for every initial segment f1, . . . , fp, decide whether (3.1) holds, and halt if it

does.
It follows from property (1) in Theorem 3.1 that ValA(w) ≤ λ for every word w if the
algorithm halts. The converse follows from property (2).

In Theorems 3.1 and 3.2 we have assumed that our orthogonal matrices have
rational entries, mostly because the undecidability results of section 2 already hold
for rational entries. It is not hard to relax this hypothesis. For instance, it is clear
from the proofs that Theorems 3.1 and 3.2 can be generalized to matrices with real
algebraic entries. Even more generally, one may allow “arbitrary” real entries by
proceeding as follows. Let K be the subfield of R generated by the entries of our
matrices. We may give a transcendence basis B of K and represent the entries as
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algebraic numbers over B. This purely algebraic information is sufficient to compute
the sequence of polynomials (fi) in Theorem 3.1. We also need to decide for every
initial segment whether (3.1) holds. After quantifier elimination, this amounts to
computing the sign of a finite number of polynomial functions of the elements of B.
In order to do this we need only assume that we have access to an oracle which for any
element x of B and any ε > 0 outputs a rational number q such that |x− q| < ε (such
an oracle can be effectively implemented if the entries are computable real numbers).
We use the algebraic information to determine whether a polynomial takes the value
zero, and if not we use approximations to determine its sign.

In the proof of Theorem 3.2 we have bypassed the problem of explicitly computing
a finite set of polynomials defining X . It is in fact possible to show that this problem
is algorithmically solvable [DJK03]. This implies in particular that the following two
problems are decidable:

(i) Decide whether a given threshold is isolated.
(ii) Decide whether a given QFA has an isolated threshold.

A threshold λ is said to be isolated if

∃ε > 0 ∀w ∈ Σ∗ |ValA(w) − λ| > ε.

It is known that these two problems are undecidable for probabilistic automata [Ber75,
BMT77, BC03].

The algorithm of [DJK03] for computing X also has applications to quantum
circuits: this algorithm can be used to decide whether a given set of quantum gates is
complete (complete means that any orthogonal transformation can be approximated
to any desired accuracy by a quantum circuit made up of gates from the set). Much
effort has been devoted to the construction of specific complete sets of gates [DBE95,
BBC+95], but no general algorithm for deciding whether a given set is complete was
known.

Finally, we note that the proof of Theorem 3.2 does not yield any bound on the
complexity of problems (i) and (ii). We hope to investigate this question in future
work.
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Abstract. Using the notions of Q-heaps and fusion trees developed by Fredman and Willard,
we develop general transformation techniques to reduce a number of computational geometry prob-
lems to their special versions in partially ranked spaces. In particular, we develop a fast fractional
cascading technique, which uses linear space and enables sublogarithmic iterative search on catalog
trees in the case when the degree of each node is bounded by O(logε n) for some constant ε > 0,
where n is the total size of all the lists stored in the tree. We apply the fast fractional cascading
technique in combination with the other techniques to derive the first linear-space sublogarithmic
time algorithms for two fundamental geometric retrieval problems: orthogonal segment intersection
and rectangular point enclosure.
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1. Introduction. Q-heaps and fusion trees [10, 11] are data structures that
achieve sublogarithmic search time on one-dimensional (1-D) data. In particular,
a Q-heap supports constant time insertion, deletion, and predecessor search on very
“small” subsets of a larger set using linear space. In [30], Willard illustrated how upper
bounds for several search problems can be improved using the Q-heap. In this paper,
we further explore the Q-heap technique in the context of computational geometry
by using it to develop several general techniques, which lead to faster algorithms for
a number of geometric retrieval problems.

A geometric retrieval problem is to preprocess a set S of n geometric objects
so that, when given a query specifying a set of geometric constraints, the subset Q
of S consisting of the objects that satisfy these constraints can be reported quickly.
Examples of geometric retrieval problems include orthogonal segment intersection [26,
3], rectangular point enclosure [19, 27, 3], and orthogonal range queries [2, 29, 20, 3,
4, 21, 25] and their special cases [19, 30, 5, 18]. A typical data structure for handling
such a problem often involves a primary constant-degree search tree T whose nodes
are each equipped with secondary structures, which are built on a subset of S and
are capable of handling special versions of the original query very quickly. There
are two main ideas behind such a typical data structure. First, the objects in S
are distributed among the nodes of T in such a way that the number of nodes of
T visited during a search process is bounded by the depth of T or the output size.
Second, for each node v visited, the search query on the set S(v) of objects stored
there can be performed very quickly. The first idea is often realized by ensuring that
either a nonroot node v is visited only if it is on a specific path from the root of T
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to a leaf node (for example, in handling the segment intersection and rectangle point
enclosure problems [3]), or the time spent at v can be compensated by the time spent
at reporting Q∩S(parent(v)), in case searching S(v) is not fruitful; i.e., we visit v only
if S(parent(v)) ∩ Q �= ∅ (for example, in handling the three-sided three-dimensional
(3-D) range queries [19] and the 3-D dominance queries [5]). The second idea is often
implemented by (i) making sure that we can perform certain types of rank operations
on S(v) in constant time (typically using the fractional cascading technique), or (ii)
constructing a constant number of secondary data structures on S(v) such that each
can be chosen to handle a special version of the original query, which is derived based
on the additional information provided by the discriminator associated with v and
which has less constraints.

The fusion tree technique makes it possible to further reduce the search complexity
of some of these structures by increasing the degree of the primary search trees to
logε n, so that the height of the tree is reduced to O(log n/ log log n). The branch
operation at each node can be performed in constant time by making direct use of
the Q-heaps. However, the fact that the degree of the tree is now dependent on
n introduces at least the following three problems. First, the standard fractional
cascading technique would take a nonconstant amount of time at each node. In fact,
a search operation performed on the list associated with a tree node would require
O(log log n) time, which negates the effect of a “fattened” primary search tree. Second,
the number of discriminators at a node v is no longer a constant, which makes it very
difficult to use only a constant number of secondary structures for the quick handling
of special versions of the original query. Finally, a nonempty output at a node no
longer ensures that we can afford to search each of its children, since none of them
may contain an output object. Doing so would result in an O(f logε n) term in the
overall search complexity, where f is the output size.

In this paper, we develop several techniques to handle the first two problems
by making strong use of the Q-heap technique. In particular, we show that, under
the RAM model used by Fredman and Willard, if T is a tree whose degree c is
bounded by a logarithmic function of n, i.e., c = logε n for some constant ε, then it
is possible to improve the performance of the standard fractional cascading structure
so that rank operations on S(v) for each node v except the root can be performed in
constant time (independent of n) without asymptotically increasing the storage cost.
We call this new fractional cascading technique fast fractional cascading. This is a
general technique and is of independent interest. We also show how to perform search
operations on a set S(v) very quickly by transforming the problem to the partially
ranked space [1, 2, . . . , c] × N , where very fast search operations are possible using
Q-heaps and table look-ups. This transformation can also be used to handle the
so-called lookahead problem [30], deciding whether or not searching a substructure
will be fruitful before it is actually searched, which is crucial in overcoming the third
obstacle mentioned at the end of the last paragraph.

We believe that these techniques have the potential to improve the asymptotic
upper bounds of a wide range of geometrical retrieval problems. In this paper we
apply our techniques to two fundamental geometric retrieval problems: orthogonal
segment intersection and rectangular point enclosure. Each of our algorithms achieves
O(n) space and O(log n/ log log n + f) query time. The best previous results require
O(log n + f) query time when using linear space [3, 18]. In a separate paper [14],
we show how to apply these techniques to obtain the first linear-space sublogarithmic
algorithm for the 3-D dominance reporting problem.

We now formally define the two geometric retrieval problems to be tackled in
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this paper. To facilitate our explanation, we will denote a horizontal (resp., vertical)
segment in a 2-D space as (x1, x2; y) (resp., (x; y1, y2)), where (x1, y) and (x2, y) (resp.,
(x, y1) and (x, y2)) are its two endpoints and x1 ≤ x2 (resp., y1 ≤ y2)).

1. Orthogonal segment intersection. Given a set S of n horizontal segments,
report the subset Q of segments that intersect a given vertical segment. We say a
horizontal segment (x1, x2; y) intersects a vertical segment (x; y1, y2) if and only if
x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2. We call the segments in Q proper segments relative to
the given query.

2. Rectangular point enclosure. Let (x1, x2; y1, y2) denote a rectangle in a 2-
D space with edges parallel to the axes, where the intervals [x1, x2] and [y1, y2] are
the projections of this rectangle to the x-axis and y-axis, respectively. Given a set
S of rectangles, report the subset Q of proper rectangles such that each rectangle
(x1, x2; y1, y2) in Q contains a query point (x, y), i.e., x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2.

In this paper, we use the RAM model as described in [10]. In this model, it is
assumed that each word contains w bits, and the size of a data set never exceeds 2w,
i.e., w ≥ log2 n. In addition to arithmetic operations, bitwise logical operations are
also assumed to take constant time.

The next section introduces some well-known techniques that will be heavily
utilized in the rest of the paper. In section 3, we present the fast fractional cascading
structure, while sections 4 and 5 present the improved algorithms for, respectively,
orthogonal segment intersection and rectangular enclosure.

2. Preliminaries. Given a set S of multidimensional points (x1, x2, . . . , xd), a
point with the largest xi-coordinate smaller than or equal to a real number α is called
the xi-predecessor of α, and the one with the smallest xi-coordinate larger than or
equal to α is called the xi-successor of α.

The notion of a Cartesian tree was first introduced by Vuillemin [28] (and redis-
covered by Seidel and Aragon [23]). A Cartesian tree is a binary tree defined over a
finite set of 2-D points sorted by their x-coordinates, say (p1, . . . , pn). Let pi be the
point with the largest y-coordinate. Then pi is associated with the root w of C. The
two children are, respectively, the root of the Cartesian trees built on p1, . . . , pi−1 and
pi+1, . . . , pn. Note that the left (resp., right) child of w does not exist if i = 1 (resp.,
i = n). Figure 2.1 shows an example of the Cartesian tree.

(1,8)

(2,4)

(3,6)

(4,3)

(5,5)

(6,1)

(7,7)

(8,2)

Fig. 2.1. Cartesian tree.
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2.1. Cartesian trees. An important property of the Cartesian tree is given by
the following observation [12].

Observation 2.1. Consider a set S of 2-D points and the corresponding (x, y)-
Cartesian tree C. Let x1 ≤ x2 be the x-coordinates of two points in S, and let α
and β be their respective nodes in C. Then the point with the largest y-coordinate
among those points whose x-coordinates are between x1 and x2 is stored in the nearest
common ancestor of α and β.

Using Observation 2.1, combined with the techniques for computing the nearest
common ancestors [13] (see also [1]) in constant time, we have shown in [24] that we
can handle the so-called three-sided 2-D range queries efficiently. Briefly, a point (a, b)
satisfies the three-sided query (x1, x2, y), with x1 ≤ x2, if x1 ≤ a ≤ x2 and b ≥ y.

Lemma 2.1. By preprocessing a set of n 2-D points to construct an (x, y)-
Cartesian tree C, we can handle any three-sided 2-D range query given as (x1, x2, y),
with x1 ≤ x2, in O(t(n) + f) time, where t(n) is the time it takes to find in C the
leftmost and rightmost nodes whose x-coordinates fall within the range [x1, x2], and f
is the number of points reported.

Note that C should be transformed into a suitable form to enable the computation
of nearest common ancestors in constant time.

2.2. Q-heaps and fusion trees. Q-heaps and fusion trees, developed by Fred-
man and Willard [10, 11], achieve sublogarithmic search time on 1-D data. While
the Q-heap data structure was proposed later than the fusion tree, it can be used
as a building block for the fusion tree [30]. Using Q-heaps and fusion trees, Willard
demonstrated in [30] theoretical improvements for a number of range search problems.

The Q-heap [11] supports insert, delete, and search operations in constant time
for small subsets of a large data set of size n. Its main properties are given in the
following lemma (the version presented here is taken from [30]).

Lemma 2.2. Suppose S is a subset with cardinality m < log1/5 n lying in a larger
database consisting of n elements. Then there exists a Q-heap data structure of size
O(m) that enables insertion, deletion, member, and predecessor queries on S to run
in constant worst-case time, provided that access is available to a precomputed table
of size o(n).

Note that the look-up table of size o(n) referred to above is shared by all the
Q-heaps built on subsets of this larger database.

The fusion tree built on the Q-heap achieves linear space and sublogarithmic
search time. The following lemma is a simplified version of Corollary 3.2 from [30].

Lemma 2.3. Assume that in a database of n elements we have available the use of
precomputed tables of size o(n). Then it is possible to construct a data structure of size
O(n) space, which has a worst-case time O(log n/ log log n) for performing member,
predecessor, and rank operations.

Notice that the assumptions of the RAM model introduced in section 1 are critical
to achieving the bounds claimed in the above lemmas.

2.3. Adjacency map and hive graph. The notion of the adjacency map was
first introduced by Lipski and Preparata [16]. Given a set S of n horizontal segments,
the vertical adjacency map G(S) is constructed by interconnecting the horizontal
segments in S using vertical (infinite, semi-infinite, or finite) segments as follows: from
each endpoint of the segments in S, draw two rays shooting upward and downward,
respectively, until they meet other segments in S except possibly at an endpoint.
This creates a planar subdivision G(S) with O(n) vertices, which are the joints of
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Fig. 2.2. A hive graph.

the horizontal and vertical segments. G(S) can be represented in O(n) space using
the adjacency lists associated with the vertices. We call the edges supported by the
horizontal segments horizontal edges and those supported by the vertical segments
vertical edges.

Chazelle noticed in [3] that the adjacency map is a useful tool which, when modi-
fied appropriately, can be used to handle the orthogonal segment intersection problem
efficiently. His modification of the vertical adjacency map is called the hive graph. A
hive graph H(S) is derived from G(S) by adding only vertical segments to G(S) while
maintaining O(n) vertices and O(n) space representation. However, it has the impor-
tant property that each face may have, in addition to its four (or fewer) corners, at
most two extra vertices, one on each horizontal edge. Figure 2.2 shows a vertical ad-
jacency map and its corresponding hive graph, in which the additional vertical edges
are depicted as dashed lines. By assuming that the endpoints of the segments in S
all have distinct x- and y-coordinates, as [3] did, one can conclude that each face of
H(S) has O(1) vertices on its boundary. Given a query segment (x; y1, y2), the seg-
ment intersection query can be handled as follows. We first find the face in H(S) that
contains the endpoint (x, y1) in O(log n) time by using one of the well-known planar
point location algorithms [8, 9, 15, 17, 22]. Then we traverse a portion of H(S) from
bottom up, following the direction from (x, y1) to (x, y2). Only a constant number of
vertices are visited between two consecutive encounters of the horizontal edges that
intersect the query segment.

Note that the vertical boundary of a face of the hive graph corresponding to a
vertical adjacency map will not necessarily contain a constant number of vertices if
the assumption that the endpoints of the segments in S have distinct x-coordinates
does not hold. Since we will need to deal later with such a case, we get around
this problem by associating with each vertex pointers to the upper-right or upper-
left corner in the same face, as follows. We modify H(S) by associating with each
vertex β two additional pointers p(β) and q(β). Let β = δ1, δ2, . . . , δl = γ be the
maximal chain of vertices such that each pair of consecutive vertices δi and δi+1 is
connected by a vertical edge ei and δi+1 is above δi, for i = 1, . . . , l − 1. Note that
this chain can be empty (l = 1), in which case both p(β) and q(β) are null. If
there exists a vertex in {δ2, δ3, . . . , δl} which has a horizontal edge connecting it to a
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query segment

Fig. 2.3. Modified hive graph.

vertex to the left of it, then p(β) points to the lowest such vertex. Otherwise, p(β)
is null. Similarly, if there exists a vertex that has a horizontal edge connecting it to
a vertex to the right of it, then q(β) points to the lowest such vertex. Otherwise,
q(β) is null. It is easy to see that, using these additional pointers, we can in constant
time reach the next proper segment without the distinct x-coordinates assumption.
Figure 2.3 shows such a modified hive graph. The additional pointers p(β) and q(β)
are depicted, respectively, as dashed and dotted arrows. To simplify the drawing, we
omit the pointer α = p(β) or α = q(β) if α is null or (α, β) is an edge in H(s). This
figure also illustrates the search path of an exemplary segment intersection query by
highlighting the pointers involved.

As noted in [3], when the query segment is semi-infinite, that is, consists of a ray
(x;−∞, y2) shooting downward, there is no need to perform the initial planar point
location query. Instead, we can, during preprocessing, sort the x-coordinates of the
vertical edges of the faces unbounded from below, and perform as the first step at
query time a search on the sorted x-coordinates to locate the face that contains the
point (x,−∞). The following lemma is a restatement of Corollary 1 in [3].

Lemma 2.4. Given a set S of n horizontal segments in the plane, an O(n) space
hive graph can be used to determine all the intersections of the horizontal segments
with a semi-infinite vertical query segment s = (x;−∞, y2) in O(t(n)+f) time, where
f is the number of intersections, and t(n) is the time it takes to search the sorted list
of x-coordinates.

Combining Lemmas 2.3 and 2.4, we have the following corollary.

Corollary 2.5. Given a set S of n horizontal segments in the plane and a
vertical query segment in the form of (x;−∞, y2), it is possible to report all f proper
segments of S in O(log n/ log log n + f) time using O(n) space.

Clearly, by rotating the hive graph 90◦ clockwise (resp., counterclockwise), the
same type of techniques will yield a solution for handling any orthogonal segment
intersection query that involves a set S of vertical segments and a horizontal query
segment of the form (−∞, x2; y) (resp., (x1,+∞; y)). We will denote this rotated hive
graph HL(S) (resp., HR(S)).
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Fig. 3.1. Fractional cascading.

3. Fast fractional cascading. Suppose we have a tree T = (V,E) rooted at w
such that each node v has a degree bounded by c and contains a catalog L(v) of sorted
elements. Let n denote the total number of elements in these catalogs. A key value
k(g) from N ∪{−∞,+∞} is associated with each element g in L(v). The elements in
L(v) do not need to have distinct key values. We call such a tree a catalog tree. Let
x be a real number and F be an arbitrary forest with p nodes consisting of subtrees
of T determined by some of the children of w. Both x and F can be specified online,
i.e., not necessarily at preprocessing time. Let σL(x) denote the successor of x in a
catalog L. The iterative search problem is defined as follows [6]: report σL(v)(x) for
each v in F . This problem (in a somewhat less general form) was first discussed by
Willard in the context of handling 2-D orthogonal range queries [29]. A technique
called fractional cascading was later proposed by Chazelle and Guibas [6, 7] to deal
with the general problem. We now briefly introduce their approach.

3.1. Fractional cascading. The following lemma is a direct derivation from
the one given by Chazelle and Guibas for identifying the successor of a value x in
each of the catalogs in F [6].

Lemma 3.1. There exists a linear size fractional cascading data structure that can
be used to determine the successors of a given value x in the catalogs associated with
F in O(p log c+ t(n)) time, where t(n) is the time it takes to identify the successor of
x in L(w).

The main component of a fractional cascading structure is the notion of the
augmented catalogs. At each node v in T , in addition to the original catalog L(v),
we store another augmented catalog A(v), which is a superset of L(v) and contains
additional copies of elements from the augmented lists associated with its parent
and children. With each element h in A(v), we associate a pointer to its successor
σL(v)(h) in L(v). Since A(v) is a superset of L(v), we have σL(v)(g) = σL(v)(σA(v)(g)).
Note that the elements in an augmented list A(v) form a multiset S(v); that is, a
single element can appear multiple times in an augmented list. The elements in an
augmented list are chained together to form a doubly linked list.

As illustrated in Figure 3.1, let u and v be two neighboring nodes in T , u being
v’s parent. There exists a subset B(u, v) of A(u) × A(v) such that, for each pair of
elements (g, h) ∈ B(u, v), k(g) = k(h). The pair of elements (g, h) are called a bridge.
There is a pointer to h associated with the element g, and similarly a pointer to g is
associated with h. We will call g a down-bridge, and h an up-bridge, associated with
the edge (u, v). It is important to point out that each element in an augmented list
can serve as at most one up-bridge or one down-bridge, but not both. Bridges respect
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the ordering of equal-valued elements and thus do not “cross.” This guarantees that
B(u, v) can be ordered and the concept of gap presented next is well defined. In
this ordered set B(u, v), the bridge (g, h) appears after the (g′, h′) if and only if g
appears after g′ in A(u). A gap G(u,v)(g, h) of bridge (g, h) is defined as the multiset
of elements from both A(u) and A(v) which are strictly between two bridges (g, h) and
(g′, h′), where (g′, h′) is the bridge that appears immediately before (g, h) in B(u, v).
Accordingly, we define the up-gap (resp., down-gap) G(u,v)(g) (resp., G(u,v)(h)) as the
subset of G(u,v)(g, h) containing elements from A(u) (resp., A(v)), preserving their
orders in the respective augmented catalogs.

The fractional cascading structure maintains the invariant that the size of any
gap cannot exceed 6c− 1. Chazelle and Guibas provided in [6] an algorithm that can
construct such a data structure in O(n) time, and they prove that it requires O(n)
space.

Given a parent-child pair (u, v) ∈ E, suppose we know the successor σA(u)(x) of
a value x in A(u). We follow A(u) along the direction of increasing values to the next
down-bridge g connecting u and v (it could be σA(u)(x) itself if it is a down-bridge),
cross it to its corresponding up-bridge h, and scan A(v) in the opposite position
until the successor of x in A(v) is encountered. Clearly, σA(v)(x) is guaranteed to
be found by this process. The constraint on the gap size ensures that the number of
comparisons required is O(c).

When c is a constant, the above result is optimal. When c is large, Chazelle and
Guibas used the so-called star tree to achieve O(log c) search time on each catalog
except the one stored at the root.

3.2. Fast fractional cascading. The fractional cascading structure described
above is strictly list-based, and hence all the related algorithms can run on a pointer
machine within the complexity bounds stated. Using the variation of the RAM model
introduced in section 1 and the Q-heap technique of Fredman and Willard [11], sum-
marized in section 2.2, we can achieve constant search time (independent of c) per
node for the class of catalog trees whose degree is bounded by c = logε n, while simul-
taneously maintaining a linear size data structure. We call this version fast fractional
cascading. This result improves over our previous result in [24], which achieves the
same search complexity but requires nonlinear space. We will first revisit the nonlinear
space solution and then explain how to reduce the storage cost to linear.

3.2.1. Fast fractional cascading with nonlinear space. We augment the
fractional cascading structure described in section 3.1 by adding two types of com-
ponents to each augmented catalog A(v). First, we associate c additional pointers
p1(g), p2(g), . . . , pc(g) with each element g in A(v) such that pi(g) points to the next
down-bridge (possibly g itself) connecting v to wi, where wi is the ith child of v from
the left. Second, we build for each up-gap G(u,v)(h) a Q-heap Q(h), containing el-
ements in G(u,v)(h) with distinct values (choosing the first one if multiple elements

have the same value). For large enough n we have 6c − 1 < log1/5 n, and therefore
Lemma 2.2 is applicable. We have added c pointers for each of the elements in the
augmented catalogs, whose overall size cannot exceed O(n). In addition, a global
look-up table of size O(n) is used to serve all the Q-heaps. Finally, no two up-gaps
in an augmented catalog overlap, as they correspond to the same edge in T (which is
not true for a general graph). Hence the Q-heaps cannot consume more than O(n)
space.

Now suppose we have found g = σA(u)(x) in A(u). Let v be the ith child of u.
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By following the pointer pi(g), we can reach in constant time the next down-bridge
in u and then its companion up-bridge h in v. Using Q(h), we can find the successor
of x in G(u,v)(h) in constant time.

Lemma 3.2. Let c = O(logε n). The fast fractional cascading structure described
above allows the identification of the successors of a given value x in the catalogs
associated with F in O(p + t(n)) time, where t(n) is the time it takes to identify the
successor of x in L(w). This structure requires O(cn) space.

3.2.2. Fast fractional cascading with linear space. We partition each aug-
mented catalog A(u) into p = 
|A(u)|/c� blocks B1, B2, . . . , Bp, each, except possibly
the last one, containing c elements. For each block Bi starting from the lth element
of A(u), we construct a set Ci of t ≤ 7c− 1 records as follows. For each down-bridge
g that is the dth element in A(u), where l ≤ d ≤ l + 7c− 2, we include in Ci a record
r that contains two entries r.ptr and r.key. The entry r.ptr is a pointer to g, and
r.key is the key of r whose value is defined as r.key = j ∗ (7c − 1) + (d − l) if g is
associated with the edge connecting u and its (j + 1)th child (note that r.key can fit
in a word). The records in Ci are sorted in increasing order by their key values. Now
let g be the successor of a value x in A(u) and suppose we want to find the successor
of x in the augmented catalog associated with the (j + 1)th child v of u. It is easy to
determine in constant time the block Bi to which g belongs and its position f relative
to the starting position of Bi (f = 0 if g is the first element in Bi). If g is itself a
down-bridge associated with (u, v), then we are done. Otherwise, due to the invariant
regarding the gap size, the next down-bridge h associated with (u, v) must have a
corresponding record in Ci. The following lemma transforms the problem of finding
h to a successor search in Ci.

Lemma 3.3. The record in Ci that corresponds to h is the successor of the value
y = j · (7c− 1) + f .

Proof. First we notice the fact that all the keys of the records in Ci are distinct.
Let y′ = j · (7c − 1) + f ′ be the key of the record in Ci that corresponds to h. It
is obvious that y < y′. Now let y′′ = j′′ · (7c + 1) + f ′′ be the key of a record r in
Ci such that y ≤ y′′. We need to show only that y′ ≤ y′′. Since both f ′′ and f are
nonnegative integers less than 7c − 1, the fact that y ≤ y′′ leads to either j < j′′, or
j = j′′ and f ≤ f ′′. If j < j′′, we immediately have y′ < y′′. On the other hand,
if j = j′′, then the record r also corresponds to a down-bridge associated with the
edge (u, v). Since h is the leftmost down-bridge closest to g, we have f ′ ≤ f ′′. Thus
y′ ≤ y′′.

The problem of finding the successor of an integer value in a small set Ci can
be solved, again using the Q-heap data structure. The following straightforward
observations ensure the applicability of Lemma 2.2:

1. |Ci| < log1/5 n for n large enough; and
2. the total number of distinct keys created for all the augmented catalogs is

bounded by O(n).
Finally, it is easy to see that the overall additional space introduced by the new
Q-heaps is O(n), and thus we have the following theorem.

Theorem 3.4. For c = O(logε n) for some ε < 1
5 , our fast fractional cascading

structure allows the identification of the successors of a given value x in the catalogs
associated with F in O(p + t(n)) time, where t(n) is the time it takes to identify the
successor of x in L(w). This structure requires O(n) space.

4. Orthogonal segment intersection. Before tackling the general orthogonal
segment intersection problem, we develop a linear size data structure to handle a



TRANSFORMATION TECHNIQUES USING Q-HEAPS 1483

special case in which the x-coordinates of the endpoints of the segments and the
query segment can take integer values only over a small range of values. We will later
show how to use the solution of the special case to derive a solution to the general
problem.

4.1. Modified vertical adjacency map. Assume that the x-coordinates of the
endpoints of each segment (k1, k2; y) in the given set R of n horizontal segments can
take values from the set of integers {1, 2, . . . , c}, where c = logε n is an integer, and
furthermore, assume that the x-coordinate k of the query segment r = (k; z1, z2) is an
integer between 1 and c. Let Y (R) = (y1(R), y2(R), . . . , yn′(R)) be the list of distinct
y-coordinates of the segments in R sorted in increasing order.

Our overall strategy consists of augmenting the vertical adjacency map with aux-
iliary structures so that we will be able to identify the lowest segment in R intersecting
r very quickly, followed by progressively determining the next sequence of lowest seg-
ments, each in O(1) time. The details of this strategy are described next.

Our indexing structure D(R) consists of two major components: H(R) and M(R).
H(R) is a directed vertical adjacency map with auxiliary information attached to it.
We define the direction of the horizontal edges to be from right to left, and that of
the vertical edges to be from bottom up. Note that we do not require that each face
of H(R) have a constant number of vertices on its boundary.

Each vertex of H(R) is naturally associated with a pair of x, y-coordinates. We
call the vertex with an outgoing horizontal edge a tail. We augment H(R) with three
types of components as follows.

1. For each distinct y-coordinate yj(R) of Y (R), we create a Q-heap Qj(R) to
index the x-coordinates of the vertices whose y-coordinates are equal to yj(R).

2. For each integer 1 ≤ i ≤ c that serves as the x-coordinate of at least one
tail, we create a list Pi(R) of records. Each record g corresponds to a tail α whose
x-coordinate is i and contains two elements: g.key, which is the y-coordinate of α,
and g.ptr, which is a pointer to α. This list is sorted in increasing order by the key
values.

3. With each vertex β we associate two pointers p(β) and q(β). Let yj(R) be
the y-coordinate of β. Then p(β) points to the Q-heap Qj(R). If β is not a tail, q(β)
is null. Otherwise, there is at least one vertex with the same y-coordinate as β that
has an outgoing vertical edge and is to the strict left of β. Let γ be the rightmost
such vertex, and e1, e2, . . . , el be the shortest chain of vertical edges starting from γ
such that the head ξ of el has an incoming horizontal edge. If such a chain exists,
then q(β) points to ξ. If not, q(β) is null. Note that intuitively q(β) is the top left
corner (if it exists) of a face containing β.

It is clear that H(R) is of size O(n).
In addition to H(R), we have a bitmap M(R) consisting of a list of bit-vectors.

Each vector Vj(R) corresponds to a distinct y-coordinate yj(R) and contains c bits.
The ith bit, starting from the most significant one, is set to 1 if there is a vertical
edge in H(R) passing through the point (i, yj(R)) and 0 otherwise. Each vector can
easily fit in a single word, and thus the storage cost of M(R) is O(n). These vectors
are aligned with the lower end of the words and are stored in increasing order by the
values of the corresponding y-coordinates.

As an example, Figures 4.1(a) and (b) illustrate the structures H(R) and M(R).
In Figure 4.1(a), the dotted lines depict the c possible x-coordinates, the dashed
pointers are the q-pointers that are not null, and the thick line represents the query
segment.
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6 5 4 3 2 1

V6(R) 1 1 0 0 1 1

V5(R) 1 1 0 0 1 1

V4(R) 1 1 0 1 1 1

V3(R) 1 1 0 1 1 1

V2(R) 1 0 0 1 1 1

V1(R) 1 0 0 1 1 1

(a) (b)

Fig. 4.1. (a) H(R) and (b) M(R).

Given a vertical segment r = (k; z1, z2), we first identify the lowest segment that
intersects r and then report each of the remaining proper segments in the direction
of increasing y-coordinates.

Locating the lowest segment that intersects r is performed using M(R). Let yj(R)
be the smallest y-coordinate greater than or equal to z1. If no such y exists, then
there is no segment in R which intersects r. Otherwise, we find the largest value i ≤ k
such that the ith bit in Vj(R) is 1. (This number always exists because the vertical
edges whose x-coordinates are equal to c form a infinite line, and therefore the lowest
bits of all the vectors are set to 1.) This can be accomplished by first masking out the
highest w− k bits of Vj(R), w being the number of bits in a word, and then locating
its most significant bit. In [10], Fredman and Willard describe how to compute the
most significant bit of a word in constant time.

After identifying i, we use Pi(R) to determine the record g with the smallest key
larger than or equal to z1. We can then immediately obtain the vertex α pointed to
by g.ptr.

Lemma 4.1. Let (kα, yα) be the coordinates of α. Then for any segment (k1, k2; y)
in R such that k1 ≤ k and yα > y ≥ y1, we have k2 < k. That is, any horizontal
segment between yα and y which starts to the left of r ends before meeting r.

Proof. The proof is by contradiction. Suppose k2 ≥ k. We then have k2 < kα,
because otherwise the vertical line passing through α would have had at least one
vertex α′ lying on it with its coordinates (kα′ , yα′) satisfying kα′ = kα = i and
yα′ < yα, which contradicts the way we chose α. Now consider the vertical line
passing through the endpoint (k2, y). Either it passes through the point (k2, yj(R))
or intersects a horizontal segment whose left endpoint is to the left of α and whose y-
coordinate is strictly between y and yj(R). In the first case, we have a contradiction
because there would have been a more significant one-bit than i in Vj(R). In the
second case, the right endpoint of that horizontal segment has to be to the strict left
of α, following the same argument for the segment (k1, k2; y). By repeatedly applying
this argument, we can show that either there is a one-bit in Vj(R) more significant
than the i, or there is a record in Pi(R) whose key is smaller than yα but larger than
y1, each leading to a contradiction.
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Lemma 4.2. If yα ≤ y2, then the horizontal segment t = (k1, k2; y) on which α
lies intersects r.

Proof. The only possible scenario in which t does not intersect r is when k1 > k.
If this is the case, then there has to be a vertical segment (k1; y

′
1, y

′
2) consisting of

several edges in H and passing through the point (k1, y). This segment cannot cross
the horizontal line corresponding to Vj(R) because otherwise there would have been a
more significant one-bit than the ith in Vj(R). Therefore there has to be a horizontal
segment t′ = (k′1, k

′
2; y

′
1) with k′2 > k1 > k. Lemma 4.1 implies that k′1 > k. Repeating

this argument will ultimately lead to a contradiction.

Lemmas 4.1 and 4.2 show that the horizontal segment t on which α lies is the
lowest segment that intersects r. Using the Q-heap pointed to by p(α), we can find
the vertex β with the same y-coordinate as α and the smallest x-coordinate greater
than or equal to k. Since t intersects r, we are sure that β is also on t. The following
lemma explains how to iteratively find the remaining segments that intersect r.

Lemma 4.3. Let t be a horizontal segment that intersects r and suppose we know
the vertex β of H(R) on t with the smallest x-coordinate kβ larger than or equal to
k. We can in constant time decide whether there is another segment t′ above t that
intersects r, and furthermore, if there is one, identify in constant time such a t′ having
the smallest y-coordinate larger than that of t.

Proof. We first give the algorithm to compute the vertex β′ on t′ with the smallest
x-coordinate kβ′ larger than or equal to k. Consider the following cases.

Case 1: β has an outgoing vertical edge e and k = kβ .
Case 1.1: e is an infinite edge, i.e., e is a ray shooting upwards. Then
there are no other segments intersecting r.
Case 1.2: The edge e is finite. In this case, the vertex β′ is the head of
e, and t′ is the horizontal segment on which β′ lies.

Case 2: β does not have an outgoing vertical edge e or k �= kβ .
Case 2.1: q(β) is null. There are no other segments intersecting r.
Case 2.2: q(β) is not null. β′ corresponds to the successor of k in the
Q-heap pointed to by p(q(β)), and t′ is the horizontal segment on which
β′ lies.

We now show the correctness of this algorithm. We only discuss Case 2, as the
correctness of our algorithm for Case 1 is obvious. First consider the case when q(β)
is null. Since β has to be a tail, the vertical ray starting from γ (introduced in
the definition of q(β)) shooting upward does not contain a vertex with an incoming
horizontal edge. Hence if there were a horizontal segment above t that intersected
r, γ would not be the rightmost vertex to the left of β that has an outgoing vertical
edge. Hence no segment above t intersects r.

We now consider Case 2.2. In this case, γ and the chain starting from it al-
ways exist. Let e1, e2, . . . , el be the chain of vertical edges used to define q(β);
γ = δ1, δ2, . . . , δl+1 = ξ be the sequence of vertices such that for each 1 ≤ j ≤ l,
ej = (δj , δj+1); and (k′, yγ) and (k′, yξ) be the respective coordinates of γ and ξ. We
claim that (i) no horizontal segment whose y-coordinates are strictly between those
of t and t′ intersects r; (ii) the horizontal segment t′ on which ξ lies does intersect r;
and (iii) the successor β′ of k in the Q-heap pointed to by p(q(β)) always exists.

To see why the first claim is true, suppose there is a horizontal segment (k′1, k
′
2; y

′)
intersecting r that satisfies yγ < y < yξ. Then it has to be true that k′ < k′1 ≤ k.
Since we are discussing Case 2, there has to be another horizontal segment (k′′1 , k

′′
2 ; y′′)

such that k′ < k′′1 < k and yγ < y′′ < yξ. Following similar arguments as in the proof
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of Lemma 4.1, we can show that either there exists a vertex on t between β and γ
with an outgoing vertical edge, or there exists a vertex ξ′ with an incoming horizontal
edge such that its coordinate (kξ′ , yξ′) satisfies kξ′ = k′ and yγ < yξ′ < yξ. Either
case leads to a contradiction.

To show that t′ indeed intersects r, we notice that the right endpoint of the
horizontal segment of which the horizontal incoming edge of ξ is a part cannot be
to the (strict) left of s, because otherwise either there would be a chain of vertical
edges closer to β than the one we have, or there would be a horizontal segment lying
vertically between t and t′ that intersects r, each leading to a contradiction. This also
justifies the last claim (iii), and the proof of the lemma is complete.

Lemma 4.4. Given a set R of n horizontal segments in the plane, whose endpoints
can only have c = logε n possible x-coordinates {1, 2, . . . , c}, it is possible to report
using O(n) space all f proper segments of R which satisfy a query r = (k; y1, y2),
where k = 1, 2, . . . , c, in O(t(n) + f) time, where t(n) is the time it takes to compute
the successor of y1 in Y (R) and Pi(R) for some i = 1, 2, . . . , c.

Note that we can apply the fusion tree to index the distinct y-coordinates using
linear space so that t(n) = O(log n/ log log n). In the next section, we will show
how to use the algorithm of Lemma 4.4 to solve the general orthogonal segment
intersection problem. By applying the fast fractional cascading technique, the time
t(n) in Lemma 4.4 can be reduced to O(1) except for the initial search, in which
t(n) = O(log n/ log log n).

4.2. Handling the general orthogonal segment intersection problem. In
this section we consider the general orthogonal segment intersection problem involv-
ing a set S of n horizontal segments. To simplify the presentation, we assume that the
endpoints of the segments in S have distinct x-coordinates. The primary data struc-
ture is a tree T of degree c = logε n, built on the endpoints of the n segments sorted in
increasing order of the x-coordinates. Each leaf node v is associated with c endpoints.
Let xl and xr be the x-coordinates of, respectively, the leftmost endpoints associated
with v and the leaf node to its immediate right (xr = +∞ if v is the rightmost leaf
node); then the x-range of v is defined as [xl, xr). For an internal node u with c children
v0, v1, . . . , vc−1, whose corresponding x-ranges are [x0, x1), [x1, x2), . . . , [xc−1, xc), its
x-range is [x0, xc). The set of c − 1 infinite horizontal lines b1(u), b2(u), . . . , bc−1(u),
whose x-coordinates are x1, x2, . . . , xc−1, respectively, are called the boundaries of u.
When the context is clear, we will use bi(u) to represent its corresponding x-coordinate
as well.

The segments in S are distributed among the nodes of T as follows. A horizontal
segment is associated with an internal node u if it intersects one of the boundaries
of u but none of the boundaries of u’s ancestors. A segment is associated with a leaf
node v if its endpoints both lie within the x-range of v.

The set S(v) of segments associated with an internal node v is organized into
several secondary data structures, as described below and illustrated in Figure 4.2.

1. The c−1 boundaries of each node v are indexed by a Q-heap so that, given an
arbitrary value x, the leftmost boundary bi(v) that satisfies x ≤ bi(v) can be identified
in constant time.

2. With each boundary bi(v) with 1 ≤ i ≤ c−1, we associate two Cartesian trees
Li(v) and Ri(v). The Cartesian tree Li(v) contains the endpoints of those segments
(x1, x2; y) in S(v) which satisfy bi−1(v) < x1 ≤ bi(v) (b0(v) = −∞) and x2 ≥ bi(v),
and is used to answer the three-sided range query of the form (x1 ≤ a, b ≤ y ≤ d);
Ri(v) contains the endpoints of those segments that satisfy bi(v) ≤ x2 < bi+1(v)
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Fig. 4.2. Data structures for the segments associated with node v.

(bi+1(v) = +∞ for i = c − 1) and x1 ≤ bi(v), and is used to answer the three-sided
range query of the form (x2 ≥ a, b ≤ y ≤ d). Each Cartesian tree thus created has its
nodes doubly linked in order of increasing y-coordinates.

3. Let S′(v) be a subset of S(v) containing segments that each intersect at
least two boundaries of v. We organize these segments using the data structure
D(v) discussed in section 4.1. We will later explain how to transform the problem
corresponding to S′(v) into the one discussed in section 4.1.

The number of horizontal segments associated with a leaf node is at most c/2
since there are only c different endpoints associated with a leaf node, which are simply
stored in a list.

We analyze the storage cost of the structures involved in our overall data structure.
Obviously, each segment in S is associated with exactly one node v of T . For any
segment associated with an internal node v, it appears in at most three secondary
structures, once in Li(v) associated with the leftmost boundary that bi(v) it intersects,
once in Rj(v) associated with the rightmost boundary bj(v) that it intersects, and
possibly once in D(v). Any segment associated with a leaf node is stored exactly
once. Note that all these data structures are linear-space. Hence the total amount of
space used by these structures is O(n).

We next outline our search algorithm and then fill in the details as we go along.
Let s = (a; b, d) be a vertical segment. To avoid the tedious but not difficult task of
treating special cases, we make the assumption that the endpoints of s are different
from any of the endpoints of the segments in S. To compute the set of proper segments
in Q, we recursively search the tree T , starting from the root. Let v be the node we
are currently visiting. We search v as follows.

1. If v is a leaf node, check each segment associated with v and report those
that intersect s, after which the algorithm terminates.

2. If x lies outside the x-range of v, then no segment in S intersect s, and the
algorithm terminates. (This can happen only at the root, when s is to the
left of all the segments in S.)

3. Otherwise do the following:
3.1. Find the pair of consecutive boundaries bi(v) and bi+1(v) of v such that

bi(v) < a < bi+1(v). (The boundary bi(v) does not exist if x < b1(v);
and bi+1(v) does not exist if a > bc−1(v).)

3.2. If bi(v) exist, use Ri(v) to report segments (x1, x2; y) that satisfy x2 ≥ a
and b ≤ y ≤ d.

3.3. If bi+1(v) exist, use Li+1(v) to report those segments (x1, x2; y) that
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satisfy x1 ≤ a and b ≤ y ≤ d.
3.4. If both bi(v) and bi+1(v) exist, use D(v) to report those proper segments

with no endpoints in the interval (bi(v), bi+1(v)).
3.5. Recursively visit the (i+1)th child of v (the first child being the leftmost).

The correctness of the algorithm is obvious, provided that step 3.4 can be per-
formed correctly, a fact we will show shortly. First we note that step 3.1 can be done
in constant time using the Q-heap. Furthermore, the access of the Cartesian trees in
steps 3.2 and 3.3 can be done in time proportional to the number of segments reported
if the successor of b and the predecessor of d in the list of nodes for each Cartesian
tree can be identified in constant time. We will show later that we can indeed achieve
this goal by applying the fast fractional cascading structure. Finally, it is clear that
only one node is visited at each level of T , which consists of O(log n/ log log n) levels.

Now we focus on step 3.4. The difficulty is to keep the size of D(v) linear and
at the same time be able to execute this step in time proportional to the number of
segments reported. Let n′ be the size of S′(v). One obvious choice is to keep D(v)
as O(c2) lists of segments. Each list corresponds to a pair of boundaries and consists
of segments sorted by their y-coordinates that cross both boundaries. The storage
cost is obviously O(n′). However, we will have to visit each list to report the proper
segments, since there is no obvious way to decide beforehand which lists contain at
least one proper segment (as Willard cleverly did in the design of the fusion priority
tree [30]). At least Ω(log2ε n) time seems to be required as a result. On the other
hand, we can associate with each pair of consecutive boundaries the sorted list of
segments that crosses both of them. This approach satisfies the requirement on the
query complexity but increases the storage cost by a factor of logε n.

We now present our solution to handle these segments. We first transform the
x-coordinates x1 and x2 of the endpoints of each segment s into two integers k1 and
k2 between 1 and c − 1. More specifically, k1 and k2 are the indices of the leftmost
and rightmost boundaries of v crossed by s. By doing this, we transform S′(v) into
another set W (v), in which the segments have their y-coordinates unchanged but
their x-coordinates replaced by the indices of the boundaries. At query time, we also
transform the query segment s = (x; y1, y2) into another segment r by replacing its
x-coordinate with the index k of the boundary to its immediate right. It is straightfor-
ward to see that a segment in S′(v) is proper if and only if its corresponding segment
(k1, k2; y) in W (v) satisfies k1 < k ≤ k2 and y1 ≤ y ≤ y2. (In the case where k1 = k,
the original segment corresponding to (k1, k2; y) is already found using Lk1(v) and
thus need not be reported here.) We now have exactly the problem we tackled in
section 4.1. Hence by Lemma 4.4, we can find the f ′ proper segments in W (v) in
O(f ′) time, provided that we can in constant time identify the successor of b in the
various sorted lists of y-coordinates associated with H(v).

To complete the description of our algorithm, we show how to apply the fast
fractional cascading structure to search the sorted lists at different levels of the tree.
The sorted lists stored at each node v consist of the 2(c− 1) lists Ri(v) and Li(v) for
i = 1, . . . , c− 1; the list of vectors in M(v); and up to c− 1 lists of Pi(v). Note that
during the query time, we need to search only O(1) such lists at each level. Using the
fusion tree, we can search the relevant list at the root of T in O(log n/ log log n) time.

To see how the various lists are linked through fast fractional cascading, we can
imagine a virtual forest F consisting of c “virtual” trees T1, T2, . . . , Tc of degree 3c−2,
such that the lists stored at the roots are L1(v), L2(v), . . . , Lc−1(v), Rc−1(v), respec-
tively, where v is the root of our search tree. The children of the root storing Li(v)
contain the lists of the ith children of v from the left; and the children of the root
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Fig. 4.3. The virtual forest.

storing Rc−1(v) contain the lists of the cth children of v. Figure 4.3 illustrates the
concept of the virtual forest. It is straightforward to see that a node in F is searched
only if its parent is searched. Since c = logε n with ε < 1/5, 3c−2 < log1/5 n for large
enough n. Therefore we can apply the fast fractional cascading technique to inter-
connect the lists according to the topology of the virtual forest so that we can search
each list in constant time after the initial search at the root of F without increasing
the space requirements.

In summary, handling a query consists of processing the nodes on a path from
the root to a leaf node. Processing the root w of T takes O(log n/ log log n + f(w))
time. The time spent processing any other internal node u is O(f(u)). To search the
leaf node w, we simply check each segment stored there. Since there are at most O(c)
such segments and c = logε n < log n/ log log n for large enough n, the overall query
time is O(log n/ log log n), and therefore we have the following theorem.

Theorem 4.5. There exists a linear-space algorithm to handle the orthogonal
segment intersection problem in O(log n/ log log n + f) query time, where f is the
number of segments reported.

5. Rectangle point enclosure. To simplify our presentation, we assume that
the corners of the rectangles in S all have distinct x- and y-coordinates. As in the
case of the segment intersection problem, the primary data structure consists of a
tree T of degree c = logε n. Let v be the root of T and b1(v), b2(v), . . . , bc−1(v) be a
set of infinite vertical lines, called the boundaries of v, which partition the set of 2n
vertical edges of the rectangles in S into c subsets of equal size, thereby creating c
stripes P1(v), P2(v), . . . , Pc(v). We define the c subtrees rooted at the children of v
recursively, each with respect to the vertical edges that fall into the same stripe. If the
number of vertical edges is less than logε n in a stripe, the child node corresponding to
this stripe becomes a leaf node. Clearly the height of this tree is O(log n/ log log n).
A Q-heap Q(v) holding the boundaries of v is built for each node v, which will enable
a constant time identification of the stripe of v to which the query point belongs. In
addition, for each node v, except for the root, we define its x-range as the stripe Pi(u)
of its parent u, assuming v is the ith child of u from the left.

We associate with each internal node v the rectangles that intersect at least one
of its boundaries but none of the boundaries of its ancestors. Each leaf node contains
the set of rectangles both of whose vertical edges lie within its x-range. Hence at
most O(logε n) = O(log n/ log log n) rectangles are associated with a leaf node, and
no preprocessing will be required for these rectangles.
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Now consider the set S(v) of rectangles associated with an internal node v. As
in [3], we build two hive-graphs HLi(v) and HRi(v), as defined in section 2.3, for
each boundary bi(v), i = 1, . . . , c− 1. The hive-graph HLi(v) is built on left vertical
edges lying inside stripe Pi and is used to answer the semi-infinite segment inter-
section queries of the form (x1 ≤ x, y1 ≤ y ≤ y2); HRi(v) is built on the right
vertical edges lying inside stripe Pi+1 and is used to answer the semi-infinite segment
intersection queries of the form (x2 ≥ x, y1 ≤ y ≤ y2). In addition, let S′(v) be
a subset of S(v) such that each rectangle in S′(v) crosses at least two boundaries.
We transform the coordinates of S′(v) from the space N × N to W (v) in the space
[1, 2, . . . , c − 1] × N as follows. We transform each rectangle [x1, x2; y1, y2] in S′(v)
into the rectangle [k1, k2; y1, y2] in W (v), where bk1(v) and bk2(v) are the leftmost and
rightmost boundaries it crosses.

We now turn our attention to the query algorithm and postpone the description
of the data structure for W (v) until the end of this section. Using the Q-heaps stored
at the internal nodes, we can in O(log n/ log log n) determine the path from the root
to the leaf node whose x-range contains the query point p = (x, y). (We assume for
simplicity that the x- and y-coordinates of p are different from those of the corners of
the rectangles in S.) It is clear that only the rectangles associated with the nodes on
this path can possibly contain the query point.

Consider a node v on this path. If v is a leaf node, we simply examine each
rectangle associated with it, a process that takes O(log n/ log log n+f(v)) time, where
f(v) denotes the number of rectangles reported at node v.

If v is an internal node, we first decide which stripe of v the query point p belongs
to, a task that can be done in O(1) time; say it belongs to Pi(v). The rectangles
stored at node v and which contain p can be classified into three groups: (i) the set
L(v) that contains the rectangles whose left vertical edges lie inside Pi(v); (ii) the set
R(v) that contains the rectangles whose right vertical edges lie inside Pi(v); and (iii)
the set F (v) consisting of those rectangles whose horizontal edges cross Pi(v) entirely.
If i = 1, R(v) and F (v) do not exist. Similarly, if i = c, L(v) and F (v) do not exist.

By Lemma 2.4, the rectangles that belong to the first two groups can be identified
in O(1) time per rectangle reported if we apply the fast fractional cascading technique
on the lists of the sorted y-coordinates of the vertices of the corresponding hive-graph.
For example, we know that each rectangle (x1, x2; y2, y2) associated with the hive-
graph HLi(v) satisfies x2 ≥ x. Therefore, to find rectangles in L(v), we only need to
check the criteria: x1 ≤ x and y1 ≤ y ≤ y. Also note that a proper rectangle can be
reported at most once in this process.

The remaining task is to determine the rectangles in group F (v), which requires
an additional data structure. We start from the set W (v) consisting of rectangles of
the form (k1, k2; y1, y2), where k1 and k2 are integers between 1 and c − 1. For each
pair of different integers i < j between 1 and c − 1, we construct a Cartesian tree
Ci,j(v) consisting of rectangles (i, j; y1, y2) in W (v) to answer the two-sided range
queries in the form y1 ≤ y ≤ y2. Note that the total space is still linear, and the
use of the fast fractional cascading technique will enable us to access the appropriate
nodes in time proportional to the number of rectangles reported.

However, we still need to resolve the problem of identifying which of these Carte-
sian trees should be accessed when handling a query. We cannot afford to access such
a tree unless we are guaranteed to find at least one proper rectangle. To address this
problem, we do the following.

We construct a look-up table M(v) with n′ rows, each corresponding to a distinct
y-coordinate of the horizontal edges of the rectangles in W (v) and occupying one
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word (of logn bits). The rows are sorted by increasing order of the y-coordinates.
Let y1(v) < y2(v) < · · · < yn′(v) be the set of distinct y-coordinates of the horizontal
edges. Let Vj(v) = (bc3 , bc3−1, . . . , b1) be a sequence of c3 bits, where bi is the ith bit
from the lower end of the word representing the jth row of M(v) (note that c3 < log n).
The word Vj(v) is evenly divided into c sections, each corresponding to a stripe of
v (actually we only use c − 2 of them which correspond to P2(v), . . . , Pc−1(v)). Let
(bl+c2bl+c2−1 · · · bl+1) be one of them that corresponds to Pi(v), i = 2, . . . , c− 1. For
each pair of integers k1 < i ≤ k2 between 1 and c− 1, we set the bit bl+k1·c+k2

to 1 if
there is a rectangle (k1, k2; y1, y2) in R such that y1 < yj(v) ≤ y2. All the other bits
are set to 0.

To find the proper rectangles in S′(v), we first transform in O(1) time using Q(v)
the query point (x, y) to the point (k, y) in the same space as W (v). Let bk(v) be the
leftmost boundary of v whose x-coordinate is greater than or equal to x. It is clear
that a rectangle (x1, x2; y1, y2) in S′(v) contains (x, y) if and only if its corresponding
rectangle (k1, k2; y1, y2) in W (v) contains (k, y). Let yj(v) = min{yl(v)|1 ≤ l ≤
n′, yl(v) ≥ y}. We have the following lemma.

Lemma 5.1. Let (bl+c2bl+c2−1 · · · bl+1) be the section of Vj(v) which corresponds
to Pk(v). Then for each pair of integers 1 ≤ k1 < k2 ≤ c− 1 such that k1 < k ≤ k2,
bl+k1·c+k2 = 1 if and only if there exists a rectangle (k1, k2; y1, y2) ∈ W (v) which
contains (k, y).

Proof. By the definition of Vj(v), bl+k1·c+k2
= 1 if and only if there exists a

rectangle (k1, k2; y1, y2) such that y1 < yj(v) ≤ y2. If this rectangle indeed exists, we
have k1 ≤ k ≤ k2 and y2 ≥ yj(v) ≥ y. The definition of yj(v) ensures that y ≥ y1.
Therefore (k1, k2; y1, y2) contains (k, y). Now suppose there is a (k1, k2; y1, y2) in
W (v) which satisfies k1 ≤ k ≤ k2 and contains (k, y). The only scenario in which
(k1, k2; y1, y2) does not satisfy y1 < yj(v) ≤ y2 is yj(v) = y = y1. This is not possible,
given the assumption that y can not be the y-coordinate of any horizontal edge.1

Lemma 5.1 shows that the section B of Vj(v) which corresponds to the stripe
containing (k, y) indicates correctly the Cartesian trees in {Ci,j |2 ≤ i < j ≤ c −
1} which should be visited. Using a look-up table of size O(n), similar to the one
described in [24], we can transform B into a list of integers (m, I1, I2, . . . , Im), where
m is the number of 1-bits in B and Il is the index of a unique Cartesian Ci,j(v), for
l = 1, 2, . . . ,m. Then we simply visit these Cartesian trees one by one.

Searching the sorted lists associated with nonroot nodes can be done using fast
fractional cascading. The correctness proof and complexity analysis for this part is
similar to that in section 4 and thus is omitted here.

Theorem 5.2. There exists a linear-space algorithm to handle the rectangle point
enclosure queries in O(log n/ log log n + f) time, where f is the number of segments
reported.
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Abstract. In this paper, we study the complexity of self-assembly under models that are natural
generalizations of the tile self-assembly model. In particular, we extend Rothemund and Winfree’s
study of the tile complexity of tile self-assembly [Proceedings of the 32nd Annual ACM Symposium on

Theory of Computing, Portland, OR, 2000, pp. 459–468]. They provided a lower bound of Ω( log N
log log N

)

on the tile complexity of assembling an N ×N square for almost all N . Adleman et al. [Proceedings
of the 33rd Annual ACM Symposium on Theory of Computing, Heraklion, Greece, 2001, pp. 740–
748] gave a construction which achieves this bound. We consider whether the tile complexity for
self-assembly can be reduced through several natural generalizations of the model. One of our results
is a tile set of size O(

√
logN) which assembles an N × N square in a model which allows flexible

glue strength between nonequal glues. This result is matched for almost all N by a lower bound
dictated by Kolmogorov complexity. For three other generalizations, we show that the Ω( log N

log log N
)

lower bound applies to N ×N squares. At the same time, we demonstrate that there are some other
shapes for which these generalizations allow reduced tile sets. Specifically, for thin rectangles with

length N and width k, we provide a tighter lower bound of Ω(N1/k

k
) for the standard model, yet we

also give a construction which achieves O( log N
log log N

) complexity in a model in which the temperature

of the tile system is adjusted during assembly. We also investigate the problem of verifying whether
a given tile system uniquely assembles into a given shape; we show that this problem is NP-hard for
three of the generalized models.
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1. Introduction. Self-assembly is the ubiquitous process by which objects au-
tonomously assemble into complexes. This phenomenon is common in nature and
yet is poorly understood from a mathematical perspective. It is believed that self-
assembly technology will ultimately permit the precise fabrication of complex nano-
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DNA self-assembly [4, 5]. Experimental work has been done to show the effectiveness
of using these building blocks to assemble DNA crystals and perform DNA compu-
tation [6, 8, 12, 13]. With these building blocks (tiles) in mind, researchers have
considered the power of the tile self-assembly model.

The tile assembly model extends the theory of Wang tilings of the plane [10]
by adding a natural mechanism for growth. Informally, the model consists of a set
of four-sided Wang tiles whose sides are each associated with a type of glue. The
bonding strength between any two glues is determined by a glue function. A special
tile in the tile set is called the seed tile. Assembly takes place by starting with the
seed tile and attaching copies of tiles from the tile set one-by-one to the growing seed
whenever the total strength of attraction from the glue function meets or exceeds a
fixed parameter called the temperature.

In this paper we focus on two fundamental complexities relating to this model.
The first is the tile complexity of self-assembled shapes, defined as the minimum num-
ber of distinct Wang tiles required to assemble the shape. Rothemund and Winfree [9]
introduced this concept and considered the tile complexity of self-assembled squares.
The second is the complexity of verifying whether or not a system of tiles uniquely
assembles into a given shape. This problem is considered by Adleman et al. [2] and
shown to have a polynomial time solution for the standard tile assembly model.

We extend these studies of tile complexity and shape verification by considering
the removal of various restrictions the standard model places on the assembly process.
From this we obtain four natural generalizations of the tile assembly model that ex-
hibit significant differences in tile complexity and the complexity of shape verification
from that of the standard model. This suggests that some previously derived bounds
on tile self-assembly are artifacts of artificial restrictions placed on the standard tile
assembly model, rather than bounds on the actual process of self-assembly. Our re-
sults are summarized in Table 1.1. Informally, the generalized models are defined as
follows.

In the flexible glue model, the restriction imposed by Rothemund and Winfree [9],
that differing glue types have bonding strength of zero, is removed. In the multiple
temperature model, the temperature of the system is permitted to change during the
assembly process. In the multiple tile model, tiles may cooperate by assembling into
supertiles before being added to the growing result. In the unique shape model, a
system uniquely assembles a shape if the shape of its resultant supertiles is unique,
though its produced supertile may not be unique.

In the standard tile assembly model, Kolmogorov complexity dictates a lower
bound of Ω( logN

log logN ) on the tile complexity of self-assembling N × N squares for

almost all values of N [9]. Adleman et al. [1] showed how to reach this bound for
all N . We show (in Theorem 6.1) that this lower bound also applies to each of the
generalized models except for the flexible glue model. For this model, Kolmogorov
complexity dictates only an Ω(

√
logN) lower bound for almost all N (as shown in

Theorem 6.2). We show how to achieve this bound for all N by encoding an arbitrary
(logN)-bit binary number into the glue function (Theorem 5.1).

Additionally, for some of the models we provide a lower bound of Ω(N
1
k

k ) (see
Theorem 3.1) for assembling thin width k length N rectangles (a k × N rectangle
is thin if k < logN

log logN−log log logN ). These lower bounds show that it can require
significantly larger tile sets to assemble thinner rectangles than thicker rectangles.
With this in mind, we utilize the multiple temperature model to construct a thin
rectangle by first constructing a thicker rectangle using a small tile set. We then
raise the temperature of the system so that portions of the larger rectangle fall apart,
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Table 1.1

This table gives the general flavor of our results regarding upper and lower asymptotic bounds
on tile complexity under the generalized models for k × N rectangles, as well as the complexity of
the Unq-Shape problem, but the reader should reference precise details in the stated theorems. A
rectangle is thin when k < log N

log log N−log log log N
and thick otherwise. NP-X denotes the class of

decision problems not in NP or co-NP unless P = NP.

Complexity of self-assembling k ×N rectangles, k ≤ N , and shape verification

Thin rectangles Thick rectangles Unq-

LB UB LB UB Shape

Standard N
1
k

k
N

1
k

log N
log log N

P

(Thm. 3.1) (Thm. 3.2) (see [9]) (see [1]) (see [2])

Flexible N
1
k

k
N

1
k

√
logN P

glue (Thm. 3.1) (Thm. 3.2) (Thm. 6.2) (Thm. 5.1) (see [2])

Multiple log N
log log N

log N
log log N

NP-X

temperature (Thm. 6.1) (Thm. 4.1) (Thm. 6.1) (see [1]) (Thm. 7.6)

Multiple log N
log log N

N
1
k

log N
log log N

NP-X

tile (Thm. 6.1) (Thm. 3.2) (Thm. 6.1) (see [1]) (Thm. 7.7)

Unique N
1
k

k
N

1
k

log N
log log N

Co-NPC

shape (Thm. 3.1) (Thm. 3.2) (Thm. 6.1) (see [1]) (Thm. 7.1)

leaving the desired rectangle (Theorem 4.1).
Given a tile system, Adleman et al. [2] give an algorithm to verify whether the

tile system uniquely assembles into a given supertile. However, in the unique shape
model, a tile system could uniquely assemble into a shape even if it does not produce a
unique supertile. We investigate the problem of verifying whether a given tile system
uniquely assembles into a given shape in the unique shape model, and show that
this problem is co-NP-complete (Theorem 7.1). We also show that the problem of
determining whether a tile system uniquely assembles into a given supertile is not in
NP or co-NP for the multiple temperature model (Theorem 7.6) or the multiple tile
model (Theorem 7.7) unless P = NP. These results are in contrast to the polynomial-
time verification algorithm for the standard model [2].

Paper layout. In section 2 the standard tile model is defined, as well as the
generalized models. In section 3 we introduce a construction for assembling k × N
rectangles and provide a lower bound on the tile complexity of such rectangles. In
section 4 we use this construction to show how the multiple temperature model can
reduce tile complexity when k � N . In section 5 we use the flexible glue model to
reduce the tile complexity of assembling N×N squares from Θ( logN

log logN ) to Θ(
√

logN).
In section 6 we discuss the lower bounds for assembling shapes of extent N for the
generalized models as dictated by Kolmogorov complexity. Finally, in section 7, we
show that shape verification is co-NP-complete in the unique shape model and not in
NP or co-NP unless P = NP for the multiple temperature and multiple tile models.

2. Basics.
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2.1. The standard model. For alternate descriptions of the tile assembly
model, see [1, 2, 9, 11]. Briefly, a tile t in the model is a four-sided Wang tile de-
noted by the ordered quadruple (north(t), east(t), south(t),west(t)). The entries of
the quadruples are glue types taken from an alphabet Σ representing the north, east,
south, and west edges, respectively, of the Wang tile. A tile system is an ordered
quadruple 〈T, s,G, τ〉, where T is a set of tiles called the tileset of the system, τ is
a positive integer called the temperature of the system, s ∈ T is a single tile called
the seed tile, and G is a function from Σ2 to {0, 1, . . . , τ} called the glue function of
the system. It is assumed that G(x, y) = G(y, x), and there exists a null in Σ such
that ∀x ∈ Σ, G(null, x) = 0. In the standard tile assembly model [1, 2, 9], the glue
function is such that G(x, y) = 0 when x �= y. When dealing with the standard glue
model, denote G(x, x) by G(x).

Define a configuration to be a mapping from Z
2 to T

⋃
{empty}, where empty

is a special tile that has the null glue on each of its four edges. The shape of a
configuration is defined as the set of positions (i, j) that do not map to the empty
tile. For a configuration C a tile t ∈ T is said to be attachable at the position (i, j) if
C(i, j) = empty and G(north(t), south(C(i, j + 1))) + G(east(t),west(C(i + 1, j))) +
G(south(t),north(C(i, j − 1))) + G(west(t), east(C(i− 1, j))) ≥ τ . For configurations
C and C ′ such that C(x, y) = empty, C ′(i, j) = C(i, j) ∀ (i, j) �= (x, y) and C ′(x, y) =
t for some t ∈ T define the act of attaching tile t to C at position (x, y) as the
transformation from configuration C to C ′.

Define the adjacency graph of a configuration C as follows. Let the set of vertices
be the set of coordinates (i, j) such that C(i, j) is not empty. Let there be an edge
between vertices (x1, y1) and (x2, y2) iff |x1 −x2|+ |y1 −y2| = 1. We refer to a config-
uration whose adjacency graph is finite and connected as a supertile. For a supertile
S, denote the number of nonempty positions (tiles) in the supertile by size(S). We
also note that each tile t ∈ T can be thought of as denoting the unique supertile that
maps position (0, 0) to t and all other positions to empty. Throughout this paper we
will informally refer to tiles as being supertiles.

A cut of a supertile is a cut of the adjacency graph of the supertile. In addition, for
each edge ei in a cut define the edge strength si of ei to be the glue strength (from the
glue function) of the glues on the abutting edges of the adjacent tiles corresponding
to ei. Now define the cut strength of a cut c to be

∑
si for each edge ei in the cut.

In the standard model, assembly takes place by growing a supertile starting with
tile s at position (0, 0). Any t ∈ T that is attachable at some position (i, j) may attach
and thus increase the size of the supertile. For a given tile system, any supertile that
can be obtained by starting with the seed and attaching arbitrary attachable tiles is
said to be produced. If this process comes to a point at which no tiles in T can be
added, the resultant supertile is said to be terminally produced. For a given shape
Υ, a tile system Γ uniquely produces shape Υ if there exists a terminal supertile S of
shape Υ such that every supertile derived from the seed can be grown into S. The
tile complexity of a shape Υ is the minimum tile set size required to uniquely assemble
Υ under a given assembly model. While the definition of unique shape production
provided here is the same as in [1, 2, 9], we note that it is somewhat unnatural in
that it requires unique production of supertiles. In section 2.2 we introduce a model
that utilizes a more natural definition of unique shape production.

2.2. Four generalized models.

The multiple temperature model. In the multiple temperature model, the integer
temperature τ in the tile system description is replaced with a sequence of integers
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{τi}ki=1 called the temperature sequence of the system. A system with k temperatures
in its temperature sequence is said to be a k-temperature system.

In a k-temperature system, assembly takes place in k phases. In the first phase,
assembly takes place as in the standard model under temperature τ1. Phase 1 contin-
ues until no tiles can be added. In phase two, tiles can be added or removed under τ2.
Specifically, at any point during phase 2 if there exists a cut of the resultant supertile
with cut strength less than τ2, the portion of the supertile occurring on the side of
the cut not containing the seed tile may be removed. Also, at any point in the second
phase any tile in T may be added to the supertile if the tile is attachable at a given
position under temperature τ2. The second phase of this assembly continues until no
tiles can be added or removed. We then go to phase 3 in which tiles may be added
and removed under temperature τ3. The process is continued up through τk. For
any given choice of additions and removals such that each of the k phases finishes,
the tile system terminally produces the corresponding shape assembled after phase k.
If the k phases always finish regardless of the choice of additions and removals, and
the terminally produced supertile R is unique, the tile system uniquely assembles the
shape of R under the k-temperature model.

The flexible glue model. In the flexible glue model, the restriction that G(x, y) = 0
for x �= y is removed.

The unique shape model. In the unique shape model, we redefine what it means
for a system to uniquely produce a shape S. In this model, a tile system uniquely
produces a shape S iff all producible supertiles can be grown into a terminal supertile
with shape S. Thus, the system may produce many different terminal supertiles as
long as they all have the desired shape.

The multiple tile model. In the multiple tile model with parameter q, tiles can
combine into supertiles of size at most q before being added to the growing seed
supertile. Attaching a supertile is much like attaching a singleton tile. Intuitively,
two supertiles attach to one another by abutting together and sticking if the total
edge strength of the abutting edges meets or exceeds the temperature τ . However,
the formal definition of a supertile is a connected configuration of tiles on Z

2. This
definition makes a distinction between two supertiles that are equal up to translation.
However, we actually wish to think of two such supertiles as the same supertile. We
therefore use the following formal definition of supertile attachment, which generalizes
the notion of singleton tile attachment.

For any two supertiles A and B, define A ⊕ B to be the configuration obtained
by setting all empty positions A(i, j) equal to B(i, j). Further, we say A ⊕ B is
valid if it is a supertile (i.e., it is connected), and if ∀ (i, j) either A(i, j) = empty or
B(i, j) = empty. For a valid supertile A⊕B, denote the cut defined by separating all
the tile positions initially in A from all the tile positions initially in B as the border
cut. For a supertile A and integers x and y, let Ax,y denote the configuration obtained
by translating A by x units along the x-axis and y units along the y-axis. Finally, for
a given temperature τ , supertile B can be attached to supertile A to form supertile
A⊕Bx,y if A⊕Bx,y is valid and the cut strength of the border of A⊕Bx,y is at least
τ .

Having defined how to attach supertiles, we now define multiple tile systems. A
tile system in the multiple tile model is a quintuple 〈T, s,G, τ, q〉. Intuitively, in a
multiple tile system any supertile of size at most q that can be obtained by combining
two smaller addable supertiles is also an addable supertile. The assembly process
then permits any addable supertile to attach to the growing seed supertile if the tile
can be placed so that the abutting edges of the two supertiles have a total strength
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that meets or exceeds the temperature τ . For such a system define a set of addable
supertiles WT as follows. First, T ⊆ WT . Second, if there exist A,B ∈ WT such that
size(A) + size(B) ≤ q and B can be attached to A under temperature τ to obtain
A⊕Bx,y, then A⊕Bx,y is also in WT . In the multiple tile assembly model, supertiles
from the set WT as well as from T may be added. Specifically, any supertile that
is in the set of addable supertiles WT that is attachable to the seed supertile under
temperature τ can attach and increase the size of the seed supertile. For q = 1, we
have WT = T , which gives us the standard model of assembly.

3. The assembly of k × N rectangles. In this section, we present both an
upper and a lower bound for assembling k×N rectangles for arbitrary k and N . The
upper bound comes from a simple construction which constitutes a k-digit base-N

1
k

counter and has tile complexity Θ(N
1
k + k). In later sections, we use modifications

of this counter to show how both the two-temperature and flexible glue model can
reduce tile complexity of certain shapes. Additionally, for the case of k = logN , this
construction constitutes a logN -bit base-2 counter which assembles a logN×N block.
The tile set created by this special case is used in [3] to assemble a logN ×N block
in optimal time complexity (as defined in [1]) of Θ(N). This permits the assembly of
N ×N squares in optimal tile complexity and optimal time complexity as in [1], but
does so in a much simpler fashion and uses only temperature τ = 2.

Theorem 3.1. The tile complexity of self-assembling a k×N rectangle is Ω(N
1
k

k )
for the standard model, the unique shape model, and the flexible glue model.

Proof. Suppose there exists a tile system with fewer than ( N
2(k!) )

1
k distinct tile

types, which uniquely assembles a k × N rectangle. Then there must be fewer than
N

2(k!) distinct k-tile columns consisting of these tiles. So in a k × N configuration,

there must exist some k-tile sequence which is repeated for more than 2(k!) of the
columns. And under the standard, unique shape, and flexible glue models, for each of
these identical columns we can assign an ordering on the k tiles that corresponds to
a possible relative order in which the k tiles of the given column could be attached.
(In the multiple tile model, groups of tiles may be attached simultaneously, and thus
this ordering is not sufficient.) Since there are at most k! orderings possible, we
get that at least three of the identical columns must also have an identical order of
attachment. From this we derive a contradiction as follows. Wherever the seed tile of
the construction occurs, it lies to either the west or east of two of the identically placed
columns. And if the seed tile occurs to the west (respectively, east) of a column, then
all tiles east (respectively, west) of the column are determined by (1) the tiles and
their positions in the column, and (2) the relative attachment order of the tiles in the

column. That is, if a rectangle has fewer than ( N
2(k!) )

1
k = Ω(N

1
k

k ) distinct tile types,

there necessarily are at least two identical columns east (respectively, west) of the
seed tile whose order of attachment is the same. When attaching only a single tile at
a time, this guarantees the possibility of producing an infinite repeating loop of tiles.
Thus, no finite shape can be uniquely produced.

Remark. We also point out that the argument for Theorem 3.1 applies to any
length N shape whose height at each column is bounded by a value k.

Theorem 3.2. The tile complexity of self-assembling a k×N rectangle is O(N
1
k +

k) for the standard model, the unique shape model, and the multiple tile model.

We show this by first providing a construction for the standard model and then
arguing that the construction works for the unique shape model and the multiple tile
model as well.
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Fig. 1. This tile set assembles a k×mk rectangle in Θ(k+m) tile complexity under the standard
assembly model.

Proof for the standard model. For a given N , let m = N 1
k �. To show this

bound, we give a general tile set for assembling a k×mk rectangle in O(N
1
k + k) tiles

under the standard model. We then show how to adjust the tile set so it produces a
k × N rectangle. The tile system we use constitutes a k-digit base-m counter. The
system has temperature τ = 2, and the tile set and glue strength function are given
in Figure 1.

The assembly takes place as follows. The north edge of the seed tile produces a
length k seed column from the seed column tiles. The west edge of the seed produces
a length m chain from the chain tiles. The 0-normal tile can then fill in all the rows
and columns up until column m − 1. In this column the HP

1 hairpin tile must be
placed. This causes a hairpin growth, which causes another length m chain of chain
tiles to be placed in the first row. The next section of m columns are then filled with
the 0-normal tile in all rows but the second, which will contain the 1-normal tile or
a hairpin tile. In general, when the Cm−1 chain tile is placed, probe tiles are added
on top of each other until a row is found that does not consist of the (m− 1)-normal
tile. In such a row the appropriate pair of hairpin tiles are placed, and a downward
growing column of return probe tiles are placed until the bottom row is encountered,
at which point the C0 chain tile is placed to start the length m chain growth over
again in the first row. If no such row is encountered, the assembly finishes. The idea
here is that the bottom chain row represents the least significant digit of the counter,
thus incrementing every column. After each block of m we need to find the most
significant digit that requires incrementation, as well as rollover all the trailing digits
displaying m− 1 to 0. The hairpin tiles perform the incrementation, while the probe
and return probe tiles perform the rollover.

It is easy to see that for a given k and m, this construction assembles into a k×mk

block. In addition, we can adjust the glue types of the west edges of the seed column
and seed tiles to represent any k-digit base-m number. By doing this the counter can
be made to start at any number between 0 and mk − 1. Thus, we can designate the
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length of the constructed shape to be any number between 1 and mk. Therefore, to
assemble a k×N block, we use the above tile set with m = N 1

k � and the west edges
of the seed and seed columns tiles set to represent the number mk −N . Thus, we can
construct a k ×N block in 4m + k = O(N

1
k + k) tiles.

Proof for the unique shape model. This follows from the construction for the
standard model.

Proof for the multiple tile model. Now we argue that the tile set given for the
standard model uniquely assembles a k × N rectangle for the multiple tile model as
well. Let A denote the uniquely produced k×N supertile from the tile set of Figure 1
under the standard model. From the proof for the standard model we have that A
is produced under the multiple tile model as well. We thus need to show that the
multiple tile model will not produce any shape other than A. Denote any produced
supertile under the standard model to be a substructure of A. We thus want to show
that any supertile produced by a multiple tile model is a substructure of A.

To show this, consider a multiple tile system with tile set given in Figure 1.
Consider the set W of addable supertiles and the set X ⊂ W of supertiles that do
not contain the seed tile. For a given x ∈ X, denote x as a column if it consists of
only a column of seed column tiles, a chain if it consists of only a chain of chain tiles,
a hairpin if it consists of exactly two hairpin tiles, and a singleton if x ∈ T . For our
argument we show the following three claims.

Claim 1. Every supertile in the set X is either a column, chain, hairpin, or singleton.
Claim 2. Attaching a column, chain, hairpin, or singleton to a substructure yields a

new substructure.
Claim 3. Two substructures cannot be attached to one another.

From this we have that by starting off with a single seed tile, which is a substructure,
only supertiles that preserve the substructure property may be added. Thus, the
multiple tile model can only produce substructures and thus cannot produce anything
that the standard model cannot produce.

Proof of Claim 1. Clearly all supertiles in X of size 1 can be classified as either
a chain, column, hairpin, or singleton. (They are all singletons, some are chains,
some are columns, none are hairpins.) Inductively, suppose all supertiles in X of size
less than k can be classified into the above categories. Consider an arbitrary size k
supertile in X. By definition of W the supertile must be composed of two smaller
supertiles. However, we cannot combine a chain with a column, nor a chain with a
hairpin, nor a column with a hairpin. And clearly, if a singleton can be added to some
other chain, column, hairpin, or singleton, it must yield a column, chain, or hairpin.
Similarly, when two chains are combined, they yield another chain, and when two
columns are combined, they yield another column. Thus, the size k supertile is either
a chain, column, or hairpin.

Proof of Claim 2. If a column is attachable to a substructure, it is attachable
solely due to the glue strength of the south glue on the southernmost tile of the
column. Instead of placing the column as a single chunk, each tile can be placed
one by one under the standard model, starting with the southernmost tile. Thus,
the end result is a substructure. The same type of argument applies to chains and
hairpins.

Proof of Claim 3. Among the tiles in an arbitrary substructure, no tile is farther
north than the northern most tile in the eastmost column. Similarly, no tile is farther
west than the westmost tile in the southernmost row, except for possibly a single
hairpin tile. Now, since the eastern edges of all tiles in the first column and the
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southern edges of all tiles in the first row have bonding strength of 0, the only possible
way for two substructures to bond together is for there to be an attraction between
the north edge of some tile in the first column of one substructure with the south
edge of a hairpin tile of the other substructure. But there is no attraction strength
between the northern edges of seed column tiles and the southern edges of hairpin
tiles, so this is not possible.

4. Reducing tile complexity with the two-temperature model. Now we
show how a multiple temperature model can reduce tile complexity for assembling
thin rectangles. For a given k and N with k � N , the idea is to use a modification
of the construction from section 3 to build a j×N rectangle for optimal (bigger than
k) j such that the top j− k rows are less stable than the bottom k. The temperature
of the system is then raised to cause all but the bottom k rows to fall apart. We then
compare the complexity of this construction with the lower bound for the standard
model given in section 3 to show that the 2-temperature model can beat a lower bound
for the standard model.

Minimizing the complexity. For a given j and N , assembling a j × N rectangle
using the construction of Theorem 3.2 yields an upper bound that is a function of
j. If we are only interested in constructing a rectangle of length N but do not care
about the width, we can choose j as a function of N such that the tile complexity is

minimized. To do this we choose a value for j that balances the size of N
1
j and j.

For j = logN
log logN−log log logN = Θ( logN

log logN ), the term N
1
j is logN

log logN . Thus, the number

of tiles used in the construction for building a j ×N block for such a j is j + N
1
j =

Θ( logN
log logN ), which meets the lower bound dictated by Kolmogorov complexity for

almost all N [9]. We use this result in the following theorem.
Theorem 4.1. Under the two-temperature model, the tile complexity of self-

assembling a k ×N rectangle for an arbitrary integer k ≥ 2 is O( logN
log logN ).

Proof. In the case that k exceeds  logN
log logN−log log logN �, we can simply use a single-

temperature model to build the two perpendicular axes of the rectangle in optimal
O( logN

log logN ) complexity. The addition of a constant number of tiles can then fill in
the rest of the rectangle. Otherwise, to reach the bound we use a tile system that
assembles a j×N block for optimal value j =  logN

log logN−log log logN � under temperature
τ1 and breaks down to a smaller k×N block in the second phase of the two-temperature

assembly process. As in the construction from Theorem 3.2, let m = N 1
j �. Consider

the two-temperature tile system with τ1 = 4 and τ2 = 6 and the tile set and glue
strength function given in Figure 2.

Under temperature τ1, this tile system assembles a j × N block in exactly the
same fashion as the single-temperature system from Theorem 3.2. See Figure 3 for an
example of the construction. However, for each tile in the top j − k rows other than
the seed column tiles, the north and south edges have glue strength 1. Therefore,
since no glue in the system exceeds strength 4, we are assured that any cut consisting
of one north-south edge and one east-west edge has cut strength less than τ2 = 6.
Therefore, under the two-temperature model each tile in the top j − k rows can be
removed one at a time, starting at the northwest corner of the j ×N block. We are
then left with the bottom k rows. Since our design ensures that each edge in the
bottom k rows has strength 3 or greater, no cut of the bottom k × N supertile can
have cut strength less than 6. Thus, no cut can break up the remaining k×N block.
And since any alternate choice of cuts would only expedite the process to this end, this

construction uniquely assembles a k×N block in 10m+ j = O(N
1
j + j) = O( logN

log logN )
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Fig. 2. A tile set to assemble a k × N rectangle in Θ(j + m) tile complexity for m = �N
1
j �

under the two-temperature model with τ1 = 4 and τ2 = 6. At temperature τ1 the shaded tiles fill in
the bottom k rows of a j ×N rectangle, while the clear tiles fill the top j − k rows. At temperature
τ2 the clear tiles fall off.

tile complexity under the two-temperature assembly model.

For small values of k, this beats the lower bound for the standard model. Consider
k = logN

2 log logN . For such k the value of N
1
k is

N
2 log log N

log N = (logN)2.

Thus, from Theorem 3.1, the lower bound for the standard model is

Ω

(
N

1
k

k

)
= Ω((logN)(log logN)).

Since this bound only gets higher for smaller values of k, the two-temperature model
yields an asymptotically smaller tile complexity for all k between 2 and logN

2 log logN .
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Fig. 3. Here is a typical section of a self-assembled 5 × N block from the tile set in Figure 2
that will break down to a 2 × N block under temperature 6. Edges with strength 4 are marked by
four adjacent arrows, while edges with strength 1 are marked with one. All remaining edges have
strength 3.

5. Assembling N ×N squares in O(
√

log N) tiles. Kolmogorov complexity
dictates an Ω( logN

log logN ) lower bound for almost all N on the tile complexity of self-
assembling N×N squares for the standard model in which the glue function is limited
so that G(x, y) = 0 for x �= y. However, if this restriction is lifted, the bound no longer
applies. In this section, we show that the tile complexity of self-assembling N × N
squares is Θ(

√
logN) under the flexible glue model for almost all N .

Theorem 5.1. The tile complexity of self-assembling N×N squares is O(
√

logN)
under the flexible glue model.

Proof. The trick as introduced in [9] is to be able to initialize a fixed length
binary counter to any arbitrary (logN)-bit binary number. This can be done triv-
ially in O(logN) tile complexity. By simulating base conversion, it can be done in
O( logN

log logN ) [1]. Here we provide a tile system that assembles a 2 × logN block in

O(
√

logN) tiles such that the top row of the block encodes a given binary number b.
This is accomplished by taking advantage of the flexible glue function and encoding
b into the glue function. Let n = �logN� + 1 and m = 

√
n �. Let b be a given n-bit

binary number. Let bij be the bit in position im + j in b. We use the tile set and
glue function from Figure 4 to construct a 2 × n block such that the top row of the
block represents the number b. For convenience we denote some glues by the symbols
0 and 1. See Figure 5 for an example of the construction.

To simplify the illustration, the tile set in Figure 4 assumes that m2 = n. If this
is not the case, we can do as before in Theorem 3.2 and initialize the 2-digit counter
to an arbitrary value c so that a block of length exactly n is assembled. At any rate,
the construction uses 5

√
n �+1 tiles and constructs a 2×n block in the same fashion

as the general k × n assembly. Additionally, the glue function assures us that for the
(i, j) digit of b, the corresponding position in the top row of the construction can only
be tiled with either a hairpin, seed column, or normal tile with north edge glue equal
to bij .

To complete the N × N square we need to create a fixed length binary counter
that is initialized to the given binary number b and grows north, incrementing row-
by-row, until 2n is reached. The addition of a constant number of stairstep tiles can
then finish off the square, as shown in [9]. The fixed length binary counter can also
be implemented in a constant number of tiles, as is done in [1, 9]. Alternatively, we
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Fig. 4. This tile set creates a 2×n block whose top row represents a given n-bit binary number
b. Here bij is the value of the bit in position im + j in b. The glue function for glues g1

i and gj for
i from 0 to m− 1 and j from 1 to m− 2 is G(g1

i , gj) = bij . All other pairs of nonequal glues have
strength 0.

Fig. 5. Assembling an arbitrary n-bit binary number in O(
√
n) tiles. Here we show the con-

struction for n = 36 and binary number b = . . . 0110101110011010.

can use the construction from section 3 for building a k×N block for k = logN . This
yields a binary counter consisting of eight tiles plus logN seed column tiles. However,
since we already have a “seed column” via the 2× n seed block, we can omit the seed
column tiles. Thus, the total number of tiles used for the assembly of an N × N
square is only a constant greater than the Θ(

√
logN) tiles used to build the 2 × n

seed block.

6. Kolmogorov lower bounds. Rothemund and Winfree [9] showed that Kol-
mogorov complexity dictates an Ω( logN

log logN ) lower bound on the tile complexity for
self-assembling N ×N squares for almost all N . We show that their proof generalizes
to the multiple temperature model, the unique shape model, and the multiple tile
model. For the flexible glue model, we modify their argument to get an Ω(

√
logN)

lower bound from Kolmogorov complexity, making the construction in Theorem 5.1
tight for almost all N .

Theorem 6.1. For almost all N the tile complexity of self-assembling an N ×N
square is Ω( logN

log logN ) for the multiple tile model, the multiple temperature model, and
the unique shape model.

Proof. The Kolmogorov complexity of an integer N with respect to a universal
Turing machine U is KU (N) = min|p| s.t U(p) = bN , where bN is the binary repre-
sentation of N . A straightforward application of the pigeonhole principle yields that
KU (N) ≥ logN�−Δ for at least 1−( 1

2 )Δ of all N . (See [7] for results on Kolmogorov
complexity.) Thus, for any ε > 0, KU (N) ≥ (1−ε) logN = Ω(logN) for almost all N .
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This tells us that if we have a Turing machine that takes as input a tile system and
outputs the maximum length of the shape produced by the given tile system, then
the total size in bits of the machine plus the size in bits of a tile system that uniquely
assembles an N ×N square is Ω(logN).

For a given assembly model, if there exists a finite size Turing machine that takes
as input a tile system and outputs the maximum extent (i.e., width or length) of
the shape uniquely produced by the system, then the Ω(logN) bound applies to the
number of bits required to represent the tile system. For each of the nonflexible glue
models, let τ be the maximal temperature of the system and n the size of the tile
set. Such tile sets can be represented by 4n log 4n+ 4n log τ bits as follows. For each
of the 4n edges in the system assign an index to represent one of the at most 4n
glues of the system. Also record a mapping from each glue to an index from 0 to τ
representing the corresponding strength of the given glue. Thus, for τ bounded by a
constant, the number of bits required to represent a tile system is O(n log n), which
implies that n = Ω( logN

log logN ) for almost all N for any system that self-assembles a

shape with maximum extent N [9].

To finish this argument, we explicitly give algorithms for each model, which output
the maximum extent of the shape uniquely produced by a given system. For the
standard model, the multiple tile model, and the unique shape model, the following
algorithm can output the maximum extent of the shape produced by a given tile
system.

Produced-extent(Γ).

1. Set D1 = T . In general, Di denotes the set of all supertiles of size i which
consist of tiles in T .

2. Mark each t ∈ D1 as FEASIBLE.
3. Set i = 2.
4. Create Di, the set of all supertiles of size i. Mark each t ∈ Di as FEASI-

BLE if t can be constructed from two smaller FEASIBLE supertiles from
the set

⋃i−1
r=1 Dr. If t is FEASIBLE and contains the seed tile, mark t as

PRODUCED.
5. Increment i and repeat step 4 unless

⋃i
r= i

2
Dr contains no FEASIBLE super-

tile.
6. Mark each PRODUCED supertile in

⋃i
r=1 Dr as TERMINAL if no FEASI-

BLE supertile can be attached.
7. Output the maximum extent (width or length) of any smallest TERMINAL

supertile in
⋃i

r=1 Dr.

Under the multiple tile model, if there are no addable supertiles of size between
i
2 and i, then we know that there are no addable supertiles of size greater than i,
since such a tile would need to be assembled from at least one smaller supertile of
size at least i

2 . Thus, in the case where each addable supertile is finite, this algorithm
will finish and output the correct result. We also note that the algorithm outputs
the extent of the smallest terminally produced supertile for the system. This tells us
that the Kolmogorov bound applies to models with even more general definitions of
uniqueness than what we consider. For the multiple temperature model we have the
following.

k-Temperature-produced-extent(Γ).

1. Initialize the current supertile to be the seed tile.
2. For i = 1 to k do the following. If there exists a cut c in the current supertile

with strength(c) < τi, remove the tiles on the side of the cut not containing
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the seed. If there exists some x ∈ T such that x is addable under τi, add
x. Continue adding and removing until nothing can be added or removed at
temperature τi.

3. Output the maximum extent of the resultant shape.
Since the definition of the k-temperature model requires that a system that

uniquely produces a shape must, regardless of the sequence of additions and removals,
finish each phase, we are assured that each iteration of the for-loop will finish, thus
giving the end result.

Theorem 6.2. For almost all N the tile complexity of self-assembling an N ×N
square is Ω(

√
logN) under the flexible glue model.

Proof. The Produced-extent algorithm given in Theorem 6.1 for the standard
assembly model works just as well for the flexible glue model. Thus, as discussed in
Theorem 6.1, the number of binary digits required to represent a flexible glue tile
system that self-assembles an N ×N square is bounded below by Ω(logN) for almost
all N . We can represent a flexible glue tile system of size n tiles and temperature τ
bounded by a constant with f(n) = 4n log(4n) + (4n)2 log τ = O(n2) bits as follows.
For each tile there are four sides for which we must denote a glue. We need at most
4n distinct glues, and for each glue we need to store the bonding strength with every
other glue in the model. This can be stored in a 4n× 4n matrix. Now for a given N ,
let β(N) be the cardinality of the minimum tile set for assembling an N ×N square
under the flexible glue model. Then, there exist constants C1 and C2 such that for
almost all N ,

C1 logN ≤ f(β(N)) ≤ C2β(N)2.

Thus β(N) = Ω(
√

logN) for almost all N .

7. Shape verification. Given a shape, Adleman et al. [2] studied the problem
of finding the minimum set of tiles which uniquely produces a supertile A such that A
has the given shape. To show that the decision version of the problem is in NP, they
gave an algorithm to verify whether a given set of tiles uniquely produces a supertile
which has the given shape. In contrast, in this section we show that for the unique
shape, multiple tile, and multiple temperature models this problem is NP-hard. The
problem of shape verification is defined as follows.

Unq-Shape(Γ,M) is the problem of deciding whether the tile system
Γ uniquely assembles into the shape M .

7.1. Unique shape model. The algorithm of [2] to verify whether a given set of
tiles uniquely produces a given shape insists that the tile system should assemble into
a unique terminal supertile. Under the unique shape model, a tile system T uniquely
produces a shape if all terminal supertiles of T (henceforth called Term(T)) have
the given shape, and no larger supertiles are produced. We note that this definition
automatically implies that if a tile system uniquely produces a shape, then Term(T) is
nonempty. In this section, we show that the unique shape problem is co-NP-complete
under the unique shape model, in contrast to the standard model.

Theorem 7.1. Unq-Shape is co-NP-complete under the unique shape model. It
remains NP-hard even when the temperature τ = 2.

We begin by showing that Unq-Shape is in co-NP, and then show that it is
NP-hard (and thus co-NP-hard).

Lemma 7.2. Unq-Shape is in co-NP under the unique shape model.
Proof. For this, we need to show that if an instance of Unq-Shape is false, i.e., if

the tile system in the instance does not assemble uniquely into the given shape, then
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there is a short proof of the fact. By definition, a given tile system T = 〈T,S, G, τ〉
does not uniquely assemble into the given shape M iff one of the following occurs:

1. A terminal supertile of a shape different from M can be assembled. In this
case, Term(T) contains a supertile A with a shape different from M . Then
A, along with the order in which the tiles join to assemble A, would suffice
as a proof. In order to check this proof, we first verify that A can indeed be
assembled by adding the tiles in the order specified. Then we check that A is
a terminal supertile by simply testing whether any tile is attachable at any
of the empty sites adjacent to it.

2. A supertile C of size larger than the given shape can be assembled. Note that
this supertile need not be terminal. We note that if any such C exists, then
there exists such a C with size one larger than M . Such a C, along with the
order in which tiles are added to assemble C, would suffice as a proof. We
verify this proof by checking that C can indeed be assembled by adding the
tiles in the order specified, and that the size of the supertile is larger than
the shape.

In both cases, the size of the proof is linear in the instance size, and the verification
algorithm runs in time quadratic in the instance size.

Lemma 7.3. Unq-Shape is NP-hard under the unique shape model.

Proof. The proof uses a construction proposed by Lagoudakis and LaBean [6]
to solve the 3-SAT problem by exploiting the massive parallelism possible in DNA
operations to emulate a nondeterministic device that solves 3-SAT.

We reduce 3-SAT to Unq-Shape using their construction. Given any instance
of 3-SAT with m clauses and n different variables, we construct an instance of Unq-

Shape, (〈T,S, G, 2〉, M) with |T | = O(m + n), and the size of the shape M of order
O(mn). There is a one-to-one correspondence between variable assignments for the
3-SAT instance and the supertiles in Term(T); i.e., every possible assignment to
variables is associated with a distinct terminal supertile. If the assignment satisfies
the formula, the terminal supertile associated with it has the shape of an (n + 2) ×
(m + 3) rectangle; else the shape associated with the assignment has the shape of
an (n + 2) × (m + 3) rectangle with its top-right corner missing. Thus, if the tile
system uniquely assembles into a rectangle with its top-right corner missing, then no
assignment satisfies the 3-SAT formula; on the other hand, if the tile system does
not uniquely assemble into this corner-missing rectangle, then there is at least one
assignment which satisfies the 3-SAT formula. Thus, a polynomial time algorithm to
decide Unq-Shape will result in a polynomial time algorithm for 3-SAT.

The idea of the reduction is to have the bottom row of the rectangle encode
the clauses, have the left column encode the variables, and let the second column
correspond to a possible assignment of values to the variables. The rest of the assembly
evaluates the formula at that assignment, and the row below the top row encodes
which of the clauses get satisfied by the assignment. A tile gets added to the top-
right corner iff the assignment satisfies all the clauses.

Take any 3-SAT formula with n variables, x1, x2, . . . , xn, appearing in m clauses
C1, C2, . . . , Cm. We define a tile system as shown in Figure 6, where the temperature
is fixed at 2. In addition to the seed tile, there are n variable tiles which attach on
top of the seed tile to give the first column. The east side of these tiles provides a
strength-2 glue to the assignment tiles. Besides, there are m clause tiles that attach
to the east of the seed tile to form the bottom row. For any clause-variable pair, Cj

and xi, the following computation tiles are present:
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Fig. 6. Tile system for evaluation of a 3-SAT formula.

1. If xi set to 1 makes the clause Cj true, then the upper-left computation tile
shown in the figure is present; otherwise, the upper right one is present.

2. Similarly, if xi set to 0 makes the clause Cj true, then the lower-left compu-
tation tile in the figure is present; otherwise, the lower right one is present.

In addition, there are 2n tiles to propagate OK upwards. The tile labeled SAT
attaches to the top-right corner only if the formula is satisfied by the assignment in
the second column of the supertile.

Figures 7(a) and (b) show two of the terminal supertiles of a tile system corre-
sponding to the formula (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3). Note that since
the assignment x1 = 0, x2 = 1, x3 = 1 satisfies the formula, a tile gets attached
in the top-right corner in Figure 7(a). Also, since the assignment x1 = 0, x2 = 1,
x3 = 0 does not satisfy the formula, the rectangle in Figure 7(b) is missing a tile in
the top-right corner.

7.2. Multiple tile and multiple temperature models. The algorithm of [2]
to determine whether a tile system uniquely assembles a given shape does not work
if the self-assembly model allows preassembled supertiles to be added to the growing
seed supertile. The algorithm therefore does not apply to the multiple tile model.
The algorithm also assumes that once a tile is placed, it can never be removed. This
is not the case in the multiple temperature model. In this section we consider the
complexity of the unique shape problem under the multiple tile model and the multiple
temperature model. We first show that for both models the problem is NP-hard. We
then generalize the proofs of this fact to show that the problem for both models is
neither in NP nor co-NP unless P = NP.
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Fig. 7. Two terminal supertiles for the formula (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3).

Fig. 8. To show that the Unq-Shape problem is NP-hard for the multiple tile model we modify
the tile set of Theorem 7.1. We add the tiles given above as well as change the seed tile to be S, add
glue A to the west edge of the old seed tile, and add glue B to the north edge of the final SAT tile.

Theorem 7.4. Unq-Shape is NP-hard under the multiple tile model. It remains
NP-hard even when the temperature τ = 2 and q is polynomial in the number of tiles
in the system.

Proof. The proof is a reduction from 3-SAT similar in spirit to the reduction in
Theorem 7.1. For a given instance of 3-SAT with n variables and m clauses, consider
a multiple tile system 〈T, s,G, 2, q = (n + 2)(m + 3)〉 given as follows. The tile set
includes the tiles given in Figure 8, as well as the tiles for solving 3-SAT as given in
Theorem 7.1, with the following adjustment. The seed tile is no longer the seed, but
just a tile in the set, and it is given a west glue A with glue strength 1. Also, the SAT
tile from the construction is given a north glue B with strength 1.

This tile set assembles a single-width chain of tiles that grows north for n + 2
tiles and then turns east and grows for m + 3 tiles. The east glue of the first tile in
this chain (the seed tile) has east glue A, and the last tile in the chain has south glue
B. Denote the shape of this supertile as M . Now in the case that the corresponding
3-SAT formula is not satisfiable, nothing else can be attached, and M is uniquely
assembled. However, if there exists a satisfying assignment to the 3-SAT formula, an
(n+2)×(m+3) rectangle whose northeast-most tile has north glue B and southwest-
most tile has west glue A is in the system’s addable supertile set W . Thus, a supertile
of the shape of an (n+3)×(m+4) rectangle can be produced. Thus, in this case M is
not uniquely produced. So the output of Unq-Shape when given this tile system and
shape M as input is yes iff the corresponding 3-SAT formula is not satisfiable. Thus,
Unq-Shape is NP-hard under the multiple tile model. See Figure 9 for an example
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Fig. 9. Two terminal supertiles for the formula (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3). In
the case that a given 3-SAT formula is not satisfiable, the tree on the right is uniquely assembled.

Fig. 10. This tile set in addition to the tile set of Theorem 7.1 under the two-temperature
model with τ1 = 2 and τ2 = 4 uniquely assembles an (n+6)× 1 column iff the corresponding 3-SAT
formula is unsatisfiable.

of the construction.

Proof. We again use a reduction from 3-SAT similar in spirit to the reduction in
Theorem 7.1. For a given 3-SAT formula with n variables and m clauses, consider
the two-temperature tile system with temperatures τ1 = 2, τ2 = 4, and tile set given
by the construction in Theorem 7.1, with the additions and modifications given in
Figure 10. The modifications increase the north/south glue strengths of the tiles that
occur in the first column of the (n + 2) × (m + 3) construction from strength 2 to
strength 4. Additionally, four tiles are added such that the length of the first column
in the construction grows to height n + 6 rather than n + 2. Another modification
is made to the final SAT tile such that it has a strength-2 glue on its north edge.
This, in combination with other added tiles, allows a new chain of tiles to be added
in the case that a satisfying set of variable assignments are given. The new tiles grow
westward back to the first column of the construction. Here four tiles are placed,
growing northward now, adjacent to the four extra tiles in the first column. These
four tiles are connected to one another by strength-3 bonds. In addition, each has a
west glue of strength-1. See Figure 11 for an example of the construction.
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Fig. 11. At the initial temperature τ1 = 2, a supertile of the shape given in (a) is formed if a
satisfying assignment to the 3-SAT variables is given. Otherwise, a supertile of the shape given in
(c) is constructed. At temperature τ2 = 4, supertiles like (a) are broken down to the supertile in (b).
Supertiles of form (c) are broken down into the supertile in (d). The supertile in (d) is uniquely
assembled iff the corresponding 3-SAT formula is unsatisfiable.

Theorem 7.5. Unq-Shape is NP-hard under the multiple temperature model.
It remains NP-hard even when the temperature is raised only once.

The idea is that now the temperature of the system is raised from 2 to 4. At
temperature 4, each tile between column 2 and column m + 3, row 1 to n + 2, can
be removed, going from bottom to top, right to left. All tiles in row n + 3 from
column 3 to m + 3 can also be removed, leaving a height n + 6 column with four
extra tiles attached at the end. Nothing within this supertile can be removed, and
clearly nothing can be added, so this structure is terminal. However, in the case
that no satisfying arrangement exists, the four extra tiles can never get added in the
first phase of the two-temperature assembly process. Thus in this case the shape M
equal to an (n + 6) × 1 column is uniquely assembled. Thus, when given this tile set
and shape M as input, the Unq-Shape problem outputs yes iff the corresponding
3-SAT formula is not satisfiable. So the Unq-Shape problem is NP-hard for the
two-temperature model.

Theorem 7.6. Unq-Shape is not in NP or co-NP under the multiple temper-
ature model unless P = NP . This remains true even when the temperature is raised
only once.

Proof. To show this we generalize the reduction from co-SAT given in Theo-
rem 7.5. Our construction yields, depending on the input shape, a reduction from
either SAT or co-SAT to the problem of deciding whether a given tile set assembles the
given shape. The “not in co-NP” part of the theorem follows from the SAT reduction,
and the “not in NP” part from the co-SAT reduction.

The reduction is as follows. Given a 3-SAT formula with n variables and m
clauses, we create a tile set at temperature τ1 = 2 in the fashion of Theorem 3.2 that
assembles an n-bit binary counter growing from west to east, which counts from 0 to
2n − 1. In this case, however, at each incrementation of the counter the given 3-SAT
formula is evaluated for the variable assignment corresponding to the current value of
the binary counter. After the final iteration of the counter, a string of tiles grows back
to the initial column of tiles and latches on by creating a second vertical column that
is attached adjacent to the first. However, this growth is disrupted if any occurrence
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Fig. 12. To show that the Unq-Shape problem is not in NP or co-NP unless P=NP under the
multiple temperature model, we combine a binary counter with the SAT solving tiles of section 7.1 to
evaluate a given SAT formula for every possible assignment to the variables. Some tiles or glues of
the construction are omitted in this figure as they are unchanged from the construction in section 7.1.

of an SAT tile is encountered. Thus, such a latch is created iff there is no satisfying
assignment to the variables.

The temperature of the system is then raised to τ2 = 4. This eliminates any tile
occurring east of the initial variable column. What is left is a single column supertile
in the case that there exists a satisfying assignment, and a pair of adjacent columns
in the case that there is no satisfying assignment. The tile set for this construction is
given in Figure 12. Let shape M be the single column, and shape W be the double
column. Thus, when given this tile set and shape M as input, the Unq-Shape

problem outputs yes iff the corresponding 3-SAT formula is satisfiable. If shape W
is given as input, the Unq-Shape problem outputs yes iff the corresponding 3-SAT
formula is not satisfiable. The first input exhibits the reduction from SAT, the second
from co-SAT. See Figure 13 for an example.

Theorem 7.7. Unq-Shape is not in NP or co-NP under the multiple tile model
unless P = NP . This remains true even when the temperature τ = 2.

Proof. The proof is again a reduction from 3-SAT and very similar to the proof
for Theorem 7.6. Consider a given instance of 3-SAT with n variables and m clauses.
Let the size of the addable supertiles be q = 2n(n+ 3)(m+ 2) + 2(n+ 3). The tile set
for the reduction is essentially that from Figure 12 except we remove all but one of
the clamping tiles, reduce all glue strengths greater than 2 down to 2, and add tiles
S1 and S2 given in Figure 14, with S1 being set as the seed tile.
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Fig. 13. At temperature τ = 2, if the corresponding SAT formula has no satisfying assignment,
then a growth of tiles, starting at the final NO tile, is started and reaches back to the initial column
of variable tiles and clamps on. In the case that there are one or more satisfying assignments, the
growth is stopped, and a shape like (c) is formed. After raising the temperature to τ = 4, shape (b)
is uniquely produced in the first case and shape (d) in the second. Thus, the Unq-Shape problem
with the tile set of Figure 12 yields a reduction from co-SAT with input shape (b) and a reduction
from SAT with input shape (d).

Fig. 14. Under the multiple tile model with q = 2n(n + 3)(m + 2) + 2(n + 3), the large
(2n(m + 2) + 2) × (n + 3) rectangle can be attached to the two S tiles iff the corresponding 3-SAT
formula is satisfied.

Clearly this tile set uniquely assembles a two-tile supertile consisting only of S1

and S2 in the case that the 3-SAT formula is satisfiable. On the other hand, if there is
no satisfying arrangement, the complete size (2n(m+2)+2)×(n+3)(m+2) rectangle
from the tiles of Figure 12 is in the set of addable supertiles. The resultant uniquely
assembled shape is then the rectangle with the tiles S1 and S2 attached to the side.
Thus, the unique shape problem with the size-2 shape given as input gives a reduction
from SAT, while the rectangle with the two S tiles attached gives a reduction from
co-SAT.

8. Conclusions. We have considered various natural generalizations of the self-
assembly model in an attempt to reduce the tile complexity of certain shapes. In doing
so, we have produced a construction for building arbitrary-sized rectangles, which is
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particularly useful for the assembly of thin rectangles (a k × N rectangle is thin if
k < logN

log logN−log log logN ). This construction also yields a simple way to assemble
thicker rectangles while achieving the same optimal tile and time complexity achieved
in [1]. We use modifications of this construction to show how two of the models, the
multitemperature model and the flexible glue model, can reduce tile complexity below
theoretical lower bounds for the standard model for certain shapes. In particular,
the multitemperature model assembles thin k ×N rectangles in optimal Θ( logN

log logN ),

while the flexible glue model reduces the complexity of Θ( logN
log logN ) for the assembly of

N ×N squares to the tight bound of Θ(
√

logN). For the remaining models, we have
extended Kolmogorov lower bound proofs from [9] to show that, for many shapes, the
new models do not improve tile complexity. We have also shown that the problem of
verifying whether a given tile set assembles into a given shape is co-NPC under the
unique shape model and not in NP or co-NP unless P = NP under the multiple tile
and multiple temperature models, in contrast to the polynomial time solution for the
standard and flexible glue models.

There are a number of open questions remaining, some of which are as follows.
First, there are some questions as to how the parameter q in the multiple tile model
affects complexity. The proof of the Kolmogorov lower bound for N ×N squares does
not hold if the bound of q on the size of the addable supertiles is removed. Also,
to show that the Unq-Shape problem under the multiple tile model is neither in
NP nor co-NP we required that q be exponential in the size of the tile set. To show
NP-hardness, we needed q to grow linearly in the size of the tile set. For polynomial
sized q, is the problem in NP or co-NP, and for constant q, is the problem in P?

Second, can new examples be found showing that the generalized models can
reduce tile complexity? For example, are there shapes for which the multiple tile or
the unique shape models reduce complexity? And for the multiple temperature model,
can it help to use more than two temperatures? If so, does the temperature need
only be monotonically increasing or can it help to raise and lower the temperature?
Also, the construction for the flexible glue model shows how to create rectangles with
width at least logarithmic in their length, but does not work for thinner rectangles.
However, for medium rectangles (width less than logN but not thin) we can combine
the flexible glue model with the two-temperature model to attain the tight Θ(

√
logN)

tile complexity. Is it possible to assemble such a rectangle using only the flexible glue
model? And finally, even in the case of the standard model, the Kolmogorov lower
bounds for the assembly of N × N squares (Theorems 6.1, 6.2) do not apply if the
temperature of the system is a large exponential function of N . If this is allowed, is
it possible to reduce the tile complexity of assembling N ×N squares?
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1. Introduction.

1.1. Background and motivation. Swarms of low cost robots provide an at-
tractive alternative when facing various large-scale tasks in hazardous or hostile envi-
ronments. Such systems can be made cheaper, more flexible, and potentially resilient
to malfunction. Indeed, interest in autonomous mobile robot systems arose in a vari-
ety of contexts (see [4, 5, 13, 14, 15, 16, 17, 18, 19, 20, 27] and the survey in [6, 7]).

Along with developments related to the physical engineering aspects of such robot
systems, there have been recent research attempts geared at developing suitable al-
gorithmics, particularly for handling the distributed coordination of multiple robots
[3, 8, 9, 21, 23, 25, 26]. A number of computational models were proposed in the lit-
erature for multiple robot systems. In this paper we consider the fully asynchronous
model of [8, 9, 11, 22]. In this model, the robots are assumed to be identical and
indistinguishable, lack means of communication, and operate in Look-Compute-Move
cycles. Each robot wakes up at unspecified times, observes its environment using its
sensors (capable of identifying the locations of the other robots), performs a local
computation determining its next move, and moves accordingly.

Much of the literature on distributed control algorithms for autonomous mobile
robots has concentrated on two basic tasks, called gathering and convergence. Gath-
ering requires the robots to occupy a single point within finite time, regardless of their
initial configuration. Convergence is the closely related task in which the robots are
required to converge to a single point, rather than reach it. More precisely, for every
ε > 0 there must be a time tε from which all robots are within a distance of at most
ε of each other.

A common and straightforward approach to these tasks relies on the robots in the
swarm calculating some median position and moving towards it. Arguably, the most
natural variant of this approach is the one based on using the center of gravity (some-
times called the center of mass, the barycenter, or the average) of the robot swarm.
This approach is easy to analyze in the synchronous model. In the asynchronous
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model, analyzing the process becomes more involved, since the robots operate at
different rates and may take measurements at different times, including while other
robots are in movement. The inherent asynchrony in operation might therefore cause
various oscillatory effects on the centers of gravity calculated by the robots, prevent-
ing them from moving towards each other and possibly even causing them to diverge
and stray away from each other in certain scenarios.

Several alternative, more involved, algorithms have been proposed in the litera-
ture for the gathering and convergence problems. The gathering problem was first
discussed in [25, 26] in a semisynchronous model, where the robots operate in cycles
but not all robots are active in every cycle. It was proven therein that it is impossi-
ble to gather two oblivious autonomous mobile robots without a common orientation
under the semisynchronous model (although 2-robot convergence is easy to achieve in
this setting). On the other hand, there is an algorithm for gathering N ≥ 3 robots in
the semisynchronous model [26]. In the asynchronous model, an algorithm for gath-
ering N = 3, 4 robots is presented in [9, 22], and an algorithm for gathering N ≥ 5
robots has recently been described in [8]. The gathering problem was also studied in
a system where the robots have limited visibility [2, 12]. Fault-tolerant algorithms
for gathering were studied in [1]. In a failure-prone system, a gathering algorithm is
required to successfully gather the nonfaulty robots, independently of the behavior of
the faulty ones. The paper presents an algorithm tolerant against a single crash fail-
ure in the asynchronous model. For Byzantine faults, it is shown therein that in the
asynchronous model it is impossible to gather a 3-robot system, even in the presence
of a single Byzantine fault. In the fully synchronous model, an algorithm is provided
for gathering N robots with up to f faults, where N ≥ 3f + 1.

Despite the existence of these elaborate gathering algorithms, the gravitational
approach is still very attractive for a number of reasons. To begin with, it requires
only very simple and efficient calculations, which can be performed on simple hardware
with minimal computational efforts. It can be applied equally easily to any number of
dimensions and to any swarm size. Moreover, the errors it incurs due to rounding are
bounded and simple to calculate. In addition, it is oblivious (i.e., it does not require
the robots to store any information on their previous operations or on past system
configurations). This makes the method both memory-efficient and self-stabilizing
(meaning that following a finite number of transient errors that change the states of
some of the robots into other (possibly illegal) states, the system returns to a legal
state and achieves eventual convergence). Finally, the method avoids deadlocks, in the
sense that every robot can move at any given position (unless it has already reached
the center of gravity). These advantages may well make the gravitational algorithm
the method of choice in many practical situations.

Subsequently, it is interesting to study the correctness and complexity properties
of the gravitational approach to convergence. This study is the focus of the current
paper. We prove the convergence of the center of gravity algorithm in the fully
asynchronous model. We also analyze the convergence rate of the algorithm. Finally,
we establish convergence in the crash fault model. Specifically, we show that in the
presence of f crash faults, 1 ≤ f ≤ N − 2, the N − f nonfaulty robots will converge
to the center of gravity of the crashed robots.

1.2. The model. The basic model studied in [3, 8, 9, 21, 23, 25, 26] can be
summarized as follows. The N robots execute a given algorithm in order to achieve a
prespecified task. Each robot i in the system operates individually, repeatedly going
through simple cycles consisting of three steps:
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• Look: Identify the locations of all robots in i’s private coordinate system and
obtain (instantaneously) a multiset of points P = {p1, . . . , pN} defining the
current configuration. The robots are indistinguishable, so i knows its own
location pi but does not know the identity of the robots at each of the other
points. This model allows robots to detect multiplicities; i.e., when two or
more robots reside at the same point, all robots will detect this fact. Note
that this model is stronger than, e.g., the one of [8].

• Compute: Execute the given algorithm, resulting in a goal point pG.
• Move: Move on a straight line towards the point pG. The robot might stop

before reaching its goal point pG but is guaranteed to traverse a distance of
at least S (unless it has reached the goal). The value of S is not assumed to
be known to the robots, and they cannot use it in their calculations.

This model, which allows the robot to suddenly stop short of reaching its goal
point, is henceforth referred to as the sudden-stop model. The simpler model where
the robot always reaches pG is henceforth called the undisturbed-motion model. For
simplicity of presentation, we will prove some of our claims first in the undisturbed-
motion model and then extend the proof to the full (sudden-stop) model.

The Look and Move operations are identical in every cycle, and the differences
between various algorithms are in the Compute step. The procedure carried out in
the Compute step is identical for all robots.

In most papers in this area (cf. [9, 12, 24, 25]), the robots are assumed to be
rather limited. To begin with, the robots are assumed to have no means of directly
communicating with each other. Moreover, they are assumed to be oblivious (or
memoryless); namely, they cannot remember their previous states, their previous
actions, or the previous positions of the other robots. Hence the algorithm used
in the Compute step cannot rely on information from previous cycles, and its only
input is the current configuration. While this is admittedly an overrestrictive and
unrealistic assumption, developing algorithms for the oblivious model still makes sense
in various settings for two reasons. First, solutions that rely on nonobliviousness do
not necessarily work in a dynamic environment where the robots are activated in
different cycles, or robots might be added to or removed from the system dynamically.
Second, any algorithm that works correctly for oblivious robots is inherently self-
stabilizing; i.e., it withstands transient errors that alter the robots’ local states into
other (possibly illegal) states.

We consider mainly the fully asynchronous (ASYNC) timing model (cf. [8, 9]).
In this model, robots operate on their own (time-varying) rates, and no assumptions
are made regarding the relative speeds of different robots. In particular, robots may
remain inactive for arbitrarily long periods between consecutive operation cycles (sub-
ject to some “fairness” assumption that ensures that each robot is activated infinitely
often in an infinite execution). This feature is sometimes modeled by incorporating a
Wait phase in each operation cycle of the robots.

We find it instructive to compare the performance of the gravitational algorithm
in this model with its performance in two alternative models studied in the literature,
namely, the semisynchronous (SSYNC) model (cf. [25]) and the fully synchronous
(FSYNC) model (cf. [26]). In the fully synchronous model, all robots operate at
fixed time cycles, and the Look phase of all robots is simultaneous. In the commonly
studied intermediate semisynchronous model, it is again assumed that there are fixed
time cycles, and the Look phase of the robots is simultaneous. However, now only a
subset of the robots may wake up at every cycle.
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To describe the center of gravity algorithm, hereafter named Algorithm Go to COG,
we use the following notation. Denote by r̄i[t] the location of robot i at time t. De-

note the true center of gravity at time t by c̄[t] = 1
N

∑N
i=1 r̄i[t]. Denote by c̄i[t] the

center of gravity as last calculated by the robot i before or at time t; i.e., if the last
calculation by i was done at time t′ ≤ t, then c̄i[t] = c̄[t′]. Note that, as mentioned
before, robot i calculates this location in its own private coordinate system; how-
ever, for the purpose of describing the algorithm and its analysis, it is convenient to
represent these locations in a unified global coordinate system (which, of course, is
unknown to the robots themselves). This is justified by the linearity of the center of
gravity calculation, which renders it invariant under any linear transformation. By
convention, c̄i[0] = r̄i[0] for all i.

Algorithm Go to COG is very simple. After measuring the current configuration
at some time t, the robot i computes as its goal point the average location of all robot
positions (including its own), c̄i[t] =

∑
j r̄j [t]/N , and then proceeds to move towards

the calculated goal point c̄i[t]. A formal definition of this algorithm follows.

Algorithm Go to COG (code for robot i at time t):
1. Calculate the center of gravity, c̄i[t] = 1

N

∑
j r̄j [t].

2. Move to the point c̄i[t].

As mentioned earlier, the move may terminate before the robot i actually reaches
the point c̄i[t]. The point at which the robot does stop its movement is henceforth
referred to as its destination point. More formally, define the destination point γ̄i[t]
of robot i to be the final point of the movement made by i following the last Look
performed by i before or at time t. Note that at time t, robot i may not have computed
its goal point c̄i[t] yet, and, even if it had, it has no knowledge of the possibility of
sudden stops; hence it is unaware of its destination point γ̄i[t]. Nevertheless, for the
analysis we may treat this point as given at the moment of the Look action. Recall
also that even in case the robot i has not reached c̄i[t], it must have traversed a
distance of at least S.

2. Asynchronous convergence. This section proves our main result, namely,
that Algorithm Go to COG guarantees the convergence of N robots for any N ≥ 2
in the asynchronous model. Notice that in the ASYNC model, since no guarantees
are given as to the behavior of the robot’s location and velocity at the duration of the
Move phase, the Compute and Wait phases may be assimilated into the Move phase
and treated as time periods during the Move phase in which the robot progresses with
zero velocity. Hence in the analysis we may consider only the Look and Move phases.

Lemma 2.1. If for some time t0, r̄i[t0] and γ̄i[t0] for all i reside in the interior
of a closed convex curve, P, then for every time t > t0, r̄i[t] and γ̄i[t] also reside in
the interior of P for every 1 ≤ i ≤ N .

Proof. For the Move operation, it is clear that if for some i, r̄i[t0] and γ̄i[t0]
both reside in the interior of a convex P, then for the rest of the Move operation
γ̄i[t] = γ̄i[t0] does not change and r̄i[t] remains on the segment [r̄i[t0],γ̄i[t0]], which is
inside P.

For the Look step, the claim is obvious for the r̄i[t] values. We first argue that
the calculated centers of gravity c̄i[t], for every i, also reside in the interior of P. If
N = 2, then the calculated center of gravity is on the line segment connecting both
robots and therefore respects convexity. For N > 2 robots, the center of gravity is
on the line connecting the center of gravity of N − 1 robots and the Nth robot, and
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the claim follows by induction. The lemma now follows since the destination γ̄i[t] of
robot i is on the line segment connecting the robot location r̄i[t] and its calculated
center of gravity c̄i[t] and therefore also respects convexity.

Hereafter we assume, for the time being, that the configuration is one-dimensional;
i.e., the robots reside on the x-axis. Later on, we extend the convergence proof to d
dimensions by applying the result to each dimension separately.

For every time t, let H[t] denote the convex hull of the points {r̄i[t] | 1 ≤ i ≤
N}∪{γ̄i[t] | 1 ≤ i ≤ N}, namely, the smallest closed interval containing all 2N points.
Lemma 2.1 yields the following.

Corollary 2.2. For N ≥ 2 robots and times t1, t0, if t1 > t0, then H[t1] ⊆
H[t0].

Unfortunately, it is hard to prove convergence on the basis of the size of H alone,
since it is hard to show that it strictly decreases. Other potentially promising mea-
sures, such as φ1 and φ2 defined next, also prove problematic, as they might sometimes
increase in certain scenarios. Subsequently, the measure ψ we use in what follows to
prove strict convergence is defined as a combination of a number of different measures.
Formally, let us define the following quantities:

φ1[t] =

N∑
i=1

|c̄[t] − γ̄i[t]| ,

φ2[t] =

N∑
i=1

|γ̄i[t] − r̄i[t]| ,

φ[t] = φ1[t] + φ2[t] ,

h[t] = |H[t]| ,

ψ[t] =
φ[t]

2N
+ h[t] .

We now claim that φ, h, and ψ are nonincreasing functions of time.
Lemma 2.3. For every t1 > t0, φ[t1] ≤ φ[t0].
Proof. Examine the change in φ due to the various robot actions. Suppose a Look

operation is performed by robot i at time t. (If two or more robots perform a Look
operation simultaneously, then we serialize these operations for the sake of analysis
and consider their sequential effects.) Denote with a superscript b (respectively, a)
the values of the robot locations and centers of gravity and the above quantities just
before (resp., after) the (instantaneous) Look operation. Then γ̄b

i [t] = r̄bi [t] = r̄ai [t].
Moreover, r̄aj [t] = r̄bj [t] and γ̄a

j [t] = γ̄b
j [t] for every j �= i; hence also c̄a[t] = c̄b[t].

These equalities imply the following. First, denoting the contributions of the robots
j �= i to φ1 and φ2 by φ̃1[t] =

∑
j �=i |c̄[t] − γ̄j [t]| and φ̃2[t] =

∑
j �=i |γ̄j [t] − r̄j [t]|,

respectively, these contributions do not change; namely, φ̃a
1 [t] = φ̃b

1[t] and φ̃a
2 [t] = φ̃b

2[t].
Also, the contributions of robot i to φb

1 and φb
2 are |c̄b[t] − γ̄b

i [t]| = |c̄b[t] − r̄bi [t]| and
γ̄b
i [t] − r̄bi [t] = 0, respectively. Finally, the contributions of robot i to φa

1 and φa
2 are

|r̄ai [t]−γ̄a
i [t]| and |γ̄a

i [t]−c̄a[t]|. Hence the total contribution of robot i to φa is the same
as its contribution to φb, since the point γ̄a

i [t] occurs on the segment [r̄bi [t], c̄
b[t]] =

[r̄ai [t], c̄a[t]]. (In the undisturbed-motion case the situation is even simpler, as the
robot always reaches its calculated destination and therefore γ̄a

i [t] = c̄b[t].) Therefore,
φ is unchanged by the Look performed.

Now consider some time interval [t′0, t
′
1] ⊆ [t0, t1], such that no Look operations

were performed during [t′0, t
′
1]. Suppose that during this interval each robot i moved a
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distance Δi (where some of these distances may be 0). Then φ2 decreased by
∑

i Δi,
the maximum change in the center of gravity is |c̄[t′1] − c̄[t′0]| ≤

∑
i Δi/N , and the

robots’ calculated centers of gravity have not changed. Therefore, the change in φ1 is
at most φ1[t

′
1] − φ1[t

′
0] ≤

∑
i Δi. Hence the sum φ = φ1 + φ2 cannot increase.

Lemma 2.4. ψ is a nonincreasing function of time.

Proof. By Lemma 2.3, φ is nonincreasing. By Corollary 2.2, h is nonincreasing.
Therefore their sum is also nonincreasing.

Lemma 2.5. For all t, h[t] ≤ ψ[t] ≤ 2h[t].

Proof. The lower bound is trivial. For the upper bound, notice that φ[t] is the sum
of 2N summands, each of which is at most h[t] (since they all reside in the segment).

We now state a lemma which allows the analysis of the change in φ[t] (and there-
fore also ψ[t]) in terms of the contributions of individual robots. It is, in general,
impossible to separate the change in φ[t] to contributions of individual robots. How-
ever, it is possible to bound the minimum decrease in φ[t] by the decrease caused by
the motion of a single robot.

Lemma 2.6. If H[t0] = [0, 1] and at some time t ≥ t0 all robots are in the
interval [0, 1/2] (i.e., r̄i[t] ∈ [0, 1/2] for all i), then there exists a time t1 ≥ t, such
that ψ[t1] ≤

(
1 − 1

8N2

)
ψ[t0].

Proof. We split the situation into two subcases:

1. At time t all destination points γ̄i[t] resided in the interval [0, 3
4 ]. In this case,

take t1 to be the time when each robot has completed at least one cycle. All
robots and destinations are now in the interval [0, 3

4 ], and therefore h ≤ 3
4 .

Now h[t1] ≤ 3
4 ≤ 3

4h[t0], and therefore

ψ[t1] = h[t1] +
φ[t1]

2N
≤ 3

4
h[t0] +

φ[t0]

2N
≤ 7

8
h[t0] +

7

8

φ[t0]

2N
=

7

8
ψ[t0],

where the last inequality is due to the fact that φ[t0]
2N ≤ h[t0] as argued in the

proof of Lemma 2.5. The lemma immediately follows in this case.
2. At time t there existed robots with γ̄i[t] >

3
4 . In this case, take k to be the

robot with the highest destination point (or one of them) and take t1 to be
the time robot k completes its next Move. Its Move size is at least Δk ≥ 1

4 .
Suppose at some time interval [t′, t′′] ⊆ [t, t1] no Look was performed by any
robot and that every robot, i, moved in this time interval by the vector δ̄i.
Now, all robots approached their destinations, so φ2[t

′′] = φ2[t] − 1
N

∑
i δi.

The center of gravity was changed by the robots’ motions to c̄[t′′] = c̄[t′] +
1
N

∑
i δ̄i and therefore also c̄[t′′] − c̄[t′] ≤ 1

N

∑
i δi. Since no Look operations

occur in the time interval [t′, t′′], no γ̄i is changed, and for every i, |c̄[t′′] −
γ̄i[t

′′]| ≤ |c̄[t′′] − γ̄i[t
′′]| + 1

N

∑
i δi. For i = k,

|c̄[t′′] − γ̄k[t
′′]| =

∣∣∣∣∣∣c̄[t′] +
δ̄k
N

+
1

N

∑
i �=k

δ̄i − γ̄k[t
′]

∣∣∣∣∣∣
≤

∣∣∣∣c̄[t′] +
δ̄k
N

− γ̄k[t
′]

∣∣∣∣ +
1

N

∑
i �=k

δj .

Since robot k is approaching γ̄k from the left, it follows that r̄k + δ̄k ≤ γ̄k.
Since by its maximality all robots are to the left of γ̄k at all times, it follows
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that c̄ = 1
N (

∑
i �=k r̄i + r̄k) ≤ γ̄k − δk

N . Therefore,

|c̄[t′′] − γ̄k[t
′′]| ≤ |c̄[t′] − γ̄k[t

′]| + 1

N

(∑
i

δi − 2δk

)
.

Look operations do not change ψ, and the total movement of robot k is Δk ≥
1
4 . Therefore, φ decreased by at least 2Δk/N , and the term φ

2N in ψ decreased

by at least 2Δk/N
2N = Δk

N2 ≥ 1
4N2 . As ψ[t0] ≤ 2 and h is nonincreasing, ψ

decreased by at least 1
4N2 ≥ ψ[t0]

8N2 . The lemma follows.

We now give our main lemma. First, we treat the undisturbed-motion model.
Note that in this case, the destination points are always the calculated centers of
gravity.

Lemma 2.7. In the undisturbed-motion model, for every time t0, there exists
some time t̂ > t0 such that

ψ[t̂] ≤
(

1 − 1

8N2

)
ψ[t0].

Proof. Assume, without loss of generality, that at time t0, the robots and their
destination points resided in the interval H[t0] = [0, 1] (and thus h[t0] = 1 and
ψ[t0] ≤ 2). Take t∗ to be the earliest time after t0 when each robot has completed at
least one entire Look-Compute-Move cycle. There are now two possibilities.

Case (1). Every destination point γ̄i[t
′] that was calculated at any time t′ ∈ [t0, t

∗]
resided in the segment ( 1

2N , 1]. In this case, at time t∗ no robot can reside in the
segment [0, 1

2N ], since every robot has completed at least one cycle operation, where
it has arrived at its calculated center of gravity outside the segment [0, 1

2N ], and from
then on it may have moved a few more times to its newly calculated centers of gravity,
which were also outside this segment, by Corollary 2.2. Hence at time t̂ = t∗ all robots
and centers of gravity reside in H[t̂] ⊆ [ 1

2N , 1], so h[t̂] ≤ 1 − 1
2N , and φ[t̂] ≤ φ[t0].

Therefore,

ψ[t̂] =
φ[t̂]

2N
+ h[t̂] ≤ φ[t0]

2N
+ 1 − 1

2N
= ψ[t0] −

1

2N
.

Also, by Lemma 2.5, ψ[t] ≤ 2, and hence 1
2N ≥ 1

4Nψ[t0]. Combined, we get ψ[t̂] ≤(
1 − 1

4N

)
ψ[t0].

Case (2). For some t1 ∈ [t0, t
∗], the destination point (or center of gravity)

γ̄i[t1] = c̄i[t1] = 1
N

∑N
j=1 r̄j [t1] calculated by some robot i at time t1 resided in [0, 1

2N ].

Therefore, at time t1 all robots resided in the segment [0, 1
2 ]. The lemma then follows

by applying Lemma 2.6.

To prove the convergence of the gravitational algorithm in the undisturbed-motion
model in d-dimensional Euclidean space, we apply Lemma 2.7 to each dimension
separately. Observe that by Lemmas 2.7 and 2.5, for every ε > 0 there is a time tε by
which h[tε] ≤ ψ[tε] ≤ ε; hence the robots have converged to an ε-neighborhood. This
proves that in the undisturbed-motion model in d-dimensional Euclidean space, for
any N ≥ 2, N robots performing Algorithm Go to COG will converge.

We now turn to the full (sudden-stop) model. In this case the following lemma
replaces Lemma 2.7.



GRAVITATIONAL ALGORITHM FOR ROBOT SYSTEMS 1523

Lemma 2.8. In the full (sudden-stop) model in d dimensions, for every time t0,
there exists some time t̂ > t0 such that

ψ[t̂] ≤ max

{(
1 − 1

8N2

)
ψ[t0] , ψ[t0] −

S

4N
√
d

}
.

Proof. The proof is similar to the proof of Lemma 2.7 with the following changes.
• In each round we treat only the dimension for which h is largest (or one such

dimension if there exist more than one). We refer to this dimension as the
x-dimension and denote quantities in this dimension by (x).

• In Case (1), the moving robots may not complete their move and therefore
may not leave the segment [0, 1

2N ] even if no center of gravity was calculated
in this segment. We split this case into two cases. If at the time of the
last Look no robot resided in the segment [0, 1

4N ], then no robot will reside
there also at the end of the Move, and h must have decreased by at least
1

4N . Otherwise, the distance between each of the robots in the segment [0, 1
4N ]

to its observed center of gravity in the x-dimension is at least 1
4N , since by

assumption c̄[t] ≥ 1
2N for all t ∈ [t0, t̂]. Recalling that d is the number of

dimensions, we conclude that the total distance from these robots to the
center of gravity is at most

√
d, since by the maximality of h in dimension

x over every other dimension ν, h(ν)[t0] ≤ h(x)[t0] = 1. Thus, the ratio of
the x-component of the vector r̄i[t]− c̄[t] to the vector size is at least 1

4N
√
d

.

Therefore, the projection of a vector of length at least S in this direction on
the x-axis is at least S

4N
√
d
, and h(x) decreases by at least this amount.

• Case (2) still holds, since Lemma 2.6 is true even with sudden stops.
Lemma 2.8 yields the following.
Theorem 2.9. In the full (sudden-stop) ASYNC model for any N ≥ 2, in d-

dimensional Euclidean space, N robots performing Algorithm Go to COG will converge.
Proof. Denote Ψ[t] =

∑d
ν=1 ψ

(ν)[t]. Then

Ψ[t0] ≤ 2

d∑
ν=1

h(ν)[t0] ≤ 2dh(x)[t0] ≤ 2dψ(x)[t0].

Therefore, the value of ψ for the largest dimension is ψ(x)[t0] ≥ Ψ[t0]/2d. By Lemma
2.8 the value of ψ for the largest dimension decreases after every two complete cycles of
the robot swarm by an additive or multiplicative constant. The theorem follows.

3. Convergence rate. To bound the rate of convergence in the fully asyn-
chronous model, one should make some normalizing assumption on the operational
speed of the robots. A standard type of assumption is based on defining the maximum
length of a robot cycle during the execution (i.e., the maximum time interval between
two consecutive Look steps of the same robot) as one time unit. For our purposes it
is more convenient to make the slightly modified assumption that for every time t,
during the time interval [t, t + 1] every robot has completed at least one cycle. Note
that the two assumptions are equivalent up to a constant factor of 2. Note also that
this assumption is used only for the purpose of complexity analysis and was not used
in our correctness proof.

3.1. The undisturbed-motion model. First, we discuss the convergence rate
in the undisturbed-motion model.
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Lemma 3.1. In the undisturbed-motion model, for every time interval [t0, t1],

ψ[t1] ≤
(

1 − 1

8N2

)	 t1−t0
2 


ψ[t0].

Proof. Consider the different cases analyzed in the proof of Lemma 2.7. By our
timing assumption, we can take t∗ = t0 +1. In Case (1), ψ is decreased by a factor of
1− 1

4N by time t̂ = t∗, i.e., within one time unit. In Case (2), we have two possibilities.

If Case (1) of Lemma 2.6 holds, then ψ is decreased by a factor of 7
8 by time t̂ = t∗,

i.e., within one time unit again. The slowest convergence rate is obtained in Case
(2) of Lemma 2.6. Here we can take t̂ = t∗ + 1 = t0 + 2 and conclude that ψ is
decreased by a factor of 1− 1

8N2 after two time units. The lemma follows by assuming
a worst-case scenario in which during the time interval [t0, t1], the “slow” Case (2) is
repeated for 	 t1−t0

2 
 times.

By the two inequalities of Lemma 2.5 we have that h[t1] ≤ ψ[t1] and ψ[t0] ≤ 2h[t0],
respectively. Lemma 3.1 now yields the following lemma.

Lemma 3.2. In the undisturbed-motion ASYNC model, for every time interval
[t0, t1],

h[t1] ≤ 2

(
1 − 1

8N2

)	 t1−t0
2 


h[t0] .

Corollary 3.3. In any execution of the gravitational algorithm in the undisturbed-
motion ASYNC model, over every interval of O(N2) time units, the size of the d-
dimensional convex hull of the robot locations and centers of gravity is halved in each
dimension separately.

An example for slow convergence is given by the following lemma.

Lemma 3.4. There exist executions of the gravitational algorithm in which Ω(N)
time is required to halve the convex hull of N robots in each dimension.

Proof. Initially, and throughout the execution, the N robots are organized on the
x-axis. The execution consists of phases of the following structure. Each phase takes
exactly one time unit, from time t to time t + 1. At each (integral) time t, robot 1 is
at one endpoint of the bounding segment H[t], while the other N−1 robots are at the
other endpoint of the segment. Robot 1 performs a Look at time t and determines its

perceived center of gravity γ̄i[t] to reside at a distance h[t]
N−1 from the distant endpoint.

Next, the other N − 1 robots perform a long sequence of (fast) cycles, bringing them
to within a distance ε of robot 1, for arbitrarily small ε. Robot 1 then performs its
movement to its perceived center of gravity γ̄i[t]. Hence the decrease in the size of the

bounding interval during the phase is h[t]− h[t+ 1] = h[t]
N−1 + ε, or, in other words, at

the end of the phase, h[t+ 1] ≈ (1− 1
N−1 )h[t]. It follows that O(N) steps are needed

to reduce the interval size to half of its original size.

Note that there is still a linear gap between the upper and lower bounds on the
convergence rate of the gravitational algorithm as stated in Corollary 3.3 and Lemma
3.4.

It is interesting to compare these bounds with what happens in the fully syn-
chronous (FSYNC) model. Here all robots operate at fixed time cycles, and the
Look phase of all robots is simultaneous. In this model, after the first step all robots
are at the center of gravity. Therefore, we have the following.



GRAVITATIONAL ALGORITHM FOR ROBOT SYSTEMS 1525

Lemma 3.5. In any execution of the gravitational algorithm in the undisturbed-
motion FSYNC model, the robots gather after a single step.

We now turn to the intermediate semisynchronous (SSYNC) model. In this
model there are fixed time cycles, and the Look phase of the robots is simultaneous,
but only a subset of the robots may wake up at every cycle. We define, for the sake of
time analysis, the notion of a (possibly long) time unit so that at every time unit, every
robot is awakened at least once. (Here a “time unit” may compose of many cycles.)

Lemma 3.6. In any execution of the gravitational algorithm in the undisturbed-
motion SSYNC model, over every interval of O(N) time units, the size of the d-
dimensional convex hull of the robot locations and centers of gravity is halved in each
dimension separately.

Proof. Again, we appeal to the proof of Lemma 2.7. However, in the semisyn-
chronous model we have the advantage that at the beginning of the Look phase, each
of the robots resides at the location of its last calculated center of gravity. This implies
that Case (2) of the analysis of Lemma 2.6 is impossible. Thus, it is guaranteed that

at every time step t, h[t] is decreased by at least h[t]
2N . Therefore, we conclude that,

over every interval of O(N) time units, the size of the d-dimensional convex hull of the
robot locations and centers of gravity is halved in each dimension separately.

3.2. The full (sudden-stop) model. We now discuss the full (sudden-stop)
model. We give the analogues of the above theorems in this case.

First, we discuss the fully synchronous model FSYNC. In the following, H[0] is
the convex hull of the N robots at time 0 and h[0] is the maximum width of H[0] in
any of the d dimensions. We have the following lemma.

Lemma 3.7. In any execution of the gravitational algorithm in the full (sudden-
stop) FSYNC model, the robots achieve gathering in at most �4h[0]d3/2/S time.

Proof. If the distance of each robot from the center of gravity is at most S, then
at the next step they will all gather. Suppose now that there exists at least one
robot whose distance from the center of gravity is greater than S. Since the center
of gravity is within the convex hull, the largest dimension is at least h[0] ≥ S/

√
d.

Without loss of generality, assume that the projection of the hull on the maximum
width dimension is on the interval [0, a] and that the projection of the center of
gravity c̄[0] is in the interval [a2 , a]. Then in each step, t, every robot moves by a

vector min{r̄i[t] − c̄[t], S′ r̄i[t]−c̄[t]
|r̄i[t]−c̄[t]|} for some S′ ≥ S. By assumption, a is the width

of the largest dimension, and therefore a ≥ |r̄i[t] − c̄[t]|/
√
d. For every robot in the

interval [0, a
4 ], the distance to the current center of gravity will decrease in the next

step by at least min{a
4 , S

a/4

a
√
d
} ≥ S

4
√
d
. Thus, the width of at least one dimension

decreases by at least S
4
√
d

in each step. Therefore, gathering is achieved after at most

�4h[0]d3/2/S cycles, independently of N .

Lemma 3.8. In any execution of the gravitational algorithm in the full (sudden-
stop) SSYNC model, over every interval of O

(
N

⌈
h
S

⌉)
time units, the size of the

d-dimensional convex hull of the robot locations and centers of gravity is halved in
each dimension separately.

Proof. As in the proof of Lemma 3.6, Case (2) of the analysis of Lemma 2.6 is
impossible here. This guarantees that at every time step t, h[t] is decreased by at

least min{ S
4N

√
d
, h[t]

2N }. Therefore, over every interval of O(N
⌈
h
S

⌉
) time units, the size

of the d-dimensional convex hull of the robot locations and centers of gravity is halved
in each dimension separately.
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Finally, we present the result for the ASYNC model. The proof is similar to
Corollary 3.3, with the additional option of sudden stops, as discussed in the proof of
Lemma 2.8. We obtain the following.

Theorem 3.9. In any execution of the gravitational algorithm in the full (sudden-
stop) ASYNC model, over every interval of O

(
N2 + Nh

S

)
time units, the size of the

d-dimensional convex hull of the robot locations and centers of gravity is halved in
each dimension separately.

4. Fault tolerance. In this section we consider the behavior of the gravitational
algorithm in the presence of possible robot failures.

Let us first observe that the gravitational algorithm achieves self-stabilization
(cf. [10]) in a model allowing only transient failures. Such a failure causes a change
in the states of some robots, possibly into illegal states. That is, a measurement,
calculation, or movement error may occur, causing the robot to move to a location
other than the center of gravity. In essence, self-stabilization is the requirement that if
the system quiets at some time t0 (namely, no more transient errors occur), then from
time t0 on, the algorithm will achieve convergence, despite starting from a potentially
illegal state. Notice that Theorem 2.9 makes no assumptions about the initial positions
and centers of gravity, other than that they are restricted to some finite region. It
follows that, due to the oblivious nature of the robots (and hence the algorithm), the
robots will converge regardless of any finite number of transient errors occurring in
the early stages of the execution.

We now turn to consider the crash fault model. This model, presented in [1],
follows the common crash (or “fail-stop”) fault model in distributed computing and
assumes that a robot may fail by halting. This may happen at any point in time
during the robot’s cycle, i.e., either during the movement towards the goal point or
before it has started. Once a robot has crashed, it will remain stationary indefi-
nitely.

In [1], it is shown that in the presence of a single crash fault, it is possible to
gather the remaining (functioning) robots to a common point. Here we avoid the
gathering requirement and settle for the weaker goal of convergence. We show that
the Go to COG algorithm converges for every number of crashed robots. In fact, in a
sense, convergence is easier in this setting since the crashed robots determine the final
convergence point for the nonfaulty robots. We have the following.

Theorem 4.1. In the full (sudden-stop) ASYNC model, consider a swarm of
N robots that execute Algorithm Go to COG. If 1 ≤ M ≤ N − 2 robots crash during
the execution, then the remaining N −M robots will converge to the center of gravity
of the crashed robots. Moreover, the size of the robots’ convex hull is halved every
O
(
N

⌈
h
S

⌉)
time units.

Proof. Let us first consider an execution of the gravitational algorithm by a swarm
of N robots in one dimension. Without loss of generality, assume that the crashed
robots were 1, . . . ,M and their crashing times were t1 ≤ · · · ≤ tM , respectively.
Consider the behavior of the algorithm starting from time tM . For the analysis, a
setting in which the M robots crashed at general positions r̄1, . . . , r̄M is equivalent
to one in which all M crashed robots are concentrated in their center of gravity
1
M

∑M
i=1 r̄i. Assume, without loss of generality, that this center of gravity is at 0.

Now consider some time t0 ≥ tM . Let H[t0] = [a, b] for some a ≤ 0 ≤ b. By
Corollary 2.2, the robots will remain in the segment [a, b] at all times t ≥ t0. The
center of gravity calculated by any nonfaulty robot M + 1 ≤ j ≤ N at time t ≥ t0
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will then be

γ̄j [t] =
1

N

N∑
i=1

r̄i =
1

N

(
M · 0 +

N∑
i=M+1

r̄i[t]

)
.

Hence all centers of gravity calculated hereafter will be restricted to the segment
[a′, b′], where a′ = N−M

N · a and b′ = N−M
N · b. Consequently, denoting by t̂ the time

by which every nonfaulty robot has completed a Look-Compute-Move cycle and no
sudden stops occur, we have that H[t̂] ⊆ [a′, b′], and hence h[t̂] ≤ N−M

N · h[t0].
Again, the argument can be extended to any number of dimensions by considering

each dimension separately. It follows that the robots converge to the point 0, namely,
the center of gravity of the crashed robots.

If sudden stops do occur, then the robots are not guaranteed to reach their des-
tination. However, they are guaranteed to travel a distance of at least S. Therefore,
using arguments similar to the proof of Lemma 2.8, if sudden stops occur, then the
size of the hull in the largest dimension is decreased by at least S

4N
√
d
, leading to the

theorem.

5. Conclusions. We have considered the properties of the gravitational algo-
rithm for convergence of mobile robot swarms. We have shown that the algorithm
guarantees convergence to a point for any number of robots N and in any dimension
d. We have shown that an appropriate quantity is halved every O(N2) steps and
have shown a case where O(N) steps are needed for halving the invariant. Thus, a
gap still exists between our bounds on the convergence rate, which is left as an open
question. We have shown analogous (and somewhat stronger) results for the simpler
synchronous and semisynchronous models. We have also shown that the algorithm is
resilient to crash failures of any number of robots.

Acknowledgment. We are grateful to the anonymous reviewers, whose com-
ments helped clarify and improve the presentation of our results.
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